1
|
Hirabayashi T, Nagai Y, Hori Y, Hori Y, Oyama K, Mimura K, Miyakawa N, Iwaoki H, Inoue KI, Suhara T, Takada M, Higuchi M, Minamimoto T. Multiscale chemogenetic dissection of fronto-temporal top-down regulation for object memory in primates. Nat Commun 2024; 15:5369. [PMID: 38987235 PMCID: PMC11237144 DOI: 10.1038/s41467-024-49570-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 06/07/2024] [Indexed: 07/12/2024] Open
Abstract
Visual object memory is a fundamental element of various cognitive abilities, and the underlying neural mechanisms have been extensively examined especially in the anterior temporal cortex of primates. However, both macroscopic large-scale functional network in which this region is embedded and microscopic neuron-level dynamics of top-down regulation it receives for object memory remains elusive. Here, we identified the orbitofrontal node as a critical partner of the anterior temporal node for object memory by combining whole-brain functional imaging during rest and a short-term object memory task in male macaques. Focal chemogenetic silencing of the identified orbitofrontal node downregulated both the local orbitofrontal and remote anterior temporal nodes during the task, in association with deteriorated mnemonic, but not perceptual, performance. Furthermore, imaging-guided neuronal recordings in the same monkeys during the same task causally revealed that orbitofrontal top-down modulation enhanced stimulus-selective mnemonic signal in individual anterior temporal neurons while leaving bottom-up perceptual signal unchanged. Furthermore, similar activity difference was also observed between correct and mnemonic error trials before silencing, suggesting its behavioral relevance. These multifaceted but convergent results provide a multiscale causal understanding of dynamic top-down regulation of the anterior temporal cortex along the ventral fronto-temporal network underpinning short-term object memory in primates.
Collapse
Affiliation(s)
- Toshiyuki Hirabayashi
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan.
| | - Yuji Nagai
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Yuki Hori
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Yukiko Hori
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Kei Oyama
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Koki Mimura
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Naohisa Miyakawa
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Haruhiko Iwaoki
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Ken-Ichi Inoue
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Tetsuya Suhara
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Masahiko Takada
- Center for the Evolutionary Origins of Human Behavior, Kyoto University, Inuyama, Aichi, 484-8506, Japan
| | - Makoto Higuchi
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| | - Takafumi Minamimoto
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Chiba, 263-8555, Japan
| |
Collapse
|
2
|
Ash H, Chang A, Ortiz RJ, Kulkarni P, Rauch B, Colman R, Ferris CF, Ziegler TE. Structural and functional variations in the prefrontal cortex are associated with learning in pre-adolescent common marmosets (Callithrix jacchus). Behav Brain Res 2022; 430:113920. [PMID: 35595058 PMCID: PMC9362994 DOI: 10.1016/j.bbr.2022.113920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 04/06/2022] [Accepted: 05/04/2022] [Indexed: 12/27/2022]
Abstract
There is substantial evidence linking the prefrontal cortex (PFC) to a variety of cognitive abilities, with adolescence being a critical period in its development. In the current study, we investigated the neural basis of differences in learning in pre-adolescent common marmosets. At 8 months old, marmosets were given anatomical and resting state MRI scans (n = 24). At 9 months old, association learning and inhibitory control was tested using a 'go/no go' visual discrimination (VD) task. Marmosets were grouped into 'learners' (n = 12) and "non-learners" (n = 12), and associations between cognitive performance and sub-regional PFC volumes, as well as PFC connectivity patterns, were investigated. "Learners" had significantly (p < 0.05) larger volumes of areas 11, 25, 47 and 32 than 'non-learners', although 'non-learners' had significantly larger volumes of areas 24a and 8 v than "learners". There was also a significant correlation between average % correct responses to the 'punished' stimulus and volume of area 47. Further, 'non-learners' had significantly greater global PFC connections, as well as significantly greater numbers of connections between the PFC and basal ganglia, cerebellum and hippocampus, compared to 'learners'. These results suggest that larger sub-regions of the orbitofrontal cortex and ventromedial PFC, as well more refined PFC connectivity patterns to other brain regions associated with learning, may be important in successful response inhibition. This study therefore offers new information on the neurodevelopment of individual differences in cognition during pre-adolescence in non-human primates.
Collapse
Affiliation(s)
- Hayley Ash
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA.
| | - Arnold Chang
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Richard J Ortiz
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA; Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, USA
| | - Praveen Kulkarni
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Beth Rauch
- Department of Medical Physics, University of Wisconsin, Madison, WI, USA
| | - Ricki Colman
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA; Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI, USA
| | - Craig F Ferris
- Center for Translational NeuroImaging, Northeastern University, Boston, MA, USA
| | - Toni E Ziegler
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
| |
Collapse
|
3
|
Kangas BD, Der-Avakian A, Pizzagalli DA. Probabilistic Reinforcement Learning and Anhedonia. Curr Top Behav Neurosci 2022; 58:355-377. [PMID: 35435644 DOI: 10.1007/7854_2022_349] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite the prominence of anhedonic symptoms associated with diverse neuropsychiatric conditions, there are currently no approved therapeutics designed to attenuate the loss of responsivity to previously rewarding stimuli. However, the search for improved treatment options for anhedonia has been reinvigorated by a recent reconceptualization of the very construct of anhedonia, including within the Research Domain Criteria (RDoC) initiative. This chapter will focus on the RDoC Positive Valence Systems construct of reward learning generally and sub-construct of probabilistic reinforcement learning specifically. The general framework emphasizes objective measurement of a subject's responsivity to reward via reinforcement learning under asymmetrical probabilistic contingencies as a means to quantify reward learning. Indeed, blunted reward responsiveness and reward learning are central features of anhedonia and have been repeatedly described in major depression. Moreover, these probabilistic reinforcement techniques can also reveal neurobiological mechanisms to aid development of innovative treatment approaches. In this chapter, we describe how investigating reward learning can improve our understanding of anhedonia via the four RDoC-recommended tasks that have been used to probe sensitivity to probabilistic reinforcement contingencies and how such task performance is disrupted in various neuropsychiatric conditions. We also illustrate how reverse translational approaches of probabilistic reinforcement assays in laboratory animals can inform understanding of pharmacological and physiological mechanisms. Next, we briefly summarize the neurobiology of probabilistic reinforcement learning, with a focus on the prefrontal cortex, anterior cingulate cortex, striatum, and amygdala. Finally, we discuss treatment implications and future directions in this burgeoning area.
Collapse
Affiliation(s)
- Brian D Kangas
- Harvard Medical School, McLean Hospital, Belmont, MA, USA.
| | | | | |
Collapse
|
4
|
Ding Q, Huang L, Chen J, Dehghani F, Du J, Li Y, Li Q, Zhang H, Qian Z, Shen W, Yin X, Liang P. Sports Augmented Cognitive Benefits: An fMRI Study of Executive Function with Go/NoGo Task. Neural Plast 2021; 2021:7476717. [PMID: 34917143 PMCID: PMC8670897 DOI: 10.1155/2021/7476717] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/15/2021] [Accepted: 11/25/2021] [Indexed: 12/31/2022] Open
Abstract
Exercise is believed to have significant cognitive benefits. Although an array of experimental paradigms have been employed to test the cognitive effects on exercising individuals, the mechanism as to how exercise induces cognitive benefits in the brain remains unclear. This study explores the effect of dynamic neural network processing with the classic Go/NoGo task with regular exercisers. We used functional magnetic resonance imaging to analyze the brain activation of areas involved in executive function, especially inhibitory control. Nineteen regular joggers and twenty-one subjects as a control group performed the task, and their brain imaging data were analyzed. The results showed that at the attentive visual period, the frontal and parietal areas, including the prefrontal cortex, putamen, thalamus, lingual, fusiform, and caudate, were significantly enhanced in positive activities than the control group. On the other hand, in the following inhibitory control processing period, almost the same areas of the brains of the exercise group have shown stronger negative activation in comparison to the control group. Such dynamic temporal response patterns indicate that sports augment cognitive benefits; i.e., regular jogging increases the brain's visual attention and inhibitory control capacities.
Collapse
Affiliation(s)
- Qingguo Ding
- Imaging Department, Changshu No. 2 People's Hospital (The Clinical Medical College Affiliated to Xuzhou Medical University), Changshu, China
| | - Lina Huang
- Imaging Department, Changshu No. 2 People's Hospital (The Clinical Medical College Affiliated to Xuzhou Medical University), Changshu, China
| | - Jie Chen
- Department of Psychology, Faculty of Education, Hubei University, Wuhan, China
| | - Farzaneh Dehghani
- Imaging Department, Changshu No. 2 People's Hospital (The Clinical Medical College Affiliated to Xuzhou Medical University), Changshu, China
- Department of Psychology, Faculty of Education, Hubei University, Wuhan, China
- Department of Psychiatry, Research Center of Addiction and Behavioral Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Juan Du
- The School of Education, Soochow University, Soochow, China
| | - Yingli Li
- The School of Education, Soochow University, Soochow, China
| | - Qin Li
- Imaging Department, Changshu No. 2 People's Hospital (The Clinical Medical College Affiliated to Xuzhou Medical University), Changshu, China
| | - Hongqiang Zhang
- Imaging Department, Changshu No. 2 People's Hospital (The Clinical Medical College Affiliated to Xuzhou Medical University), Changshu, China
| | - Zhen Qian
- Imaging Department, Changshu No. 2 People's Hospital (The Clinical Medical College Affiliated to Xuzhou Medical University), Changshu, China
| | - Wenbin Shen
- Imaging Department, Changshu No. 2 People's Hospital (The Clinical Medical College Affiliated to Xuzhou Medical University), Changshu, China
| | - Xiaowei Yin
- Imaging Department, Changshu No. 2 People's Hospital (The Clinical Medical College Affiliated to Xuzhou Medical University), Changshu, China
| | - Pei Liang
- Imaging Department, Changshu No. 2 People's Hospital (The Clinical Medical College Affiliated to Xuzhou Medical University), Changshu, China
- Department of Psychology, Faculty of Education, Hubei University, Wuhan, China
- Brain and Cognition Research Center, Faculty of Education, Hubei University, Wuhan, China
| |
Collapse
|
5
|
Wang S, Leri F, Rizvi SJ. Anhedonia as a central factor in depression: Neural mechanisms revealed from preclinical to clinical evidence. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110289. [PMID: 33631251 DOI: 10.1016/j.pnpbp.2021.110289] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/25/2021] [Accepted: 02/16/2021] [Indexed: 12/21/2022]
Abstract
Anhedonia is one of the core symptoms of major depressive disorder (MDD), which is often inadequately treated by traditional antidepressants. The modern framework of anhedonia extends the definition from impaired consummatory pleasure or interest in rewards to a broad spectrum of deficits that impact functions such as reward anticipation, approach motivation, effort expenditure, reward valuation, expectation, and reward-cue association learning. Substantial preclinical and clinical research has explored the neural basis of reward deficits in the context of depression, and has implicated mesocorticolimbic reward circuitry comprising the nucleus accumbens, ventral pallidum, ventral tegmental area, amygdala, hippocampus, anterior cingulate, insula, orbitofrontal cortex, and other prefrontal cortex regions. Dopamine modulates several reward facets including anticipation, motivation, effort, and learning. As well, serotonin, norepinephrine, opioids, glutamate, Gamma aminobutyric acid (GABA), and acetylcholine are also involved in anhedonia, and medications targeting these systems may also potentially normalize reward processing in depression. Unfortunately, whereas reward anticipation and reward outcome are extensively explored by both preclinical and clinical studies, translational gaps remain in reward motivation, effort, valuation, and learning, where clinical neuroimaging studies are in the early stages. This review aims to synthesize the neurobiological mechanisms underlying anhedonia in MDD uncovered by preclinical and clinical research. The translational difficulties in studying the neural basis of reward are also discussed.
