1
|
Park CH, Kim BR, Lim SM, Kim EH, Jeong JH, Kim GH. Preserved brain youthfulness: longitudinal evidence of slower brain aging in superagers. GeroScience 2025:10.1007/s11357-025-01531-x. [PMID: 39871070 DOI: 10.1007/s11357-025-01531-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/16/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Superagers, older adults with exceptional cognitive abilities, show preserved brain structure compared to typical older adults. We investigated whether superagers have biologically younger brains based on their structural integrity. METHODS A cohort of 153 older adults (aged 61-93) was recruited, with 63 classified as superagers based on superior episodic memory and 90 as typical older adults, of whom 64 were followed up after two years. A deep learning model for brain age prediction, trained on 899 diverse-aged adults (aged 31-100), was adapted to the older adult cohort via transfer learning. Brain age gap (BAG), a metric based on brain structural patterns, defined as the difference between predicted and chronological age, and its annual rate of change were calculated to assess brain aging status and speed, respectively, and compared among subgroups. RESULTS Lower BAGs correlated with more favorable cognitive status in memory and general cognitive function. Superagers exhibited a lower BAG than typical older adults at both baseline and follow-up. Individuals who maintained or attained superager status at follow-up showed a slower annual rate of change in BAG compared to those who remained or became typical older adults. CONCLUSIONS Superaging brains manifested maintained neurobiological youthfulness in terms of a more youthful brain aging status and a reduced speed of brain aging. These findings suggest that cognitive resilience, and potentially broader functional resilience, exhibited by superagers during the aging process may be attributable to their younger brains.
Collapse
Affiliation(s)
- Chang-Hyun Park
- Division of Artificial Intelligence and Software, College of Artificial Intelligence, Ewha Womans University, Seoul, Republic of Korea
| | - Bori R Kim
- Department of Neurology, Ewha Womans University Mokdong Hospital, Ewha Womans University College of Medicine, Seoul, Republic of Korea
- Ewha Medical Research Institute, Ewha Womans University, Seoul, Republic of Korea
| | - Soo Mee Lim
- Department of Radiology, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Eun-Hee Kim
- Department of Radiology, Ewha Womans University Mokdong Hospital, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Jee Hyang Jeong
- Department of Neurology, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Geon Ha Kim
- Department of Neurology, Ewha Womans University Mokdong Hospital, Ewha Womans University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Zhao K, Chen P, Wang D, Zhou R, Ma G, Liu Y. A Multiform Heterogeneity Framework for Alzheimer's Disease Based on Multimodal Neuroimaging. Biol Psychiatry 2024:S0006-3223(24)01817-1. [PMID: 39725298 DOI: 10.1016/j.biopsych.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/14/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
Understanding the heterogeneity of Alzheimer's disease (AD) is crucial for advancing precision medicine specifically tailored to this disorder. Recent research has deepened our understanding of AD heterogeneity, yet translating these insights from bench to bedside via neuroimaging heterogeneity frameworks presents significant challenges. In this review, we systematically revisit prior studies and summarize the existing methodology of data-driven neuroimaging studies for AD heterogeneity. We organized the present methodology into (i) a subtyping cluster strategy for AD patients, and we also subdivided it into subtyping analysis based on cross-sectional multimodal neuroimaging profiles, and the identification of long-term disease progression from short-term datasets; (ii) a stratified strategy that integrates neuroimaging measures with biomarkers; (iii) individual-specific abnormal patterns based on the Normative model. We then evaluated the characteristics of these studies along two dimensions: (i) the understanding of pathology and (ii) clinical application. We systematically address the limitations, challenges, and future directions of research into AD heterogeneity. Our goal is to enhance the neuroimaging heterogeneity framework for AD, facilitating its transition from bench to bedside.
Collapse
Affiliation(s)
- Kun Zhao
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Pindong Chen
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Dong Wang
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Rongshen Zhou
- The School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
| | - Guolin Ma
- Department of Radiology, China-Japan Friendship Hospital, Beijing, China
| | - Yong Liu
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China; Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Noroozi M, Gholami M, Sadeghsalehi H, Behzadi S, Habibzadeh A, Erabi G, Sadatmadani SF, Diyanati M, Rezaee A, Dianati M, Rasoulian P, Khani Siyah Rood Y, Ilati F, Hadavi SM, Arbab Mojeni F, Roostaie M, Deravi N. Machine and deep learning algorithms for classifying different types of dementia: A literature review. APPLIED NEUROPSYCHOLOGY. ADULT 2024:1-15. [PMID: 39087520 DOI: 10.1080/23279095.2024.2382823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The cognitive impairment known as dementia affects millions of individuals throughout the globe. The use of machine learning (ML) and deep learning (DL) algorithms has shown great promise as a means of early identification and treatment of dementia. Dementias such as Alzheimer's Dementia, frontotemporal dementia, Lewy body dementia, and vascular dementia are all discussed in this article, along with a literature review on using ML algorithms in their diagnosis. Different ML algorithms, such as support vector machines, artificial neural networks, decision trees, and random forests, are compared and contrasted, along with their benefits and drawbacks. As discussed in this article, accurate ML models may be achieved by carefully considering feature selection and data preparation. We also discuss how ML algorithms can predict disease progression and patient responses to therapy. However, overreliance on ML and DL technologies should be avoided without further proof. It's important to note that these technologies are meant to assist in diagnosis but should not be used as the sole criteria for a final diagnosis. The research implies that ML algorithms may help increase the precision with which dementia is diagnosed, especially in its early stages. The efficacy of ML and DL algorithms in clinical contexts must be verified, and ethical issues around the use of personal data must be addressed, but this requires more study.
