1
|
Novelle MG, Naranjo-Martínez B, López-Cánovas JL, Díaz-Ruiz A. Fecal microbiota transplantation, a tool to transfer healthy longevity. Ageing Res Rev 2025; 103:102585. [PMID: 39586550 DOI: 10.1016/j.arr.2024.102585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/13/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024]
Abstract
The complex gut microbiome influences host aging and plays an important role in the manifestation of age-related diseases. Restoring a healthy gut microbiome via Fecal Microbiota Transplantation (FMT) is receiving extensive consideration to therapeutically transfer healthy longevity. Herein, we comprehensively review the benefits of gut microbial rejuvenation - via FMT - to promote healthy aging, with few studies documenting life length properties. This review explores how preconditioning donors via standard - lifestyle and pharmacological - antiaging interventions reshape gut microbiome, with the resulting benefits being also FMT-transferable. Finally, we expose the current clinical uses of FMT in the context of aging therapy and address FMT challenges - regulatory landscape, protocol standardization, and health risks - that require refinement to effectively utilize microbiome interventions in the elderly.
Collapse
Affiliation(s)
- Marta G Novelle
- Department of Genetics, Physiology and Microbiology (Unity of Animal Physiology), Faculty of Biology, Complutense University of Madrid (UCM), Madrid, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Spain
| | - Beatriz Naranjo-Martínez
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Juan L López-Cánovas
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain
| | - Alberto Díaz-Ruiz
- Laboratory of Cellular and Molecular Gerontology, Precision Nutrition and Aging, Madrid Institute for Advanced Studies - IMDEA Food, CEI UAM+CSIC, Madrid, Spain; CIBER Physiopathology of Obesity and Nutrition (CIBERobn), Spain.
| |
Collapse
|
2
|
Morris MJ, Hasebe K, Shinde AL, Leong MKH, Billah MM, Hesam-Shariati S, Kendig MD. Time-restricted feeding does not prevent adverse effects of palatable cafeteria diet on adiposity, cognition and gut microbiota in rats. J Nutr Biochem 2024; 134:109761. [PMID: 39251144 DOI: 10.1016/j.jnutbio.2024.109761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
Time-restricted feeding (TRF) is a popular dietary strategy whereby daily food intake is limited to a <12h window. As little is known about the effects of TRF on cognitive and behavioral measures, the present study examined the effects of time-restricted (8h/day; zeitgeber time [ZT]12-20) or continuous access to a high-fat, high-sugar cafeteria-style diet (Caf; Caf and Caf-TRF groups; n=12 adult male Sprague-Dawley rats) or standard chow (Chow and Chow-TRF groups) on short-term memory, anxiety-like behavior, adiposity and gut microbiota composition over 13-weeks with daily food intake measures. TRF significantly reduced daily energy intake in Caf- but not chow-fed groups. In Caf-fed groups, TRF reduced the proportion of energy derived from sugar while increasing that derived from protein. Caf diet significantly increased weight gain, adiposity and fasting glucose within 4 weeks; TRF partially reduced these effects. Caf diet increased anxiety-like behavior in the Elevated Plus Maze in week 3 but not week 12, and impaired hippocampal-dependent place recognition memory in week 11; neither measure was affected by TRF. Global microbiota composition differed markedly between chow and Caf groups, with a small effect of TRF in rats fed chow. In both chow and Caf diet groups, TRF reduced microbiota alpha diversity measures of Shannon diversity and evenness relative to continuous access. Results indicate only limited benefits of TRF access to an obesogenic diet under these conditions, suggesting that more severe time restriction may be required to offset adverse metabolic and cognitive effects when using highly palatable diets.
Collapse
Affiliation(s)
| | - Kyoko Hasebe
- School of Biomedical Sciences, UNSW Sydney, Kensington, Australia
| | - Arya L Shinde
- School of Biomedical Sciences, UNSW Sydney, Kensington, Australia
| | | | | | | | - Michael D Kendig
- School of Biomedical Sciences, UNSW Sydney, Kensington, Australia; School of Life Sciences, University of Technology Sydney, Ultimo, Australia.
| |
Collapse
|
3
|
Ribas-Latre A, Fernández-Veledo S, Vendrell J. Time-restricted eating, the clock ticking behind the scenes. Front Pharmacol 2024; 15:1428601. [PMID: 39175542 PMCID: PMC11338815 DOI: 10.3389/fphar.2024.1428601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
Introduction Maintaining metabolic balance relies on accumulating nutrients during feeding periods and their subsequent release during fasting. In obesity and metabolic disorders, strategies aimed at reducing food intake while simulating fasting have garnered significant attention for weight loss. Caloric restriction (CR) diets and intermittent fasting (IF) interventions have emerged as effective approaches to improving cardiometabolic health. Although the comparative metabolic benefits of CR versus IF remain inconclusive, this review focuses on various forms of IF, particularly time-restricted eating (TRE). Methods This study employs a narrative review methodology, systematically collecting, synthesizing, and interpreting the existing literature on TRE and its metabolic effects. A comprehensive and unbiased search of relevant databases was conducted to identify pertinent studies, including pre-clinical animal studies and clinical trials in humans. Keywords such as "Obesity," "Intermittent Fasting," "Time-restricted eating," "Chronotype," and "Circadian rhythms" guided the search. The selected studies were critically appraised based on predefined inclusion and exclusion criteria, allowing for a thorough exploration and synthesis of current knowledge. Results This article synthesizes pre-clinical and clinical studies on TRE and its metabolic effects, providing a comprehensive overview of the current knowledge and identifying gaps for future research. It explores the metabolic outcomes of recent clinical trials employing different TRE protocols in individuals with overweight, obesity, or type II diabetes, emphasizing the significance of individual chronotype, which is often overlooked in practice. In contrast to human studies, animal models underscore the role of the circadian clock in mitigating metabolic disturbances induced by obesity through time-restricted feeding (TRF) interventions. Consequently, we examine pre-clinical evidence supporting the interplay between the circadian clock and TRF interventions. Additionally, we provide insights into the role of the microbiota, which TRE can modulate and its influence on circadian rhythms.
