1
|
Wai AP, Timmy R, Wakae K, Okada S, Muramatsu M, Yoshiyama H, Iizasa H. Persistent Epstein-Barr Virus Infection of Epithelial Cells Leads to APOBEC3C Expression and Induces Mitochondrial DNA Mutations. Microbiol Immunol 2024. [PMID: 39704315 DOI: 10.1111/1348-0421.13196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
Upon infection with the virus, cells increase the expression of cytidine deaminase APOBEC3 family genes. This leads to the accumulation of C-to-T mutations in the replicating viral genome and suppresses viral propagation. In contrast, herpesviruses, including Epstein-Barr virus (EBV), express genes that counteract APOBEC3 during lytic infection. However, because viral resistance factors are not expressed during EBV latent infection, it is unknown how APOBEC3 functions during latent infection. We observed that in gastric epithelial cells persistently infected with EBV, the expression of APOBEC3 family genes increased, C-to-T mutations in the D-loop genome of mitochondrial DNA (mtDNA) increased, and mtDNA copy number decreased. By introducing and expressing individual APOBEC3 family genes, APOBEC3C was particularly expressed in the cytoplasm, increasing C-to-T mutations in mtDNA and decreasing mtDNA copy number. Furthermore, we confirmed that APOBEC3C co-localized with mitochondria in EBV-infected cells. Expression of the EBV latent gene LMP2A increased APOBEC3C expression. Conversely, APOBEC3C expression was reduced in LMP2A-deficient EBV-infected cells compared to wild-type EBV-infected cells. These results indicate that persistent infection of EBV in gastric epithelial cells reduces the number of mitochondria through mtDNA mutations induced by APOBEC3C expression.
Collapse
Affiliation(s)
- Aung Phyo Wai
- Department of Microbiology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| | - Richardo Timmy
- Department of Microbiology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
- Institute of Immunology, Department of Innate Immunity, University of Tübingen, Tübingen, Germany
| | - Kousho Wakae
- Department of Virology II, National Institute of Infectious Disease, Tokyo, Japan
| | - Shunpei Okada
- Department of Microbiology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| | - Masamichi Muramatsu
- Department of Infectious Disease Research, Foundation for Biomedical Research and Innovation at Kobe, Kobe, Japan
| | - Hironori Yoshiyama
- Department of Microbiology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| | - Hisashi Iizasa
- Department of Microbiology, Faculty of Medicine, Shimane University, Izumo, Shimane, Japan
| |
Collapse
|
2
|
Choi UY, Lee SH. Understanding Metabolic Pathway Rewiring by Oncogenic Gamma Herpesvirus. J Microbiol Biotechnol 2024; 34:2143-2152. [PMID: 39403716 PMCID: PMC11637867 DOI: 10.4014/jmb.2407.07039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 11/29/2024]
Abstract
Gamma herpesviruses, including Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), are key contributors to the development of various cancers through their ability to manipulate host cellular pathways. This review explores the intricate ways these viruses rewire host metabolic pathways to sustain viral persistence and promote tumorigenesis. We look into how EBV and KSHV induce glycolytic reprogramming, alter mitochondrial function, and remodel nucleotide and amino acid metabolism, highlighting the crucial role of lipid metabolism in these oncogenic processes. By understanding these metabolic alterations, which confer proliferative and survival advantages to the virus-infected cells, we can identify potential therapeutic targets and develop innovative treatment strategies for gamma herpesvirus-associated malignancies. Ultimately, this review underscores the critical role of metabolic reprogramming in gamma herpesvirus oncogenesis and its implications for precision medicine in combating virus-driven cancers.
Collapse
Affiliation(s)
- Un Yung Choi
- Department of Microbiology, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
- KU Open Innovation Center, Research Institute of Medical Science, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
| | - Seung Hyun Lee
- Department of Microbiology, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
- KU Open Innovation Center, Research Institute of Medical Science, Konkuk University School of Medicine, Chungju 27478, Republic of Korea
| |
Collapse
|
3
|
Gay L, Desquiret-Dumas V, Nagot N, Rapenne C, Van de Perre P, Reynier P, Molès JP. Long-term persistence of mitochondrial dysfunctions after viral infections and antiviral therapies: A review of mechanisms involved. J Med Virol 2024; 96:e29886. [PMID: 39246064 DOI: 10.1002/jmv.29886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 09/10/2024]
Abstract
Mitochondria are vital for most cells' functions. Viruses hijack mitochondria machinery for misappropriation of energy supply or to bypass defense mechanisms. Many of these mitochondrial dysfunctions persist after recovery from treated or untreated viral infections, particularly when mitochondrial DNA is permanently damaged. Quantitative defects and structural rearrangements of mitochondrial DNA accumulate in post-mitotic tissues as recently reported long after SARS-CoV-2 or HIV infection, or following antiviral therapy. These observations are consistent with the "hit-and-run" concept proposed decades ago to explain viro-induced cell transformation and it could apply to delayed post-viral onsets of symptoms and advocate for complementary supportive care. Thus, according to this concept, following exposure to viruses or antiviral agents, mitochondrial damage could evolve into an autonomous clinical condition. It also establishes a pathogenic link between communicable and non-communicable chronic diseases.
Collapse
Affiliation(s)
- Laetitia Gay
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles, Montpellier, France
| | - Valérie Desquiret-Dumas
- Department of Biochemistry and Molecular Biology, University Hospital of Angers, Angers, France
- MITOVASC Research Unit, CNRS 6015, INSERM U1083, University of Angers, Angers, France
| | - Nicolas Nagot
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles, Montpellier, France
| | - Clara Rapenne
- Department of Biochemistry and Molecular Biology, University Hospital of Angers, Angers, France
- MITOVASC Research Unit, CNRS 6015, INSERM U1083, University of Angers, Angers, France
| | - Philippe Van de Perre
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles, Montpellier, France
| | - Pascal Reynier
- Department of Biochemistry and Molecular Biology, University Hospital of Angers, Angers, France
- MITOVASC Research Unit, CNRS 6015, INSERM U1083, University of Angers, Angers, France
| | - Jean-Pierre Molès
- Pathogenesis and Control of Chronic and Emerging Infections, University of Montpellier, INSERM, Etablissement Français du Sang, University of Antilles, Montpellier, France
| |
Collapse
|
4
|
Chen BK, Chan CH, Tsao A, Wang CK. Improvement of Echinacea purpurea and Ganoderma lucidum Extracts with Cell Model on Influenza A/B Infection. Molecules 2024; 29:3609. [PMID: 39125012 PMCID: PMC11314549 DOI: 10.3390/molecules29153609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Since 2019, COVID-19 has been raging around the world. Respiratory viral infectious diseases such as influenza and respiratory syncytial virus (RSV) infection are also prevalent, with influenza having the ability to cause seasonal pandemics. While vaccines and antiviral drugs are available to prevent and treat disease, herbal extracts would be another option. This study investigated the inhibitory effects of extracts of Echinacea purpurea (EP) and Ganoderma lucidum (G. lucidum) and the advanced G. lucidum drink (AG) on influenza A/B viruses. To determine whether EP and G. lucidum extracts enhance cell immunity and thus prevent virus infection or act to directly suppress viruses, cell survival and hemagglutination (HA) assays were used in this study. Cells were treated with samples at different concentrations (each sample concentration was tested from the highest non-cytotoxic concentration) and incubated with influenza A/B for 24 h, with the results showing that both G. lucidum and EP extracts and mixtures exhibited the ability to enhance cell survival against viruses. In the HA assay, AG and EP extract showed good inhibitory effect on influenza A/B viruses. All of the samples demonstrated an improvement of the mitochondrial membrane potential and improved resistance to influenza A/B virus infection. EP and G. lucidum extracts at noncytotoxic concentrations increased cell viability, but only AG and EP extract directly decreased influenza virus titers. In conclusion, results indicate the ability of EP and G. lucidum extract to prevent viruses from entering cells by improving cell viability and mitochondrial dysfunction and EP extract showed direct inhibition on viruses and prevented viral infection at post-infection strategy.
Collapse
Affiliation(s)
- Bo-Kai Chen
- Department of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung 40201, Taiwan;
| | - Chi-Ho Chan
- Department of Microbiology and Immunology, Chung Shan Medical University, Taichung 40201, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| | - Arthur Tsao
- SFG Health Lab, Standard Foods Group, Taoyuan 337402, Taiwan;
| | - Chin-Kun Wang
- Department of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung 40201, Taiwan;
| |
Collapse
|
5
|
Sobhi Amjad Z, Shojaeian A, Sadri Nahand J, Bayat M, Taghizadieh M, Rostamian M, Babaei F, Moghoofei M. Oncoviruses: Induction of cancer development and metastasis by increasing anoikis resistance. Heliyon 2023; 9:e22598. [PMID: 38144298 PMCID: PMC10746446 DOI: 10.1016/j.heliyon.2023.e22598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023] Open
Abstract
The phenomenon of cell death is a vital aspect in the regulation of aberrant cells such as cancer cells. Anoikis is a kind of cell death that occurs when cells get separated from the extracellular matrix. Some cancer cells can inhibit anoikis in order to progress metastasis. One of the key variables that might be implicated in anoikis resistance (AR) is viral infections. The most important viruses involved in this process are Epstein-Barr virus, human papillomavirus, hepatitis B virus, human herpes virus 8, human T-cell lymphotropic virus type 1, and hepatitis C virus. A better understanding of how carcinogenic viruses suppress anoikis might be helpful in developing an effective treatment for virus-associated cancers. In the current study, we review the role of the mentioned viruses and their gene products in anoikis inhibition.
Collapse
Affiliation(s)
- Zahra Sobhi Amjad
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Javid Sadri Nahand
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mobina Bayat
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taghizadieh
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mosayeb Rostamian
- Nosocomial Infections Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farhad Babaei
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Infectious Diseases Research Center, Health Research Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
6
|
Heawchaiyaphum C, Yoshiyama H, Iizasa H, Burassakarn A, Tumurgan Z, Ekalaksananan T, Pientong C. Epstein-Barr Virus Promotes Oral Squamous Cell Carcinoma Stemness through the Warburg Effect. Int J Mol Sci 2023; 24:14072. [PMID: 37762374 PMCID: PMC10531857 DOI: 10.3390/ijms241814072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Epstein-Barr virus (EBV) is associated with various human malignancies. An association between EBV infection and oral squamous cell carcinoma (OSCC) has recently been reported. We established EBV-positive OSCC cells and demonstrated that EBV infection promoted OSCC progression. However, the mechanisms by which EBV promotes OSCC progression remain poorly understood. Therefore, we performed metabolic analyses of EBV-positive OSCC cells and established a xenograft model to investigate the viral contribution to OSCC progression. Here, we demonstrated that EBV infection induced mitochondrial stress by reducing the number of mitochondrial DNA (mtDNA) copies. Microarray data from EBV-positive OSCC cells showed altered expression of glycolysis-related genes, particularly the upregulation of key genes involved in the Warburg effect, including LDHA, GLUT1, and PDK1. Furthermore, lactate production and LDH activity were elevated in EBV-positive OSCC cells. EBV infection significantly upregulated the expression levels of cancer stem cell (CSC) markers such as CD44 and CD133 in the xenograft model. In this model, tumor growth was significantly increased in EBV-positive SCC25 cells compared with that in uninfected cells. Furthermore, tumorigenicity increased after serial passages of EBV-positive SCC25 tumors. This study revealed the oncogenic role of EBV in OSCC progression by inducing the Warburg effect and cancer stemness.