Collapse
Affiliation(s)
- Masoud Noroozi
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Mohammadreza Gholami
- Department of Electrical and Computer Engineering, Tarbiat Modares Univeristy, Tehran, Iran
| | - Hamidreza Sadeghsalehi
- Department of Artificial Intelligence in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Saleh Behzadi
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Adrina Habibzadeh
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- USERN Office, Fasa University of Medical Sciences, Fasa, Iran
| | - Gisou Erabi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Mitra Diyanati
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Dianati
- Student Research Committee, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Pegah Rasoulian
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Yashar Khani Siyah Rood
- Faculty of Engineering, Computer Engineering, Islamic Azad University of Bandar Abbas, Bandar Abbas, Iran
| | - Fatemeh Ilati
- Student Research Committee, Faculty of Medicine, Islamic Azad University of Mashhad, Mashhad, Iran
| | | | - Fariba Arbab Mojeni
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Minoo Roostaie
- School of Medicine, Islamic Azad University Tehran Medical Branch, Tehran, Iran
| | - Niloofar Deravi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Yu Q, Kong Z, Zou L, Herold F, Ludyga S, Zhang Z, Hou M, Kramer AF, Erickson KI, Taubert M, Hillman CH, Mullen SP, Gerber M, Müller NG, Kamijo K, Ishihara T, Schinke R, Cheval B, McMorris T, Wong KK, Shi Q, Nie J. Imaging body-mind crosstalk in young adults. Int J Clin Health Psychol 2024; 24:100498. [PMID: 39290876 PMCID: PMC11407095 DOI: 10.1016/j.ijchp.2024.100498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Objective There is evidence that complex relationships exist between motor functions, brain structure, and cognitive functions, particularly in the aging population. However, whether such relationships observed in older adults could extend to other age groups (e.g., younger adults) remains to be elucidated. Thus, the current study addressed this gap in the literature by investigating potential associations between motor functions, brain structure, and cognitive functions in a large cohort of young adults. Methods In the current study, data from 910 participants (22-35 yr) were retrieved from the Human Connectome Project. Interactions between motor functions (i.e., cardiorespiratory fitness, gait speed, hand dexterity, and handgrip strength), brain structure (i.e., cortical thickness, surface area, and subcortical volumes), and cognitive functions were examined using linear mixed-effects models and mediation analyses. The performance of different machine-learning classifiers to discriminate young adults at three different levels (related to each motor function) was compared. Results Cardiorespiratory fitness and hand dexterity were positively associated with fluid and crystallized intelligence in young adults, whereas gait speed and handgrip strength were correlated with specific measures of fluid intelligence (e.g., inhibitory control, flexibility, sustained attention, and spatial orientation; false discovery rate [FDR] corrected, p < 0.05). The relationships between cardiorespiratory fitness and domains of cognitive function were mediated by surface area and cortical volume in regions involved in the default mode, sensorimotor, and limbic networks (FDR corrected, p < 0.05). Associations between handgrip strength and fluid intelligence were mediated by surface area and volume in regions involved in the salience and limbic networks (FDR corrected, p < 0.05). Four machine-learning classifiers with feature importance ranking were built to discriminate young adults with different levels of cardiorespiratory fitness (random forest), gait speed, hand dexterity (support vector machine with the radial kernel), and handgrip strength (artificial neural network). Conclusions In summary, similar to observations in older adults, the current study provides empirical evidence (i) that motor functions in young adults are positively related to specific measures of cognitive functions, and (ii) that such relationships are at least partially mediated by distinct brain structures. Furthermore, our analyses suggest that machine-learning classifier has a promising potential to be used as a classification tool and decision support for identifying populations with below-average motor and cognitive functions.
Collapse
Affiliation(s)
- Qian Yu
- Faculty of Education, University of Macau, Macao, 999078, China
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen, 518060, China
| | - Zhaowei Kong
- Faculty of Education, University of Macau, Macao, 999078, China
| | - Liye Zou
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai, 200241, China
| | - Fabian Herold
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen, 518060, China
- Research Group Degenerative and Chronic Diseases, Movement, Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam, 14476, Germany
| | - Sebastian Ludyga
- Department of Sport, Exercise and Health, Sport Science Section, University of Basel, Grosse Allee 6, Basel, CH, 4052, Switzerland
| | - Zhihao Zhang
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen, 518060, China
| | - Meijun Hou
- Body-Brain-Mind Laboratory, School of Psychology, Shenzhen University, Shenzhen, 518060, China
| | - Arthur F Kramer
- Center for Cognitive and Brain Health, Northeastern University, Boston, MA, 02115, USA
- Department of Psychology, Northeastern University, Boston, MA 02115, USA
- Beckman Institute, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA
| | - Kirk I Erickson
- AdventHealth Research Institute, Neuroscience, Orlando, FL, 32101, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, 15260, USA
| | - Marco Taubert
- Department Sport Science, Institute III, Faculty for Humanities, Center for Behavioral and Brain Sciences, Otto von Guericke University, Magdeburg, 39106, Germany
| | - Charles H Hillman
- Center for Cognitive and Brain Health, Northeastern University, Boston, MA, 02115, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, 15260, USA
| | - Sean P Mullen
- Beckman Institute, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA
- Department of Kinesiology and Community Health, College of Applied Health Sciences, University of Illinois, Urbana, Champaign, 61820, USA
| | - Markus Gerber
- Department of Sport, Exercise and Health, Sport Science Section, University of Basel, Grosse Allee 6, Basel, CH, 4052, Switzerland
| | - Notger G Müller
- Research Group Degenerative and Chronic Diseases, Movement, Faculty of Health Sciences Brandenburg, University of Potsdam, Potsdam, 14476, Germany
| | - Keita Kamijo
- Faculty of Liberal Arts and Sciences, Chukyo University, Nagoya, 466-8666, Japan
| | - Toru Ishihara
- Graduate School of Human Development and Environment, Kobe University, Kobe, 657-8501, Japan
| | - Robert Schinke
- School of Kinesiology and Health Sciences, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | - Boris Cheval
- Swiss Center for Affective Sciences, University of Geneva, Geneva CH-12114, Switzerland
- Laboratory for the Study of Emotion Elicitation and Expression (E3Lab), Department of Psychology, University of Geneva, Geneva CH-12114, Switzerland
| | - Terry McMorris
- Department Sport and Exercise Science, Institute for Sport, University of Chichester, College Lane, West Sussex, Chichester, PO19 6PE, United Kingdom
| | - Ka Kit Wong
- Faculty of Education, University of Macau, Macao, 999078, China
| | - Qingde Shi
- Faculty of Health Sciences and Sports, Macao Polytechnic University, 999078, Macao, China
| | - Jinlei Nie
- Faculty of Health Sciences and Sports, Macao Polytechnic University, 999078, Macao, China
| |
Collapse
|
5
|
Liu Y, Cao S. The analysis of aerobics intelligent fitness system for neurorobotics based on big data and machine learning. Heliyon 2024; 10:e33191. [PMID: 39022026 PMCID: PMC11253048 DOI: 10.1016/j.heliyon.2024.e33191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/08/2024] [Accepted: 06/16/2024] [Indexed: 07/20/2024] Open
Abstract
In modern society, people's pace of life is fast, and the pressure is enormous, leading to increasingly prominent issues such as obesity and sub-health. Traditional fitness methods cannot meet people's needs to a certain extent. Therefore, this work aims to use technology to change people's lifestyles and compensate for traditional fitness methods' shortcomings. Firstly, this work overviews neurorobotics, providing neural perception and control functions for aerobics intelligent fitness system. Secondly, the connection between big data and machine learning (ML), big data technology products, and the ML process are discussed. The Spark big data platform builds node data for calculation, and the decision tree algorithm is used for data preprocessing. These are important for future intelligent fitness analysis. This work proposes an aerobics intelligent fitness system based on neurorobotics technology and big data analysis and develops a recommendation system for the best fitness exercise. This system utilizes neural perception and control functions, combined with big data and ML technology, to solve the obesity and sub-health problems faced by people in fast-paced and high-pressure lifestyles. By harnessing the computational capabilities of the Spark big data platform and applying the decision tree algorithm for data preprocessing, the system can furnish users with personalized fitness plans and optimization recommendations. This work conducts a model performance study on 35 % aerobic fitness data on intelligent fitness Android v1.0.8 to evaluate the system's data processing ability and training effectiveness. Moreover, the aerobics intelligent fitness system models based on neurorobotics, big data, and ML are evaluated. The results indicate that normalizing the data using the Min-Max method leads to a decrease in the F1 value and a reduction in data set errors. Consequently, the dataset studied by the system model is beneficial to improving the work efficiency of the aerobics intelligent fitness system. After the comprehensive human quality of the system model is evaluated, the actual average score of the comprehensive human quality of the 13 users tested before the aerobics intelligent fitness system test is 91.44, and the average prediction score is 90.88. The results of the two tests are similar. Thus, using the intelligent fitness system can enable the user to obtain system feedback according to the actual training effect, thereby playing a guiding role in the intelligent fitness of aerobics for the user. This work designs and implements the aerobics intelligent fitness system close to the human body's training effect, further enhancing the specialization and individualization of sports and fitness.