Collapse
Affiliation(s)
- Aleix Ribas-Latre
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departament de Medicina i Cirugia, Universitat Rovira i Virgili (URV), Tarragona, Spain
| | - Sonia Fernández-Veledo
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departament de Medicina i Cirugia, Universitat Rovira i Virgili (URV), Tarragona, Spain
| | - Joan Vendrell
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Hospital Universitari de Tarragona, Tarragona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM)-Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departament de Medicina i Cirugia, Universitat Rovira i Virgili (URV), Tarragona, Spain
| |
Collapse
|
4
|
Pieczyńska-Zając JM, Malinowska A, Łagowska K, Leciejewska N, Bajerska J. The effects of time-restricted eating and Ramadan fasting on gut microbiota composition: a systematic review of human and animal studies. Nutr Rev 2024; 82:777-793. [PMID: 37528052 PMCID: PMC11082590 DOI: 10.1093/nutrit/nuad093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
CONTEXT It is well known that the microbiome undergoes cyclical diurnal rhythms. It has thus been hypothesized that meal timing may affect gut microbial composition, function, and host health. OBJECTIVE This review aims to examine the effects of time-restricted eating (TRE) and Ramadan fasting (RF) on the composition of the gut microbiota in animal and human studies. The associations between composition of microbiota and host metabolic parameters are also examined. DATA SOURCES A search was performed on the PubMed, Cochrane, Scopus, and Web of Science databases up to December 31, 2022. The search strategy was performed using the Medical Subject Heading (MeSH) terms "intermittent fasting" and "gastrointestinal microbiome" and the key words "Ramadan fasting" and "microbes." DATA EXTRACTION Seven human studies (4 TRE and 3 RF) and 9 animal studies (7 TRE, 2 RF-like) were retrieved. DATA ANALYSIS TRE and RF in human studies lead to an increase in gut microbial community alpha-diversity. In animal studies (both TRE and RF-like), fasting is not associated with improved alpha-diversity, but enhancement of microbial fluctuation is observed, compared with high-fat diet ad libitum groups. Within Firmicutes and Bacteroidetes phyla, no specific direction of changes resulting from fasting are observed in both animals and human. After TRE or RF, a greater abundance of the Faecalibacterium genus is observed in human studies; changes in Lactobacillus abundance are found in animal studies; and increases in Akkermansia are seen both in humans and in animals fed a feed-pellet diet. Only 2 human studies show a beneficial correlation between microbiota changes and host metabolic (HDL cholesterol) or anthropometric parameters (body mass index). CONCLUSIONS These findings support the importance of both regimens in improving the gut microbiota composition. However, based on results of animal studies, it can be suggested that diet remains the essential factor in forming the microbiota's environment. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration no. CRD42021278918.
Collapse
Affiliation(s)
| | - Anna Malinowska
- Laboratory of Microbiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Karolina Łagowska
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland
| | - Natalia Leciejewska
- Department of Physiology, Biochemistry, and Biostructure of Animals, Poznań University of Life Sciences, Poznań, Poland
| | - Joanna Bajerska
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
5
|
Guo J, Shi W, Li X, Yang B, Qin C, Su L. Comparative Analysis of Gut Microbiomes in Laboratory Chinchillas, Ferrets, and Marmots: Implications for Pathogen Infection Research. Microorganisms 2024; 12:646. [PMID: 38674591 PMCID: PMC11051751 DOI: 10.3390/microorganisms12040646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/17/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Gut microbes play a vital role in the health and disease of animals, especially in relation to pathogen infections. Chinchillas, ferrets, and marmots are commonly used as important laboratory animals for infectious disease research. Here, we studied the bacterial and fungal microbiota and discovered that chinchillas had higher alpha diversity and a higher abundance of bacteria compared to marmots and ferrets by using the metabarcoding of 16S rRNA genes and ITS2, coupled with co-occurrence network analysis. The dominant microbes varied significantly among the three animal species, particularly in the gut mycobiota. In the ferrets, the feces were dominated by yeast such as Rhodotorula and Kurtzmaniella, while in the chinchillas, we found Teunomyces and Penicillium dominating, and Acaulium, Piromyces, and Kernia in the marmots. Nevertheless, the dominant bacterial genera shared some similarities, such as Clostridium and Pseudomonas across the three animal species. However, there were significant differences observed, such as Vagococcus and Ignatzschineria in the ferrets, Acinetobacter and Bacteroides in the chinchillas, and Bacteroides and Cellvibrio in the marmots. Additionally, our differential analysis revealed significant differences in classification levels among the three different animal species, as well as variations in feeding habitats that resulted in distinct contributions from the host microbiome. Therefore, our data are valuable for monitoring and evaluating the impacts of the microbiome, as well as considering potential applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Lei Su
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, International Center for Technology and Innovation of Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing 100021, China; (J.G.); (W.S.); (X.L.); (B.Y.); (C.Q.)
| |
Collapse
|
6
|
Huang H, Wang Q, Yang Y, Zhong W, He F, Li J. The mycobiome as integral part of the gut microbiome: crucial role of symbiotic fungi in health and disease. Gut Microbes 2024; 16:2440111. [PMID: 39676474 DOI: 10.1080/19490976.2024.2440111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024] Open
Abstract
The gut mycobiome significantly affects host health and immunity. However, most studies have focused on symbiotic bacteria in the gut microbiome, whereas less attention has been given to symbiotic fungi. Although fungi constitute only 0.01%-0.1% of the gut microbiome, their larger size and unique immunoregulatory functions make them significant. Factors like diet, antimicrobials use, and age can disrupt the fungal community, leading to dysbiosis. Fungal-bacterial-host immune interactions are critical in maintaining gut homeostasis, with fungi playing a role in mediating immune responses such as Th17 cell activation. This review highlights methods for studying gut fungi, the composition and influencing factors of the gut mycobiome, and its potential in therapeutic interventions for intestinal and hepatic diseases. We aim to provide new insights into the underexplored role of gut fungi in human health.
Collapse
Affiliation(s)
- Hui Huang
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P. R. China
- Department of Gastroenterology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P. R. China
| | - Qiurong Wang
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P. R. China
- Department of Gastroenterology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P. R. China
| | - Ying Yang
- Department of Gastroenterology, Sichuan Fifth People's Hospital, Chengdu, China
| | - Wei Zhong
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P. R. China
| | - Feng He
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P. R. China
- Department of Gastroenterology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P. R. China
| | - Jun Li
- Department of Clinical Medicine, Chengdu Medical College, Chengdu, Sichuan, P. R. China
- Department of Gastroenterology, First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, P. R. China
| |
Collapse
|
7
|
Clayton DJ, Varley I, Papageorgiou M. Intermittent fasting and bone health: a bone of contention? Br J Nutr 2023; 130:1487-1499. [PMID: 36876592 PMCID: PMC10551474 DOI: 10.1017/s0007114523000545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/23/2023] [Accepted: 02/24/2023] [Indexed: 03/07/2023]
Abstract
Intermittent fasting (IF) is a promising strategy for weight loss and improving metabolic health, but its effects on bone health are less clear. This review aims to summarise and critically evaluate the preclinical and clinical evidence on IF regimens (the 5:2 diet, alternate-day fasting (ADF) and time-restricted eating (TRE)/time-restricted feeding and bone health outcomes. Animal studies have utilised IF alongside other dietary practices known to elicit detrimental effects on bone health and/or in models mimicking specific conditions; thus, findings from these studies are difficult to apply to humans. While limited in scope, observational studies suggest a link between some IF practices (e.g. breakfast omission) and compromised bone health, although lack of control for confounding factors makes these data difficult to interpret. Interventional studies suggest that TRE regimens practised up to 6 months do not adversely affect bone outcomes and may even slightly protect against bone loss during modest weight loss (< 5 % of baseline body weight). Most studies on ADF have shown no adverse effects on bone outcomes, while no studies on the ‘5–2’ diet have reported bone outcomes. Available interventional studies are limited by their short duration, small and diverse population samples, assessment of total body bone mass exclusively (by dual-energy X-ray absorptiometry) and inadequate control of factors that may affect bone outcomes, making the interpretation of existing data challenging. Further research is required to better characterise bone responses to various IF approaches using well-controlled protocols of sufficient duration, adequately powered to assess changes in bone outcomes and designed to include clinically relevant bone assessments.
