1
|
Xu Y, He Z, Rao Z, Li Z, Hu Y, Zhang Z, Zhou J, Zhou T, Wang H. The role of β2-AR/PI3K/AKT pathway in the proliferation, migration and invasion of THLE-2 cells induced by nicotine. Toxicology 2024; 508:153924. [PMID: 39147091 DOI: 10.1016/j.tox.2024.153924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
Nicotine, the primary constituent of tobacco, is one of the important factors that induce the occurrence of hepatocellular carcinoma (HCC). The β2-adrenergic receptor (β2-AR) is implicated in the growth and advancement of tumors. However, the role of β2-AR and its mediated cascades in nicotine-induced HCC remains unclear. This present study aims to observe the effects of nicotine on the proliferation, migration, and invasion of immortalized human liver epithelial (THLE-2) cells, as well as to explore the underlying mechanisms of action. The results of cell counting kit-8 (CCK-8) assay showed that 0.3125 μM nicotine had the ability to promote the proliferation of THLE-2 cells with a significant time-dependent manner. Therefore, THLE-2 cells were mainly selected for chronic treatment with 0.3125 μM nicotine in the later stage to cause transformation. After 30 passages of THLE-2 cells with 0.3125 μM nicotine treatment, chronic exposure to nicotine significantly enhanced the proliferation, metastasis, and invasion of cells. Besides, it also upregulated the intracellular levels of β2-AR, phosphoinositide 3-kinase (PI3K), AKT, matrix metalloproteinase-2 (MMP-2) and Cyclin D1, as well as downregulated the expression of p53. More importantly, the β2-AR/PI3K/AKT pathway was found to mediate the expression of MMP-2, Cyclin D1, and p53 in THLE-2 cells, playing a crucial role in their proliferation, migration, and invasion after continuous exposure to nicotine. Simply put, it demonstrated the role of β2-AR/PI3K/AKT pathway in the transformation of THLE-2 cells induced by nicotine. This study could provide valuable insights into the relationship between nicotine and HCC. Additionally, it lays the groundwork for investigating potential anticancer treatments for liver cancer linked to tobacco consumption.
Collapse
Affiliation(s)
- Yuqin Xu
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Zihan He
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Zihan Rao
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Zihan Li
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Yuxin Hu
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Zhongwei Zhang
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Jianming Zhou
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Tong Zhou
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Huai Wang
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Disease Prevention and Public Health, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China.
| |
Collapse
|
2
|
Ghorbian M, Ghorbian S. Comprehensive review of reinforcement learning in lung cancer diagnosis and treatment: Taxonomy, challenges and recommendations. Comput Biol Med 2024; 183:109326. [PMID: 39461105 DOI: 10.1016/j.compbiomed.2024.109326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
Lung cancer (LuC) is one of the leading causes of death in the world, and due to the complex mechanisms and widespread metastasis, diagnosis and treatment are challenging. In recent years, the application of reinforcement learning (RL) techniques as a new tool to improve LuC diagnosis and treatment has been dramatically expanded. These techniques can potentially increase the accuracy of diagnosis and optimize treatment processes by learning from limited data and improving clinical decisions. However, RL in LuC diagnosis and treatment faces challenges such as limited access to clinical data, the complexity of algorithms, and the need for technical expertise for proper implementation. Our systematic review article aims to evaluate the latest developments in applications and challenges of using RL techniques in LuC diagnosis and treatment. The findings showed that RL has increased the accuracy of identifying disease trends by 37 % and enhancing treatment decisions by 23 %. Also, using this approach reduces data processing time by 17 % and streamlining treatment processes by 12 %. Ultimately, analyzing the current challenges and offering recommendations to researchers could help develop new strategies for improving the diagnosis and treatment of LuC.
Collapse
Affiliation(s)
- Mohsen Ghorbian
- Department of Computer Engineering, Qom Branch, Islamic Azad University, Qom, Iran
| | - Saeid Ghorbian
- Department of Molecular Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran.
| |
Collapse
|
3
|
Zhu E, Xie Q, Huang X, Zhang Z. Application of spatial omics in gastric cancer. Pathol Res Pract 2024; 262:155503. [PMID: 39128411 DOI: 10.1016/j.prp.2024.155503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/13/2024]
Abstract
Gastric cancer (GC), a globally prevalent and lethal malignancy, continues to be a key research focus. However, due to its considerable heterogeneity and complex pathogenesis, the treatment and diagnosis of gastric cancer still face significant challenges. With the rapid development of spatial omics technology, which provides insights into the spatial information within tumor tissues, it has emerged as a significant tool in gastric cancer research. This technology affords new insights into the pathology and molecular biology of gastric cancer for scientists. This review discusses recent advances in spatial omics technology for gastric cancer research, highlighting its applications in the tumor microenvironment (TME), tumor heterogeneity, tumor genesis and development mechanisms, and the identification of potential biomarkers and therapeutic targets. Moreover, this article highlights spatial omics' potential in precision medicine and summarizes existing challenges and future directions. It anticipates spatial omics' continuing impact on gastric cancer research, aiming to improve diagnostic and therapeutic approaches for patients. With this review, we aim to offer a comprehensive overview to scientists and clinicians in gastric cancer research, motivating further exploration and utilization of spatial omics technology. Our goal is to improve patient outcomes, including survival rates and quality of life.
Collapse
Affiliation(s)
- Erran Zhu
- Department of Clinical Medicine, Grade 20, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Qi Xie
- Department of Clinical Medicine, Grade 20, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Xinqi Huang
- Excellent Class, Clinical Medicine, Grade 20, Hengyang Medical College, University of South China, Hengyang, Hunan, 421001, China
| | - Zhiwei Zhang
- Cancer Research Institute of Hengyang Medical College, University of South China; Key Laboratory of Cancer Cellular and Molecular Pathology of Hunan; Department of Pathology, Department of Pathology of Hengyang Medical College, University of South China; The First Affiliated Hospital of University of South China, China.
| |
Collapse
|
4
|
Ahamed MT, Forshed J, Levitsky A, Lehtiö J, Bajalan A, Pernemalm M, Eriksson LE, Andersson B. Multiplex plasma protein assays as a diagnostic tool for lung cancer. Cancer Sci 2024; 115:3439-3454. [PMID: 39080998 PMCID: PMC11447887 DOI: 10.1111/cas.16300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 10/04/2024] Open
Abstract
Lack of the established noninvasive diagnostic biomarkers causes delay in diagnosis of lung cancer (LC). The aim of this study was to explore the association between inflammatory and cancer-associated plasma proteins and LC and thereby discover potential biomarkers. Patients referred for suspected LC and later diagnosed with primary LC, other cancers, or no cancer (NC) were included in this study. Demographic information and plasma samples were collected, and diagnostic information was later retrieved from medical records. Relative quantification of 92 plasma proteins was carried out using the Olink Immuno-Onc-I panel. Association between expression levels of panel of proteins with different diagnoses was assessed using generalized linear model (GLM) with the binomial family and a logit-link function, considering confounder effects of age, gender, smoking, and pulmonary diseases. The analysis showed that the combination of five plasma proteins (CD83, GZMA, GZMB, CD8A, and MMP12) has higher diagnostic performance for primary LC in both early and advanced stages compared with NC. This panel demonstrated lower diagnostic performance for other cancer types. Moreover, inclusion of four proteins (GAL9, PDCD1, CD4, and HO1) to the aforementioned panel significantly increased the diagnostic performance for primary LC in advanced stage as well as for other cancers. Consequently, the collective expression profiles of select plasma proteins, especially when analyzed in conjunction, might have the potential to distinguish individuals with LC from NC. This suggests their utility as predictive biomarkers for identification of LC patients. The synergistic application of these proteins as biomarkers could pave the way for the development of diagnostic tools for early-stage LC detection.
Collapse
Affiliation(s)
- Mohammad Tanvir Ahamed
- Department of Learning, Informatics, Management and Ethics (LIME)Karolinska InstitutetStockholmSweden
| | - Jenny Forshed
- Cancer Proteomics Mass Spectrometry, Department of Oncology‐PathologyKarolinska Institutet, Science for Life LaboratoryStockholmSweden
| | - Adrian Levitsky
- Department of Learning, Informatics, Management and Ethics (LIME)Karolinska InstitutetStockholmSweden
| | - Janne Lehtiö
- Cancer Proteomics Mass Spectrometry, Department of Oncology‐PathologyKarolinska Institutet, Science for Life LaboratoryStockholmSweden
| | - Amanj Bajalan
- Department of Microbiology, Tumor & Cell Biology (MTC)Karolinska InstitutetStockholmSweden
| | - Maria Pernemalm
- Cancer Proteomics Mass Spectrometry, Department of Oncology‐PathologyKarolinska Institutet, Science for Life LaboratoryStockholmSweden
| | - Lars E. Eriksson
- Department of Neurobiology, Care Sciences and SocietyKarolinska InstitutetStockholmSweden
- School of Health and Psychological Sciences, CityUniversity of LondonLondonUK
- Medical Unit Infectious DiseasesKarolinska University HospitalHuddingeSweden
| | - Björn Andersson
- Department of Cell and molecular Biology (CMB)Karolinska InstitutetStockholmSweden
| |
Collapse
|
5
|
Wheatley-Price P, Wong B, Shah H, Sekhon H, Moore S. Appendicitis while on alectinib for non-small cell lung cancer: a tale of two case reports. Front Oncol 2024; 14:1398414. [PMID: 39391245 PMCID: PMC11464251 DOI: 10.3389/fonc.2024.1398414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 09/02/2024] [Indexed: 10/12/2024] Open
Abstract
Introduction Aberrant expression of anaplastic lymphoma kinase (ALK) is found in 3%-7% of patients with non-small cell lung cancer (NSCLC). Alectinib is a tyrosine kinase inhibitor used as first-line treatment targeting ALK-positive tumors. We herein report two cases of appendicitis highlighting it as a rare, possible adverse event of treatment with alectinib. Case presentation The first case is a 60-year-old woman with a previous history of stage 1 lobular breast cancer and early-stage lung cancer treated with segmentectomy, subsequently presenting with ALK-positive advanced NSCLC. Treatment with alectinib resulted in partial response, but she developed gastrointestinal symptoms that were assessed with computed tomography (CT) of the abdomen revealing right lower quadrant stranding without appendiceal visualization. Her symptoms continued despite an antibiotic course with re-imaging concerning for acute appendicitis, which was successfully treated with appendectomy and amoxicillin-clavulanic acid. The second case is a previously healthy 58-year-old man with advanced ALK-positive NSCLC who was started on first-line treatment with alectinib and subsequently diagnosed with asymptomatic acute appendicitis on re-staging CT abdomen. Signs on CT resolved with amoxicillin-clavulanic acid. Definitive treatment was conducted with a delayed elective appendectomy. Both patients remained on alectinib over the courses of appendicitis without interruption. Conclusion While appendicitis has not been previously described as an adverse effect of alectinib, its incidence in two patients at our center within several months following the administration of alectinib raises its suspicion as a possible adverse effect.
Collapse
Affiliation(s)
- Paul Wheatley-Price
- Department of Medical Oncology, The Ottawa Hospital Cancer Centre, Ottawa, ON, Canada
| | - Boaz Wong
- Department of Medical Oncology, The Ottawa Hospital Cancer Centre, Ottawa, ON, Canada
| | - Hely Shah
- Department of Medical Oncology, The Ottawa Hospital Cancer Centre, Ottawa, ON, Canada
| | - Harman Sekhon
- Department of Pathology and Laboratory Medicine, Eastern Ontario Regional Laboratory Association, University of Ottawa, Ottawa, ON, Canada
| | - Sara Moore
- Department of Medical Oncology, The Ottawa Hospital Cancer Centre, Ottawa, ON, Canada
| |
Collapse
|
6
|
Hou W, Shen L, Zhu Y, Wang X, Du T, Yang F, Zhu Y. Fullerene Derivatives for Tumor Treatment: Mechanisms and Application. Int J Nanomedicine 2024; 19:9771-9797. [PMID: 39345909 PMCID: PMC11430870 DOI: 10.2147/ijn.s476601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Fullerenes hold tremendous potential as alternatives to conventional chemotherapy or radiotherapy for tumor treatment due to their abilities to photodynamically kill tumor cells, destroy the tumor vasculature, inhibit tumor metastasis and activate anti-tumor immune responses, while protecting normal tissue through antioxidative effects. The symmetrical hollow molecular structures of fullerenes with abundant C=C bonds allow versatile chemical modification with diverse functional groups, metal clusters and biomacromolecules to synthesize a wide range of fullerene derivatives with increased water solubility, improved biocompatibility, enhanced photodynamic properties and stronger targeting abilities. This review introduces the anti-tumor mechanisms of fullerenes and summarizes the most recent works on the functionalization of fullerenes and the application of fullerene derivatives in tumor treatment. This review aims to serve as a valuable reference for further development and clinical application of anti-tumor fullerene derivatives.
Collapse
Affiliation(s)
- Wenjia Hou
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200438, People's Republic of China
| | - Lan Shen
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Yimin Zhu
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Xuanjia Wang
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Tianyu Du
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Fang Yang
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| |
Collapse
|
7
|
Ma QY, Liu YC, Zhang Q, Yi WD, Sun Y, Gao XD, Zhao XT, Wang HW, Lei K, Luo WJ. Integrating network pharmacology, molecular docking and experimental verification to reveal the mechanism of artesunate in inhibiting choroidal melanoma. Front Pharmacol 2024; 15:1448381. [PMID: 39185308 PMCID: PMC11341487 DOI: 10.3389/fphar.2024.1448381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
Background Artesunate (ART), a natural compound derived from Artemisia annua, has shown promising clinical potentials in the treatment of various tumors, but the exact mechanism is unclear. Choroidal melanoma (CM) is a major malignant ocular tumor in adults, known for its significant malignancy and poor prognosis, with limited efficacy in current treatments. This study explored the anti-CM effects and mechanisms of ART using a combination of network pharmacology, molecular docking and experimental validation. Methods Potential targets of ART were screened in PubChem, Swiss Target Prediction and Traditional Chinese Medicine Systems Pharmacology (TCMSP) Database Analysis Platform databases, while target genes related to CM prognosis were selected from Online Mendelian Inheritance in Man (OMIM), GeneCards and DisGeNET databases. The intersection of these two groups of datasets yielded the target genes of ART involved in CM. Protein-protein interaction (PPI) network analysis of the intersecting targets, as well as Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, were conducted to identify core targets and critical pathways. Molecular docking methods were performed to predict the binding interactions between ART and core targets. The effects of ART on CM were evaluated through CCK8, colony formation, transwell, as well as flow cytometry assays to detect apoptosis, cell cycle, reactive oxygen species (ROS). Western blot (WB) assays were conducted to investigate the impact of ART on key proteins and pathways associated with CM. Finally, in vivo assays were conducted to further validate the effects of ART on subcutaneous tumors in nude mice. Results Research has shown that key pathways and core targets for ART in treating CM were identified through a network pharmacology approach. Molecular docking results verified the strong binding affinity between ART and these core targets. The analysis and predicted results indicated that ART primarily exerted its effects on CM through various tumor-related pathways like apoptosis. The assays in vitro confirmed that ART significantly inhibited the proliferation and migration of CM cells. This was achieved by promoting apoptosis through activation of the p53 signaling pathway, causing cell cycle arrest at the G0/G1 phase by inhibiting the PI3K/AKT/mTOR signaling pathway and increasing the intracellular level of ROS by activating the NRF2/HO-1 signaling pathway. Additionally, the assays in vivo further validated the significant proliferation-inhibitory effect of ART on CM. Conclusion This study, making the initial exploration, illustrated through network pharmacology combined with molecular docking and in vitro/in vivo assays, confirmed that ART exerted potential anti-cancer effects on CM by promoting apoptosis, inducing cell cycle arrest and increasing intracellular levels of ROS. These findings suggested that ART held significant therapeutic potential for CM.