Collapse
Affiliation(s)
- Yuanxin Liu
- Sports Department, Henan Medical College, Zhengzhou, 451191, China
| | - Shufang Cao
- Ministry of Basic Medicine Education, Dazhou Vocational College of Chinese Medicine, Dazhou, 635000, China
| |
Collapse
|
6
|
Krämer C, Stumme J, da Costa Campos L, Dellani P, Rubbert C, Caspers J, Caspers S, Jockwitz C. Prediction of cognitive performance differences in older age from multimodal neuroimaging data. GeroScience 2024; 46:283-308. [PMID: 37308769 PMCID: PMC10828156 DOI: 10.1007/s11357-023-00831-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/17/2023] [Indexed: 06/14/2023] Open
Abstract
Differences in brain structure and functional and structural network architecture have been found to partly explain cognitive performance differences in older ages. Thus, they may serve as potential markers for these differences. Initial unimodal studies, however, have reported mixed prediction results of selective cognitive variables based on these brain features using machine learning (ML). Thus, the aim of the current study was to investigate the general validity of cognitive performance prediction from imaging data in healthy older adults. In particular, the focus was with examining whether (1) multimodal information, i.e., region-wise grey matter volume (GMV), resting-state functional connectivity (RSFC), and structural connectivity (SC) estimates, may improve predictability of cognitive targets, (2) predictability differences arise for global cognition and distinct cognitive profiles, and (3) results generalize across different ML approaches in 594 healthy older adults (age range: 55-85 years) from the 1000BRAINS study. Prediction potential was examined for each modality and all multimodal combinations, with and without confound (i.e., age, education, and sex) regression across different analytic options, i.e., variations in algorithms, feature sets, and multimodal approaches (i.e., concatenation vs. stacking). Results showed that prediction performance differed considerably between deconfounding strategies. In the absence of demographic confounder control, successful prediction of cognitive performance could be observed across analytic choices. Combination of different modalities tended to marginally improve predictability of cognitive performance compared to single modalities. Importantly, all previously described effects vanished in the strict confounder control condition. Despite a small trend for a multimodal benefit, developing a biomarker for cognitive aging remains challenging.
Collapse
Affiliation(s)
- Camilla Krämer
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Johanna Stumme
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Lucas da Costa Campos
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Paulo Dellani
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christian Rubbert
- Department of Diagnostic and Interventional Radiology, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julian Caspers
- Department of Diagnostic and Interventional Radiology, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christiane Jockwitz
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany.
- Institute for Anatomy I, Medical Faculty & University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
7
|
Demnitz N, Hulme OJ, Siebner HR, Kjaer M, Ebmeier KP, Boraxbekk CJ, Gillan CM. Characterising the covariance pattern between lifestyle factors and structural brain measures: a multivariable replication study of two independent ageing cohorts. Neurobiol Aging 2023; 131:115-123. [PMID: 37619515 DOI: 10.1016/j.neurobiolaging.2023.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023]
Abstract
Modifiable lifestyle factors have been shown to promote healthy brain ageing. However, studies have typically focused on a single factor at a time. Given that lifestyle factors do not occur in isolation, multivariable analyses provide a more realistic model of the lifestyle-brain relationship. Here, canonical correlation analyses (CCA) examined the relationship between nine lifestyle factors and seven MRI-derived indices of brain structure. The resulting covariance pattern was further explored with Bayesian regressions. CCA analyses were first conducted on a Danish cohort of older adults (n = 251) and then replicated in a British cohort (n = 668). In both cohorts, the latent factors of lifestyle and brain structure were positively correlated (UK: r = .37, p < 0.001; Denmark: r = .27, p < 0.001). In the cross-validation study, the correlation between lifestyle-brain latent factors was r = .10, p = 0.008. However, the pattern of associations differed between datasets. These findings suggest that baseline characterisation and tailoring towards the study sample may be beneficial for achieving targeted lifestyle interventions.
Collapse
Affiliation(s)
- Naiara Demnitz
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre, Hvidovre, Denmark.
| | - Oliver J Hulme
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre, Hvidovre, Denmark; London Mathematical Laboratory, London, UK; Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Hartwig R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark; Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen (ISMC), Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark; Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Klaus P Ebmeier
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
| | - Carl-Johan Boraxbekk
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital-Amager and Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark; Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark; Institute of Sports Medicine Copenhagen (ISMC), Copenhagen University Hospital-Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Radiation Sciences, Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Claire M Gillan
- School of Psychology, Trinity College Dublin, Dublin, Ireland; Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
8
|
Dular L, Pernuš F, Špiclin Ž. Extensive T1-weighted MRI Preprocessing Improves Generalizability of Deep Brain Age Prediction Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540134. [PMID: 37214863 PMCID: PMC10197652 DOI: 10.1101/2023.05.10.540134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Brain age is an estimate of chronological age obtained from T1-weighted magnetic resonance images (T1w MRI) and represents a simple diagnostic biomarker of brain ageing and associated diseases. While the current best accuracy of brain age predictions on T1w MRIs of healthy subjects ranges from two to three years, comparing results from different studies is challenging due to differences in the datasets, T1w preprocessing pipelines, and performance metrics used. This paper investigates the impact of T1w image preprocessing on the performance of four deep learning brain age models presented in recent literature. Four preprocessing pipelines were evaluated, differing in terms of registration, grayscale correction, and software implementation. The results showed that the choice of software or preprocessing steps can significantly affect the prediction error, with a maximum increase of 0.7 years in mean absolute error (MAE) for the same model and dataset. While grayscale correction had no significant impact on MAE, the affine registration, compared to the rigid registration of T1w images to brain atlas was shown to statistically significantly improve MAE. Models trained on 3D images with isotropic 1 mm3 resolution exhibited less sensitivity to the T1w preprocessing variations compared to 2D models or those trained on downsampled 3D images. Some proved invariant to the preprocessing pipeline, however only after offset correction. Our findings generally indicate that extensive T1w preprocessing enhances the MAE, especially when applied to a new dataset. This runs counter to prevailing research literature which suggests that models trained on minimally preprocessed T1w scans are better poised for age predictions on MRIs from unseen scanners. Regardless of model or T1w preprocessing used, we show that to enable generalization of model's performance on a new dataset with either the same or different T1w preprocessing than the one applied in model training, some form of offset correction should be applied.
Collapse
Affiliation(s)
- Lara Dular
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, Ljubljana 1000, Slovenia
| | - Franjo Pernuš
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, Ljubljana 1000, Slovenia
| | - Žiga Špiclin
- University of Ljubljana, Faculty of Electrical Engineering, Tržaška cesta 25, Ljubljana 1000, Slovenia
| |
Collapse
|
9
|
Ryberg M, Boraxbekk CJ, Kjaer M, Demnitz N. Effects of acute physical activity on brain metabolites as measured by magnetic resonance spectroscopy ( 1H-MRS) in humans: A systematic review. Heliyon 2023; 9:e20534. [PMID: 37818016 PMCID: PMC10560775 DOI: 10.1016/j.heliyon.2023.e20534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023] Open
Abstract
Physical activity (PA) promotes brain health in a variety of domains including cognition, mood, and neuroplasticity. At the neurochemical level, the mechanisms underlying these effects in the brain are not fully understood. With proton Magnetic Resonance Spectroscopy (1H-MRS), it is possible to non-invasively quantify metabolite concentrations, enabling studies to obtain measures of exercise-induced neurochemical changes. This systematic review aimed to examine the existing literature on acute effects of PA on brain metabolites as measured by 1H-MRS. Four databases (Cochrane Central Register of Controlled Trials, PubMed, Embase, and PsycINFO) were searched, identifying 2965 studies, of which 9 met the inclusion criteria. Across studies, Gamma-AminoButyric Acid (GABA) and lactate tended to increase after exercise, while no significant changes in choline were reported. For glutamine/glutamate (Glx), studies were inconclusive. Conclusions were limited by the lack of consensus on 1H-MRS data processing and exercise protocols. To reduce inter-study differences, future studies are recommended to (1): apply a standardized exercise index (2), consider the onset time of MRS scans, and (3) follow standardized MRS quantification methods.