Collapse
Affiliation(s)
- David J. Clayton
- Musculoskeletal Research Group, Nottingham Trent University, Clifton Campus, Nottingham, UK
| | - Ian Varley
- Musculoskeletal Research Group, Nottingham Trent University, Clifton Campus, Nottingham, UK
| | - Maria Papageorgiou
- Division of Bone Diseases, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
8
|
Wang L, Wang F, Xiong L, Song H, Ren B, Shen X. A nexus of dietary restriction and gut microbiota: Recent insights into metabolic health. Crit Rev Food Sci Nutr 2023; 64:8649-8671. [PMID: 37154021 DOI: 10.1080/10408398.2023.2202750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In recent times, dietary restriction (DR) has received considerable attention for its promising effects on metabolism and longevity. Previous studies on DR have mainly focused on the health benefits produced by different restriction patterns, whereas comprehensive reviews of the role of gut microbiota during DR are limited. In this review, we discuss the effects of caloric restriction, fasting, protein restriction, and amino acid restriction from a microbiome perspective. Furthermore, the underlying mechanisms by which DR affects metabolic health by regulating intestinal homeostasis are summarized. Specifically, we reviewed the impacts of different DRs on specific gut microbiota. Additionally, we put forward the limitations of the current research and suggest the development of personalized microbes-directed DR for different populations and corresponding next-generation sequencing technologies for accurate microbiological analysis. DR effectively modulates the composition of the gut microbiota and microbial metabolites. In particular, DR markedly affects the rhythmic oscillation of microbes which may be related to the circadian clock system. Moreover, increasing evidence supports that DR profoundly improves metabolic syndrome, inflammatory bowel disease, and cognitive impairment. To summarize, DR may be an effective and executable dietary manipulation strategy for maintaining metabolic health, however, further investigation is needed to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Luanfeng Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Fang Wang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Ling Xiong
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Haizhao Song
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Bo Ren
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Xinchun Shen
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
9
|
Impact of caloric restriction on the gut microbiota. Curr Opin Microbiol 2023; 73:102287. [PMID: 36868081 DOI: 10.1016/j.mib.2023.102287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 03/05/2023]
Abstract
Caloric restriction (CR) and related time-restricted diets have been popularized as means of preventing metabolic disease while improving general well-being. However, evidence as to their long-term efficacy, adverse effects, and mechanisms of activity remains incompletely understood. The gut microbiota is modulated by such dietary approaches, yet causal evidence to its possible downstream impacts on host metabolism remains elusive. Herein, we discuss the positive and adverse influences of restrictive dietary interventions on gut microbiota composition and function, and their collective impacts on host health and disease risk. We highlight known mechanisms of microbiota influences on the host, such as modulation of bioactive metabolites, while discussing challenges in achieving mechanistic dietary-microbiota insights, including interindividual variability in dietary responses as well as other methodological and conceptual challenges. In all, causally understanding the impact of CR approaches on the gut microbiota may enable to better decode their overall influences on human physiology and disease.
Collapse
|
10
|
Zeb F, Osaili T, Obaid RS, Naja F, Radwan H, Cheikh Ismail L, Hasan H, Hashim M, Alam I, Sehar B, Faris ME. Gut Microbiota and Time-Restricted Feeding/Eating: A Targeted Biomarker and Approach in Precision Nutrition. Nutrients 2023; 15:259. [PMID: 36678130 PMCID: PMC9863108 DOI: 10.3390/nu15020259] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/27/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023] Open
Abstract
Each individual has a unique gut microbiota; therefore, the genes in our microbiome outnumber the genes in our genome by about 150 to 1. Perturbation in host nutritional status influences gut microbiome composition and vice versa. The gut microbiome can help in producing vitamins, hormones, and other active metabolites that support the immune system; harvest energy from food; aid in digestion; protect against pathogens; improve gut transit and function; send signals to the brain and other organs; oscillate the circadian rhythm; and coordinate with the host metabolism through multiple cellular pathways. Gut microbiota can be influenced by host genetics, medications, diet, and lifestyle factors from preterm to aging. Aligning with precision nutrition, identifying a personalized microbiome mandates the provision of the right nutrients at the right time to the right patient. Thus, before prescribing a personalized treatment, it is crucial to monitor and count the gut flora as a focused biomarker. Many nutritional approaches that have been developed help in maintaining and restoring an optimal microbiome such as specific diet therapy, nutrition interventions, and customized eating patterns. One of these approaches is time-restricted feeding/eating (TRF/E), a type of intermittent fasting (IF) in which a subject abstains from food intake for a specific time window. Such a dietary modification might alter and restore the gut microbiome for proper alignment of cellular and molecular pathways throughout the lifespan. In this review, we have highlighted that the gut microbiota would be a targeted biomarker and TRF/E would be a targeted approach for restoring the gut-microbiome-associated molecular pathways such as hormonal signaling, the circadian system, metabolic regulators, neural responses, and immune-inflammatory pathways. Consequently, modulation of the gut microbiota through TRF/E could contribute to proper utilization and availability of the nutrients and in this way confer protection against diseases for harnessing personalized nutrition approaches to improve human health.
Collapse
Affiliation(s)
- Falak Zeb
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Tareq Osaili
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Reyad Shakir Obaid
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Farah Naja
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hadia Radwan
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Leila Cheikh Ismail
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hayder Hasan
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mona Hashim
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Iftikhar Alam
- Department of Human Nutrition and Dietetics, Bacha Khan University Charsadda, Peshawar 24540, KP, Pakistan
| | - Bismillah Sehar
- Department of Health and Social Sciences, University of Bedfordshire, Luton LU1 3JU, UK
| | - MoezAllslam Ezzat Faris
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
11
|
Tsitsou S, Zacharodimos N, Poulia KA, Karatzi K, Dimitriadis G, Papakonstantinou E. Effects of Time-Restricted Feeding and Ramadan Fasting on Body Weight, Body Composition, Glucose Responses, and Insulin Resistance: A Systematic Review of Randomized Controlled Trials. Nutrients 2022; 14:4778. [PMID: 36432465 PMCID: PMC9696013 DOI: 10.3390/nu14224778] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Time-restricted feeding (TRF) and Ramadan fasting (RF) have been recently associated with several health outcomes. However, it is not yet clear if they are superior to existing treatments in terms of glucose metabolism, insulin action, and weight loss. This review aims to summarize the current data on the effects of these regimes on body weight, body composition, and glycemia. An electronic search was conducted in PUBMED and SCOPUS databases up to August 2022. Twenty-four records met the inclusion criteria and underwent a risk-of-bias assessment. The main outcomes were: (a) TRF may result in moderate weight loss in individuals with overweight/obesity; when TRF is combined with caloric restriction, weight loss is >5% of the initial body weight, (b) 14 h of fasting may be as effective as 16 h in terms of weight loss, and (c) TRF may lead to improved insulin sensitivity and glycemic responses/variability throughout the day in individuals with overweight/obesity. Concerning RF, only two studies were available and thus, conclusions were not drawn. TRF may be an effective nutritional approach for weight loss, and the amelioration of glycemic control and insulin sensitivity in individuals with overweight/obesity. However, more long-term, well-designed studies are needed.
