1
|
Del Vecchio M, Bontemps B, Lance F, Gannerie A, Sipp F, Albertini D, Cassani CM, Chatard B, Dupin M, Lachaux JP. Introducing HiBoP: a Unity-based visualization software for large iEEG datasets. J Neurosci Methods 2024; 409:110179. [PMID: 38823595 DOI: 10.1016/j.jneumeth.2024.110179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/02/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Intracranial EEG data offer a unique spatio-temporal precision to investigate human brain functions. Large datasets have become recently accessible thanks to new iEEG data-sharing practices and tighter collaboration with clinicians. Yet, the complexity of such datasets poses new challenges, especially regarding the visualization and anatomical display of iEEG. NEW METHOD We introduce HiBoP, a multi-modal visualization software specifically designed for large groups of patients and multiple experiments. Its main features include the dynamic display of iEEG responses induced by tasks/stimulations, the definition of Regions and electrodes Of Interest, and the shift between group-level and individual-level 3D anatomo-functional data. RESULTS We provide a use-case with data from 36 patients to reveal the global cortical dynamics following tactile stimulation. We used HiBoP to visualize high-gamma responses [50-150 Hz], and define three major response components in primary somatosensory and premotor cortices and parietal operculum. COMPARISON WITH EXISTING METHODS(S) Several iEEG softwares are now publicly available with outstanding analysis features. Yet, most were developed in languages (Python/Matlab) chosen to facilitate the inclusion of new analysis by users, rather than the quality of the visualization. HiBoP represents a visualization tool developed with videogame standards (Unity/C#), and performs detailed anatomical analysis rapidly, across multiple conditions, patients, and modalities with an easy export toward third-party softwares. CONCLUSION HiBoP provides a user-friendly environment that greatly facilitates the exploration of large iEEG datasets, and helps users decipher subtle structure/function relationships.
Collapse
Affiliation(s)
- Maria Del Vecchio
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Parma 43125, Italy
| | - Benjamin Bontemps
- Lyon Neuroscience Research Center, EDUWELL team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon F-69000, France
| | - Florian Lance
- Lyon Neuroscience Research Center, EDUWELL team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon F-69000, France
| | - Adrien Gannerie
- Lyon Neuroscience Research Center, EDUWELL team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon F-69000, France
| | - Florian Sipp
- Lyon Neuroscience Research Center, EDUWELL team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon F-69000, France
| | - Davide Albertini
- Dipartimento di Medicina e Chirurgia, Università di Parma, Via Volturno 39, Parma 43125, Italy
| | - Chiara Maria Cassani
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Parma 43125, Italy; Department of School of Advanced Studies, University of Camerino, Italy
| | - Benoit Chatard
- Lyon Neuroscience Research Center, EDUWELL team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon F-69000, France
| | - Maryne Dupin
- Lyon Neuroscience Research Center, EDUWELL team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon F-69000, France
| | - Jean-Philippe Lachaux
- Lyon Neuroscience Research Center, EDUWELL team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon F-69000, France.
| |
Collapse
|
2
|
Gilliam JR, Sahu PK, Vendemia JMC, Silfies SP. Association between seated trunk control and cortical sensorimotor white matter brain changes in patients with chronic low back pain. PLoS One 2024; 19:e0309344. [PMID: 39208294 PMCID: PMC11361694 DOI: 10.1371/journal.pone.0309344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024] Open
Abstract
Trunk control involves integration of sensorimotor information in the brain. Individuals with chronic low back pain (cLBP) have impaired trunk control and show differences in brain structure and function in sensorimotor areas compared with healthy controls (HC). However, the relationship between brain structure and trunk control in this group is not well understood. This cross-sectional study aimed to compare seated trunk control and sensorimotor white matter (WM) structure in people with cLBP and HC and explore relationships between WM properties and trunk control in each group. Thirty-two people with cLBP and 35 HC were tested sitting on an unstable chair to isolate trunk control; performance was measured using the 95% confidence ellipse area (CEA95) of center-of-pressure tracing. A WM network between cortical sensorimotor regions of interest was derived using probabilistic tractography. WM microstructure and anatomical connectivity between cortical sensorimotor regions were assessed. A mixed-model ANOVA showed that people with cLBP had worse trunk control than HC (F = 12.96; p < .001; ηp2 = .091). There were no differences in WM microstructure or anatomical connectivity between groups (p = 0.564 to 0.940). In the cLBP group, WM microstructure was moderately correlated (|r| = .456 to .565; p ≤ .009) with trunk control. Additionally, the cLBP group demonstrated stronger relationships between anatomical connectivity and trunk control (|r| = .377 to .618 p < .034) compared to the HC group. Unique to the cLBP group, WM connectivity between right somatosensory and left motor areas highlights the importance of interhemispheric information exchange for trunk control. Parietal areas associated with attention and spatial reference frames were also relevant to trunk control. These findings suggest that people with cLBP adopt a more cortically driven sensorimotor integration strategy for trunk control. Future research should replicate these findings and identify interventions to effectively modulate this strategy.
Collapse
Affiliation(s)
- John R. Gilliam
- Department of Exercise Science, University of South Carolina, Columbia, SC, United States of America
| | - Pradeep K. Sahu
- Department of Exercise Science, University of South Carolina, Columbia, SC, United States of America
| | - Jennifer M. C. Vendemia
- Department of Psychology, University of South Carolina, Columbia, SC, United States of America
| | - Sheri P. Silfies
- Department of Exercise Science, University of South Carolina, Columbia, SC, United States of America
- Physical Therapy Program, University of South Carolina, Columbia, SC, United States of America
| |
Collapse
|
3
|
Dong WK. Modulation of multisensory nociceptive neurons in monkey cortical area 7b and behavioral correlates. J Neurophysiol 2024; 132:544-569. [PMID: 38985936 PMCID: PMC11427044 DOI: 10.1152/jn.00377.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/12/2024] Open
Abstract
Wide-range thermoreceptive neurons (WRT-EN) in monkey cortical area 7b that encoded innocuous and nocuous cutaneous thermal and threatening visuosensory stimulation with high fidelity were studied to identify their multisensory integrative response properties. Emphasis was given to characterizing the spatial and temporal effects of threatening visuosensory input on the thermal stimulus-response properties of these multisensory nociceptive neurons. Threatening visuosensory stimulation was most efficacious in modulating thermal evoked responses when presented as a downward ("looming"), spatially congruent, approaching and closely proximal target in relation to the somatosensory receptive field. Both temporal alignment and misalignment of spatially aligned threatening visual and thermal stimulation significantly increased mean discharge frequencies above those evoked by thermal stimulation alone, particularly at near noxious (43°C) and mildly noxious (45°C) temperatures. The enhanced multisensory discharge frequencies were equivalent to the discharge frequency evoked by overtly noxious thermal stimulation alone at 47°C (monkey pain tolerance threshold). A significant increase in behavioral mean escape frequency with shorter escape latency was evoked by multisensory stimulation at near noxious temperature (43°C), which was equivalent to that evoked by noxious stimulation alone (47°C). The remarkable concordance of elevating both neural discharge and escape frequency from a nonnociceptive and prepain level by near noxious thermal stimulation to a nociceptive and pain level by multisensory visual and near noxious thermal stimulation and integration is an elegantly designed defensive neural mechanism that in effect lowers both nociceptive response and pain thresholds to preemptively engage nocifensive behavior and, consequently, avert impending and actual injurious noxious thermal stimulation.NEW & NOTEWORTHY Multisensory nociceptive neurons in cortical area 7b are engaged in integration of threatening visuosensory and a wide range of innocuous and nocuous somatosensory (thermoreceptive) inputs. The enhancement of neuronal activity and escape behavior in monkey by multisensory integration is consistent and supportive of human psychophysical studies. The spatial features of visuosensory stimulation in peripersonal space in relation to somatic stimulation in personal space are critical to multisensory integration, nociception, nocifensive behavior, and pain.