Collapse
Affiliation(s)
- Mathias Ryberg
- Institute of Sports Medicine Copenhagen (ISMC), Copenhagen University Hospital – Bispebjerg and Frederiksberg, Bispebjerg Bakke 23, 2400 Copenhagen NV, Denmark
| | - Carl-Johan Boraxbekk
- Institute of Sports Medicine Copenhagen (ISMC), Copenhagen University Hospital – Bispebjerg and Frederiksberg, Bispebjerg Bakke 23, 2400 Copenhagen NV, Denmark
- Danish Research Center for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital – Amager and Hvidovre, Kettegård Allé 30, 2650 Hvidovre, Denmark
- Department of Neurology, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael Kjaer
- Institute of Sports Medicine Copenhagen (ISMC), Copenhagen University Hospital – Bispebjerg and Frederiksberg, Bispebjerg Bakke 23, 2400 Copenhagen NV, Denmark
- Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Naiara Demnitz
- Danish Research Center for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital – Amager and Hvidovre, Kettegård Allé 30, 2650 Hvidovre, Denmark
| |
Collapse
|
10
|
Gao J, Liu J, Xu Y, Peng D, Wang Z. Brain age prediction using the graph neural network based on resting-state functional MRI in Alzheimer's disease. Front Neurosci 2023; 17:1222751. [PMID: 37457008 PMCID: PMC10347411 DOI: 10.3389/fnins.2023.1222751] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Alzheimer's disease (AD) is a neurodegenerative disease that significantly impacts the quality of life of patients and their families. Neuroimaging-driven brain age prediction has been proposed as a potential biomarker to detect mental disorders, such as AD, aiding in studying its effects on functional brain networks. Previous studies have shown that individuals with AD display impaired resting-state functional connections. However, most studies on brain age prediction have used structural magnetic resonance imaging (MRI), with limited studies based on resting-state functional MRI (rs-fMRI). Methods In this study, we applied a graph neural network (GNN) model on controls to predict brain ages using rs-fMRI in patients with AD. We compared the performance of the GNN model with traditional machine learning models. Finally, the post hoc model was also used to identify the critical brain regions in AD. Results The experimental results demonstrate that our GNN model can predict brain ages of normal controls using rs-fMRI data from the ADNI database. Moreover the differences between brain ages and chronological ages were more significant in AD patients than in normal controls. Our results also suggest that AD is associated with accelerated brain aging and that the GNN model based on resting-state functional connectivity is an effective tool for predicting brain age. Discussion Our study provides evidence that rs-fMRI is a promising modality for brain age prediction in AD research, and the GNN model proves to be effective in predicting brain age. Furthermore, the effects of the hippocampus, parahippocampal gyrus, and amygdala on brain age prediction are verified.
Collapse
Affiliation(s)
| | | | | | | | - Zhengning Wang
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
11
|
Jirsaraie RJ, Gorelik AJ, Gatavins MM, Engemann DA, Bogdan R, Barch DM, Sotiras A. A systematic review of multimodal brain age studies: Uncovering a divergence between model accuracy and utility. PATTERNS (NEW YORK, N.Y.) 2023; 4:100712. [PMID: 37123443 PMCID: PMC10140612 DOI: 10.1016/j.patter.2023.100712] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Brain aging is a complex, multifaceted process that can be challenging to model in ways that are accurate and clinically useful. One of the most common approaches has been to apply machine learning to neuroimaging data with the goal of predicting age in a data-driven manner. Building on initial brain age studies that were derived solely from T1-weighted scans (i.e., unimodal), recent studies have incorporated features across multiple imaging modalities (i.e., "multimodal"). In this systematic review, we show that unimodal and multimodal models have distinct advantages. Multimodal models are the most accurate and sensitive to differences in chronic brain disorders. In contrast, unimodal models from functional magnetic resonance imaging were most sensitive to differences across a broad array of phenotypes. Altogether, multimodal imaging has provided us valuable insight for improving the accuracy of brain age models, but there is still much untapped potential with regard to achieving widespread clinical utility.
Collapse
Affiliation(s)
- Robert J. Jirsaraie
- Division of Computational and Data Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Aaron J. Gorelik
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Martins M. Gatavins
- Division of Computational and Data Sciences, Washington University in St. Louis, St. Louis, MO, USA
- Undergraduate Neuroscience Program, School of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Denis A. Engemann
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche, Ltd., Basel, Switzerland
- Université Paris-Saclay, Inria, CEA, Palaiseau, France
| | - Ryan Bogdan
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Deanna M. Barch
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Aristeidis Sotiras
- Department of Radiology and Institute for Informatics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Corresponding author
| |
Collapse
|
12
|
Jin Y, Lin L, Xiong M, Sun S, Wu SC. Moderating effects of cognitive reserve on the relationship between brain structure and cognitive abilities in middle-aged and older adults. Neurobiol Aging 2023; 128:49-64. [PMID: 37163923 DOI: 10.1016/j.neurobiolaging.2023.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 05/12/2023]
Abstract
The cognitive reserve (CR) hypothesis is reinforced by negative moderating effects, suggesting that those with higher CR are less reliant on brain structure for cognitive function. Previous research on CR's moderating effects yielded inconsistent results, motivating our 3 studies using UK Biobank data. Study I examined five CR proxies' moderating effects on global, lobar, and regional brain-cognition models; study II extended study I by using a larger sample size; and study III investigated age-related moderating effects on the hippocampal regions. In study I, most moderating effects were negative and none survived the multiple comparison correction, but study II identified 13 global-level models with significant negative moderating effects that survived correction. Study III showed age influenced CR proxies' moderating effects in hippocampal regions. Our findings suggest that the effects of CR proxies on brain integrity and cognition varied depending on the proxy used, brain integrity indicators, cognitive domain, and age group. This study offers significant insights regarding the importance of CR for brain integrity and cognitive outcomes.