Collapse
Affiliation(s)
- Shijing Wang
- Arthur Sommer Rotenberg Suicide and Depression Studies Program, St. Michael's Hospital, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Francesco Leri
- Department of Psychology, University of Guelph, Ontario, Canada
| | - Sakina J Rizvi
- Arthur Sommer Rotenberg Suicide and Depression Studies Program, St. Michael's Hospital, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Piantadosi PT, Halladay LR, Radke AK, Holmes A. Advances in understanding meso-cortico-limbic-striatal systems mediating risky reward seeking. J Neurochem 2021; 157:1547-1571. [PMID: 33704784 PMCID: PMC8981567 DOI: 10.1111/jnc.15342] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 02/06/2023]
Abstract
The risk of an aversive consequence occurring as the result of a reward-seeking action can have a profound effect on subsequent behavior. Such aversive events can be described as punishers, as they decrease the probability that the same action will be produced again in the future and increase the exploration of less risky alternatives. Punishment can involve the omission of an expected rewarding event ("negative" punishment) or the addition of an unpleasant event ("positive" punishment). Although many individuals adaptively navigate situations associated with the risk of negative or positive punishment, those suffering from substance use disorders or behavioral addictions tend to be less able to curtail addictive behaviors despite the aversive consequences associated with them. Here, we discuss the psychological processes underpinning reward seeking despite the risk of negative and positive punishment and consider how behavioral assays in animals have been employed to provide insights into the neural mechanisms underlying addictive disorders. We then review the critical contributions of dopamine signaling to punishment learning and risky reward seeking, and address the roles of interconnected ventral striatal, cortical, and amygdala regions to these processes. We conclude by discussing the ample opportunities for future study to clarify critical gaps in the literature, particularly as related to delineating neural contributions to distinct phases of the risky decision-making process.
Collapse
Affiliation(s)
- Patrick T. Piantadosi
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - Lindsay R. Halladay
- Department of Psychology, Santa Clara University, Santa Clara, California 95053, USA
| | - Anna K. Radke
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| |
Collapse
|
7
|
Haehl W, Mirifar A, Quirin M, Beckmann J. Differentiating reactivity and regulation: Evidence for a role of prefrontal asymmetry in affect regulation. Biol Psychol 2021; 162:108107. [PMID: 33933555 DOI: 10.1016/j.biopsycho.2021.108107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 04/07/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
Prefrontal asymmetry (PFA) has originally been referred to as "affective style" and is said to be associated with an individual's personality. Therefore, previous research has focused on finding a link between PFA and trait variables associated with affective processing, such as the behavioral activation and inhibition systems (BAS/BIS). However, recent evidence suggests that PFA might be involved in regulatory processes rather than initial affective reactions. Here, we investigated if failure-related action orientation (AOF), as a personality variable reflecting the ability to disengage from negative experiences, is related to PFA. Forty-seven participants completed two trait questionnaires to assess BAS/BIS and AOF, followed by 8 min of resting EEG measurement. Results showed that higher AOF scores predicted a higher relative left-hemispheric PFA when BAS/BIS was controlled for. The findings suggest that a suppression effect might account for the inconsistencies in the literature regarding the association between PFA and BAS/BIS.
Collapse
Affiliation(s)
- Wiebke Haehl
- Department of Sport and Health Sciences, Chair of Sport Psychology, Technical University of Munich, Germany.
| | - Arash Mirifar
- Department of Sport and Health Sciences, Chair of Sport Psychology, Technical University of Munich, Germany.
| | - Markus Quirin
- School of Management, Chair of Psychology, Technical University of Munich, Germany; Personality Psychology and Motivation, Private University of Applied Science, Göttingen, Germany.
| | - Jürgen Beckmann
- Department of Sport and Health Sciences, Chair of Sport Psychology, Technical University of Munich, Germany; School of Human Movement and Nutrition Sciences, University of Queensland, Australia.
| |
Collapse
|
8
|
Motomura Y, Katsunuma R, Ayabe N, Oba K, Terasawa Y, Kitamura S, Moriguchi Y, Hida A, Kamei Y, Mishima K. Decreased activity in the reward network of chronic insomnia patients. Sci Rep 2021; 11:3600. [PMID: 33574355 PMCID: PMC7878866 DOI: 10.1038/s41598-020-79989-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 12/04/2020] [Indexed: 12/03/2022] Open
Abstract
In modern society, many people have insomnia. Chronic insomnia has been noted as a risk factor for depression. However, there are few functional imaging studies of the brain on affective functions in chronic insomnia. This study aimed to investigate brain activities induced by emotional stimuli in chronic insomnia patients. Fifteen patients with primary insomnia and 30 age and gender matched healthy controls participated in this study. Both groups were presented images of fearful, happy, and neutral expressions consciously and non-consciously while undergoing MRI to compare the activity in regions of the brain responsible for emotions. Conscious presentation of the Happy-Neutral contrast showed significantly lower activation in the right orbitofrontal cortex of patients compared to healthy controls. The Happy-Neutral contrast presented in a non-conscious manner resulted in significantly lower activation of the ventral striatum, right insula, putamen, orbitofrontal cortex and ventral tegmental area in patients compared to healthy controls. Our findings revealed that responsiveness to positive emotional stimuli were decreased in insomniac patients. Specifically, brain networks associated with rewards and processing positive emotions showed decreased responsiveness to happy emotions especially for non-conscious image. The magnitude of activity in these areas also correlated with severity of insomnia, even after controlling for depression scale scores. These findings suggest that insomnia induces an affective functional disorder through an underlying mechanism of decreased sensitivity in the regions of the brain responsible for emotions and rewards to positive emotional stimuli.
Collapse
Affiliation(s)
- Yuki Motomura
- Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8553, Japan. .,Faculty of Design, Kyushu University, 4-9-1 Shiobaru, Minami-ku, Fukuoka, 815-8540, Japan. .,Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8553, Japan.
| | - Ruri Katsunuma
- Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8553, Japan
| | - Naoko Ayabe
- Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8553, Japan.,Department of Regional Studies and Humanities, Faculty of Education and Human Studies, Akita University, 1-1, Tegata-Gakuenmachi, Akita, 010-8502, Japan
| | - Kentaro Oba
- Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8553, Japan.,Department of Human Brain Science, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-machi, Aoba-ku, Sendai, 980-8575, Japan
| | - Yuri Terasawa
- Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8553, Japan.,Department of Psychology, Keio University, 4-1-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8521, Japan
| | - Shingo Kitamura
- Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8553, Japan
| | - Yoshiya Moriguchi
- Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8553, Japan.,Integrative Brain Imaging Center, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8553, Japan
| | - Akiko Hida
- Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8553, Japan
| | - Yuichi Kamei
- Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8553, Japan.,Kamisuwa Hospital, 1-17-7 Ote, Suwa, Nagano, Japan
| | - Kazuo Mishima
- Department of Sleep-Wake Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8553, Japan. .,Faculty of Medicine, Akita University, 1-1-1 Hondo, Akita, 010-8543, Japan. .,International Institute for Integrative Sleep Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
9
|
Adams GK, Ong WS, Pearson JM, Watson KK, Platt ML. Neurons in primate prefrontal cortex signal valuable social information during natural viewing. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190666. [PMID: 33423624 PMCID: PMC7815429 DOI: 10.1098/rstb.2019.0666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Information about social partners is innately valuable to primates. Decisions about which sources of information to consume are highly naturalistic but also complex and place unusually strong demands on the brain's decision network. In particular, both the orbitofrontal cortex (OFC) and lateral prefrontal cortex (LPFC) play key roles in decision making and social behaviour, suggesting a likely role in social information-seeking as well. To test this idea, we developed a 'channel surfing' task in which monkeys were shown a series of 5 s video clips of conspecifics engaged in natural behaviours at a field site. Videos were annotated frame-by-frame using an ethogram of species-typical behaviours, an important source of social information. Between each clip, monkeys were presented with a choice between targets that determined which clip would be seen next. Monkeys' gaze during playback indicated differential engagement depending on what behaviours were presented. Neurons in both OFC and LPFC responded to choice targets and to video, and discriminated a subset of the behaviours in the ethogram during video viewing. These findings suggest that both OFC and LPFC are engaged in processing social information that is used to guide dynamic information-seeking decisions. This article is part of the theme issue 'Existence and prevalence of economic behaviours among non-human primates'.
Collapse
Affiliation(s)
- Geoffrey K Adams
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wei Song Ong
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John M Pearson
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Karli K Watson
- Institute of Cognitive Science, University of Colorado at Boulder, Boulder, CO, USA
| | - Michael L Platt
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA.,Marketing Department, Wharton School of Business, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
10
|
McIntosh RC, Hoshi R, Nomi JS, Di Bello M, Goodman ZT, Kornfeld S, Uddin LQ, Ottaviani C. Neurovisceral integration in the executive control network: A resting state analysis. Biol Psychol 2020; 157:107986. [PMID: 33137415 DOI: 10.1016/j.biopsycho.2020.107986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/14/2020] [Accepted: 10/22/2020] [Indexed: 12/31/2022]
Abstract
Neurovisceral integration models emphasize the role of frontal lobes in cognitive, behavioral, and emotional regulation. Two candidate hubs for the regulation of cardio-autonomic control, anxiety, and executive attention are the dorsolateral prefrontal cortex (DLPFC) and middle frontal gyrus (MFG). Two-hundred and seventy-one adults (62.9 % female) aged 18-85 years were selected from the NKI-Rockland Sample. Resting state functional imaging data was preprocessed, and seeds extracted from bilateral DLPFC and MFG to test 4 regression models predicting connectivity with high frequency HRV (HF-HRV), trait anxiety (TA), and reaction time on an executive attention task. After controlling for age, sex, body mass index and head motion, the right DLPFC-MFG seed pair provided strongest support for neurovisceral integration indexed by HF-HRV, low TA and shorter reaction time on the attention network task. This hemispheric effect may underlie the inhibitory role of right PFC in the regulation of cardio-autonomic function, emotion, and executive attention.
Collapse
Affiliation(s)
- Roger C McIntosh
- Department of Psychology, University of Miami, Coral Gables, FL, 33124, United States.
| | - Rosangela Hoshi
- University Hospital, University of Sao Paulo, Sao Paulo, Brazil
| | - Jason S Nomi
- Department of Psychology, University of Miami, Coral Gables, FL, 33124, United States
| | - Maria Di Bello
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Zachary T Goodman
- Department of Psychology, University of Miami, Coral Gables, FL, 33124, United States
| | - Salome Kornfeld
- Department of Psychology, University of Miami, Coral Gables, FL, 33124, United States
| | - Lucina Q Uddin
- Department of Psychology, University of Miami, Coral Gables, FL, 33124, United States
| | - Cristina Ottaviani
- Department of Psychology, Sapienza University of Rome, Rome, Italy; Neuroimaging Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
11
|
Srivastava HK, Bandyopadhyay S. Parallel Lemniscal and Non-Lemniscal Sources Control Auditory Responses in the Orbitofrontal Cortex (OFC). eNeuro 2020; 7:ENEURO.0121-20.2020. [PMID: 32753369 PMCID: PMC7545433 DOI: 10.1523/eneuro.0121-20.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/29/2020] [Accepted: 05/10/2020] [Indexed: 12/14/2022] Open
Abstract
The orbitofrontal cortex (OFC) controls flexible behavior through stimulus value updating based on stimulus outcome associations, allowing seamless navigation in dynamic sensory environments with changing contingencies. Sensory cue driven responses, primarily studied through behavior, exist in the OFC. However, OFC neurons' sensory response properties, particularly auditory, are unknown in the mouse, a genetically tractable animal. We show that mouse OFC single neurons have unique auditory response properties showing pure oddball detection and long timescales of adaptation resulting in stimulus-history dependence. Further, we show that OFC auditory responses are shaped by two parallel sources in the auditory thalamus, lemniscal and non-lemniscal. The latter underlies a large component of the observed oddball detection and additionally controls persistent activity in the OFC through the amygdala. The deviant selectivity can serve as a signal for important changes in the auditory environment. Such signals, if coupled with persistent activity, obtained by disinhibitory control from the non-lemniscal auditory thalamus or amygdala, will allow for associations with a delayed outcome related signal, like reward prediction error, and potentially forms the basis of updating stimulus outcome associations in the OFC. Thus, the baseline sensory responses allow the behavioral requirement-based response modification through relevant inputs from other structures related to reward, punishment, or memory. Thus, alterations in these responses in neurologic disorders can lead to behavioral deficits.
