1
|
Zhao CL, Hou W, Jia Y, Sahakian BJ, Luo Q. Sex differences of signal complexity at resting-state functional magnetic resonance imaging and their associations with the estrogen-signaling pathway in the brain. Cogn Neurodyn 2024; 18:973-986. [PMID: 38826661 PMCID: PMC11143120 DOI: 10.1007/s11571-023-09954-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/27/2023] [Accepted: 03/08/2023] [Indexed: 06/04/2024] Open
Abstract
Sex differences in the brain have been widely reported and may hold the key to elucidating sex differences in many medical conditions and drug response. However, the molecular correlates of these sex differences in structural and functional brain measures in the human brain remain unclear. Herein, we used sample entropy (SampEn) to quantify the signal complexity of resting-state functional magnetic resonance imaging (rsfMRI) in a large neuroimaging cohort (N = 1,642). The frontoparietal control network and the cingulo-opercular network had high signal complexity while the cerebellar and sensory motor networks had low signal complexity in both men and women. Compared with those in male brains, we found greater signal complexity in all functional brain networks in female brains with the default mode network exhibiting the largest sex difference. Using the gene expression data in brain tissues, we identified genes that were significantly associated with sex differences in brain signal complexity. The significant genes were enriched in the gene sets that were differentially expressed between the brain cortex and other tissues, the estrogen-signaling pathway, and the biological function of neural plasticity. In particular, the G-protein-coupled estrogen receptor 1 gene in the estrogen-signaling pathway was expressed more in brain regions with greater sex differences in SampEn. In conclusion, greater complexity in female brains may reflect the interactions between sex hormone fluctuations and neuromodulation of estrogen in women. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-023-09954-y.
Collapse
Affiliation(s)
- Cheng-li Zhao
- College of Science, National University of Defense Technology, Changsha, 410073 China
| | - Wenjie Hou
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433 China
- Center for Computational Psychiatry, MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Human Phenome Institute, Fudan University, Shanghai, 200438 China
| | - Yanbing Jia
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471000 China
| | - Barbara J. Sahakian
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB UK
| | - the DIRECT Consortium
- College of Science, National University of Defense Technology, Changsha, 410073 China
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433 China
- Center for Computational Psychiatry, MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Human Phenome Institute, Fudan University, Shanghai, 200438 China
- School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang, 471000 China
- Department of Psychiatry, University of Cambridge, Cambridge, CB2 0SZ UK
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB UK
| | - Qiang Luo
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433 China
- Center for Computational Psychiatry, MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Human Phenome Institute, Fudan University, Shanghai, 200438 China
| |
Collapse
|
2
|
Joel D, Smith CJ, Veenema AH. Beyond the binary: Characterizing the relationships between sex and neuropeptide receptor binding density measures in the rat brain. Horm Behav 2024; 159:105471. [PMID: 38128247 PMCID: PMC11624905 DOI: 10.1016/j.yhbeh.2023.105471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/30/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
Sex differences exist in numerous parameters of the brain. Yet, sex-related factors are part of a large set of variables that interact to affect many aspects of brain structure and function. This raises questions regarding how to interpret findings of sex differences at the level of single brain measures and the brain as a whole. In the present study, we reanalyzed two datasets consisting of measures of oxytocin, vasopressin V1a, and mu opioid receptor binding densities in multiple brain regions in rats. At the level of single brain measures, we found that sex differences were rarely dimorphic and were largely persistent across estrous stage and parental status but not across age or context. At the level of aggregates of brain measures showing sex differences, we tested whether individual brains are 'mosaics' of female-typical and male-typical measures or are internally consistent, having either only female-typical or only male-typical measures. We found mosaicism for measures showing overlap between females and males. Mosaicism was higher a) with a larger number of measures, b) with smaller effect sizes of the sex difference in these measures, and c) in rats with more diverse life experiences. Together, these results highlight the limitations of the binary framework for interpreting sex effects on the brain and suggest two complementary pathways to studying the contribution of sex to brain function: (1) focusing on measures showing dimorphic and persistent sex differences and (2) exploring the relations between specific brain mosaics and specific endpoints.