Collapse
Affiliation(s)
- Chukkris Heawchaiyaphum
- Department of Biotechnology, Faculty of Science and Technology, Thammasat University (Rangsit Center), Pathum Thani 12120, Thailand;
- Department of Microbiology, Faculty of Medicine, Shimane University, Shimane 693-8501, Japan; (H.I.); (A.B.); (Z.T.)
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Hironori Yoshiyama
- Department of Microbiology, Faculty of Medicine, Shimane University, Shimane 693-8501, Japan; (H.I.); (A.B.); (Z.T.)
| | - Hisashi Iizasa
- Department of Microbiology, Faculty of Medicine, Shimane University, Shimane 693-8501, Japan; (H.I.); (A.B.); (Z.T.)
| | - Ati Burassakarn
- Department of Microbiology, Faculty of Medicine, Shimane University, Shimane 693-8501, Japan; (H.I.); (A.B.); (Z.T.)
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Zolzaya Tumurgan
- Department of Microbiology, Faculty of Medicine, Shimane University, Shimane 693-8501, Japan; (H.I.); (A.B.); (Z.T.)
| | - Tipaya Ekalaksananan
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Chamsai Pientong
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand;
- HPV & EBV and Carcinogenesis Research Group, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
7
|
Thiruvengadam R, Kim JH. Therapeutic strategy for oncovirus-mediated oral cancer: A comprehensive review. Biomed Pharmacother 2023; 165:115035. [PMID: 37364477 DOI: 10.1016/j.biopha.2023.115035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/02/2023] [Accepted: 06/20/2023] [Indexed: 06/28/2023] Open
Abstract
Oral cancer is a neoplastic disorder of the oral cavities, including the lips, tongue, buccal mucosa, and lower and upper gums. Oral cancer assessment entails a multistep process that requires deep knowledge of the molecular networks involved in its progression and development. Preventive measures including public awareness of risk factors and improving public behaviors are necessary, and screening techniques should be encouraged to enable early detection of malignant lesions. Herpes simplex virus (HSV), human papillomavirus (HPV), Epstein-Barr virus (EBV), and Kaposi sarcoma-associated herpesvirus (KSHV) are associated with other premalignant and carcinogenic conditions leading to oral cancer. Oncogenic viruses induce chromosomal rearrangements; activate signal transduction pathways via growth factor receptors, cytoplasmic protein kinases, and DNA binding transcription factors; modulate cell cycle proteins, and inhibit apoptotic pathways. In this review, we present an up-to-date overview on the use of nanomaterials for regulating viral proteins and oral cancer as well as the role of phytocompounds on oral cancer. The targets linking oncoviral proteins and oral carcinogenesis were also discussed.
Collapse
Affiliation(s)
- Rekha Thiruvengadam
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Jin Hee Kim
- Department of Integrative Bioscience & Biotechnology, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
8
|
Liang Y, Liu W, Zhao M, Shi D, Zhang Y, Luo B. Nuclear respiratory factor 1 promotes the progression of EBV-associated gastric cancer and maintains EBV latent infection. Virus Genes 2023; 59:204-214. [PMID: 36738378 DOI: 10.1007/s11262-023-01970-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023]
Abstract
This study aimed to investigate the association of Epstein-Barr virus (EBV) with nuclear respiratory factor 1 (NRF1) and the biological function of NRF1 in EBV-associated gastric cancer (EBVaGC). Western blot and qRT-PCR were used to assess the effect of latent membrane protein 2A (LMP2A) on NRF1 expression after transfection with LMP2A plasmid or siLMP2A. The effects of NRF1 on the migration and apoptosis ability of GC cells were investigated by transwell assay and flow cytometry apoptosis analysis in vitro, respectively. In addition, we determined the regulatory role of NRF1 in EBV latent infection by western blot and droplet digital PCR (ddPCR). LMP2A upregulated NRF1 expression by activating the NF-κB pathway. Moreover, NRF1 upregulated the expression of N-Cadherin and ZEB1 to promote cell migration. NRF1 promoted the expression of Bcl-2 to increase the anti-apoptotic ability of cells. In addition, NRF1 maintained latent infection of EBV by promoting the expression of the latent protein Epstein-Barr nuclear antigen 1 (EBNA1) and inhibiting the expression of the lytic proteins. Our data indicated the role of NRF1 in EBVaGC progression and the maintenance of EBV latent infection. This provided a new theoretical basis for further NRF1-based anti-cancer therapy.
Collapse
Affiliation(s)
- Yue Liang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, No.308 Ningxia Road, Qingdao, 266071, China
| | - Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, No.308 Ningxia Road, Qingdao, 266071, China
| | - Menghe Zhao
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, No.308 Ningxia Road, Qingdao, 266071, China
| | - Duo Shi
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, No.308 Ningxia Road, Qingdao, 266071, China
| | - Yan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, No.308 Ningxia Road, Qingdao, 266071, China.
- Department of Clinical Laboratory, Zibo Central Hospital, ZiBo, 255036, China.
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, No.308 Ningxia Road, Qingdao, 266071, China.
| |
Collapse
|
9
|
Mitochondrial dynamics in macrophages: divide to conquer or unite to survive? Biochem Soc Trans 2023; 51:41-56. [PMID: 36815717 PMCID: PMC9988003 DOI: 10.1042/bst20220014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/29/2023] [Accepted: 02/02/2023] [Indexed: 02/24/2023]
Abstract
Mitochondria have long been appreciated as the metabolic hub of cells. Emerging evidence also posits these organelles as hubs for innate immune signalling and activation, particularly in macrophages. Macrophages are front-line cellular defenders against endogenous and exogenous threats in mammals. These cells use an array of receptors and downstream signalling molecules to respond to a diverse range of stimuli, with mitochondrial biology implicated in many of these responses. Mitochondria have the capacity to both divide through mitochondrial fission and coalesce through mitochondrial fusion. Mitochondrial dynamics, the balance between fission and fusion, regulate many cellular functions, including innate immune pathways in macrophages. In these cells, mitochondrial fission has primarily been associated with pro-inflammatory responses and metabolic adaptation, so can be considered as a combative strategy utilised by immune cells. In contrast, mitochondrial fusion has a more protective role in limiting cell death under conditions of nutrient starvation. Hence, fusion can be viewed as a cellular survival strategy. Here we broadly review the role of mitochondria in macrophage functions, with a focus on how regulated mitochondrial dynamics control different functional responses in these cells.
Collapse
|
10
|
Liu AR, Lv Z, Yan ZW, Wu XY, Yan LR, Sun LP, Yuan Y, Xu Q. Association of mitochondrial homeostasis and dynamic balance with malignant biological behaviors of gastrointestinal cancer. J Transl Med 2023; 21:27. [PMID: 36647167 PMCID: PMC9843870 DOI: 10.1186/s12967-023-03878-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/07/2023] [Indexed: 01/18/2023] Open
Abstract
Mitochondria determine the physiological status of most eukaryotes. Mitochondrial dynamics plays an important role in maintaining mitochondrial homeostasis, and the disorder in mitochondrial dynamics could affect cellular energy metabolism leading to tumorigenesis. In recent years, disrupted mitochondrial dynamics has been found to influence the biological behaviors of gastrointestinal cancer with the potential to be a novel target for its individualized therapy. This review systematically introduced the role of mitochondrial dynamics in maintaining mitochondrial homeostasis, and further elaborated the effects of disrupted mitochondrial dynamics on the cellular biological behaviors of gastrointestinal cancer as well as its association with cancer progression. We aim to provide clues for elucidating the etiology and pathogenesis of gastrointestinal cancer from the perspective of mitochondrial homeostasis and disorder.
Collapse
Affiliation(s)
- Ao-ran Liu
- grid.412636.40000 0004 1757 9485Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning People’s Republic of China ,grid.412636.40000 0004 1757 9485Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001 China ,grid.412636.40000 0004 1757 9485Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001 China
| | - Zhi Lv
- grid.412636.40000 0004 1757 9485Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning People’s Republic of China ,grid.412636.40000 0004 1757 9485Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001 China ,grid.412636.40000 0004 1757 9485Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001 China
| | - Zi-wei Yan
- grid.412636.40000 0004 1757 9485Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning People’s Republic of China ,grid.412636.40000 0004 1757 9485Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001 China ,grid.412636.40000 0004 1757 9485Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001 China
| | - Xiao-yang Wu
- grid.412636.40000 0004 1757 9485Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning People’s Republic of China ,grid.412636.40000 0004 1757 9485Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001 China ,grid.412636.40000 0004 1757 9485Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001 China
| | - Li-rong Yan
- grid.412636.40000 0004 1757 9485Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning People’s Republic of China ,grid.412636.40000 0004 1757 9485Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001 China ,grid.412636.40000 0004 1757 9485Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001 China
| | - Li-ping Sun
- grid.412636.40000 0004 1757 9485Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning People’s Republic of China ,grid.412636.40000 0004 1757 9485Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001 China ,grid.412636.40000 0004 1757 9485Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001 China
| | - Yuan Yuan
- grid.412636.40000 0004 1757 9485Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning People’s Republic of China ,grid.412636.40000 0004 1757 9485Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001 China ,grid.412636.40000 0004 1757 9485Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001 China
| | - Qian Xu
- grid.412636.40000 0004 1757 9485Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning People’s Republic of China ,grid.412636.40000 0004 1757 9485Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001 China ,grid.412636.40000 0004 1757 9485Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001 China
| |
Collapse
|
11
|
Modulation of mitochondria by viral proteins. Life Sci 2023; 313:121271. [PMID: 36526048 DOI: 10.1016/j.lfs.2022.121271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/24/2022] [Accepted: 12/03/2022] [Indexed: 12/15/2022]
Abstract
Mitochondria are dynamic cellular organelles with diverse functions including energy production, calcium homeostasis, apoptosis, host innate immune signaling, and disease progression. Several viral proteins specifically target mitochondria to subvert host defense as mitochondria stand out as the most suitable target for the invading viruses. They have acquired the capability to control apoptosis, metabolic state, and evade immune responses in host cells, by targeting mitochondria. In this way, the viruses successfully allow the spread of viral progeny and thus the infection. Viruses employ their proteins to alter mitochondrial dynamics and their specific functions by a modulation of membrane potential, reactive oxygen species, calcium homeostasis, and mitochondrial bioenergetics to help them achieve a state of persistent infection. A better understanding of such viral proteins and their impact on mitochondrial forms and functions is the main focus of this review. We also attempt to emphasize the importance of exploring the role of mitochondria in the context of SARS-CoV2 pathogenesis and identify host-virus protein interactions.
Collapse
|
12
|
Awasthi P, Dwivedi M, Kumar D, Hasan S. Insights into intricacies of the Latent Membrane Protein-1 (LMP-1) in EBV-associated cancers. Life Sci 2023; 313:121261. [PMID: 36493876 DOI: 10.1016/j.lfs.2022.121261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/29/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Numerous lymphomas, carcinomas, and other disorders have been associated with Epstein-Barr Virus (EBV) infection. EBV's carcinogenic potential can be correlated to latent membrane protein 1 (LMP1), which is essential for fibroblast and primary lymphocyte transformation. LMP1, a transmembrane protein with constitutive activity, belongs to the tumour necrosis factor receptor (TNFR) superfamily. LMP1 performs number of role in the life cycle of EBV and the pathogenesis by interfering with, reprogramming, and influencing a vast range of host cellular activities and functions that are getting well-known but still poorly understood. LMP1, pleiotropically perturbs, reprograms and balances a wide range of various processes of cell such as extracellular vesicles, epigenetics, ubiquitin machinery, metabolism, cell proliferation and survival, and also promotes oncogenic transformation, angiogenesis, anchorage-independent cell growth, metastasis and invasion, tumour microenvironment. By the help of various experiments, it is proven that EBV-encoded LMP1 activates multiple cell signalling pathways which affect antigen presentation, cell-cell interactions, chemokine and cytokine production. Therefore, it is assumed that LMP1 may perform majorly in EBV associated malignancies. For the development of novel techniques toward targeted therapeutic applications, it is essential to have a complete understanding of the LMP1 signalling landscape in order to identify potential targets. The focus of this review is on LMP1-interacting proteins and related signalling processes. We further discuss tactics for using the LMP1 protein as a potential therapeutic for cancers caused by the EBV.