Collapse
Affiliation(s)
- Qing-yue Ma
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yi-chong Liu
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qian Zhang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wen-dan Yi
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ying Sun
- Ophthalmology Department, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, China
| | - Xiao-di Gao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xin-tong Zhao
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hao-wen Wang
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ke Lei
- Tumor Immunology and Cytotherapy of Medical Research Center and Key Laboratory of Pancreatic Disease Clinical Research (Shandong Province), The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wen-juan Luo
- Department of Ophthalmology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Araújo GSD, Moura AF, Barros AB, Moraes MO, Pessoa C, Perez CN, Castro MRCD, Ribeiro FDOS, Silva DAD, Sousa PSDA, Rocha JA, Marinho Filho JDB, Araujo AJ. Sulfonamide-chalcone hybrid compound suppresses cellular adhesion and migration: Experimental and computational insight. Chem Biol Interact 2024; 398:111115. [PMID: 38908811 DOI: 10.1016/j.cbi.2024.111115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/05/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
In the present study, the effect of sulfonamide-chalcone 185 (SSC185) was investigated against B16-F10 metastatic melanoma cells aggressive actions, besides migration and adhesion processes, by in silico and in vitro assays. In silico studies were used to characterize the pharmacokinetic profile and possible targets of SSC185, using the pkCSM web server, and docking simulations with AutoDock Tools. Furthermore, the antimetastatic effect of SSC185 was investigated by in vitro experiments using MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide), colony, scratch, and cell adhesion assays, and atomic force microscopy (AFM). The molecular docking results show better affinity of SSC185 with the metalloproteinases-2 (MMP-2) and α5β1 integrin. SSC185 effectively restricts the formation of colonies, migration, and adhesion of B16-F10 metastatic melanoma cells. Through the AFM images changes in cells morphology was identified, with a decrease in the filopodia and increase in the average cellular roughness. The results obtained demonstrate the potential of this molecule in inhibit the primordial steps for metastasis, which is responsible for a worse prognosis of late stage cancer, being the main cause of morbidity among cancer patients.
Collapse
Affiliation(s)
- Gisele Santos de Araújo
- Laboratório de Cultura de Células do Delta, LCCDelta, Universidade Federal do Delta do Parnaíba, Parnaíba, PI, Brazil
| | - Andrea Felinto Moura
- Laboratório de Cultura de Células do Delta, LCCDelta, Universidade Federal do Delta do Parnaíba, Parnaíba, PI, Brazil
| | - Ayslan Batista Barros
- Laboratório de Cultura de Células do Delta, LCCDelta, Universidade Federal do Delta do Parnaíba, Parnaíba, PI, Brazil
| | - Manoel Odorico Moraes
- Departamento de Fisiologia e Farmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos - NPDM, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Claudia Pessoa
- Departamento de Fisiologia e Farmacologia, Núcleo de Pesquisa e Desenvolvimento de Medicamentos - NPDM, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Caridad Noda Perez
- Instituto de Química, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | | | - Fábio de Oliveira Silva Ribeiro
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia (BIOTEC), Universidade Federal do Delta do Parnaíba, Parnaíba, PI, Brazil
| | - Durcilene Alves da Silva
- Núcleo de Pesquisa em Biodiversidade e Biotecnologia (BIOTEC), Universidade Federal do Delta do Parnaíba, Parnaíba, PI, Brazil
| | - Paulo Sérgio de Araújo Sousa
- Grupo de Pesquisa em Química Medicinal e Biotecnologia, QUIMEBIO, Universidade Federal do Delta do Parnaíba, Parnaíba, PI, Brazil
| | - Jefferson Almeida Rocha
- Grupo de Pesquisa em Química Medicinal e Biotecnologia, QUIMEBIO, Universidade Federal do Delta do Parnaíba, Parnaíba, PI, Brazil
| | | | - Ana Jérsia Araujo
- Laboratório de Cultura de Células do Delta, LCCDelta, Universidade Federal do Delta do Parnaíba, Parnaíba, PI, Brazil.
| |
Collapse
|
9
|
Miao S, Rodriguez BL, Gibbons DL. The Multifaceted Role of Neutrophils in NSCLC in the Era of Immune Checkpoint Inhibitors. Cancers (Basel) 2024; 16:2507. [PMID: 39061147 PMCID: PMC11274601 DOI: 10.3390/cancers16142507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/29/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Lung cancer is the most common cause of cancer-related death in both males and females in the U.S. and non-small-cell lung cancer (NSCLC) accounts for 85%. Although the use of first- or second-line immune checkpoint inhibitors (ICIs) exhibits remarkable clinical benefits, resistance to ICIs develops over time and dampens the efficacy of ICIs in patients. Tumor-associated neutrophils (TANs) have an important role in modulating the tumor microenvironment (TME) and tumor immune response. The major challenge in the field is to characterize the TANs in NSCLC TME and understand the link between TAN-related immunosuppression with ICI treatment response. In this review, we summarize the current studies of neutrophil interaction with malignant cells, T-cells, and other components in the TME. Ongoing clinical trials are aimed at utilizing reagents that have putative effects on tumor-associated neutrophils, in combination with ICI. Elevated neutrophil populations and neutrophil-associated factors could be potential therapeutic targets to enhance anti-PD1 treatment in NSCLC.
Collapse
Affiliation(s)
- Shucheng Miao
- Department of Thoracic Head & Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA; (S.M.); (B.L.R.)
- The University of Texas MD Anderson Cancer Center, UTHealth at Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Bertha Leticia Rodriguez
- Department of Thoracic Head & Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA; (S.M.); (B.L.R.)
| | - Don L. Gibbons
- Department of Thoracic Head & Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX 77030, USA; (S.M.); (B.L.R.)
- The University of Texas MD Anderson Cancer Center, UTHealth at Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
10
|
Mathieson L, Koppensteiner L, Dorward DA, O'Connor RA, Akram AR. Cancer-associated fibroblasts expressing fibroblast activation protein and podoplanin in non-small cell lung cancer predict poor clinical outcome. Br J Cancer 2024; 130:1758-1769. [PMID: 38582812 PMCID: PMC11130154 DOI: 10.1038/s41416-024-02671-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are a dominant cell type in the stroma of non-small cell lung cancer (NSCLC). Fibroblast heterogeneity reflects subpopulations of CAFs, which can influence prognosis and treatment efficacy. We describe the subtypes of CAFs in NSCLC. METHODS Primary human NSCLC resections were assessed by flow cytometry and multiplex immunofluorescence for markers of fibroblast activation which allowed identification of CAF subsets. Survival data were analysed for our NSCLC cohort consisting of 163 patients to understand prognostic significance of CAF subsets. RESULTS We identified five CAF populations, termed CAF S1-S5. CAF-S5 represents a previously undescribed population, and express FAP and PDPN but lack the myofibroblast marker αSMA, whereas CAF-S1 populations express all three. CAF-S5 are spatially further from tumour regions then CAF-S1 and scRNA data demonstrate an inflammatory phenotype. The presence of CAF-S1 or CAF-S5 is correlated to worse survival outcome in NSCLC, despite curative resection, highlighting the prognostic importance of CAF subtypes in NSCLC. TCGA data suggest the predominance of CAF-S5 has a poor prognosis across several cancer types. CONCLUSION This study describes the fibroblast heterogeneity in NSCLC and the prognostic importance of the novel CAF-S5 subset where its presence correlates to worse survival outcome.
Collapse
Affiliation(s)
- Layla Mathieson
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, 5 Little France Dr, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, 5 Little France Dr, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
| | - Lilian Koppensteiner
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, 5 Little France Dr, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, 5 Little France Dr, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
| | - David A Dorward
- Department of Pathology, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Richard A O'Connor
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, 5 Little France Dr, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, 5 Little France Dr, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK
| | - Ahsan R Akram
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, 5 Little France Dr, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK.
- Translational Healthcare Technologies Group, Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, 5 Little France Dr, Edinburgh BioQuarter, Edinburgh, EH16 4UU, UK.
- Cancer Research UK Scotland Centre, Institute of Genetics & Cancer, The University of Edinburgh, Crewe Road South, Edinburgh, EH4 2XR, UK.
| |
Collapse
|
11
|
de Biase MS, Massip F, Wei TT, Giorgi FM, Stark R, Stone A, Gladwell A, O'Reilly M, Schütte D, de Santiago I, Meyer KB, Markowetz F, Ponder BAJ, Rintoul RC, Schwarz RF. Smoking-associated gene expression alterations in nasal epithelium reveal immune impairment linked to lung cancer risk. Genome Med 2024; 16:54. [PMID: 38589970 PMCID: PMC11000304 DOI: 10.1186/s13073-024-01317-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 03/18/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Lung cancer is the leading cause of cancer-related death in the world. In contrast to many other cancers, a direct connection to modifiable lifestyle risk in the form of tobacco smoke has long been established. More than 50% of all smoking-related lung cancers occur in former smokers, 40% of which occur more than 15 years after smoking cessation. Despite extensive research, the molecular processes for persistent lung cancer risk remain unclear. We thus set out to examine whether risk stratification in the clinic and in the general population can be improved upon by the addition of genetic data and to explore the mechanisms of the persisting risk in former smokers. METHODS We analysed transcriptomic data from accessible airway tissues of 487 subjects, including healthy volunteers and clinic patients of different smoking statuses. We developed a computational model to assess smoking-associated gene expression changes and their reversibility after smoking is stopped, comparing healthy subjects to clinic patients with and without lung cancer. RESULTS We find persistent smoking-associated immune alterations to be a hallmark of the clinic patients. Integrating previous GWAS data using a transcriptional network approach, we demonstrate that the same immune- and interferon-related pathways are strongly enriched for genes linked to known genetic risk factors, demonstrating a causal relationship between immune alteration and lung cancer risk. Finally, we used accessible airway transcriptomic data to derive a non-invasive lung cancer risk classifier. CONCLUSIONS Our results provide initial evidence for germline-mediated personalized smoke injury response and risk in the general population, with potential implications for managing long-term lung cancer incidence and mortality.
Collapse
Affiliation(s)
- Maria Stella de Biase
- Berlin Institute of Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Strasse 28, 10115, Berlin, Germany.
| | - Florian Massip
- Berlin Institute of Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Strasse 28, 10115, Berlin, Germany.
- MINES Paris, PSL University, CBIO-Centre for Computational Biology, 60 bd Saint Michel, 75006, Paris, France.
- Institut Curie, Cedex, Paris, France.
- INSERM, U900, Cedex, Paris, France.
| | - Tzu-Ting Wei
- Berlin Institute of Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Strasse 28, 10115, Berlin, Germany
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Federico M Giorgi
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0AY, UK
- Present Address: Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Rory Stark
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0AY, UK
| | - Amanda Stone
- Papworth Trials Unit Collaboration, Department of Oncology, Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, CB2 0AY, UK
| | - Amy Gladwell
- Papworth Trials Unit Collaboration, Department of Oncology, Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, CB2 0AY, UK
| | - Martin O'Reilly
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0AY, UK
- Present Address: MRC Toxicology Unit, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Daniel Schütte
- Institute for Computational Cancer Biology (ICCB), Center for Integrated Oncology (CIO), Cancer Research Center Cologne Essen (CCCE), Faculty of Medicine and University Hospital Cologne, University of Cologne, Am Weyertal 115C, Gebäude 74, 50931, Cologne, Germany
| | - Ines de Santiago
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0AY, UK
- Present Address: e-therapeutics plc, 17 Blenheim Office Park, Long Hanborough, OX29 8LN, UK
| | - Kerstin B Meyer
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0AY, UK
- Present Address: The Wellcome Sanger Institute, Hinxton, CB10 1SA, UK
| | - Florian Markowetz
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0AY, UK
| | - Bruce A J Ponder
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0AY, UK.
| | - Robert C Rintoul
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0AY, UK.
- Papworth Trials Unit Collaboration, Department of Oncology, Royal Papworth Hospital NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, CB2 0AY, UK.
- Department of Oncology, Early Cancer Institute, University of Cambridge, Cambridge, CB2 0XZ, UK.
| | - Roland F Schwarz
- Berlin Institute of Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Hannoversche Strasse 28, 10115, Berlin, Germany.
- BIFOLD - Berlin Institute for the Foundations of Learning and Data, Berlin, Germany.
- Institute for Computational Cancer Biology (ICCB), Center for Integrated Oncology (CIO), Cancer Research Center Cologne Essen (CCCE), Faculty of Medicine and University Hospital Cologne, University of Cologne, Am Weyertal 115C, Gebäude 74, 50931, Cologne, Germany.
| |
Collapse
|
12
|
Alonso A, de la Gala F, Vara E, Hortal J, Piñeiro P, Reyes A, Simón C, Garutti I. Lung and blood perioperative metalloproteinases in patients undergoing oncologic lung surgery: Prognostic implications. Thorac Cancer 2024; 15:307-315. [PMID: 38155459 PMCID: PMC10834222 DOI: 10.1111/1759-7714.15190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/30/2023] Open
Abstract
BACKGROUND Metalloproteinases (MMPs) have been reported to be related to oncologic outcomes. The main goal of the study was to study the relationship between these proteins and the long-term prognosis of patients undergoing oncologic lung resection surgery. METHODS This was a substudy of the phase IV randomized control trial (NCT02168751). We analyzed MMP-2, -3, -7, and -9 in blood samples and bronchoalveolar lavage (LBA) and the relationship between MMPs and long postoperative outcomes (survival and disease-free time of oncologic recurrence). RESULTS Survival was longer in patients who had lower MMP-2 levels than those with higher MMP-2 in blood samples taken 6 h after surgery (6.8 vs. 5.22 years; p = 0.012) and MMP-3 (6.82 vs. 5.35 years; p = 0.03). In contrast, survival was longer when MMP-3 levels were higher in LBA from oncologic lung patients than those with lower MMP-3 (7.96 vs. 6.02 years; p = 0.005). Recurrence-free time was longer in patients who had lower MMP-3 levels in blood samples versus higher (5.97 vs. 4.23 years; p = 0.034) as well as lower MMP-7 (5.96 vs. 4.5 years; p = 0.041) or lower MMP-9 in LBA samples (6.21 vs. 4.18 years; p = 0.012). CONCLUSION MMPs were monitored during the perioperative period of oncologic lung resection surgery. These biomarkers were associated with mortality and recurrence-free time. The role of the different MMPs analyzed during the study do not have the same prognostic implications after this kind of surgery.