Collapse
Affiliation(s)
- Daphna Joel
- School of Psychological Sciences and Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.
| | - Caroline J Smith
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, USA.
| | - Alexa H Veenema
- Neurobiology of Social Behavior Laboratory, Department of Psychology & Neuroscience Program, Michigan State University, East Lansing, USA.
| |
Collapse
|
3
|
Ryali S, Zhang Y, de los Angeles C, Supekar K, Menon V. Deep learning models reveal replicable, generalizable, and behaviorally relevant sex differences in human functional brain organization. Proc Natl Acad Sci U S A 2024; 121:e2310012121. [PMID: 38377194 PMCID: PMC10907309 DOI: 10.1073/pnas.2310012121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/21/2023] [Indexed: 02/22/2024] Open
Abstract
Sex plays a crucial role in human brain development, aging, and the manifestation of psychiatric and neurological disorders. However, our understanding of sex differences in human functional brain organization and their behavioral consequences has been hindered by inconsistent findings and a lack of replication. Here, we address these challenges using a spatiotemporal deep neural network (stDNN) model to uncover latent functional brain dynamics that distinguish male and female brains. Our stDNN model accurately differentiated male and female brains, demonstrating consistently high cross-validation accuracy (>90%), replicability, and generalizability across multisession data from the same individuals and three independent cohorts (N ~ 1,500 young adults aged 20 to 35). Explainable AI (XAI) analysis revealed that brain features associated with the default mode network, striatum, and limbic network consistently exhibited significant sex differences (effect sizes > 1.5) across sessions and independent cohorts. Furthermore, XAI-derived brain features accurately predicted sex-specific cognitive profiles, a finding that was also independently replicated. Our results demonstrate that sex differences in functional brain dynamics are not only highly replicable and generalizable but also behaviorally relevant, challenging the notion of a continuum in male-female brain organization. Our findings underscore the crucial role of sex as a biological determinant in human brain organization, have significant implications for developing personalized sex-specific biomarkers in psychiatric and neurological disorders, and provide innovative AI-based computational tools for future research.
Collapse
Affiliation(s)
- Srikanth Ryali
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA94305
| | - Yuan Zhang
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA94305
| | - Carlo de los Angeles
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA94305
| | - Kaustubh Supekar
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA94305
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA94305
- Stanford Institute for Human-Centered Artificial Intelligence, Stanford University, Stanford, CA94305
| | - Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA94305
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA94305
- Stanford Institute for Human-Centered Artificial Intelligence, Stanford University, Stanford, CA94305
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA94305
| |
Collapse
|
4
|
Wang L, Chen IJ, Yang M, Shi Y, Song Y. The Intergenerational Transmission of Gender Roles: Evidence From Parents and Children in Single-Parent. Psychol Rep 2024:332941241227161. [PMID: 38211339 DOI: 10.1177/00332941241227161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Given the current increases in the divorce rate and the number of single-parent families, the development of gender roles among children from single-parent families has received more and more attention. This study investigated how single parents influenced the formation of their children's gender roles and family-related factors that benefited the development of gender roles in single-parent children. Through in-depth interviews with 24 pairs of parents and children from single-parent families, we investigated single parents' and their children's cognition on gender roles, parents' parenting attitudes and behaviors during their children's gender role development, and communication and interaction between parents and children. Results showed intergenerational consistency in the gender role concepts of parents and their children in single-parent families. However, the children's gender role concepts were not completely and directly inherited from their parents, and could be affected by their subjective initiative. Additionally, single parenting did not necessarily negatively impact children's gender role development, which depends on their parent's parenting style. The study's limitations are discussed, and future directions for in-depth research are suggested.
