1
|
Cao HL, Yu H, Xue R, Yang X, Ma X, Wang Q, Deng W, Guo WJ, Li ML, Li T. Convergence and divergence in neurostructural signatures of unipolar and bipolar depressions: Insights from surface-based morphometry and prospective follow-up. J Affect Disord 2024; 366:8-15. [PMID: 39173928 DOI: 10.1016/j.jad.2024.08.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Bipolar disorder (BD) is often misidentified as unipolar depression (UD) during its early stages, typically until the onset of the first manic episode. This study aimed to explore both shared and unique neurostructural changes in patients who transitioned from UD to BD during follow-up, as compared to those with UD. METHODS This study utilized high-resolution structural magnetic resonance imaging (MRI) to collect brain data from individuals initially diagnosed with UD. During the average 3-year follow-up, 24 of the UD patients converted to BD (cBD). For comparison, the study included 48 demographically matched UD patients who did not convert and 48 healthy controls. The MRI data underwent preprocessing using FreeSurfer, followed by surface-based morphometry (SBM) analysis to identify cortical thickness (CT), surface area (SA), and cortical volume (CV) among groups. RESULTS The SBM analysis identified shared neurostructural characteristics between the cBD and UD groups, specifically thinner CT in the right precentral cortex compared to controls. Unique to the cBD group, there was a greater SA in the right inferior parietal cortex compared to the UD group. Furthermore, no significant correlations were observed between cortical morphological measures and cognitive performance and clinical features in the cBD and UD groups. LIMITATIONS The sample size is relatively small. CONCLUSIONS Our findings suggest that while cBD and UD exhibit some common alterations in cortical macrostructure, numerous distinct differences are also present. These differences offer valuable insights into the neuropathological underpinnings that distinguish these two conditions.
Collapse
Affiliation(s)
- Hai-Ling Cao
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hua Yu
- Department of Neurobiology, Affiliated Mental Health Center, Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Rui Xue
- Department of Neurobiology, Affiliated Mental Health Center, Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Yang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Xiaohong Ma
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Qiang Wang
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China
| | - Wei Deng
- Department of Neurobiology, Affiliated Mental Health Center, Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Wan-Jun Guo
- Department of Neurobiology, Affiliated Mental Health Center, Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China
| | - Ming-Li Li
- Mental Health Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Sichuan Clinical Medical Research Center for Mental Disorders, Chengdu, China.
| | - Tao Li
- Department of Neurobiology, Affiliated Mental Health Center, Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Nanhu Brain-computer Interface Institute, Hangzhou 311100, China; Liangzhu Laboratory, MOE Frontier Science Center for Brain Science and Brain-machine Integration, State Key Laboratory of Brain-machine Intelligence, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China.
| |
Collapse
|
2
|
Thienel R, Borne L, Faucher C, Behler A, Robinson GA, Fripp J, Giorgio J, Ceslis A, McAloney K, Adsett J, Galligan D, Martin NG, Breakspear M, Lupton MK. Can an online battery match in-person cognitive testing in providing information about age-related cortical morphology? Brain Imaging Behav 2024:10.1007/s11682-024-00918-2. [PMID: 39243354 DOI: 10.1007/s11682-024-00918-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
Clinical identification of early neurodegenerative changes requires an accurate and accessible characterization of brain and cognition in healthy aging. We assessed whether a brief online cognitive assessment can provide insights into brain morphology comparable to a comprehensive neuropsychological battery. In 141 healthy mid-life and older adults, we compared Creyos, a relatively brief online cognitive battery, to a comprehensive in person cognitive assessment. We used a multivariate technique to study the ability of each test to inform brain morphology as indexed by cortical sulcal width extracted from structural magnetic resonance imaging (sMRI).We found that the online test demonstrated comparable strength of association with cortical sulcal width compared to the comprehensive in-person assessment.These findings suggest that in our at-risk sample online assessments are comparable to the in-person assay in their association with brain morphology. With their cost effectiveness, online cognitive testing could lead to more equitable early detection and intervention for neurodegenerative diseases.