Collapse
Affiliation(s)
- Prankur Awasthi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India
| | - Dhruv Kumar
- School of Health Sciences and Technology, UPES University Dehradun, Uttarakhand, India
| | - Saba Hasan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow 226028, India.
| |
Collapse
|
13
|
Kim B, Kim KM. Role of Exosomes and Their Potential as Biomarkers in Epstein-Barr Virus-Associated Gastric Cancer. Cancers (Basel) 2023; 15:cancers15020469. [PMID: 36672418 PMCID: PMC9856651 DOI: 10.3390/cancers15020469] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Exosomes are a subtype of extracellular vesicles ranging from 30 to 150 nm and comprising many cellular components, including DNA, RNA, proteins, and metabolites, encapsulated in a lipid bilayer. Exosomes are secreted by many cell types and play important roles in intercellular communication in cancer. Viruses can hijack the exosomal pathway to regulate viral propagation, cellular immunity, and the microenvironment. Cells infected with Epstein-Barr virus (EBV), one of the most common oncogenic viruses, have also been found to actively secrete exosomes, and studies on their roles in EBV-related malignancies are ongoing. In this review, we focus on the role of exosomes in EBV-associated gastric cancer and their clinical applicability in diagnosis and treatment.
Collapse
Affiliation(s)
- Binnari Kim
- Department of Pathology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan 44610, Republic of Korea
| | - Kyoung-Mee Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
- Center of Companion Diagnostics, Samsung Medical Center, Seoul 06351, Republic of Korea
- Correspondence: ; Tel.: +82-2-3410-2807; Fax: +82-2-3410-6396
| |
Collapse
|
14
|
Liu W, Xiao H, Song H, An S, Luo B. Transcriptome sequencing of LMP2A-transfected gastric cancer cells identifies potential biomarkers in EBV-associated gastric cancer. Virus Genes 2022; 58:515-526. [PMID: 35819701 DOI: 10.1007/s11262-022-01925-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 06/28/2022] [Indexed: 11/29/2022]
Abstract
Epstein-barr virus (EBV) is a well-known human oncogenic virus. However, its molecular mechanisms in the initiation and development of EBV-associated gastric cancer (EBVaGC) remain poorly understood. Latent membrane protein 2A (LMP2A) is an EBV latency-associated protein expressed in part of EBVaGC cases. This study analyzed the effect of LMP2A on the gene expression of gastric cancer cells by transcriptome sequencing on the gastric cancer cell line SGC7901 that expresses LMP2A. The study monitored a total of 238 genes with significant differences in expression, including 101 upregulated genes and 137 downregulated genes. Using the KEGG pathway analysis, it was found that more genes were enriched in the Steroid biosynthesis, Axon guidance, and Terpenoid backbone biosynthesis pathway, and there were 5 genes each enriched in PI3K-Akt and AMPK signaling pathway, all of which were significant. This indicates that LMP2A may be involved in cell biosynthesis, and affects downstream genes and cell biological behavior through AKT and AMPK signaling pathway. Further evaluation confirmed that LMP2A induces ETV5 transcription, but repress GATA6 and NOTCH3 expression. ETV5, GATA6 and NOTCH3 are the candidate targets of LMP2A in gastric cancer.
Collapse
Affiliation(s)
- Wen Liu
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Hua Xiao
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Hui Song
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.,Department of Clinical Laboratory, Qingdao Women and Children's Hospital, Qingdao, 266034, China
| | - Shucai An
- General Surgical Department, The Affiliated Hospital of Qingdao University, Qingdao, 266071, China
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
15
|
Ivey A, Pratt H, Boone BA. Molecular pathogenesis and emerging targets of gastric adenocarcinoma. J Surg Oncol 2022; 125:1079-1095. [PMID: 35481910 PMCID: PMC9069999 DOI: 10.1002/jso.26874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 12/24/2022]
Abstract
Gastric adenocarcinoma (GC) is a devastating disease and is the third leading cause of cancer deaths worldwide. This heterogeneous disease has several different classification systems that consider histological appearance and genomic alterations. Understanding the etiology of GC, including infection, hereditary conditions, and environmental factors, is of particular importance and is discussed in this review. To improve survival in GC, we also must improve our therapeutic strategies. Here, we discuss new targets that warrant further exploration.
Collapse
Affiliation(s)
- Abby Ivey
- Department of Cancer Cell Biology, West Virginia University Cancer Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Hillary Pratt
- Department of Cancer Cell Biology, West Virginia University Cancer Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Brian A Boone
- Department of Cancer Cell Biology, West Virginia University Cancer Institute, West Virginia University, Morgantown, West Virginia, USA
- Department of Surgery, Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
16
|
Liu D, Shi D, Xu L, Sun L, Liu S, Luo B. LMP2A inhibits the expression of KLF5 through the mTORC1 pathway in EBV-associated gastric carcinoma. Virus Res 2022; 315:198792. [DOI: 10.1016/j.virusres.2022.198792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 10/18/2022]
|
17
|
Iwata S, Tanaka Y. Association of Viral Infection With the Development and Pathogenesis of Systemic Lupus Erythematosus. Front Med (Lausanne) 2022; 9:849120. [PMID: 35280878 PMCID: PMC8914279 DOI: 10.3389/fmed.2022.849120] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/03/2022] [Indexed: 12/27/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease that causes multiple organ damage in women of childbearing age and has a relapsing-remitting course. SLE is caused by the interaction between genetic and environmental factors, however, its underlying triggers remain unknown. Among the environmental factors, the involvement of infections as a trigger for SLE, especially those of viral etiology, has been widely reported. Human endogenous retroviruses (HERVs) may put patients at a genetic predisposition to SLE, while the Epstein-Barr virus (EBV) may play a role as an environmental factor that triggers the development of SLE. It has been suggested that EBV-infected B-cells may become resistant to apoptosis, resulting in the activation, proliferation, and antibody production of autoreactive B-cells, which cause tissue damage in SLE. However, the interaction between the virus and immune cells, as well as the impact of the virus on the differentiation and dysfunction of immune cells, remain unclear. In this review, we focus on the relationship between the development and pathogenesis of SLE and viral infections, as well as the mechanism of SLE exacerbation via activation of immune cells, such as B-cells, based on the latest findings.
Collapse
|
18
|
Xie L, Zhou T, Xie Y, Bode AM, Cao Y. Mitochondria-Shaping Proteins and Chemotherapy. Front Oncol 2021; 11:769036. [PMID: 34868997 PMCID: PMC8637292 DOI: 10.3389/fonc.2021.769036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/18/2021] [Indexed: 12/23/2022] Open
Abstract
The emergence, in recent decades, of an entirely new area of “Mitochondrial dynamics”, which consists principally of fission and fusion, reflects the recognition that mitochondria play a significant role in human tumorigenesis and response to therapeutics. Proteins that determine mitochondrial dynamics are referred to as “shaping proteins”. Marked heterogeneity has been observed in the response of tumor cells to chemotherapy, which is associated with imbalances in mitochondrial dynamics and function leading to adaptive and acquired resistance to chemotherapeutic agents. Therefore, targeting mitochondria-shaping proteins may prove to be a promising approach to treat chemotherapy resistant cancers. In this review, we summarize the alterations of mitochondrial dynamics in chemotherapeutic processing and the antitumor mechanisms by which chemotherapy drugs synergize with mitochondria-shaping proteins. These might shed light on new biomarkers for better prediction of cancer chemosensitivity and contribute to the exploitation of potent therapeutic strategies for the clinical treatment of cancers.
Collapse
Affiliation(s)
- Longlong Xie
- Hunan Children's Hospital, The Pediatric Academy of University of South China, Changsha, China.,Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China
| | - Tiansheng Zhou
- Hunan Children's Hospital, The Pediatric Academy of University of South China, Changsha, China
| | - Yujun Xie
- Hunan Children's Hospital, The Pediatric Academy of University of South China, Changsha, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, United States
| | - Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, China.,Research Center for Technologies of Nucleic Acid-Based Diagnostics and Therapeutics Hunan Province, Changsha, China.,Molecular Imaging Research Center of Central South University, Changsha, China.,National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and Cancer, Changsha, China
| |
Collapse
|
19
|
Ahmed W, Hassan Z, Abdelmowla YAA, Philip PS, Shmygol A, Khan G. Epstein-Barr virus noncoding small RNA (EBER1) induces cell proliferation by up-regulating cellular mitochondrial activity and calcium influx. Virus Res 2021; 305:198550. [PMID: 34454973 DOI: 10.1016/j.virusres.2021.198550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 11/19/2022]
Abstract
Epstein-Barr virus encoded RNAs (EBER1 and EBER2) are two non-polyadenylated, non-protein coding small RNAs expressed at high levels in all forms of EBV latent infections. Although not directly involved in cell transformation, a number of studies have reported that these RNAs may be involved in cell proliferation. However, which of the two EBERs play a major role in this process and the mechanisms involved remains unknown. The aim of this study was to investigate the role and mechanism of EBER1-induced cell proliferation. Using stably transfected EBER1 cell lines, and multiple methodologies, we show that EBER1 transfected epithelial, B and T cell lines proliferate at a higher rate, have higher metabolic activity and increased DNA synthesis. The mitochondrial number and activity was also observed to be higher in the EBER1 transfected cells. Moreover, cytochrome c activity and store operated calcium entry (SOCE) were potentiated in the EBER1 expressing cells. Finally, the genes associated with cell proliferation were also observed to be up-regulated in the EBER1 transfected cells. Taken together, our data has unravelled the role of mitochondria and cellular calcium pathway that appear to be involved in EBER1 induced cell proliferation of EBV infected cells.
Collapse
Affiliation(s)
- Waqar Ahmed
- Departments of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Zubaida Hassan
- Departments of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Yasmeen A A Abdelmowla
- Departments of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Pretty S Philip
- Departments of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Anatoliy Shmygol
- Departments of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Gulfaraz Khan
- Departments of Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates.
| |
Collapse
|
20
|
Breikaa RM, Lilly B. The Notch Pathway: A Link Between COVID-19 Pathophysiology and Its Cardiovascular Complications. Front Cardiovasc Med 2021; 8:681948. [PMID: 34124207 PMCID: PMC8187573 DOI: 10.3389/fcvm.2021.681948] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/06/2021] [Indexed: 12/27/2022] Open
Abstract
COVID-19 is associated with a large number of cardiovascular sequelae, including dysrhythmias, myocardial injury, myocarditis and thrombosis. The Notch pathway is one likely culprit leading to these complications due to its direct role in viral entry, inflammation and coagulation processes, all shown to be key parts of COVID-19 pathogenesis. This review highlights links between the pathophysiology of SARS-CoV2 and the Notch signaling pathway that serve as primary drivers of the cardiovascular complications seen in COVID-19 patients.