Collapse
Affiliation(s)
- Liling Wang
- School of Education, Soochow University, Suzhou, China
| | - I-Jun Chen
- School of Education, Soochow University, Suzhou, China
| | - Mengping Yang
- School of Education, Soochow University, Suzhou, China
- Suzhou Early Childhood Education College, Suzhou, China
| | - Ying Shi
- School of Education, Soochow University, Suzhou, China
| | - Yunping Song
- School of Education, Soochow University, Suzhou, China
| |
Collapse
|
5
|
VanderLaan DP, Skorska MN, Peragine DE, Coome LA. Carving the Biodevelopment of Same-Sex Sexual Orientation at Its Joints. ARCHIVES OF SEXUAL BEHAVIOR 2023; 52:2939-2962. [PMID: 35960401 DOI: 10.1007/s10508-022-02360-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/30/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
Sexual orientation is a core aspect of human experience and understanding its development is fundamental to psychology as a scientific discipline. Biological perspectives have played an important role in uncovering the processes that contribute to sexual orientation development. Research in this field has relied on a variety of populations, including community, clinical, and cross-cultural samples, and has commonly focused on female gynephilia (i.e., female sexual attraction to adult females) and male androphilia (i.e., male sexual attraction to adult males). Genetic, hormonal, and immunological processes all appear to influence sexual orientation. Consistent with biological perspectives, there are sexual orientation differences in brain development and evidence indicates that similar biological influences apply across cultures. An outstanding question in the field is whether the hypothesized biological influences are all part of the same process or represent different developmental pathways leading to same-sex sexual orientation. Some studies indicate that same-sex sexually oriented people can be divided into subgroups who likely experienced different biological influences. Consideration of gender expression in addition to sexual orientation might help delineate such subgroups. Thus, future research on the possible existence of such subgroups could prove to be valuable for uncovering the biological development of sexual orientation. Recommendations for such future research are discussed.
Collapse
Affiliation(s)
- Doug P VanderLaan
- Department of Psychology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada.
- Child and Youth Psychiatry, Centre for Addiction and Mental Health, Toronto, ON, Canada.
| | - Malvina N Skorska
- Child and Youth Psychiatry, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Diana E Peragine
- Department of Psychology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Lindsay A Coome
- Department of Psychology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| |
Collapse
|
6
|
Elsherbini A, Zhu Z, Quadri Z, Crivelli SM, Ren X, Vekaria HJ, Tripathi P, Zhang L, Zhi W, Bieberich E. Novel Isolation Method Reveals Sex-Specific Composition and Neurotoxicity of Small Extracellular Vesicles in a Mouse Model of Alzheimer's Disease. Cells 2023; 12:1623. [PMID: 37371093 PMCID: PMC10297289 DOI: 10.3390/cells12121623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
We developed a new method to isolate small extracellular vesicles (sEVs) from male and female wild-type and 5xFAD mouse brains to investigate the sex-specific functions of sEVs in Alzheimer's disease (AD). A mass spectrometric analysis revealed that sEVs contained proteins critical for EV formation and Aβ. ExoView analysis showed that female mice contained more GFAP and Aβ-labeled sEVs, suggesting that a larger proportion of sEVs from the female brain is derived from astrocytes and/or more likely to bind to Aβ. Moreover, sEVs from female brains had more acid sphingomyelinase (ASM) and ceramide, an enzyme and its sphingolipid product important for EV formation and Aβ binding to EVs, respectively. We confirmed the function of ASM in EV formation and Aβ binding using co-labeling and proximity ligation assays, showing that ASM inhibitors prevented complex formation between Aβ and ceramide in primary cultured astrocytes. Finally, our study demonstrated that sEVs from female 5xFAD mice were more neurotoxic than those from males, as determined by impaired mitochondrial function (Seahorse assays) and LDH cytotoxicity assays. Our study suggests that sex-specific sEVs are functionally distinct markers for AD and that ASM is a potential target for AD therapy.
Collapse
Affiliation(s)
- Ahmed Elsherbini
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (A.E.); (Z.Z.); (Z.Q.); (S.M.C.); (X.R.); (P.T.); (L.Z.)
| | - Zhihui Zhu
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (A.E.); (Z.Z.); (Z.Q.); (S.M.C.); (X.R.); (P.T.); (L.Z.)
| | - Zainuddin Quadri
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (A.E.); (Z.Z.); (Z.Q.); (S.M.C.); (X.R.); (P.T.); (L.Z.)
| | - Simone M. Crivelli
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (A.E.); (Z.Z.); (Z.Q.); (S.M.C.); (X.R.); (P.T.); (L.Z.)
| | - Xiaojia Ren
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (A.E.); (Z.Z.); (Z.Q.); (S.M.C.); (X.R.); (P.T.); (L.Z.)
| | - Hemendra J. Vekaria
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY 40536, USA;
- Veterans Affairs Medical Center, Lexington, KY 40502, USA
| | - Priyanka Tripathi
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (A.E.); (Z.Z.); (Z.Q.); (S.M.C.); (X.R.); (P.T.); (L.Z.)
| | - Liping Zhang
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (A.E.); (Z.Z.); (Z.Q.); (S.M.C.); (X.R.); (P.T.); (L.Z.)
| | - Wenbo Zhi
- Department of Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA 30912, USA;
| | - Erhard Bieberich
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; (A.E.); (Z.Z.); (Z.Q.); (S.M.C.); (X.R.); (P.T.); (L.Z.)