Collapse
Affiliation(s)
- R Thienel
- School of Medicine and Public Health, The University of Newcastle, Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia.
| | - L Borne
- School of Psychological Sciences, The University of Newcastle, Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia
| | - C Faucher
- School of Psychological Sciences, The University of Newcastle, Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia
- Australian eHealth Research Centre, CSIRO, Brisbane, QLD, 4029, Australia
| | - A Behler
- School of Psychological Sciences, The University of Newcastle, Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia
| | - G A Robinson
- Queensland Brain Institute, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
- School of Psychology, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - J Fripp
- Australian eHealth Research Centre, CSIRO, Brisbane, QLD, 4029, Australia
| | - J Giorgio
- School of Psychological Sciences, The University of Newcastle, Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, USA
| | - A Ceslis
- School of Psychology, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - K McAloney
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - J Adsett
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - D Galligan
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - N G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
| | - M Breakspear
- School of Medicine and Public Health, The University of Newcastle, Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia
- School of Psychological Sciences, The University of Newcastle, Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia
| | - M K Lupton
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, 4072, Australia
| |
Collapse
|
3
|
Hostalet N, González A, Salgado-Pineda P, Gonzàlez-Colom R, Canales-Rodríguez EJ, Aguirre C, Guerrero-Pedraza A, Llanos-Torres M, Salvador R, Pomarol-Clotet E, Sevillano X, Martínez-Abadías N, Fatjó-Vilas M. Face-brain correlates as potential sex-specific biomarkers for schizophrenia and bipolar disorder. Psychiatry Res 2024; 339:116027. [PMID: 38954892 DOI: 10.1016/j.psychres.2024.116027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/13/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024]
Abstract
Given the shared ectodermal origin and integrated development of the face and the brain, facial biomarkers emerge as potential candidates to assess vulnerability for disorders in which neurodevelopment is compromised, such as schizophrenia (SZ) and bipolar disorder (BD). The sample comprised 188 individuals (67 SZ patients, 46 BD patients and 75 healthy controls (HC)). Using a landmark-based approach on 3D facial reconstructions, we quantified global and local facial shape differences between SZ/BD patients and HC using geometric morphometrics. We also assessed correlations between facial and brain cortical measures. All analyses were performed separately by sex. Diagnosis explained 4.1 % - 5.9 % of global facial shape variance in males and females with SZ, and 4.5 % - 4.1 % in BD. Regarding local facial shape, we detected 43.2 % of significantly different distances in males and 47.4 % in females with SZ as compared to HC, whereas in BD the percentages decreased to 35.8 % and 26.8 %, respectively. We detected that brain area and volume significantly explained 2.2 % and 2 % of facial shape variance in the male SZ - HC sample. Our results support facial shape as a neurodevelopmental marker for SZ and BD and reveal sex-specific pathophysiological mechanisms modulating the interplay between the brain and the face.