Collapse
Affiliation(s)
- Randa M. Breikaa
- Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, Columbus, OH, United States
- Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, OH, United States
| | - Brenda Lilly
- Center for Cardiovascular Research and The Heart Center, Nationwide Children's Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
21
|
Herpesvirus Regulation of Selective Autophagy. Viruses 2021; 13:v13050820. [PMID: 34062931 PMCID: PMC8147283 DOI: 10.3390/v13050820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 04/28/2021] [Accepted: 04/29/2021] [Indexed: 12/18/2022] Open
Abstract
Selective autophagy has emerged as a key mechanism of quality and quantity control responsible for the autophagic degradation of specific subcellular organelles and materials. In addition, a specific type of selective autophagy (xenophagy) is also activated as a line of defense against invading intracellular pathogens, such as viruses. However, viruses have evolved strategies to counteract the host’s antiviral defense and even to activate some proviral types of selective autophagy, such as mitophagy, for their successful infection and replication. This review discusses the current knowledge on the regulation of selective autophagy by human herpesviruses.
Collapse
|
22
|
Palrasu M, Zaika E, El-Rifai W, Que J, Zaika AI. Role of Bacterial and Viral Pathogens in Gastric Carcinogenesis. Cancers (Basel) 2021; 13:1878. [PMID: 33919876 PMCID: PMC8070847 DOI: 10.3390/cancers13081878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/02/2021] [Accepted: 04/11/2021] [Indexed: 01/10/2023] Open
Abstract
Gastric cancer (GC) is one of the deadliest malignancies worldwide. In contrast to many other tumor types, gastric carcinogenesis is tightly linked to infectious events. Infections with Helicobacter pylori (H. pylori) bacterium and Epstein-Barr virus (EBV) are the two most investigated risk factors for GC. These pathogens infect more than half of the world's population. Fortunately, only a small fraction of infected individuals develops GC, suggesting high complexity of tumorigenic processes in the human stomach. Recent studies suggest that the multifaceted interplay between microbial, environmental, and host genetic factors underlies gastric tumorigenesis. Many aspects of these interactions still remain unclear. In this review, we update on recent discoveries, focusing on the roles of various gastric pathogens and gastric microbiome in tumorigenesis.
Collapse
Affiliation(s)
- Manikandan Palrasu
- Department of Surgery, University of Miami, Miami, FL 33136, USA; (M.P.); (E.Z.); (W.E.-R.)
| | - Elena Zaika
- Department of Surgery, University of Miami, Miami, FL 33136, USA; (M.P.); (E.Z.); (W.E.-R.)
| | - Wael El-Rifai
- Department of Surgery, University of Miami, Miami, FL 33136, USA; (M.P.); (E.Z.); (W.E.-R.)
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL 33136, USA
| | - Jianwen Que
- Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA;
| | - Alexander I. Zaika
- Department of Surgery, University of Miami, Miami, FL 33136, USA; (M.P.); (E.Z.); (W.E.-R.)
- Department of Veterans Affairs, Miami VA Healthcare System, Miami, FL 33136, USA
| |
Collapse
|
23
|
Cao Y, Xie L, Shi F, Tang M, Li Y, Hu J, Zhao L, Zhao L, Yu X, Luo X, Liao W, Bode AM. Targeting the signaling in Epstein-Barr virus-associated diseases: mechanism, regulation, and clinical study. Signal Transduct Target Ther 2021; 6:15. [PMID: 33436584 PMCID: PMC7801793 DOI: 10.1038/s41392-020-00376-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/30/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Epstein–Barr virus-associated diseases are important global health concerns. As a group I carcinogen, EBV accounts for 1.5% of human malignances, including both epithelial- and lymphatic-originated tumors. Moreover, EBV plays an etiological and pathogenic role in a number of non-neoplastic diseases, and is even involved in multiple autoimmune diseases (SADs). In this review, we summarize and discuss some recent exciting discoveries in EBV research area, which including DNA methylation alterations, metabolic reprogramming, the changes of mitochondria and ubiquitin-proteasome system (UPS), oxidative stress and EBV lytic reactivation, variations in non-coding RNA (ncRNA), radiochemotherapy and immunotherapy. Understanding and learning from this advancement will further confirm the far-reaching and future value of therapeutic strategies in EBV-associated diseases.
Collapse
Affiliation(s)
- Ya Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China. .,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China. .,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China. .,Research Center for Technologies of Nucleic Acid-Based Diagnostics and Therapeutics Hunan Province, 410078, Changsha, China. .,Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China. .,National Joint Engineering Research Center for Genetic Diagnostics of Infectious Diseases and Cancer, 410078, Changsha, China. .,Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.
| | - Longlong Xie
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Feng Shi
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Min Tang
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China.,Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China
| | - Yueshuo Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Jianmin Hu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Lin Zhao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Luqing Zhao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
| | - Xinfang Yu
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China.,Cancer Research Institute and School of Basic Medical Science, Xiangya School of Medicine, Central South University, 410078, Changsha, China.,Key Laboratory of Carcinogenesis, Chinese Ministry of Health, 410078, Changsha, China.,Molecular Imaging Research Center of Central South University, 410008, Changsha, Hunan, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, 410078, Changsha, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| |
Collapse
|
24
|
Sun K, Jia K, Lv H, Wang SQ, Wu Y, Lei H, Chen X. EBV-Positive Gastric Cancer: Current Knowledge and Future Perspectives. Front Oncol 2020; 10:583463. [PMID: 33381453 PMCID: PMC7769310 DOI: 10.3389/fonc.2020.583463] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/09/2020] [Indexed: 12/16/2022] Open
Abstract
Gastric cancer is the fifth most common malignant tumor and second leading cause of cancer-related deaths worldwide. With the improved understanding of gastric cancer, a subset of gastric cancer patients infected with Epstein–Barr virus (EBV) has been identified. EBV-positive gastric cancer is a type of tumor with unique genomic aberrations, significant clinicopathological features, and a good prognosis. After EBV infects the human body, it first enters an incubation period in which the virus integrates its DNA into the host and expresses the latent protein and then affects DNA methylation through miRNA under the action of the latent protein, which leads to the occurrence of EBV-positive gastric cancer. With recent developments in immunotherapy, better treatment of EBV-positive gastric cancer patients appears achievable. Moreover, studies show that treatment with immunotherapy has a high effective rate in patients with EBV-positive gastric cancer. This review summarizes the research status of EBV-positive gastric cancer in recent years and indicates areas for improvement of clinical practice.
Collapse
Affiliation(s)
- Keran Sun
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Keqi Jia
- Department of Pathology, Pathology Department of Hebei Medical University, Shijiazhuang, China
| | - Huifang Lv
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Sai-Qi Wang
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Yan Wu
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Huijun Lei
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| | - Xiaobing Chen
- Department of Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
25
|
Zheng S, Matskova L, Zhou X, Xiao X, Huang G, Zhang Z, Ernberg I. Downregulation of adipose triglyceride lipase by EB viral-encoded LMP2A links lipid accumulation to increased migration in nasopharyngeal carcinoma. Mol Oncol 2020; 14:3234-3252. [PMID: 33064888 PMCID: PMC7718958 DOI: 10.1002/1878-0261.12824] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 07/02/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022] Open
Abstract
Epstein–Barr virus (EBV)‐associated nasopharyngeal carcinoma (NPC) is one of the most common human cancers in South‐East Asia exhibiting typical features of lipid accumulation. EBV‐encoded latent membrane protein 2A (LMP2A) is expressed in most NPCs enhancing migration and invasion. We recently showed an increased accumulation of lipid droplets in NPC, compared with normal nasopharyngeal epithelium. It is important to uncover the mechanism behind this lipid metabolic shift to better understand the pathogenesis of NPC and provide potential therapeutic targets. We show that LMP2A increased lipid accumulation in NPC cells. LMP2A could block lipid degradation by downregulating the lipolytic gene adipose triglycerol lipase (ATGL). This is in contrast to lipid accumulation due to enhanced lipid biosynthesis seen in many cancers. Suppression of ATGL resulted in enhanced migration in vitro, and ATGL was found downregulated in NPC biopsies. The reduced expression level of ATGL correlated with poor overall survival in NPC patients. Our findings reveal a new role of LMP2A in lipid metabolism, correlating with NPC patient survival depending on ATGL downregulation.
Collapse
Affiliation(s)
- Shixing Zheng
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Liudmila Matskova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden.,The School of Life Sciences, Baltic Federal University, Kaliningrad, Russia
| | - Xiaoying Zhou
- Scientific Research Center, Life Science Institute, Guangxi Medical University, Nanning, China
| | - Xue Xiao
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Guangwu Huang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhe Zhang
- Department of Otolaryngology-Head & Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
26
|
Ren Z, Zhang X, Ding T, Zhong Z, Hu H, Xu Z, Deng J. Mitochondrial Dynamics Imbalance: A Strategy for Promoting Viral Infection. Front Microbiol 2020; 11:1992. [PMID: 32973718 PMCID: PMC7472841 DOI: 10.3389/fmicb.2020.01992] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondria are highly dynamic organelles that maintain the dynamic balance of split-fusion via kinetic proteins. This maintains the stability of their morphological functions. This dynamic balance is highly susceptible to various stress environments, including viral infection. After viral infection, the dynamic balance of the host cell mitochondria is disturbed, affecting the processes of energy generation, metabolism, and innate immunity. This creates an intracellular environment that is conducive to viral proliferation and begins the process of its own infection and causes further damage to the body. Herein, we discuss the mechanism of the virus-induced mitochondrial dynamics imbalance and its subsequent effects on the body, which will help to improve our understanding of the relationship between mitochondrial dynamics and viral infection and its importance.
Collapse
Affiliation(s)
- Zhihua Ren
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaojie Zhang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ting Ding
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hui Hu
- The College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Zhiwen Xu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
27
|
Han P, Ren X, Qu X, Meng Y. The Regulatory Mechanisms of Dynamin-Related Protein 1 in Tumor Development and Therapy. Cancer Biother Radiopharm 2020; 36:10-17. [PMID: 32762544 DOI: 10.1089/cbr.2020.3791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Background: Various types of tumors are likely to acquire drug resistance over time. Hence, the development of novel therapies to overcome drug resistance is critical. Studies have demonstrated that drug resistance is closely associated with the dynamic regulation of mitochondria in tumor cells. The dynamin-related protein 1 (Drp1) is involved in the regulation of mitochondrial fission and plays an important role in maintaining mitochondrial morphology, function, and distribution. It is a key protein in mitochondrial quality control. Drp1 is a GTPase localized to the cytoplasm and is a potential target in cancer therapy. A variety of drugs targeting Drp1 have shown great promise in reducing the viability and proliferation of cancer cells. The dynamic regulation of Drp1-mediated mitochondria is closely associated with tumor development, and treatment. Aim: In this article, the authors reviewed the occurrence and progression of mitochondrial fission regulated by Drp1, and its influence on cell cycle, autophagy, apoptosis, migration, invasion, the molecular mechanism of tumor stemness, and metabolic reprogramming. Targeted inhibition of Drp1 and mitochondrial fission could reduce or prevent tumor occurrence and progression in a variety of cancers. Drp1 inhibitors could reduce tumor stemness and enhance tumor sensitivity to chemotherapeutic drugs. Conclusion: Research into identifying compounds that could specifically target Drp1 will be valuable for overcoming drug resistance in tumors.