Collapse
Affiliation(s)
- Hemant K Srivastava
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sharba Bandyopadhyay
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
- Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
12
|
Seabrook LT, Borgland SL. The orbitofrontal cortex, food intake and obesity. J Psychiatry Neurosci 2020; 45:304-312. [PMID: 32167268 PMCID: PMC7850155 DOI: 10.1503/jpn.190163] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/30/2019] [Accepted: 12/09/2019] [Indexed: 12/16/2022] Open
Abstract
Obesity is a major health challenge facing many people throughout the world. Increased consumption of palatable, high-caloric foods is one of the major drivers of obesity. Both orexigenic and anorexic states have been thoroughly reviewed elsewhere; here, we focus on the cognitive control of feeding in the context of obesity, and how the orbitofrontal cortex (OFC) is implicated, based on data from preclinical and clinical research. The OFC is important in decision-making and has been heavily researched in neuropsychiatric illnesses such as addiction and obsessive–compulsive disorder. However, activity in the OFC has only recently been described in research into food intake, obesity and eating disorders. The OFC integrates sensory modalities such as taste, smell and vision, and it has dense reciprocal projections into thalamic, midbrain and striatal regions to fine-tune decision-making. Thus, the OFC may be anatomically and functionally situated to play a critical role in the etiology and maintenance of excess feeding behaviour. We propose that the OFC serves as an integrative hub for orchestrating motivated feeding behaviour and suggest how its neurobiology and functional output might be altered in the obese state.
Collapse
Affiliation(s)
- Lauren T. Seabrook
- From the Department of Physiology and Pharmacology, University of Calgary, Calgary, Alta., Canada (Seabrook, Borgland)
| | - Stephanie L. Borgland
- From the Department of Physiology and Pharmacology, University of Calgary, Calgary, Alta., Canada (Seabrook, Borgland)
| |
Collapse
|
13
|
Haehl W, Mirifar A, Luan M, Beckmann J. Dealing with failure: Prefrontal asymmetry predicts affective recovery and cognitive performance. Biol Psychol 2020; 155:107927. [DOI: 10.1016/j.biopsycho.2020.107927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 06/18/2020] [Accepted: 06/26/2020] [Indexed: 12/25/2022]
|
14
|
Guillem K, Ahmed SH. Reorganization of theta phase-locking in the orbitofrontal cortex drives cocaine choice under the influence. Sci Rep 2020; 10:8041. [PMID: 32415278 PMCID: PMC7228935 DOI: 10.1038/s41598-020-64962-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 04/22/2020] [Indexed: 12/30/2022] Open
Abstract
Cortical theta oscillations of neuronal activity are a fundamental mechanism driving goal-directed behavior. We previously identified in the rat orbitofrontal cortex (OFC) a neuronal correlate of individual preferences between cocaine use and an alternative nondrug reward (i.e. saccharin). Whether theta oscillations are also associated with choice behavior between a drug and a nondrug reward remains unknown. Here we investigated the temporal structure between single unit activity and theta band oscillations (4-12 Hz) in the OFC of rats choosing between cocaine and saccharin. First, we found that the relative amplitude of theta oscillations is associated with subjective value and preference between two rewards. Second, OFC phase-locked neurons fired on opposite phase of the theta oscillation during saccharin and cocaine rewards, suggesting the existence of two separable neuronal assemblies. Finally, the pharmacological influence of cocaine at the moment of choice altered both theta band power and theta phase-locking in the OFC. That is, this drug influence shifted spike-phase relative to theta cycle and decreased the synchronization of OFC neurons relative to the theta oscillation. Overall, this study indicates that the reorganization of theta phase-locking under the influence of cocaine biases OFC neuronal assemblies in favor of cocaine choice and at the expense of a normally preferred alternative, a neuronal change that may contribute to drug preference in cocaine addiction.
Collapse
Affiliation(s)
- Karine Guillem
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 146 rue Léo-Saignat, F-33000, Bordeaux, France. .,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 146 rue Léo-Saignat, F-33000, Bordeaux, France.
| | - Serge H Ahmed
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 146 rue Léo-Saignat, F-33000, Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 146 rue Léo-Saignat, F-33000, Bordeaux, France
| |
Collapse
|
15
|
Neural Correlates of Strategy Switching in the Macaque Orbital Prefrontal Cortex. J Neurosci 2020; 40:3025-3034. [PMID: 32098903 DOI: 10.1523/jneurosci.1969-19.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 01/29/2020] [Accepted: 01/31/2020] [Indexed: 11/21/2022] Open
Abstract
We can adapt flexibly to environment changes and search for the most appropriate rule to a context. The orbital prefrontal cortex (PFo) has been associated with decision making, rule generation and maintenance, and more generally has been considered important for behavioral flexibility. To better understand the neural mechanisms underlying the flexible behavior, we studied the ability to generate a switching signal in monkey PFo when a strategy is changed. In the strategy task, we used a visual cue to instruct two male rhesus monkeys either to repeat their most recent choice (i.e., stay strategy) or to change it (i.e., shift strategy). To identify the strategy switching-related signal, we compared nonswitch and switch trials, which cued the same or a different strategy from the previous trial, respectively. We found that the switching-related signal emerged during the cue presentation and it was combined with the strategy signal in a subpopulation of cells. Moreover, the error analysis showed that the activity of the switch-related cells reflected whether the monkeys erroneously switched or not the strategy, rather than what was required for that trial. The function of the switching signal could be to prompt the use of different strategies when older strategies are no longer appropriate, conferring the ability to adapt flexibly to environmental changes. In our task, the switching signal might contribute to the implementation of the strategy cued, overcoming potential interference effects from the strategy previously cued. Our results support the idea that ascribes to PFo an important role for behavioral flexibility.SIGNIFICANCE STATEMENT We can flexibly adapt our behavior to a changing environment. One of the prefrontal areas traditionally associated with the ability to adapt to new contingencies is the orbital prefrontal cortex (PFo). We analyzed the switching related activity using a strategy task in which two rhesus monkeys were instructed by a visual cue either to repeat or change their most recent choice, respectively using a stay or a shift strategy. We found that PFo neurons were modulated by the strategy switching signal, pointing to the importance of PFo in behavioral flexibility by generating control over the switching of strategies.
Collapse
|
16
|
Romo R, Rossi-Pool R. Turning Touch into Perception. Neuron 2020; 105:16-33. [PMID: 31917952 DOI: 10.1016/j.neuron.2019.11.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/16/2019] [Accepted: 11/27/2019] [Indexed: 12/27/2022]
Abstract
Many brain areas modulate their activity during vibrotactile tasks. The activity from these areas may code the stimulus parameters, stimulus perception, or perceptual reports. Here, we discuss findings obtained in behaving monkeys aimed to understand these processes. In brief, neurons from the somatosensory thalamus and primary somatosensory cortex (S1) only code the stimulus parameters during the stimulation periods. In contrast, areas downstream of S1 code the stimulus parameters during not only the task components but also perception. Surprisingly, the midbrain dopamine system is an actor not considered before in perception. We discuss the evidence that it codes the subjective magnitude of a sensory percept. The findings reviewed here may help us to understand where and how sensation transforms into perception in the brain.
Collapse
Affiliation(s)
- Ranulfo Romo
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico; El Colegio Nacional, 06020 Mexico City, Mexico.
| | - Román Rossi-Pool
- Instituto de Fisiología Celular - Neurociencias, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico.
| |
Collapse
|
17
|
Boukezzi S, Baunez C, Rousseau PF, Warrot D, Silva C, Guyon V, Zendjidjian X, Nicolas F, Guedj E, Nazarian B, Trousselard M, Chaminade T, Khalfa S. Posttraumatic Stress Disorder is associated with altered reward mechanisms during the anticipation and the outcome of monetary incentive cues. Neuroimage Clin 2019; 25:102073. [PMID: 31794925 PMCID: PMC6909092 DOI: 10.1016/j.nicl.2019.102073] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/13/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Recent studies suggest that Posttraumatic Stress Disorder (PTSD) might be associated with dysfunctional reward circuitry. However, further research is needed to understand the key role of the reward system in PTSD symptomatology. METHODS Twenty participants with PTSD and 21 Trauma-Exposed matched Controls (TECs) completed the Monetary Incentive Delay (MID) task during an MRI session. Reaction times (RTs) and hit rates were recorded. Brain activity was investigated during the anticipation and the outcome of monetary gains and losses. RESULTS During the anticipation of monetary loss, PTSD participants had higher RTs than TECs. However, the groups did not differ at the neurofunctional level. During successful avoidance of monetary loss, PTSD patients showed higher activation than TECs in the left caudate nucleus. During the anticipation of monetary gains, no differences in RTs were found between groups. PTSD patients had specific activations in the right amygdala, nucleus accumbens, putamen, and middle frontal gyrus (p < 0.05 family-wise error (FWE)-corrected), while TECs had specific activation in the anterior cingulate cortex. When obtaining monetary gains, PTSD patients had specific activation in the caudate nucleus, while TECs had specific activations in the right hypothalamus, subthalamic nucleus, and left inferior frontal gyrus. CONCLUSION For the first time, functional brain activation during both the anticipation and the outcome of monetary rewards is reported altered in PTSD patients. These alterations might be associated with the complex symptomatology of PTSD.
Collapse
Affiliation(s)
- Sarah Boukezzi
- Division of Women's Health, Department of Medicine, Department of Psychiatry, Harvard Medical School, 1620 Tremont Street, OBC-3, Boston 02120, MA United States of America; Institut de Neurosciences de la Timone, UMR 7289, Aix Marseille Université & CNRS, Marseille, France.
| | - Christelle Baunez
- Institut de Neurosciences de la Timone, UMR 7289, Aix Marseille Université & CNRS, Marseille, France
| | - Pierre-François Rousseau
- Laboratoire de Neurosciences Sensorielles et Cognitives, CNRS UMR 7260, Marseille, France; Clinique Kerfriden, Clinea, Châteaulin, France
| | - Delphine Warrot
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
| | - Catarina Silva
- Institut de Neurosciences de la Timone, UMR 7289, Aix Marseille Université & CNRS, Marseille, France; Instituto Universitário de Lisboa (ISCTE-IUL), Lisboa, Portugal; Service de Pédopsychiatrie, Hôpital Salvator (Assistance Publique des Hôpitaux de Marseille, AP-HM), Marseille, France
| | - Valérie Guyon
- Assistance Publique des Hôpitaux de Marseille (APHM), Conception, CUMP, Marseille, France
| | - Xavier Zendjidjian
- Assistance Publique des Hôpitaux de Marseille (APHM), Conception, CUMP, Marseille, France
| | - Florian Nicolas
- Service de Psychiatrie, Hôpital d'Instruction des Armées Laveran Marseille, Marseille, France
| | - Eric Guedj
- Aix-Marseille Universite, CNRS, Ecole Centrale Marseille, UMR 7249, Institut Fresnel, Marseille, France
| | - Bruno Nazarian
- Institut de Neurosciences de la Timone, UMR 7289, Aix Marseille Université & CNRS, Marseille, France
| | - Marion Trousselard
- Unité de Neurophysiologie du Stress, Département de Neurosciences et Sciences Cognitives, Institut de Recherche Biomédicale des Armées, Brétigny sur Orge, France; APEMAC, EA 4360, EPSaM, Université de Lorraine, Lorraine, France; Ecole du Val de Grâce, Paris, France
| | - Thierry Chaminade
- Institut de Neurosciences de la Timone, UMR 7289, Aix Marseille Université & CNRS, Marseille, France
| | - Stéphanie Khalfa
- Laboratoire de Neurosciences Sensorielles et Cognitives, CNRS UMR 7260, Marseille, France
| |
Collapse
|
18
|
Shang Z, Liang Y, Li M, Zhao K, Yang L, Wan H. Sequential neural information processing in nidopallium caudolaterale of pigeons during the acquisition process of operant conditioning. Neuroreport 2019; 30:966-973. [DOI: 10.1097/wnr.0000000000001312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Factores de predisposición genéticos y epigenéticos de los trastornos de ansiedad. REVISTA IBEROAMERICANA DE PSICOLOGÍA 2019. [DOI: 10.33881/2027-1786.rip.12206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Los trastornos de ansiedad constituyen un grupo de alteraciones psicológicas y neurológicas que representan varias formas de miedo y ansiedad anormales o patológicas (Orozco & Baldares, 2012). Aun cuando alrededor del 14% de la población del planeta ha sufrido algún trastorno de ansiedad, las causas que desencadenan el mismo no son del todo claras (Posada, 2013). La aproximación clásica de los estudios para la identificación de los factores de predisposición de estos trastornos neuropsiquiátricos se ha orientado a las teorías de la personalidad como la Teoría de Eysenck (Mitchell & Kumari, 2016) y la Teoría Bio-Psicológica de la personalidad (Knyazev, Pylkova, Slobodskoj-Plusnin, Bocharov, & Ushakov, 2015). Sin embargo, a partir de estos estudios, han surgido nuevas propuestas involucrando los aspectos neuroanatómicos y neurofuncionales. La transmisión eléctrica y química de la información y como esta se asocia a distintas conductas demuestran la relevación de la regulación de la producción y recaptación de neurotransmisores en sistema nervioso central (SNC). Aunque esta regulación se encuentra directamente relacionada con la expresión genética, em tanto se han identificado ciertos genes candidatos que aportan un porcentaje a esta predisposición, estos no son totalmente determinantes. Actualmente, dado a este vacío, se ha comenzado a investigar la influencia de factores epigenéticos que en conjunto con los factores genéticos permitirían ampliar la explicación de los factores de predisposición de ciertos trastornos neuropsiquiátricos que anteriormente eran considerados de etiología ambiental.