Collapse
Affiliation(s)
- Noemí Hostalet
- FIDMAG, Germanes Hospitalàries Research Foundation, Barcelona, Spain; Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona (UB), Spain; CIBERSAM, Biomedical Research Network in Mental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandro González
- HER - Human-Environment Research Group, La Salle, Universitat Ramon Llull, Spain
| | - Pilar Salgado-Pineda
- FIDMAG, Germanes Hospitalàries Research Foundation, Barcelona, Spain; CIBERSAM, Biomedical Research Network in Mental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Rubèn Gonzàlez-Colom
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona (UB), Spain
| | - Erick J Canales-Rodríguez
- FIDMAG, Germanes Hospitalàries Research Foundation, Barcelona, Spain; CIBERSAM, Biomedical Research Network in Mental Health, Instituto de Salud Carlos III, Madrid, Spain; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Candibel Aguirre
- FIDMAG, Germanes Hospitalàries Research Foundation, Barcelona, Spain; Consorci Sanitari de Terrassa (CST). Hospital de Dia de Salut Mental de Terrassa, Spain
| | - Amalia Guerrero-Pedraza
- FIDMAG, Germanes Hospitalàries Research Foundation, Barcelona, Spain; Hospital Benito Menni CASM, Germanes Hospitalàries, Sant Boi de Llobregat, Barcelona, Spain
| | - María Llanos-Torres
- FIDMAG, Germanes Hospitalàries Research Foundation, Barcelona, Spain; Hospital Mare de Déu de la Mercè, Germanes Hospitalàries, Barcelona, Spain
| | - Raymond Salvador
- FIDMAG, Germanes Hospitalàries Research Foundation, Barcelona, Spain; CIBERSAM, Biomedical Research Network in Mental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Edith Pomarol-Clotet
- FIDMAG, Germanes Hospitalàries Research Foundation, Barcelona, Spain; CIBERSAM, Biomedical Research Network in Mental Health, Instituto de Salud Carlos III, Madrid, Spain
| | - Xavier Sevillano
- HER - Human-Environment Research Group, La Salle, Universitat Ramon Llull, Spain
| | - Neus Martínez-Abadías
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona (UB), Spain.
| | - Mar Fatjó-Vilas
- FIDMAG, Germanes Hospitalàries Research Foundation, Barcelona, Spain; Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Facultat de Biologia, Universitat de Barcelona (UB), Spain; CIBERSAM, Biomedical Research Network in Mental Health, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
4
|
Rostamzadeh S, Abouhossein A, Vosoughi S, Gendeshmin SB, Yarahmadi R. Stress influence on real-world driving identified by monitoring heart rate variability and morphologic variability of electrocardiogram signals: the case of intercity roads. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS 2024; 30:252-263. [PMID: 38083847 DOI: 10.1080/10803548.2023.2293391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/07/2023] [Indexed: 01/12/2024]
Abstract
Objectives. This study examines which of the heart rate variability (HRV) and morphologic variability (MV) metrics may have the highest accuracy in different stress detection during real-world driving. Methods. The cross-sectional study was carried out among 93 intercity mini-bus male drivers aged 22-67 years. The Trillium 5000 Holter Recorder and GARMIN Virb Elite camera were used to determine heart rate and vehicle speed measurements along the path, respectively. We considered the HRV and MV metrics of electrocardiogram (ECG) signals including the mean RR interval (mRR), mean heart rate (mHR), normalized low-frequency spectrum (nLF), normalized high-frequency spectrum (nHF), normalized very low-frequency spectrum (nVLF), difference of normalized low-frequency spectrum and normalized high-frequency spectrum (dLFHF), and sympathovagal balance index (SVI). Results. The analysis showed that the HRV metrics mHR, mRR, nVLF, nLF, nHF, dLFHF and SVI are effective in mental stress detection while driving as compared to rest time. We obtained a high accuracy of stress detection for MV metrics as compared to the traditional HRV analysis, of approximately 92%. Conclusions. Our findings indicate that driver stress could be detected with an accuracy of 92% using MV metrics as an accurate physiological index of the driver's state.