Collapse
Affiliation(s)
- Peiyu Han
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xinlu Ren
- Department of Clinical Medicine, Queen Mary College of Nanchang University, Nanchang, China
| | - Xiuxia Qu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yiteng Meng
- Department of Gastroenterology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| |
Collapse
|
28
|
Drp1-dependent remodeling of mitochondrial morphology triggered by EBV-LMP1 increases cisplatin resistance. Signal Transduct Target Ther 2020; 5:56. [PMID: 32433544 PMCID: PMC7237430 DOI: 10.1038/s41392-020-0151-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 01/09/2023] Open
Abstract
Latent membrane protein 1 (LMP1) is a major Epstein–Barr virus (EBV)-encoded oncoprotein involved in latency infection that regulates mitochondrial functions to facilitate cell survival. Recently, mitochondrial fission has been demonstrated as a crucial mechanism in oncovirus-mediated carcinogenesis. Mitochondrial dynamin-related protein 1 (Drp1)-mediated mitochondrial fission has an impact on the chemoresistance of cancers. However, the mechanism by which oncogenic stress promotes mitochondrial fission, potentially contributing to tumorigenesis, is not entirely understood. The role of Drp1 in the oncogenesis and prognosis of EBV-LMP1-positive nasopharyngeal carcinoma (NPC) was determined in our study. We show that EBV-LMP1 exhibits a new function in remodeling mitochondrial morphology by activating Drp1. A high level of p-Drp1 (Ser616) or a low level of p-Drp1 (Ser637) correlates with poor overall survival and disease-free survival. Furthermore, the protein level of p-Drp1 (Ser616) is related to the clinical stage (TNM stage) of NPC. Targeting Drp1 impairs mitochondrial function and induces cell death in LMP1-positive NPC cells. In addition, EBV-LMP1 regulates Drp1 through two oncogenic signaling axes, AMPK and cyclin B1/Cdk1, which promote cell survival and cisplatin resistance in NPC. Our findings provide novel insight into the role of EBV-LMP1-driven mitochondrial fission in regulating Drp1 phosphorylation at serine 616 and serine 637. Disruption of Drp1 could be a promising therapeutic strategy for LMP1-positive NPC.
Collapse
|
29
|
Vilmen G, Glon D, Siracusano G, Lussignol M, Shao Z, Hernandez E, Perdiz D, Quignon F, Mouna L, Poüs C, Gruffat H, Maréchal V, Esclatine A. BHRF1, a BCL2 viral homolog, disturbs mitochondrial dynamics and stimulates mitophagy to dampen type I IFN induction. Autophagy 2020; 17:1296-1315. [PMID: 32401605 DOI: 10.1080/15548627.2020.1758416] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mitochondria respond to many cellular functions and act as central hubs in innate immunity against viruses. This response is notably due to their role in the activation of interferon (IFN) signaling pathways through the activity of MAVS (mitochondrial antiviral signaling protein) present at the mitochondrial surface. Here, we report that the BHRF1 protein, a BCL2 homolog encoded by Epstein-Barr virus (EBV), inhibits IFNB/IFN-β induction by targeting the mitochondria. Indeed, we have demonstrated that BHRF1 expression modifies mitochondrial dynamics and stimulates DNM1L/Drp1-mediated mitochondrial fission. Concomitantly, we have shown that BHRF1 is pro-autophagic because it stimulates the autophagic flux by interacting with BECN1/Beclin 1. In response to the BHRF1-induced mitochondrial fission and macroautophagy/autophagy stimulation, BHRF1 drives mitochondrial network reorganization to form juxtanuclear mitochondrial aggregates known as mito-aggresomes. Mitophagy is a cellular process, which can specifically sequester and degrade mitochondria. Our confocal studies uncovered that numerous mitochondria are present in autophagosomes and acidic compartments using BHRF1-expressing cells. Moreover, mito-aggresome formation allows the induction of mitophagy and the accumulation of PINK1 at the mitochondria. As BHRF1 modulates the mitochondrial fate, we explored the effect of BHRF1 on innate immunity and showed that BHRF1 expression could prevent IFNB induction. Indeed, BHRF1 inhibits the IFNB promoter activation and blocks the nuclear translocation of IRF3 (interferon regulatory factor 3). Thus, we concluded that BHRF1 can counteract innate immunity activation by inducing fission of the mitochondria to facilitate their sequestration in mitophagosomes for degradation.Abbreviations: 3-MA: 3-methyladenine; ACTB: actin beta; BCL2: BCL2 apoptosis regulator; CARD: caspase recruitment domain; CCCP: carbonyl cyanide 3-chlorophenylhydrazone; CI: compaction index; CQ: chloroquine; DAPI: 4',6-diamidino-2-phenylindole, dihydrochloride; DDX58/RIG-I: DExD/H-box helicase 58; DNM1L/Drp1: dynamin 1 like; EBSS: Earle's balanced salt solution; EBV: Epstein-Barr virus; ER: endoplasmic reticulum; EV: empty vector; GFP: green fluorescent protein; HEK: human embryonic kidney; IFN: interferon; IgG: immunoglobulin G; IRF3: interferon regulatory factor 3; LDHA: lactate dehydrogenase A; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MAVS: mitochondrial antiviral signaling protein; MMP: mitochondrial membrane potential; MOM: mitochondrial outer membrane; PINK1: PTEN induced kinase 1; RFP: red fluorescent protein; ROS: reactive oxygen species; SQSTM1/p62: sequestosome 1; STING1: stimulator of interferon response cGAMP interactor 1; TOMM20: translocase of outer mitochondrial membrane 20; VDAC: voltage dependent anion channel.
Collapse
Affiliation(s)
- Géraldine Vilmen
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.,CRSA, Centre de Recherche Saint-Antoine, UMRS 938, INSERM, Sorbonne Université, Paris, France
| | - Damien Glon
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Gabriel Siracusano
- CRSA, Centre de Recherche Saint-Antoine, UMRS 938, INSERM, Sorbonne Université, Paris, France
| | - Marion Lussignol
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Zhouwulin Shao
- CRSA, Centre de Recherche Saint-Antoine, UMRS 938, INSERM, Sorbonne Université, Paris, France
| | - Eva Hernandez
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Daniel Perdiz
- INSERM UMR-S 1193, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Frédérique Quignon
- CRSA, Centre de Recherche Saint-Antoine, UMRS 938, INSERM, Sorbonne Université, Paris, France
| | - Lina Mouna
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Christian Poüs
- INSERM UMR-S 1193, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France.,Biochimie-Hormonologie, APHP, Hôpitaux Universitaires Paris-Sud, Site Antoine Béclère, Clamart, France
| | - Henri Gruffat
- CIRI, Centre International de Recherche en Infectiologie, Université Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, Lyon, France
| | - Vincent Maréchal
- CRSA, Centre de Recherche Saint-Antoine, UMRS 938, INSERM, Sorbonne Université, Paris, France
| | - Audrey Esclatine
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
30
|
Song S, Jiang Z, Spezia-Lindner DE, Liang T, Xu C, Wang H, Tian Y, Bai Y. BHRF1 Enhances EBV Mediated Nasopharyngeal Carcinoma Tumorigenesis through Modulating Mitophagy Associated with Mitochondrial Membrane Permeabilization Transition. Cells 2020; 9:cells9051158. [PMID: 32392902 PMCID: PMC7290790 DOI: 10.3390/cells9051158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022] Open
Abstract
Epstein-Barr virus (EBV) is a major contributor to nasopharyngeal carcinoma (NPC) tumorigenesis. Mitochondria have been shown to be a target for tumor viral invasion, and to mediate viral tumorigenesis. In this study, we detected that mitochondrial morphological changes in tumor tissues of NPC patients infected with EBV were accompanied by an elevated expression of BHRF1, an EBV encoded protein homologue to Bcl-2. High expression of BHRF1 in human NPC cell lines enhanced tumorigenesis and metastasis features. With BHRF1 localized to mitochondria, its expression induced cyclophlin D dependent mitochondrial membrane permeabilization transition (MMPT). The MMPT further modulated mitochondrial function, increased ROS production and activated mitophagy, leading to enhanced tumorigenesis. Altogether, our results indicated that EBV-encoded BHRF1 plays an important role in NPC tumorigenesis through regulating cyclophlin D dependent MMPT.
Collapse
Affiliation(s)
- Shujie Song
- School of Public Health, Xi’an Jiaotong University, Xi’an 710061, Shaanxi, China;
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; (Z.J.); (T.L.)
- No. 3 Hospital, the Affiliated Hospital of Northwest University School of Medicine, Xi’an 710018, Shaanxi, China;
| | - Zhiying Jiang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; (Z.J.); (T.L.)
| | - David Ethan Spezia-Lindner
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX 78258, USA;
| | - Ting Liang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; (Z.J.); (T.L.)
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX 78258, USA;
| | - Chang Xu
- First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, Zhejiang, China;
| | - Haifeng Wang
- No. 3 Hospital, the Affiliated Hospital of Northwest University School of Medicine, Xi’an 710018, Shaanxi, China;
| | - Ye Tian
- No. 3 Hospital, the Affiliated Hospital of Northwest University School of Medicine, Xi’an 710018, Shaanxi, China;
- Correspondence: (Y.T.); (Y.B.)
| | - Yidong Bai
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; (Z.J.); (T.L.)
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX 78258, USA;
- Correspondence: (Y.T.); (Y.B.)
| |
Collapse
|
31
|
Singh S, Banerjee S. Downregulation of HLA-ABC expression through promoter hypermethylation and downmodulation of MIC-A/B surface expression in LMP2A-positive epithelial carcinoma cell lines. Sci Rep 2020; 10:5415. [PMID: 32214110 PMCID: PMC7096436 DOI: 10.1038/s41598-020-62081-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 02/28/2020] [Indexed: 11/18/2022] Open
Abstract
Epstein Barr Virus (EBV) is a human herpesvirus, and has been reported to be associated with nasopharyngeal carcinoma, gastric carcinoma, Burkitt’s lymphoma and Hodgkin’s lymphoma. In most of the associated tumors, the virus remains in a latently infected state. During latency, EBV expresses Latent Membrane Protein 2A (LMP2A) along with few other genes. We previously showed that LMP2A causes downregulation of HLA-ABC surface expression in EBV associated gastric carcinomas. However, the mechanism that leads to this downregulation remain unclear. We therefore analyzed methylation-mediated regulation of HLA-ABC expression by LMP2A. Interestingly, according to the ‘missing self’ hypothesis, when there is a decrease in HLA-ABC surface expression, expression of NKG2D ligands’ must be upregulated to facilitate killing by Natural Killer (NK) cells. Analysis of NKG2D ligands’ expression, revealed downregulation of MIC-A/B surface expression in response to LMP2A. Furthermore, the role of Unfolded Protein Response (UPR) in the regulation of MIC-A/B surface expression in cells expressing LMP2A was also investigated. Protein Disulfide Isomerase (PDI) mediated inhibition of MIC-A/B surface expression was observed in LMP2A expressing cells. Our current findings provide new insights in LMP2A arbitrated dysregulation of host immune response in epithelial cell carcinomas.