Collapse
Affiliation(s)
- Willie K Dong
- Department of Anesthesiology and Pain Medicine, School of Medicine, University of Washington, Seattle, Washington, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois, United States
| |
Collapse
|
4
|
Upton E, Doogan C, Fleming V, Leyton PQ, Barbera D, Zeidman P, Hope T, Latham W, Coley-Fisher H, Price C, Crinion J, Leff A. Efficacy of a gamified digital therapy for speech production in people with chronic aphasia (iTalkBetter): behavioural and imaging outcomes of a phase II item-randomised clinical trial. EClinicalMedicine 2024; 70:102483. [PMID: 38685927 PMCID: PMC11056404 DOI: 10.1016/j.eclinm.2024.102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 05/02/2024] Open
Abstract
Background Aphasia is among the most debilitating of symptoms affecting stroke survivors. Speech and language therapy (SLT) is effective, but many hours of practice are required to make clinically meaningful gains. One solution to this 'dosage' problem is to automate therapeutic approaches via self-supporting apps so people with aphasia (PWA) can amass practice as it suits them. However, response to therapy is variable and no clinical trial has yet identified the key brain regions required to engage with word-retrieval therapy. Methods Between Sep 7, 2020 and Mar 1, 2022 at University College London in the UK, we carried out a phase II, item-randomised clinical trial in 27 PWA using a novel, self-led app, 'iTalkBetter', which utilises confrontation naming therapy. Unlike previously reported apps, it has a real-time utterance verification system that drives its adaptive therapy algorithm. Therapy items were individually randomised to provide balanced lists of 'trained' and 'untrained' items matched on key psycholinguistic variables and baseline performance. PWA practised with iTalkBetter over a 6-week therapy block. Structural and functional MRI data were collected to identify therapy-related changes in brain states. A repeated-measures design was employed. The trial was registered at ClinicalTrials.gov (NCT04566081). Findings iTalkBetter significantly improved naming ability by 13% for trained items compared with no change for untrained items, an average increase of 29 words (SD = 26) per person; beneficial effects persisted at three months. PWA's propositional speech also significantly improved. iTalkBetter use was associated with brain volume increases in right auditory and left anterior prefrontal cortices. Task-based fMRI identified dose-related activity in the right temporoparietal junction. Interpretation Our findings suggested that iTalkBetter significantly improves PWAs' naming ability on trained items. The effect size is similar to a previous RCT of computerised therapy, but this is the first study to show transfer to a naturalistic speaking task. iTalkBetter usage and dose caused observable changes in brain structure and function to key parts of the surviving language perception, production and control networks. iTalkBetter is being rolled-out as an app for all PWA and anomia: https://www.ucl.ac.uk/icn/research/research-groups/neurotherapeutics/projects/digital-interventions-neuro-rehabilitation-0 so that they can increase their dosage of practice-based SLT. Funding National Institute for Health and Care Research, Wellcome Centre for Human Neuroimaging.
Collapse
Affiliation(s)
- Emily Upton
- UCL Queen Square Institute of Neurology, University College London, UK
- Institute of Cognitive Neuroscience, University College London, UK
- Department of Psychology and Language Sciences, University College London, UK
| | - Catherine Doogan
- UCL Queen Square Institute of Neurology, University College London, UK
- Institute of Cognitive Neuroscience, University College London, UK
- St George’s, University of London, UK
| | - Victoria Fleming
- Department of Psychology and Language Sciences, University College London, UK
| | | | - David Barbera
- Institute of Cognitive Neuroscience, University College London, UK
| | - Peter Zeidman
- Wellcome Centre for Human Neuroimaging, University College London, UK
| | - Tom Hope
- Wellcome Centre for Human Neuroimaging, University College London, UK
- Department of Psychology and Social Science, John Cabot University, Rome, Italy
| | - William Latham
- Department of Computing, Goldsmiths, University of London, UK
| | | | - Cathy Price
- Wellcome Centre for Human Neuroimaging, University College London, UK
| | - Jennifer Crinion
- Institute of Cognitive Neuroscience, University College London, UK
- Department of Psychology and Language Sciences, University College London, UK
| | - Alex Leff
- UCL Queen Square Institute of Neurology, University College London, UK
- Institute of Cognitive Neuroscience, University College London, UK
- University College London Hospitals NHS Trust, UK
| |
Collapse
|
5
|
Tariciotti L, Mattioli L, Viganò L, Gallo M, Gambaretti M, Sciortino T, Gay L, Conti Nibali M, Gallotti A, Cerri G, Bello L, Rossi M. Object-oriented hand dexterity and grasping abilities, from the animal quarters to the neurosurgical OR: a systematic review of the underlying neural correlates in non-human, human primate and recent findings in awake brain surgery. Front Integr Neurosci 2024; 18:1324581. [PMID: 38425673 PMCID: PMC10902498 DOI: 10.3389/fnint.2024.1324581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/17/2024] [Indexed: 03/02/2024] Open
Abstract
Introduction The sensorimotor integrations subserving object-oriented manipulative actions have been extensively investigated in non-human primates via direct approaches, as intracortical micro-stimulation (ICMS), cytoarchitectonic analysis and anatomical tracers. However, the understanding of the mechanisms underlying complex motor behaviors is yet to be fully integrated in brain mapping paradigms and the consistency of these findings with intraoperative data obtained during awake neurosurgical procedures for brain tumor removal is still largely unexplored. Accordingly, there is a paucity of systematic studies reviewing the cross-species analogies in neural activities during object-oriented hand motor tasks in primates and investigating the concordance with intraoperative findings during brain mapping. The current systematic review was designed to summarize the cortical and subcortical neural correlates of object-oriented fine hand actions, as revealed by fMRI and PET studies, in non-human and human primates and how those were translated into neurosurgical studies testing dexterous hand-movements during intraoperative brain mapping. Methods A systematic literature review was conducted following the PRISMA guidelines. PubMed, EMBASE and Web of Science databases were searched. Original articles were included if they: (1) investigated cortical activation sites on fMRI and/or PET during grasping task; (2) included humans or non-human primates. A second query was designed on the databases above to collect studies reporting motor, hand manipulation and dexterity tasks for intraoperative brain mapping in patients undergoing awake brain surgery for any condition. Due to the heterogeneity in neurosurgical applications, a qualitative synthesis was deemed more appropriate. Results We provided an updated overview of the current state of the art in translational neuroscience about the extended frontoparietal grasping-praxis network with a specific focus on the comparative functioning in non-human primates, healthy humans and how the latter knowledge has been implemented in the neurosurgical operating room during brain tumor resection. Discussion The anatomical and functional correlates we reviewed confirmed the evolutionary continuum from monkeys to humans, allowing a cautious but practical adoption of such evidence in intraoperative brain mapping protocols. Integrating the previous results in the surgical practice helps preserve complex motor abilities, prevent long-term disability and poor quality of life and allow the maximal safe resection of intrinsic brain tumors.
Collapse
Affiliation(s)
- Leonardo Tariciotti
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Luca Mattioli
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Luca Viganò
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Matteo Gallo
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Matteo Gambaretti
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Tommaso Sciortino
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Gay
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Marco Conti Nibali
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Alberto Gallotti
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Gabriella Cerri
- MoCA Laboratory, Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Bello
- Neurosurgical Oncology Unit, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Marco Rossi
- Neurosurgical Oncology Unit, Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
6
|
Kenzie JM, Rajashekar D, Goodyear BG, Dukelow SP. Resting state functional connectivity associated with impaired proprioception post-stroke. Hum Brain Mapp 2024; 45:e26541. [PMID: 38053448 PMCID: PMC10789217 DOI: 10.1002/hbm.26541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 12/07/2023] Open
Abstract
Deficits in proprioception, the knowledge of limb position and movement in the absence of vision, occur in ~50% of all strokes; however, our lack of knowledge of the neurological mechanisms of these deficits diminishes the effectiveness of rehabilitation and prolongs recovery. We performed resting-state functional magnetic resonance imaging (fMRI) on stroke patients to determine functional brain networks that exhibited changes in connectivity in association with proprioception deficits determined by a Kinarm robotic exoskeleton assessment. Thirty stroke participants were assessed for proprioceptive impairments using a Kinarm robot and underwent resting-state fMRI at 1 month post-stroke. Age-matched healthy control (n = 30) fMRI data were also examined and compared to stroke data in terms of the functional connectivity of brain regions associated with proprioception. Stroke patients exhibited reduced connectivity of the supplementary motor area and the supramarginal gyrus, relative to controls. Functional connectivity of these regions plus primary somatosensory cortex and parietal opercular area was significantly associated with proprioceptive function. The parietal lobe of the lesioned hemisphere is a significant node for proprioception after stroke. Assessment of functional connectivity of this region after stroke may assist with prognostication of recovery. This study also provides potential targets for therapeutic neurostimulation to aid in stroke recovery.