Collapse
|
20
|
Ikeda S, Takeuchi H, Taki Y, Nouchi R, Yokoyama R, Nakagawa S, Sekiguchi A, Iizuka K, Hanawa S, Araki T, Miyauchi CM, Sakaki K, Nozawa T, Yokota S, Magistro D, Kawashima R. Neural substrates of self- and external-preoccupation: A voxel-based morphometry study. Brain Behav 2019; 9:e01267. [PMID: 31004413 PMCID: PMC6576210 DOI: 10.1002/brb3.1267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 02/20/2019] [Accepted: 03/01/2019] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Self- and external-preoccupation have been linked to psychopathological states. The neural substrates underlying self- and external-preoccupation remain unclear. In the present study, we aim to provide insight into the information-processing mechanisms associated with self- and external-preoccupation at the structural level. METHODS To investigate the neural substrates of self- and external-preoccupation, we acquired high-resolution T1-weighted structural images and Preoccupation Scale scores from 1,122 young subjects. Associations between regional gray matter volume (rGMV) and Preoccupation Scale subscores for self- and external-preoccupation were estimated using voxel-based morphometry. RESULTS Significant positive associations between self-preoccupation and rGMV were observed in widespread brain areas such as the bilateral precuneus and posterior cingulate gyri, structures known to be associated with self-triggered self-reference during rest. Significant negative associations between external-preoccupation and rGMV were observed only in the bilateral cerebellum, regions known to be associated with behavioral addiction, sustained attention, and reward system. CONCLUSION Our results reveal distinct neural substrates for self- and external-preoccupation at the structural level.
Collapse
Affiliation(s)
- Shigeyuki Ikeda
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yasuyuki Taki
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Radiology and Nuclear Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Rui Nouchi
- Smart Aging Research Center, Tohoku University, Sendai, Japan.,Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ryoichi Yokoyama
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Seishu Nakagawa
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Atsushi Sekiguchi
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Kunio Iizuka
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Sugiko Hanawa
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Tsuyoshi Araki
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Carlos Makoto Miyauchi
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Kohei Sakaki
- Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Takayuki Nozawa
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Susumu Yokota
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Daniele Magistro
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ryuta Kawashima
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Smart Aging Research Center, Tohoku University, Sendai, Japan.,Department of Advanced Brain Science, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
21
|
Guillem K, Ahmed SH. Preference for Cocaine is Represented in the Orbitofrontal Cortex by an Increased Proportion of Cocaine Use-Coding Neurons. Cereb Cortex 2019; 28:819-832. [PMID: 28057724 DOI: 10.1093/cercor/bhw398] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/13/2016] [Indexed: 11/13/2022] Open
Abstract
Cocaine addiction is a harmful preference for drug use over and at the expense of other nondrug-related activities. Here we identify in the rat orbitofrontal cortex (OFC) a mechanism that explains individual preferences between cocaine use and an alternative, nondrug action. OFC neuronal activity was recorded while rats performed each of these 2 actions separately or while they chose between them. First, we found that these actions are encoded by 2 nonoverlapping neuronal populations and that the relative size of the cocaine population represented individual preferences. A larger relative size was only observed in cocaine-preferring individuals. Second, OFC neurons encoding a given individual's preferred action progressively fired more than other action-coding neurons few seconds before the preferred action was actually chosen, suggesting a prechoice neuronal competition for action selection. In cocaine-preferring rats, this manifested by a prechoice ramping-up activity in favor of the cocaine population. Finally, pharmacological manipulation of prechoice activity in favor of the cocaine population caused nondrug-preferring rats to shift their choice to cocaine. Overall, this study suggests that an individual preference for cocaine is represented in the OFC by a population size bias that systematically advantages cocaine use-coding neurons during prechoice competition for action selection.
Collapse
Affiliation(s)
- Karine Guillem
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 146 rue Léo-Saignat, F-33000 Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 146 rue Léo-Saignat, F-33000 Bordeaux, France
| | - Serge H Ahmed
- Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, 146 rue Léo-Saignat, F-33000 Bordeaux, France.,CNRS, Institut des Maladies Neurodégénératives, UMR 5293, 146 rue Léo-Saignat, F-33000 Bordeaux, France
| |
Collapse
|
22
|
Raber J, Arzy S, Bertolus JB, Depue B, Haas HE, Hofmann SG, Kangas M, Kensinger E, Lowry CA, Marusak HA, Minnier J, Mouly AM, Mühlberger A, Norrholm SD, Peltonen K, Pinna G, Rabinak C, Shiban Y, Soreq H, van der Kooij MA, Lowe L, Weingast LT, Yamashita P, Boutros SW. Current understanding of fear learning and memory in humans and animal models and the value of a linguistic approach for analyzing fear learning and memory in humans. Neurosci Biobehav Rev 2019; 105:136-177. [PMID: 30970272 DOI: 10.1016/j.neubiorev.2019.03.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/30/2019] [Accepted: 03/18/2019] [Indexed: 01/04/2023]
Abstract
Fear is an emotion that serves as a driving factor in how organisms move through the world. In this review, we discuss the current understandings of the subjective experience of fear and the related biological processes involved in fear learning and memory. We first provide an overview of fear learning and memory in humans and animal models, encompassing the neurocircuitry and molecular mechanisms, the influence of genetic and environmental factors, and how fear learning paradigms have contributed to treatments for fear-related disorders, such as posttraumatic stress disorder. Current treatments as well as novel strategies, such as targeting the perisynaptic environment and use of virtual reality, are addressed. We review research on the subjective experience of fear and the role of autobiographical memory in fear-related disorders. We also discuss the gaps in our understanding of fear learning and memory, and the degree of consensus in the field. Lastly, the development of linguistic tools for assessments and treatment of fear learning and memory disorders is discussed.
Collapse
Affiliation(s)
- Jacob Raber
- Department of Behavioral Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR, USA; Departments of Neurology and Radiation Medicine, and Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR, USA.
| | - Shahar Arzy
- Department of Medical Neurobiology, Hebrew University, Jerusalem 91904, Israel
| | | | - Brendan Depue
- Departments of Psychological and Brain Sciences and Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, USA
| | - Haley E Haas
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, USA
| | - Stefan G Hofmann
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Maria Kangas
- Department of Psychology, Macquarie University, Sydney, Australia
| | | | - Christopher A Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Hilary A Marusak
- Department of Pharmacy Practice, Wayne State University, Detroit, MI, USA
| | - Jessica Minnier
- School of Public Health, Oregon Health & Science University, Portland, OR, USA
| | - Anne-Marie Mouly
- Lyon Neuroscience Research Center, CNRS-UMR 5292, INSERM U1028, Université Lyon, Lyon, France
| | - Andreas Mühlberger
- Department of Psychology (Clinical Psychology and Psychotherapy), University of Regensburg, Regensburg, Germany; PFH - Private University of Applied Sciences, Department of Psychology (Clinical Psychology and Psychotherapy Research), Göttingen, Germany
| | - Seth Davin Norrholm
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, USA
| | - Kirsi Peltonen
- Faculty of Social Sciences/Psychology, Tampere University, Tampere, Finland
| | - Graziano Pinna
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Christine Rabinak
- Department of Pharmacy Practice, Wayne State University, Detroit, MI, USA
| | - Youssef Shiban
- Department of Psychology (Clinical Psychology and Psychotherapy), University of Regensburg, Regensburg, Germany; PFH - Private University of Applied Sciences, Department of Psychology (Clinical Psychology and Psychotherapy Research), Göttingen, Germany
| | - Hermona Soreq
- Department of Biological Chemistry, Edmond and Lily Safra Center of Brain Science and The Institute of Life Sciences, Hebrew University, Jerusalem 91904, Israel
| | - Michael A van der Kooij
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, Universitatsmedizin der Johannes Guttenberg University Medical Center, Mainz, Germany
| | | | - Leah T Weingast
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, GA, USA
| | - Paula Yamashita
- School of Public Health, Oregon Health & Science University, Portland, OR, USA
| | - Sydney Weber Boutros
- Department of Behavioral Neuroscience, ONPRC, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
23
|
Setogawa T, Mizuhiki T, Matsumoto N, Akizawa F, Kuboki R, Richmond BJ, Shidara M. Neurons in the monkey orbitofrontal cortex mediate reward value computation and decision-making. Commun Biol 2019; 2:126. [PMID: 30963114 PMCID: PMC6451015 DOI: 10.1038/s42003-019-0363-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 03/01/2019] [Indexed: 11/28/2022] Open
Abstract
Choice reflects the values of available alternatives; more valuable options are chosen more often than less valuable ones. Here we studied whether neuronal responses in orbitofrontal cortex (OFC) reflect the value difference between options, and whether there is a causal link between OFC neuronal activity and choice. Using a decision-making task where two visual stimuli were presented sequentially, each signifying a value, we showed that when the second stimulus appears many neurons encode the value difference between alternatives. Later when the choice occurs, that difference signal disappears and a signal indicating the chosen value emerges. Pharmacological inactivation of OFC neurons coding for choice-related values increases the monkey's latency to make a choice and the likelihood that it will choose the less valuable alternative, when the value difference is small. Thus, OFC neurons code for value information that could be used to directly influence choice.
Collapse
Affiliation(s)
- Tsuyoshi Setogawa
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 Japan
- Department of Health and Human Services, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-4415 USA
| | - Takashi Mizuhiki
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 Japan
- Doctoral Program in Kansei, Behavioral and Brain Science, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 Japan
| | - Narihisa Matsumoto
- Human Informatics Research Institute, AIST, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568 Japan
| | - Fumika Akizawa
- Doctoral Program in Kansei, Behavioral and Brain Science, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 Japan
| | - Ryosuke Kuboki
- Doctoral Program in Kansei, Behavioral and Brain Science, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 Japan
| | - Barry J. Richmond
- Department of Health and Human Services, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892-4415 USA
| | - Munetaka Shidara
- Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 Japan
- Doctoral Program in Kansei, Behavioral and Brain Science, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577 Japan
| |
Collapse
|
24
|
Baker TE, Castellanos-Ryan N, Schumann G, Cattrell A, Flor H, Nees F, Banaschewski T, Bokde A, Whelan R, Buechel C, Bromberg U, Papadopoulos Orfanos D, Gallinat J, Garavan H, Heinz A, Walter H, Brühl R, Gowland P, Paus T, Poustka L, Martinot JL, Lemaitre H, Artiges E, Paillère Martinot ML, Smolka MN, Conrod P. Modulation of orbitofrontal-striatal reward activity by dopaminergic functional polymorphisms contributes to a predisposition to alcohol misuse in early adolescence. Psychol Med 2019; 49:801-810. [PMID: 29909784 DOI: 10.1017/s0033291718001459] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Abnormalities in reward circuit function are considered a core feature of addiction. Yet, it is still largely unknown whether these abnormalities stem from chronic drug use, a genetic predisposition, or both. METHODS In the present study, we investigated this issue using a large sample of adolescent children by applying structural equation modeling to examine the effects of several dopaminergic polymorphisms of the D1 and D2 receptor type on the reward function of the ventral striatum (VS) and orbital frontal cortex (OFC), and whether this relationship predicted the propensity to engage in early alcohol misuse behaviors at 14 years of age and again at 16 years of age. RESULTS The results demonstrated a regional specificity with which the functional polymorphism rs686 of the D1 dopamine receptor (DRD1) gene and Taq1A of the ANKK1 gene influenced medial and lateral OFC activation during reward anticipation, respectively. Importantly, our path model revealed a significant indirect relationship between the rs686 of the DRD1 gene and early onset of alcohol misuse through a medial OFC × VS interaction. CONCLUSIONS These findings highlight the role of D1 and D2 in adjusting reward-related activations within the mesocorticolimbic circuitry, as well as in the susceptibility to early onset of alcohol misuse.