Collapse
Affiliation(s)
- Angel Alonso
- Department of Anesthesiology, Gregorio Marañon University General Hospital, Madrid, Spain
| | - Francisco de la Gala
- Department of Anesthesiology, Gregorio Marañon University General Hospital, Madrid, Spain
| | - Elena Vara
- Department of Biochemistry and Molecular Biology III, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Javier Hortal
- Department of Anesthesiology, Gregorio Marañon University General Hospital, Madrid, Spain
- Department of Pharmacology, Faculty of Medicine complutense University of Madrid, Madrid, Spain
| | - Patricia Piñeiro
- Department of Anesthesiology, Gregorio Marañon University General Hospital, Madrid, Spain
| | - Almudena Reyes
- Department of Anesthesiology, Gregorio Marañon University General Hospital, Madrid, Spain
| | - Carlos Simón
- Department of Thoracic Surgery, Gregorio Marañon University General Hospital, Madrid, Spain
- Department of Surgery, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Ignacio Garutti
- Department of Anesthesiology, Gregorio Marañon University General Hospital, Madrid, Spain
- Department of Pharmacology, Faculty of Medicine complutense University of Madrid, Madrid, Spain
| |
Collapse
|
13
|
Costa D, Scalise E, Ielapi N, Bracale UM, Andreucci M, Serra R. Metalloproteinases as Biomarkers and Sociomarkers in Human Health and Disease. Biomolecules 2024; 14:96. [PMID: 38254696 PMCID: PMC10813678 DOI: 10.3390/biom14010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Metalloproteinases (MPs) are zinc-dependent enzymes with proteolytic activity and a variety of functions in the pathophysiology of human diseases. The main objectives of this review are to analyze a specific family of MPs, the matrix metalloproteinases (MMPs), in the most common chronic and complex diseases that affect patients' social lives and to better understand the nature of the associations between MMPs and the psychosocial environment. In accordance with the PRISMA extension for a scoping review, an examination was carried out. A collection of 24 studies was analyzed, focusing on the molecular mechanisms of MMP and their connection to the manifestation of social aspects in human disease. The complexity of the relationship between MMP and social problems is presented via an interdisciplinary approach based on complexity paradigm as a new approach for conceptualizing knowledge in health research. Finally, two implications emerge from the study: first, the psychosocial states of individuals have a profound impact on their overall health and disease conditions, which implies the importance of adopting a holistic perspective on human well-being, encompassing both physical and psychosocial aspects. Second, the use of MPs as biomarkers may provide physicians with valuable tools for a better understanding of disease when used in conjunction with "sociomarkers" to develop mathematical predictive models.
Collapse
Affiliation(s)
- Davide Costa
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (D.C.); (E.S.)
- Interuniversity Center of Phlebolymphology (CIFL), Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Enrica Scalise
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (D.C.); (E.S.)
- Interuniversity Center of Phlebolymphology (CIFL), Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Nicola Ielapi
- Department of Public Health and Infectious Disease, “Sapienza” University of Rome, 00185 Rome, Italy;
| | | | - Michele Andreucci
- Department of Health Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| | - Raffaele Serra
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (D.C.); (E.S.)
- Interuniversity Center of Phlebolymphology (CIFL), Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
14
|
Alipour M, Moghanibashi M, Naeimi S, Mohamadynejad P. Integrative bioinformatics analysis reveals ECM and nicotine-related genes in both LUAD and LUSC, but different lung fibrosis-related genes are involved in LUAD and LUSC. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-20. [PMID: 38198447 DOI: 10.1080/15257770.2023.2300982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
There are several bioinformatics studies related to lung cancer, but most of them have mainly focused on either microarray data or RNA-Seq data alone. In this study, we have combined both types of data to identify differentially expressed genes (DEGs) specific to lung cancer subtypes. We obtained six microarray datasets from the GEO and also the expression matrix of LUSC and LUAD from TCGA, which were analyzed by GEO2R tool and GEPIA2, respectively. Enrichment analyses of DEGs were performed using the Enrichr database. Protein module identification was done by MCODE plugin in cytoscape software. We identified 30 LUAD-specific, 17 LUSC-specific, and 17 DEGs shared between LUAD and LUSC. Enrichment analyses revealed that LUSC-specific DEGs are involved in lung fibrosis. In addition, DEGs shared between LUAD and LUSC are involved in extracellular matrix (ECM), nicotine metabolism, and lung fibrosis. We identified lung fibrosis-related genes, including SPP1, MMP9, and CXCL2, involved in both LUAD and LUSC, but SERPINA1 and PLAU genes involved only in LUSC. We also found an important module separately for LUAD-specific, LUSC-specific, and shared DEGs between LUSC and LUAD. S100P, GOLM, AGR2, AK1, TMEM125, SLC2A1, COL1A1, and GHR genes were significantly associated with survival. Our findings suggest that different lung fibrosis-related genes may play roles in LUSC and LUAD. Additionally, nicotine metabolism and ECM remodeling were found to be associated with both LUSC and LUAD, regardless of subtype, emphasizing the role of smoking in the development of lung cancer and ECM in the high aggressiveness and mortality of lung cancer.
Collapse
Affiliation(s)
- Marzyeh Alipour
- Department of Genetics, Collegue of Basic Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Mehdi Moghanibashi
- Department of Genetics, Faculty of Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | | | - Parisa Mohamadynejad
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
15
|
Kim HJ, Jeon S, Lee HJ, Bae J, Ri HS, Hong JM, Paek SI, Kwon SK, Kim JR, Park S, Yun EJ. Effects of sevoflurane on metalloproteinase and natural killer group 2, member D (NKG2D) ligand expression and natural killer cell-mediated cytotoxicity in breast cancer: an in vitro study. Korean J Anesthesiol 2023; 76:627-639. [PMID: 37435613 PMCID: PMC10718625 DOI: 10.4097/kja.23323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/28/2023] [Accepted: 08/21/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND We investigated the effects of sevoflurane exposure on the expression of matrix metalloproteinase (MMP), expression and ablation of natural killer group 2, member D (NKG2D) ligands (UL16-binding proteins 1-3 and major histocompatibility complex class I chain-related molecules A/B), and natural killer (NK) cell-mediated cytotoxicity in breast cancer cells. METHODS Three human breast cancer cell lines (MCF-7, MDA-MB-453, and HCC-70) were incubated with 0 (control), 600 (S6), or 1200 μM (S12) sevoflurane for 4 h. The gene expression of NKG2D ligands and their protein expression on cancer cell surfaces were measured using multiplex polymerase chain reaction (PCR) and flow cytometry, respectively. Protein expression of MMP-1 and -2 and the concentration of soluble NKG2D ligands were analyzed using western blotting and enzyme-linked immunosorbent assays, respectively. RESULTS Sevoflurane downregulated the mRNA and protein expression of the NKG2D ligand in a dose-dependent manner in MCF-7, MDA-MB-453, and HCC-70 cells but did not affect the expression of MMP-1 or -2 or the concentration of soluble NKG2D ligands in the MCF-7, MDA-MB-453, and HCC-70 cells. Sevoflurane attenuated NK cell-mediated cancer cell lysis in a dose-dependent manner in MCF-7, MDA-MB-453, and HCC-70 cells (P = 0.040, P = 0.040, and P = 0.040, respectively). CONCLUSIONS Our results demonstrate that sevoflurane exposure attenuates NK cell-mediated cytotoxicity in breast cancer cells in a dose-dependent manner. This could be attributed to a sevoflurane-induced decrease in the transcription of NKG2D ligands rather than sevoflurane-induced changes in MMP expression and their proteolytic activity.
Collapse
Affiliation(s)
- Hyae Jin Kim
- Department of Anesthesia and Pain Medicine, Pusan National University School of Medicine, Busan, Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Soeun Jeon
- Department of Anesthesiology and Pain Medicine, School of Dentistry, Institute for Translational Research in Dentistry, Kyungpook National University, Daegu, Korea
| | - Hyeon Jeong Lee
- Department of Anesthesia and Pain Medicine, Pusan National University School of Medicine, Busan, Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Jaeho Bae
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, Korea
- PNU BK21 Plus Biomedical Science Education Center, Pusan National University School of Medicine, Yangsan, Korea
| | - Hyun-Su Ri
- Department of Anesthesiology and Pain Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Jeong-Min Hong
- Department of Anesthesia and Pain Medicine, Pusan National University School of Medicine, Busan, Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Sung In Paek
- Department of Anesthesia and Pain Medicine, Pusan National University School of Medicine, Busan, Korea
| | - Seul Ki Kwon
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jae-Rin Kim
- Department of Anesthesia and Pain Medicine, Pusan National University School of Medicine, Busan, Korea
| | - Seungbin Park
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Eun-Jung Yun
- Department of Biochemistry, Pusan National University School of Medicine, Yangsan, Korea
- PNU BK21 Plus Biomedical Science Education Center, Pusan National University School of Medicine, Yangsan, Korea
| |
Collapse
|
16
|
Ray R, Goel S, Al Khashali H, Darweesh B, Haddad B, Wozniak C, Ranzenberger R, Khalil J, Guthrie J, Heyl D, Evans HG. Regulation of Soluble E-Cadherin Signaling in Non-Small-Cell Lung Cancer Cells by Nicotine, BDNF, and β-Adrenergic Receptor Ligands. Biomedicines 2023; 11:2555. [PMID: 37760996 PMCID: PMC10526367 DOI: 10.3390/biomedicines11092555] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
The ectodomain of the transmembrane protein E-cadherin can be cleaved and released in a soluble form referred to as soluble E-cadherin, or sE-cad, accounting for decreased E-cadherin levels at the cell surface. Among the proteases implicated in this cleavage are matrix metalloproteases (MMP), including MMP9. Opposite functions have been reported for full-length E-cadherin and sE-cad. In this study, we found increased MMP9 levels in the media of two non-small cell lung cancer (NSCLC) cell lines, A549 and H1299, treated with BDNF, nicotine, or epinephrine that were decreased upon cell treatment with the β-adrenergic receptor blocker propranolol. Increased MMP9 levels correlated with increased sE-cad levels in A549 cell media, and knockdown of MMP9 in A549 cells led to downregulation of sE-cad levels in the media. Previously, we reported that A549 and H1299 cell viability increased with nicotine and/or BDNF treatment and decreased upon treatment with propranolol. In investigating the function of sE-cad, we found that immunodepletion of sE-cad from the media of A549 cells untreated or treated with BDNF, nicotine, or epinephrine reduced activation of EGFR and IGF-1R, decreased PI3K and ERK1/2 activities, increased p53 activation, decreased cell viability, and increased apoptosis, while no effects were found using H1299 cells under all conditions tested.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Hedeel Guy Evans
- Chemistry Department, Eastern Michigan University, Ypsilanti, MI 48197, USA; (R.R.); (S.G.); (H.A.K.); (B.D.); (B.H.); (C.W.); (R.R.); (J.K.); (J.G.); (D.H.)
| |
Collapse
|
17
|
Khodayari Moez E, Warkentin MT, Brhane Y, Lam S, Field JK, Liu G, Zulueta JJ, Valencia K, Mesa-Guzman M, Nialet AP, Atkar-Khattra S, Davies MPA, Grant B, Murison K, Montuenga LM, Amos CI, Robbins HA, Johansson M, Hung RJ. Circulating proteome for pulmonary nodule malignancy. J Natl Cancer Inst 2023; 115:1060-1070. [PMID: 37369027 PMCID: PMC10483334 DOI: 10.1093/jnci/djad122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/29/2023] [Accepted: 06/22/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND Although lung cancer screening with low-dose computed tomography is rolling out in many areas of the world, differentiating indeterminate pulmonary nodules remains a major challenge. We conducted one of the first systematic investigations of circulating protein markers to differentiate malignant from benign screen-detected pulmonary nodules. METHODS Based on 4 international low-dose computed tomography screening studies, we assayed 1078 protein markers using prediagnostic blood samples from 1253 participants based on a nested case-control design. Protein markers were measured using proximity extension assays, and data were analyzed using multivariable logistic regression, random forest, and penalized regressions. Protein burden scores (PBSs) for overall nodule malignancy and imminent tumors were estimated. RESULTS We identified 36 potentially informative circulating protein markers differentiating malignant from benign nodules, representing a tightly connected biological network. Ten markers were found to be particularly relevant for imminent lung cancer diagnoses within 1 year. Increases in PBSs for overall nodule malignancy and imminent tumors by 1 standard deviation were associated with odds ratios of 2.29 (95% confidence interval: 1.95 to 2.72) and 2.81 (95% confidence interval: 2.27 to 3.54) for nodule malignancy overall and within 1 year of diagnosis, respectively. Both PBSs for overall nodule malignancy and for imminent tumors were substantially higher for those with malignant nodules than for those with benign nodules, even when limited to Lung Computed Tomography Screening Reporting and Data System (LungRADS) category 4 (P < .001). CONCLUSIONS Circulating protein markers can help differentiate malignant from benign pulmonary nodules. Validation with an independent computed tomographic screening study will be required before clinical implementation.
Collapse
Affiliation(s)
- Elham Khodayari Moez
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Matthew T Warkentin
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Yonathan Brhane
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Stephen Lam
- Integrative Oncology, British Columbia Cancer Agency, Vancouver, BC, Canada
| | - John K Field
- Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Geoffrey Liu
- Computational Biology and Medicine Program, Princess Margaret Cancer Center, Toronto, ON, Canada
| | - Javier J Zulueta
- Division of Pulmonary, Critical Care and Sleep Medicine, Mount Sinai Morningside Hospital, Icahn School of Medicine, New York, NY, USA
| | - Karmele Valencia
- Center of Applied Medical Research (CIMA) and Schools of Sciences and Medicine, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain
| | - Miguel Mesa-Guzman
- Thoracic Surgery Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Andrea Pasquier Nialet
- Center of Applied Medical Research (CIMA) and Schools of Sciences and Medicine, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain
| | | | - Michael P A Davies
- Molecular & Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | - Benjamin Grant
- Computational Biology and Medicine Program, Princess Margaret Cancer Center, Toronto, ON, Canada
| | - Kiera Murison
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Luis M Montuenga
- Center of Applied Medical Research (CIMA) and Schools of Sciences and Medicine, University of Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Centro de Investigacion Biomedica en Red de Cancer (CIBERONC), Madrid, Spain
| | - Christopher I Amos
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Hilary A Robbins
- Genomic Epidemiology Branch, International Agency for Research on Cancer, Lyon, France
| | - Mattias Johansson
- Genomic Epidemiology Branch, International Agency for Research on Cancer, Lyon, France
| | - Rayjean J Hung
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
18
|
Pietrzak J, Wosiak A, Szmajda-Krygier D, Świechowski R, Łochowski M, Pązik M, Balcerczak E. Correlation of TIMP1-MMP2/MMP9 Gene Expression Axis Changes with Treatment Efficacy and Survival of NSCLC Patients. Biomedicines 2023; 11:1777. [PMID: 37509417 PMCID: PMC10376864 DOI: 10.3390/biomedicines11071777] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/30/2023] Open
Abstract
In the course of lung cancer, normal cells are transformed into cancerous ones, and changes occur in the microenvironment, including the extracellular matrix (ECM), which is not only a scaffold for cells, but also a reservoir of cytokines, chemokines and growth factors. Metalloproteinases (MMPs) are among the elements that enable ECM remodeling. The publication focuses on the problem of changes in the gene expression of MMP2, MMP9 and tissue inhibitor of metalloproteinases (TIMP1) in the blood of NSCLC patients during therapy (one year after surgical resection of the tumor). The paper also analyzes differences in the expression of the studied genes in the tumor tissue, as well as data collected in publicly available databases. The results of blood tests showed no differences in the expression of the tested genes during therapy; however, changes were observed in cancerous tissue, which was characterized by higher expression of MMP2 and MMP9, compared to non-cancerous tissue, and unchanged expression of TIMP1. Nevertheless, higher expression of each of the studied genes was associated with shorter patient survival. Interestingly, it was not only the increased expression of metalloproteinase genes, but also the increased expression of the metalloproteinase inhibitor (TIMP1) that was unfavorable for patients.