- Veterans Affairs Medical Center, Lexington, KY 40502, USA
| |
Collapse
|
7
|
Putkinen V, Nazari-Farsani S, Karjalainen T, Santavirta S, Hudson M, Seppälä K, Sun L, Karlsson HK, Hirvonen J, Nummenmaa L. Pattern recognition reveals sex-dependent neural substrates of sexual perception. Hum Brain Mapp 2023; 44:2543-2556. [PMID: 36773282 PMCID: PMC10028630 DOI: 10.1002/hbm.26229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/13/2022] [Accepted: 01/16/2023] [Indexed: 02/12/2023] Open
Abstract
Sex differences in brain activity evoked by sexual stimuli remain elusive despite robust evidence for stronger enjoyment of and interest toward sexual stimuli in men than in women. To test whether visual sexual stimuli evoke different brain activity patterns in men and women, we measured hemodynamic brain activity induced by visual sexual stimuli in two experiments with 91 subjects (46 males). In one experiment, the subjects viewed sexual and nonsexual film clips, and dynamic annotations for nudity in the clips were used to predict hemodynamic activity. In the second experiment, the subjects viewed sexual and nonsexual pictures in an event-related design. Men showed stronger activation than women in the visual and prefrontal cortices and dorsal attention network in both experiments. Furthermore, using multivariate pattern classification we could accurately predict the sex of the subject on the basis of the brain activity elicited by the sexual stimuli. The classification generalized across the experiments indicating that the sex differences were task-independent. Eye tracking data obtained from an independent sample of subjects (N = 110) showed that men looked longer than women at the chest area of the nude female actors in the film clips. These results indicate that visual sexual stimuli evoke discernible brain activity patterns in men and women which may reflect stronger attentional engagement with sexual stimuli in men.
Collapse
Affiliation(s)
- Vesa Putkinen
- Turku PET Centre, University of Turku, Turku, Finland
- Turku University Hospital, Turku, Finland
| | - Sanaz Nazari-Farsani
- Turku PET Centre, University of Turku, Turku, Finland
- Turku University Hospital, Turku, Finland
| | - Tomi Karjalainen
- Turku PET Centre, University of Turku, Turku, Finland
- Turku University Hospital, Turku, Finland
| | - Severi Santavirta
- Turku PET Centre, University of Turku, Turku, Finland
- Turku University Hospital, Turku, Finland
| | - Matthew Hudson
- Turku PET Centre, University of Turku, Turku, Finland
- School of Psychology, University of Plymouth, Plymouth, UK
| | - Kerttu Seppälä
- Turku PET Centre, University of Turku, Turku, Finland
- Turku University Hospital, Turku, Finland
- Department of Medical Physics, Turku University Hospital, Turku, Finland
| | - Lihua Sun
- Turku PET Centre, University of Turku, Turku, Finland
- Turku University Hospital, Turku, Finland
| | - Henry K Karlsson
- Turku PET Centre, University of Turku, Turku, Finland
- Turku University Hospital, Turku, Finland
| | - Jussi Hirvonen
- Turku PET Centre, University of Turku, Turku, Finland
- Turku University Hospital, Turku, Finland
- Department of Radiology, Turku University Hospital, Turku, Finland
| | - Lauri Nummenmaa
- Turku PET Centre, University of Turku, Turku, Finland
- Turku University Hospital, Turku, Finland
- Department of Psychology, University of Turku, Turku, Finland
| |
Collapse
|
8
|
Bölte S, Neufeld J, Marschik PB, Williams ZJ, Gallagher L, Lai MC. Sex and gender in neurodevelopmental conditions. Nat Rev Neurol 2023; 19:136-159. [PMID: 36747038 PMCID: PMC10154737 DOI: 10.1038/s41582-023-00774-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 02/08/2023]
Abstract
Health-related conditions often differ qualitatively or quantitatively between individuals of different birth-assigned sexes and gender identities, and/or with different gendered experiences, requiring tailored care. Studying the moderating and mediating effects of sex-related and gender-related factors on impairment, disability, wellbeing and health is of paramount importance especially for neurodivergent individuals, who are diagnosed with neurodevelopmental conditions with uneven sex/gender distributions. Researchers have become aware of the myriad influences that sex-related and gender-related variables have on the manifestations of neurodevelopmental conditions, and contemporary work has begun to investigate the mechanisms through which these effects are mediated. Here we describe topical concepts of sex and gender science, summarize current knowledge, and discuss research and clinical challenges related to autism, attention-deficit/hyperactivity disorder and other neurodevelopmental conditions. We consider sex and gender in the context of epidemiology, behavioural phenotypes, neurobiology, genetics, endocrinology and neighbouring disciplines. The available evidence supports the view that sex and gender are important contributors to the biological and behavioural variability in neurodevelopmental conditions. Methodological caveats such as frequent conflation of sex and gender constructs, inappropriate measurement of these constructs and under-representation of specific demographic groups (for example, female and gender minority individuals and people with intellectual disabilities) limit the translational potential of research so far. Future research and clinical implementation should integrate sex and gender into next-generation diagnostics, mechanistic investigations and support practices.