Collapse
Affiliation(s)
- Sajjad Rostamzadeh
- Occupational Health Research Center, Iran University of Medical Sciences, Iran
| | - Alireza Abouhossein
- School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Iran
| | - Shahram Vosoughi
- School of Public Health, Iran University of Medical Sciences, Iran
| | | | - Rasoul Yarahmadi
- School of Public Health, Iran University of Medical Sciences, Iran
| |
Collapse
|
5
|
Joel D, Smith CJ, Veenema AH. Beyond the binary: Characterizing the relationships between sex and neuropeptide receptor binding density measures in the rat brain. Horm Behav 2024; 159:105471. [PMID: 38128247 DOI: 10.1016/j.yhbeh.2023.105471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/30/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
Sex differences exist in numerous parameters of the brain. Yet, sex-related factors are part of a large set of variables that interact to affect many aspects of brain structure and function. This raises questions regarding how to interpret findings of sex differences at the level of single brain measures and the brain as a whole. In the present study, we reanalyzed two datasets consisting of measures of oxytocin, vasopressin V1a, and mu opioid receptor binding densities in multiple brain regions in rats. At the level of single brain measures, we found that sex differences were rarely dimorphic and were largely persistent across estrous stage and parental status but not across age or context. At the level of aggregates of brain measures showing sex differences, we tested whether individual brains are 'mosaics' of female-typical and male-typical measures or are internally consistent, having either only female-typical or only male-typical measures. We found mosaicism for measures showing overlap between females and males. Mosaicism was higher a) with a larger number of measures, b) with smaller effect sizes of the sex difference in these measures, and c) in rats with more diverse life experiences. Together, these results highlight the limitations of the binary framework for interpreting sex effects on the brain and suggest two complementary pathways to studying the contribution of sex to brain function: (1) focusing on measures showing dimorphic and persistent sex differences and (2) exploring the relations between specific brain mosaics and specific endpoints.
Collapse
Affiliation(s)
- Daphna Joel
- School of Psychological Sciences and Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.
| | - Caroline J Smith
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, USA.
| | - Alexa H Veenema
- Neurobiology of Social Behavior Laboratory, Department of Psychology & Neuroscience Program, Michigan State University, East Lansing, USA.
| |
Collapse
|
6
|
Mareckova K, Mareček R, Jani M, Zackova L, Andryskova L, Brazdil M, Nikolova YS. Association of Maternal Depression During Pregnancy and Recent Stress With Brain Age Among Adult Offspring. JAMA Netw Open 2023; 6:e2254581. [PMID: 36716025 PMCID: PMC9887495 DOI: 10.1001/jamanetworkopen.2022.54581] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
IMPORTANCE Maternal mental health problems during pregnancy are associated with altered neurodevelopment in offspring, but the long-term relationship between these prenatal risk factors and offspring brain structure in adulthood remains incompletely understood due to a paucity of longitudinal studies. OBJECTIVE To evaluate the association between exposure to maternal depression in utero and offspring brain age in the third decade of life, and to evaluate recent stressful life events as potential moderators of this association. DESIGN, SETTING, AND PARTICIPANTS This cohort study examined the 30-year follow-up of a Czech prenatal birth cohort with a within-participant design neuroimaging component in young adulthood conducted from 1991 to 2022. Participants from the European Longitudinal Study of Pregnancy and Childhood prenatal birth cohort were recruited for 2 magnetic resonance imaging (MRI) follow-ups, one between ages 23 and 24 years (early 20s) and another between ages 28 and 30 years (late 20s). EXPOSURES Maternal depression during pregnancy; stressful life events in the past year experienced by the young adult offspring. MAIN OUTCOMES AND MEASURES Gap between estimated neuroanatomical vs chronological age at MRI scan (brain age gap estimation [BrainAGE]) calculated once in participants' early 20s and once in their late 20s, and pace of aging calculated as the differences between BrainAGE at the 2 MRI sessions in young adulthood. RESULTS A total of 260 individuals participated in the second neuroimaging follow-up (mean [SD] age, 29.5 [0.6] years; 135 [52%] male); MRI data for both time points and a history of maternal depression were available for 110 participants (mean [SD] age, 29.3 [0.6] years; 56 [51%] male). BrainAGE in participants' early 20s was correlated with BrainAGE in their late 20s (r = 0.7, P < .001), and a previously observed association between maternal depression during pregnancy and BrainAGE in their early 20s persisted in their late 20s (adjusted R2 = 0.04; P = .04). However, no association emerged between maternal depression during pregnancy and the pace of aging between the 2 MRI sessions. The stability of the associations between maternal depression during pregnancy and BrainAGE was also supported by the lack of interactions with recent stress. In contrast, more recent stress was associated with greater pace of aging between the 2 MRI sessions, independent of maternal depression (adjusted R2 = 0.09; P = .01). CONCLUSIONS AND RELEVANCE The findings of this cohort study suggest that maternal depression and recent stress may have independent associations with brain age and the pace of aging, respectively, in young adulthood. Prevention and treatment of depression in pregnant mothers may have long-term implications for offspring brain development.