Collapse
Affiliation(s)
- Jacek Pietrzak
- Laboratory of Molecular Diagnostics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, BRaIN Laboratories, Medical University of Lodz, Czechoslowacka 4, 92-216 Lodz, Poland
| | - Agnieszka Wosiak
- Laboratory of Molecular Diagnostics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, BRaIN Laboratories, Medical University of Lodz, Czechoslowacka 4, 92-216 Lodz, Poland
| | - Dagmara Szmajda-Krygier
- Laboratory of Molecular Diagnostics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, BRaIN Laboratories, Medical University of Lodz, Czechoslowacka 4, 92-216 Lodz, Poland
| | - Rafał Świechowski
- Laboratory of Molecular Diagnostics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, BRaIN Laboratories, Medical University of Lodz, Czechoslowacka 4, 92-216 Lodz, Poland
| | - Mariusz Łochowski
- Department of Thoracic Surgery, Copernicus Memorial Hospital, Medical University of Lodz, Pabianicka 62, 93-513 Lodz, Poland
| | - Milena Pązik
- Laboratory of Molecular Diagnostics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, BRaIN Laboratories, Medical University of Lodz, Czechoslowacka 4, 92-216 Lodz, Poland
| | - Ewa Balcerczak
- Laboratory of Molecular Diagnostics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, BRaIN Laboratories, Medical University of Lodz, Czechoslowacka 4, 92-216 Lodz, Poland
| |
Collapse
|
19
|
Chen WC, Chang AC, Tsai HC, Liu PI, Huang CL, Guo JH, Liu CL, Liu JF, Huynh Hoai Thuong L, Tang CH. Bone sialoprotein promotes lung cancer osteolytic bone metastasis via MMP14-dependent mechanisms. Biochem Pharmacol 2023; 211:115540. [PMID: 37028462 DOI: 10.1016/j.bcp.2023.115540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
Bone metastases during lung cancer are common. Bone sialoprotein (BSP), a non-collagenous bone matrix protein, plays important functions in bone mineralization processes and in integrin-mediated cell-matrix interactions. Importantly, BSP induces bone metastasis in lung cancer, but the underlying mechanisms remain unclear. This study therefore sought to determine the intracellular signaling pathways responsible for BSP-induced migration and invasion of lung cancer cells to bone. Analyses of the Kaplan-Meier, TCGA, GEPIA and GENT2 databases revealed that high levels of BSP expression in lung tissue samples were associated with significantly decreased overall survival (hazard ratio = 1.17; p=0.014) and with a more advanced clinical disease stage (F-value = 2.38, p<0.05). We also observed that BSP-induced stimulation of matrix metalloproteinase (MMP)-14 promoted lung cancer cell migration and invasion via the PI3K/AKT/AP-1 signaling pathway. Notably, BSP promoted osteoclastogenesis in RAW 264.7 cells exposed to RANKL and BSP neutralizing antibody reduced osteoclast formation in conditioned medium (CM) from lung cancer cell lines. Finally, at 8 weeks after mice were injected with A549 cells or A549 BSP shRNA cells, the findings revealed that the knockdown of BSP expression significantly reduced metastasis to bone. These findings suggest that BSP signaling promotes lung bone metastasis via its direct downstream target gene MMP14, which reveals a novel potential therapeutic target for lung cancer bone metastases.
Collapse
|
20
|
Xu S, Li X, Geng J, Cao Y, Yu Y, Qi L. Sec61γ is a vital protein in the endoplasmic reticulum membrane promoting tumor metastasis and invasion in lung adenocarcinoma. Br J Cancer 2023; 128:1478-1490. [PMID: 36759724 PMCID: PMC10070493 DOI: 10.1038/s41416-023-02150-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/01/2022] [Accepted: 01/11/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Lung adenocarcinoma (LUAD) is one of the most common malignant tumors worldwide. Finding effective prognostic markers and therapeutic targets is of great significance for controlling metastasis and invasion clinically. METHODS The open copy-number aberrations and gene expression datasets were analysed, and the data of 102 LUAD patients was used for further validation. The cell proliferation, colony formation, migration, invasion assays and mice tumor models were used to detect the function of SEC61G. The epidermal growth factor receptor (EGFR) pathway was also detected to find the mechanism of Sec61γ. RESULTS Based on the open datasets, we found that the high level of SEC61G mRNA may drive LUAD metastasis. Furthermore, the overexpression of Sec61γ protein was significantly associated with poor prognosis and greater tumor cell proliferation and metastasis. The SEC61G knockdown could inhibit the EGFR pathway, including STAT3, AKT and PI3K, which can be reversed by Sec61γ overexpression and epithelial growth factor (EGF) supplement. CONCLUSIONS Sec61γ promoted the proliferation, metastasis, and invasion of LUAD through EGFR pathways. Sec61γ might be a potential target for the treatment of LUAD metastases.
Collapse
Affiliation(s)
- Shanqi Xu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xin Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Jianxiong Geng
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingyue Cao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yan Yu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China.
| | - Lishuang Qi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China.
| |
Collapse
|
21
|
Kowalczyk A, Nisiewicz MK, Bamburowicz-Klimkowska M, Kasprzak A, Ruzycka-Ayoush M, Koszytkowska-Stawińska M, Nowicka AM. Effective voltammetric tool for simultaneous detection of MMP-1, MMP-2, and MMP-9; important non-small cell lung cancer biomarkers. Biosens Bioelectron 2023; 229:115212. [PMID: 36958204 DOI: 10.1016/j.bios.2023.115212] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/09/2023]
Abstract
Simultaneous detection of multiple biomarkers can allow to reduce the costs of medical diagnostics, and thus improve the accuracy and effectiveness of disease diagnosis and prognosis. Here, for the first time, we present a low-cost, simple, and rapid method for simultaneous detection of three matrix metalloproteinases (MMP-1, MMP-2, and MMP-9) that play important roles in the progression of lung cancer. The sensor matrix was constructed using a G2 polyamidoamine dendrimer (PAMAM) containing amino, carboxyl, and sulfhydryl groups. The recognition process was based on specific enzymatic cleavage of the Gly-Ile peptide bond by MMP-1, Gly-Leu bond by MMP-2, and Gly-Met bond by MMP-9, and monitoring was done by square wave voltammetry. The activity of metalloproteinases was detected based on the change of current signals of redox receptors (dipeptides labeled with electroactive compounds) covalently anchored onto the electrode surface. The conditions of the biosensor construction, including the concentration of receptors on the sensor surface and the time of interaction of the receptor with the analyte, were carefully optimized. Under optimal conditions, the linear response of the developed method ranged from 1.0⋅10-8 to 1.0 mg⋅L-1, and the limit of detection for MMP-1, MMP-2, and MMP-9 was 0.35, 0.62, and 1.10 fg⋅mL-1, respectively. The constructed biosensor enabled us to efficiently profile the levels of active forms of MMP-1, MMP-2, and MMP-9 in tissue samples (plasma and lung and tumor extracts). Thus, the developed biosensor can aid in the early detection and diagnosis of lung cancer.
Collapse
Affiliation(s)
- Agata Kowalczyk
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL 02-093, Warsaw, Poland
| | - Monika K Nisiewicz
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL 02-093, Warsaw, Poland; Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, PL 00-664, Warsaw, Poland
| | - Magdalena Bamburowicz-Klimkowska
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL 02-093, Warsaw, Poland; Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, PL 02-097, Warsaw, Poland
| | - Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, PL 00-664, Warsaw, Poland
| | - Monika Ruzycka-Ayoush
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL 02-093, Warsaw, Poland; Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, PL 02-097, Warsaw, Poland
| | | | - Anna M Nowicka
- Faculty of Chemistry, University of Warsaw, Pasteura Str. 1, PL 02-093, Warsaw, Poland.
| |
Collapse
|
22
|
Alvarez MR, De Juan F, Zhou Q, Dimzon IKD, Grijaldo SJ, Sunga S, Heralde F, Lebrilla CB, Completo GC, Nacario RC. Comparative proteomics reveals anticancer compounds from Lansium domesticum against NSCLC cells target mitochondrial processes. Cell Biochem Funct 2023; 41:166-176. [PMID: 36606472 DOI: 10.1002/cbf.3768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/19/2022] [Indexed: 01/07/2023]
Abstract
Lansium domesticum is identified as a potential source of anticancer compounds. However, there are minimal studies on its anti-lung cancer properties as well as its mechanism of action. Here, we show the specificity of lanzones hexane (LH) leaf extracts to non-small cell lung cancer cells (A549) compared to normal lung fibroblast cells (CCD19-Lu) and normal epithelial prostate cells (PNT2). Subsequent bioassay-guided fractionation of the hexane leaf extracts identified two bioactive fractions with IC50 values of 2.694 μg/ml (LH6-6) and 2.883 μg/ml (LH7-6). LH 6-6 treatment (1 μg/ml concentration) also showed a significantly reduced migration potential of A549 relative to the control. Thirty-one phytocompounds were isolated and identified using gas chromatography-mass spectrometric (MS) analysis and were then subjected to network pharmacology analysis to assess its effects on lung cancer target proteins. Using liquid chromatography-tandem mass spectrometry proteomics experiments, we were able to show that these compounds cause cytotoxic effects through targeting mitochondrial processes in A549 lung cancer cells.
Collapse
Affiliation(s)
- Michael Russelle Alvarez
- Department of Chemistry, University of California Davis, Davis, California, USA
- Institute of Chemistry, College of Arts and Sciences, University of the Philippines Los Baños, Laguna, Philippines
| | - Florence De Juan
- Institute of Chemistry, College of Arts and Sciences, University of the Philippines Los Baños, Laguna, Philippines
| | - Qingwen Zhou
- Department of Chemistry, University of California Davis, Davis, California, USA
| | - Ian Ken D Dimzon
- Department of Chemistry, School of Science & Engineering, Loyola Schools, Ateneo de Manila University, Quezon City, Philippines
- Philippine Institute of Pure and Applied Chemistry (PIPAC), Ateneo de Manila University Campus, Quezon City, Philippines
| | - Sheryl Joyce Grijaldo
- Institute of Chemistry, College of Arts and Sciences, University of the Philippines Los Baños, Laguna, Philippines
| | - Sean Sunga
- Institute of Chemistry, College of Arts and Sciences, University of the Philippines Los Baños, Laguna, Philippines
| | - Francisco Heralde
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila City, Philippines
- Molecular Diagnostics and Cellular Therapeutics Laboratory, Lung Center of the Philippines, Quezon City, Philippines
| | - Carlito B Lebrilla
- Department of Chemistry, University of California Davis, Davis, California, USA
| | - Gladys Cherisse Completo
- Institute of Chemistry, College of Arts and Sciences, University of the Philippines Los Baños, Laguna, Philippines
| | - Ruel C Nacario
- Institute of Chemistry, College of Arts and Sciences, University of the Philippines Los Baños, Laguna, Philippines
| |
Collapse
|
23
|
Erden Tayhan S, Bilgin S, Yıldırım A, Koç E. Biological Screening of Polyphenol Derivatives for Anti-Proliferative, Anti-Apoptotic and Anti-Migrative Activities in Human Breast Cancer Cell Lines MCF-7. Chem Biodivers 2023; 20:e202200872. [PMID: 36594615 DOI: 10.1002/cbdv.202200872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/05/2022] [Indexed: 01/04/2023]
Abstract
Breast cancer is known as the most common type of invasive cancer in women. It is well-known that phenolic compounds play an important role in the treatment of this disease. This study hypothesized that isoeugenol based two polyphenolic compounds 1 and 2 exerts its anti-proliferative effects through the induction of apoptosis and cell migration arrest on human breast cancer cell. Based on this hypothesis, the study aimed to investigate the anti-proliferative, anti-migrative effects of these compounds and their possible basic molecular mechanisms of action in MCF-7 cell lines. As a result, isoeugenol-based compounds 1 and 2 showed anti-proliferative, anti-apoptotic and anti-migrative effects in MCF-7 breast cancer cells. This result was supported by molecular analyzes and it was determined that there were changes in the expression of some gene regions involved in apoptosis and migration. Additionally, it was a remarkable result that cell viability inhibition did not occur in healthy breast tissue cells and no cytotoxic effect was observed. The existence of such a differentiation between cancer cells and healthy cells significantly increases the potential of these compounds to be used as chemotherapeutic drug active ingredients without side effects.
Collapse
Affiliation(s)
- Seçil Erden Tayhan
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tokat Gaziosmanpasa University, 60250, Tokat, Turkey
| | - Sema Bilgin
- Department of Medical Laboratory Techniques, Vocational School of Health Services, Tokat Gaziosmanpasa University, 60250, Tokat, Turkey
| | - Aslı Yıldırım
- Department of Bioengineering, Institute of Graduate Studies, Tokat Gaziosmanpasa University, 60250, Tokat, Turkey
| | - Esra Koç
- Department of Chemistry, Faculty of Arts and Sciences, Tokat Gaziosmanpasa University, 60250, Tokat, Turkey
| |
Collapse
|
24
|
Devel L, Guedeney N, Bregant S, Chowdhury A, Jean M, Legembre P. Role of metalloproteases in the CD95 signaling pathways. Front Immunol 2022; 13:1074099. [PMID: 36544756 PMCID: PMC9760969 DOI: 10.3389/fimmu.2022.1074099] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/21/2022] [Indexed: 12/08/2022] Open
Abstract
CD95L (also known as FasL or CD178) is a member of the tumor necrosis family (TNF) superfamily. Although this transmembrane ligand has been mainly considered as a potent apoptotic inducer in CD95 (Fas)-expressing cells, more recent studies pointed out its role in the implementation of non-apoptotic signals. Accordingly, this ligand has been associated with the aggravation of inflammation in different auto-immune disorders and in the metastatic occurrence in different cancers. Although it remains to decipher all key factors involved in the ambivalent role of this ligand, accumulating clues suggest that while the membrane bound CD95L triggers apoptosis, its soluble counterpart generated by metalloprotease-driven cleavage is responsible for its non-apoptotic functions. Nonetheless, the metalloproteases (MMPs and ADAMs) involved in the CD95L shedding, the cleavage sites and the different stoichiometries and functions of the soluble CD95L remain to be elucidated. To better understand how soluble CD95L triggers signaling pathways from apoptosis to inflammation or cell migration, we propose herein to summarize the different metalloproteases that have been described to be able to shed CD95L, their cleavage sites and the biological functions associated with the released ligands. Based on these new findings, the development of CD95/CD95L-targeting therapeutics is also discussed.
