1
|
Chowdhury NS, Millard SK, de Martino E, Larsen DB, Seminowicz DA, Schabrun SM, de Andrade DC, Graven-Nielsen T. Posterior-superior insula repetitive transcranial magnetic stimulation reduces experimental tonic pain and pain-related cortical inhibition in humans. Pain 2024:00006396-990000000-00788. [PMID: 39679661 DOI: 10.1097/j.pain.0000000000003488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/23/2024] [Indexed: 12/17/2024]
Abstract
ABSTRACT High frequency repetitive transcranial magnetic stimulation (rTMS) to the posterior-superior insula (PSI) may produce analgesic effects. However, the alterations in cortical activity during PSI-rTMS analgesia remain poorly understood. The present study aimed to determine whether tonic capsaicin-induced pain and cortical inhibition (indexed using TMS-electroencephalography) are modulated by PSI-rTMS. Twenty healthy volunteers (10 females) attended 2 sessions randomized to active or sham rTMS. Experimental pain was induced by capsaicin administered to the forearm for 90 minutes, with pain ratings collected every 5 minutes. Left PSI-rTMS was delivered (10 Hz, 100 pulses per train, 15 trains) ∼50 minutes postcapsaicin administration. Transcranial magnetic stimulation-evoked potentials (TEPs) and thermal sensitivity were assessed at baseline, during capsaicin pain prior to rTMS and after rTMS. Bayesian evidence of reduced pain scores and increased heat pain thresholds were found after active rTMS, with no changes occurring after sham rTMS. Pain (prior to active rTMS) led to an increase in the frontal negative peak ∼45 ms (N45) TEP relative to baseline. After active rTMS, there was a decrease in the N45 peak back to baseline levels. In contrast, after sham rTMS, the N45 peak was increased relative to baseline. We also found that the reduction in pain numerical rating scale scores after active vs sham rTMS was correlated with and partially mediated by decreases in the N45 peak. These findings provide evidence of the analgesic effects of PSI-rTMS and suggest that the TEP N45 peak is a potential marker and mediator of both pain and analgesia. This study demonstrates that high-frequency rTMS targeting the posterior-superior insula reduces capsaicin-induced pain and alters cortical activity, with changes in the N45 TMS-evoked potential peak mediating the analgesic effects.
Collapse
Affiliation(s)
- Nahian S Chowdhury
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Samantha K Millard
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Enrico de Martino
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Dennis Boye Larsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - David A Seminowicz
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada
| | - Siobhan M Schabrun
- The Gray Centre for Mobility and Activity, Parkwood Institute, London, Canada
- School of Physical Therapy, University of Western Ontario, London, Canada
| | - Daniel Ciampi de Andrade
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
2
|
Mao L, Che X, Wang J, Jiang X, Zhao Y, Zou L, Wei S, Pan S, Guo D, Zhu X, Hu D, Yang X, Chen Z, Wang D. Sub-acute stroke demonstrates altered beta oscillation and connectivity pattern in working memory. J Neuroeng Rehabil 2024; 21:212. [PMID: 39633420 PMCID: PMC11619298 DOI: 10.1186/s12984-024-01516-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
INTRODUCTION Working memory (WM) is suggested to play a pivotal role in relearning and neural restoration during stroke rehabilitation. Using EEG, this study investigated the oscillatory mechanisms of WM in subacute stroke. METHODS This study included 48 first subacute stroke patients (26 good-recovery, 22 poor-recovery, based on prognosis after a 4-week period) and 24 matched health controls. We examined the oscillatory characteristics and functional connectivity of the 0-back WM paradigm and assessed their associations with prognosis. RESULTS Patients of poor recovery are characterised by a loss of significant beta rebound, beta-band connectivity, as well as impaired working memory speed and performances. Meanwhile, patients with good recovery have preserved these capacities to some extent. Our data further identified beta rebound to be closely associated with working memory speed and performances. CONCLUSIONS We provided novel findings that beta rebound and network connectivity as mechanistic evidence of impaired working memory in subacute stroke. These oscillatory features could potentially serve as a biomarker for brain stimulation technologies in stroke recovery.
Collapse
Affiliation(s)
- Lin Mao
- Departments of Physical Medicine and Rehabilitation, The First Affiliated Hospital, Zhejiang University School of Medicine, Building 6, 58 Chengzhan Road, Hangzhou, 310003, China
| | - Xianwei Che
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310003, China
| | - Juehan Wang
- Departments of Physical Medicine and Rehabilitation, The First Affiliated Hospital, Zhejiang University School of Medicine, Building 6, 58 Chengzhan Road, Hangzhou, 310003, China
| | - Xiaorui Jiang
- Department of Rehabilitation Medicine, The First People's Hospital of Yuhang District, Hangzhou, 311100, China
| | - Yifan Zhao
- Departments of Physical Medicine and Rehabilitation, The First Affiliated Hospital, Zhejiang University School of Medicine, Building 6, 58 Chengzhan Road, Hangzhou, 310003, China
| | - Liliang Zou
- Departments of Physical Medicine and Rehabilitation, The First Affiliated Hospital, Zhejiang University School of Medicine, Building 6, 58 Chengzhan Road, Hangzhou, 310003, China
| | - Shuang Wei
- Departments of Physical Medicine and Rehabilitation, The First Affiliated Hospital, Zhejiang University School of Medicine, Building 6, 58 Chengzhan Road, Hangzhou, 310003, China
| | - Shuyi Pan
- Department of Hyperbaric Oxygen, The Sixth Medical Center of PLA General Hospital, Beijing, 100142, China
| | - Dazhi Guo
- Department of Hyperbaric Oxygen, The Sixth Medical Center of PLA General Hospital, Beijing, 100142, China
| | - Xueqiong Zhu
- Departments of Physical Medicine and Rehabilitation, The First Affiliated Hospital, Zhejiang University School of Medicine, Building 6, 58 Chengzhan Road, Hangzhou, 310003, China
| | - Dongxia Hu
- Departments of Physical Medicine and Rehabilitation, The Second Affiliated Hospital, Nanchang University School of Medicine, Nanchang, 330038, China
| | - Xiaofeng Yang
- Emergency and Trauma Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zuobing Chen
- Departments of Physical Medicine and Rehabilitation, The First Affiliated Hospital, Zhejiang University School of Medicine, Building 6, 58 Chengzhan Road, Hangzhou, 310003, China.
| | - Daming Wang
- Departments of Physical Medicine and Rehabilitation, The First Affiliated Hospital, Zhejiang University School of Medicine, Building 6, 58 Chengzhan Road, Hangzhou, 310003, China.
| |
Collapse
|
3
|
Chowdhury NS, Taseen KJ, Chiang AK, Chang WJ, Millard SK, Seminowicz DA, Schabrun SM. A 5-day course of repetitive transcranial magnetic stimulation before pain onset ameliorates future pain and increases sensorimotor peak alpha frequency. Pain 2024:00006396-990000000-00779. [PMID: 39620350 DOI: 10.1097/j.pain.0000000000003484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/07/2024] [Indexed: 12/18/2024]
Abstract
ABSTRACT Repetitive transcranial magnetic stimulation (rTMS) has shown promise as an intervention for pain. An unexplored research question is whether the delivery of rTMS prior to pain onset might protect against a future episode of prolonged pain. The present study aimed to determine whether (1) 5 consecutive days of rTMS delivered prior to experimentally induced prolonged jaw pain has a prophylactic effect on future pain intensity and (2) whether these effects were accompanied by increases in corticomotor excitability (CME) and/or sensorimotor peak alpha frequency (PAF). On each day from day 0 to 4, 40 healthy individuals received a single session of active (n = 21) or sham (n = 19) rTMS over the left primary motor cortex. Peak alpha frequency and CME were assessed on day 0 (before rTMS) and day 4 (after rTMS). Prolonged pain was induced via intramuscular injection of nerve growth factor in the right masseter muscle after the final rTMS session. From days 5 to 25, participants completed twice-daily electronic diaries including pain on chewing and yawning (primary outcomes), as well as pain during other activities (eg, talking), functional limitation in jaw function and muscle soreness (secondary outcomes). Compared to sham, individuals who received active rTMS subsequently experienced lower pain on chewing and yawning. Furthermore, active rTMS led to an increase in PAF. This is the first study to show that rTMS delivered prior to prolonged pain onset can protect against future pain. Our findings suggest that rTMS may hold promise as a prophylactic intervention for pain.