Collapse
Affiliation(s)
- Jeffrey M. Kenzie
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- Seaman Family MR Research Centre, Foothills Medical Centre, Alberta Health ServicesCalgaryAlbertaCanada
| | - Deepthi Rajashekar
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
| | - Bradley G. Goodyear
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- Seaman Family MR Research Centre, Foothills Medical Centre, Alberta Health ServicesCalgaryAlbertaCanada
- Department of RadiologyUniversity of CalgaryCalgaryAlbertaCanada
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryAlbertaCanada
| | - Sean P. Dukelow
- Department of Clinical NeurosciencesUniversity of CalgaryCalgaryAlbertaCanada
- Seaman Family MR Research Centre, Foothills Medical Centre, Alberta Health ServicesCalgaryAlbertaCanada
| |
Collapse
|
7
|
Zoltowski AR, Failla MD, Quinde-Zlibut JM, Dunham-Carr K, Moana-Filho EJ, Essick GK, Baranek GT, Rogers B, Cascio CJ. Differences in temporal profile of brain responses by pleasantness of somatosensory stimulation in autistic individuals. Somatosens Mot Res 2023:1-16. [PMID: 38140831 PMCID: PMC11193842 DOI: 10.1080/08990220.2023.2294715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/04/2023] [Indexed: 12/24/2023]
Abstract
Purpose/Aim. Autistic individuals may show either hyper- or hypo- responsiveness to touch compared to non-autistic individuals. These behavioural responses depend on perceptual and evaluative mechanisms, which unfold sequentially and thus can be distinguished by exploring the timing of neural responses. In this study, we examined neural response timing to pleasant, unpleasant, and affectively neutral textures, to determine whether these perceptual versus evaluative subprocesses differ in autism and how each subprocess contributes to behavioural responses.Materials and Methods. Our sample included n = 13 autistic and n = 14 non-autistic adults who completed functional magnetic resonance imaging. We analysed early, intermediate, and late phases of the tactile response, derived from studies of noxious tactile stimulation, to three different textures.Results. The autistic group showed distinct differences from the non-autistic group to each of the textures, showing earlier, somatosensory differences in response to the pleasantly and unpleasantly rated textures and later, frontomotor differences in response to the neutrally rated texture. Further, reduced early phase response to the pleasant texture correlated with increased sensory seeking behaviour.Conclusions. While preliminary, these results suggest distinct patterns between autistic and non-autistic individuals in how the neural response to touch unfolds and its correspondence with the perceived pleasantness of tactile experience. The findings suggest perceptual differences in response to affectively charged textures and evaluative differences in response to neutral, ambiguous textures. These temporal properties may inform future studies of tactile processing in autism, lending a better understanding of how individuals differ in their sensory experiences across contexts.
Collapse
Affiliation(s)
- Alisa R Zoltowski
- Vanderbilt Brain Institute, Nashville, TN, USA
- The Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN
| | | | - Jennifer M Quinde-Zlibut
- Vanderbilt Brain Institute, Nashville, TN, USA
- The Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN
| | - Kacie Dunham-Carr
- Vanderbilt Brain Institute, Nashville, TN, USA
- The Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN, USA
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, USA
| | - Estephan J Moana-Filho
- Division of TMD and Orofacial Pain, Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
| | - Greg K Essick
- Department of Prosthodontics, School of Dentistry, University of North Carolina, NC, USA
| | - Grace T Baranek
- The Mrs. T. H. Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA, USA
| | - Baxter Rogers
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - Carissa J Cascio
- Vanderbilt Brain Institute, Nashville, TN, USA
- The Frist Center for Autism and Innovation, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
8
|
Henderson J, Mari T, Hewitt D, Newton‐Fenner A, Giesbrecht T, Marshall A, Stancak A, Fallon N. The neural correlates of texture perception: A systematic review and activation likelihood estimation meta-analysis of functional magnetic resonance imaging studies. Brain Behav 2023; 13:e3264. [PMID: 37749852 PMCID: PMC10636420 DOI: 10.1002/brb3.3264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023] Open
Abstract
INTRODUCTION Humans use discriminative touch to perceive texture through dynamic interactions with surfaces, activating low-threshold mechanoreceptors in the skin. It was largely assumed that texture was processed in primary somatosensory regions in the brain; however, imaging studies indicate heterogeneous patterns of brain activity associated with texture processing. METHODS To address this, we conducted a coordinate-based activation likelihood estimation meta-analysis of 13 functional magnetic resonance imaging studies (comprising 15 experiments contributing 228 participants and 275 foci) selected by a systematic review. RESULTS Concordant activations for texture perception occurred in the left primary somatosensory and motor regions, with bilateral activations in the secondary somatosensory, posterior insula, and premotor and supplementary motor cortices. We also evaluated differences between studies that compared touch processing to non-haptic control (e.g., rest or visual control) or those that used haptic control (e.g., shape or orientation perception) to specifically investigate texture encoding. Studies employing a haptic control revealed concordance for texture processing only in the left secondary somatosensory cortex. Contrast analyses demonstrated greater concordance of activations in the left primary somatosensory regions and inferior parietal cortex for studies with a non-haptic control, compared to experiments accounting for other haptic aspects. CONCLUSION These findings suggest that texture processing may recruit higher order integrative structures, and the secondary somatosensory cortex may play a key role in encoding textural properties. The present study provides unique insight into the neural correlates of texture-related processing by assessing the influence of non-textural haptic elements and identifies opportunities for a future research design to understand the neural processing of texture.
Collapse
Affiliation(s)
| | - Tyler Mari
- School of PsychologyUniversity of LiverpoolLiverpoolUK
| | | | - Alice Newton‐Fenner
- School of PsychologyUniversity of LiverpoolLiverpoolUK
- Institute of Risk and UncertaintyUniversity of LiverpoolLiverpoolUK
| | | | - Alan Marshall
- Department of Electrical Engineering and ElectronicsUniversity of LiverpoolLiverpoolUK
| | - Andrej Stancak
- School of PsychologyUniversity of LiverpoolLiverpoolUK
- Institute of Risk and UncertaintyUniversity of LiverpoolLiverpoolUK
| | | |
Collapse
|
9
|
Destrebecq V, Rovai A, Trotta N, Comet C, Naeije G. Proprioceptive and tactile processing in individuals with Friedreich ataxia: an fMRI study. Front Neurol 2023; 14:1224345. [PMID: 37808498 PMCID: PMC10556689 DOI: 10.3389/fneur.2023.1224345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Objective Friedreich ataxia (FA) neuropathology affects dorsal root ganglia, posterior columns in the spinal cord, the spinocerebellar tracts, and cerebellar dentate nuclei. The impact of the somatosensory system on ataxic symptoms remains debated. This study aims to better evaluate the contribution of somatosensory processing to ataxia clinical severity by simultaneously investigating passive movement and tactile pneumatic stimulation in individuals with FA. Methods Twenty patients with FA and 20 healthy participants were included. All subjects underwent two 6 min block-design functional magnetic resonance imaging (fMRI) paradigms consisting of twelve 30 s alternating blocks (10 brain volumes per block, 120 brain volumes per paradigm) of a tactile oddball paradigm and a passive movement paradigm. Spearman rank correlation tests were used for correlations between BOLD levels and ataxia severity. Results The passive movement paradigm led to the lower activation of primary (cSI) and secondary somatosensory cortices (cSII) in FA compared with healthy subjects (respectively 1.1 ± 0.78 vs. 0.61 ± 1.02, p = 0.04, and 0.69 ± 0.5 vs. 0.3 ± 0.41, p = 0.005). In the tactile paradigm, there was no significant difference between cSI and cSII activation levels in healthy controls and FA (respectively 0.88 ± 0.73 vs. 1.14 ± 0.99, p = 0.33, and 0.54 ± 0.37 vs. 0.55 ± 0.54, p = 0.93). Correlation analysis showed a significant correlation between cSI activation levels in the tactile paradigm and the clinical severity (R = 0.481, p = 0.032). Interpretation Our study captured the difference between tactile and proprioceptive impairments in FA using somatosensory fMRI paradigms. The lack of correlation between the proprioceptive paradigm and ataxia clinical parameters supports a low contribution of afferent ataxia to FA clinical severity.
Collapse
Affiliation(s)
- Virginie Destrebecq
- Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LNT), UNI – ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
- Department of Neurology, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Antonin Rovai
- Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LNT), UNI – ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Nicola Trotta
- Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LNT), UNI – ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Camille Comet
- Department of Neurology, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| | - Gilles Naeije
- Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles (LNT), UNI – ULB Neuroscience Institute, Université libre de Bruxelles (ULB), Brussels, Belgium
- Department of Neurology, CUB Hôpital Erasme, Université libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
10
|
Ryun S, Kim M, Kim JS, Chung CK. Cortical maps of somatosensory perception in human. Neuroimage 2023; 276:120197. [PMID: 37245558 DOI: 10.1016/j.neuroimage.2023.120197] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 05/05/2023] [Accepted: 05/25/2023] [Indexed: 05/30/2023] Open
Abstract
Tactile and movement-related somatosensory perceptions are crucial for our daily lives and survival. Although the primary somatosensory cortex is thought to be the key structure of somatosensory perception, various cortical downstream areas are also involved in somatosensory perceptual processing. However, little is known about whether cortical networks of these downstream areas can be dissociated depending on each perception, especially in human. We address this issue by combining data from direct cortical stimulation (DCS) for eliciting somatosensation and data from high-gamma band (HG) elicited during tactile stimulation and movement tasks. We found that artificial somatosensory perception is elicited not only from conventional somatosensory-related areas such as the primary and secondary somatosensory cortices but also from a widespread network including superior/inferior parietal lobules and premotor cortex. Interestingly, DCS on the dorsal part of the fronto-parietal area including superior parietal lobule and dorsal premotor cortex often induces movement-related somatosensations, whereas that on the ventral one including inferior parietal lobule and ventral premotor cortex generally elicits tactile sensations. Furthermore, the HG mapping results of the movement and passive tactile stimulation tasks revealed considerable similarity in the spatial distribution between the HG and DCS functional maps. Our findings showed that macroscopic neural processing for tactile and movement-related perceptions could be segregated.