Collapse
Affiliation(s)
- Yue Jin
- Intelligent Physiological Measurement and Clinical Translation, Beijing International Base for Scientific and Technological Cooperation, Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Lan Lin
- Intelligent Physiological Measurement and Clinical Translation, Beijing International Base for Scientific and Technological Cooperation, Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China.
| | - Min Xiong
- Intelligent Physiological Measurement and Clinical Translation, Beijing International Base for Scientific and Technological Cooperation, Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Shen Sun
- Intelligent Physiological Measurement and Clinical Translation, Beijing International Base for Scientific and Technological Cooperation, Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Shui-Cai Wu
- Intelligent Physiological Measurement and Clinical Translation, Beijing International Base for Scientific and Technological Cooperation, Department of Biomedical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| |
Collapse
|
13
|
von Cederwald BF, Johansson J, Riklund K, Karalija N, Boraxbekk CJ. White matter lesion load determines exercise-induced dopaminergic plasticity and working memory gains in aging. Transl Psychiatry 2023; 13:28. [PMID: 36720847 PMCID: PMC9889313 DOI: 10.1038/s41398-022-02270-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/02/2022] [Accepted: 11/28/2022] [Indexed: 02/01/2023] Open
Abstract
Age-related dopamine reductions have been suggested to contribute to maladaptive working memory (WM) function in older ages. One promising intervention approach is to increase physical activity, as this has been associated with plasticity of the striatal dopamine system and WM improvements, however with individual differences in efficacy. The present work focused on the impact of individual differences in white-matter lesion burden upon dopamine D2-like receptor (DRD2) availability and WM changes in response to a 6 months physical activity intervention. While the intervention altered striatal DRD2 availability and WM performance in individuals with no or only mild lesions (p < 0.05), no such effects were found in individuals with moderate-to-severe lesion severity (p > 0.05). Follow-up analyses revealed a similar pattern for processing speed, but not for episodic memory performance. Linear analyses further revealed that lesion volume (ml) at baseline was associated with reduced DRD2 availability (r = -0.41, p < 0.05), and level of DRD2 change (r = 0.40, p < 0.05). Taken together, this study underlines the necessity to consider cerebrovascular health in interventions with neurocognitive targets. Future work should assess whether these findings extend beyond measures of DRD2 availability and WM.
Collapse
Affiliation(s)
- Bryn Farnsworth von Cederwald
- grid.12650.300000 0001 1034 3451Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden ,grid.12650.300000 0001 1034 3451Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Jarkko Johansson
- grid.12650.300000 0001 1034 3451Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden ,grid.12650.300000 0001 1034 3451Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden
| | - Katrine Riklund
- grid.12650.300000 0001 1034 3451Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden ,grid.12650.300000 0001 1034 3451Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden
| | - Nina Karalija
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden. .,Department of Integrative Medical Biology, Umeå University, Umeå, Sweden.
| | - Carl-Johan Boraxbekk
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden. .,Department of Radiation Sciences, Diagnostic Radiology, Umeå University, Umeå, Sweden. .,Danish Research Center for Magnetic Resonance (DRCMR), Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital, Amager and Hvidovre, Copenhagen, Denmark. .,Institute of Sports Medicine Copenhagen (ISMC) and Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark. .,Institute for Clinical Medicine, Faculty of Medical and Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
14
|
Millar PR, Gordon BA, Luckett PH, Benzinger TLS, Cruchaga C, Fagan AM, Hassenstab JJ, Perrin RJ, Schindler SE, Allegri RF, Day GS, Farlow MR, Mori H, Nübling G, Bateman RJ, Morris JC, Ances BM. Multimodal brain age estimates relate to Alzheimer disease biomarkers and cognition in early stages: a cross-sectional observational study. eLife 2023; 12:e81869. [PMID: 36607335 PMCID: PMC9988262 DOI: 10.7554/elife.81869] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/30/2022] [Indexed: 01/07/2023] Open
Abstract
Background Estimates of 'brain-predicted age' quantify apparent brain age compared to normative trajectories of neuroimaging features. The brain age gap (BAG) between predicted and chronological age is elevated in symptomatic Alzheimer disease (AD) but has not been well explored in presymptomatic AD. Prior studies have typically modeled BAG with structural MRI, but more recently other modalities, including functional connectivity (FC) and multimodal MRI, have been explored. Methods We trained three models to predict age from FC, structural (S), or multimodal MRI (S+FC) in 390 amyloid-negative cognitively normal (CN/A-) participants (18-89 years old). In independent samples of 144 CN/A-, 154 CN/A+, and 154 cognitively impaired (CI; CDR > 0) participants, we tested relationships between BAG and AD biomarkers of amyloid and tau, as well as a global cognitive composite. Results All models predicted age in the control training set, with the multimodal model outperforming the unimodal models. All three BAG estimates were significantly elevated in CI compared to controls. FC-BAG was significantly reduced in CN/A+ participants compared to CN/A-. In CI participants only, elevated S-BAG and S+FC BAG were associated with more advanced AD pathology and lower cognitive performance. Conclusions Both FC-BAG and S-BAG are elevated in CI participants. However, FC and structural MRI also capture complementary signals. Specifically, FC-BAG may capture a unique biphasic response to presymptomatic AD pathology, while S-BAG may capture pathological progression and cognitive decline in the symptomatic stage. A multimodal age-prediction model improves sensitivity to healthy age differences. Funding This work was supported by the National Institutes of Health (P01-AG026276, P01- AG03991, P30-AG066444, 5-R01-AG052550, 5-R01-AG057680, 1-R01-AG067505, 1S10RR022984-01A1, and U19-AG032438), the BrightFocus Foundation (A2022014F), and the Alzheimer's Association (SG-20-690363-DIAN).
Collapse
Affiliation(s)
- Peter R Millar
- Department of Neurology, Washington University in St. LouisSt LouisUnited States
| | - Brian A Gordon
- Department of Radiology, Washington University in St. LouisSt LouisUnited States
| | - Patrick H Luckett
- Department of Neurosurgery, Washington University in St. LouisSt LouisUnited States
| | - Tammie LS Benzinger
- Department of Radiology, Washington University in St. LouisSt LouisUnited States
- Department of Neurosurgery, Washington University in St. LouisSt LouisUnited States
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University in St. LouisSt LouisUnited States
| | - Anne M Fagan
- Department of Neurology, Washington University in St. LouisSt LouisUnited States
| | - Jason J Hassenstab
- Department of Neurology, Washington University in St. LouisSt LouisUnited States
| | - Richard J Perrin
- Department of Neurology, Washington University in St. LouisSt LouisUnited States
- Department of Pathology and Immunology, Washington University in St. LouisSt LouisUnited States
| | - Suzanne E Schindler
- Department of Neurology, Washington University in St. LouisSt LouisUnited States
| | - Ricardo F Allegri
- Department of Cognitive Neurology, Institute for Neurological Research (FLENI)Buenos AiresArgentina
| | - Gregory S Day
- Department of Neurology, Mayo Clinic FloridaJacksonvilleUnited States
| | - Martin R Farlow
- Department of Neurology, Indiana University School of MedicineIndianapolisUnited States
| | - Hiroshi Mori
- Department of Clinical Neuroscience, Osaka Metropolitan University Medical School, Nagaoka Sutoku UniversityOsakaJapan
| | - Georg Nübling
- Department of Neurology, Ludwig-Maximilians UniversityMunichGermany
- German Center for Neurodegenerative DiseasesMunichGermany
| | - Randall J Bateman
- Department of Neurology, Washington University in St. LouisSt LouisUnited States
| | - John C Morris
- Department of Neurology, Washington University in St. LouisSt LouisUnited States
| | - Beau M Ances
- Department of Neurology, Washington University in St. LouisSt LouisUnited States
- Department of Radiology, Washington University in St. LouisSt LouisUnited States
| |
Collapse
|
15
|
Longitudinal stability in working memory and frontal activity in relation to general brain maintenance. Sci Rep 2022; 12:20957. [PMID: 36470934 PMCID: PMC9722656 DOI: 10.1038/s41598-022-25503-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Cognitive functions are well-preserved for some older individuals, but the underlying brain mechanisms remain disputed. Here, 5-year longitudinal 3-back in-scanner and offline data classified individuals in a healthy older sample (baseline age = 64-68 years) into having stable or declining working-memory (WM). Consistent with a vital role of the prefrontal cortex (PFC), WM stability or decline was related to maintained or reduced longitudinal PFC functional responses. Subsequent analyses of imaging markers of general brain maintenance revealed higher levels in the stable WM group on measures of neurotransmission and vascular health. Also, categorical and continuous analyses showed that rate of WM decline was related to global (ventricles) and local (hippocampus) measures of neuronal integrity. Thus, our findings support a role of the PFC as well as general brain maintenance in explaining heterogeneity in longitudinal WM trajectories in aging.