Collapse
Affiliation(s)
- Travis E Baker
- Department of Psychiatry,Universite de Montreal, CHU Ste Justine Hospital,Montreal,Canada
| | | | | | - Anna Cattrell
- Institute of Psychiatry, King's College London,London,UK
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience,Central Institute of Mental Health,Medical Faculty Mannheim,Heidelberg University,Square J5, Mannheim,Germany
| | - Frauke Nees
- Department of Cognitive and Clinical Neuroscience,Central Institute of Mental Health,Medical Faculty Mannheim,Heidelberg University,Square J5, Mannheim,Germany
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry,Central Institute of Mental Health,Faculty of Clinical Medicine Mannheim,Medical Faculty Mannheim,Heidelberg University,Square J5, 68159 Mannheim,Germany
| | - Arun Bokde
- Discipline of Psychiatry,School of Medicine and Trinity College Institute of Neurosciences, Trinity College,Dublin,Ireland
| | - Rob Whelan
- Discipline of Psychiatry,School of Medicine and Trinity College Institute of Neurosciences, Trinity College,Dublin,Ireland
| | - Christian Buechel
- University Medical Centre Hamburg-Eppendorf,Haus S10, Martinistr. 52, Hamburg,Germany
| | - Uli Bromberg
- University Medical Centre Hamburg-Eppendorf,Haus S10, Martinistr. 52, Hamburg,Germany
| | | | - Juergen Gallinat
- Department of Psychiatry and Psychotherapy,Campus Charité Mitte, Charité,Universitätsmedizin Berlin,Charitéplatz 1, Berlin,Germany
| | - Hugh Garavan
- Departments of Psychiatry and Psychology,University of Vermont,05405 Burlington, Vermont,USA
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy,Campus Charité Mitte, Charité,Universitätsmedizin Berlin,Charitéplatz 1, Berlin,Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy,Campus Charité Mitte, Charité,Universitätsmedizin Berlin,Charitéplatz 1, Berlin,Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt,Abbestr. 2 - 12, Berlin,Germany
| | - Penny Gowland
- School of Psychology, University of Nottingham, University Park,Nottingham,UK
| | - Tomáš Paus
- Rotman Research Institute, University of Toronto,Toronto,Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry,Central Institute of Mental Health,Faculty of Clinical Medicine Mannheim,Medical Faculty Mannheim,Heidelberg University,Square J5, 68159 Mannheim,Germany
| | | | - Herve Lemaitre
- Institut National de la Sante et de la Recherche Medicale, INSERM CEAUnit1000, Imaging & Psychiatry, University Paris Sud,91400 Orsay,France
| | - Eric Artiges
- Department of Psychiatry,Universite de Montreal, CHU Ste Justine Hospital,Montreal,Canada
| | | | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center,Technische Universität Dresden,Dresden,Germany
| | - Patricia Conrod
- Department of Psychiatry,Universite de Montreal, CHU Ste Justine Hospital,Montreal,Canada
| |
Collapse
|
25
|
Scholl J, Klein-Flügge M. Understanding psychiatric disorder by capturing ecologically relevant features of learning and decision-making. Behav Brain Res 2018; 355:56-75. [PMID: 28966147 PMCID: PMC6152580 DOI: 10.1016/j.bbr.2017.09.050] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/24/2017] [Accepted: 09/27/2017] [Indexed: 01/06/2023]
Abstract
Recent research in cognitive neuroscience has begun to uncover the processes underlying increasingly complex voluntary behaviours, including learning and decision-making. Partly this success has been possible by progressing from simple experimental tasks to paradigms that incorporate more ecological features. More specifically, the premise is that to understand cognitions and brain functions relevant for real life, we need to introduce some of the ecological challenges that we have evolved to solve. This often entails an increase in task complexity, which can be managed by using computational models to help parse complex behaviours into specific component mechanisms. Here we propose that using computational models with tasks that capture ecologically relevant learning and decision-making processes may provide a critical advantage for capturing the mechanisms underlying symptoms of disorders in psychiatry. As a result, it may help develop mechanistic approaches towards diagnosis and treatment. We begin this review by mapping out the basic concepts and models of learning and decision-making. We then move on to consider specific challenges that emerge in realistic environments and describe how they can be captured by tasks. These include changes of context, uncertainty, reflexive/emotional biases, cost-benefit decision-making, and balancing exploration and exploitation. Where appropriate we highlight future or current links to psychiatry. We particularly draw examples from research on clinical depression, a disorder that greatly compromises motivated behaviours in real-life, but where simpler paradigms have yielded mixed results. Finally, we highlight several paradigms that could be used to help provide new insights into the mechanisms of psychiatric disorders.
Collapse
Affiliation(s)
- Jacqueline Scholl
- Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3SR, United Kingdom.
| | - Miriam Klein-Flügge
- Department of Experimental Psychology, University of Oxford, Tinsley Building, Mansfield Road, Oxford, OX1 3SR, United Kingdom.
| |
Collapse
|
26
|
Kaskan PM, Costa VD, Eaton HP, Zemskova JA, Mitz AR, Leopold DA, Ungerleider LG, Murray EA. Learned Value Shapes Responses to Objects in Frontal and Ventral Stream Networks in Macaque Monkeys. Cereb Cortex 2018; 27:2739-2757. [PMID: 27166166 DOI: 10.1093/cercor/bhw113] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We have an incomplete picture of how the brain links object representations to reward value, and how this information is stored and later retrieved. The orbitofrontal cortex (OFC), medial frontal cortex (MFC), and ventrolateral prefrontal cortex (VLPFC), together with the amygdala, are thought to play key roles in these processes. There is an apparent discrepancy, however, regarding frontal areas thought to encode value in macaque monkeys versus humans. To address this issue, we used fMRI in macaque monkeys to localize brain areas encoding recently learned image values. Each week, monkeys learned to associate images of novel objects with a high or low probability of water reward. Areas responding to the value of recently learned reward-predictive images included MFC area 10 m/32, VLPFC area 12, and inferior temporal visual cortex (IT). The amygdala and OFC, each thought to be involved in value encoding, showed little such effect. Instead, these 2 areas primarily responded to visual stimulation and reward receipt, respectively. Strong image value encoding in monkey MFC compared with OFC is surprising, but agrees with results from human imaging studies. Our findings demonstrate the importance of VLPFC, MFC, and IT in representing the values of recently learned visual images.
Collapse
Affiliation(s)
- Peter M Kaskan
- Section on Neurobiology of Learning and Memory, Laboratory of Neuropsychology
| | - Vincent D Costa
- Unit on Learning and Decision Making, Laboratory of Neuropsychology
| | - Hana P Eaton
- Section on Neurobiology of Learning and Memory, Laboratory of Neuropsychology
| | - Julie A Zemskova
- Section on Neurobiology of Learning and Memory, Laboratory of Neuropsychology
| | | | - David A Leopold
- Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology and
| | - Leslie G Ungerleider
- Section on Neurocircuitry, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Elisabeth A Murray
- Section on Neurobiology of Learning and Memory, Laboratory of Neuropsychology
| |
Collapse
|
27
|
Sasikumar D, Emeric E, Stuphorn V, Connor CE. First-Pass Processing of Value Cues in the Ventral Visual Pathway. Curr Biol 2018; 28:538-548.e3. [PMID: 29429619 PMCID: PMC5958621 DOI: 10.1016/j.cub.2018.01.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 11/11/2017] [Accepted: 01/15/2018] [Indexed: 11/17/2022]
Abstract
Real-world value often depends on subtle, continuously variable visual cues specific to particular object categories, like the tailoring of a suit, the condition of an automobile, or the construction of a house. Here, we used microelectrode recording in behaving monkeys to test two possible mechanisms for category-specific value-cue processing: (1) previous findings suggest that prefrontal cortex (PFC) identifies object categories, and based on category identity, PFC could use top-down attentional modulation to enhance visual processing of category-specific value cues, providing signals to PFC for calculating value, and (2) a faster mechanism would be first-pass visual processing of category-specific value cues, immediately providing the necessary visual information to PFC. This, however, would require learned mechanisms for processing the appropriate cues in a given object category. To test these hypotheses, we trained monkeys to discriminate value in four letter-like stimulus categories. Each category had a different, continuously variable shape cue that signified value (liquid reward amount) as well as other cues that were irrelevant. Monkeys chose between stimuli of different reward values. Consistent with the first-pass hypothesis, we found early signals for category-specific value cues in area TE (the final stage in monkey ventral visual pathway) beginning 81 ms after stimulus onset-essentially at the start of TE responses. Task-related activity emerged in lateral PFC approximately 40 ms later and consisted mainly of category-invariant value tuning. Our results show that, for familiar, behaviorally relevant object categories, high-level ventral pathway cortex can implement rapid, first-pass processing of category-specific value cues.
Collapse
Affiliation(s)
- Dennis Sasikumar
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA; Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Erik Emeric
- Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Veit Stuphorn
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA; Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Charles E Connor
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA; Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA.
| |
Collapse
|
28
|
Barron HC, Garvert MM, Behrens TEJ. Repetition suppression: a means to index neural representations using BOLD? Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0355. [PMID: 27574308 PMCID: PMC5003856 DOI: 10.1098/rstb.2015.0355] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2016] [Indexed: 01/10/2023] Open
Abstract
Understanding how the human brain gives rise to complex cognitive processes remains one of the biggest challenges of contemporary neuroscience. While invasive recording in animal models can provide insight into neural processes that are conserved across species, our understanding of cognition more broadly relies upon investigation of the human brain itself. There is therefore an imperative to establish non-invasive tools that allow human brain activity to be measured at high spatial and temporal resolution. In recent years, various attempts have been made to refine the coarse signal available in functional magnetic resonance imaging (fMRI), providing a means to investigate neural activity at the meso-scale, i.e. at the level of neural populations. The most widely used techniques include repetition suppression and multivariate pattern analysis. Human neuroscience can now use these techniques to investigate how representations are encoded across neural populations and transformed by relevant computations. Here, we review the physiological basis, applications and limitations of fMRI repetition suppression with a brief comparison to multivariate techniques. By doing so, we show how fMRI repetition suppression holds promise as a tool to reveal complex neural mechanisms that underlie human cognitive function. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’.
Collapse
Affiliation(s)
- Helen C Barron
- MRC Brain Network Dynamics Unit, Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Mona M Garvert
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Timothy E J Behrens
- Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
29
|
The Timing of Reward-Seeking Action Tracks Visually Cued Theta Oscillations in Primary Visual Cortex. J Neurosci 2017; 37:10408-10420. [PMID: 28947572 DOI: 10.1523/jneurosci.0923-17.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 08/13/2017] [Accepted: 09/14/2017] [Indexed: 11/21/2022] Open
Abstract
An emerging body of work challenges the view that primary visual cortex (V1) represents the visual world faithfully. Theta oscillations in the local field potential (LFP) of V1 have been found to convey temporal expectations and, specifically, to express the delay between a visual stimulus and the reward that it portends. We extend this work by showing how these oscillatory states in male, wild-type rats can even relate to the timing of a visually cued reward-seeking behavior. In particular, we show that, with training, high precision and accuracy in behavioral timing tracks the power of these oscillations and the time of action execution covaries with their duration. These LFP oscillations are also intimately related to spiking responses at the single-unit level, which themselves carry predictive timing information. Together, these observations extend our understanding of the role of cortical oscillations in timing generally and the role of V1 in the timing of visually cued behaviors specifically.SIGNIFICANCE STATEMENT Traditionally, primary visual cortex (V1) has been regarded as playing a purely perceptual role in stimulus-driven behaviors. Recent work has challenged that view by showing that theta oscillations in rodent V1 may come to convey timed expectations. Here, we show that these theta oscillations carry predictive information about timed reward-seeking actions, thus elucidating a behavioral role for theta oscillations in V1 and extending our understanding of the role of V1 in decision making.
Collapse
|
30
|
Saez RA, Saez A, Paton JJ, Lau B, Salzman CD. Distinct Roles for the Amygdala and Orbitofrontal Cortex in Representing the Relative Amount of Expected Reward. Neuron 2017; 95:70-77.e3. [PMID: 28683271 DOI: 10.1016/j.neuron.2017.06.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/25/2017] [Accepted: 06/06/2017] [Indexed: 11/18/2022]
Abstract
The same reward can possess different motivational meaning depending upon its magnitude relative to other rewards. To study the neurophysiological mechanisms mediating assignment of motivational meaning, we recorded the activity of neurons in the amygdala and orbitofrontal cortex (OFC) of monkeys during a Pavlovian task in which the relative amount of liquid reward associated with one conditioned stimulus (CS) was manipulated by changing the reward amount associated with a second CS. Anticipatory licking tracked relative reward magnitude, implying that monkeys integrated information about recent rewards to adjust the motivational meaning of a CS. Upon changes in relative reward magnitude, neural responses to reward-predictive cues updated more rapidly in OFC than amygdala, and activity in OFC but not the amygdala was modulated by recent reward history. These results highlight a distinction between the amygdala and OFC in assessing reward history to support the flexible assignment of motivational meaning to sensory cues.