Collapse
Affiliation(s)
- Nahian S Chowdhury
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Khandoker J Taseen
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Alan Ki Chiang
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Wei-Ju Chang
- School of Health Sciences, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Samantha K Millard
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - David A Seminowicz
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada
| | - Siobhan M Schabrun
- The Gray Centre for Mobility and Activity, Parkwood Institute, St. Joseph's Healthcare, London, Canada
- School of Physical Therapy, University of Western Ontario, London, Canada
| |
Collapse
|
4
|
Huang Z, Wang Y, Yan Y, Liu Y, Chen J, Liu H, Li J, Gao Z, Che X. Identifying neural circuitry abnormalities in neuropathic pain with transcranial magnetic stimulation and electroencephalogram co-registration. Neurotherapeutics 2024:e00496. [PMID: 39613525 DOI: 10.1016/j.neurot.2024.e00496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/02/2024] [Accepted: 11/14/2024] [Indexed: 12/01/2024] Open
Abstract
Non-invasive brain stimulation (NIBS) technology such as transcranial magnetic stimulation (TMS) represents a promising treatment for neuropathic pain. However, neural circuitries underlying analgesia remain to be established, which is largely limiting treatment responses. Using TMS and electroencephalogram co-registration (TMS-EEG), this study quantified the circuitry abnormalities in neuropathic pain and their associations with pain symptoms. A group of 21 neuropathic pain individuals and 21 healthy controls were assessed with TMS-EEG delivering to the primary motor cortex (M1). With source modelling, local current density and current propagation were analysed with significant current density (SCD) and scattering (SCS) respectively. The SCS and SCD data converged on higher activities in neuropathic pain individuals than healthy controls, within the emotional affective (perigenual anterior cingulate cortex, pgACC), sensory nociceptive (primary somatosensory cortex, S1), and the attentional cognitive (anterior insula, aINS; supracallosal anterior cingulate cortex, scACC) structures of pain. Moreover, current propagation to the pgACC was associated with lower pain-related negative emotions, while current propagation to the aINS with higher pain-related negative emotions. Using concurrent TMS-EEG, our data identified abnormal pain circuitries that could be utilised to improve treatment efficacy with brain stimulation technologies.
Collapse
Affiliation(s)
- Zhimin Huang
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Ying Wang
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yongxing Yan
- Department of Neurology, Hangzhou Third People's Hospital, Hangzhou, China
| | - Ying Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jielin Chen
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Huili Liu
- Department of Neurology, Hangzhou Third People's Hospital, Hangzhou, China
| | - Jie Li
- Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Zhongming Gao
- Department of Neurology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xianwei Che
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.
| |
Collapse
|
5
|
Chowdhury NS, Chang WJ, Cheng D, Manivasagan N, Seminowicz DA, Schabrun SM. The effect of prolonged elbow pain and rTMS on cortical inhibition: A TMS-EEG study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625334. [PMID: 39651216 PMCID: PMC11623566 DOI: 10.1101/2024.11.26.625334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Introduction Recent studies using combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) have shown that pain leads to an increase in the N45 peak of the TMS-evoked potential (TEP), which is mediated by GABAergic inhibition. Conversely, 10Hz repetitive TMS (10Hz-rTMS), which provides pain relief, reduces the N45 peak. However, these studies used brief pain stimuli (lasting minutes), limiting their clinical relevance. The present study determined the effect of pain and 10Hz-rTMS on the N45 peak in a prolonged pain model (lasting several days) induced by nerve growth factor (NGF) injection to the elbow muscle. Materials and Methods Experiment 1 : TEPs were measured in 22 healthy participants on Day 0 (pre-NGF), Day 2 (peak pain), and Day 7 (pain resolution). Experiment 2 : We examined the effect of 5 days of active (n=16) or sham (n=16) rTMS to the left primary motor cortex (M1) on the N45 peak during prolonged NGF-induced pain, with TEPs measured on Day 0 and Day 4 (post-rTMS). Results Experiment 1: While no overall change in the N45 peak was seen, a correlation emerged between higher pain severity on Day 2 and a larger increase in the N45 peak. Experiment 2 : Active rTMS reduced the N45 peak on Day 4 vs. Day 0, with no effect in the sham group. Conclusion Our findings suggest that (i) higher pain severity correlates with an increase in the N45 peak, and (ii) rTMS decreases cortical inhibition in a model of prolonged experimental pain. This study extends previous research by demonstrating a link between pain perception and cortical inhibition within a prolonged pain context.
Collapse
|
6
|
Mussigmann T, Bardel B, Casarotto S, Senova S, Rosanova M, Vialatte F, Lefaucheur JP. Classical, spaced, or accelerated transcranial magnetic stimulation of motor cortex for treating neuropathic pain: A 3-arm parallel non-inferiority study. Neurophysiol Clin 2024; 54:103012. [PMID: 39278041 DOI: 10.1016/j.neucli.2024.103012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Repetitive transcranial magnetic stimulation (rTMS) of the primary motor cortex (M1) at high frequency (HF) is an effective treatment of neuropathic pain. The classical HF-rTMS protocol (CHF-rTMS) includes a daily session for one week as an induction phase of treatment followed by more spaced sessions. Another type of protocol without an induction phase and based solely on spaced sessions of HF-rTMS (SHF-rTMS) has also been shown to produce neuropathic pain relief. However, CHF-rTMS and SHF-rTMS of M1 have never been compared regarding their analgesic potential. Another type of rTMS paradigm, called accelerated intermittent theta burst stimulation (ACC-iTBS), has recently been proposed for the treatment of depression, the other clinical condition for which HF-rTMS is proposed as an effective therapeutic strategy. ACC-iTBS combines a high number of pulses delivered in short sessions grouped into a few days of stimulation. This type of protocol has never been applied to M1 for the treatment of pain. METHODS/DESIGN The objective of this single-centre randomized study is to compare the efficacy of three different rTMS protocols for the treatment of chronic neuropathic pain: CHF-rTMS, SHF-rTMS, and ACC-iTBS. The CHF-rTMS will consists of 10 stimulation sessions, including 5 daily sessions of 10Hz-rTMS (3,000 pulses per session) over one week, then one session per week for 5 weeks, for a total of 30,000 pulses delivered in 10 stimulation days. The SHF-rTMS protocol will only include 4 sessions of 20Hz-rTMS (1,600 pulses per session), one every 15 days, for a total of 6,400 pulses delivered in 4 stimulation days. The ACC-iTBS protocol will comprise 5 sessions of iTBS (600 pulses per session) completed in half a day for 2 consecutive days, repeated 5 weeks later, for a total of 30,000 pulses delivered in 4 stimulation days. Thus, CHF-rTMS and ACC-iTBS protocols will share a higher total number of TMS pulses (30,000 pulses) compared to SHF-rTMS protocol (6,400 pulses), while CHF-rTMS protocol will include a higher number of stimulation days (10 days) compared to ACC-iTBS and SHF-rTMS protocols (4 days). In all protocols, the M1 target will be defined in the same way and stimulated at the same intensity using a navigated rTMS (nTMS) procedure. The evaluation will be based on clinical outcomes with various scales and questionnaires assessed every week, from two weeks before the 7-week period of therapeutic stimulation until 4 weeks after. Additionally, three sets of neurophysiological outcomes (resting-state electroencephalography (EEG), nTMS-EEG recordings, and short intracortical inhibition measurement with threshold tracking method) will be assessed the week before and after the 7-week period of therapeutic stimulation. DISCUSSION This study will make it possible to compare the analgesic efficacy of the CHF-rTMS and SHF-rTMS protocols and to appraise that of the ACC-iTBS protocol for the first time. This study will also make it possible to determine the respective influence of the total number of pulses and days of stimulation delivered to M1 on the extent of pain relief. Thus, if their analgesic efficacy is not inferior to that of CHF-rTMS, SHF-rTMS and especially the new ACC-iTBS protocol could be an optimal compromise of a more easy-to-perform rTMS protocol for the treatment of patients with chronic neuropathic pain.