Collapse
Affiliation(s)
- Seokyun Ryun
- Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, Korea
| | - Minkyu Kim
- Department of Cognitive Sciences, University of California Irvine, Irvine, USA
| | - June Sic Kim
- Department of Brain & Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Chun Kee Chung
- Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, Korea; Department of Brain & Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Korea; Department of Neurosurgery, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
11
|
Van de Wauw C, Riecke L, Goebel R, Kaas A, Sorger B. Talking with hands and feet: Selective somatosensory attention and fMRI enable robust and convenient brain-based communication. Neuroimage 2023; 276:120172. [PMID: 37230207 DOI: 10.1016/j.neuroimage.2023.120172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/07/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
In brain-based communication, voluntarily modulated brain signals (instead of motor output) are utilized to interact with the outside world. The possibility to circumvent the motor system constitutes an important alternative option for severely paralyzed. Most communication brain-computer interface (BCI) paradigms require intact visual capabilities and impose a high cognitive load, but for some patients, these requirements are not given. In these situations, a better-suited, less cognitively demanding information-encoding approach may exploit auditorily-cued selective somatosensory attention to vibrotactile stimulation. Here, we propose, validate and optimize a novel communication-BCI paradigm using differential fMRI activation patterns evoked by selective somatosensory attention to tactile stimulation of the right hand or left foot. Using cytoarchitectonic probability maps and multi-voxel pattern analysis (MVPA), we show that the locus of selective somatosensory attention can be decoded from fMRI-signal patterns in (especially primary) somatosensory cortex with high accuracy and reliability, with the highest classification accuracy (85.93%) achieved when using Brodmann area 2 (SI-BA2) at a probability level of 0.2. Based on this outcome, we developed and validated a novel somatosensory attention-based yes/no communication procedure and demonstrated its high effectiveness even when using only a limited amount of (MVPA) training data. For the BCI user, the paradigm is straightforward, eye-independent, and requires only limited cognitive functioning. In addition, it is BCI-operator friendly given its objective and expertise-independent procedure. For these reasons, our novel communication paradigm has high potential for clinical applications.
Collapse
Affiliation(s)
- Cynthia Van de Wauw
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands.
| | - Lars Riecke
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands; Department of Neuroimaging and Neuromodeling, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Amanda Kaas
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Bettina Sorger
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
12
|
Naeije G, Rovai A, Destrebecq V, Trotta N, De Tiège X. Anodal Cerebellar Transcranial Direct Current Stimulation Reduces Motor and Cognitive Symptoms in Friedreich's Ataxia: A Randomized, Sham-Controlled Trial. Mov Disord 2023; 38:1443-1450. [PMID: 37310043 DOI: 10.1002/mds.29453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/24/2023] [Accepted: 05/05/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND Friedreich Ataxia is the most common recessive ataxia with only one therapeutic drug approved solely in the United States. OBJECTIVE The aim of this work was to investigate whether anodal cerebellar transcranial direct current stimulation (ctDCS) reduces ataxic and cognitive symptoms in individuals with Friedreich's ataxia (FRDA) and to assess the effects of ctDCS on the activity of the secondary somatosensory (SII) cortex. METHODS We performed a single-blind, randomized, sham-controlled, crossover trial with anodal ctDCS (5 days/week for 1 week, 20 min/day, density current: 0.057 mA/cm2 ) in 24 patients with FRDA. Each patient underwent a clinical evaluation (Scale for the Assessment and Rating of Ataxia, composite cerebellar functional severity score, cerebellar cognitive affective syndrome scale) before and after anodal and sham ctDCS. Activity of the SII cortex contralateral to a tactile oddball stimulation of the right index finger was evaluated with brain functional magnetic resonance imaging at baseline and after anodal/sham ctDCS. RESULTS Anodal ctDCS led to a significant improvement in the Scale for the Assessment and Rating of Ataxia (-6.5%) and in the cerebellar cognitive affective syndrome scale (+11%) compared with sham ctDCS. It also led to a significant reduction in functional magnetic resonance imaging signal at the SII cortex contralateral to tactile stimulation (-26%) compared with sham ctDCS. CONCLUSIONS One week of treatment with anodal ctDCS reduces motor and cognitive symptoms in individuals with FRDA, likely by restoring the neocortical inhibition normally exerted by cerebellar structures. This study provides class I evidence that ctDCS stimulation is effective and safe in FRDA. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Gilles Naeije
- Université libre de Bruxelles, UNI-ULB Neuroscience Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles, Brussels, Belgium
- Université libre de Bruxelles, Hôpital Universitaire de Bruxelles, CUB Hôpital Erasme, Department of Neurology, Brussels, Belgium
| | - Antonin Rovai
- Université libre de Bruxelles, UNI-ULB Neuroscience Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles, Brussels, Belgium
- Université libre de Bruxelles, Hôpital Universitaire de Bruxelles, CUB Hôpital Erasme, Department of Translational Neuroimaging, Brussels, Belgium
| | - Virginie Destrebecq
- Université libre de Bruxelles, UNI-ULB Neuroscience Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles, Brussels, Belgium
- Université libre de Bruxelles, Hôpital Universitaire de Bruxelles, CUB Hôpital Erasme, Department of Neurology, Brussels, Belgium
| | - Nicola Trotta
- Université libre de Bruxelles, UNI-ULB Neuroscience Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles, Brussels, Belgium
| | - Xavier De Tiège
- Université libre de Bruxelles, UNI-ULB Neuroscience Institute, Laboratoire de Neuroanatomie et de Neuroimagerie translationnelles, Brussels, Belgium
- Université libre de Bruxelles, Hôpital Universitaire de Bruxelles, CUB Hôpital Erasme, Department of Translational Neuroimaging, Brussels, Belgium
| |
Collapse
|
13
|
Smith JA, Tain R, Sharp KG, Glynn LM, Van Dillen LR, Henslee K, Jacobs JV, Cramer SC. Identifying the neural correlates of anticipatory postural control: A novel fMRI paradigm. Hum Brain Mapp 2023; 44:4088-4100. [PMID: 37162423 PMCID: PMC10258523 DOI: 10.1002/hbm.26332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 04/04/2023] [Accepted: 04/25/2023] [Indexed: 05/11/2023] Open
Abstract
Altered postural control in the trunk/hip musculature is a characteristic of multiple neurological and musculoskeletal conditions. Previously it was not possible to determine if altered cortical and subcortical sensorimotor brain activation underlies impairments in postural control. This study used a novel fMRI-compatible paradigm to identify the brain activation associated with postural control in the trunk and hip musculature. BOLD fMRI imaging was conducted as participants performed two versions of a lower limb task involving lifting the left leg to touch the foot to a target. For the supported leg raise (SLR) the leg is raised from the knee while the thigh remains supported. For the unsupported leg raise (ULR) the leg is raised from the hip, requiring postural muscle activation in the abdominal/hip extensor musculature. Significant brain activation during the SLR task occurred predominantly in the right primary and secondary sensorimotor cortical regions. Brain activation during the ULR task occurred bilaterally in the primary and secondary sensorimotor cortical regions, as well as cerebellum and putamen. In comparison with the SLR, the ULR was associated with significantly greater activation in the right premotor/SMA, left primary motor and cingulate cortices, primary somatosensory cortex, supramarginal gyrus/parietal operculum, superior parietal lobule, cerebellar vermis, and cerebellar hemispheres. Cortical and subcortical regions activated during the ULR, but not during the SLR, were consistent with the planning, and execution of a task involving multisegmental, bilateral postural control. Future studies using this paradigm will determine mechanisms underlying impaired postural control in patients with neurological and musculoskeletal dysfunction.