Collapse
|
16
|
Sone D, Beheshti I. Neuroimaging-Based Brain Age Estimation: A Promising Personalized Biomarker in Neuropsychiatry. J Pers Med 2022; 12:jpm12111850. [PMID: 36579560 PMCID: PMC9695293 DOI: 10.3390/jpm12111850] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/01/2022] [Accepted: 11/01/2022] [Indexed: 11/10/2022] Open
Abstract
It is now possible to estimate an individual's brain age via brain scans and machine-learning models. This validated technique has opened up new avenues for addressing clinical questions in neurology, and, in this review, we summarize the many clinical applications of brain-age estimation in neuropsychiatry and general populations. We first provide an introduction to typical neuroimaging modalities, feature extraction methods, and machine-learning models that have been used to develop a brain-age estimation framework. We then focus on the significant findings of the brain-age estimation technique in the field of neuropsychiatry as well as the usefulness of the technique for addressing clinical questions in neuropsychiatry. These applications may contribute to more timely and targeted neuropsychiatric therapies. Last, we discuss the practical problems and challenges described in the literature and suggest some future research directions.
Collapse
Affiliation(s)
- Daichi Sone
- Department of Psychiatry, Jikei University School of Medicine, Tokyo 105-8461, Japan
- Correspondence: ; Tel.: +81-03-3433
| | - Iman Beheshti
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB R3E 3P5, Canada
| |
Collapse
|
17
|
Jiang R, Scheinost D, Zuo N, Wu J, Qi S, Liang Q, Zhi D, Luo N, Chung Y, Liu S, Xu Y, Sui J, Calhoun V. A Neuroimaging Signature of Cognitive Aging from Whole-Brain Functional Connectivity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201621. [PMID: 35811304 PMCID: PMC9403648 DOI: 10.1002/advs.202201621] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/02/2022] [Indexed: 05/14/2023]
Abstract
Cognitive decline is amongst one of the most commonly reported complaints during normal aging. Despite evidence that age and cognition are linked with similar neural correlates, no previous studies have directly ascertained how these two constructs overlap in the brain in terms of neuroimaging-based prediction. Based on a long lifespan healthy cohort (CamCAN, aged 19-89 years, n = 567), it is shown that both cognitive function (domains spanning executive function, emotion processing, motor function, and memory) and human age can be reliably predicted from unique patterns of functional connectivity, with models generalizable in two external datasets (n = 533 and n = 453). Results show that cognitive decline and normal aging both manifest decrease within-network connections (especially default mode and ventral attention networks) and increase between-network connections (somatomotor network). Whereas dorsal attention network is an exception, which is highly predictive on cognitive ability but is weakly correlated with aging. Further, the positively weighted connections in predicting fluid intelligence significantly mediate its association with age. Together, these findings offer insights into why normal aging is often associated with cognitive decline in terms of brain network organization, indicating a process of neural dedifferentiation and compensational theory.
Collapse
Affiliation(s)
- Rongtao Jiang
- Department of Radiology and Biomedical ImagingYale School of MedicineNew HavenCT06520USA
| | - Dustin Scheinost
- Department of Radiology and Biomedical ImagingYale School of MedicineNew HavenCT06520USA
- Interdepartmental Neuroscience ProgramYale UniversityNew HavenCT06520USA
- Department of Statistics and Data ScienceYale UniversityNew HavenCT06520USA
- Child Study CenterYale School of MedicineNew HavenCT06510USA
| | - Nianming Zuo
- Brainnetome Center and National Laboratory of Pattern RecognitionInstitute of AutomationChinese Academy of SciencesBeijing100190P. R. China
- School of Artificial IntelligenceUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Jing Wu
- Department of Medical OncologyBeijing You‐An HospitalCapital Medical UniversityBeijing100069P. R. China
| | - Shile Qi
- College of Computer Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjing211106P. R. China
| | - Qinghao Liang
- Department of Biomedical EngineeringYale UniversityNew HavenCT06520USA
| | - Dongmei Zhi
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijing100088P. R. China
| | - Na Luo
- Brainnetome Center and National Laboratory of Pattern RecognitionInstitute of AutomationChinese Academy of SciencesBeijing100190P. R. China
- School of Artificial IntelligenceUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Young‐Chul Chung
- Department of PsychiatryJeonbuk National University Medical SchoolJeonju54907Republic of Korea
- Department of PsychiatryChonbuk National University HospitalJeonju54907Republic of Korea
| | - Sha Liu
- Department of Psychiatry and MDT Center for Cognitive Impairment and Sleep DisordersFirst HospitalFirst Clinical Medical College of Shanxi Medical UniversityTaiyuan030001P. R. China
| | - Yong Xu
- Department of Psychiatry and MDT Center for Cognitive Impairment and Sleep DisordersFirst HospitalFirst Clinical Medical College of Shanxi Medical UniversityTaiyuan030001P. R. China
| | - Jing Sui
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijing100088P. R. China
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia Institute of TechnologyEmory University and Georgia State UniversityAtlantaGA30303USA
| | - Vince Calhoun
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia Institute of TechnologyEmory University and Georgia State UniversityAtlantaGA30303USA
| |
Collapse
|
18
|
de Lange AMG, Anatürk M, Rokicki J, Han LKM, Franke K, Alnaes D, Ebmeier KP, Draganski B, Kaufmann T, Westlye LT, Hahn T, Cole JH. Mind the gap: Performance metric evaluation in brain-age prediction. Hum Brain Mapp 2022; 43:3113-3129. [PMID: 35312210 PMCID: PMC9188975 DOI: 10.1002/hbm.25837] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/04/2022] [Accepted: 03/06/2022] [Indexed: 12/21/2022] Open
Abstract
Estimating age based on neuroimaging-derived data has become a popular approach to developing markers for brain integrity and health. While a variety of machine-learning algorithms can provide accurate predictions of age based on brain characteristics, there is significant variation in model accuracy reported across studies. We predicted age in two population-based datasets, and assessed the effects of age range, sample size and age-bias correction on the model performance metrics Pearson's correlation coefficient (r), the coefficient of determination (R2 ), Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). The results showed that these metrics vary considerably depending on cohort age range; r and R2 values are lower when measured in samples with a narrower age range. RMSE and MAE are also lower in samples with a narrower age range due to smaller errors/brain age delta values when predictions are closer to the mean age of the group. Across subsets with different age ranges, performance metrics improve with increasing sample size. Performance metrics further vary depending on prediction variance as well as mean age difference between training and test sets, and age-bias corrected metrics indicate high accuracy-also for models showing poor initial performance. In conclusion, performance metrics used for evaluating age prediction models depend on cohort and study-specific data characteristics, and cannot be directly compared across different studies. Since age-bias corrected metrics generally indicate high accuracy, even for poorly performing models, inspection of uncorrected model results provides important information about underlying model attributes such as prediction variance.