Collapse
Affiliation(s)
- Thibaut Mussigmann
- UR 4391, Excitabilité Nerveuse et Thérapeutique, Faculté de Santé, Université Paris Est Créteil, Créteil, France
| | - Benjamin Bardel
- UR 4391, Excitabilité Nerveuse et Thérapeutique, Faculté de Santé, Université Paris Est Créteil, Créteil, France; Unité de Neurophysiologie Clinique, Hôpital Henri Mondor, Assistance Publique Hôpitaux de Paris, Créteil, France
| | - Silvia Casarotto
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy; IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Suhan Senova
- Structure Douleur Chronique, Service de Neurochirurgie, Hôpital Henri Mondor, Assistance Publique Hôpitaux de Paris, Créteil, France; Inserm U955, NeuroPsychiatrie Translationnelle, Institut Mondor de Recherche Biomédicale, Créteil, France
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - François Vialatte
- Institut Pour la Pratique et l'Innovation en PSYchologie appliquée (Institut PI-Psy), Draveil, France
| | - Jean-Pascal Lefaucheur
- UR 4391, Excitabilité Nerveuse et Thérapeutique, Faculté de Santé, Université Paris Est Créteil, Créteil, France; Unité de Neurophysiologie Clinique, Hôpital Henri Mondor, Assistance Publique Hôpitaux de Paris, Créteil, France.
| |
Collapse
|
7
|
Tan B, Chen J, Liu Y, Lin Q, Wang Y, Shi S, Ye Y, Che X. Differential analgesic effects of high-frequency or accelerated intermittent theta burst stimulation of M1 on experimental tonic pain: Correlations with cortical activity changes assessed by TMS-EEG. Neurotherapeutics 2024; 21:e00451. [PMID: 39304439 PMCID: PMC11585887 DOI: 10.1016/j.neurot.2024.e00451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/08/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024] Open
Abstract
Accelerated intermittent theta burst stimulation (AiTBS) has attracted much attention in the past few years as a new form of brain stimulation paradigm. However, it is unclear the relative efficacy of AiTBS on cortical excitability compared to conventional high-frequency rTMS. Using concurrent TMS and electroencephalogram (TMS-EEG), this study systematically compared the efficacy on cortical excitability and a typical clinical application (i.e. pain), between AiTBS with different intersession interval (ISIs) and 10-Hz rTMS. Participants received 10-Hz rTMS, AiTBS-15 (3 iTBS sessions with a 15-min ISI), AiTBS-50 (3 iTBS sessions with a 50-min ISI), or Sham stimulation over the primary motor cortex on four separate days. All four protocols included a total of 1800 pulses but with different session durations (10-Hz rTMS = 18, AiTBS-15 = 40, and AiTBS-50 = 110 min). AiTBS-50 and 10-Hz rTMS were more effective in pain reduction compared to AiTBS-15. Using single-pulse TMS-induced oscillation, our data revealed low gamma oscillation as a shared cortical excitability change across all three active rTMS protocols but demonstrated completely opposite directions. Changes in low gamma oscillation were further associated with changes in pain perception across the three active conditions. In contrast, a distinct pattern of TMS-evoked potentials (TEPs) was revealed, with 10-Hz rTMS decreasing inhibitory N100 amplitude and AiTBS-15 reducing excitatory P60 amplitude. These changes in TEPs were also covarying with low gamma power changes. Sham stimulation indicated no significant effect on either cortical excitability or pain perception. These results are relevant only for provoked experimental pain, without being predictive for chronic pain, and revealed a change in low gamma oscillation, particularly around the very particular frequency of 40 Hz, shared between AiTBS and high-frequency rTMS. Conversely, cortical excitability (balance between excitation and inhibition) assessed by TEP recording was modulated differently by AiTBS and high-frequency rTMS paradigms.
Collapse
Affiliation(s)
- Bolin Tan
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Jielin Chen
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Ying Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qiuye Lin
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Ying Wang
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Shuyan Shi
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yang Ye
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Xianwei Che
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.
| |
Collapse
|
8
|
Wu Q, Li X, Zhang Y, Chen S, Jin R, Peng W. Analgesia of noninvasive electrical stimulation of the dorsolateral prefrontal cortex: A systematic review and meta-analysis. J Psychosom Res 2024; 185:111868. [PMID: 39142194 DOI: 10.1016/j.jpsychores.2024.111868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/03/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024]
Abstract
OBJECTIVE The dorsolateral prefrontal cortex (DLPFC) is implicated in pain modulation, suggesting its potential as a therapeutic target for pain relief. However, studies on transcranial electrical stimulation (tES) over the DLPFC yielded diverse results, likely due to differences in stimulation protocols or pain assessment methods. This study aims to evaluate the analgesic effects of DLPFC-tES using a meta-analytical approach. METHODS A meta-analysis of 29 studies involving 785 participants was conducted. The effects of genuine and sham DLPFC-tES on pain perception were examined in healthy individuals and patients with clinical pain. Subgroup analyses explored the impact of stimulation parameters and pain modalities. RESULTS DLPFC-tES did not significantly affect pain outcomes in healthy populations but showed promise in reducing pain-intensity ratings in patients with clinical pain (Hedges' g = -0.78, 95% CI = [-1.33, -0.24], p = 0.005). Electrode placement significantly influenced the analgesic effect, with better results observed when the anode was at F3 and the cathode at F4. CONCLUSIONS DLPFC-tES holds potential as a cost-effective pain management option, particularly for clinical populations. Optimizing electrode placement, especially with an symmetrical configuration, may enhance therapeutic efficacy. These findings underscore the promise of DLPFC-tES for alleviating perceived pain intensity in clinical settings, emphasizing the importance of electrode placement optimization.