Collapse
Affiliation(s)
- Rebecca A Saez
- Department of Neuroscience, Columbia University, 1051 Riverside Drive Unit 87, New York, NY 10032, USA
| | - Alexandre Saez
- Department of Neuroscience, Columbia University, 1051 Riverside Drive Unit 87, New York, NY 10032, USA
| | - Joseph J Paton
- Department of Neuroscience, Columbia University, 1051 Riverside Drive Unit 87, New York, NY 10032, USA
| | - Brian Lau
- Department of Neuroscience, Columbia University, 1051 Riverside Drive Unit 87, New York, NY 10032, USA
| | - C Daniel Salzman
- Department of Neuroscience, Columbia University, 1051 Riverside Drive Unit 87, New York, NY 10032, USA; Kavli Institute for Brain Sciences, Columbia University, 1051 Riverside Drive Unit 87, New York, NY 10032, USA; Department of Psychiatry, Columbia University, 1051 Riverside Drive Unit 87, New York, NY 10032, USA; New York State Psychiatric Institute, 1051 Riverside Drive Unit 87, New York, NY 10032, USA.
| |
Collapse
|
31
|
Leavitt ML, Mendoza-Halliday D, Martinez-Trujillo JC. Sustained Activity Encoding Working Memories: Not Fully Distributed. Trends Neurosci 2017; 40:328-346. [PMID: 28515011 DOI: 10.1016/j.tins.2017.04.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 10/19/2022]
Abstract
Working memory (WM) is the ability to remember and manipulate information for short time intervals. Recent studies have proposed that sustained firing encoding the contents of WM is ubiquitous across cortical neurons. We review here the collective evidence supporting this claim. A variety of studies report that neurons in prefrontal, parietal, and inferotemporal association cortices show robust sustained activity encoding the location and features of memoranda during WM tasks. However, reports of WM-related sustained activity in early sensory areas are rare, and typically lack stimulus specificity. We propose that robust sustained activity that can support WM coding arises as a property of association cortices downstream from the early stages of sensory processing.
Collapse
Affiliation(s)
- Matthew L Leavitt
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada.
| | - Diego Mendoza-Halliday
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Julio C Martinez-Trujillo
- Robarts Research Institute, Brain and Mind Institute, Department of Psychiatry, and Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5B7, Canada.
| |
Collapse
|
32
|
Johnston M, Anderson C, Colombo M. Neural correlates of sample-coding and reward-coding in the delay activity of neurons in the entopallium and nidopallium caudolaterale of pigeons ( Columba livia ). Behav Brain Res 2017; 317:382-392. [DOI: 10.1016/j.bbr.2016.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/29/2016] [Accepted: 10/01/2016] [Indexed: 11/26/2022]
|
33
|
Meyer HC, Bucci DJ. Neural and behavioral mechanisms of proactive and reactive inhibition. ACTA ACUST UNITED AC 2016; 23:504-14. [PMID: 27634142 PMCID: PMC5026209 DOI: 10.1101/lm.040501.115] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 07/19/2016] [Indexed: 01/19/2023]
Abstract
Response inhibition is an important component of adaptive behavior. Substantial prior research has focused on reactive inhibition, which refers to the cessation of a motor response that is already in progress. More recently, a growing number of studies have begun to examine mechanisms underlying proactive inhibition, whereby preparatory processes result in a response being withheld before it is initiated. It has become apparent that proactive inhibition is an essential component of the overall ability to regulate behavior and has implications for the success of reactive inhibition. Moreover, successful inhibition relies on learning the meaning of specific environmental cues that signal when a behavioral response should be withheld. Proactive inhibitory control is mediated by stopping goals, which reflect the desired outcome of inhibition and include information about how and when inhibition should be implemented. However, little is known about the circuits and cellular processes that encode and represent features in the environment that indicate the necessity for proactive inhibition or how these representations are implemented in response inhibition. In this article, we will review the brain circuits and systems involved in implementing inhibitory control through both reactive and proactive mechanisms. We also comment on possible cellular mechanisms that may contribute to inhibitory control processes, noting that substantial further research is necessary in this regard. Furthermore, we will outline a number of ways in which the temporal dynamics underlying the generation of the proactive inhibitory signal may be particularly important for parsing out the neurobiological correlates that contribute to the learning processes underlying various aspects of inhibitory control.
Collapse
Affiliation(s)
- Heidi C Meyer
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - David J Bucci
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755, USA
| |
Collapse
|
34
|
Lowe R, Almér A, Lindblad G, Gander P, Michael J, Vesper C. Minimalist Social-Affective Value for Use in Joint Action: A Neural-Computational Hypothesis. Front Comput Neurosci 2016; 10:88. [PMID: 27601989 PMCID: PMC4993777 DOI: 10.3389/fncom.2016.00088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/05/2016] [Indexed: 12/30/2022] Open
Abstract
Joint Action is typically described as social interaction that requires coordination among two or more co-actors in order to achieve a common goal. In this article, we put forward a hypothesis for the existence of a neural-computational mechanism of affective valuation that may be critically exploited in Joint Action. Such a mechanism would serve to facilitate coordination between co-actors permitting a reduction of required information. Our hypothesized affective mechanism provides a value function based implementation of Associative Two-Process (ATP) theory that entails the classification of external stimuli according to outcome expectancies. This approach has been used to describe animal and human action that concerns differential outcome expectancies. Until now it has not been applied to social interaction. We describe our Affective ATP model as applied to social learning consistent with an “extended common currency” perspective in the social neuroscience literature. We contrast this to an alternative mechanism that provides an example implementation of the so-called social-specific value perspective. In brief, our Social-Affective ATP mechanism builds upon established formalisms for reinforcement learning (temporal difference learning models) nuanced to accommodate expectations (consistent with ATP theory) and extended to integrate non-social and social cues for use in Joint Action.
Collapse
Affiliation(s)
- Robert Lowe
- Ice Lab, Applied IT, University of GothenburgGothenburg, Sweden; Interaction Lab, School of Informatics, University of SkövdeSkövde, Sweden
| | - Alexander Almér
- Ice Lab, Applied IT, University of Gothenburg Gothenburg, Sweden
| | - Gustaf Lindblad
- Ice Lab, Applied IT, University of Gothenburg Gothenburg, Sweden
| | - Pierre Gander
- Ice Lab, Applied IT, University of Gothenburg Gothenburg, Sweden
| | - John Michael
- Department of Cognitive Science, Central European University Budapest, Hungary
| | - Cordula Vesper
- Department of Cognitive Science, Central European University Budapest, Hungary
| |
Collapse
|
35
|
Parvaz MA, Gabbay V, Malaker P, Goldstein RZ. Objective and specific tracking of anhedonia via event-related potentials in individuals with cocaine use disorders. Drug Alcohol Depend 2016; 164:158-165. [PMID: 27226335 PMCID: PMC4893885 DOI: 10.1016/j.drugalcdep.2016.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/25/2016] [Accepted: 05/06/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Hyposensitivity to non-drug reward, behaviorally manifested as anhedonia, is a hallmark of chronic substance use. Anhedonia is a transdiagnostic symptom underpinned by neurobiochemical disturbances in the reward circuit, yet an objective measure to assess anhedonia severity still eludes the field. We hypothesized that the Reward Positivity (RewP) component of the event-related potentials (ERPs) will specifically track anhedonia as the RewP is attributed to the same brain regions that are also implicated in anhedonia. METHODS Forty-six individuals with cocaine use disorders (iCUD) performed a gambling task predicting whether they would win or lose money on each trial, while ERP data was acquired. RewP in response to predicted win trials was extracted from the ERPs using the principal component analysis. State anhedonia and depression severity were assessed using the Cocaine Selective Severity Assessment (CSSA). RESULTS Although RewP amplitude correlated with both anhedonia and depression, only the RewP-anhedonia correlation survived a correction for depression severity. Further, a hierarchical multiple regression analysis revealed that anhedonia explained a significant amount of variance in the RewP amplitude, and this variance was significantly greater than that explained by demographics, severity and recency of drug use and even depression. CONCLUSIONS These results show that RewP amplitude in response to rewarded trials tracks state anhedonia severity in iCUD. We argue that this association is perhaps driven by the activity in the dopaminergic mesocorticolimbic reward pathway that may underlie anhedonia symptomology as well as modulate RewP amplitude.
Collapse
Affiliation(s)
- Muhammad A. Parvaz
- Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA,Correspondence may be addressed to: Muhammad A Parvaz, One Gustave L. Levy Place, Box 1230, New York, NY 10029-6574; Tel: 212-241-3638; Fax: 212-803-6743;
| | - Vilma Gabbay
- Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA,Nathan Kline Institute for Psychiatric Research Orangeburg, NY 10962 USA
| | - Pias Malaker
- Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Rita Z. Goldstein
- Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA,Correspondence may also be addressed to Rita Z. Goldstein, 1470 Madison Ave., New York, NY 10029-6574; Tel: 212-824-9312;
| |
Collapse
|
36
|
Meyer HC, Bucci DJ. Negative occasion setting in juvenile rats. Behav Processes 2016; 137:33-39. [PMID: 27215319 DOI: 10.1016/j.beproc.2016.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/20/2016] [Accepted: 05/13/2016] [Indexed: 10/21/2022]
Abstract
Prior findings indicate that adolescent rats exhibit difficulty using negative occasion setters to guide behavior compared to adult rats (Meyer and Bucci, 2014). Here, additional groups of juvenile rats were trained in the same negative occasion setting procedure to further define the development of negative occasion setting. Beginning on either postnatal day (PND) 30, 40, or 50, rats received daily training sessions in which a tone was paired with food reinforcement on some trials, while on other trials a light preceded the tone and no reinforcement was delivered. We found that rats that began training on PND 50 required 10 training sessions to discriminate between the two types of trials, consistent with prior findings with young adult rats. Interestingly, rats in the PND 30 group (pre-adolescents) also required just 10 training sessions, in stark contrast to adolescent rats that began training on PND 35 (adolescents) and required 18 sessions (Meyer and Bucci, 2014). Rats that began training on PND 40 (adolescents) also required more sessions than the PND 30 group. These data indicate that the development of negative occasion setting is non-linear and have direct bearing on understanding the behavioral and neural substrates that underlie suboptimal behavioral control in adolescents.
Collapse
Affiliation(s)
- Heidi C Meyer
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, United States
| | - David J Bucci
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, United States.
| |
Collapse
|
37
|
Lee J, Joshua M, Medina JF, Lisberger SG. Signal, Noise, and Variation in Neural and Sensory-Motor Latency. Neuron 2016; 90:165-76. [PMID: 26971946 DOI: 10.1016/j.neuron.2016.02.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/16/2016] [Accepted: 02/04/2016] [Indexed: 01/22/2023]
Abstract
Analysis of the neural code for sensory-motor latency in smooth pursuit eye movements reveals general principles of neural variation and the specific origin of motor latency. The trial-by-trial variation in neural latency in MT comprises a shared component expressed as neuron-neuron latency correlations and an independent component that is local to each neuron. The independent component arises heavily from fluctuations in the underlying probability of spiking, with an unexpectedly small contribution from the stochastic nature of spiking itself. The shared component causes the latency of single-neuron responses in MT to be weakly predictive of the behavioral latency of pursuit. Neural latency deeper in the motor system is more strongly predictive of behavioral latency. A model reproduces both the variance of behavioral latency and the neuron-behavior latency correlations in MT if it includes realistic neural latency variation, neuron-neuron latency correlations in MT, and noisy gain control downstream of MT.