Collapse
Affiliation(s)
- Shweta Singh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata, India
| | - Subrata Banerjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Homi Bhabha National Institute, Kolkata, India.
| |
Collapse
|
32
|
Gastric cancer: genome damaged by bugs. Oncogene 2020; 39:3427-3442. [PMID: 32123313 PMCID: PMC7176583 DOI: 10.1038/s41388-020-1241-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/20/2022]
Abstract
Gastric cancer (GC) is one of the leading causes of cancer-related death worldwide. The role of the microorganisms in gastric tumorigenesis attracts much attention in recent years. These microorganisms include bacteria, virus, and fungi. Among them, Helicobacter pylori (H. pylori) infection is by far the most important risk factor for GC development, with special reference to the early-onset cases. H. pylori targets multiple cellular components by utilizing various virulence factors to modulate the host proliferation, apoptosis, migration, and inflammatory response. Epstein–Barr virus (EBV) serves as another major risk factor in gastric carcinogenesis. The virus protein, EBER noncoding RNA, and EBV miRNAs contribute to the tumorigenesis by modulating host genome methylation and gene expression. In this review, we summarized the related reports about the colonized microorganism in the stomach and discussed their specific roles in gastric tumorigenesis. Meanwhile, we highlighted the therapeutic significance of eradicating the microorganisms in GC treatment.
Collapse
|
33
|
Mostafaei S, Keshavarz M, Sadri Nahand J, Farhadi Hassankiadeh R, Moradinazar M, Nouri M, Babaei F, Ahadi M, Payandeh M, Salari Esker A, Hajighadimi S, Mirzaei H, Moghoofei M. Viral infections and risk of thyroid cancer: A systematic review and empirical bayesian meta-analysis. Pathol Res Pract 2020; 216:152855. [PMID: 32111443 DOI: 10.1016/j.prp.2020.152855] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/05/2020] [Accepted: 02/04/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The associations between viruses and the cancer have been conducted in several studies while there has been no systematic review and meta-analysis about the association between viral infections and thyroid cancer (TC). Therefore, we investigated the association between viral infection and TC risk. METHODS Systematic search was done from 1994 to 2019 in Web of sciences (ISI), PubMed, and Scopus databases. Pooled logarithm of odds ratio (OR) and their corresponding 95 % confidence interval (CI) and pooled prevalence of viral infections were calculated to find the association between the viral infections and TC risk and overall prevalence of the viral infections in TC. RESULTS Twenty-three of 852 original articles were selected and included in the study. According to the results of the random effect meta-analysis, the pooled prevalence of viral infections in the TC patients was 37 % (95 % C. I = 22 %-55 %). In addition, there was a significant association between viral infections (log (OR) = 1.51, 95 % credible interval = 0.68-2.39) and TC risk. The highest associations were observed between TC risk and Simian Vacuolating Virus 40 (SV40) and B19 infections, respectively. The lowest non-significant association was found between TC risk and Poliovirus type 1 infection. The significantly heterogeneity was observed between included studies (Q test: p-value<0.001; I2 = 73.82 %; τ2 = 1.08, 95 % Cr. I = 0.47-1.94). CONCLUSIONS Results clearly demonstrated the potential pathogenetic association between viral infections and increased risk of TC.
Collapse
Affiliation(s)
- Shayan Mostafaei
- Department of Biostatistics, School of Health, Kermanshah University of Medical Sciences, Kermanshah, Iran; Epidemiology and Biostatistics Unit, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Keshavarz
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran; Student Research Committee, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mahdi Moradinazar
- Research Center for Environmental Determinants of Health, Research Institute for Health, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Majid Nouri
- Golestan Hospital Research Center, Tehran, Iran
| | - Farhad Babaei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehrdad Ahadi
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mehrdad Payandeh
- Cancer Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Adel Salari Esker
- Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Sarah Hajighadimi
- Division of General Internal Medicine, Toronto General Hospital, Toronto, Canada
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
34
|
Human Cytomegalovirus Alters Host Cell Mitochondrial Function during Acute Infection. J Virol 2020; 94:JVI.01183-19. [PMID: 31694945 DOI: 10.1128/jvi.01183-19] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/20/2019] [Indexed: 01/01/2023] Open
Abstract
Human cytomegalovirus (HCMV) is a large DNA herpesvirus that is highly prevalent in the human population. HCMV can result in severe direct and indirect pathologies under immunosuppressed conditions and is the leading cause of birth defects related to infectious disease. Currently, the effect of HCMV infection on host cell metabolism as an increase in glycolysis during infection has been defined. We have observed that oxidative phosphorylation is also increased. We have identified morphological and functional changes to host mitochondria during HCMV infection. The mitochondrial network undergoes fission events after HCMV infection. Interestingly, the network does not undergo fusion. At the same time, mitochondrial mass and membrane potential increase. The electron transport chain (ETC) functions at an elevated rate, resulting in the release of increased reactive oxygen species. Surprisingly, despite the stress applied to the host mitochondria, the network is capable of responding to and meeting the increased bioenergetic and biosynthetic demands placed on it. When mitochondrial DNA is depleted from the cells, we observed severe impairment of viral replication. Mitochondrial DNA encodes many of the ETC components. These findings suggest that the host cell ETC is essential to HCMV replication. Our studies suggest the host cell mitochondria may be a therapeutic target.IMPORTANCE Human cytomegalovirus (HCMV) is a herpesvirus present in up to 85% of some populations. Like all herpesviruses, HCMV infection is for life. No vaccine is currently available, neutralizing antibody therapies are ineffective, and current antivirals have limited long-term efficacy due to side effects and potential for viral mutation and resistance. The significance of this research is in understanding how HCMV manipulates the host mitochondria to support bioenergetic and biosynthetic requirements for replication. Despite a large genome, HCMV relies exclusively on host cells for metabolic functions. By understanding the dependency of HCMV on the mitochondria, we could exploit these requirements and develop novel antivirals.
Collapse
|
35
|
Wang X, Chen Z, Fan X, Li W, Qu J, Dong C, Wang Z, Ji Z, Li Y. Inhibition of DNM1L and mitochondrial fission attenuates inflammatory response in fibroblast-like synoviocytes of rheumatoid arthritis. J Cell Mol Med 2019; 24:1516-1528. [PMID: 31755231 PMCID: PMC6991664 DOI: 10.1111/jcmm.14837] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 09/12/2019] [Accepted: 11/08/2019] [Indexed: 12/29/2022] Open
Abstract
Mitochondrial fission and fusion are important for mitochondrial function, and dynamin 1-like protein (DNM1L) is a key regulator of mitochondrial fission. We investigated the effect of mitochondrial fission on mitochondrial function and inflammation in fibroblast-like synoviocytes (FLSs) during rheumatoid arthritis (RA). DNM1L expression was determined in synovial tissues (STs) from RA and non-RA patients. FLSs were isolated from STs and treated with a DNM1L inhibitor (mdivi-1, mitochondrial division inhibitor 1) or transfected with DNM1L-specific siRNA. Mitochondrial morphology, DNM1L expression, cell viability, mitochondrial membrane potential, reactive oxygen species (ROS), apoptosis, inflammatory cytokine expression and autophagy were examined. The impact of mdivi-1 treatment on development and severity of collagen-induced arthritis (CIA) was determined in mice. Up-regulated DNM1L expression was associated with reduced mitochondrial length in STs from patients with RA and increased RA severity. Inhibition of DNM1L in FLSs triggered mitochondrial depolarization, mitochondrial elongation, decreased cell viability, production of ROS, IL-8 and COX-2, and increased apoptosis. DNM1L deficiency inhibited IL-1β-mediated AKT/IKK activation, NF-κBp65 nuclear translocation and LC3B-related autophagy, but enhanced NFKBIA expression. Treatment of CIA mice with mdivi-1 decreased disease severity by modulating inflammatory cytokine and ROS production. Our major results are that up-regulated DNM1L and mitochondrial fission promoted survival, LC3B-related autophagy and ROS production in FLSs, factors that lead to inflammation by regulating AKT/IKK/NFKBIA/NF-κB signalling. Thus, inhibition of DNM1L may be a new strategy for treatment of RA.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhufeng Chen
- Department of Orthopaedics, Tangdu Hospital, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Xuemei Fan
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Li
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiaqi Qu
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chuan Dong
- Department of Orthopaedics, Tangdu Hospital, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Zhixue Wang
- Department of Orthopaedics, Tangdu Hospital, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Zhenwei Ji
- Department of Orthopaedics, Tangdu Hospital, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Yang Li
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
36
|
Danilova NV, Malkov PG, Oleynikova NA, Mikhailov IA. [Epstein-Barr virus-associated gastric adenocarcinoma]. Arkh Patol 2019; 81:74-83. [PMID: 31317934 DOI: 10.17116/patol20198103174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
EBV-associated gastric adenocarcinoma accounts for 10% of all gastric adenocarcinomas. The main known facts about the pathogenesis of EBV-associated gastric adenocarcinoma are presented. There are two main morphological types: gastric carcinoma with lymphoid stroma - GCLS (including lymphoepithelioma-like carcinoma; carcinoma with Crohn's disease-like lymphoid reaction; EBV-associated carcinoma with osteoclast-like giant cells) and conventional type adenocarcinoma. EBV-associated gastric adenocarcinomas predominantly express markers of gastric differentiation (MUC5AC, MUC6, CLDN-18) and a number of viral markers (EBER-1, EBNA-1 and BART mRNA). Three types of EBV latent cycle depending on the set of expressed viral transcripts are distinguished. It is believed that EBV-associated gastric adenocarcinoma is characterized by an intermediate position between latent cycles of types 1 and 2. The main method of virus identification is in situ hybridization with the detection of Epstein-Barr virus-encoded small RNAs (EBER-ISH).
Collapse
Affiliation(s)
- N V Danilova
- Federal State Educational Institution of Higher Professional Education M.V. Lomonosov Moscow State University, Moscow, Russia
| | - P G Malkov
- Federal State Educational Institution of Higher Professional Education M.V. Lomonosov Moscow State University, Moscow, Russia; Russian Medical Academy of Continuing Professional Education, Ministry of Health of Russia, Moscow, Russia
| | - N A Oleynikova
- Federal State Educational Institution of Higher Professional Education M.V. Lomonosov Moscow State University, Moscow, Russia
| | - I A Mikhailov
- Federal State Educational Institution of Higher Professional Education M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
37
|
Single organelle analysis to characterize mitochondrial function and crosstalk during viral infection. Sci Rep 2019; 9:8492. [PMID: 31186476 PMCID: PMC6560178 DOI: 10.1038/s41598-019-44922-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/23/2019] [Indexed: 12/23/2022] Open
Abstract
Mitochondria are key for cellular metabolism and signalling processes during viral infection. We report a methodology to analyse mitochondrial properties at the single-organelle level during viral infection using a recombinant adenovirus coding for a mitochondrial tracer protein for tagging and detection by multispectral flow cytometry. Resolution at the level of tagged individual mitochondria revealed changes in mitochondrial size, membrane potential and displayed a fragile phenotype during viral infection of cells. Thus, single-organelle and multi-parameter resolution allows to explore altered energy metabolism and antiviral defence by tagged mitochondria selectively in virus-infected cells and will be instrumental to identify viral immune escape and to develop and monitor novel mitochondrial-targeted therapies.