Collapse
Affiliation(s)
- Qiqi Wu
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Xiaoyun Li
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Yinhua Zhang
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Shengxiong Chen
- Medical Rehabilitation Center, Shenzhen Prevention and Treatment Center for Occupational Diseases, Shenzhen, China.
| | - Richu Jin
- Tech X Academy, Shenzhen Polytechnic University, Shenzhen, China.
| | - Weiwei Peng
- School of Psychology, Shenzhen University, Shenzhen, China
| |
Collapse
|
9
|
Liu Y, Sun J, Wu C, Ren J, He Y, Sun N, Huang H, Chen Q, Liu D, Huang Y, Xu F, Yu L, Fitzgibbon BM, Cash RFH, Fitzgerald PB, Yan M, Che X. Characterizing the opioidergic mechanisms of repetitive transcranial magnetic stimulation-induced analgesia: a randomized controlled trial. Pain 2024; 165:2035-2043. [PMID: 38537053 PMCID: PMC11331833 DOI: 10.1097/j.pain.0000000000003220] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 08/21/2024]
Abstract
ABSTRACT Repetitive transcranial magnetic stimulation (rTMS) is a promising technology to reduce chronic pain. Investigating the mechanisms of rTMS analgesia holds the potential to improve treatment efficacy. Using a double-blind and placebo-controlled design at both stimulation and pharmacologic ends, this study investigated the opioidergic mechanisms of rTMS analgesia by abolishing and recovering analgesia in 2 separate stages across brain regions and TMS doses. A group of 45 healthy participants were equally randomized to the primary motor cortex (M1), the dorsolateral prefrontal cortex (DLPFC), and the Sham group. In each session, participants received an intravenous infusion of naloxone or saline before the first rTMS session. Participants then received a second dose of rTMS session after the drugs were metabolized at 90 minutes. M1-rTMS-induced analgesia was abolished by naloxone compared with saline and was recovered by the second rTMS run when naloxone was metabolized. In the DLPFC, double but not the first TMS session induced significant pain reduction in the saline condition, resulting in less pain compared with the naloxone condition. In addition, TMS over the M1 or DLPFC selectively increased plasma concentrations of β-endorphin or encephalin, respectively. Overall, we present causal evidence that opioidergic mechanisms are involved in both M1-induced and DLPFC-rTMS-induced analgesia; however, these are shaped by rTMS dosage and the release of different endogenous opioids.
Collapse
Affiliation(s)
- Ying Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Junfeng Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chaomin Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jinxuan Ren
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yanni He
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Na Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hao Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - QunShan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yangyuxin Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Xu
- Shenzhen Yingchi Technology Co, Ltd, Hangzhou, China
| | - Lina Yu
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Bernadette M. Fitzgibbon
- School of Medicine and Psychology, The Australian National University, Australian Capital Territory, Melbourne, Australia
- Monarch Research Institute, Monarch Mental Health Group, Melbourne, Australia
| | - Robin F. H. Cash
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Victoria, Australia
- Department of Biomedical Engineering, The University of Melbourne, Victoria, Australia
| | - Paul B. Fitzgerald
- School of Medicine and Psychology, The Australian National University, Australian Capital Territory, Melbourne, Australia
| | - Min Yan
- Department of Anesthesiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xianwei Che
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
10
|
Liu Q, Cui H, Li J, Shen Y, Zhang L, Zheng H. Modulation of dlPFC function and decision-making capacity by repetitive transcranial magnetic stimulation in methamphetamine use disorder. Transl Psychiatry 2024; 14:280. [PMID: 38977700 PMCID: PMC11231311 DOI: 10.1038/s41398-024-03000-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
This study explores the impact of repetitive transcranial magnetic stimulation (rTMS) on decision-making capabilities in individuals with methamphetamine use disorder (MUD), alongside potential underlying psychological mechanisms. Employing the Iowa Gambling Task (IGT) and computational modeling techniques, we assessed the decision-making processes of 50 male MUD participants (24 underwent rTMS treatment, 26 received no treatment) and 39 healthy controls (HC). We compared pre- and post-rTMS treatment alterations in the left dorsolateral prefrontal cortex (dlPFC). Results revealed inferior performance in the IGT among the MUD group, characterized by aberrant model parameters in the Value-Plus-Perseverance (VPP) model, including heightened learning rate, outcome sensitivity, and reinforcement learning weight, alongside diminished response consistency and loss aversion. RTMS treatment demonstrated efficacy in reducing craving scores, enhancing decision-making abilities, and partially restoring normalcy to certain model parameters in the MUD cohort. Nonetheless, no linear relationship between changes in model parameters and craving was observed. These findings lend support to the somatic marker hypothesis, implicating the dlPFC in the decision-making deficits observed in MUD, with rTMS potentially ameliorating these deficits by modulating the function of these brain regions. This study not only offers novel insights and methodologies for MUD rehabilitation but also underscores the necessity for further research to corroborate and refine these findings. Trial Registration www.chictr.org.cn Identifier: No. ChiCTR17013610.
Collapse
Affiliation(s)
- Qingming Liu
- Center for Brain, Mind and Education, Shaoxing University, Shaoxing, 312000, China.
- Department of Psychology, Shaoxing University, Shaoxing, 312000, China.
- School of Psychology, Nanjing Normal University, Nanjing, 210024, China.
| | - Huimin Cui
- Center for Brain, Mind and Education, Shaoxing University, Shaoxing, 312000, China
- Department of Psychology, Shaoxing University, Shaoxing, 312000, China
| | - Jiali Li
- Center for Brain, Mind and Education, Shaoxing University, Shaoxing, 312000, China
- Department of Psychology, Shaoxing University, Shaoxing, 312000, China
| | - Ying Shen
- Rehabilitation Medicine Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Lei Zhang
- School of Early-Childhood Education, NanJing XiaoZhuang University, Nanjing, 211171, China
| | - Hui Zheng
- Center for Brain, Mind and Education, Shaoxing University, Shaoxing, 312000, China.
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
11
|
Zhou J, Wang Y, Luo X, Fitzgerald PB, Cash RFH, Fitzgibbon BM, Che X. Revisiting the effects of rTMS over the dorsolateral prefrontal cortex on pain: An updated systematic review and meta-analysis. Brain Stimul 2024; 17:928-937. [PMID: 39089648 DOI: 10.1016/j.brs.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Our previous study synthesized the analgesic effects of repetitive Transcranial Magnetic Stimulation (rTMS) over the dorsolateral prefrontal cortex (DLPFC) trials up to 2019. There has been a significant increase in pain trials in the past few years, along with methodological variabilities such as sample size, stimulation intensity, and rTMS paradigms. OBJECTIVES/METHODS This study therefore updated the effects of DLPFC-rTMS on chronic pain and quantified the impact of methodological differences across studies. RESULTS A total of 36 studies were included. Among them, 26 studies were clinical trials (update = 9, 307/711 patients), and 10 (update = 1, 34/249 participants) were provoked pain studies. The updated meta-analysis does not support an effect on neuropathic pain after including the additional trials (pshort-term = 0.20, pmid-term = 0.50). However, there is medium-to-large analgesic effect in migraine trials extending up to six weeks follow-up (SMDmid-term = -0.80, SMDlong-term = -0.51), that was not previously reported. Methodological differences wthine the studies were considered. DLPFC-rTMS also induces potential improvement in the emotional aspects of pain (SMDshort-term = -0.28). CONCLUSIONS The updated systematic meta-analysis continues to support analgesic effects for chronic pain overall. However, the updated results no longer support DLPFC-rTMS for pain relief in neuropathic pain, and do supports DLPFC-rTMS in the management of migraine. There is also evidence for DLPFC-rTMS to improve emotional aspects of pain.