Collapse
Affiliation(s)
- Sofia Tsitsou
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Nikolaos Zacharodimos
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Kalliopi-Anna Poulia
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - Kalliopi Karatzi
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| | - George Dimitriadis
- Sector of Medicine, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece
| | - Emilia Papakonstantinou
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece
| |
Collapse
|
12
|
Abstract
Sarcopenia is common in aging and in patients with heart failure (HF) who may experience worse outcomes. Patients with muscle wasting are more likely to experience falls and can have serious complications when undergoing cardiac procedures. While intensive nutritional support and exercise rehabilitation can help reverse some of these changes, they are often under-prescribed in a timely manner, and we have limited insights into who would benefit. Mechanistic links between gut microbial metabolites (GMM) have been identified and may contribute to adverse clinical outcomes in patients with cardio-renal diseases and aging. This review will examine the emerging evidence for the influence of the gut microbiome-derived metabolites and notable signaling pathways involved in both sarcopenia and HF, especially those linked to dietary intake and mitochondrial metabolism. This provides a unique opportunity to gain mechanistic and clinical insights into developing novel therapeutic strategies that target these GMM pathways or through tailored nutritional modulation to prevent progressive muscle wasting in elderly patients with heart failure.
Collapse
Affiliation(s)
- Chia-Feng Liu
- Center for Microbiome and Human Health, Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, OH 44195, USA
| | - W H Wilson Tang
- Center for Microbiome and Human Health, Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, OH 44195, USA.,Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
13
|
Wu N, Mo H, Mu Q, Liu P, Liu G, Yu W. The Gut Mycobiome Characterization of Gestational Diabetes Mellitus and Its Association With Dietary Intervention. Front Microbiol 2022; 13:892859. [PMID: 35783435 PMCID: PMC9240440 DOI: 10.3389/fmicb.2022.892859] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/16/2022] [Indexed: 12/25/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is a high-risk pregnancy complication that is associated with metabolic disorder phenotypes, such as abnormal blood glucose and obesity. The active interface between gut microbiota and diet contributes to metabolic homeostasis in GDM. However, the contributions of gut mycobiome have been neglected. Here, we profiled the gut fungi between GDM and healthy subjects at two time points and investigate whether variations in gut mycobiome correlate with key features of host metabolism and diet management in this observational study. We identified that Hanseniaspora, Torulaspora, Auricularia, Alternaria, and Candida contributed to GDM patient clustering, indicating that these fungal taxa are associated with abnormal blood glucose levels, and the causality needs to be further explored. While Penicillium, Ganoderma, Fusarium, Chaetomium, and Heterobasidion had significant explanatory effects on healthy subject clustering. In addition, spearman analysis further indicated that blood glucose levels were negatively correlated with polysaccharide-producing genera, Ganoderma, which could be reshaped by the short-term diet. The Penicillium which was negatively correlates with metabolic parameters, also exhibited the antimicrobial attribute by the fungal-bacterial interaction analysis. These data suggest that host metabolic homeostasis in GDM may be influenced by variability in the mycobiome and could be reshaped by the diet intervention. This work reveals the potential significance of the gut mycobiome in health and has implications for the beneficial effects of diet intervention on host metabolic homeostasis through regulating gut fungal abundance and metabolites.
Collapse
Affiliation(s)
- Na Wu
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing, China
| | - Heng Mo
- Department of Stomatology, Peking University People’s Hospital, Beijing, China
| | - Qing Mu
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing, China
| | - Peng Liu
- Department of Clinical Nutrition, Peking University People’s Hospital, Beijing, China
- *Correspondence: Peng Liu,
| | - Guoli Liu
- Department of Obstetrics and Gynecology, Peking University People’s Hospital, Beijing, China
- Guoli Liu,
| | - Weidong Yu
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing, China
- Weidong Yu,
| |
Collapse
|
14
|
Ratiner K, Shapiro H, Goldenberg K, Elinav E. Time-limited diets and the gut microbiota in cardiometabolic disease. J Diabetes 2022; 14:377-393. [PMID: 35698246 PMCID: PMC9366560 DOI: 10.1111/1753-0407.13288] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/11/2022] [Accepted: 05/26/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, intermittent fasting (IF), including periodic fasting and time-restricted feeding (TRF), has been increasingly suggested to constitute a promising treatment for cardiometabolic diseases (CMD). A deliberate daily pause in food consumption influences the gut microbiome and the host circadian clock, resulting in improved cardiometabolic health. Understanding the molecular mechanisms by which circadian host-microbiome interactions affect host metabolism and immunity may add a potentially important dimension to effective implementation of IF diets. In this review, we discuss emerging evidence potentially linking compositional and functional alterations of the gut microbiome with IF impacts on mammalian metabolism and risk of development of hypertension, type 2 diabetes (T2D), obesity, and their long-term micro- and macrovascular complications. We highlight the challenges and unknowns in causally linking diurnal bacterial signals with dietary cues and downstream metabolic consequences and means of harnessing these signals toward future microbiome integration into precision medicine.