Collapse
|
38
|
Soultawi C, Fortier Y, Soundaramourty C, Estaquier J, Laforge M. Mitochondrial Bioenergetics and Dynamics During Infection. EXPERIENTIA. SUPPLEMENTUM 2019; 109:221-233. [PMID: 30535601 DOI: 10.1007/978-3-319-74932-7_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Microbes have developed a series of strategies to overcome the defense mechanisms of the infected host. During pathogen-host coevolution, they develop strategy to manipulate cellular machinery particularly in subverting mitochondrion function. Mitochondria are highly dynamic organelles that constantly remodel their structure. In particular, shaping and cellular distribution of the mitochondrial network is maintained in large part by the conserved activities of mitochondrial division, fusion, motility, and tethering. Mitochondria have been long recognized for their role in providing energy production, calcium metabolism, and apoptosis. More recently, mitochondria have been also shown to serve as a platform for innate immune response. In this context, mitochondrial dynamics and shaping is not only essential to maintain cristae structure and bioenergetic to fuel cellular demands but contribute to regulate cellular function such as innate immune response and mitochondrial permeabilization. Due to their key role in cell survival, mitochondria represent attractive targets for pathogens. Therefore, microbes by manipulating mitochondrial dynamics may escape to host cellular control. Herein, we describe how mitochondrial bioenergetics, dynamics, and shaping are impacted during microbe infections and how this interplay benefits to pathogens contributing to the diseases.
Collapse
Affiliation(s)
- Cynthia Soultawi
- CNRS FR3636, Faculty of Medecine des Saint-Pères, Paris Descartes University, Paris, France
| | - Yasmina Fortier
- CNRS FR3636, Faculty of Medecine des Saint-Pères, Paris Descartes University, Paris, France
| | | | - Jérôme Estaquier
- CNRS FR3636, Faculty of Medecine des Saint-Pères, Paris Descartes University, Paris, France. .,Centre Hospitalier Universitaire (CHU) de Québec Research Center, Faculty of Medicine, Laval University, Québec, QC, Canada.
| | - Mireille Laforge
- CNRS FR3636, Faculty of Medecine des Saint-Pères, Paris Descartes University, Paris, France.
| |
Collapse
|
39
|
Moreno-Altamirano MMB, Kolstoe SE, Sánchez-García FJ. Virus Control of Cell Metabolism for Replication and Evasion of Host Immune Responses. Front Cell Infect Microbiol 2019; 9:95. [PMID: 31058096 PMCID: PMC6482253 DOI: 10.3389/fcimb.2019.00095] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/22/2019] [Indexed: 12/11/2022] Open
Abstract
Over the last decade, there has been significant advances in the understanding of the cross-talk between metabolism and immune responses. It is now evident that immune cell effector function strongly depends on the metabolic pathway in which cells are engaged in at a particular point in time, the activation conditions, and the cell microenvironment. It is also clear that some metabolic intermediates have signaling as well as effector properties and, hence, topics such as immunometabolism, metabolic reprograming, and metabolic symbiosis (among others) have emerged. Viruses completely rely on their host's cell energy and molecular machinery to enter, multiply, and exit for a new round of infection. This review explores how viruses mimic, exploit or interfere with host cell metabolic pathways and how, in doing so, they may evade immune responses. It offers a brief outline of key metabolic pathways, mitochondrial function and metabolism-related signaling pathways, followed by examples of the mechanisms by which several viral proteins regulate host cell metabolic activity.
Collapse
Affiliation(s)
- María Maximina B Moreno-Altamirano
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Simon E Kolstoe
- School of Health Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Francisco Javier Sánchez-García
- Laboratorio de Inmunorregulación, Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
40
|
Zhang J, Wang J, Luan T, Zuo Y, Chen J, Zhang H, Ye Z, Wang H, Hai B. Deubiquitinase USP9X regulates the invasion of prostate cancer cells by regulating the ERK pathway and mitochondrial dynamics. Oncol Rep 2019; 41:3292-3304. [PMID: 31002345 PMCID: PMC6489063 DOI: 10.3892/or.2019.7131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 04/08/2019] [Indexed: 12/24/2022] Open
Abstract
The ubiquitin-specific protease 9X (USP9X) is a conserved deubiquitinase that has been investigated in several types of human cancer. However, the clinical significance and the biological roles of USP9X in prostate cancer remain unexplored. In the present study, an investigation into the expression and clinical significance of USP9X in prostate cancer revealed that USP9X expression was downregulated in prostate cancer tissues compared with that in healthy tissues. In addition, decreased USP9X expression was associated with a higher Gleason score and local invasion. Depletion of USP9X in prostate cancer LNCaP and PC-3 cells by small interfering RNA promoted cell invasion and migration. Furthermore, USP9X depletion upregulated matrix metalloproteinase 9 (MMP9) and the phosphorylation of dynamin-related protein 1 (DRP1). Notably, a significant increase in phosphorylated extracellular signal-regulated kinase (ERK), an upstream activator of MMP9 and DRP1, was observed. To investigate whether ERK activation was able to increase MMP9 protein levels and induce DRP1 phosphorylation, an ERK inhibitor was used, demonstrating that ERK-mediated MMP9 production and change in mitochondrial function was critical for the biological function of USP9X in prostate cancer cells. In conclusion, the present study demonstrated that USP9X is downregulated in prostate cancer and functions as an inhibitor of tumor cell invasion, possibly through the regulation of the ERK signaling pathway.
Collapse
Affiliation(s)
- Jinsong Zhang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, Yunnan 650101, P.R. China
| | - Jiansong Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, Yunnan 650101, P.R. China
| | - Ting Luan
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, Yunnan 650101, P.R. China
| | - Yigang Zuo
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, Yunnan 650101, P.R. China
| | - Jian Chen
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, Yunnan 650101, P.R. China
| | - Heng Zhang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, Yunnan 650101, P.R. China
| | - Zhenni Ye
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, Yunnan 650101, P.R. China
| | - Haifeng Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, Yunnan 650101, P.R. China
| | - Bing Hai
- Department of Respiratory Diseases, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650101, P.R. China
| |
Collapse
|
41
|
Zhou X, Wu X, Xu Q, Zhu R, Xu H, Li Y, Liu S, Huang H, Xu X, Wan L, Wu Q, Liu J. Notch1 provides myocardial protection by improving mitochondrial quality control. J Cell Physiol 2018; 234:11835-11841. [PMID: 30515819 DOI: 10.1002/jcp.27892] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/08/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Xue‐Liang Zhou
- Department of Cardiac Surgery The First Affiliated Hospital, Nanchang University Nanchang China
| | - Xia Wu
- Department of Cardiac Surgery The First Affiliated Hospital, Nanchang University Nanchang China
| | - Qi‐Rong Xu
- Department of Cardiac Surgery The First Affiliated Hospital, Nanchang University Nanchang China
| | - Rong‐Rong Zhu
- Department of Obstetrics and Gynecology Jiangxi Province Hospital of Integrated Traditional Chinese and Western Medicine Nanchang China
| | - Hua Xu
- Department of Cardiac Surgery The First Affiliated Hospital, Nanchang University Nanchang China
| | - Yun‐Yun Li
- Department of Cardiac Surgery The First Affiliated Hospital, Nanchang University Nanchang China
| | - Sheng Liu
- Department of Cardiac Surgery The First Affiliated Hospital, Nanchang University Nanchang China
| | - Huang Huang
- Department of Cardiac Surgery The First Affiliated Hospital, Nanchang University Nanchang China
| | - Xinping Xu
- Department of Cardiac Surgery The First Affiliated Hospital, Nanchang University Nanchang China
| | - Li Wan
- Department of Cardiac Surgery The First Affiliated Hospital, Nanchang University Nanchang China
| | - Qi‐Cai Wu
- Department of Cardiac Surgery The First Affiliated Hospital, Nanchang University Nanchang China
| | - Ji‐Chun Liu
- Department of Cardiac Surgery The First Affiliated Hospital, Nanchang University Nanchang China
| |
Collapse
|
42
|
Moghoofei M, Mostafaei S, Nesaei A, Etemadi A, Sadri Nahand J, Mirzaei H, Rashidi B, Babaei F, Khodabandehlou N. Epstein-Barr virus and thyroid cancer: The role of viral expressed proteins. J Cell Physiol 2018; 234:3790-3799. [PMID: 30362517 DOI: 10.1002/jcp.27144] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 07/09/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Thyroid cancer is a common endocrine malignancy whose incidence has increased in recent years. Several internal and external risk factors are involved in the development of this cancer, such as infectious agents. Evidence supporting the role of viral infection as an etiology for the invasiveness of thyroid cancer is increasing. The aim of this study was to determine the presence of the Epstein-Barr virus (EBV) and the association between viral gene products and thyroid tumor development. METHODS Fifty-seven thyroid cancer specimens were collected from the same number of patients as well as 18 samples from healthy controls. The presence of the EBV genome and the genotyping was examined by polymerase chain reaction (PCR). Also, an enzyme-linked immunosorbent assay and real-time PCR were used to measure the expression levels of viral and cellular genes. RESULTS The EBV DNA was detected in 71.9% of the samples, and it was also found that the presence of the EBV was associated with increasing development of thyroid tumor. CONCLUSION Our results demonstrated that EBV infection may play a role in the development of thyroid tumor.
Collapse
Affiliation(s)
- Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shayan Mostafaei
- Department of Community Medicine, Faculty of Medicine, Alborz University of Medical Sciences, Alborz, Iran.,Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Nesaei
- Department of Basic Sciences, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Ashkan Etemadi
- Department of Biology, Faculty of Science, Shahrekord University, Shahrekord, Iran
| | - Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashahd, Iran
| | - Bahman Rashidi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farhad Babaei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Niloofar Khodabandehlou
- Department of Internal Medicine, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
43
|
Positive feedback loop between mitochondrial fission and Notch signaling promotes survivin-mediated survival of TNBC cells. Cell Death Dis 2018; 9:1050. [PMID: 30323195 PMCID: PMC6189045 DOI: 10.1038/s41419-018-1083-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/31/2018] [Accepted: 08/20/2018] [Indexed: 12/20/2022]
Abstract
Mitochondrial morphology is remodeled by continuous dynamic cycles of fission and fusion. Emerging data have shown that the disturbance of balance between mitochondrial fission and fusion is involved in the progression of several types of neoplasms. However, the status of mitochondrial dynamics and its potential biological roles in breast cancer (BC), particularly in triple negative BC (TNBC) are not fully clear. Here, we reported that the mitochondrial fission was significantly increased in BC tissues, especially in the TNBC tissues, when compared with that in the corresponding peritumor tissues. Meanwhile, our data showed that Drp1 was upregulated, while Mfn1 was downregulated in TNBC. Moreover, elevated mitochondrial fission was associated with poorer prognosis in TNBC patients. Mitochondrial fission promoted the survival of TNBC cells both in vitro and in vivo. Furthermore, we identified a positive feedback loop between mitochondrial fission and Notch signaling pathway in TNBC cells, as proved by the experimental evidence that the activation of Notch signaling enhanced Drp1-mediated mitochondrial fission and Drp1-mediated mitochondrial fission in turn promoted the activation of Notch signaling, which ultimately promoted the cell survival of TNBC via increasing survivin expression level. Inhibition of either Notch1 or Drp1 significantly impaired the activation of the other, leading to the suppression of TNBC cell survival and proliferation. Collectively, our data reveal a novel mechanism that the positive feedback loop between mitochondrial fission and Notch signaling promotes the survival, proliferation and apoptotic resistance of TNBC cells via increasing survivin expression and thus favors cancer progression.