Collapse
Affiliation(s)
- Klara Mareckova
- Brain and Mind Research, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- 1st Department of Neurology, St Anne’s University Hospital and Faculty of Medicine, MU, Brno, Czech Republic
| | - Radek Mareček
- Brain and Mind Research, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Martin Jani
- Brain and Mind Research, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Lenka Zackova
- Brain and Mind Research, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- 1st Department of Neurology, St Anne’s University Hospital and Faculty of Medicine, MU, Brno, Czech Republic
| | - Lenka Andryskova
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Milan Brazdil
- Brain and Mind Research, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- 1st Department of Neurology, St Anne’s University Hospital and Faculty of Medicine, MU, Brno, Czech Republic
| | - Yuliya S. Nikolova
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Sun BB, Loomis SJ, Pizzagalli F, Shatokhina N, Painter JN, Foley CN, Jensen ME, McLaren DG, Chintapalli SS, Zhu AH, Dixon D, Islam T, Ba Gari I, Runz H, Medland SE, Thompson PM, Jahanshad N, Whelan CD. Genetic map of regional sulcal morphology in the human brain from UK biobank data. Nat Commun 2022; 13:6071. [PMID: 36241887 PMCID: PMC9568560 DOI: 10.1038/s41467-022-33829-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 10/05/2022] [Indexed: 12/24/2022] Open
Abstract
Genetic associations with macroscopic brain structure can provide insights into brain function and disease. However, specific associations with measures of local brain folding are largely under-explored. Here, we conducted large-scale genome- and exome-wide associations of regional cortical sulcal measures derived from magnetic resonance imaging scans of 40,169 individuals in UK Biobank. We discovered 388 regional brain folding associations across 77 genetic loci, with genes in associated loci enriched for expression in the cerebral cortex, neuronal development processes, and differential regulation during early brain development. We integrated brain eQTLs to refine genes for various loci, implicated several genes involved in neurodevelopmental disorders, and highlighted global genetic correlations with neuropsychiatric phenotypes. We provide an interactive 3D visualisation of our summary associations, emphasising added resolution of regional analyses. Our results offer new insights into the genetic architecture of brain folding and provide a resource for future studies of sulcal morphology in health and disease.
Collapse
Affiliation(s)
- Benjamin B Sun
- Translational Biology, Research & Development, Biogen Inc., Cambridge, MA, US.
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
| | - Stephanie J Loomis
- Translational Biology, Research & Development, Biogen Inc., Cambridge, MA, US
| | - Fabrizio Pizzagalli
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, US
| | - Natalia Shatokhina
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, US
| | - Jodie N Painter
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Christopher N Foley
- MRC Biostatistics Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
- Optima Partners, Edinburgh, UK
| | - Megan E Jensen
- Clinical Sciences, Research & Development, Biogen Inc., Cambridge, MA, US
| | - Donald G McLaren
- Clinical Sciences, Research & Development, Biogen Inc., Cambridge, MA, US
| | | | - Alyssa H Zhu
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, US
| | - Daniel Dixon
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, US
| | - Tasfiya Islam
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, US
| | - Iyad Ba Gari
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, US
| | - Heiko Runz
- Translational Biology, Research & Development, Biogen Inc., Cambridge, MA, US
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, US.