Collapse
Affiliation(s)
- Karina Ratiner
- Systems Immunology DepartmentWeizmann Institute of ScienceRehovotIsrael
| | - Hagit Shapiro
- Systems Immunology DepartmentWeizmann Institute of ScienceRehovotIsrael
| | - Kim Goldenberg
- Systems Immunology DepartmentWeizmann Institute of ScienceRehovotIsrael
| | - Eran Elinav
- Systems Immunology DepartmentWeizmann Institute of ScienceRehovotIsrael
- Microbiome & Cancer Division, DKFZHeidelbergGermany
| |
Collapse
|
15
|
Malay apple (Syzygium malaccense) promotes changes in lipid metabolism and a hepatoprotective effect in rats fed a high-fat diet. Food Res Int 2022; 155:110994. [DOI: 10.1016/j.foodres.2022.110994] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/04/2022] [Accepted: 01/16/2022] [Indexed: 01/24/2023]
|
16
|
Demir M, Lang S, Hartmann P, Duan Y, Martin A, Miyamoto Y, Bondareva M, Zhang X, Wang Y, Kasper P, Bang C, Roderburg C, Tacke F, Steffen HM, Goeser T, Kruglov A, Eckmann L, Stärkel P, Fouts DE, Schnabl B. The fecal mycobiome in non-alcoholic fatty liver disease. J Hepatol 2022; 76:788-799. [PMID: 34896404 PMCID: PMC8981795 DOI: 10.1016/j.jhep.2021.11.029] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Studies investigating the gut-liver axis have largely focused on bacteria, whereas little is known about commensal fungi. We characterized fecal fungi in patients with non-alcoholic fatty liver disease (NAFLD) and investigated their role in a fecal microbiome-humanized mouse model of Western diet-induced steatohepatitis. METHODS We performed fungal internal transcribed spacer 2 sequencing using fecal samples from 78 patients with NAFLD, 16 controls and 73 patients with alcohol use disorder. Anti-Candida albicans (C. albicans) IgG was measured in blood samples from 17 controls and 79 patients with NAFLD. Songbird, a novel multinominal regression tool, was used to investigate mycobiome changes. Germ-free mice were colonized with feces from patients with non-alcoholic steatohepatitis (NASH), fed a Western diet for 20 weeks and treated with the antifungal amphotericin B. RESULTS The presence of non-obese NASH or F2-F4 fibrosis was associated with a distinct fecal mycobiome signature. Changes were characterized by an increased log-ratio for Mucor sp./Saccharomyces cerevisiae (S. cerevisiae) in patients with NASH and F2-F4 fibrosis. The C. albicans/S. cerevisiae log-ratio was significantly higher in non-obese patients with NASH when compared with non-obese patients with NAFL or controls. We observed a different fecal mycobiome composition in patients with NAFLD and advanced fibrosis compared to those with alcohol use disorder and advanced fibrosis. Plasma anti-C. albicans IgG was increased in patients with NAFLD and advanced fibrosis. Gnotobiotic mice, colonized with human NASH feces and treated with amphotericin B were protected from Western diet-induced steatohepatitis. CONCLUSIONS Non-obese patients with NAFLD and more advanced disease have a different fecal mycobiome composition to those with mild disease. Antifungal treatment ameliorates diet-induced steatohepatitis in mice. Intestinal fungi could be an attractive target to attenuate NASH. LAY SUMMARY Non-alcoholic fatty liver disease is one of the most common chronic liver diseases and is associated with changes in the fecal bacterial microbiome. We show that patients with non-alcoholic fatty liver disease and more severe disease stages have a specific composition of fecal fungi and an increased systemic immune response to Candida albicans. In a fecal microbiome-humanized mouse model of Western diet-induced steatohepatitis, we show that treatment with antifungals reduces liver damage.
Collapse
Affiliation(s)
- Münevver Demir
- Department of Hepatology and Gastroenterology, Campus Virchow Clinic and Campus Charité Mitte, Charité University Medicine, Berlin, Germany
| | - Sonja Lang
- University of Cologne, Faculty of Medicine, and University Hospital Cologne, Department of Gastroenterology and Hepatology, Cologne, Germany,Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Phillipp Hartmann
- Department of Medicine, University of California San Diego, La Jolla, CA, USA,Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Yi Duan
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Anna Martin
- University of Cologne, Faculty of Medicine, and University Hospital Cologne, Department of Gastroenterology and Hepatology, Cologne, Germany
| | - Yukiko Miyamoto
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Marina Bondareva
- Belozerskiy Research Institute for Physical and Chemical Biology and Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Moscow, 119991, Russia,Chronic Inflammation Lab, German Rheumatism Research Center, a Leibniz Institute, Berlin, Germany
| | - Xinlian Zhang
- Division of Biostatistics and Bioinformatics, Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, CA, USA
| | - Yanhan Wang
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Philipp Kasper
- University of Cologne, Faculty of Medicine, and University Hospital Cologne, Department of Gastroenterology and Hepatology, Cologne, Germany
| | - Corinna Bang
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24105 Kiel, Germany
| | - Christoph Roderburg
- Department of Hepatology and Gastroenterology, Campus Virchow Clinic and Campus Charité Mitte, Charité University Medicine, Berlin, Germany,Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Medical Faculty of Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow Clinic and Campus Charité Mitte, Charité University Medicine, Berlin, Germany
| | - Hans-Michael Steffen
- University of Cologne, Faculty of Medicine, and University Hospital Cologne, Department of Gastroenterology and Hepatology, Cologne, Germany
| | - Tobias Goeser
- University of Cologne, Faculty of Medicine, and University Hospital Cologne, Department of Gastroenterology and Hepatology, Cologne, Germany
| | - Andrey Kruglov
- Belozerskiy Research Institute for Physical and Chemical Biology and Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Moscow, 119991, Russia,Chronic Inflammation Lab, German Rheumatism Research Center, a Leibniz Institute, Berlin, Germany
| | - Lars Eckmann
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Peter Stärkel
- St. Luc University Hospital, Université Catholique de Louvain, Brussels, Belgium
| | - Derrick E. Fouts
- Department of Genomic Medicine, J. Craig Venter Institute, Rockville, MD, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA; Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
17
|
Pinto FCS, Silva AAM, Souza SL. Repercussions of intermittent fasting on the intestinal microbiota community and body composition: a systematic review. Nutr Rev 2022; 80:613-628. [PMID: 35020929 DOI: 10.1093/nutrit/nuab108] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
CONTEXT Several therapies have been tested for combating weight gain and obesity-related metabolic diseases, and among these therapies, intermittent fasting (IF) has gained a great deal of interest. OBJECTIVE The aim of this study was to provide the reader with a current survey of IF protocols and an understanding of the outcomes found to date in terms of the profile of the intestinal microbiota (IM) in obese organisms. DATA SOURCES Data were obtained from 4 databases: PubMed, SCOPUS, LILACs, and Web of Science. DATA EXTRACTION Data from studies relating IF protocols to the microbiota and weight loss were extracted using a protocol in START program. DATA ANALYSIS Of the 82 original articles identified from the databases, 35 were eliminated due to duplication, and 32 were excluded due to not meeting the inclusion criteria. Two additional articles found in a new search were added, yielding a total of 17 studies to be included in this review. Among the protocols, alternate-day fasting (ADF) and time-restricted feeding (TRF) were the most common, and they were shown to have different mechanisms of metabolic signaling. TRF influences weight control and biochemical parameters by regulating the circadian system, and improving satiety control systems by acting on leptin secretion. On the other hand, ADF leads to a reduction of ±75% of all energy consumption regardless of dietary composition in addition to promoting hormonal adjustments that promote weight control. Furthermore, both protocols showed the ability to remodel the IM by changing the Firmicutes/Bacteroidetes ratio and increasing the abundance of strains such as Lactobacillus spp. and Akkermansia m. that have a protective effect on metabolism against the effects of weight gain. CONCLUSION In short, the ADF and TRF protocols have a positive effect on the remodeling of the IM and can possibly be used to control body adiposity, improve insulin sensitivity, and achieve other obesity-related metabolic changes.