Collapse
Affiliation(s)
- Sven Bölte
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.
- Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden.
- Curtin Autism Research Group, Curtin School of Allied Health, Curtin University, Perth, WA, Australia.
| | - Janina Neufeld
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Swedish Collegium for Advanced Study (SCAS), Uppsala, Sweden
| | - Peter B Marschik
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Center Göttingen and Leibniz ScienceCampus Primate Cognition, Göttingen, Germany
- iDN - interdisciplinary Developmental Neuroscience, Division of Phoniatrics, Medical University of Graz, Graz, Austria
| | - Zachary J Williams
- Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN, USA
| | - Louise Gallagher
- Department of Psychiatry, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Child and Youth Mental Health Collaborative at the Centre for Addiction and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, and Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Meng-Chuan Lai
- Child and Youth Mental Health Collaborative at the Centre for Addiction and Mental Health, The Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, and Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK.
- Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan.
| |
Collapse
|
9
|
Breton É, Juster RP, Booij L. Gender and sex in eating disorders: A narrative review of the current state of knowledge, research gaps, and recommendations. Brain Behav 2023; 13:e2871. [PMID: 36840375 PMCID: PMC10097055 DOI: 10.1002/brb3.2871] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/10/2022] [Accepted: 12/08/2022] [Indexed: 02/26/2023] Open
Abstract
INTRODUCTION Eating disorders (EDs) have long been considered conditions exclusively affecting women, and studies in the ED field regularly exclude men. Research efforts are needed to better understand the role of gender and sex in EDs. This review describes the role of gender and sex in the development of EDs from a biopsychosocial perspective. METHODS The primary hypothesis of this narrative review is that gender and sex interact to influence ED risk. The literature review was conducted using the PubMed database. RESULTS This review first presents the general characteristics and prevalence of EDs according to gender and sex. Next, neurodevelopmental processes, neurobiology, gender roles, body image, and the minority stress model are addressed. Lastly, research perspectives to better include gender and sex in the field of EDs are discussed (e.g., representation of gender and sex diversities, development of appropriate assessment tools, and increasing awareness). CONCLUSION Although substantial knowledge gaps remain, there is a growing recognition of the importance of integrating gender and sex in ED research that holds promise for further development in the field.
Collapse
Affiliation(s)
- Édith Breton
- CHU Sainte-Justine Research Centre, Montreal, Canada.,Department of Psychiatry and Addictology, University of Montreal, Montreal, Canada
| | - Robert-Paul Juster
- Department of Psychiatry and Addictology, University of Montreal, Montreal, Canada.,Research Centre of the Montreal Mental Health University Institute, Montreal, Canada
| | - Linda Booij
- CHU Sainte-Justine Research Centre, Montreal, Canada.,Department of Psychiatry and Addictology, University of Montreal, Montreal, Canada.,Department of Psychology, Concordia University, Montreal, Canada.,Department of Psychiatry, McGill University, Montreal, Canada
| |
Collapse
|
10
|
Rauch JM, Eliot L. Breaking the binary: Gender versus sex analysis in human brain imaging. Neuroimage 2022; 264:119732. [PMID: 36334813 DOI: 10.1016/j.neuroimage.2022.119732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/31/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Despite decades of pursuit, human brain imaging has yet to uncover clear neural correlates of male-female behavioral differences. Given that such behavior does not always align with sex categories, we argue that neuroimaging research may find more success by partitioning subjects along nonbinary gender attributes in addition to sex. We review the handful of studies that have done this, several of which find as good or better association between brain measures and "gender" as they do with "sex." Recent advances in operationalizing "gender" as a multidimensional variable should facilitate such studies, along with discovery-based approaches that mine brain imaging data for gender-associated attributes, independent of sex.