Collapse
Affiliation(s)
- Joonyeol Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea; Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Mati Joshua
- Edmond and Lily Safra Center for Brain Sciences, the Hebrew University, Jerusalem 91904, Israel
| | - Javier F Medina
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stephen G Lisberger
- Department of Neurobiology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
38
|
Murray EA, Moylan EJ, Saleem KS, Basile BM, Turchi J. Specialized areas for value updating and goal selection in the primate orbitofrontal cortex. eLife 2015; 4. [PMID: 26673891 PMCID: PMC4739757 DOI: 10.7554/elife.11695] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/17/2015] [Indexed: 11/29/2022] Open
Abstract
The macaque orbitofrontal cortex (OFC) is essential for selecting goals based on current, updated values of expected reward outcomes. As monkeys consume a given type of reward to satiety, its value diminishes, and OFC damage impairs the ability to shift goal choices away from devalued outcomes. To examine the contributions of OFC’s components to goal selection, we reversibly inactivated either its anterior (area 11) or posterior (area 13) parts. We found that neurons in area 13 must be active during the selective satiation procedure to enable the updating of outcome valuations. After this updating has occurred, however, area 13 is not needed to select goals based on this knowledge. In contrast, neurons in area 11 do not need to be active during the value-updating process. Instead, inactivation of this area during choices causes an impairment. These findings demonstrate selective and complementary specializations within the OFC. DOI:http://dx.doi.org/10.7554/eLife.11695.001 Everyone knows that somehow, somewhere, the brain translates knowledge into action. In some people, however, knowledge and action become disconnected. These people behave in a way that either ignores or contradicts the knowledge that they have. They know what to do and can explain it to others, but – when the time comes to act – they do something else, something wrong. Murray et al. have now investigated how a brain region called the orbitofrontal cortex helps to link knowledge and action in macaque monkeys, which, unlike rodents, have all of the main brain areas that make up the orbitofrontal cortex of humans. The monkeys learned to associate images with different types of food, and then performed a task where they chose between two images in order to get the food they wanted. On some days, one of the foods was less ‘valuable’ because the monkeys had already eaten a lot of it. In these circumstances, monkeys chose fewer of the images associated with that food. By temporarily inactivating either the front or back region of the monkey’s orbitofrontal cortex at different times, Murray et al. showed that these regions make different contributions to decision making. Inactivating the back region of the orbitofrontal cortex disrupted the ability of monkeys to update their knowledge about the value of a particular foodstuff. However, inactivating the front part of the orbitofrontal cortex disrupted their ability to use this knowledge to select the images that led to the most valuable food. This contradicts the widely held belief that the orbitofrontal cortex acts as a single entity to update values and translate this knowledge into action. Future work will need to investigate how, having translated knowledge into a chosen action, the orbitofrontal cortex stimulates the motor areas of the brain to generate the movements needed to perform that action. DOI:http://dx.doi.org/10.7554/eLife.11695.002
Collapse
Affiliation(s)
- Elisabeth A Murray
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Emily J Moylan
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Kadharbatcha S Saleem
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Benjamin M Basile
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| | - Janita Turchi
- Section on the Neurobiology of Learning and Memory, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, United States
| |
Collapse
|
39
|
Waltz JA, Brown JK, Gold JM, Ross TJ, Salmeron BJ, Stein EA. Probing the Dynamic Updating of Value in Schizophrenia Using a Sensory-Specific Satiety Paradigm. Schizophr Bull 2015; 41:1115-22. [PMID: 25834028 PMCID: PMC4535640 DOI: 10.1093/schbul/sbv034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
It has been proposed that both positive and negative symptoms in schizophrenia (SZ) may derive, at least in part, from a disrupted ability to accurately and flexibly represent the value of stimuli and actions. To assess relationships between dimensions of psychopathology in SZ, and the tendency to devalue food stimuli, on which subjects were fed to satiety, we administered a sensory-specific satiety (SSS) paradigm to 42 SZ patients and 44 controls. In each of 2 sessions, subjects received 16 0.7-ml squirts of each of 2 rewarding foods and 32 squirts of a control solution, using syringes. In between the 2 sessions, each subject was instructed to drink one of the foods until he/she felt "full, but not uncomfortable." At 10 regular intervals, interspersed throughout the 2 sessions, subjects rated each liquid for pleasantness, using a Likert-type scale. Mann-Whitney U-tests revealed group differences in SSS effects. Within-group tests revealed that, while controls showed an effect of satiety that was sensory specific, patients showed an effect of satiety that was not, devaluing the sated and unsated foods similarly. In SZ patients, we observed correlations between the magnitude of SSS effects and measures of both positive and negative symptoms. We argue that the ability to flexibly and rapidly update representations of the value of stimuli and actions figures critically in the ability of patients with psychotic illness to process salient events and adaptively engage in goal-directed behavior.
Collapse
Affiliation(s)
- James A. Waltz
- Department of Psychiatry, University of Maryland School of Medicine, Maryland Psychiatric Research Center, Baltimore, MD;,*To whom correspondence should be addressed; Department of Psychiatry, University of Maryland School of Medicine, Maryland Psychiatric Research Center, PO Box 21247, Baltimore, MD 21228, US; tel: +1-410-402-6044, fax: +1-410-402-7198, e-mail:
| | - Jaime K. Brown
- Department of Psychiatry, University of Maryland School of Medicine, Maryland Psychiatric Research Center, Baltimore, MD
| | - James M. Gold
- Department of Psychiatry, University of Maryland School of Medicine, Maryland Psychiatric Research Center, Baltimore, MD
| | - Thomas J. Ross
- Neuroimaging Research Branch, National Institute on Drug Abuse - Intramural Research Program, Baltimore, MD
| | - Betty J. Salmeron
- Neuroimaging Research Branch, National Institute on Drug Abuse - Intramural Research Program, Baltimore, MD
| | - Elliot A. Stein
- Neuroimaging Research Branch, National Institute on Drug Abuse - Intramural Research Program, Baltimore, MD
| |
Collapse
|
40
|
Fernandez-Leon JA, Parajuli A, Franklin R, Sorenson M, Felleman DJ, Hansen BJ, Hu M, Dragoi V. A wireless transmission neural interface system for unconstrained non-human primates. J Neural Eng 2015; 12:056005. [PMID: 26269496 DOI: 10.1088/1741-2560/12/5/056005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Studying the brain in large animal models in a restrained laboratory rig severely limits our capacity to examine brain circuits in experimental and clinical applications. APPROACH To overcome these limitations, we developed a high-fidelity 96-channel wireless system to record extracellular spikes and local field potentials from the neocortex. A removable, external case of the wireless device is attached to a titanium pedestal placed in the animal skull. Broadband neural signals are amplified, multiplexed, and continuously transmitted as TCP/IP data at a sustained rate of 24 Mbps. A Xilinx Spartan 6 FPGA assembles the digital signals into serial data frames for transmission at 20 kHz though an 802.11n wireless data link on a frequency-shift key-modulated signal at 5.7-5.8 GHz to a receiver up to 10 m away. The system is powered by two CR123A, 3 V batteries for 2 h of operation. MAIN RESULTS We implanted a multi-electrode array in visual area V4 of one anesthetized monkey (Macaca fascicularis) and in the dorsolateral prefrontal cortex (dlPFC) of a freely moving monkey (Macaca mulatta). The implanted recording arrays were electrically stable and delivered broadband neural data over a year of testing. For the first time, we compared dlPFC neuronal responses to the same set of stimuli (food reward) in restrained and freely moving conditions. Although we did not find differences in neuronal responses as a function of reward type in the restrained and unrestrained conditions, there were significant differences in correlated activity. This demonstrates that measuring neural responses in freely moving animals can capture phenomena that are absent in the traditional head-fixed paradigm. SIGNIFICANCE We implemented a wireless neural interface for multi-electrode recordings in freely moving non-human primates, which can potentially move systems neuroscience to a new direction by allowing one to record neural signals while animals interact with their environment.
Collapse
Affiliation(s)
- Jose A Fernandez-Leon
- Department of Neurobiology and Anatomy, University of Texas-Houston Medical School, 6431 Fannin St., Houston, TX 77030, USA. Centre for Computational Neuroscience and Robotics, University of Sussex, Brighton BN1 9QG, UK
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Eckstein MP, Schoonveld W, Zhang S, Mack SC, Akbas E. Optimal and human eye movements to clustered low value cues to increase decision rewards during search. Vision Res 2015; 113:137-54. [PMID: 26093154 PMCID: PMC6020051 DOI: 10.1016/j.visres.2015.05.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 05/25/2015] [Accepted: 05/28/2015] [Indexed: 11/16/2022]
Abstract
Rewards have important influences on the motor planning of primates and the firing of neurons coding visual information and action. When eye movements to a target are differentially rewarded across locations, primates execute saccades towards the possible target location with the highest expected value, a product of sensory evidence and potentially earned reward (saccade to maximum expected value model, sMEV). Yet, in the natural world eye movements are not directly rewarded. Their role is to gather information to support subsequent rewarded search decisions and actions. Less is known about the effects of decision rewards on saccades. We show that when varying the decision rewards across cued locations following visual search, humans can plan their eye movements to increase decision rewards. Critically, we report a scenario for which five of seven tested humans do not preferentially deploy saccades to the possible target location with the highest reward, a strategy which is optimal when rewarding eye movements. Instead, these humans make saccades towards lower value but clustered locations when this strategy optimizes decision rewards consistent with the preferences of an ideal Bayesian reward searcher that takes into account the visibility of the target across eccentricities. The ideal reward searcher can be approximated with a sMEV model with pooling of rewards from spatially clustered locations. We also find observers with systematic departures from the optimal strategy and inter-observer variability of eye movement plans. These deviations often reflect multiplicity of fixation strategies that lead to near optimal decision rewards but, for some observers, it relates to suboptimal choices in eye movement planning.
Collapse
Affiliation(s)
- Miguel P Eckstein
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106-9660, United States.
| | - Wade Schoonveld
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106-9660, United States
| | - Sheng Zhang
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106-9660, United States
| | - Stephen C Mack
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106-9660, United States
| | - Emre Akbas
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA 93106-9660, United States
| |
Collapse
|
42
|
Hosokawa T, Watanabe M. Egalitarian reward contingency in competitive games and primate prefrontal neuronal activity. Front Neurosci 2015; 9:165. [PMID: 26029039 PMCID: PMC4432669 DOI: 10.3389/fnins.2015.00165] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/22/2015] [Indexed: 11/28/2022] Open
Abstract
How people work to obtain a reward depends on the context of the reward delivery, such as the presence/absence of competition and the contingency of reward delivery. Since resources are limited, winning a competition is critically important for organisms' obtaining a reward. People usually expect ordinary performance-reward contingency, with better performers obtaining better rewards. Unordinary reward contingency, such as egalitarianism (equal rewards/no-rewards to both good and poor performers), dampens people's motivation. We previously reported that monkeys were more motivated, and neurons in the lateral prefrontal cortex (LPFC) showed higher outcome-related activity in a competitive than in a noncompetitive game (Hosokawa and Watanabe, 2012). However, monkey's behavior and LPFC neuronal activity have not been examined in a competitive situation with an unordinary performance-reward contingency. Also, the fixed performance-reward contingency in the previous study did not allow us to examine effects of win/loss separately from those of reward/no-reward on prefrontal neuronal activity. Here, we employed the egalitarian competitive situation in which both the winner and loser, or neither of them, got a reward as well as the normal competitive situation in which only the winner got a reward. Monkey's behavioral performance greatly deteriorated in trials with the egalitarian outcome conditions. LPFC neurons showed activities that reflected the normal or egalitarian outcome condition while very few neurons coded win/loss independent of reward/no-reward. Importantly, we found neurons that showed reward-related activity in the normal, but not in the egalitarian outcome conditions, even though the same reward was given to the animal. These results indicate that LPFC may play an important role in monitoring the current reward contingency and integrating it with the performance outcome (win-loss) for better performing the competitive game, and thus for better survival.