Collapse
Affiliation(s)
- Flaydson C S Pinto
- Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
| | - Amanda A M Silva
- Faculty of Medical Sciences, University of Pernambuco, Recife, Brazil
| | - Sandra L Souza
- Department of Nutrition, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
18
|
Soares NL, Dorand VAM, Cavalcante HC, Batista KS, de Souza DM, Lima MDS, Salvadori MGDSS, Magnani M, Alves AF, Aquino JDS. Does intermittent fasting associated with aerobic training influence parameters related to the gut-brain axis of Wistar rats? J Affect Disord 2021; 293:176-185. [PMID: 34214787 DOI: 10.1016/j.jad.2021.06.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Intermittent fasting (IF) and aerobic training have demonstrated beneficial effects on intestinal microbiota composition, but little is known about benefits to the brain through the gut-brain axis. The present study aimed to evaluate gut-brain axis parameters in Wistar rats submitted to IF associated or not with aerobic training. METHODS Male rats were evaluated for training performance and then randomized into 4 groups of ten: sedentary control (SC), trained control (TC), sedentary intermittent fasting (SIF), and trained intermittent fasting (TIF), and evaluated during four weeks. RESULTS The adiposity index was similar among the TC (2.15±0.43%), SIF (1.98±0.69%) and TIF (1.86±0.51%) groups, and differed from SC (2.98±0.80%). TIF had lower counts of lactic acid bacteria, while SIF had higher counts of Bifidobacterium and Enterococcus. TIF had the highest amount of formic acid in faeces (44.44±2.40 μmol/g) and lowest amount of succinic acid in the gut (0.38±0.00 μmol/g), while SIF had the highest propionic acid amount in the faeces (802.80±00.33 μmol/g) and the lowest amount of lactic acid in the gut (0.85±0.00 μmol/g). TIF demonstrated a tendency towards an anxiolytic effect and SIF showed potential antidepressant effect. IF caused different brain and intestinal injuries. TIF rats presented a diffuse and intense marking of IL-1β in the hippocampus. CONCLUSION IF and aerobic exercise, associated or not, can modulate parameters related to the gut-brain axis of Wistar rats, and some benefits may be related to the amounts of organic acids.
Collapse
Affiliation(s)
- Naís Lira Soares
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil; Post Graduate Program in Nutrition Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Victor Augusto Mathias Dorand
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil; Post Graduate Program in Nutrition Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Hassler Clementino Cavalcante
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil; Post Graduate Program in Nutrition Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Kamila Sabino Batista
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil; Post Graduate Program in Nutrition Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Daniele Melo de Souza
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil; Post Graduate Program in Nutrition Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Marcos Dos Santos Lima
- Food Technology Laboratory, Department of Food Technology, Federal Institute of the Sertão de Pernambuco (IFPE/ Sertão), Petrolina, Pernambuco, Brazil
| | | | - Marciane Magnani
- Post Graduate Program in Nutrition Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil; Laboratory of Microbial Processes in Food, Department of Food Engineering, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Adriano Francisco Alves
- Laboratory of Pathology, Department of Physiology and Pathology, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil
| | - Jailane de Souza Aquino
- Laboratory of Experimental Nutrition, Department of Nutrition, Federal University of Paraíba (UFPB), João Pessoa, Paraíba, Brazil; Post Graduate Program in Nutrition Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil.
| |
Collapse
|
19
|
Zhang L, Zhan H, Xu W, Yan S, Ng SC. The role of gut mycobiome in health and diseases. Therap Adv Gastroenterol 2021; 14:17562848211047130. [PMID: 34589139 PMCID: PMC8474302 DOI: 10.1177/17562848211047130] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 08/31/2021] [Indexed: 02/04/2023] Open
Abstract
The gut microbiome comprised of microbes from multiple kingdoms, including bacteria, fungi, and viruses. Emerging evidence suggests that the intestinal fungi (the gut "mycobiome") play an important role in host immunity and inflammation. Advances in next generation sequencing methods to study the fungi in fecal samples and mucosa tissues have expanded our understanding of gut fungi in intestinal homeostasis and systemic immunity in health and their contribution to different human diseases. In this review, the current status of gut mycobiome in health, early life, and different diseases including inflammatory bowel disease, colorectal cancer, and metabolic diseases were summarized.
Collapse
Affiliation(s)
| | | | - Wenye Xu
- Center for Gut Microbiota Research, Faculty of
Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong,
China,Li Ka Shing Institute of Health Science, The
Chinese University of Hong Kong, Shatin, Hong Kong, China,State Key Laboratory for Digestive disease,
Institute of Digestive Disease, The Chinese University of Hong Kong, Shatin,
Hong Kong, China,Department of Medicine and Therapeutics,
Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong,
China
| | - Shuai Yan
- Center for Gut Microbiota Research, Faculty of
Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong,
China,Li Ka Shing Institute of Health Science, The
Chinese University of Hong Kong, Shatin, Hong Kong, China,State Key Laboratory for Digestive disease,
Institute of Digestive Disease, The Chinese University of Hong Kong, Shatin,
Hong Kong, China,Department of Anaesthesia and Intensive Care
and Peter Hung Pain Research Institute, The Chinese University of Hong Kong,
Shatin, Hong Kong, China
| | | |
Collapse
|
20
|
Gutierrez MW, Arrieta MC. The intestinal mycobiome as a determinant of host immune and metabolic health. Curr Opin Microbiol 2021; 62:8-13. [PMID: 33993019 DOI: 10.1016/j.mib.2021.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/27/2022]
Abstract
The inclusion of fungi in recent human and animal microbiome studies has revealed that microbiome features associated with health or disease are not exclusively bacterial. Factors known to impact bacterial microbiome development, such as gestational age at birth, breast feeding status and antibiotics also impact the mycobiome. Strong inter-kingdom interactions take place in the luminal gut, and while the mycobiome exhibits increased inter-individual variability, certain fungi are stable colonizers. Here, we review recent studies showing that the gut mycobiome also plays an important role in disease states related to host immunity and energy metabolism. Some persistent species, such as Candida sp., as well as other less stable colonizers have been shown to play an important role in host-mycobiome immune cross talk. Mechanisms by which gut fungi interact with immune development have begun to be elucidated yet the majority remain elusive. Further investigation into these immune and metabolic mechanisms hold great potential for novel discoveries and will provided a much needed multi-kingdom understanding of the microbiome's influence on host health.