Collapse
Affiliation(s)
- Ann-Marie G de Lange
- LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne
- Department of Psychology, University of Oslo, Oslo
- Department of Psychiatry, University of Oxford, Oxford
| | - Melis Anatürk
- Department of Psychiatry, University of Oxford, Oxford
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Jaroslav Rokicki
- NORMENT, Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Centre of Research and Education in Forensic Psychiatry, Oslo University Hospital, Oslo, Norway
| | - Laura K M Han
- Department of Psychiatry, Amsterdam University Medical Centers, Vrije Universiteit and GGZ inGeest, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Katja Franke
- Structural Brain Mapping Group, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Dag Alnaes
- NORMENT, Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | | | - Bogdan Draganski
- LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Tobias Kaufmann
- NORMENT, Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Tübingen Center for Mental Health, Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Oslo
- NORMENT, Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Tim Hahn
- Institute of Translational Psychiatry, University of Münster, Münster, Germany
| | - James H Cole
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
19
|
Wrigglesworth J, Harding IH, Ward P, Woods RL, Storey E, Fitzgibbon B, Egan G, Murray A, Shah RC, Trevaks RE, Ward S, McNeil JJ, Ryan J. Factors Influencing Change in Brain-Predicted Age Difference in a Cohort of Healthy Older Individuals. J Alzheimers Dis Rep 2022; 6:163-176. [PMID: 35591948 PMCID: PMC9108625 DOI: 10.3233/adr-220011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/09/2022] [Indexed: 12/11/2022] Open
Abstract
Background There is considerable variability in the rate at which we age biologically, and the brain is particularly susceptible to the effects of aging. Objective We examined the test-retest reliability of brain age at one- and three-year intervals and identified characteristics that predict the longitudinal change in brain-predicted age difference (brain-PAD, defined by deviations of brain age from chronological age). Methods T1-weighted magnetic resonance images were acquired at three timepoints from 497 community-dwelling adults (73.8±3.5 years at baseline, 48% were female). Brain age was estimated from whole brain volume, using a publicly available algorithm trained on an independent dataset. Linear mixed models were used, adjusting for sex, age, and age2. Results Excellent retest reliability of brain age was observed over one and three years. We identified a significant sex difference in brain-PAD, where a faster rate of brain aging (worsening in brain age relative to chronological age) was observed in men, and this finding replicated in secondary analyses. The effect size, however, was relatively weak, equivalent to 0.16 years difference per year. A higher score in physical health related quality of life and verbal fluency were associated with a faster rate of brain aging, while depression was linked to a slower rate of brain aging, but these findings were not robust. Conclusion Our study provides consistent evidence that older men have slightly faster brain atrophy than women. Given the sparsity of longitudinal research on brain age in older populations, future prospective studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Jo Wrigglesworth
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Ian H. Harding
- Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Phillip Ward
- Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia
- Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function, Clayton, VIC, Australia
| | - Robyn L. Woods
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Elsdon Storey
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Bernadette Fitzgibbon
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Gary Egan
- Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function, Clayton, VIC, Australia
| | - Anne Murray
- Berman Center for Outcomes & Clinical Research, Hennepin Healthcare Research Institute, Minneapolis, MN, USA
- Department of Medicine, Division of Geriatrics, Hennepin Healthcare, University of Minnesota, Minneapolis, MN, USA
| | - Raj C. Shah
- Department of Family Medicine and the Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
| | - Ruth E. Trevaks
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Stephanie Ward
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Centre for Healthy Brain Ageing (CHeBA), University of New South Wales, Sydney, NSW, Australia
- Department of Geriatric Medicine, Prince of Wales Hospital, Randwick, NSW, Australia
| | - John J. McNeil
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Joanne Ryan
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - on behalf of the ASPREE investigator group
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
- Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Turner Institute for Brain and Mental Health, Monash University, Clayton, VIC, Australia
- Australian Research Council Centre of Excellence for Integrative Brain Function, Clayton, VIC, Australia
- Berman Center for Outcomes & Clinical Research, Hennepin Healthcare Research Institute, Minneapolis, MN, USA
- Department of Medicine, Division of Geriatrics, Hennepin Healthcare, University of Minnesota, Minneapolis, MN, USA
- Department of Family Medicine and the Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Centre for Healthy Brain Ageing (CHeBA), University of New South Wales, Sydney, NSW, Australia
- Department of Geriatric Medicine, Prince of Wales Hospital, Randwick, NSW, Australia
| |
Collapse
|
20
|
Beck D, de Lange AMG, Alnæs D, Maximov II, Pedersen ML, Leinhard OD, Linge J, Simon R, Richard G, Ulrichsen KM, Dørum ES, Kolskår KK, Sanders AM, Winterton A, Gurholt TP, Kaufmann T, Steen NE, Nordvik JE, Andreassen OA, Westlye LT. Adipose tissue distribution from body MRI is associated with cross-sectional and longitudinal brain age in adults. Neuroimage Clin 2022; 33:102949. [PMID: 35114636 PMCID: PMC8814666 DOI: 10.1016/j.nicl.2022.102949] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/12/2022]
Abstract
There is an intimate body-brain connection in ageing, and obesity is a key risk factor for poor cardiometabolic health and neurodegenerative conditions. Although research has demonstrated deleterious effects of obesity on brain structure and function, the majority of studies have used conventional measures such as waist-to-hip ratio, waist circumference, and body mass index. While sensitive to gross features of body composition, such global anthropometric features fail to describe regional differences in body fat distribution and composition. The sample consisted of baseline brain magnetic resonance imaging (MRI) acquired from 790 healthy participants aged 18-94 years (mean ± standard deviation (SD) at baseline: 46.8 ± 16.3), and follow-up brain MRI collected from 272 of those individuals (two time-points with 19.7 months interval, on average (min = 9.8, max = 35.6). Of the 790 included participants, cross-sectional body MRI data was available from a subgroup of 286 participants, with age range 19-86 (mean = 57.6, SD = 15.6). Adopting a mixed cross-sectional and longitudinal design, we investigated cross-sectional body magnetic resonance imaging measures of adipose tissue distribution in relation to longitudinal brain structure using MRI-based morphometry (T1) and diffusion tensor imaging (DTI). We estimated tissue-specific brain age at two time points and performed Bayesian multilevel modelling to investigate the associations between adipose measures at follow-up and brain age gap (BAG) - the difference between actual age and the prediction of the brain's biological age - at baseline and follow-up. We also tested for interactions between BAG and both time and age on each adipose measure. The results showed credible associations between T1-based BAG and liver fat, muscle fat infiltration (MFI), and weight-to-muscle ratio (WMR), indicating older-appearing brains in people with higher measures of adipose tissue. Longitudinal evidence supported interaction effects between time and MFI and WMR on T1-based BAG, indicating accelerated ageing over the course of the study period in people with higher measures of adipose tissue. The results show that specific measures of fat distribution are associated with brain ageing and that different compartments of adipose tissue may be differentially linked with increased brain ageing, with potential to identify key processes involved in age-related transdiagnostic disease processes.