Collapse
Affiliation(s)
- Laurent Devel
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Gif-sur-Yvette, France
| | - Nicolas Guedeney
- Université de Rennes 1, Institut des Sciences Chimiques de Rennes - UMR CNRS 6226 Equipe COrInt, Rennes, France
| | - Sarah Bregant
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, Gif-sur-Yvette, France
| | - Animesh Chowdhury
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Mickael Jean
- Université de Rennes 1, Institut des Sciences Chimiques de Rennes - UMR CNRS 6226 Equipe COrInt, Rennes, France
| | - Patrick Legembre
- CRIBL UMR CNRS 7276 INSERM 1262, Université de Limoges, Rue Marcland, Limoges, France,*Correspondence: Patrick Legembre,
| |
Collapse
|
25
|
Shrestha A, Lahooti B, Mikelis CM, Mattheolabakis G. Chlorotoxin and Lung Cancer: A Targeting Perspective for Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14122613. [PMID: 36559106 PMCID: PMC9786857 DOI: 10.3390/pharmaceutics14122613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
In the generational evolution of nano-based drug delivery carriers, active targeting has been a major milestone for improved and selective drug accumulation in tissues and cell types beyond the existing passive targeting capabilities. Among the various active targeting moieties, chlorotoxin, a peptide extracted from scorpions, demonstrated promising tumor cell accumulation and selection. With lung cancer being among the leading diagnoses of cancer-related deaths in both men and women, novel therapeutic methodologies utilizing nanotechnology for drug delivery emerged. Given chlorotoxin's promising biological activity, we explore its potential against lung cancer and its utilization for active targeting against this cancer's tumor cells. Our analysis indicates that despite the extensive chlorotoxin's research against glioblastoma, lung cancer research with the molecule has been limited, despite some promising early results.
Collapse
Affiliation(s)
- Archana Shrestha
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA
| | - Behnaz Lahooti
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Constantinos M. Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504 Patras, Greece
| | - George Mattheolabakis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA
- Correspondence:
| |
Collapse
|
26
|
The Molecular and Cellular Strategies of Glioblastoma and Non-Small-Cell Lung Cancer Cells Conferring Radioresistance. Int J Mol Sci 2022; 23:ijms232113577. [PMID: 36362359 PMCID: PMC9656305 DOI: 10.3390/ijms232113577] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Ionizing radiation (IR) has been shown to play a crucial role in the treatment of glioblastoma (GBM; grade IV) and non-small-cell lung cancer (NSCLC). Nevertheless, recent studies have indicated that radiotherapy can offer only palliation owing to the radioresistance of GBM and NSCLC. Therefore, delineating the major radioresistance mechanisms may provide novel therapeutic approaches to sensitize these diseases to IR and improve patient outcomes. This review provides insights into the molecular and cellular mechanisms underlying GBM and NSCLC radioresistance, where it sheds light on the role played by cancer stem cells (CSCs), as well as discusses comprehensively how the cellular dormancy/non-proliferating state and polyploidy impact on their survival and relapse post-IR exposure.
Collapse
|
27
|
Multi-Target Potential of Berberine as an Antineoplastic and Antimetastatic Agent: A Special Focus on Lung Cancer Treatment. Cells 2022; 11:cells11213433. [PMID: 36359829 PMCID: PMC9655513 DOI: 10.3390/cells11213433] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022] Open
Abstract
Despite therapeutic advancements, lung cancer remains the principal cause of cancer mortality in a global scenario. The increased incidence of tumor reoccurrence and progression and the highly metastatic nature of lung cancer are of great concern and hence require the investigation of novel therapies and/or medications. Naturally occurring compounds from plants serve as important resources for novel drugs for cancer therapy. Amongst these phytochemicals, Berberine, an alkaloid, has been extensively explored as a potential natural anticancer therapeutic agent. Several studies have shown the effectiveness of Berberine in inhibiting cancer growth and progression mediated via several different mechanisms, which include cell cycle arrest, inducing cell death by apoptosis and autophagy, inhibiting cell proliferation and invasion, as well as regulating the expression of microRNA, telomerase activity, and the tumor microenvironment, which usually varies for different cancer types. In this review, we aim to provide a better understanding of molecular insights of Berberine and its various derivative-induced antiproliferative and antimetastatic effects against lung cancer. In conclusion, the Berberine imparts its anticancer efficacy against lung cancers via modulation of several signaling pathways involved in cancer cell viability and proliferation, as well as migration, invasion, and metastasis.
Collapse
|
28
|
Merritt JC, Richbart SD, Moles EG, Cox AJ, Brown KC, Miles SL, Finch PT, Hess JA, Tirona MT, Valentovic MA, Dasgupta P. Anti-cancer activity of sustained release capsaicin formulations. Pharmacol Ther 2022; 238:108177. [PMID: 35351463 PMCID: PMC9510151 DOI: 10.1016/j.pharmthera.2022.108177] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022]
Abstract
Capsaicin (trans-8-methyl-N-vanillyl-6-noneamide) is a hydrophobic, lipophilic vanilloid phytochemical abundantly found in chili peppers and pepper extracts. Several convergent studies show that capsaicin displays robust cancer activity, suppressing the growth, angiogenesis and metastasis of several human cancers. Despite its potent cancer-suppressing activity, the clinical applications of capsaicin as a viable anti-cancer drug have remained problematic due to its poor bioavailability and aqueous solubility properties. In addition, the administration of capsaicin is associated with adverse side effects like gastrointestinal cramps, stomach pain, nausea and diarrhea and vomiting. All these hurdles may be circumvented by encapsulation of capsaicin in sustained release drug delivery systems. Most of the capsaicin-based the sustained release drugs have been tested for their pain-relieving activity. Only a few of these formulations have been investigated as anti-cancer agents. The present review describes the physicochemical properties, bioavailability, and anti-cancer activity of capsaicin-sustained release agents. The asset of such continuous release capsaicin formulations is that they display better solubility, stability, bioavailability, and growth-suppressive activity than the free drug. The encapsulation of capsaicin in sustained release carriers minimizes the adverse side effects of capsaicin. In summary, these capsaicin-based sustained release drug delivery systems have the potential to function as novel chemotherapies, unique diagnostic imaging probes and innovative chemosensitization agents in human cancers.
Collapse
Affiliation(s)
- Justin C Merritt
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Stephen D Richbart
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Emily G Moles
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Ashley J Cox
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Kathleen C Brown
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Sarah L Miles
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Paul T Finch
- Department of Oncology, Edwards Cancer Center, Joan C. Edwards School of Medicine, Marshall University, 1400 Hal Greer Boulevard, Huntington, WV 25755, United States
| | - Joshua A Hess
- Department of Oncology, Edwards Cancer Center, Joan C. Edwards School of Medicine, Marshall University, 1400 Hal Greer Boulevard, Huntington, WV 25755, United States
| | - Maria T Tirona
- Department of Hematology-Oncology, Edwards Cancer Center, Joan C. Edwards School of Medicine, Marshall University, 1400 Hal Greer Boulevard, Huntington, WV 25755, United States
| | - Monica A Valentovic
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States
| | - Piyali Dasgupta
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, United States.
| |
Collapse
|
29
|
Simamora A, Timotius KH, Yerer MB, Setiawan H, Mun'im A. Xanthorrhizol, a potential anticancer agent, from Curcuma xanthorrhiza Roxb. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154359. [PMID: 35933899 DOI: 10.1016/j.phymed.2022.154359] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/19/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Xanthorrhizol (XTZ), a bisabolene sesquiterpenoid, is abundantly found in the plant Curcuma xanthorrhiza Roxb. Traditionally, C. xanthorrhiza is widely used for the treatment of different health conditions, including common fever, infection, lack of appetite, fatigue, liver complaints, and gastrointestinal disorders. XTZ exhibits wide-ranging pharmacological activities, including anticancer, antioxidative, anti-inflammatory, antimicrobial, and antidiabetic activities, in addition to a protective effect on multiple organs. The present review provides detailed findings on the anticancer activities of XTZ and the underlying cellular and molecular mechanisms. METHODS Literature was searched systematically in main databases following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, with keywords "tumor AND xanthorrhizol" or "cancer AND xanthorrhizol". RESULTS Studies show that XTZ has preventive and therapeutic activities against different types of cancer, including breast, cervical, colon, liver, lung, oral and esophageal, and skin cancers. XTZ regulates multiple signaling pathways that block carcinogenesis and proliferation. In vitro and in vivo studies showed that XTZ targets different kinases, inflammatory cytokines, apoptosis proteins, and transcription factors, leading to the suppression of angiogenesis, metastasis, and the activation of apoptosis and cell cycle arrest. CONCLUSION The potential anticancer benefits of XTZ recommend further in vivo studies against different types of cancer. Further, XTZ needs to be confirmed for its toxicity, bioavailability, protective, antifatigue, and energy booster activities. Future studies for the therapeutic development of XTZ may be directed to cancer-related fatigue.
Collapse
Affiliation(s)
- Adelina Simamora
- Graduate Program of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia; Department of Biochemistry, Faculty of Medicine and Health Sciences, Krida Wacana Christian University, Jakarta 11510, Indonesia; National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java 16424, Indonesia; Centre for Enzyme Research in Health and Diseases, Krida Wacana Christian University, Jakarta 11510, Indonesia
| | - Kris Herawan Timotius
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Krida Wacana Christian University, Jakarta 11510, Indonesia; Centre for Enzyme Research in Health and Diseases, Krida Wacana Christian University, Jakarta 11510, Indonesia
| | - Mukerrem Betul Yerer
- Department of Pharmacology, Faculty of Pharmacy, University of Erciyes, Kayseri 38039, Turkey
| | - Heri Setiawan
- National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java 16424, Indonesia; Department of Pharmacology, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia
| | - Abdul Mun'im
- National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Depok, West Java 16424, Indonesia; Department of Pharmacognosy-Phytochemistry, Faculty of Pharmacy, Universitas Indonesia, Depok 16424, Indonesia.
| |
Collapse
|
30
|
Mustafa S, Koran S, AlOmair L. Insights Into the Role of Matrix Metalloproteinases in Cancer and its Various Therapeutic Aspects: A Review. Front Mol Biosci 2022; 9:896099. [PMID: 36250005 PMCID: PMC9557123 DOI: 10.3389/fmolb.2022.896099] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/16/2022] [Indexed: 11/29/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases that regulate the turnover of extracellular matrix (ECM) components. Gross and La Piere discovered MMPs in 1962 during an experiment on tissue samples from a tadpole’s tail. Several subtypes of MMPs have been identified, depending on their substrate specificity and localization. MMPs are involved as essential molecules in multiple and diverse physiological processes, such as reproduction, embryonic development, bone remodeling, tissue repair, and regulation of inflammatory processes. Its activity is controlled at various levels such as at transcription level, pro-peptide activation level and by the activity of a family of tissue inhibitors of metalloproteinase, endogenous inhibitors of MMPs. Cancer metastasis, which is the spread of a tumor to a distant site, is a complex process that is responsible for the majority of cancer-related death It is considered to be an indicator of cancer metastasis. During metastasis, the tumor cells have to invade the blood vessel and degrade the ECM to make a path to new loci in distant places. The degradation of blood vessels and ECM is mediated through the activity of MMPs. Hence, the MMP activity is critical to determining the metastatic potential of a cancer cell. Evasion of apoptosis is one of the hallmarks of cancer that are found to be correlated with the expression of MMPs. As a result, given the importance of MMPs in cancer, we describe the role of these multifunctional enzymes MMPs in various aspects of cancer formation and their rising possibilities as a novel therapeutic target in this review. There is also a brief discussion of various types of therapeutic components and drugs that function against MMPs.
Collapse
Affiliation(s)
- Sabeena Mustafa
- Department of Biostatistics and Bioinformatics, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
- *Correspondence: Sabeena Mustafa,
| | - Sheeja Koran
- Laboratory of Molecular Medicine, Division of Cancer Research, Regional Cancer Centre (RCC), Medical College, Thiruvanananthapuram, India
| | - Lamya AlOmair
- Department of Biostatistics and Bioinformatics, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNGHA), Riyadh, Saudi Arabia
| |
Collapse
|
31
|
Jouida A, O’Callaghan M, Mc Carthy C, Fabre A, Nadarajan P, Keane MP. Exosomes from EGFR-Mutated Adenocarcinoma Induce a Hybrid EMT and MMP9-Dependant Tumor Invasion. Cancers (Basel) 2022; 14:cancers14153776. [PMID: 35954442 PMCID: PMC9367273 DOI: 10.3390/cancers14153776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 01/27/2023] Open
Abstract
Exosomes, a class of extra cellular nano-sized vesicles (EVs), and their contents have gained attention as potential sources of information on tumor detection and regulatory drivers of tumor progression and metastasis. The effect of exosomes isolated from patients with an Epidermal Growth Factor Receptor (EGFR)-mutated adenocarcinoma on the promotion of epithelial–mesenchymal transition (EMT) and invasion were examined. Exosomes derived from serum of patients with EGFR-mutated non-small cell lung cancer (NSCLC) mediate the activation of the Phosphoinositide 3-kinase (PI3K)/AKT/ mammalian target of rapamycin (mTOR) pathway and induce an invasion through the up-regulation of matrix metalloproteinase-9 (MMP-9) in A549 cells. We observed a significant increase in the expression of vimentin, a mesenchymal marker, while retaining the epithelial characteristics, as evidenced by the unaltered levels of E-cadherin and Epithelial cell adhesion molecule (EPCAM). We also observed an increase of nuclear factor erythroid 2-related factor 2 (NFR2) and P-cadherin expression, markers of hybrid EMT. Exosomes derived from EGFR-mutated adenocarcinoma serum could be a potential mediator of hybrid EMT and tumor invasion. Understanding how cancerous cells communicate and interact with their environment via exosomes will improve our understanding of lung cancer progression and metastasis formation.