Collapse
Affiliation(s)
- Mackenzie W Gutierrez
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada; Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; International Microbiome Center, University of Calgary, AB, Canada
| | - Marie-Claire Arrieta
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada; Department of Pediatrics, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; International Microbiome Center, University of Calgary, AB, Canada.
| |
Collapse
|
21
|
Mohr AE, Gumpricht E, Sears DD, Sweazea KL. Recent advances and health implications of dietary fasting regimens on the gut microbiome. Am J Physiol Gastrointest Liver Physiol 2021; 320:G847-G863. [PMID: 33729005 DOI: 10.1152/ajpgi.00475.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Calorie restriction is a primary dietary intervention demonstrated over many decades in cellular and animal models to modulate aging pathways, positively affect age-associated diseases and, in clinical studies, to promote beneficial health outcomes. Because long-term compliance with daily calorie restriction has proven problematic in humans several intermittent fasting regimens, including alternate day fasting and time-restricted feeding, have evolved revealing similar clinical benefits as calorie restriction. Despite significant research on the cellular and physiological mechanisms contributing to, and responsible for, these observed benefits, relatively little research has investigated the impact of these various fasting protocols on the gut microbiome (GM). Reduced external nutrient supply to the gut may beneficially alter the composition and function of a "fed" gut microflora. Indeed, the prevalent, obesogenic Western diet can promote deleterious changes in the GM, signaling intermediates involved in lipid and glucose metabolism, and immune responses in the gastrointestinal tract. This review describes recent preclinical and clinical effects of varying fasting regimens on GM composition and associated physiology. Although the number of preclinical and clinical interventions are limited, significant data thus far suggest fasting interventions impact GM composition and physiology. However, there are considerable heterogeneities of study design, methodological considerations, and practical implications. Ongoing research on the health impact of fasting regimens on GM modulation is warranted.
Collapse
Affiliation(s)
- Alex E Mohr
- College of Health Solutions, Arizona State University, Phoenix, Arizona.,Isagenix International LLC, Gilbert, Arizona
| | | | - Dorothy D Sears
- College of Health Solutions, Arizona State University, Phoenix, Arizona
| | - Karen L Sweazea
- College of Health Solutions, Arizona State University, Phoenix, Arizona.,School of Life Sciences, Arizona State University, Tempe, Arizona
| |
Collapse
|
22
|
Dietary restrictions modulate the gut microbiota: Implications for health and disease. Nutr Res 2021; 89:10-22. [PMID: 33878569 DOI: 10.1016/j.nutres.2021.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/12/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
The health benefits of carefully restricting the energy intake in a strategic manner whilst avoiding malnutrition are widely discussed. In the recent years, the great impact of the gut microbiota on its host has been clarified more and more. Since the gut microbiota produces a number of metabolites and molecules that can affect host metabolism, modulating it with dietary restriction can influence the health and the progression of disease of its host on various levels. This review comprises 15 studies investigating the effect of different variants of fasting and caloric restriction on the gastrointestinal microbiome and its metabolites. The data suggest that changing the gut microbiota composition by dietary restriction has the potential to positively influence the progression of several diseases such as obesity, diabetes, neurological diseases or inflammatory bowel disease. Finally, the relevance of the findings for clinical practice is evaluated and approaches for future research are proposed.
Collapse
|
23
|
Mims TS, Abdallah QA, Stewart JD, Watts SP, White CT, Rousselle TV, Gosain A, Bajwa A, Han JC, Willis KA, Pierre JF. The gut mycobiome of healthy mice is shaped by the environment and correlates with metabolic outcomes in response to diet. Commun Biol 2021; 4:281. [PMID: 33674757 PMCID: PMC7935979 DOI: 10.1038/s42003-021-01820-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/09/2021] [Indexed: 01/31/2023] Open
Abstract
As an active interface between the host and their diet, the gut microbiota influences host metabolic adaptation; however, the contributions of fungi have been overlooked. Here, we investigate whether variations in gut mycobiome abundance and composition correlate with key features of host metabolism. We obtained animals from four commercial sources in parallel to test if differing starting mycobiomes can shape host adaptation in response to processed diets. We show that the gut mycobiome of healthy mice is shaped by the environment, including diet, and significantly correlates with metabolic outcomes. We demonstrate that exposure to processed diet leads to persistent differences in fungal communities that significantly associate with differential deposition of body mass in male mice compared to mice fed standardized diet. Fat deposition in the liver, transcriptional adaptation of metabolically active tissues and serum metabolic biomarker levels are linked with alterations in fungal community diversity and composition. Specifically, variation in fungi from the genera Thermomyces and Saccharomyces most strongly associate with metabolic disturbance and weight gain. These data suggest that host-microbe metabolic interactions may be influenced by variability in the mycobiome. This work highlights the potential significance of the gut mycobiome in health and has implications for human and experimental metabolic studies.
Collapse
Affiliation(s)
- Tahliyah S Mims
- Department of Pediatrics, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Qusai Al Abdallah
- Department of Pediatrics, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Justin D Stewart
- Department of Geography and the Environment, Villanova University, Radnor, PA, USA
- Department of Ecological Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sydney P Watts
- Department of Pediatrics, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Catrina T White
- Department of Pediatrics, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Thomas V Rousselle
- Department of Surgery, Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Ankush Gosain
- Division of Pediatric Surgery, Department of Surgery, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Amandeep Bajwa
- Department of Surgery, Transplant Research Institute, James D. Eason Transplant Institute, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Joan C Han
- Department of Pediatrics, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kent A Willis
- Department of Pediatrics, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA.
- Division of Neonatology, Department of Pediatrics, College of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Joseph F Pierre
- Department of Pediatrics, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA.
- Department of Microbiology, Immunology and Biochemistry, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
24
|
Hernandez AR, Banerjee A, Carter CS, Buford TW. Angiotensin (1-7) Expressing Probiotic as a Potential Treatment for Dementia. FRONTIERS IN AGING 2021; 2:629164. [PMID: 34901930 PMCID: PMC8663799 DOI: 10.3389/fragi.2021.629164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/05/2021] [Indexed: 12/12/2022]
Abstract
Increasing life expectancies are unfortunately accompanied by increased prevalence of Alzheimer's disease (AD). Regrettably, there are no current therapeutic options capable of preventing or treating AD. We review here data indicating that AD is accompanied by gut dysbiosis and impaired renin angiotensin system (RAS) function. Therefore, we propose the potential utility of an intervention targeting both the gut microbiome and RAS as both are heavily involved in proper CNS function. One potential approach which our group is currently exploring is the use of genetically-modified probiotics (GMPs) to deliver therapeutic compounds. In this review, we specifically highlight the potential utility of utilizing a GMP to deliver Angiotensin (1-7), a beneficial component of the renin-angiotensin system with relevant functions in circulation as well as locally in the gut and brain.