Collapse
Affiliation(s)
- Jie Zhou
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Ying Wang
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xi Luo
- School of Nursing, Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Paul B Fitzgerald
- School of Medicine and Psychology, The Australian National University, Australian Capital Territory, Australia; Monarch Research Institute, Monarch Mental Health Group, Australia
| | - Robin F H Cash
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Victoria, Australia
| | - Bernadette M Fitzgibbon
- School of Medicine and Psychology, The Australian National University, Australian Capital Territory, Australia; Monarch Research Institute, Monarch Mental Health Group, Australia
| | - Xianwei Che
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.
| |
Collapse
|
12
|
Chowdhury NS, Taseen K, Chiang A, Chang WJ, Millard SK, Seminowicz DA, Schabrun SM. A 5-day course of rTMS before pain onset ameliorates future pain and increases sensorimotor peak alpha frequency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.11.598596. [PMID: 38915700 PMCID: PMC11195234 DOI: 10.1101/2024.06.11.598596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) has shown promise as an intervention for pain. An unexplored research question is whether the delivery of rTMS prior to pain onset might protect against a future episode of prolonged pain. The present study aimed to determine i) whether 5 consecutive days of rTMS delivered prior to experimentally-induced prolonged jaw pain could reduce future pain intensity and ii) whether any effects of rTMS on pain were mediated by changes in corticomotor excitability (CME) and/or sensorimotor peak alpha frequency (PAF). On each day from Day 0-4, forty healthy individuals received a single session of active (n = 21) or sham (n = 19) rTMS over the left primary motor cortex. PAF and CME were assessed on Day 0 (before rTMS) and Day 4 (after rTMS). Prolonged pain was induced via intramuscular injection of nerve growth factor (NGF) in the right masseter muscle after the final rTMS session. From Days 5-25, participants completed twice-daily electronic dairies including pain on chewing and yawning (primary outcomes), as well as pain during other activities (e.g. talking), functional limitation in jaw function and muscle soreness (secondary outcomes). Compared to sham, individuals who received active rTMS subsequently experienced lower pain on chewing and yawning. Although active rTMS increased PAF, the effects of rTMS on pain were not mediated by changes in PAF or CME. This study is the first to show that rTMS delivered prior to pain onset can protect against future pain and associated functional impairment. Thus, rTMS may hold promise as a prophylactic intervention for persistent pain.
Collapse
Affiliation(s)
- Nahian S Chowdhury
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Khandoker Taseen
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
| | - Alan Chiang
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - Wei-Ju Chang
- School of Health Sciences, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales, Australia
| | - Samantha K Millard
- Center for Pain IMPACT, Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - David A Seminowicz
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Canada
| | - Siobhan M Schabrun
- The Gray Centre for Mobility and Activity, Parkwood Institute, St. Joseph's Healthcare, London, Canada
- School of Physical Therapy, University of Western Ontario, London, Canada
| |
Collapse
|
13
|
Wang Y, Tan B, Shi S, Ye Y, Che X. Dopamine D2 receptor antagonist modulates rTMS-induced pain experiences and corticospinal excitability dependent on stimulation targets. Int J Clin Health Psychol 2024; 24:100413. [PMID: 37954401 PMCID: PMC10632113 DOI: 10.1016/j.ijchp.2023.100413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/14/2023] [Indexed: 11/14/2023] Open
Abstract
Both the primary motor cortex (M1) and dorsolateral prefrontal cortex (DLPFC) rTMS have the potential to reduce certain chronic pain conditions. However, the analgesic mechanisms remain unclear, in which M1- and DLPFC-rTMS may have different impact on the release of dopamine receptor D2 neurotransmissions (DRD2). Using a double-blind, randomised, sham- and placebo-controlled design, this study investigated the influence of DRD2 antagonist on rTMS-induced analgesia and corticospinal excitability across the M1 and DLPFC. Healthy participants in each group (M1, DLPFC, or Sham) received an oral dose of chlorpromazine or placebo before the delivery of rTMS in two separate sessions. Heat pain and cortical excitability were assessed before drug administration and after rTMS intervention. DRD2 antagonist selectively abolished the increased heat pain threshold induced by DLPFC stimulation and increased pain unpleasantness. The absence of analgesic effects in DLPFC stimulation was not accompanied by plastic changes in the corticospinal pathway. In contrast, DRD2 antagonist increased corticospinal excitability and rebalanced excitation-inhibition relationship following motor cortex stimulation, although there were no clear changes in pain experiences. These novel findings together highlight the influence of dopaminergic neurotransmission on rTMS-induced analgesia and corticospinal excitability dependent on stimulation targets.
Collapse
Affiliation(s)
- Ying Wang
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Bolin Tan
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Shuyan Shi
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yang Ye
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Xianwei Che
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- TMS Centre, Deqing Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Ross JM, Cline CC, Sarkar M, Truong J, Keller CJ. Neural effects of TMS trains on the human prefrontal cortex. Sci Rep 2023; 13:22700. [PMID: 38123591 PMCID: PMC10733322 DOI: 10.1038/s41598-023-49250-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
How does a train of TMS pulses modify neural activity in humans? Despite adoption of repetitive TMS (rTMS) for the treatment of neuropsychiatric disorders, we still do not understand how rTMS changes the human brain. This limited understanding stems in part from a lack of methods for noninvasively measuring the neural effects of a single TMS train-a fundamental building block of treatment-as well as the cumulative effects of consecutive TMS trains. Gaining this understanding would provide foundational knowledge to guide the next generation of treatments. Here, to overcome this limitation, we developed methods to noninvasively measure causal and acute changes in cortical excitability and evaluated this neural response to single and sequential TMS trains. In 16 healthy adults, standard 10 Hz trains were applied to the dorsolateral prefrontal cortex in a randomized, sham-controlled, event-related design and changes were assessed based on the TMS-evoked potential (TEP), a measure of cortical excitability. We hypothesized that single TMS trains would induce changes in the local TEP amplitude and that those changes would accumulate across sequential trains, but primary analyses did not indicate evidence in support of either of these hypotheses. Exploratory analyses demonstrated non-local neural changes in sensor and source space and local neural changes in phase and source space. Together these results suggest that single and sequential TMS trains may not be sufficient to modulate local cortical excitability indexed by typical TEP amplitude metrics but may cause neural changes that can be detected outside the stimulation area or using phase or source space metrics. This work should be contextualized as methods development for the monitoring of transient noninvasive neural changes during rTMS and contributes to a growing understanding of the neural effects of rTMS.
Collapse
Affiliation(s)
- Jessica M Ross
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305-5797, USA
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), 3801 Miranda Avenue, Palo Alto, CA, 94304, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Christopher C Cline
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305-5797, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Manjima Sarkar
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305-5797, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Jade Truong
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305-5797, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA
| | - Corey J Keller
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, 401 Quarry Road, Stanford, CA, 94305-5797, USA.
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), 3801 Miranda Avenue, Palo Alto, CA, 94304, USA.