Collapse
Affiliation(s)
- Amina Jouida
- School of Medicine, University College Dublin, D14 E099 Dublin, Ireland; (A.J.); (M.O.); (C.M.C.); (A.F.); (P.N.)
| | - Marissa O’Callaghan
- School of Medicine, University College Dublin, D14 E099 Dublin, Ireland; (A.J.); (M.O.); (C.M.C.); (A.F.); (P.N.)
- Department of Respiratory Medicine, St. Vincent’s University Hospital, D04 T6F4 Dublin, Ireland
| | - Cormac Mc Carthy
- School of Medicine, University College Dublin, D14 E099 Dublin, Ireland; (A.J.); (M.O.); (C.M.C.); (A.F.); (P.N.)
- Department of Respiratory Medicine, St. Vincent’s University Hospital, D04 T6F4 Dublin, Ireland
| | - Aurelie Fabre
- School of Medicine, University College Dublin, D14 E099 Dublin, Ireland; (A.J.); (M.O.); (C.M.C.); (A.F.); (P.N.)
- Department of Respiratory Medicine, St. Vincent’s University Hospital, D04 T6F4 Dublin, Ireland
| | - Parthiban Nadarajan
- School of Medicine, University College Dublin, D14 E099 Dublin, Ireland; (A.J.); (M.O.); (C.M.C.); (A.F.); (P.N.)
- Department of Respiratory Medicine, St. Vincent’s University Hospital, D04 T6F4 Dublin, Ireland
| | - Michael P. Keane
- School of Medicine, University College Dublin, D14 E099 Dublin, Ireland; (A.J.); (M.O.); (C.M.C.); (A.F.); (P.N.)
- Department of Respiratory Medicine, St. Vincent’s University Hospital, D04 T6F4 Dublin, Ireland
- Correspondence: ; Tel.: +353-1-221-4474; Fax: +353-1-221-3750
| |
Collapse
|
32
|
Loh JK, Wang ML, Cheong SK, Tsai FT, Huang SH, Wu JR, Yang YP, Chiou SH, Ong AHK. The study of cancer cell in stromal environment through induced pluripotent stem cell-derived mesenchymal stem cells. J Chin Med Assoc 2022; 85:821-830. [PMID: 35666590 DOI: 10.1097/jcma.0000000000000759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The development of mesenchymal stem cells (MSCs) has gained reputation from its therapeutic potential in stem cell regeneration, anti-inflammation, tumor suppression, and drug delivery treatment. Previous studies have shown MSCs have both promoting and suppressing effects against cancer cells. While the limitation of obtaining a large quantity of homologous MSCs for studies and treatment remains a challenge, an alternative approach involving the production of MSCs derived from induced pluripotent stem cells (iPSCs; induced MSCs [iMSCs]) may be a promising prospect given its ability to undergo prolonged passage and with similar therapeutic profiles as that of their MSC counterparts. However, the influence of iMSC in the interaction of cancer cells remains to be explored as such studies are not well established. In this study, we aim to differentiate iPSCs into MSC-like cells as a potential substitute for adult MSCs and evaluate its effect on non-small-cell lung cancer (NSCLC). METHODS iMSCs were derived from iPSCs and validated with reference to the International Society of Cellular Therapy guidelines on MSC criteria. To create a stromal environment, the conditioned medium (CM) of iMSCs was harvested and applied for coculturing of NSCLC of H1975 at different concentrations. The H1975 was then harvested for RNA extraction and subjected to next-generation sequencing (NGS) for analysis. RESULTS The morphology of iMSCs-CM-treated H1975 was different from an untreated H1975. Our NGS data suggest the occurrence of apoptotic events and the presence of cytokines from H1975's RNA that are treated with iMSCs-CM. CONCLUSION Our results have shown that iMSCs may suppress the growth of H1975 by releasing proapoptotic cytokines into coculture media. Using iPSC-derived MSC models allows a deeper study of tumor cross talk between MSC and cancer cells that can be applied for potential future cancer therapy.
Collapse
Affiliation(s)
- Jit-Kai Loh
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Faculty of Medicine and Health Sciences, Universitiy Tunku Abdul Rahman, Cheras, Malaysia
| | - Mong-Lien Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Institute of Food Safety and Health Risk Assessment, School of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Soon-Keng Cheong
- Faculty of Medicine and Health Sciences, Universitiy Tunku Abdul Rahman, Cheras, Malaysia
- National Cancer Council (MAKNA), Kuala Lumpur, Malaysia
| | - Fu-Ting Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Shu-Huei Huang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Jing-Rong Wu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Ping Yang
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Shih-Hwa Chiou
- Institute of Pharmacology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Genomic Research Center, Academia Sinica, Taipei, Taiwan, ROC
| | - Alan Han-Kiat Ong
- Faculty of Medicine and Health Sciences, Universitiy Tunku Abdul Rahman, Cheras, Malaysia
| |
Collapse
|
33
|
A comprehensive insight into the antineoplastic activities and molecular mechanisms of deoxypodophyllotoxin: Recent trends, challenges, and future outlook. Eur J Pharmacol 2022; 928:175089. [PMID: 35688183 DOI: 10.1016/j.ejphar.2022.175089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 11/20/2022]
Abstract
Lignans constitute an important group of polyphenols, which have been demonstrated to potently suppress cancer cell proliferation. Numerous in vitro and in vivo studies indicate that deoxypodophyllotoxin as a natural lignan possesses potent anticancer activities against various types of human cancer. The purpose of current review is to provide the reader with the latest findings in understanding the anticancer effects and molecular mechanisms of deoxypodophyllotoxin. This review comprehensively describes the influence of deoxypodophyllotoxin on signaling cascades and molecular targets implicated in cancer cell proliferation and invasion. A number of various signaling molecules and pathways, including apoptosis, necroptosis, cell cycle, angiogenesis, vascular disruption, ROS, MMPs, glycolysis, and microtubules as well as NF-κB, PI3K/Akt/mTOR, and MAPK cascades have been reported to be responsible for the anticancer activities of deoxypodophyllotoxin. The results of present review suggest that the cyclolignan deoxypodophyllotoxin can be developed as a novel and potent anticancer agent, especially as an alternative option for treatment of resistant tumors to chemotherapy.
Collapse
|
34
|
Nimma R, Kalvala AK, Patel N, Surapaneni SK, Sun L, Singh R, Nottingham E, Bagde A, Kommineni N, Arthur P, Nathani A, Meckes DG, Singh M. Combined Transcriptomic and Proteomic Profiling to Unravel Osimertinib, CARP-1 Functional Mimetic (CFM 4.17) Formulation and Telmisartan Combo Treatment in NSCLC Tumor Xenografts. Pharmaceutics 2022; 14:pharmaceutics14061156. [PMID: 35745729 PMCID: PMC9230742 DOI: 10.3390/pharmaceutics14061156] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/30/2022] [Accepted: 05/11/2022] [Indexed: 01/05/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is highly expressed in many non-small cell lung cancers (NSCLC), necessitating the use of EGFR-tyrosine kinase inhibitors (TKIs) as first-line treatments. Osimertinib (OSM), a third-generation TKI, is routinely used in clinics, but T790M mutations in exon 20 of the EGFR receptor lead to resistance against OSM, necessitating the development of more effective therapeutics. Telmisartan (TLM), OSM, and cell cycle and apoptosis regulatory protein 1 (CARP-1) functional mimetic treatments (CFM4.17) were evaluated in this study against experimental H1975 tumor xenografts to ascertain their anti-cancer effects. Briefly, tumor growth was studied in H1975 xenografts in athymic nude mice, gene and protein expressions were analyzed using next-generation RNA sequencing, proteomics, RT-PCR, and Western blotting. TLM pre-treatment significantly reduced the tumor burden when combined with CFM-4.17 nanoformulation and OSM combination (TLM_CFM-F_OSM) than their respective single treatments or combination of OSM and TLM with CFM 4.17. Data from RNA sequencing and proteomics revealed that TLM_CFM-F_OSM decreased the expression of Lamin B2, STAT3, SOD, NFKB, MMP-1, TGF beta, Sox-2, and PD-L1 proteins while increasing the expression of AMPK proteins, which was also confirmed by RT-PCR, proteomics, and Western blotting. According to our findings, the TLM_CFM-F_OSM combination has a superior anti-cancer effect in the treatment of NSCLC by affecting multiple resistant markers that regulate mitochondrial homeostasis, inflammation, oxidative stress, and apoptosis.
Collapse
Affiliation(s)
- Ramesh Nimma
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (R.N.); (A.K.K.); (N.P.); (S.K.S.); (E.N.); (A.B.); (N.K.); (P.A.); (A.N.)
| | - Anil Kumar Kalvala
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (R.N.); (A.K.K.); (N.P.); (S.K.S.); (E.N.); (A.B.); (N.K.); (P.A.); (A.N.)
| | - Nilkumar Patel
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (R.N.); (A.K.K.); (N.P.); (S.K.S.); (E.N.); (A.B.); (N.K.); (P.A.); (A.N.)
| | - Sunil Kumar Surapaneni
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (R.N.); (A.K.K.); (N.P.); (S.K.S.); (E.N.); (A.B.); (N.K.); (P.A.); (A.N.)
| | - Li Sun
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA; (L.S.); (D.G.M.J.)
| | - Rakesh Singh
- Department of Translational Science Laboratory, College of Medicine, Florida State University, 1115 West Call St., Tallahassee, FL 32306, USA;
| | - Ebony Nottingham
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (R.N.); (A.K.K.); (N.P.); (S.K.S.); (E.N.); (A.B.); (N.K.); (P.A.); (A.N.)
| | - Arvind Bagde
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (R.N.); (A.K.K.); (N.P.); (S.K.S.); (E.N.); (A.B.); (N.K.); (P.A.); (A.N.)
| | - Nagavendra Kommineni
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (R.N.); (A.K.K.); (N.P.); (S.K.S.); (E.N.); (A.B.); (N.K.); (P.A.); (A.N.)
| | - Peggy Arthur
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (R.N.); (A.K.K.); (N.P.); (S.K.S.); (E.N.); (A.B.); (N.K.); (P.A.); (A.N.)
| | - Aakash Nathani
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (R.N.); (A.K.K.); (N.P.); (S.K.S.); (E.N.); (A.B.); (N.K.); (P.A.); (A.N.)
| | - David G. Meckes
- Department of Biomedical Sciences, College of Medicine, Florida State University, 1115 West Call Street, Tallahassee, FL 32306, USA; (L.S.); (D.G.M.J.)
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL 32307, USA; (R.N.); (A.K.K.); (N.P.); (S.K.S.); (E.N.); (A.B.); (N.K.); (P.A.); (A.N.)
- Correspondence: or ; Tel.: +1-850-561-2790; Fax: +1-850-599-3813
| |
Collapse
|
35
|
Mulet M, Osuna-Gómez R, Zamora C, Porcel JM, Nieto JC, Perea L, Pajares V, Muñoz-Fernandez AM, Calvo N, Sorolla MA, Vidal S. Influence of Malignant Pleural Fluid from Lung Adenocarcinoma Patients on Neutrophil Response. Cancers (Basel) 2022; 14:cancers14102529. [PMID: 35626131 PMCID: PMC9139419 DOI: 10.3390/cancers14102529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary This study provides novel information about the role of neutrophils in malignant pleural effusion (MPE) and hallmarks their clinical relevance. Since these cells have emerged as important regulators of cancer, we characterized their phenotype and functions in MPE microenvironment. We found that neutrophil-derived products (degranulation molecules and neutrophil extracellular traps (NETs)) were increased in MPE. In addition, NETs were associated with a worse outcome in lung adenocarcinoma patients with MPE. Abstract Malignant pleural effusion (MPE) is a common severe complication of advanced lung adenocarcinoma (LAC). Neutrophils, an essential component of tumor infiltrates, contribute to tumor progression and their counts in MPE have been associated with worse outcome in LAC. This study aimed to evaluate phenotypical and functional changes of neutrophils induced by MPE to determine the influence of MPE immunomodulatory factors in neutrophil response and to find a possible association between neutrophil functions and clinical outcomes. Pleural fluid samples were collected from 47 LAC and 25 heart failure (HF) patients. We measured neutrophil degranulation products by ELISA, oxidative burst capacity and apoptosis by flow cytometry, and NETosis by fluorescence. The concentration of degranulation products was higher in MPE-LAC than in PE-HF. Functionally, neutrophils cultured with MPE-LAC had enhanced survival and neutrophil extracellular trap (NET) formation but had reduced oxidative burst capacity. In MPE, NETosis was positively associated with MMP-9, P-selectin, and sPD-L1 and clinically related to a worse outcome. This is the first study associating NETs with a worse outcome in MPE. Neutrophils likely contribute to tumor progression through the release of NETs, suggesting that they are a potential therapeutic target in LAC.
Collapse
Affiliation(s)
- Maria Mulet
- Inflammatory Diseases, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (M.M.); (R.O.-G.); (C.Z.); (J.C.N.); (L.P.)
| | - Rubén Osuna-Gómez
- Inflammatory Diseases, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (M.M.); (R.O.-G.); (C.Z.); (J.C.N.); (L.P.)
| | - Carlos Zamora
- Inflammatory Diseases, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (M.M.); (R.O.-G.); (C.Z.); (J.C.N.); (L.P.)
| | - José M. Porcel
- Pleural Medicine Unit, Department of Internal Medicine, Hospital Universitari Arnau de Vilanova, IRBLleida, University of Lleida, 25003 Lleida, Spain;
| | - Juan C. Nieto
- Inflammatory Diseases, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (M.M.); (R.O.-G.); (C.Z.); (J.C.N.); (L.P.)
| | - Lídia Perea
- Inflammatory Diseases, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (M.M.); (R.O.-G.); (C.Z.); (J.C.N.); (L.P.)
| | - Virginia Pajares
- Department of Pneumology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (V.P.); (A.M.M.-F.)
| | - Ana M. Muñoz-Fernandez
- Department of Pneumology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (V.P.); (A.M.M.-F.)
| | - Nuria Calvo
- Department of Oncology, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain;
| | | | - Silvia Vidal
- Inflammatory Diseases, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), 08041 Barcelona, Spain; (M.M.); (R.O.-G.); (C.Z.); (J.C.N.); (L.P.)
- Correspondence:
| |
Collapse
|
36
|
Huang CC, Su CW, Wang PH, Lu YT, Ho YT, Yang SF, Hsin CH, Lin CW. Dihydromyricetin inhibits cancer cell migration and matrix metalloproteinases-2 expression in human nasopharyngeal carcinoma through extracellular signal-regulated kinase signaling pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:1244-1253. [PMID: 35112788 DOI: 10.1002/tox.23480] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/05/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Nasopharyngeal carcinoma (NPC) is endemic in Southeast Asia and the main cause of treatment failure is metastasis. A lot of biological and pharmacological actions of dihydromyricetin (DHM) have been reported such as regulating glucose and anti-cancer effects. The effects of DHM on the cancer invasion and migration of NPC, however, are still unclear. We therefore investigated the in vitro anti-metastatic properties of DHM on three human NPC cell lines (HONE-1, NPC-39, and NPC-BM), as well as the underlying signaling pathways. Our study revealed that DHM could suppress the migration and invasion in NPC cells. Gelatin zymography assay and western blotting assays demonstrated that DHM suppressed the enzyme activity and protein expression of matrix metalloproteinases-2 (MMP-2). Mitogen-activated protein kinases were also investigated to elucidate the signaling pathway, which showed that phosphorylation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) was inhibited after the treatment of DHM. In conclusion, our data revealed that DHM inhibited the migration and invasion of NPC cells by suppressing the expression of MMP-2 via down regulating the ERK1/2 signaling pathway.