Collapse
Affiliation(s)
- Julia M Rauch
- Chicago Medical School, Rosalind Franklin University of Medicine & Science, USA
| | - Lise Eliot
- Chicago Medical School, Rosalind Franklin University of Medicine & Science, USA; Stanson Toshok Center for Brain Function and Repair; Dept. Foundational Sciences and Humanities, Rosalind Franklin University of Medicine & Science, 3333 Green Bay Road, North Chicago, Illinois 60064, USA.
| |
Collapse
|
11
|
Bonelli C, Mancuso L, Manuello J, Liloia D, Costa T, Cauda F. Sex differences in brain homotopic co-activations: a meta-analytic study. Brain Struct Funct 2022; 227:2839-2855. [PMID: 36269398 DOI: 10.1007/s00429-022-02572-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022]
Abstract
An element of great interest in functional connectivity is 'homotopic connectivity' (HC), namely the connectivity between two mirrored areas of the two hemispheres, mainly mediated by the fibers of the corpus callosum. Despite a long tradition of studying sexual dimorphism in the human brain, to our knowledge only one study has addressed the influence of sex on HC.We investigated the issue of homotopic co-activations in women and men using a coordinate-based meta-analytic method and data from the BrainMap database. A first unexpected observation was that the database was affected by a sex bias: women-only groups are investigated less often than men-only ones, and they are more often studied in certain domains such as emotion compared to men, and less in cognition. Implementing a series of sampling procedures to equalize the size and proportion of the datasets, our results indicated that females exhibit stronger interhemispheric co-activation than males, suggesting that the female brain is less lateralized and more integrated than that of males. In addition, males appear to show less intense but more extensive co-activation than females. Some local differences also appeared. In particular, it appears that primary motor and perceptual areas are more co-activated in males, in contrast to the opposite trend in the rest of the brain. This argues for a multidimensional view of sex brain differences and suggests that the issue should be approached with more complex models than previously thought.
Collapse
Affiliation(s)
- Chiara Bonelli
- FocusLab, Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
| | - Lorenzo Mancuso
- FocusLab, Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
| | - Jordi Manuello
- FocusLab, Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
- Department of Psychology, GCS-fMRI, Koelliker Hospital, University of Turin, Turin, Italy
| | - Donato Liloia
- FocusLab, Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
- Department of Psychology, GCS-fMRI, Koelliker Hospital, University of Turin, Turin, Italy
| | - Tommaso Costa
- FocusLab, Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy.
- Department of Psychology, GCS-fMRI, Koelliker Hospital, University of Turin, Turin, Italy.
| | - Franco Cauda
- FocusLab, Department of Psychology, University of Turin, Via Giuseppe Verdi 10, 10124, Turin, Italy
- Department of Psychology, GCS-fMRI, Koelliker Hospital, University of Turin, Turin, Italy
| |
Collapse
|
12
|
Pallier PN, Ferrara M, Romagnolo F, Ferretti MT, Soreq H, Cerase A. Chromosomal and environmental contributions to sex differences in the vulnerability to neurological and neuropsychiatric disorders: Implications for therapeutic interventions. Prog Neurobiol 2022; 219:102353. [PMID: 36100191 DOI: 10.1016/j.pneurobio.2022.102353] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/22/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
Neurological and neuropsychiatric disorders affect men and women differently. Multiple sclerosis, Alzheimer's disease, anxiety disorders, depression, meningiomas and late-onset schizophrenia affect women more frequently than men. By contrast, Parkinson's disease, autism spectrum condition, attention-deficit hyperactivity disorder, Tourette's syndrome, amyotrophic lateral sclerosis and early-onset schizophrenia are more prevalent in men. Women have been historically under-recruited or excluded from clinical trials, and most basic research uses male rodent cells or animals as disease models, rarely studying both sexes and factoring sex as a potential source of variation, resulting in a poor understanding of the underlying biological reasons for sex and gender differences in the development of such diseases. Putative pathophysiological contributors include hormones and epigenetics regulators but additional biological and non-biological influences may be at play. We review here the evidence for the underpinning role of the sex chromosome complement, X chromosome inactivation, and environmental and epigenetic regulators in sex differences in the vulnerability to brain disease. We conclude that there is a pressing need for a better understanding of the genetic, epigenetic and environmental mechanisms sustaining sex differences in such diseases, which is critical for developing a precision medicine approach based on sex-tailored prevention and treatment.