Collapse
Affiliation(s)
- Jo Armour Smith
- Department of Physical TherapyChapman UniversityOrangeCaliforniaUSA
| | - Rongwen Tain
- Campus Center for NeuroimagingUniversity of CaliforniaIrvineCaliforniaUSA
| | - Kelli G. Sharp
- Department of Dance, School of ArtsUniversity of CaliforniaIrvineCaliforniaUSA
- Department of Physical Medicine and RehabilitationUniversity of CaliforniaIrvineCaliforniaUSA
| | - Laura M. Glynn
- Department of PsychologyChapman UniversityOrangeCaliforniaUSA
| | - Linda R. Van Dillen
- Program in Physical Therapy, Orthopaedic SurgeryWashington University School of Medicine in St. LouisSt. LouisWashingtonUSA
| | - Korinne Henslee
- Department of Physical TherapyChapman UniversityOrangeCaliforniaUSA
| | - Jesse V. Jacobs
- Rehabilitation and Movement ScienceUniversity of VermontBurlingtonVermontUSA
| | - Steven C. Cramer
- Department of NeurologyUniversity of CaliforniaLos AngelesCaliforniaUSA
- California Rehabilitation InstituteLos AngelesCaliforniaUSA
| |
Collapse
|
14
|
Unger N, Haeck M, Eickhoff SB, Camilleri JA, Dickscheid T, Mohlberg H, Bludau S, Caspers S, Amunts K. Cytoarchitectonic mapping of the human frontal operculum-New correlates for a variety of brain functions. Front Hum Neurosci 2023; 17:1087026. [PMID: 37448625 PMCID: PMC10336231 DOI: 10.3389/fnhum.2023.1087026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 04/18/2023] [Indexed: 07/15/2023] Open
Abstract
The human frontal operculum (FOp) is a brain region that covers parts of the ventral frontal cortex next to the insula. Functional imaging studies showed activations in this region in tasks related to language, somatosensory, and cognitive functions. While the precise cytoarchitectonic areas that correlate to these processes have not yet been revealed, earlier receptorarchitectonic analysis resulted in a detailed parcellation of the FOp. We complemented this analysis by a cytoarchitectonic study of a sample of ten postmortem brains and mapped the posterior FOp in serial, cell-body stained histological sections using image analysis and multivariate statistics. Three new areas were identified: Op5 represents the most posterior area, followed by Op6 and the most anterior region Op7. Areas Op5-Op7 approach the insula, up to the circular sulcus. Area 44 of Broca's region, the most ventral part of premotor area 6, and parts of the parietal operculum are dorso-laterally adjacent to Op5-Op7. The areas did not show any interhemispheric or sex differences. Three-dimensional probability maps and a maximum probability map were generated in stereotaxic space, and then used, in a first proof-of-concept-study, for functional decoding and analysis of structural and functional connectivity. Functional decoding revealed different profiles of cytoarchitectonically identified Op5-Op7. While left Op6 was active in music cognition, right Op5 was involved in chewing/swallowing and sexual processing. Both areas showed activation during the exercise of isometric force in muscles. An involvement in the coordination of flexion/extension could be shown for the right Op6. Meta-analytic connectivity modeling revealed various functional connections of the FOp areas within motor and somatosensory networks, with the most evident connection with the music/language network for Op6 left. The new cytoarchitectonic maps are part of Julich-Brain, and publicly available to serve as a basis for future analyses of structural-functional relationships in this region.
Collapse
Affiliation(s)
- Nina Unger
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | | | - Simon B. Eickhoff
- Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute for Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Julia A. Camilleri
- Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich, Jülich, Germany
- Institute for Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Timo Dickscheid
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute of Computer Science, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Hartmut Mohlberg
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Sebastian Bludau
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute for Anatomy I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Katrin Amunts
- Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
15
|
Kogler L, Regenbogen C, Müller VI, Kohn N, Schneider F, Gur RC, Derntl B. Cognitive Stress Regulation in Schizophrenia Patients and Healthy Individuals: Brain and Behavior. J Clin Med 2023; 12:jcm12072749. [PMID: 37048832 PMCID: PMC10095473 DOI: 10.3390/jcm12072749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
Stress is an important factor in the development, triggering, and maintenance of psychotic symptoms. Still, little is known about the neural correlates of cognitively regulating stressful events in schizophrenia. The current study aimed at investigating the cognitive down-regulation of negative, stressful reactions during a neuroimaging psychosocial stress paradigm (non-regulated stress versus cognitively regulated stress). In a randomized, repeated-measures within-subject design, we assessed subjective reactions and neural activation in schizophrenia patients (SZP) and matched healthy controls in a neuroimaging psychosocial stress paradigm. In general, SZP exhibited an increased anticipation of stress compared to controls (p = 0.020). During non-regulated stress, SZP showed increased negative affect (p = 0.033) and stronger activation of the left parietal operculum/posterior insula (p < 0.001) and right inferior frontal gyrus/anterior insula (p = 0.005) than controls. Contrarily, stress regulation compared to non-regulated stress led to increased subjective reactions in controls (p = 0.003) but less deactivation in SZP in the ventral anterior cingulate cortex (p = 0.027). Our data demonstrate stronger reactions to and anticipation of stress in patients and difficulties with cognitive stress regulation in both groups. Considering the strong association between mental health and stress, the investigation of cognitive regulation in individuals vulnerable to stress, including SZP, has crucial implications for improving stress intervention trainings.
Collapse
Affiliation(s)
- Lydia Kogler
- Department of Psychiatry and Psychotherapy, Tübingen Centre for Mental Health (TüCMH), Medical Faculty, University of Tübingen, Calwerstrasse 14, 72076 Tübingen, Germany
| | - Christina Regenbogen
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Veronika I Müller
- Institute of Neuroscience und Medicine, INM-7, Research Centre Jülich, 52425 Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Nils Kohn
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Postbus 9101, 6500 HB Nijmegen, The Netherlands
| | - Frank Schneider
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
- Medical Faculty, Heinrich Heine University Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - Ruben C Gur
- Neuropsychiatry Division, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Birgit Derntl
- Department of Psychiatry and Psychotherapy, Tübingen Centre for Mental Health (TüCMH), Medical Faculty, University of Tübingen, Calwerstrasse 14, 72076 Tübingen, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
- International Max Planck Research School for the Mechanisms of Mental Function and Dysfunction (IMPRS-MMFD), Otfried-Müller-Str. 27, 72076 Tübingen, Germany
- LEAD Graduate School and Network, University of Tübingen, Walter-Simon-Straße 12, 72074 Tübingen, Germany
| |
Collapse
|
16
|
Wang JJ, Yang FPG, Tsai CC, Chao AS. The neural basis of pain during labor. Am J Obstet Gynecol 2023; 228:S1241-S1245. [PMID: 36948996 DOI: 10.1016/j.ajog.2023.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/17/2023] [Accepted: 02/17/2023] [Indexed: 03/24/2023]
Abstract
Characterizing a labor pain-related neural signature is a key prerequisite for devising optimized pharmacologic and nonpharmacologic labor pain relief methods. The aim of this study was to describe the neural basis of labor pain and to provide a brief summary of how epidural anesthesia may affect pain-related neuronal activity during labor. Possible future directions are also highlighted. By taking advantage of functional magnetic resonance imaging, brain activation maps and functional neural networks of women during labor that have been recently characterized were compared between pregnant women who received epidural anesthesia and those who did not. In the subgroup of women who did not receive epidural anesthesia, labor-related pain elicited activations in a distributed brain network that included regions within the primary somatosensory cortex (postcentral gyrus and left parietal operculum cortex) and within the traditional pain network (lentiform nucleus, insula, and anterior cingulate gyrus). The activation maps of women who had been administered epidural anesthesia were found to be different-especially with respect to the postcentral gyrus, the insula, and the anterior cingulate gyrus. Parturients who received epidural anesthesia were also compared with those who did not in terms of functional connectivity from selected sensory and affective regions. When analyzing women who did not receive epidural anesthesia, marked bilateral connections from the postcentral gyrus to the superior parietal lobule, supplementary motor area, precentral gyrus, and the right anterior supramarginal gyrus were observed. In contrast, women who received epidural anesthesia showed fewer connections from the postcentral gyrus-being limited to the superior parietal lobule and supplementary motor area. Importantly, one of the most noticeable effects of epidural anesthesia was observed in the anterior cingulate cortex-a primary region that modulates pain perception. The increased outgoing connectivity from the anterior cingulate cortex in women who received epidural anesthesia indicates that the cognitive control exerted by this area might play a major role in the relief from labor pain. These findings not only affirmed the existence of a brain signature for pain experienced during labor, but they also showed that this signature can be altered by the administration of epidural anesthesia. This finding raises a question about the extent to which the cingulo-frontal cortex may exert top-down influences to gate women's experiences of labor-related pain. Because the anterior cingulate cortex is also involved in the processing and modulation of emotional content, such as fear and anxiety, a related question is about the extent to which the use of epidural anesthesia can affect different components of pain perception. Finally, inhibition of anterior cingulate cortex neurons may represent a potential new therapeutic target for alleviating labor-associated pain.