Collapse
Affiliation(s)
- Abbi R. Hernandez
- Division of Gerontology, Geriatrics, and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anisha Banerjee
- Division of Gerontology, Geriatrics, and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christy S. Carter
- Division of Gerontology, Geriatrics, and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL, United States
- Nathan Shock Center, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Thomas W. Buford
- Division of Gerontology, Geriatrics, and Palliative Care, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
- Integrative Center for Aging Research, University of Alabama at Birmingham, Birmingham, AL, United States
- Nathan Shock Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
25
|
Daas MC, de Roos NM. Intermittent fasting contributes to aligned circadian rhythms through interactions with the gut microbiome. Benef Microbes 2021; 12:147-161. [PMID: 33530881 DOI: 10.3920/bm2020.0149] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The timing of food consumption is considered to be an important modulator of circadian rhythms, regulating a wide range of physiological processes which are vital to human health. The exact mechanisms underlying this relationship are not fully understood, but likely involve alterations in the structure and functioning of the gut microbiome. Therefore, this narrative review aims to clarify these mechanisms by focusing on intermittent fasting as a dietary strategy of food timing. A literature search identified 4 clinical and 18 preclinical studies that examined either (1) the impact of intermittent fasting on the gut microbiome, or (2) whether circadian rhythms of the host are subject to changes in the bacterial populations in the gut. Results reveal that intermittent fasting directly influences the gut microbiome by amplifying diurnal fluctuations in bacterial abundance and metabolic activity. This in turn leads to fluctuations in the levels of microbial components (lipopolysaccharide) and metabolites (short-chain fatty acids, bile acids, and tryptophan derivates) that act as signalling molecules to the peripheral and central clocks of the host. Binding of these substrates to pattern-recognition receptors on the surface of intestinal epithelial cells in an oscillating manner leads to fluctuations in the expression of circadian genes and their transcription factors involved in various metabolic processes. Intermittent fasting thus contributes to circadian rhythmicity in the host and could hold promising implications for the treatment and prevention of diseases associated with disordered circadian rhythms, such as obesity and metabolic syndrome. Future intervention studies are needed to find more evidence on this relationship in humans, as well as to clarify the optimal fasting regimen for balanced circadian rhythms.
Collapse
Affiliation(s)
- M C Daas
- Division of Human Nutrition and Health, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 17, 6700 AA, Wageningen, the Netherlands
| | - N M de Roos
- Division of Human Nutrition and Health, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 17, 6700 AA, Wageningen, the Netherlands
| |
Collapse
|
26
|
Gut Microbiota during Dietary Restrictions: New Insights in Non-Communicable Diseases. Microorganisms 2020; 8:microorganisms8081140. [PMID: 32731505 PMCID: PMC7465033 DOI: 10.3390/microorganisms8081140] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/19/2022] Open
Abstract
In recent decades, there has been a growing interest in dietary restrictions for their promising effects on longevity and health span. Indeed, these strategies are supposed to delay the onset and burden of non-communicable diseases (NCDs) such as obesity, diabetes, cancer and neurological and gastrointestinal inflammatory diseases. At the same time, the gut microbiota has been shown to play a crucial role in NCDs since it is actively involved in maintaining gut homeostasis through its impact on nutrients metabolism, gut barrier, and immune system. There is evidence that dietary restrictions could slow down age-related changes in the types and numbers of gut bacteria, which may counteract gut dysbiosis. The beneficial effects on gut microbiota may positively influence host metabolism, gut barrier permeability, and brain functions, and subsequently, postpone the onset of NCDs prolonging the health span. These new insights could lead to the development of novel strategies for modulating gut microbiota with the end goal of treating/preventing NCDs. This review provides an overview of animal and human studies focusing on gut microbiota variations during different types of dietary restriction, in order to highlight the close relationship between gut microbiota balance and the host's health benefits induced by these nutritional regimens.
Collapse
|
27
|
Zhu Q, Jiang S, Du G. Effects of exercise frequency on the gut microbiota in elderly individuals. Microbiologyopen 2020; 9:e1053. [PMID: 32356611 PMCID: PMC7424259 DOI: 10.1002/mbo3.1053] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 12/17/2022] Open
Abstract
Growing evidence has shown that exercise can affect the gut microbiota. The effects of exercise frequency on the gut microbiota in elderly individuals are still largely unknown. In the present study, samples from 897 elderly and 1,589 adult individuals (18–60 years old) from the American Gut Project were screened. Microbial diversity and composition were analyzed by QIIME2, and microbial function was predicted by PICRUSt2. The outcomes were further analyzed by STAMP. The analysis showed that the α‐diversity of gut microbiota increased with increasing age, and regular exercise reshaped the alterations in microbial composition and function induced by aging. Moreover, the α‐diversity of gut microbiota was higher in overweight elderly individuals than in normoweight elderly individuals, and regular exercise significantly affected the microbial composition and function in overweight elderly individuals. In conclusion, we revealed that regular exercise benefits elderly individuals, especially overweight elderly individuals, by modulating the gut microbiota.
Collapse
Affiliation(s)
- Qiwei Zhu
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| | - Shangfei Jiang
- Human Anatomy Laboratory, Hainan Medical University, Haikou, China
| | - Guankui Du
- Department of Biochemistry and Molecular Biology, Hainan Medical University, Haikou, China
| |
Collapse
|
28
|
Zhang X, Zou Q, Zhao B, Zhang J, Zhao W, Li Y, Liu R, Liu X, Liu Z. Effects of alternate-day fasting, time-restricted fasting and intermittent energy restriction DSS-induced on colitis and behavioral disorders. Redox Biol 2020; 32:101535. [PMID: 32305005 PMCID: PMC7162980 DOI: 10.1016/j.redox.2020.101535] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/27/2020] [Accepted: 04/04/2020] [Indexed: 12/18/2022] Open
Abstract
Intermittent fasting (IF) has been reported to have beneficial effects on improving gut function via lowering gut inflammation and altering the gut microbiome diversity. In this study, we aimed to investigate the differential effects of three different common IF treatments, alternate day fasting (ADF), time-restricted fasting (TRF), and intermittent energy restriction (IER), on a dextran sodium sulfate (DSS)-induced colitis mouse model. The results indicated that TRF and IER, but not ADF improved the survival rates of the colitis mice. TRF and IER, but not ADF, reversed the colitis pathological development by improving the gut barrier integrity and colon length. Importantly, TRF and IER suppressed the inflammatory responses and oxidative stress in colon tissues. Interestingly, TRF and IER also attenuated colitis-related anxiety-like and obsessive-compulsive disorder behavior and alleviated the neuroinflammation and oxidative stress. TRF and IER also altered the gut microbiota composition, including the decrease of the enrichments of colitis-related microbes such as Shigella and Escherichia Coli, and increase of the enrichments of anti-inflammatory-related microbes. TRF and IER also improved the short chain fatty acid formation in colitis mice. In conclusion, the TRF and IER but not ADF exhibited the protective effects against colitis and related behavioral disorders, which could be partly explained by improving the gut microbiome compositions and preventing gut leak, and consequently suppressing the inflammation and oxidative damages in both colon and brain. The current research indicates that proper IF regimens could be effective strategies for nutritional intervention for the prevention and treatment of colitis.
Collapse
Affiliation(s)
- Xin Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaan Xi, China
| | - Qianhui Zou
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaan Xi, China
| | - Beita Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaan Xi, China
| | - Jingwen Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaan Xi, China
| | - Weiyang Zhao
- Department of Food Science, Cornell University, Ithaca, NY, 14853, United States
| | - Yitong Li
- Department of Food Science, Cornell University, Ithaca, NY, 14853, United States
| | - Ruihai Liu
- Department of Food Science, Cornell University, Ithaca, NY, 14853, United States
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaan Xi, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaan Xi, China; Department of Food Science, Cornell University, Ithaca, NY, 14853, United States.
| |
Collapse
|