Collapse
Affiliation(s)
- Patrick N Pallier
- Blizard Institute, Centre for Neuroscience, Surgery and Trauma, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK.
| | - Maria Ferrara
- Institute of Psychiatry, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy; Department of Psychiatry, Yale University, School of Medicine, New Haven, CT, United States; Women's Brain Project (WBP), Switzerland
| | - Francesca Romagnolo
- Institute of Psychiatry, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
| | | | - Hermona Soreq
- The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, 9190401, Israel
| | - Andrea Cerase
- EMBL-Rome, Via Ramarini 32, 00015 Monterotondo, RM, Italy; Blizard Institute, Centre for Genomics and Child Health, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; Department of Biology, University of Pisa, SS12 Abetone e Brennero 4, 56127 Pisa, Italy.
| |
Collapse
|
13
|
Sanchis-Segura C, Aguirre N, Cruz-Gómez ÁJ, Félix S, Forn C. Beyond "sex prediction": Estimating and interpreting multivariate sex differences and similarities in the brain. Neuroimage 2022; 257:119343. [PMID: 35654377 DOI: 10.1016/j.neuroimage.2022.119343] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/26/2022] [Accepted: 05/29/2022] [Indexed: 12/31/2022] Open
Abstract
Previous studies have shown that machine-learning (ML) algorithms can "predict" sex based on brain anatomical/ functional features. The high classification accuracy achieved by ML algorithms is often interpreted as revealing large differences between the brains of males and females and as confirming the existence of "male/female brains". However, classification and estimation are different concepts, and using classification metrics as surrogate estimates of between-group differences may result in major statistical and interpretative distortions. The present study avoids these distortions and provides a novel and detailed assessment of multivariate sex differences in gray matter volume (GMVOL) that does not rely on classification metrics. Moreover, appropriate regression methods were used to identify the brain areas that contribute the most to these multivariate differences, and clustering techniques and analyses of similarities (ANOSIM) were employed to empirically assess whether they assemble into two sex-typical profiles. Results revealed that multivariate sex differences in GMVOL: (1) are "large" if not adjusted for total intracranial volume (TIV) variation, but "small" when controlling for this variable; (2) differ in size between individuals and also depends on the ML algorithm used for their calculation (3) do not stem from two sex-typical profiles, and so describing them in terms of "male/female brains" is misleading.
Collapse
Affiliation(s)
- Carla Sanchis-Segura
- Departament de Psicologia Bàsica, Clínica i Psicobiologia, Universitat Jaume I, Avda. Sos Baynat, SN., Castelló 12071, Spain.