Collapse
Affiliation(s)
- Jiun-Jie Wang
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Keelung, Taiwan; Medical Imaging Research Center, Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Fan-Pei Gloria Yang
- Department of Foreign Languages and Literature, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Chien Tsai
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | - An-Shine Chao
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan; Department of Obstetrics and Gynecology, New Taipei City Municipal Tu Cheng Hospital, New Taipei City, Taiwan.
| |
Collapse
|
17
|
Bailey KM, Giordano BL, Kaas AL, Smith FW. Decoding sounds depicting hand-object interactions in primary somatosensory cortex. Cereb Cortex 2022; 33:3621-3635. [PMID: 36045002 DOI: 10.1093/cercor/bhac296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/24/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Neurons, even in the earliest sensory regions of cortex, are subject to a great deal of contextual influences from both within and across modality connections. Recent work has shown that primary sensory areas can respond to and, in some cases, discriminate stimuli that are not of their target modality: for example, primary somatosensory cortex (SI) discriminates visual images of graspable objects. In the present work, we investigated whether SI would discriminate sounds depicting hand-object interactions (e.g. bouncing a ball). In a rapid event-related functional magnetic resonance imaging experiment, participants listened attentively to sounds from 3 categories: hand-object interactions, and control categories of pure tones and animal vocalizations, while performing a one-back repetition detection task. Multivoxel pattern analysis revealed significant decoding of hand-object interaction sounds within SI, but not for either control category. Crucially, in the hand-sensitive voxels defined from an independent tactile localizer, decoding accuracies were significantly higher for hand-object interactions compared to pure tones in left SI. Our findings indicate that simply hearing sounds depicting familiar hand-object interactions elicit different patterns of activity in SI, despite the complete absence of tactile stimulation. These results highlight the rich contextual information that can be transmitted across sensory modalities even to primary sensory areas.
Collapse
Affiliation(s)
- Kerri M Bailey
- School of Psychology, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Bruno L Giordano
- Institut des Neurosciences de La Timone, CNRS UMR 7289, Université Aix-Marseille, Marseille CNRS UMR 7289, France
| | - Amanda L Kaas
- Department of Cognitive Neuroscience, Maastricht University, Maastricht 6229 EV, The Netherlands
| | - Fraser W Smith
- School of Psychology, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| |
Collapse
|
18
|
Sulpizio V, Strappini F, Fattori P, Galati G, Galletti C, Pecchinenda A, Pitzalis S. The human middle temporal cortex responds to both active leg movements and egomotion-compatible visual motion. Brain Struct Funct 2022; 227:2573-2592. [PMID: 35963915 DOI: 10.1007/s00429-022-02549-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 08/03/2022] [Indexed: 11/28/2022]
Abstract
The human middle-temporal region MT+ is highly specialized in processing visual motion. However, recent studies have shown that this region is modulated by extraretinal signals, suggesting a possible involvement in processing motion information also from non-visual modalities. Here, we used functional MRI data to investigate the influence of retinal and extraretinal signals on MT+ in a large sample of subjects. Moreover, we used resting-state functional MRI to assess how the subdivisions of MT+ (i.e., MST, FST, MT, and V4t) are functionally connected. We first compared responses in MST, FST, MT, and V4t to coherent vs. random visual motion. We found that only MST and FST were positively activated by coherent motion. Furthermore, regional analyses revealed that MST and FST were positively activated by leg, but not arm, movements, while MT and V4t were deactivated by arm, but not leg, movements. Taken together, regional analyses revealed a visuomotor role for the anterior areas MST and FST and a pure visual role for the anterior areas MT and V4t. These findings were mirrored by the pattern of functional connections between these areas and the rest of the brain. Visual and visuomotor regions showed distinct patterns of functional connectivity, with the latter preferentially connected with the somatosensory and motor areas representing leg and foot. Overall, these findings reveal a functional sensitivity for coherent visual motion and lower-limb movements in MST and FST, suggesting their possible involvement in integrating sensory and motor information to perform locomotion.
Collapse
Affiliation(s)
- Valentina Sulpizio
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | | | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Gaspare Galati
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - Sabrina Pitzalis
- Department of Cognitive and Motor Rehabilitation and Neuroimaging, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
- Department of Movement, Human and Health Sciences, University of Rome ''Foro Italico'', 00194, Rome, Italy.
| |
Collapse
|
19
|
Alkhasli I, Mottaghy FM, Binkofski F, Sakreida K. Preconditioning prefrontal connectivity using transcranial direct current stimulation and transcranial magnetic stimulation. Front Hum Neurosci 2022; 16:929917. [PMID: 36034122 PMCID: PMC9403141 DOI: 10.3389/fnhum.2022.929917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS) have been shown to modulate functional connectivity. Their specific effects seem to be dependent on the pre-existing neuronal state. We aimed to precondition frontal networks using tDCS and subsequently stimulate the left dorsolateral prefrontal cortex (lDLPFC) using TMS. Thirty healthy participants underwent excitatory, inhibitory, or sham tDCS for 10 min, as well as an excitatory intermittent theta-burst (iTBS) protocol (600 pulses, 190 s, 20 × 2-s trains), applied over the lDLPFC at 90% of the individual resting motor threshold. Functional connectivity was measured in three task-free resting state fMRI sessions, immediately before and after tDCS, as well as after iTBS. Testing the whole design did not yield any significant results. Analysis of the connectivity between the stimulation site and all other brain voxels, contrasting only the interaction effect between the experimental groups (excitatory vs. inhibitory) and the repeated measure (post-tDCS vs. post-TMS), revealed significantly affected voxels bilaterally in the anterior cingulate and paracingulate gyri, the caudate nuclei, the insula and operculum cortices, as well as the Heschl’s gyrus. Post-hoc ROI-to-ROI analyses between the significant clusters and the striatum showed post-tDCS, temporo-parietal-to-striatal and temporo-parietal-to-fronto-cingulate differences between the anodal and cathodal tDCSgroup, as well as post-TMS, striatal-to-temporo-parietal differences between the anodal and cathodal groups and frontostriatal and interhemispheric temporo-parietal cathodal-sham group differences. Excitatory iTBS to a tDCS-inhibited lDLPFC thus yielded more robust functional connectivity to various areas as compared to excitatory iTBS to a tDCS-enhanced DLPFC. Even considering reduced statistical power due to low subject numbers, results demonstrate complex, whole-brain stimulation effects. They are possibly facilitated by cortical homeostatic control mechanisms and show the feasibility of using tDCS to modulate subsequent TMS effects. This proof-of-principle study might stimulate further research into the principle of preconditioning that might be useful in the development of protocols using DLPFC as a stimulation site for the treatment of depression.
Collapse
Affiliation(s)
- Isabel Alkhasli
- Section Clinical Cognitive Sciences, Department of Neurology, University Hospital, RWTH Aachen University, Aachen, Germany
| | - Felix M. Mottaghy
- Department of Nuclear Medicine, University Hospital, RWTH Aachen University, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center (MUMC+), Maastricht, Netherlands
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-4), Jülich, Germany
- JARA—BRAIN (Translational Brain Medicine), Jülich and Aachen, Germany
| | - Ferdinand Binkofski
- Section Clinical Cognitive Sciences, Department of Neurology, University Hospital, RWTH Aachen University, Aachen, Germany
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-4), Jülich, Germany
- JARA—BRAIN (Translational Brain Medicine), Jülich and Aachen, Germany
- *Correspondence: Ferdinand Binkofski
| | - Katrin Sakreida
- Department of Neurosurgery, University Hospital, RWTH Aachen University, Aachen, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, University Hospital, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
20
|
Del Vecchio M, De Marco D, Pigorini A, Fossataro C, Cassisi A, Avanzini P. Vision of haptics tunes the somatosensory threshold. Neurosci Lett 2022; 787:136823. [PMID: 35914589 DOI: 10.1016/j.neulet.2022.136823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/01/2022]
Abstract
The interaction between different sensory modalities represents a crucial issue in the neuroscience of consciousness: when the processing of one modality is deficient, the concomitant presentation of stimuli of other spared modalities may sustain the restoring of the damaged sensory functions. In this regard, visual enhancement of touch may represent a viable tool in the rehabilitation from tactile disorders, yet the specific visual features mostly modulating the somatosensory experience remain unsettled. In this study, healthy subjects underwent a tactile detection task during the observation of videos displaying different contents, including static gratings, meaningless motions, natural or point-lights reach-to-grasp-and-manipulate actions. Concurrently, near-threshold stimuli were delivered to the median nerve at different time-points. Subjective report was collected after each trial; the sensory detection rate was computed and compared across video conditions. Our results indicate that the specific presence of haptic contents (i.e., vision of manipulation), either fully displayed or implied by point-lights, magnifies tactile sensitivity. The notion that such stimuli prompt an aware tactile experience opens to novel rehabilitation approaches for tactile consciousness disorders.