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
15
|
McCarthy B, Datta S, Sesa-Ashton G, Wong R, Henderson LA, Dawood T, Macefield VG. Top-down control of vestibular inputs by the dorsolateral prefrontal cortex. Exp Brain Res 2023; 241:2845-2853. [PMID: 37902866 PMCID: PMC10635918 DOI: 10.1007/s00221-023-06722-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/11/2023] [Indexed: 11/01/2023]
Abstract
The vestibular apparatus provides spatial information on the position of the head in space and with respect to gravity. Low-frequency sinusoidal galvanic vestibular stimulation (sGVS), a means of selectively changing the firing of vestibular afferents, induces a frequency-dependent perception of sway and, in some individuals, induces nausea. Given that vestibular afferents project to the insular cortex-which forms part of the vestibular cortex-and that the insula receives inputs from the dorsolateral prefrontal cortex (dlPFC), we tested the hypothesis that electrical stimulation of the dlPFC can modulate vestibular inputs. Sinusoidal electrical stimulation (± 2 mA, 0.08 Hz, 100 cycles) was delivered via surface electrodes over (1) the mastoid processes alone (sGVS), (2) electroencephalogram (EEG) site F4 (right dlPFC) and the nasion or (3) to each site concurrently (sGVS + dlPFC) in 23 participants. The same stimulation protocol was used in a separate study to investigate EEG site F3 (left dlPFC) instead of F4 in 13 participants. During sGVS, all participants reported perceptions of sway and 13 participants also reported nausea, neither sensation of which occurred as a result of dlPFC stimulation. Interestingly, when sGVS and dlPFC stimulations were delivered concurrently, vestibular perceptions and sensations of nausea were almost completely abolished. We conclude that the dlPFC provides top-down control of vestibular inputs and further suggests that dlPFC stimulation may provide a novel means of controlling nausea.
Collapse
Affiliation(s)
- Brendan McCarthy
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Sudipta Datta
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| | | | - Rebecca Wong
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Luke A Henderson
- School of Medical Sciences (Neuroscience), Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Tye Dawood
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Vaughan G Macefield
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.
- Baker Department of Cardiometabolic Health, The University of Melbourne, Melbourne, VIC, Australia.
- Department of Neuroscience, Central Clinical School, Monash University, 99 Commercial Road, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
16
|
Chowdhury NS, Chiang AKI, Millard SK, Skippen P, Chang WJ, Seminowicz DA, Schabrun SM. Combined transcranial magnetic stimulation and electroencephalography reveals alterations in cortical excitability during pain. eLife 2023; 12:RP88567. [PMID: 37966464 PMCID: PMC10651174 DOI: 10.7554/elife.88567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) has been used to examine inhibitory and facilitatory circuits during experimental pain and in chronic pain populations. However, current applications of TMS to pain have been restricted to measurements of motor evoked potentials (MEPs) from peripheral muscles. Here, TMS was combined with electroencephalography (EEG) to determine whether experimental pain could induce alterations in cortical inhibitory/facilitatory activity observed in TMS-evoked potentials (TEPs). In Experiment 1 (n=29), multiple sustained thermal stimuli were administered to the forearm, with the first, second, and third block of thermal stimuli consisting of warm but non-painful (pre-pain block), painful (pain block) and warm but non-painful (post-pain block) temperatures, respectively. During each stimulus, TMS pulses were delivered while EEG (64 channels) was simultaneously recorded. Verbal pain ratings were collected between TMS pulses. Relative to pre-pain warm stimuli, painful stimuli led to an increase in the amplitude of the frontocentral negative peak ~45 ms post-TMS (N45), with a larger increase associated with higher pain ratings. Experiments 2 and 3 (n=10 in each) showed that the increase in the N45 in response to pain was not due to changes in sensory potentials associated with TMS, or a result of stronger reafferent muscle feedback during pain. This is the first study to use combined TMS-EEG to examine alterations in cortical excitability in response to pain. These results suggest that the N45 TEP peak, which indexes GABAergic neurotransmission, is implicated in pain perception and is a potential marker of individual differences in pain sensitivity.
Collapse
Affiliation(s)
- Nahian Shahmat Chowdhury
- Center for Pain IMPACT, Neuroscience Research AustraliaSydneyAustralia
- University of New South WalesSydneyAustralia
| | - Alan KI Chiang
- Center for Pain IMPACT, Neuroscience Research AustraliaSydneyAustralia
- University of New South WalesSydneyAustralia
| | - Samantha K Millard
- Center for Pain IMPACT, Neuroscience Research AustraliaSydneyAustralia
- University of New South WalesSydneyAustralia
| | - Patrick Skippen
- Center for Pain IMPACT, Neuroscience Research AustraliaSydneyAustralia
| | - Wei-Ju Chang
- Center for Pain IMPACT, Neuroscience Research AustraliaSydneyAustralia
- School of Health Sciences, College of Health, Medicine and Wellbeing, The University of NewcastleCallaghanAustralia
| | - David A Seminowicz
- Center for Pain IMPACT, Neuroscience Research AustraliaSydneyAustralia
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, University of Western OntarioLondonCanada
| | - Siobhan M Schabrun
- Center for Pain IMPACT, Neuroscience Research AustraliaSydneyAustralia
- The Gray Centre for Mobility and Activity, University of Western OntarioLondonCanada
| |
Collapse
|
17
|
Krile L, Ensafi E, Cole J, Noor M, Protzner AB, McGirr A. A dose-response characterization of transcranial magnetic stimulation intensity and evoked potential amplitude in the dorsolateral prefrontal cortex. Sci Rep 2023; 13:18650. [PMID: 37903906 PMCID: PMC10616119 DOI: 10.1038/s41598-023-45730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/23/2023] [Indexed: 11/01/2023] Open
Abstract
By combining transcranial magnetic stimulation (TMS) with electroencephalography, human cortical circuits can be directly interrogated. The resulting electrical trace contains TMS-evoked potential (TEP) components, and it is not known whether the amplitudes of these components are stimulus intensity dependent. We examined this in the left dorsolateral prefrontal cortex in nineteen healthy adult participants and extracted TEP amplitudes for the N40, P60, N120, and P200 components at 110%, 120%, and 130% of resting motor threshold (RMT). To probe plasticity of putative stimulus intensity dose-response relationships, this was repeated after participants received intermittent theta burst stimulation (iTBS; 600 pulses, 80% RMT). The amplitude of the N120 and P200 components exhibited a stimulus intensity dose-response relationship, however the N40 and P60 components did not. After iTBS, the N40 and P60 components continued to exhibit a lack of stimulus intensity dose-dependency, and the P200 dose-response was unchanged. In the N120 component, however, we saw evidence of change within the stimulus intensity dose-dependent relationship characterized by a decrease in absolute peak amplitudes at lower stimulus intensities. These data suggest that TEP components have heterogeneous dose-response relationships, with implications for standardizing and harmonizing methods across experiments. Moreover, the selective modification of the N120 dose-response relationship may provide a novel marker for iTBS plasticity in health and disease.
Collapse
Affiliation(s)
- Louisa Krile
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Elnaz Ensafi
- Department of Psychiatry, University of Calgary, 3280 Hospital Drive NW, TRW-4D68, Calgary, AB, T2N 4Z6, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Mathison Centre for Mental Health Research and Education, Calgary, AB, Canada
| | - Jaeden Cole
- Department of Psychiatry, University of Calgary, 3280 Hospital Drive NW, TRW-4D68, Calgary, AB, T2N 4Z6, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Mathison Centre for Mental Health Research and Education, Calgary, AB, Canada
| | - Mah Noor
- Department of Psychology, University of Calgary, Calgary, AB, Canada
| | - Andrea B Protzner
- Department of Psychology, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Mathison Centre for Mental Health Research and Education, Calgary, AB, Canada
| | - Alexander McGirr
- Department of Psychiatry, University of Calgary, 3280 Hospital Drive NW, TRW-4D68, Calgary, AB, T2N 4Z6, Canada.