Collapse
Affiliation(s)
- Dani Beck
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; Sunnaas Rehabilitation Hospital HT, Nesodden, Norway.
| | - Ann-Marie G de Lange
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; LREN, Centre for Research in Neurosciences-Department of Clinical Neurosciences, CHUV and University of Lausanne, Lausanne, Switzerland; Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | - Dag Alnæs
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Bjørknes College, Oslo, Norway
| | - Ivan I Maximov
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
| | - Mads L Pedersen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway
| | - Olof Dahlqvist Leinhard
- AMRA Medical AB, Linköping, Sweden; Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden; Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden
| | - Jennifer Linge
- AMRA Medical AB, Linköping, Sweden; Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden
| | - Rozalyn Simon
- AMRA Medical AB, Linköping, Sweden; Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden; Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden
| | - Geneviève Richard
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Kristine M Ulrichsen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - Erlend S Dørum
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - Knut K Kolskår
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - Anne-Marthe Sanders
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - Adriano Winterton
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Tiril P Gurholt
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Tobias Kaufmann
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatry and Psychotherapy, University of Tübingen, Germany
| | - Nils Eiel Steen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | | | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Norway
| | - Lars T Westlye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Norway.
| |
Collapse
|
21
|
Baecker L, Garcia-Dias R, Vieira S, Scarpazza C, Mechelli A. Machine learning for brain age prediction: Introduction to methods and clinical applications. EBioMedicine 2021; 72:103600. [PMID: 34614461 PMCID: PMC8498228 DOI: 10.1016/j.ebiom.2021.103600] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022] Open
Abstract
The rise of machine learning has unlocked new ways of analysing structural neuroimaging data, including brain age prediction. In this state-of-the-art review, we provide an introduction to the methods and potential clinical applications of brain age prediction. Studies on brain age typically involve the creation of a regression machine learning model of age-related neuroanatomical changes in healthy people. This model is then applied to new subjects to predict their brain age. The difference between predicted brain age and chronological age in a given individual is known as ‘brain-age gap’. This value is thought to reflect neuroanatomical abnormalities and may be a marker of overall brain health. It may aid early detection of brain-based disorders and support differential diagnosis, prognosis, and treatment choices. These applications could lead to more timely and more targeted interventions in age-related disorders.
Collapse
Affiliation(s)
- Lea Baecker
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK.
| | - Rafael Garcia-Dias
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Sandra Vieira
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Cristina Scarpazza
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK; Department of General Psychology, University of Padua, Italy
| | - Andrea Mechelli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| |
Collapse
|
22
|
de Lange AMG, Kaufmann T, Quintana DS, Winterton A, Andreassen OA, Westlye LT, Ebmeier KP. Prominent health problems, socioeconomic deprivation, and higher brain age in lonely and isolated individuals: A population-based study. Behav Brain Res 2021; 414:113510. [PMID: 34358570 DOI: 10.1016/j.bbr.2021.113510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/09/2021] [Accepted: 07/31/2021] [Indexed: 01/12/2023]
Abstract
Loneliness is linked to increased risk for Alzheimer's disease, but little is known about factors potentially contributing to adverse brain health in lonely individuals. In this study, we used data from 24,867 UK Biobank participants to investigate risk factors related to loneliness and estimated brain age based on neuroimaging data. The results showed that on average, individuals who self-reported loneliness on a single yes/no item scored higher on neuroticism, depression, social isolation, and socioeconomic deprivation, performed less physical activity, and had higher BMI compared to individuals who did not report loneliness. In line with studies pointing to a genetic overlap of loneliness with neuroticism and depression, permutation feature importance ranked these factors as the most important for classifying lonely vs. not lonely individuals (ROC AUC = 0.83). While strongly linked to loneliness, neuroticism and depression were not associated with brain age estimates. Conversely, objective social isolation showed a main effect on brain age, and individuals reporting both loneliness and social isolation showed higher brain age relative to controls - as part of a prominent risk profile with elevated scores on socioeconomic deprivation and unhealthy lifestyle behaviours, in addition to neuroticism and depression. While longitudinal studies are required to determine causality, this finding may indicate that the combination of social isolation and a genetic predisposition for loneliness involves a risk for adverse brain health. Importantly, the results underline the complexity in associations between loneliness and adverse health outcomes, where observed risks likely depend on a combination of interlinked variables including genetic as well as social, behavioural, physical, and socioeconomic factors.
Collapse
Affiliation(s)
- Ann-Marie G de Lange
- Department of Psychiatry, University of Oxford, Oxford, UK; NORMENT, Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; LREN, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland.
| | - Tobias Kaufmann
- NORMENT, Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Tübingen Center for Mental Health, Dept. of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Daniel S Quintana
- NORMENT, Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Adriano Winterton
- NORMENT, Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Lars T Westlye
- NORMENT, Institute of Clinical Medicine, University of Oslo, & Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Psychology, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | | |
Collapse
|
23
|
Sanders AM, Richard G, Kolskår K, Ulrichsen KM, Kaufmann T, Alnæs D, Beck D, Dørum ES, de Lange AMG, Egil Nordvik J, Westlye LT. Linking objective measures of physical activity and capability with brain structure in healthy community dwelling older adults. Neuroimage Clin 2021; 31:102767. [PMID: 34330086 PMCID: PMC8329542 DOI: 10.1016/j.nicl.2021.102767] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/28/2022]
Abstract
Maintaining high levels of daily activity and physical capability have been proposed as important constituents to promote healthy brain and cognitive aging. Studies investigating the associations between brain health and physical activity in late life have, however, mainly been based on self-reported data or measures designed for clinical populations. In the current study, we examined cross-sectional associations between physical activity, recorded by an ankle-positioned accelerometer for seven days, physical capability (grip strength, postural control, and walking speed), and neuroimaging based surrogate markers of brain health in 122 healthy older adults aged 65-88 years. We used a multimodal brain imaging approach offering complementary structural MRI based indicators of brain health: global white matter fractional anisotropy (FA) and mean diffusivity (MD) based on diffusion tensor imaging, and subcortical and global brain age based on brain morphology inferred from T1-weighted MRI data. In addition, based on the results from the main analysis, follow-up regression analysis was performed to test for association between the volume of key subcortical regions of interest (hippocampus, caudate, thalamus and cerebellum) and daily steps, and a follow-up voxelwise analysis to test for associations between walking speed and FA across the white matter Tract-Based Spatial Statistics (TBSS) skeleton. The analyses revealed a significant association between global FA and walking speed, indicating higher white matter integrity in people with higher pace. Voxelwise analysis supported widespread significant associations. We also found a significant interaction between sex and subcortical brain age on number of daily steps, indicating younger-appearing brains in more physically active women, with no significant associations among men. These results provide insight into the intricate associations between different measures of brain and physical health in old age, and corroborate established public health advice promoting physical activity.
Collapse
Affiliation(s)
- Anne-Marthe Sanders
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; Sunnaas Rehabilitation Hospital HT, Nesodden, Norway.
| | - Geneviève Richard
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway
| | - Knut Kolskår
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - Kristine M Ulrichsen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - Tobias Kaufmann
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychiatry and Psychotherapy, University of Tübingen, Germany
| | - Dag Alnæs
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Bjørknes College, Oslo, Norway
| | - Dani Beck
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - Erlend S Dørum
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - Ann-Marie G de Lange
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, UK
| | | | - Lars T Westlye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Norway; Department of Psychology, University of Oslo, Norway; KG Jebsen Center for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| |
Collapse
|