Collapse
Affiliation(s)
- Maria Del Vecchio
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Parma 43125, Italy.
| | - Doriana De Marco
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Parma 43125, Italy
| | - Andrea Pigorini
- University of Milan, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco", Milano 20157, Italy
| | - Carlotta Fossataro
- MANIBUS Laboratory, Dipartimento di Psicologia, Università di Torino, Torino 10124, Italy
| | - Annalisa Cassisi
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Parma 43125, Italy; University of Parma, Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Parma 43124,Italy
| | - Pietro Avanzini
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Parma 43125, Italy
| |
Collapse
|
21
|
Labek K, Dommes L, Bosch JE, Schurz M, Viviani R, Buchheim A. A Short Functional Neuroimaging Assay Using Attachment Scenes to Recruit Neural Correlates of Social Cognition—A Replication Study. Brain Sci 2022; 12:brainsci12070855. [PMID: 35884660 PMCID: PMC9313198 DOI: 10.3390/brainsci12070855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
Attachment theory provides a conceptual framework to understand the impact of early child–caregiver experiences, such as loss or separation, on adult functioning and psychopathology. In the current study, scenes from the Adult Attachment Projective Picture System (AAP), a validated, commonly used standardized diagnostic instrument to assess adult attachment representations, were used to develop a short fMRI assay eliciting the neural correlates of encoding of potentially hurtful and threatening social situations such as social losses, rejections or loneliness. Data from healthy participants (N = 19) showed activations in brain areas associated with social cognition and semantic knowledge during exposure to attachment-related scenes compared to control scenes. Extensive activation of the temporal poles was observed, suggesting the use of semantic knowledge for generating social concepts and scripts. This knowledge may underlie our ability to explain and predict social interactions, a specific aspect of theory of mind or mentalization. In this replication study, we verified the effectiveness of a modified fMRI assay to assess the external validity of a previously used imaging paradigm to investigate the processing of emotionally negatively valenced and painful social interactions. Our data confirm the recruitment of brain areas associated with social cognition with our very short neuroimaging assay.
Collapse
Affiliation(s)
- Karin Labek
- Institute of Psychology, Faculty of Psychology and Sport Science, University of Innsbruck, 6020 Innsbruck, Austria; (M.S.); (R.V.); (A.B.)
- Correspondence:
| | - Lisa Dommes
- Department of Psychiatry and Psychotherapy III, Ulm University Medical Center, 89075 Ulm, Germany; (L.D.); (J.E.B.)
| | - Julia Eva Bosch
- Department of Psychiatry and Psychotherapy III, Ulm University Medical Center, 89075 Ulm, Germany; (L.D.); (J.E.B.)
| | - Matthias Schurz
- Institute of Psychology, Faculty of Psychology and Sport Science, University of Innsbruck, 6020 Innsbruck, Austria; (M.S.); (R.V.); (A.B.)
| | - Roberto Viviani
- Institute of Psychology, Faculty of Psychology and Sport Science, University of Innsbruck, 6020 Innsbruck, Austria; (M.S.); (R.V.); (A.B.)
- Department of Psychiatry and Psychotherapy III, Ulm University Medical Center, 89075 Ulm, Germany; (L.D.); (J.E.B.)
| | - Anna Buchheim
- Institute of Psychology, Faculty of Psychology and Sport Science, University of Innsbruck, 6020 Innsbruck, Austria; (M.S.); (R.V.); (A.B.)
| |
Collapse
|
22
|
Ruland SH, Palomero-Gallagher N, Hoffsteadter F, Eickhoff SB, Mohlberg H, Amunts K. The inferior frontal sulcus: cortical segregation, molecular architecture and function. Cortex 2022; 153:235-256. [DOI: 10.1016/j.cortex.2022.03.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/10/2022] [Accepted: 03/18/2022] [Indexed: 01/13/2023]
|
23
|
Wiech K, Eippert F, Vandekerckhove J, Zaman J, Placek K, Tuerlinckx F, Vlaeyen JWS, Tracey I. Cortico-Brainstem Mechanisms of Biased Perceptual Decision-Making in the Context of Pain. THE JOURNAL OF PAIN 2022; 23:680-692. [PMID: 34856408 DOI: 10.1016/j.jpain.2021.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/29/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Prior expectations can bias how we perceive pain. Using a drift diffusion model, we recently showed that this influence is primarily based on changes in perceptual decision-making (indexed as shift in starting point). Only during unexpected application of high-intensity noxious stimuli, altered information processing (indexed as increase in drift rate) explained the expectancy effect on pain processing. Here, we employed functional magnetic resonance imaging to investigate the neural basis of both these processes in healthy volunteers. On each trial, visual cues induced the expectation of high- or low-intensity noxious stimulation or signaled equal probability for both intensities. Participants categorized a subsequently applied electrical stimulus as either low- or high-intensity pain. A shift in starting point towards high pain correlated negatively with right dorsolateral prefrontal cortex activity during cue presentation underscoring its proposed role of "keeping pain out of mind". This anticipatory right dorsolateral prefrontal cortex signal increase was positively correlated with periaqueductal gray (PAG) activity when the expected high-intensity stimulation was applied. A drift rate increase during unexpected high-intensity pain was reflected in amygdala engagement and increased functional connectivity between amygdala and PAG. Our findings suggest involvement of the PAG in both decision-making bias and altered information processing to implement expectancy effects on pain. PERSPECTIVE: Modulation of pain through expectations has been linked to changes in perceptual decision-making and altered processing of afferent information. Our results suggest involvement of the dorsolateral prefrontal cortex, amygdala, and periaqueductal gray in these processes.
Collapse
Affiliation(s)
- Katja Wiech
- Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK.
| | - Falk Eippert
- Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Joachim Vandekerckhove
- Department of Cognitive Sciences, University of California, Irvine, California; Research Group of Quantitative Psychology and Individual Differences, KU Leuven, Leuven, Belgium
| | - Jonas Zaman
- Research Group Health Psychology, KU Leuven, Leuven, Belgium
| | - Katerina Placek
- Takeda Pharmaceuticals, Statistics and Quantitative Sciences, Cambridge, Massachusetts
| | - Francis Tuerlinckx
- Research Group of Quantitative Psychology and Individual Differences, KU Leuven, Leuven, Belgium
| | - Johan W S Vlaeyen
- Research Group Health Psychology, KU Leuven, Leuven, Belgium; Research Group Experimental Health Psychology, Maastricht University, Maastricht, Netherlands
| | - Irene Tracey
- Wellcome Centre for Integrative Neuroimaging (WIN), Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
24
|
Jaroszynski C, Job A, Jedynak M, David O, Delon-Martin C. Tinnitus Perception in Light of a Parietal Operculo-Insular Involvement: A Review. Brain Sci 2022; 12:334. [PMID: 35326290 PMCID: PMC8946618 DOI: 10.3390/brainsci12030334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 12/07/2022] Open
Abstract
In tinnitus literature, researchers have increasingly been advocating for a clearer distinction between tinnitus perception and tinnitus-related distress. In non-bothersome tinnitus, the perception itself can be more specifically investigated: this has provided a body of evidence, based on resting-state and activation fMRI protocols, highlighting the involvement of regions outside the conventional auditory areas, such as the right parietal operculum. Here, we aim to conduct a review of available investigations of the human parietal operculo-insular subregions conducted at the microscopic, mesoscopic, and macroscopic scales arguing in favor of an auditory-somatosensory cross-talk. Both the previous literature and new results on functional connectivity derived from cortico-cortical evoked potentials show that these subregions present a dense tissue of interconnections and a strong connectivity with auditory and somatosensory areas in the healthy brain. Disrupted integration processes between these modalities may thus result in erroneous perceptions, such as tinnitus. More precisely, we highlight the role of a subregion of the right parietal operculum, known as OP3 according to the Jülich atlas, in the integration of auditory and somatosensory representation of the orofacial muscles in the healthy population. We further discuss how a dysfunction of these muscles could induce hyperactivity in the OP3. The evidence of direct electrical stimulation of this area eliciting auditory hallucinations further suggests its involvement in tinnitus perception. Finally, a small number of neuroimaging studies of therapeutic interventions for tinnitus provide additional evidence of right parietal operculum involvement.
Collapse
Affiliation(s)
- Chloé Jaroszynski
- University Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France; (C.J.); (M.J.); (O.D.)
| | - Agnès Job
- Institut de Recherche Biomédicale des Armées, IRBA, 91220 Brétigny-sur-Orge, France;
| | - Maciej Jedynak
- University Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France; (C.J.); (M.J.); (O.D.)
- Aix Marseille University, Inserm, INS, Inst Neurosci Syst, 13005 Marseille, France
| | - Olivier David
- University Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France; (C.J.); (M.J.); (O.D.)
- Aix Marseille University, Inserm, INS, Inst Neurosci Syst, 13005 Marseille, France
| | - Chantal Delon-Martin
- University Grenoble Alpes, Inserm, U1216, Grenoble Institut Neurosciences, 38000 Grenoble, France; (C.J.); (M.J.); (O.D.)
| |
Collapse
|
25
|
Pondelis NJ, Moulton EA. Supraspinal Mechanisms Underlying Ocular Pain. Front Med (Lausanne) 2022; 8:768649. [PMID: 35211480 PMCID: PMC8862711 DOI: 10.3389/fmed.2021.768649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/27/2021] [Indexed: 12/04/2022] Open
Abstract
Supraspinal mechanisms of pain are increasingly understood to underlie neuropathic ocular conditions previously thought to be exclusively peripheral in nature. Isolating individual causes of centralized chronic conditions and differentiating them is critical to understanding the mechanisms underlying neuropathic eye pain and ultimately its treatment. Though few functional imaging studies have focused on the eye as an end-organ for the transduction of noxious stimuli, the brain networks related to pain processing have been extensively studied with functional neuroimaging over the past 20 years. This article will review the supraspinal mechanisms that underlie pain as they relate to the eye.