Collapse
|
44
|
Rasa S, Nora-Krukle Z, Henning N, Eliassen E, Shikova E, Harrer T, Scheibenbogen C, Murovska M, Prusty BK. Chronic viral infections in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). J Transl Med 2018; 16:268. [PMID: 30285773 PMCID: PMC6167797 DOI: 10.1186/s12967-018-1644-y] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 09/24/2018] [Indexed: 12/15/2022] Open
Abstract
Background and main text Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex and controversial clinical condition without having established causative factors. Increasing numbers of cases during past decade have created awareness among patients as well as healthcare professionals. Chronic viral infection as a cause of ME/CFS has long been debated. However, lack of large studies involving well-designed patient groups and validated experimental set ups have hindered our knowledge about this disease. Moreover, recent developments regarding molecular mechanism of pathogenesis of various infectious agents cast doubts over validity of several of the past studies. Conclusions This review aims to compile all the studies done so far to investigate various viral agents that could be associated with ME/CFS. Furthermore, we suggest strategies to better design future studies on the role of viral infections in ME/CFS.
Collapse
Affiliation(s)
- Santa Rasa
- Institute of Microbiology and Virology, Rīga Stradiņš University, Riga, Latvia
| | - Zaiga Nora-Krukle
- Institute of Microbiology and Virology, Rīga Stradiņš University, Riga, Latvia
| | - Nina Henning
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | - Eva Eliassen
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany
| | - Evelina Shikova
- Department of Virology, National Center of Infectious and Parasitic Diseases, Sofia, Bulgaria
| | - Thomas Harrer
- Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Carmen Scheibenbogen
- Institute for Medical Immunology, Charité-Universitätsmedizin Berlin, Campus Virchow, Berlin, Germany
| | - Modra Murovska
- Institute of Microbiology and Virology, Rīga Stradiņš University, Riga, Latvia
| | - Bhupesh K Prusty
- Biocenter, Chair of Microbiology, University of Würzburg, Würzburg, Germany. .,Institute for Virology and Immunobiology, Würzburg, Germany.
| | | |
Collapse
|
45
|
Lai JH, Luo SF, Ho LJ. Operation of mitochondrial machinery in viral infection-induced immune responses. Biochem Pharmacol 2018; 156:348-356. [PMID: 30172712 PMCID: PMC7092938 DOI: 10.1016/j.bcp.2018.08.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 08/29/2018] [Indexed: 01/05/2023]
Abstract
Mitochondria have been recognized as ancient bacteria that contain evolutionary endosymbionts. Metabolic pathways and inflammatory signals interact within mitochondria in response to different stresses, such as viral infections. In this commentary, we address several interesting questions, including (1) how do mitochondrial machineries participate in immune responses; (2) how do mitochondria mediate antiviral immunity; (3) what mechanisms involved in mitochondrial machinery, including the downregulation of mitochondrial DNA (mtDNA), disturbances of mitochondrial dynamics, and the induction of mitophagy and regulation of apoptosis, have been adopted by viruses to evade antiviral immunity; (4) what mechanisms involve the regulation of mitochondrial machineries in antiviral therapeutics; and (5) what are the potential challenges and perspectives in developing mitochondria-targeting antiviral treatments? This commentary provides a comprehensive review of the roles and mechanisms of mitochondrial machineries in immunity, viral infections and related antiviral therapeutics.
Collapse
Affiliation(s)
- Jenn-Haung Lai
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Tao-Yuan, Taiwan, ROC; Graduate Institute of Medical Science, National Defense Medical Center, Taipei, Taiwan, ROC.
| | - Shue-Fen Luo
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Chang Gung Memorial Hospital, Chang Gung University, Tao-Yuan, Taiwan, ROC
| | - Ling-Jun Ho
- Institute of Cellular and System Medicine, National Health Research Institute, Zhunan, Taiwan, ROC.
| |
Collapse
|
46
|
Kim SJ, Ahn DG, Syed GH, Siddiqui A. The essential role of mitochondrial dynamics in antiviral immunity. Mitochondrion 2018; 41:21-27. [PMID: 29246869 PMCID: PMC5988924 DOI: 10.1016/j.mito.2017.11.007] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/29/2017] [Accepted: 11/29/2017] [Indexed: 01/17/2023]
Abstract
Viruses alter cellular physiology and function to establish cellular environment conducive for viral proliferation. Viral immune evasion is an essential aspect of viral persistence and proliferation. The multifaceted mitochondria play a central role in many cellular events such as metabolism, bioenergetics, cell death, and innate immune signaling. Recent findings accentuate that viruses regulate mitochondrial function and dynamics to facilitate viral proliferation. In this review, we will discuss how viruses exploit mitochondrial dynamics to modulate mitochondria-mediated antiviral innate immune response during infection. This review will provide new insight to understanding the virus-mediated alteration of mitochondrial dynamics and functions to perturb host antiviral immune signaling.
Collapse
Affiliation(s)
- Seong-Jun Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Yuseong, Daejeon 34114, South Korea
| | - Dae-Gyun Ahn
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Yuseong, Daejeon 34114, South Korea
| | - Gulam H Syed
- Institute of Life Sciences, Bhubaneswar, Odisha 751023, India
| | - Aleem Siddiqui
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
47
|
Ectromelia Virus Affects Mitochondrial Network Morphology, Distribution, and Physiology in Murine Fibroblasts and Macrophage Cell Line. Viruses 2018; 10:v10050266. [PMID: 29772718 PMCID: PMC5977259 DOI: 10.3390/v10050266] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are multifunctional organelles that participate in numerous processes in response to viral infection, but they are also a target for viruses. The aim of this study was to define subcellular events leading to alterations in mitochondrial morphology and function during infection with ectromelia virus (ECTV). We used two different cell lines and a combination of immunofluorescence techniques, confocal and electron microscopy, and flow cytometry to address subcellular changes following infection. Early in infection of L929 fibroblasts and RAW 264.7 macrophages, mitochondria gathered around viral factories. Later, the mitochondrial network became fragmented, forming punctate mitochondria that co-localized with the progeny virions. ECTV-co-localized mitochondria associated with the cytoskeleton components. Mitochondrial membrane potential, mitochondrial fission–fusion, mitochondrial mass, and generation of reactive oxygen species (ROS) were severely altered later in ECTV infection leading to damage of mitochondria. These results suggest an important role of mitochondria in supplying energy for virus replication and morphogenesis. Presumably, mitochondria participate in transport of viral particles inside and outside of the cell and/or they are a source of membranes for viral envelope formation. We speculate that the observed changes in the mitochondrial network organization and physiology in ECTV-infected cells provide suitable conditions for viral replication and morphogenesis.
Collapse
|
48
|
Mukherjee A, Patra U, Bhowmick R, Chawla-Sarkar M. Rotaviral nonstructural protein 4 triggers dynamin-related protein 1-dependent mitochondrial fragmentation during infection. Cell Microbiol 2018; 20:e12831. [PMID: 29444369 DOI: 10.1111/cmi.12831] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/06/2018] [Accepted: 02/06/2018] [Indexed: 12/16/2022]
Abstract
Dynamic equilibrium between mitochondrial fission and mitochondrial fusion serves as an important quality control system within cells ensuring cellular vitality and homeostasis. Viruses often target mitochondrial dynamics as a part of their obligatory cellular reprogramming. The present study was undertaken to assess the status and regulation of mitochondrial dynamics during rotavirus infection. Distinct fragmentation of mitochondrial syncytia was observed during late hours of RV (SA11, Wa, A5-13) infection. RV nonstructural protein 4 (NSP4) was identified as the viral trigger for disrupted mitochondrial morphology. Severance of mitochondrial interconnections was found to be a dynamin-related protein 1 (Drp1)-dependent process resulting synergistically from augmented mitochondrial fission and attenuated mitochondrial fusion. Cyclin-dependent kinase 1 was subsequently identified as the cellular kinase responsible for fission-active Ser616 phosphorylation of Drp1. In addition to its positive role in mitochondrial fission, Drp1 also resulted in mitochondrial translocation of E3-ubiquitin ligase Parkin leading to degradation of mitochondrial fusion protein Mitofusin 1. Interestingly, RV-NSP4 was found to interact with and be involved in recruiting fission-active pool of Serine 616 phosphoDrp1 (Ser616 pDrp1) to mitochondria independent of accessory adaptors Mitochondrial fission factor and Fission protein 1 (Fis1). Inhibition of either Drp1 or Ser616 pDrp1 resulted in significant decrease in RV-NSP4-induced intrinsic apoptotic pathway. Overall, this study underscores an efficient strategy utilised by RV to couple apoptosis to mitochondrial fission facilitating dissemination of viral progeny.
Collapse
Affiliation(s)
- Arpita Mukherjee
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Upayan Patra
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Rahul Bhowmick
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Mamta Chawla-Sarkar
- Division of Virology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
49
|
Cavallari I, Scattolin G, Silic-Benussi M, Raimondi V, D'Agostino DM, Ciminale V. Mitochondrial Proteins Coded by Human Tumor Viruses. Front Microbiol 2018; 9:81. [PMID: 29467726 PMCID: PMC5808139 DOI: 10.3389/fmicb.2018.00081] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/12/2018] [Indexed: 12/26/2022] Open
Abstract
Viruses must exploit the cellular biosynthetic machinery and evade cellular defense systems to complete their life cycles. Due to their crucial roles in cellular bioenergetics, apoptosis, innate immunity and redox balance, mitochondria are important functional targets of many viruses, including tumor viruses. The present review describes the interactions between mitochondria and proteins coded by the human tumor viruses human T-cell leukemia virus type 1, Epstein-Barr virus, Kaposi's sarcoma-associated herpesvirus, human hepatitis viruses B and C, and human papillomavirus, and highlights how these interactions contribute to viral replication, persistence and transformation.
Collapse
Affiliation(s)
| | - Gloria Scattolin
- Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy
| | | | | | | | - Vincenzo Ciminale
- Veneto Institute of Oncology IOV-IRRCS, Padova, Italy.,Department of Surgery, Oncology, and Gastroenterology, University of Padova, Padova, Italy
| |
Collapse
|
50
|
Song S, Gong S, Singh P, Lyu J, Bai Y. The interaction between mitochondria and oncoviruses. Biochim Biophys Acta Mol Basis Dis 2018; 1864:481-487. [PMID: 28962899 PMCID: PMC8895674 DOI: 10.1016/j.bbadis.2017.09.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 09/23/2017] [Accepted: 09/25/2017] [Indexed: 12/24/2022]
Abstract
Mitochondria play important roles in multiple aspects of viral tumorigenesis. Mitochondrial genomes contribute to the host's genetic background. After viruses enter the cell, they modulate mitochondrial function and thus alter bioenergetics and retrograde signaling pathways. At the same time, mitochondria also regulate and mediate viral oncogenesis. In this context, oncogenesis by oncoviruses like Hepatitis B virus (HBV), Hepatitis C virus (HCV), Human papilloma virus (HPV), Human Immunodeficiency virus (HIV) and Epstein-Barr virus (EBV) will be discussed.
Collapse
Affiliation(s)
- Shujie Song
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Shasha Gong
- School of Medicine, Taizhou College, Taizhou, Zhejiang, China
| | - Pragya Singh
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Jianxin Lyu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China,Corresponding author: Wenzhou Medical University, Chashan, Wenzhou 325035, China. (J. Lyu); (Y. Bai). Fax: 86-577-86689771; Tel: 86-577-86689805
| | - Yidong Bai
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, College of Laboratory Medicine and Life sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China,Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, Texas, USA,Corresponding author: Wenzhou Medical University, Chashan, Wenzhou 325035, China. (J. Lyu); (Y. Bai). Fax: 86-577-86689771; Tel: 86-577-86689805
| |
Collapse
|