| | - Naiara Aguirre
- Departament de Psicologia Bàsica, Clínica i Psicobiologia, Universitat Jaume I, Avda. Sos Baynat, SN., Castelló 12071, Spain
| | - Álvaro Javier Cruz-Gómez
- Departament de Psicologia Bàsica, Clínica i Psicobiologia, Universitat Jaume I, Avda. Sos Baynat, SN., Castelló 12071, Spain
| | - Sonia Félix
- Departament de Psicologia Bàsica, Clínica i Psicobiologia, Universitat Jaume I, Avda. Sos Baynat, SN., Castelló 12071, Spain
| | - Cristina Forn
- Departament de Psicologia Bàsica, Clínica i Psicobiologia, Universitat Jaume I, Avda. Sos Baynat, SN., Castelló 12071, Spain
| |
Collapse
|
14
|
Luo Q, Sahakian BJ. Brain sex differences: the androgynous brain is advantageous for mental health and well-being. Neuropsychopharmacology 2022; 47:407-408. [PMID: 34400779 PMCID: PMC8616918 DOI: 10.1038/s41386-021-01141-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Qiang Luo
- grid.8547.e0000 0001 0125 2443Institute of Science and Technology for Brain-Inspired Intelligence, Ministry of Education-Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai, China ,grid.8547.e0000 0001 0125 2443National Clinical Research Center for Aging and Medicine at Huashan Hospital, Fudan University, Shanghai, China
| | - Barbara J. Sahakian
- grid.8547.e0000 0001 0125 2443Institute of Science and Technology for Brain-Inspired Intelligence, Ministry of Education-Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai, China ,grid.5335.00000000121885934Department of Psychiatry, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, UK
| |
Collapse
|
15
|
Silvestro M, Tessitore A, Caiazzo G, Scotto di Clemente F, Trojsi F, Cirillo M, Esposito F, Tedeschi G, Russo A. Disconnectome of the migraine brain: a "connectopathy" model. J Headache Pain 2021; 22:102. [PMID: 34454429 PMCID: PMC8400754 DOI: 10.1186/s10194-021-01315-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/10/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND In the past decades a plethora of studies has been conducted to explore resting-state functional connectivity (RS-FC) of the brain networks in migraine with conflicting results probably due to the variability and susceptibility of signal fluctuations across the course of RS-FC scan. On the other hand, the structural substrates enabling the functional communications among the brain connectome, characterized by higher stability and reproducibility, have not been widely investigated in migraine by means of graph analysis approach. We hypothesize a rearrangement of the brain connectome with an increase of both strength and density of connections between cortical areas specifically involved in pain perception, processing and modulation in migraine patients. Moreover, such connectome rearrangement, inducing an imbalance between the competing parameters of network efficiency and segregation, may underpin a mismatch between energy resources and demand representing the neuronal correlate of the energetically dysfunctional migraine brain. METHODS We investigated, using diffusion-weighted MRI imaging tractography-based graph analysis, the graph-topological indices of the brain "connectome", a set of grey matter regions (nodes) structurally connected by white matter paths (edges) in 94 patients with migraine without aura compared to 91 healthy controls. RESULTS We observed in migraine patients compared to healthy controls: i) higher local and global network efficiency (p < 0.001) and ii) higher local and global clustering coefficient (p < 0.001). Moreover, we found changes in the hubs topology in migraine patients with: i) posterior cingulate cortex and inferior parietal lobule (encompassing the so-called neurolimbic-pain network) assuming the hub role and ii) fronto-orbital cortex, involved in emotional aspects, and visual areas, involved in migraine pathophysiology, losing the hub role. Finally, we found higher connection (edges) probability between cortical nodes involved in pain perception and modulation as well as in cognitive and affective attribution of pain experiences, in migraine patients when compared to healthy controls (p < 0.001). No correlations were found between imaging and clinical parameters of disease severity. CONCLUSION The imbalance between the need of investing resources to promote network efficiency and the need of minimizing the metabolic cost of wiring probably represents the mechanism underlying migraine patients' susceptibility to triggers. Such changes in connectome topography suggest an intriguing pathophysiological model of migraine as brain "connectopathy".
Collapse
Affiliation(s)
- Marcello Silvestro
- Headache Center, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,MRI Research Centre SUN-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandro Tessitore
- Headache Center, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,MRI Research Centre SUN-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppina Caiazzo
- Headache Center, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,MRI Research Centre SUN-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fabrizio Scotto di Clemente
- Headache Center, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,MRI Research Centre SUN-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy.,Institute for Diagnosis and Care 'Hermitage-Capodimonte', Naples, Italy
| | - Francesca Trojsi
- Headache Center, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,MRI Research Centre SUN-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mario Cirillo
- Headache Center, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fabrizio Esposito
- Headache Center, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,MRI Research Centre SUN-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gioacchino Tedeschi
- Headache Center, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.,MRI Research Centre SUN-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy.,Institute for Diagnosis and Care 'Hermitage-Capodimonte', Naples, Italy
| | - Antonio Russo
- Headache Center, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy. .,MRI Research Centre SUN-FISM, University of Campania "Luigi Vanvitelli", Naples, Italy. .,Institute for Diagnosis and Care 'Hermitage-Capodimonte', Naples, Italy.
| |
Collapse
|