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, US.
| | | |
Collapse
|
8
|
Janssen J, Alloza C, Díaz-Caneja CM, Santonja J, Pina-Camacho L, Gordaliza PM, Fernández-Pena A, Lois NG, Buimer EEL, van Haren NEM, Cahn W, Vieta E, Castro-Fornieles J, Bernardo M, Arango C, Kahn RS, Hulshoff Pol HE, Schnack HG. Longitudinal Allometry of Sulcal Morphology in Health and Schizophrenia. J Neurosci 2022; 42:3704-3715. [PMID: 35318286 PMCID: PMC9087719 DOI: 10.1523/jneurosci.0606-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 11/21/2022] Open
Abstract
Scaling between subcomponents of folding and total brain volume (TBV) in healthy individuals (HIs) is allometric. It is unclear whether this is true in schizophrenia (SZ) or first-episode psychosis (FEP). This study confirmed normative allometric scaling norms in HIs using discovery and replication samples. Cross-sectional and longitudinal diagnostic differences in folding subcomponents were then assessed using an allometric framework. Structural imaging from a longitudinal (Sample 1: HI and SZ, nHI Baseline = 298, nSZ Baseline = 169, nHI Follow-up = 293, nSZ Follow-up = 168, totaling 1087 images, all individuals ≥ 2 images, age 16-69 years) and a cross-sectional sample (Sample 2: nHI = 61 and nFEP = 89, age 10-30 years), all human males and females, is leveraged to calculate global folding and its nested subcomponents: sulcation index (SI, total sulcal/cortical hull area) and determinants of sulcal area: sulcal length and sulcal depth. Scaling of SI, sulcal area, and sulcal length with TBV in SZ and FEP was allometric and did not differ from HIs. Longitudinal age trajectories demonstrated steeper loss of SI and sulcal area through adulthood in SZ. Longitudinal allometric analysis revealed that both annual change in SI and sulcal area was significantly stronger related to change in TBV in SZ compared with HIs. Our results detail the first evidence of the disproportionate contribution of changes in SI and sulcal area to TBV changes in SZ. Longitudinal allometric analysis of sulcal morphology provides deeper insight into lifespan trajectories of cortical folding in SZ.SIGNIFICANCE STATEMENT Psychotic disorders are associated with deficits in cortical folding and brain size, but we lack knowledge of how these two morphometric features are related. We leverage cross-sectional and longitudinal samples in which we decompose folding into a set of nested subcomponents: sulcal and hull area, and sulcal depth and length. We reveal that, in both schizophrenia and first-episode psychosis, (1) scaling of subcomponents with brain size is different from expected scaling laws and (2) caution is warranted when interpreting results from traditional methods for brain size correction. Longitudinal allometric scaling points to loss of sulcal area as a principal contributor to loss of brain size in schizophrenia. These findings advance the understanding of cortical folding atypicalities in psychotic disorders.