Collapse
Affiliation(s)
- Takayuki Hosokawa
- Department of Physiological Psychology, Tokyo Metropolitan Institute of Medical Science Tokyo, Japan ; Division of Systems Neuroscience, Tohoku University Graduate School of Life Sciences Sendai, Japan
| | - Masataka Watanabe
- Department of Physiological Psychology, Tokyo Metropolitan Institute of Medical Science Tokyo, Japan
| |
Collapse
|
43
|
Sagheddu C, Muntoni AL, Pistis M, Melis M. Endocannabinoid Signaling in Motivation, Reward, and Addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 125:257-302. [DOI: 10.1016/bs.irn.2015.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
44
|
McClernon FJ, Addicott MA, Sweitzer MM. Smoking abstinence and neurocognition: implications for cessation and relapse. Curr Top Behav Neurosci 2015; 23:193-227. [PMID: 25655892 DOI: 10.1007/978-3-319-13665-3_8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this chapter, we review the last decade of research on the effects of smoking abstinence on various forms of neurocognition, including executive function (working memory, sustained attention, response inhibition), reward processing, and cue-reactivity. In our review we identify smoking abstinence-induced deficits in executive function mediated by effects on frontal circuitry, which in turn is known to be affected by modulation of cholinergic, dopaminergic, and other neurotransmitter systems. We also review evidence that smoking abstinence blunts reactivity to non-drug reinforcers-a finding that is consistent with results in the animal literature. Finally, our review of cue-reactivity indicates that smoking abstinence does not appear to amplify cue-provoked craving, although it may increase attentional bias to smoking-related cues. Inconsistencies across findings and potential contributing factors are discussed. In addition, we review the literature on the effects of nicotine and non-nicotine factors in neurocognition. Finally, we provide a multi-factor model and an agenda for future research on the effects of smoking abstinence on neurocognition. The model includes four distinct yet interacting factors, including: Negative Reinforcement, Drug-Reward Bias, Goal and Skill Interference, and Non-Cognitive Factors. Additional research is needed to further evaluate the scope and time-course of abstinence-induced changes in neurocognition, the mechanisms that underlie these changes and the specific role of these processes in drug reinforcement, lapse, and relapse.
Collapse
Affiliation(s)
- F Joseph McClernon
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, 2608 Erwin Rd Box 3527, Lakeview Pavilion E Ste 300, Durham, NC, 27705-4596, USA,
| | | | | |
Collapse
|
45
|
The essential role of primate orbitofrontal cortex in conflict-induced executive control adjustment. J Neurosci 2014; 34:11016-31. [PMID: 25122901 DOI: 10.1523/jneurosci.1637-14.2014] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Conflict in information processing evokes trial-by-trial behavioral modulations. Influential models suggest that adaptive tuning of executive control, mediated by mid-dorsal lateral prefrontal cortex (mdlPFC) and anterior cingulate cortex (ACC), underlies these modulations. However, mdlPFC and ACC are parts of distributed brain networks including orbitofrontal cortex (OFC), posterior cingulate cortex (PCC), and superior-dorsal lateral prefrontal cortex (sdlPFC). Contributions of these latter areas in adaptive tuning of executive control are unknown. We trained monkeys to perform a matching task in which they had to resolve the conflict between two behavior-guiding rules. Here, we report that bilateral lesions in OFC, but not in PCC or sdlPFC, impaired selection between these competing rules. In addition, the behavioral adaptation that is normally induced by experiencing conflict disappeared in OFC-lesioned, but remained normal in PCC-lesioned or sdlPFC-lesioned monkeys. Exploring underlying neuronal processes, we found that the activity of neurons in OFC represented the conflict between behavioral options independent from the other aspects of the task. Responses of OFC neurons to rewards also conveyed information of the conflict level that the monkey had experienced along the course to obtain the reward. Our findings indicate dissociable functions for five closely interconnected cortical areas suggesting that OFC and mdlPFC, but not PCC or sdlPFC or ACC, play indispensable roles in conflict-dependent executive control of on-going behavior. Both mdlPFC and OFC support detection of conflict and its integration with the task goal, but in contrast to mdlPFC, OFC does not retain the necessary information for conflict-induced modulation of future decisions.
Collapse
|
46
|
Abstract
The pFC enables the essential human capacities for predicting future events and preadapting to them. These capacities rest on both the structure and dynamics of the human pFC. Structurally, pFC, together with posterior association cortex, is at the highest hierarchical level of cortical organization, harboring neural networks that represent complex goal-directed actions. Dynamically, pFC is at the highest level of the perception-action cycle, the circular processing loop through the cortex that interfaces the organism with the environment in the pursuit of goals. In its predictive and preadaptive roles, pFC supports cognitive functions that are critical for the temporal organization of future behavior, including planning, attentional set, working memory, decision-making, and error monitoring. These functions have a common future perspective and are dynamically intertwined in goal-directed action. They all utilize the same neural infrastructure: a vast array of widely distributed, overlapping, and interactive cortical networks of personal memory and semantic knowledge, named cognits, which are formed by synaptic reinforcement in learning and memory acquisition. From this cortex-wide reservoir of memory and knowledge, pFC generates purposeful, goal-directed actions that are preadapted to predicted future events.
Collapse
|
47
|
Cerkevich CM, Qi HX, Kaas JH. Corticocortical projections to representations of the teeth, tongue, and face in somatosensory area 3b of macaques. J Comp Neurol 2014; 522:546-72. [PMID: 23853118 DOI: 10.1002/cne.23426] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 06/24/2013] [Accepted: 07/03/2013] [Indexed: 01/14/2023]
Abstract
We placed injections of anatomical tracers into representations of the tongue, teeth, and face in the primary somatosensory cortex (area 3b) of macaque monkeys. Our injections revealed strong projections to representations of the tongue and teeth from other parts of the oral cavity responsive region in 3b. The 3b face also provided input to the representations of the intraoral structures. The primary representation of the face showed a pattern of intrinsic connections similar to that of the mouth. The area 3b hand representation provided little to no input to either the mouth or the face representations. The mouth and face representations of area 3b received projections from the presumptive oral cavity and face regions of other somatosensory areas in the anterior parietal cortex and the lateral sulcus, including areas 3a, 1, 2, the second somatosensory area (S2), the parietal ventral area (PV), and cortex that may include the parietal rostral (PR) and ventral somatosensory (VS) areas. Additional inputs came from primary motor (M1) and ventral premotor (PMv) areas. This areal pattern of projections is similar to the well-studied pattern revealed by tracer injections in regions of 3b representing the hand. The tongue representation appeared to be unique in area 3b in that it also received inputs from areas in the anterior upper bank of the lateral sulcus and anterior insula that may include the primary gustatory area (area G) and other cortical taste-processing areas, as well as a region of lateral prefrontal cortex (LPFC) lining the principal sulcus.
Collapse
|
48
|
Igarashi M, Yamamoto T, Lee J, Song C, Ikei H, Miyazaki Y. Effects of stimulation by three-dimensional natural images on prefrontal cortex and autonomic nerve activity: a comparison with stimulation using two-dimensional images. Cogn Process 2014; 15:551-6. [PMID: 25074565 DOI: 10.1007/s10339-014-0627-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/16/2014] [Indexed: 11/28/2022]
Abstract
Empirical evidence suggests that three-dimensional (3D) images of nature promote physiological relaxation in humans by providing more realistic effects compared with two-dimensional (2D) images. However, no studies have evaluated the physiological relaxation effects of nature-derived 3D images on prefrontal cortex and autonomic nerve activity. The present study aimed to clarify the physiological relaxation effects of visual stimulation by 3D flower images on prefrontal cortex and autonomic nerve activity. Nineteen male university students (22.2 ± 0.6 years) were presented with 3D and 2D images of the water lily for 90 s. Prefrontal cortex activity was measured using near-infrared spectroscopy, while autonomic nerve activity was measured using heart rate variability (HRV). Psychological effects were determined using a modified semantic differential method (SD). Compared with visual stimulation by 2D images, that by 3D images resulted in a significant decrease in oxyhemoglobin concentration in the right prefrontal cortex, lower sympathetic activity as calculated by the ratio of the low-frequency to high-frequency HRV component, and a significantly greater realistic feeling as evidenced by higher SD ratings. In conclusion, visual stimulation by realistic 3D floral images promotes physiological relaxation more effectively than the corresponding 2D image.
Collapse
Affiliation(s)
- Miho Igarashi
- Center for Environment, Health, and Field Sciences, Chiba University, 6-2-1 Kashiwa-no-ha, Kashiwa, Chiba, 277-0882, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Hayes DJ, Duncan NW, Xu J, Northoff G. A comparison of neural responses to appetitive and aversive stimuli in humans and other mammals. Neurosci Biobehav Rev 2014; 45:350-68. [PMID: 25010558 DOI: 10.1016/j.neubiorev.2014.06.018] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/29/2014] [Accepted: 06/27/2014] [Indexed: 11/30/2022]
Abstract
Distinguishing potentially harmful or beneficial stimuli is necessary for the self-preservation and well-being of all organisms. This assessment requires the ongoing valuation of environmental stimuli. Despite much work on the processing of aversive- and appetitive-related brain signals, it is not clear to what degree these two processes interact across the brain. To help clarify this issue, this report used a cross-species comparative approach in humans (i.e. meta-analysis of imaging data) and other mammals (i.e. targeted review of functional neuroanatomy in rodents and non-human primates). Human meta-analysis results suggest network components that appear selective for appetitive (e.g. ventromedial prefrontal cortex, ventral tegmental area) or aversive (e.g. cingulate/supplementary motor cortex, periaqueductal grey) processing, or that reflect overlapping (e.g. anterior insula, amygdala) or asymmetrical, i.e. apparently lateralized, activity (e.g. orbitofrontal cortex, ventral striatum). However, a closer look at the known value-related mechanisms from the animal literature suggests that all of these macroanatomical regions are involved in the processing of both appetitive and aversive stimuli. Differential spatiotemporal network dynamics may help explain similarities and differences in appetitive- and aversion-related activity.
Collapse
Affiliation(s)
- Dave J Hayes
- Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, Canada; Toronto Western Research Institute, Brain, Imaging and Behaviour - Systems Neuroscience, University of Toronto, Division of Neurosurgery, 399 Bathurst Street, Toronto, Canada.
| | - Niall W Duncan
- Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, Canada; Department of Biology, University of Carleton, 1125 Colonel By Drive, Ottawa, Canada; Centre for Cognition and Brain Disorders, Hangzhou Normal University, 276 Lishui Lu, Hangzhou, China
| | - Jiameng Xu
- Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, Canada
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics, Institute of Mental Health Research, University of Ottawa, 1145 Carling Avenue, Ottawa, Canada; Centre for Cognition and Brain Disorders, Hangzhou Normal University, 276 Lishui Lu, Hangzhou, China; Taipei Medical University, Shuang Ho Hospital, Brain and Consciousness Research Center, Graduate Institute of Humanities in Medicine, Taipei, Taiwan; National Chengchi University, Research Center for Mind, Brain and Learning, Taipei, Taiwan
| |
Collapse
|
50
|
Frontobasal gray matter loss is associated with the TREM2 p.R47H variant. Neurobiol Aging 2014; 35:2681-2690. [PMID: 25027412 DOI: 10.1016/j.neurobiolaging.2014.06.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 06/06/2014] [Accepted: 06/10/2014] [Indexed: 02/04/2023]
Abstract
A rare heterozygous TREM2 variant p.R47H (rs75932628) has been associated with an increased risk for Alzheimer's disease (AD). We aimed to investigate the clinical presentation, neuropsychological profile, and regional pattern of gray matter and white matter loss associated with the TREM2 variant p.R47H, and to establish which regions best differentiate p.R47H carriers from noncarriers in 2 sample sets (Spanish and Alzheimer's Disease Neuroimaging Initiative, ADNI1). This was a cross-sectional study including a total number of 16 TREM2 p.R47H carriers diagnosed with AD or mild cognitive impairment, 75 AD p.R47H noncarriers and 75 cognitively intact TREM2 p.R47H noncarriers. Spanish AD TREM2 p.R47H carriers showed apraxia (9 of 9) and psychiatric symptoms such as personality changes, anxiety, paranoia, or fears more frequently than in AD noncarriers (corrected p = 0.039). For gray matter and white matter volumetric brain magnetic resonance imaging voxelwise analyses, we used statistical parametric mapping (SPM8) based on the General Linear Model. We used 3 different design matrices with a full factorial design. Voxel-based morphometry analyses were performed separately in the 2 sample sets. The absence of interset statistical differences allowed us to perform joint and conjunction analyses. Independent voxel-based morphometry analysis of the Spanish set as well as conjunction and joint analyses revealed substantial gray matter loss in orbitofrontal cortex and anterior cingulate cortex with relative preservation of parietal lobes in AD and/or mild cognitive impairment TREM2 p.R47H carriers, suggesting that TREM2 p.R47H variant is associated with certain clinical and neuroimaging AD features in addition to the increased TREM2 p.R47H atrophy in temporal lobes as described previously. The high frequency of pathologic behavioral symptoms, combined with a preferential frontobasal gray matter cortical loss, suggests that frontobasal and temporal regions could be more susceptible to the deleterious biological effects of the TREM2 variant p.R47H.
Collapse
|