Collapse
Affiliation(s)
- Cheng-Chen Huang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chun-Wen Su
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Po-Hui Wang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yen-Ting Lu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Otolaryngology, St. Martin De Porres Hospital, Chiayi, Taiwan
| | - Yu-Ting Ho
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chung-Han Hsin
- Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Chiao-Wen Lin
- Institute of Oral Sciences, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
37
|
Molnar R, Szabo L, Tomesz A, Deutsch A, Darago R, Raposa BL, Ghodratollah N, Varjas T, Nemeth B, Orsos Z, Pozsgai E, Szentpeteri JL, Budan F, Kiss I. The Chemopreventive Effects of Polyphenols and Coffee, Based upon a DMBA Mouse Model with microRNA and mTOR Gene Expression Biomarkers. Cells 2022; 11:cells11081300. [PMID: 35455979 PMCID: PMC9029301 DOI: 10.3390/cells11081300] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 12/11/2022] Open
Abstract
Polyphenols are capable of decreasing cancer risk. We examined the chemopreventive effects of a green tea (Camellia sinensis) extract, polyphenol extract (a mixture of blackberry (Rubus fruticosus), blackcurrants (Ribes nigrum), and added resveratrol phytoalexin), Chinese bayberry (Myrica rubra) extract, and a coffee (Coffea arabica) extract on 7,12-dimethylbenz[a]anthracene (DMBA) carcinogen-increased miR-134, miR-132, miR-124-1, miR-9-3, and mTOR gene expressions in the liver, spleen, and kidneys of CBA/Ca mice. The elevation was quenched significantly in the organs, except for miR-132 in the liver of the Chinese bayberry extract-consuming group, and miR-132 in the kidneys of the polyphenol-fed group. In the coffee extract-consuming group, only miR-9-3 and mTOR decreased significantly in the liver; also, miR-134 decreased significantly in the spleen, and, additionally, miR-124-1 decreased significantly in the kidney. Our results are supported by literature data, particularly the DMBA generated ROS-induced inflammatory and proliferative signal transducers, such as TNF, IL1, IL6, and NF-κB; as well as oncogenes, namely RAS and MYC. The examined chemopreventive agents, besides the obvious antioxidant and anti-inflammatory effects, mainly blocked the mentioned DMBA-activated factors and the mitogen-activated protein kinase (MAPK) as well, and, at the same time, induced PTEN as well as SIRT tumor suppressor genes.
Collapse
Affiliation(s)
- Richard Molnar
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (A.T.); (A.D.); (R.D.); (B.L.R.)
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
- Correspondence: (R.M.); (J.L.S.); (F.B.)
| | - Laszlo Szabo
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (A.T.); (A.D.); (R.D.); (B.L.R.)
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Andras Tomesz
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (A.T.); (A.D.); (R.D.); (B.L.R.)
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Arpad Deutsch
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (A.T.); (A.D.); (R.D.); (B.L.R.)
| | - Richard Darago
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (A.T.); (A.D.); (R.D.); (B.L.R.)
| | - Bence L. Raposa
- Doctoral School of Health Sciences, Faculty of Health Sciences, University of Pécs, 7624 Pécs, Hungary; (L.S.); (A.T.); (A.D.); (R.D.); (B.L.R.)
| | - Nowrasteh Ghodratollah
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Timea Varjas
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Balazs Nemeth
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Zsuzsanna Orsos
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Eva Pozsgai
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| | - Jozsef L. Szentpeteri
- Institute of Transdisciplinary Discoveries, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence: (R.M.); (J.L.S.); (F.B.)
| | - Ferenc Budan
- Institute of Transdisciplinary Discoveries, Medical School, University of Pécs, 7624 Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence: (R.M.); (J.L.S.); (F.B.)
| | - Istvan Kiss
- Department of Public Health Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary; (N.G.); (T.V.); (B.N.); (Z.O.); (E.P.); (I.K.)
| |
Collapse
|
38
|
Zhang S, He Y, Xuan Q, Ling X, Men K, Zhao X, Xue D, Li L, Zhang Y. TMEM139 prevents NSCLC metastasis by inhibiting lysosomal degradation of E-cadherin. Cancer Sci 2022; 113:1999-2007. [PMID: 35302694 PMCID: PMC9207374 DOI: 10.1111/cas.15341] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 11/29/2022] Open
Abstract
Non‐small‐cell lung cancer (NSCLC) accounts for approximately 85% of all lung cancer cases and has the highest mortality rate among all solid tumors. It is characterized by early metastasis, and investigations of the molecular mechanisms underlying the progression and metastasis of NSCLC are urgently needed for the development of therapeutic targets. Here, we report that the transmembrane protein TMEM139 is significantly downregulated in NSCLC and that reduced expression of TMEM139 is correlated with a poor prognosis in NSCLC patients. Mechanistically, we found that TMEM139 directly interacts with E‐cadherin at the plasma membrane and at focal adhesion sites. Moreover, TMEM139 can prevent the lysosomal degradation of E‐cadherin, which inhibits epithelial‐mesenchymal transition, migration and invasion of NSCLC cells both in vitro and in vivo. Our study not only expands our understanding of NSCLC metastasis but also provides a foundation to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yunlong He
- Department of radiation oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Qijia Xuan
- Department of Medical Oncology, The Fourth Affiliated Hospital Zhejiang University School of Medicine, Yiwu, Zhejiang Province, China
| | - Xiaodong Ling
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Kaiya Men
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xu Zhao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Dinglong Xue
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Ling Li
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yingyin Zhang
- Department of Medical Oncology, Hu Lun Bei Er Ren Min Hospital, Inner Mongolia Province, China
| |
Collapse
|
39
|
Shen J, Han L, Xue Y, Li C, Jia H, Zhu K. Ropivacaine Inhibits Lung Cancer Cell Malignancy Through Downregulation of Cellular Signaling Including HIF-1α In Vitro. Front Pharmacol 2022; 12:806954. [PMID: 35280249 PMCID: PMC8905340 DOI: 10.3389/fphar.2021.806954] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/28/2021] [Indexed: 12/02/2022] Open
Abstract
Background: Ropivacaine is widely used to induce regional anesthesia during lung cancer surgery. Previous studies reported that amide-linked local anesthetics, e.g., ropivacaine, affected the biological behavior of lung adenocarcinoma cells, but the conclusion is controversial and warrants further study. This study set out to investigate the biological effects of ropivacaine on cultured lung cancer cells and underlying mechanisms. Methods: Lung cancer cell lines (A549 and H1299) were cultured and then treated with or without ropivacaine (0.5, 1, and 2 mM) for 48 or 72 h. Their proliferation, migration, and invasion together with cell death and molecules including hypoxia inducible factor (HIF)-1α, VEGF, matrix metalloproteinase (MMP)-1, MMP-2, and MMP-9 expression associated with these changes were determined. Results: Ropivacaine significantly inhibited proliferation and migration, invasion, and cell death in a concentration-dependent manner in both cell lines. Ropivacaine also promoted cell death and induced a concentration- and time-dependent cell arrest towards the G0/G1 phase. Expression of VEGF, MMP-1, MMP-2, MMP-9, and HIF-1α in both cell lines was also inhibited by ropivacaine in a concentration-related manner. Conclusion: Our data indicated that ropivacaine inhibited lung cancer cell malignancy, which may be associated with downregulation of cell-survival-associated cellular molecules. The translational value of the current work is subjected to further study.
Collapse
Affiliation(s)
- Junmei Shen
- Department of Anesthesiology, The Forth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lina Han
- Department of Blood Transfusion, The Forth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yongxian Xue
- Scientific Research Center, The Forth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chao Li
- Department of Anesthesiology, The Forth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huiqun Jia
- Department of Anesthesiology, The Forth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Kangsheng Zhu
- Department of Anesthesiology, The Forth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
40
|
Sun JL, Cao ZQ, Sun SW, Sun ZH, Sun SH, Ye JF, Leng P. Effects of 2,2',4'‑trihydroxychalcone on the proliferation, metastasis and apoptosis of A549 human lung cancer cells. Oncol Lett 2022; 23:116. [PMID: 35261630 PMCID: PMC8855167 DOI: 10.3892/ol.2022.13236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/13/2022] [Indexed: 11/21/2022] Open
Abstract
The aim of the present study was to evaluate the antitumor effects of 2,2′,4′-trihydroxychalcone (7a) on the A549 human lung cancer cell line. A549 cells were treated with different concentrations of 7a for different time periods. Cells without 7a were used as the negative control group. Cell proliferation, invasion, vasculogenic mimicry (VM) formation, heterogeneous adhesion and apoptosis were measured using Cell Counting Kit-8, Transwell invasion, VM, adhesion and flow cytometric assays, respectively. In addition, the expression of related proteins was determined using western blot analysis or ELISA. The present study found that 7a had a significant inhibitory effect on the survival rate of the A549 lung cancer cells but almost no effect on BEAS-2B human lung epithelial cells or human venous endothelial cells. The migration rate, VM length, invasion rate and heterogeneous adhesion number of cells treated with 7a significantly decreased as the concentration increased, while the apoptosis rate increased. Western blot analysis showed that 7a treatment significantly increased the expression levels of E-cadherin, cleaved poly (ADP-ribose) polymerase, Bax and caspase-3 and simultaneously decreased the expression levels of metalloproteinase-2/9, Bcl-2, phosphorylated (p)-PI3K, p-AKT, p-mTOR, vascular endothelial growth factor (VEGF), E-selectin and N-cadherin. At the same time, the ELISA results showed that the level of the pro-angiogenic factor VEGF in the culture media was reduced in the presence of 7a. In addition, 7a could also reduce the nuclear NF-κB protein expression, which could inhibit the gene transcription of tumor apoptosis and metastasis-related proteins. Therefore, 7a may exert inhibitory effects on A549 cells by inhibiting cell proliferation, migration, VM formation and heterogeneous adhesion, as well as by inducing apoptosis through the suppression of the PI3K/AKT/NF-κB signaling pathway; these findings suggested that 7a may be a promising agent for the treatment of lung cancer.
Collapse
Affiliation(s)
- Jia-Lin Sun
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Zhan-Qi Cao
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Shi-Wei Sun
- Department of Natural Medicine and Pharmacognosy, School of Pharmacy, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Zhong-Hua Sun
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Shu-Hong Sun
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Jin-Feng Ye
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266100, P.R. China
| | - Ping Leng
- Department of Pharmacy, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| |
Collapse
|
41
|
Ayesha M, Majid A, Zhao D, Greenaway FT, Yan N, Liu Q, Liu S, Sun MZ. MiR-4521 plays a tumor repressive role in growth and metastasis of hepatocarcinoma cells by suppressing phosphorylation of FAK/AKT pathway via targeting FAM129A. J Adv Res 2022; 36:147-161. [PMID: 35127170 PMCID: PMC8799875 DOI: 10.1016/j.jare.2021.05.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/30/2021] [Accepted: 05/09/2021] [Indexed: 12/17/2022] Open
Affiliation(s)
- Munawar Ayesha
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Abbasi Majid
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Dongting Zhao
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Frederick T. Greenaway
- Department of Biochemistry and Molecular Biology, Carlson School of Chemistry and Biochemistry, Clark University, Worcester, MA 01610, USA
| | - Naimeng Yan
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China
| | - Qinlong Liu
- Department of General Surgery, the Second Affiliated Hospital, Dalian Medical University, Dalian 116027, China
| | - Shuqing Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China
- Corresponding authors.
| | - Ming-Zhong Sun
- Department of Biotechnology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116044, China
- Corresponding authors.
| |
Collapse
|
42
|
Lim W, Jeon BN, Kim YJ, Kim KH, Ko H. FBI-1 inhibits epithelial-to-mesenchymal transition, migration, and invasion in lung adenocarcinoma A549 cells by downregulating transforming growth factor-β1 signaling pathway. J Cell Biochem 2022; 123:644-656. [PMID: 34989006 DOI: 10.1002/jcb.30210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/13/2021] [Accepted: 12/23/2021] [Indexed: 11/06/2022]
Abstract
The factor binding inducer of short transcripts-1 (FBI-1) is a POZ-domain Kruppel-like (POK) family of transcription factors and is known as a proto-oncogene or tumor suppressor in various carcinomas. However, the role of FBI-1 on epithelial-to-mesenchymal transition (EMT) and invasiveness in lung cancer remains unknown. Preliminarily, clinical data such as tissue microarray, Kaplan-Meier, and Oncomine were analyzed to confirm the correlation between lung cancer metastasis and FBI-1. To investigate the function of FBI-1 in EMT in lung cancer, EMT was measured in FBI-1-deficient or FBI-1-overexpressing cells. FBI-1 showed decreased expression in tumors metastasized to lymph nodes than in the primary tumor. In addition, it was also associated with improved survival rates of lung cancer patients. FBI-1 knockdown improved E-to-N-cadherin switching, migration, and invasion in A549 cells, similar to the initiation of EMT stimulated by transforming growth factor- β1 (TGF-β1). In contrast, overexpression of FBI-1 inhibited the transcription and activation of Smad2, thereby interfering with EMT, despite stimulation by TGF-β1. These results suggest that FBI-1 plays a negative role in EMT in lung cancer via the TGF-β1 signaling pathway, implying its use as a new potential therapeutic target and diagnostic indicator for early stage of lung cancer metastasis.