Collapse
Affiliation(s)
- Joost Janssen
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Ciber del Área de Salud Mental, 28007 Madrid, Spain
- Department of Psychiatry, UMCU Brain Center, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Clara Alloza
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Ciber del Área de Salud Mental, 28007 Madrid, Spain
| | - Covadonga M Díaz-Caneja
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Ciber del Área de Salud Mental, 28007 Madrid, Spain
- School of Medicine, Universidad Complutense, 28040 Madrid, Spain
| | - Javier Santonja
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
| | - Laura Pina-Camacho
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Ciber del Área de Salud Mental, 28007 Madrid, Spain
- School of Medicine, Universidad Complutense, 28040 Madrid, Spain
| | - Pedro M Gordaliza
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, 28911 Madrid, Spain
| | - Alberto Fernández-Pena
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, 28911 Madrid, Spain
| | - Noemi González Lois
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
| | - Elizabeth E L Buimer
- Department of Psychiatry, UMCU Brain Center, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Neeltje E M van Haren
- Department of Psychiatry, UMCU Brain Center, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Centre, Sophia Children's Hospital, 3015 GD Rotterdam, The Netherlands
| | - Wiepke Cahn
- Department of Psychiatry, UMCU Brain Center, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Eduard Vieta
- Ciber del Área de Salud Mental, 28007 Madrid, Spain
- Bipolar Disorders Unit, Clinical Institute of Neurosciences, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
| | - Josefina Castro-Fornieles
- Ciber del Área de Salud Mental, 28007 Madrid, Spain
- Department of Child and Adolescent Psychiatry and Psychology, Clinical Institute of Neurosciences, Hospital Clínic, University of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
| | - Miquel Bernardo
- Ciber del Área de Salud Mental, 28007 Madrid, Spain
- Barcelona Clinic Schizophrenia Unit, Hospital Clinic of Barcelona, Neuroscience Institute, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, 08036 Barcelona, Spain
| | - Celso Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, 28007 Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Ciber del Área de Salud Mental, 28007 Madrid, Spain
- School of Medicine, Universidad Complutense, 28040 Madrid, Spain
| | - René S Kahn
- Department of Psychiatry, UMCU Brain Center, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, 10029 New York
| | - Hilleke E Hulshoff Pol
- Department of Psychiatry, UMCU Brain Center, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Hugo G Schnack
- Department of Psychiatry, UMCU Brain Center, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
9
|
van der Meer D, Kaufmann T, Shadrin AA, Makowski C, Frei O, Roelfs D, Monereo-Sánchez J, Linden DEJ, Rokicki J, Alnæs D, de Leeuw C, Thompson WK, Loughnan R, Fan CC, Westlye LT, Andreassen OA, Dale AM. The genetic architecture of human cortical folding. SCIENCE ADVANCES 2021; 7:eabj9446. [PMID: 34910505 PMCID: PMC8673767 DOI: 10.1126/sciadv.abj9446] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/27/2021] [Indexed: 05/04/2023]
Abstract
The folding of the human cerebral cortex is a highly genetically regulated process that allows for a much larger surface area to fit into the cranial vault and optimizes functional organization. Sulcal depth is a robust yet understudied measure of localized folding, previously associated with multiple neurodevelopmental disorders. Here, we report the first genome-wide association study of sulcal depth. Through the multivariate omnibus statistical test (MOSTest) applied to vertex-wise measures from 33,748 U.K. Biobank participants (mean age, 64.3 years; 52.0% female), we identified 856 genome-wide significant loci (P < 5 × 10−8). Comparisons with cortical thickness and surface area indicated that sulcal depth has higher locus yield, heritability, and effective sample size. There was a large amount of genetic overlap between these traits, with gene-based analyses indicating strong associations with neurodevelopmental processes. Our findings demonstrate sulcal depth is a promising neuroimaging phenotype that may enhance our understanding of cortical morphology.
Collapse
Affiliation(s)
- Dennis van der Meer
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Tobias Kaufmann
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Alexey A. Shadrin
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Carolina Makowski
- Center for Multimodal Imaging and Genetics, University of California at San Diego, La Jolla, CA 92037, USA
| | - Oleksandr Frei
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Daniel Roelfs
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jennifer Monereo-Sánchez
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - David E. J. Linden
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Jaroslav Rokicki
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Dag Alnæs
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Bjørknes College, Oslo, Norway
| | - Christiaan de Leeuw
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Wesley K. Thompson
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California at San Diego, La Jolla, CA 92037, USA
| | - Robert Loughnan
- Center for Multimodal Imaging and Genetics, University of California at San Diego, La Jolla, CA 92037, USA
| | - Chun Chieh Fan
- Center for Multimodal Imaging and Genetics, University of California at San Diego, La Jolla, CA 92037, USA
| | - Lars T. Westlye
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Ole A. Andreassen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Anders M. Dale
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Center for Multimodal Imaging and Genetics, University of California at San Diego, La Jolla, CA 92037, USA
| |
Collapse
|