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
- Mathison Centre for Mental Health Research and Education, Calgary, AB, Canada.
| |
Collapse
|
18
|
De Martino E, Casali A, Casarotto S, Hassan G, Rosanova M, Graven-Nielsen T, Ciampi de Andrade D. Acute pain drives different effects on local and global cortical excitability in motor and prefrontal areas: insights into interregional and interpersonal differences in pain processing. Cereb Cortex 2023; 33:9986-9996. [PMID: 37522261 DOI: 10.1093/cercor/bhad259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023] Open
Abstract
Pain-related depression of corticomotor excitability has been explored using transcranial magnetic stimulation-elicited motor-evoked potentials. Transcranial magnetic stimulation-electroencephalography now enables non-motor area cortical excitability assessments, offering novel insights into cortical excitability changes during pain states. Here, pain-related cortical excitability changes were explored in the dorsolateral prefrontal cortex and primary motor cortex (M1). Cortical excitability was recorded in 24 healthy participants before (Baseline), during painful heat (Acute Pain), and non-noxious warm (Warm) stimulation at the right forearm in a randomized sequence, followed by a pain-free stimulation measurement. Local cortical excitability was assessed as the peak-to-peak amplitude of early transcranial magnetic stimulation evoked potential, whereas global-mean field power measured the global excitability. Relative to the Baseline, Acute Pain decreased the peak-to-peak amplitude in M1 and dorsolateral prefrontal cortex compared with Warm (both P < 0.05). A reduced global-mean field power was only found in M1 during Acute Pain compared with Warm (P = 0.003). Participants with the largest reduction in local cortical excitability under Acute Pain showed a negative correlation between dorsolateral prefrontal cortex and M1 local cortical excitability (P = 0.006). Acute experimental pain drove differential pain-related effects on local and global cortical excitability changes in motor and non-motor areas at a group level while also revealing different interindividual patterns of cortical excitability changes, which can be explored when designing personalized treatment plans.
Collapse
Affiliation(s)
- Enrico De Martino
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg 9220, Denmark
| | - Adenauer Casali
- Institute of Science and Technology, Federal University of São Paulo, São Paulo 04021-001, Brazil
| | - Silvia Casarotto
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Milan 50143, Italy
| | - Gabriel Hassan
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg 9220, Denmark
| | - Daniel Ciampi de Andrade
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg 9220, Denmark
| |
Collapse
|
19
|
Cruciani A, Mancuso M, Sveva V, Maccarrone D, Todisco A, Motolese F, Santoro F, Pilato F, Spampinato DA, Rocchi L, Di Lazzaro V, Capone F. Using TMS-EEG to assess the effects of neuromodulation techniques: a narrative review. Front Hum Neurosci 2023; 17:1247104. [PMID: 37645690 PMCID: PMC10461063 DOI: 10.3389/fnhum.2023.1247104] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/01/2023] [Indexed: 08/31/2023] Open
Abstract
Over the past decades, among all the non-invasive brain stimulation (NIBS) techniques, those aiming for neuromodulatory protocols have gained special attention. The traditional neurophysiological outcome to estimate the neuromodulatory effect is the motor evoked potential (MEP), the impact of NIBS techniques is commonly estimated as the change in MEP amplitude. This approach has several limitations: first, the use of MEP limits the evaluation of stimulation to the motor cortex excluding all the other brain areas. Second, MEP is an indirect measure of brain activity and is influenced by several factors. To overcome these limitations several studies have used new outcomes to measure brain changes after neuromodulation techniques with the concurrent use of transcranial magnetic stimulation (TMS) and electroencephalogram (EEG). In the present review, we examine studies that use TMS-EEG before and after a single session of neuromodulatory TMS. Then, we focused our literature research on the description of the different metrics derived from TMS-EEG to measure the effect of neuromodulation.
Collapse
Affiliation(s)
- Alessandro Cruciani
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Marco Mancuso
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Valerio Sveva
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, Sapienza University, Rome, Italy
| | - Davide Maccarrone
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Todisco
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Francesco Motolese
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Francesca Santoro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Fabio Pilato
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | | | - Lorenzo Rocchi
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Vincenzo Di Lazzaro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Fioravante Capone
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| |
Collapse
|
20
|
Wang H, Hu Y, Deng J, Ye Y, Huang M, Che X, Yu L. A randomised sham-controlled study evaluating rTMS analgesic efficacy for postherpetic neuralgia. Front Neurosci 2023; 17:1158737. [PMID: 37250417 PMCID: PMC10213647 DOI: 10.3389/fnins.2023.1158737] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
Context Postherpetic neuralgia (PHN) is a refractory neuropathic pain condition in which new treatment options are being developed. Repetitive transcranial magnetic stimulation (rTMS) may have the potential to reduce pain sensations in patients with postherpetic neuralgia. Objectives This study investigated the efficacy on postherpetic neuralgia by stimulating two potential targets, the motor cortex (M1) and the dorsolateral prefrontal cortex (DLPFC). Methods This is a double-blind, randomised, sham-controlled study. Potential participants were recruited from Hangzhou First People's Hospital. Patients were randomly assigned to either the M1, DLPFC or Sham group. Patients received ten daily sessions of 10-Hz rTMS in 2 consecutive weeks. The primary outcome measure was visual analogue scale (VAS) assessed at baseline, first week of treatment (week 1), post-treatment (week 2), 1-week (week 4), 1-month (week 6) and 3-month (week 14) follow-up. Results Of sixty patients enrolled, 51 received treatment and completed all outcome assessments. M1 stimulation resulted in a larger analgesia during and after treatment compared to the Sham (week 2 - week 14, p < 0.005), as well as to the DLPFC stimulation (week 1 - week 14, p < 0.05). In addition to pain, sleep disturbance was significantly improved and relieved by targeting either the M1 or the DLPFC (M1: week 4 - week 14, p < 0.01; DLPFC: week 4 - week 14, p < 0.01). Moreover, pain sensations following M1 stimulation uniquely predicted improvement in sleep quality. Conclusion M1 rTMS is superior to DLPFC stimulation in treating PHN with excellent pain response and long-term analgesia. Meanwhile, M1 and DLPFC stimulation were equally effective in improving sleep quality in PHN. Clinical trial registration https://www.chictr.org.cn/, identifier ChiCTR2100051963.