Collapse
Affiliation(s)
- Wonchul Lim
- New Drug Research Institute, HLB Life Science, Hwaseong-si, Gyeonggi-do, Republic of Korea
| | - Bu-Nam Jeon
- Genome and Company, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Young-Joo Kim
- Natural Product Research Center, Korea Institute of Science and Technology, Gangneung-si, Gangwon-do, Republic of Korea
| | - Ki-Hwan Kim
- New Drug Research Institute, HLB Life Science, Hwaseong-si, Gyeonggi-do, Republic of Korea.,HLB Life Science, Gangnam-gu, Seoul, Republic of Korea
| | - Hyeonseok Ko
- HLB Life Science, Gangnam-gu, Seoul, Republic of Korea
| |
Collapse
|
43
|
Hassanein SS, Abdel-Mawgood AL, Ibrahim SA. EGFR-Dependent Extracellular Matrix Protein Interactions Might Light a Candle in Cell Behavior of Non-Small Cell Lung Cancer. Front Oncol 2021; 11:766659. [PMID: 34976811 PMCID: PMC8714827 DOI: 10.3389/fonc.2021.766659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022] Open
Abstract
Lung cancer remains the leading cause of cancer-related death and is associated with a poor prognosis. Lung cancer is divided into 2 main types: the major in incidence is non-small cell lung cancer (NSCLC) and the minor is small cell lung cancer (SCLC). Although NSCLC progression depends on driver mutations, it is also affected by the extracellular matrix (ECM) interactions that activate their corresponding signaling molecules in concert with integrins and matrix metalloproteinases (MMPs). These signaling molecules include cytoplasmic kinases, small GTPases, adapter proteins, and receptor tyrosine kinases (RTKs), particularly the epidermal growth factor receptor (EGFR). In NSCLC, the interplay between ECM and EGFR regulates ECM stiffness, angiogenesis, survival, adhesion, migration, and metastasis. Furthermore, some tumor-promoting ECM components (e.g., glycoproteins and proteoglycans) enhance activation of EGFR and loss of PTEN. On the other hand, other tumor-suppressing glycoproteins and -proteoglycans can inhibit EGFR activation, suppressing cell invasion and migration. Therefore, deciphering the molecular mechanisms underlying EGFR and ECM interactions might provide a better understanding of disease pathobiology and aid in developing therapeutic strategies. This review critically discusses the crosstalk between EGFR and ECM affecting cell behavior of NSCLC, as well as the involvement of ECM components in developing resistance to EGFR inhibition.
Collapse
Affiliation(s)
- Sarah Sayed Hassanein
- Biotechnology Program, Basic and Applied Sciences (BAS) Institute, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Ahmed Lotfy Abdel-Mawgood
- Biotechnology Program, Basic and Applied Sciences (BAS) Institute, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt
| | | |
Collapse
|
44
|
Doroudian M, Azhdari MH, Goodarzi N, O’Sullivan D, Donnelly SC. Smart Nanotherapeutics and Lung Cancer. Pharmaceutics 2021; 13:1972. [PMID: 34834387 PMCID: PMC8619749 DOI: 10.3390/pharmaceutics13111972] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 12/11/2022] Open
Abstract
Lung cancer is a significant health problem worldwide. Unfortunately, current therapeutic strategies lack a sufficient level of specificity and can harm adjacent healthy cells. Consequently, to address the clinical need, novel approaches to improve treatment efficiency with minimal side effects are required. Nanotechnology can substantially contribute to the generation of differentiated products and improve patient outcomes. Evidence from previous research suggests that nanotechnology-based drug delivery systems could provide a promising platform for the targeted delivery of traditional chemotherapeutic drugs and novel small molecule therapeutic agents to treat lung cancer cells more effectively. This has also been found to improve the therapeutic index and reduce the required drug dose. Nanodrug delivery systems also provide precise control over drug release, resulting in reduced toxic side effects, controlled biodistribution, and accelerated effects or responses. This review highlights the most advanced and novel nanotechnology-based strategies, including targeted nanodrug delivery systems, stimuli-responsive nanoparticles, and bio-nanocarriers, which have recently been employed in preclinical and clinical investigations to overcome the current challenges in lung cancer treatments.
Collapse
Affiliation(s)
- Mohammad Doroudian
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland; (M.D.); (D.O.)
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran; (M.H.A.); (N.G.)
| | - Mohammad H. Azhdari
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran; (M.H.A.); (N.G.)
| | - Nima Goodarzi
- Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran 15719-14911, Iran; (M.H.A.); (N.G.)
| | - David O’Sullivan
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland; (M.D.); (D.O.)
| | - Seamas C. Donnelly
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland; (M.D.); (D.O.)
- Department of Clinical Medicine, Trinity Centre for Health Sciences, Tallaght University Hospital, Tallaght, Dublin 24, Ireland
| |
Collapse
|
45
|
Michalczyk K, Cymbaluk-Płoska A. Metalloproteinases in Endometrial Cancer-Are They Worth Measuring? Int J Mol Sci 2021; 22:12472. [PMID: 34830354 PMCID: PMC8624741 DOI: 10.3390/ijms222212472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/17/2022] Open
Abstract
Endometrial cancer is one of the most common gynecological malignancies, yet the molecular mechanisms that lead to tumor development and progression are still not fully established. Matrix metalloproteinases (MMPs) are a group of enzymes that play an important role in carcinogenesis. They are proteases involved in the degradation of the extracellular matrix (ECM) that surrounds the tumor and the affected tissue allows cell detachment from the primary tumor causing local invasion and metastasis formation. Recent investigations demonstrate significantly increased metalloproteinase and metalloproteinase inhibitor levels in patients with endometrial cancer compared to those with normal endometrium. In this review, we aim to show their clinical significance and possible use in the diagnosis and treatment of patients with endometrial cancer. We have critically summarized and reviewed the research on the role of MMPs in endometrial cancer.
Collapse
Affiliation(s)
- Kaja Michalczyk
- Department of Gynecological Surgery and Gynecological Oncology of Adults and Adolescents, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | | |
Collapse
|
46
|
Kfoury Y, Baryawno N, Severe N, Mei S, Gustafsson K, Hirz T, Brouse T, Scadden EW, Igolkina AA, Kokkaliaris K, Choi BD, Barkas N, Randolph MA, Shin JH, Saylor PJ, Scadden DT, Sykes DB, Kharchenko PV. Human prostate cancer bone metastases have an actionable immunosuppressive microenvironment. Cancer Cell 2021; 39:1464-1478.e8. [PMID: 34719426 PMCID: PMC8578470 DOI: 10.1016/j.ccell.2021.09.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 07/15/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023]
Abstract
Bone metastases are devastating complications of cancer. They are particularly common in prostate cancer (PCa), represent incurable disease, and are refractory to immunotherapy. We seek to define distinct features of the bone marrow (BM) microenvironment by analyzing single cells from bone metastatic prostate tumors, involved BM, uninvolved BM, and BM from cancer-free, orthopedic patients, and healthy individuals. Metastatic PCa is associated with multifaceted immune distortion, specifically exhaustion of distinct T cell subsets, appearance of macrophages with states specific to PCa bone metastases. The chemokine CCL20 is notably overexpressed by myeloid cells, as is its cognate CCR6 receptor on T cells. Disruption of the CCL20-CCR6 axis in mice with syngeneic PCa bone metastases restores T cell reactivity and significantly prolongs animal survival. Comparative high-resolution analysis of PCa bone metastases shows a targeted approach for relieving local immunosuppression for therapeutic effect.
Collapse
Affiliation(s)
- Youmna Kfoury
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Ninib Baryawno
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Childhood Cancer Research Unit, Department of Women's Health and Children's, Karolinska Institutet, Stockholm, Sweden.
| | - Nicolas Severe
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Shenglin Mei
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Karin Gustafsson
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Taghreed Hirz
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Thomas Brouse
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Elizabeth W Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Anna A Igolkina
- St. Petersburg Polytechnical University, St. Petersburg, Russia
| | - Konstantinos Kokkaliaris
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Bryan D Choi
- Department of Neurosurgery, Harvard Medical School, Boston, MA, USA
| | - Nikolas Barkas
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Mark A Randolph
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - John H Shin
- Department of Neurosurgery, Harvard Medical School, Boston, MA, USA
| | - Philip J Saylor
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Peter V Kharchenko
- Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
47
|
Li M, Li S, Zhou L, Yang L, Wu X, Tang B, Xie S, Fang L, Zheng S, Hong T. Immune Infiltration of MMP14 in Pan Cancer and Its Prognostic Effect on Tumors. Front Oncol 2021; 11:717606. [PMID: 34604053 PMCID: PMC8484967 DOI: 10.3389/fonc.2021.717606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
Background Matrix metalloproteinase 14 (MMP14) is a member of the MMP family, which interacts with tissue inhibitors of metalloproteinase (TIMPs), and is involved in normal physiological functions such as cell migration, invasion, metastasis, angiogenesis, and proliferation, as well as tumor genesis and progression. However, there has been a lack of relevant reports on the effect of MMP14 across cancers. This study aims to explore the correlation between MMP14 and pan-cancer prognosis, immune infiltration, and the effects of pan-cancer gene mismatch repair (MMR), microsatellite instability (MSI), tumor mutational burden (TMB), DNA methylation, and immune checkpoint genes. Methods In this study, we used bioinformatics to analyze data from multiple databases, including The Cancer Genome Atlas (TCGA), ONCOMINE, and Kaplan–Meier plotter. We investigated the relationship between the expression of MMP14 in tumors and tumor prognosis, the relationship between MMP14 expression and tumor cell immune infiltration, and the relationship between MMR gene MMR, MSI, TMB, DNA methylation, and immune checkpoint genes. Results MMP14 expression is highly associated with the prognosis of a variety of cancers and tumor immune invasion and has important effects on pan oncologic MMR, MSI, TMB, DNA methylation, and immune checkpoint genes. Conclusion MMP14 is highly correlated with tumor prognosis and immune invasion and affects the occurrence and progression of many tumors. All of these results fully indicate that MMP14 may be a biomarker for the prognosis, diagnosis, and treatment of many tumors and provide new ideas and direction for subsequent tumor immune research and treatment strategies.
Collapse
Affiliation(s)
- Minde Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shaoyang Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lin Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Le Yang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao Wu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Tang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shenhao Xie
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Linchun Fang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Suyue Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tao Hong
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
48
|
Reijonen P, Peltonen R, Tervahartiala T, Sorsa T, Isoniemi H. Serum Matrix Metalloproteinase-8 and Myeloperoxidase Predict Survival after Resection of Colorectal Liver Metastases. Oncology 2021; 99:766-779. [PMID: 34571507 DOI: 10.1159/000518955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/07/2021] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Matrix metalloproteinases (MMPs) have been extensively studied in several malignancies, and myeloperoxidase (MPO) is a promising new prognostic biomarker. We investigated the prognostic value of MMP-8, MMP-9, and MPO, as well as carcinoembryonic antigen (CEA), CA19-9, and C-reactive protein (CRP) in colorectal cancer with operable liver metastases. METHODS This study included 419 patients who underwent liver resection for colorectal metastases at the Helsinki University Hospital between 2000 and 2013. Serum samples were drawn before and 3 months after liver resection. We evaluated associations of MMP-8, MMP-9, MPO, CRP, CEA, and CA19-9 concentrations to disease-free survival (DFS) and overall survival (OS) using the Cox proportional hazards model and Kaplan-Meier log-rank method. RESULTS In univariate Cox regression analyses, pre- and postoperatively high MMP-8 (HR 1.53, 95% CI: 1.07-2.19, p = 0.021 and HR 1.45, 95% CI: 1.01-2.09, p = 0.044, respectively) associated with worse 10-year OS. Postoperatively high MPO indicated better 5-year DFS (HR 0.70, 95% CI: 0.54-0.90, p = 0.007). Elevated pre- and postoperative CEA and CA19-9 as well as postoperative CRP indicated impaired survival. CONCLUSIONS Pre- and postoperatively high MMP-8 associates with worse 10-year OS, and postoperatively high MPO associates with better 5-year DFS. CEA, CA19-9, and CRP are also prognostic.
Collapse
Affiliation(s)
- Pauliina Reijonen
- Transplantation and Liver Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Reetta Peltonen
- Transplantation and Liver Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Taina Tervahartiala
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Helena Isoniemi
- Transplantation and Liver Surgery, Abdominal Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,Research Programs Unit, Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland
| |
Collapse
|
49
|
Zhang C, Gao H, Liu Z, Lai J, Zhan Z, Chen Y, Huang H. Mechanisms involved in the anti-tumor effects of Toosendanin in glioma cells. Cancer Cell Int 2021; 21:492. [PMID: 34530814 PMCID: PMC8444588 DOI: 10.1186/s12935-021-02186-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/30/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Toosendanin (TSN) is a triterpenoid compound mainly used as an ascaris repellant. Recent studies have shown that it possesses antitumor effects in many types of tumor cells. However, the effects of TSN on glioma cells have rarely been reported. METHODS Different assays were performed to investigate the effects of TSN on the different glioma cell lines including U87MG and LN18. The assays included colony formation, wound healing, and transwell assays. Furthermore, Hoechst 33342 staining, flow cytometry, and western blotting analysis were performed to investigate the apoptotic activities of TSN. Finally, the results were confirmed using a xenograft tumor model that comprised of nude mice. RESULTS In vitro, the CCK-8 and colony formation assays showed that TSN effectively inhibited glioma cell proliferation. Moreover, the inhibitory effects on glioma cell migration and invasion were demonstrated through the wound healing and transwell assays, respectively. Hoechst 33342 staining, flow cytometry, and western blotting assays demonstrated the significant effect of TSN in the apoptosis induction of glioma cells. Furthermore, the anti-glioma effect of TSN was exerted through the inhibition of the PI3K/Akt/mTOR signaling pathways as demonstrated by western blotting analysis. In addition, the effects of TSN on glioma cell viability, apoptosis, cell cycle arrest, migration, and invasion were reversed by 740Y-P, a PI3K activator. Finally, the mouse xenograft model confirmed the suppressive effect of TSN on tumor growth in vivo. CONCLUSION Our results suggest that TSN is a promising chemotherapeutic drug for patients with glioma.
Collapse
Affiliation(s)
- Chaochao Zhang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Haijun Gao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Ziqiang Liu
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jiacheng Lai
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Zhixin Zhan
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yong Chen
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Haiyan Huang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
50
|
Mottaghi S, Abbaszadeh H. The anticarcinogenic and anticancer effects of the dietary flavonoid, morin: Current status, challenges, and future perspectives. Phytother Res 2021; 35:6843-6861. [PMID: 34498311 DOI: 10.1002/ptr.7270] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/14/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022]
Abstract
Flavonoids constitute one of the most important classes of polyphenols, which have been found to have a wide range of biological activities such as anticancer effects. A large body of evidence demonstrates that morin as a pleiotropic dietary flavonoid possesses potent anticarcinogenic and anticancer activities with minimal toxicity against normal cells. The present review comprehensively elaborates the molecular mechanisms underlying antitumorigenic and anticancer effects of morin. Morin exerts its anticarcinogenic effects through multiple cancer preventive mechanisms, including reduction of oxidative stress, activation of phase II enzymes, induction of apoptosis, attenuation of inflammatory mediators, and downregulation of p-Akt and NF-κB expression. A variety of molecular targets and signaling pathways such as apoptosis, cell cycle, reactive oxygen species (ROS), matrix metalloproteinases (MMPs), epithelial-mesenchymal transition (EMT), and microRNAs (miRNAs) as well as signal transducer and activator of transcription 3 (STAT3), NF-κB, phosphatidylinositol 3-kinase (PI3K)/Akt, mitogen-activated protein kinase (MAPK), and Hippo pathways have been found to be involved in the anticancer effects of morin. In the adjuvant therapy, morin has been shown to have synergistic anticancer effects with several chemotherapeutic drugs. The findings of this review indicate that morin can act as a promising chemopreventive and chemotherapeutic agent.
Collapse
Affiliation(s)
- Sayeh Mottaghi
- Department of Pediatrics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hassan Abbaszadeh
- Department of Pharmacology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|