Collapse
Affiliation(s)
- Huan Wang
- Zhejiang Chinese Medicine University, Hangzhou, China
- Department of Anesthesiology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuzhong Hu
- Zhejiang Chinese Medicine University, Hangzhou, China
| | - Jiayi Deng
- Zhejiang Chinese Medicine University, Hangzhou, China
| | - Yang Ye
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Manli Huang
- Department of Mental Health, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- The Key Laboratory of Mental Disorder Management of Zhejiang Province, Hangzhou, China
| | - Xianwei Che
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
- TMS Center, Deqing Hospital of Hangzhou Normal University, Deqing, China
| | - Liang Yu
- Zhejiang Chinese Medicine University, Hangzhou, China
- Department of Pain, The Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
21
|
Poorganji M, Zomorrodi R, Hawco C, Hill AT, Hadas I, Zrenner C, Rajji TK, Chen R, Voineskos D, Blumberger DM, Daskalakis ZJ. Isolating sensory artifacts in the suprathreshold TMS-EEG signal over DLPFC. Sci Rep 2023; 13:6796. [PMID: 37100795 PMCID: PMC10130812 DOI: 10.1038/s41598-023-29920-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/13/2023] [Indexed: 04/28/2023] Open
Abstract
Combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) is an effective way to evaluate neurophysiological processes at the level of the cortex. To further characterize the TMS-evoked potential (TEP) generated with TMS-EEG, beyond the motor cortex, we aimed to distinguish between cortical reactivity to TMS versus non-specific somatosensory and auditory co-activations using both single-pulse and paired-pulse protocols at suprathreshold stimulation intensities over the left dorsolateral prefrontal cortex (DLPFC). Fifteen right-handed healthy participants received six blocks of stimulation including single and paired TMS delivered as active-masked (i.e., TMS-EEG with auditory masking and foam spacing), active-unmasked (TMS-EEG without auditory masking and foam spacing) and sham (sham TMS coil). We evaluated cortical excitability following single-pulse TMS, and cortical inhibition following a paired-pulse paradigm (long-interval cortical inhibition (LICI)). Repeated measure ANOVAs revealed significant differences in mean cortical evoked activity (CEA) of active-masked, active-unmasked, and sham conditions for both the single-pulse (F(1.76, 24.63) = 21.88, p < 0.001, η2 = 0.61) and LICI (F(1.68, 23.49) = 10.09, p < 0.001, η2 = 0.42) protocols. Furthermore, global mean field amplitude (GMFA) differed significantly across the three conditions for both single-pulse (F(1.85, 25.89) = 24.68, p < 0.001, η2 = 0.64) and LICI (F(1.8, 25.16) = 14.29, p < 0.001, η2 = 0.5). Finally, only active LICI protocols but not sham stimulation ([active-masked (0.78 ± 0.16, P < 0.0001)], [active-unmasked (0.83 ± 0.25, P < 0.01)]) resulted in significant signal inhibition. While previous findings of a significant somatosensory and auditory contribution to the evoked EEG signal are replicated by our study, an artifact attenuated cortical reactivity can reliably be measured in the TMS-EEG signal with suprathreshold stimulation of DLPFC. Artifact attenuation can be accomplished using standard procedures, and even when masked, the level of cortical reactivity is still far above what is produced by sham stimulation. Our study illustrates that TMS-EEG of DLPFC remains a valid investigational tool.
Collapse
Affiliation(s)
- Mohsen Poorganji
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Reza Zomorrodi
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Colin Hawco
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Aron T Hill
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne, VIC, Australia
| | - Itay Hadas
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0603, USA
| | - Christoph Zrenner
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Department of Neurology and Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Tarek K Rajji
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Toronto Dementia Research Alliance, University of Toronto, Toronto, ON, Canada
| | - Robert Chen
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Daphne Voineskos
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Zafiris J Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0603, USA.
| |
Collapse
|
22
|
Luo X, Che X, Li H. Concurrent TMS-EEG and EEG reveal neuroplastic and oscillatory changes associated with self-compassion and negative emotions. Int J Clin Health Psychol 2023; 23:100343. [PMID: 36299492 PMCID: PMC9577271 DOI: 10.1016/j.ijchp.2022.100343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
Background/Objective Self-compassion has a consensual relevance for overall mental health, but its mechanisms remain unknown. Using intermittent theta burst stimulation (iTBS) and concurrent transcranial magnetic stimulation-electroencephalography (TMS-EEG), this study investigated the causal relationship of the dorsolateral prefrontal cortex (DLPFC) with self-compassion and explored the changes in neuroplasticity and neural dynamics. Method Thirty-two healthy participants received iTBS or sham stimulation over the DLPFC, before and after which they were instructed to either use self-compassionate strategies or to be rejected in the context of social rejection and to report the level of self-compassion or negative affect. TMS-evoked potentials were evaluated as novel neuroplastic techniques with N45, P60, N100, and P180. Results iTBS uniquely decreased P180 amplitude measured with TMS-EEG whereby sham stimulation had no effect on neuroplasticity. In line with neuroplasticity changes, iTBS enhanced a widespread gamma band power and coherence, which correlated consistently with increased engagement in self-compassion. Meanwhile, iTBS demonstrated opposite effects on theta activity dependent on the social contexts whereby self-compassion decreased and social rejection enhanced it respectively. This unique effect of iTBS on theta activity was also supplemented by the enhancement of theta band coherence following iTBS. Conclusions We found a causal relationship between DLPFC and self-compassion. We also provide evidence to indicate widespread gamma activity and connectivity to correlate with self-compassion as well as the critical role of the DLPFC in modulating theta activity and negative emotions.
Collapse
Affiliation(s)
- Xi Luo
- School of Psychology, Shenzhen University, Shenzhen, China,Key Laboratory of Brain Cognition and Educational Science, Ministry of Education; Centre for Studies of Psychological Applications; Guangdong Key Laboratory of Mental Health and Cognitive Science; School of Psychology, South China Normal University
| | - Xianwei Che
- Centre for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, China,TMS Centre, Deqing Hospital of Hangzhou Normal University, Hangzhou, China
| | - Hong Li
- School of Psychology, Shenzhen University, Shenzhen, China,Key Laboratory of Brain Cognition and Educational Science, Ministry of Education; Centre for Studies of Psychological Applications; Guangdong Key Laboratory of Mental Health and Cognitive Science; School of Psychology, South China Normal University,Institute for Brain and Psychological Sciences, Sichuan Normal University, Chengdu, Sichuan, China,Corresponding author.
| |
Collapse
|
23
|
Mussigmann T, Bardel B, Lefaucheur JP. Resting-state electroencephalography (EEG) biomarkers of chronic neuropathic pain. A systematic review. Neuroimage 2022; 258:119351. [PMID: 35659993 DOI: 10.1016/j.neuroimage.2022.119351] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/09/2022] [Accepted: 05/31/2022] [Indexed: 10/18/2022] Open
Abstract
Diagnosis and management of chronic neuropathic pain are challenging, leading to current efforts to characterize 'objective' biomarkers of pain using imaging or neurophysiological techniques, such as electroencephalography (EEG). A systematic literature review was conducted in PubMed-Medline and Web-of-Science until October 2021 to identify EEG biomarkers of chronic neuropathic pain in humans. The risk of bias was assessed by the Newcastle-Ottawa-Scale. Experimental, provoked, or chronic non-neuropathic pain studies were excluded. We identified 14 studies, in which resting-state EEG spectral analysis was compared between patients with pain related to a neurological disease and patients with the same disease but without pain or healthy controls. From these heterogeneous exploratory studies, some conclusions can be drawn, even if they must be weighted by the fact that confounding factors, such as medication and association with anxio-depressive disorders, are generally not taken into account. Overall, EEG signal power was increased in the θ band (4-7Hz) and possibly in the high-β band (20-30Hz), but decreased in the high-α-low-β band (10-20Hz) in the presence of ongoing neuropathic pain, while increased γ band oscillations were not evidenced, unlike in experimental pain. Consequently, the dominant peak frequency was decreased in the θ-α band and increased in the whole-β band in neuropathic pain patients. Disappointingly, pain intensity correlated with various EEG changes across studies, with no consistent trend. This review also discusses the location of regional pain-related EEG changes in the pain connectome, as the perspectives offered by advanced techniques of EEG signal analysis (source location, connectivity, or classification methods based on artificial intelligence). The biomarkers provided by resting-state EEG are of particular interest for optimizing the treatment of chronic neuropathic pain by neuromodulation techniques, such as transcranial alternating current stimulation or neurofeedback procedures.
Collapse
Affiliation(s)
- Thibaut Mussigmann
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Benjamin Bardel
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Jean-Pascal Lefaucheur
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France.
| |
Collapse
|