Collapse
Affiliation(s)
- Nicholas J Pondelis
- Brain and Eye Pain Imaging Lab, Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Eric A Moulton
- Brain and Eye Pain Imaging Lab, Pain and Affective Neuroscience Center, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
26
|
Stenger S, Bludau S, Mohlberg H, Amunts K. Cytoarchitectonic parcellation and functional characterization of four new areas in the caudal parahippocampal cortex. Brain Struct Funct 2022; 227:1439-1455. [PMID: 34989871 PMCID: PMC9046293 DOI: 10.1007/s00429-021-02441-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/08/2021] [Indexed: 12/20/2022]
Abstract
Brain areas at the parahippocampal gyrus of the temporal–occipital transition region are involved in different functions including processing visual–spatial information and episodic memory. Results of neuroimaging experiments have revealed a differentiated functional parcellation of this region, but its microstructural correlates are less well understood. Here we provide probability maps of four new cytoarchitectonic areas, Ph1, Ph2, Ph3 and CoS1 at the parahippocampal gyrus and collateral sulcus. Areas have been identified based on an observer-independent mapping of serial, cell-body stained histological sections of ten human postmortem brains. They have been registered to two standard reference spaces, and superimposed to capture intersubject variability. The comparison of the maps with functional imaging data illustrates the different involvement of the new areas in a variety of functions. Maps are available as part of Julich-Brain atlas and can be used as anatomical references for future studies to better understand relationships between structure and function of the caudal parahippocampal cortex.
Collapse
Affiliation(s)
- Sophie Stenger
- Cécile and Oskar Vogt-Institute for Brain Research, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| | - Sebastian Bludau
- Institute of Neuroscience and Medicine 1 (INM-1), Research Centre Jülich, Jülich, Germany
| | - Hartmut Mohlberg
- Institute of Neuroscience and Medicine 1 (INM-1), Research Centre Jülich, Jülich, Germany
| | - Katrin Amunts
- Cécile and Oskar Vogt-Institute for Brain Research, University Hospital Düsseldorf, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Institute of Neuroscience and Medicine 1 (INM-1), Research Centre Jülich, Jülich, Germany
| |
Collapse
|
27
|
Del Vecchio M, Fossataro C, Zauli FM, Sartori I, Pigorini A, d'Orio P, Abarrategui B, Russo S, Mikulan EP, Caruana F, Rizzolatti G, Garbarini F, Avanzini P. Tonic somatosensory responses and deficits of tactile awareness converge in the parietal operculum. Brain 2021; 144:3779-3787. [PMID: 34633436 PMCID: PMC8719842 DOI: 10.1093/brain/awab384] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/13/2021] [Accepted: 09/18/2021] [Indexed: 01/02/2023] Open
Abstract
Although clinical neuroscience and the neuroscience of consciousness have long sought mechanistic explanations of tactile-awareness disorders, mechanistic insights are rare, mainly because of the difficulty of depicting the fine-grained neural dynamics underlying somatosensory processes. Here, we combined the stereo-EEG responses to somatosensory stimulation with the lesion mapping of patients with a tactile-awareness disorder, namely tactile extinction. Whereas stereo-EEG responses present different temporal patterns, including early/phasic and long-lasting/tonic activities, tactile-extinction lesion mapping co-localizes only with the latter. Overlaps are limited to the posterior part of the perisylvian regions, suggesting that tonic activities may play a role in sustaining tactile awareness. To assess this hypothesis further, we correlated the prevalence of tonic responses with the tactile-extinction lesion mapping, showing that they follow the same topographical gradient. Finally, in parallel with the notion that visuotactile stimulation improves detection in tactile-extinction patients, we demonstrated an enhancement of tonic responses to visuotactile stimuli, with a strong voxel-wise correlation with the lesion mapping. The combination of these results establishes tonic responses in the parietal operculum as the ideal neural correlate of tactile awareness.
Collapse
Affiliation(s)
- Maria Del Vecchio
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, 43125 Parma, Italy
| | - Carlotta Fossataro
- MANIBUS Laboratory, Department of Psychology, University of Turin, 10124 Turin, Italy
| | - Flavia Maria Zauli
- Dipartimento di Scienze Biomediche e Cliniche 'L. Sacco,' Università degli Studi di Milano, 20157 Milano, Italy
| | - Ivana Sartori
- Centro per la Chirurgia dell'Epilessia 'Claudio Munari,' Ospedale Ca' Granda-Niguarda, 20162 Milano, Italy
| | - Andrea Pigorini
- Dipartimento di Scienze Biomediche e Cliniche 'L. Sacco,' Università degli Studi di Milano, 20157 Milano, Italy
| | - Piergiorgio d'Orio
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, 43125 Parma, Italy.,Centro per la Chirurgia dell'Epilessia 'Claudio Munari,' Ospedale Ca' Granda-Niguarda, 20162 Milano, Italy
| | - Belen Abarrategui
- Dipartimento di Scienze Biomediche e Cliniche 'L. Sacco,' Università degli Studi di Milano, 20157 Milano, Italy
| | - Simone Russo
- Dipartimento di Scienze Biomediche e Cliniche 'L. Sacco,' Università degli Studi di Milano, 20157 Milano, Italy
| | - Ezequiel Pablo Mikulan
- Dipartimento di Scienze Biomediche e Cliniche 'L. Sacco,' Università degli Studi di Milano, 20157 Milano, Italy
| | - Fausto Caruana
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, 43125 Parma, Italy
| | - Giacomo Rizzolatti
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, 43125 Parma, Italy.,Dipartimento di Medicina e Chirurgia, Università degli Studi di Parma, 43125 Parma, Italy
| | - Francesca Garbarini
- MANIBUS Laboratory, Department of Psychology, University of Turin, 10124 Turin, Italy.,Neuroscience Institute of Turin (NIT), 10124 Turin, Italy
| | - Pietro Avanzini
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, 43125 Parma, Italy
| |
Collapse
|
28
|
Esposti R, Marchese SM, Farinelli V, Bolzoni F, Cavallari P. Dual-Hemisphere Transcranial Direct Current Stimulation on Parietal Operculum Does Not Affect the Programming of Intra-limb Anticipatory Postural Adjustments. Front Physiol 2021; 12:789886. [PMID: 34987420 PMCID: PMC8721103 DOI: 10.3389/fphys.2021.789886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/19/2021] [Indexed: 11/18/2022] Open
Abstract
Evidence shows that the postural and focal components within the voluntary motor command are functionally unique. In 2015, we reported that the supplementary motor area (SMA) processes Anticipatory Postural Adjustments (APAs) separately from the command to focal muscles, so we are still searching for a hierarchically higher area able to process both components. Among these, the parietal operculum (PO) seemed to be a good candidate, as it is a hub integrating both sensory and motor streams. However, in 2019, we reported that transcranial Direct Current Stimulation (tDCS), applied with an active electrode on the PO contralateral to the moving segment vs. a larger reference electrode on the opposite forehead, did not affect intra-limb APAs associated to brisk flexions of the index-finger. Nevertheless, literature reports that two active electrodes of opposite polarities, one on each PO (dual-hemisphere, dh-tDCS), elicit stronger effects than the "active vs. reference" arrangement. Thus, in the present study, the same intra-limb APAs were recorded before, during and after dh-tDCS on PO. Twenty right-handed subjects were tested, 10 for each polarity: anode on the left vs. cathode on the right, and vice versa. Again, dh-tDCS was ineffective on APA amplitude and timing, as well as on prime mover recruitment and index-finger kinematics. These results confirm the conclusion that PO does not take part in intra-limb APA control. Therefore, our search for an area in which the motor command to prime mover and postural muscles are still processed together will have to address other structures.
Collapse
Affiliation(s)
- Roberto Esposti
- Human Physiology Section of the Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Silvia M. Marchese
- Human Physiology Section of the Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Veronica Farinelli
- Human Physiology Section of the Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Francesco Bolzoni
- Human Physiology Section of the Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Paolo Cavallari
- Human Physiology Section of the Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
29
|
Pellicano A, Mingoia G, Ritter C, Buccino G, Binkofski F. Respiratory function modulated during execution, observation, and imagination of walking via SII. Sci Rep 2021; 11:23752. [PMID: 34887478 PMCID: PMC8660877 DOI: 10.1038/s41598-021-03147-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/22/2021] [Indexed: 11/09/2022] Open
Abstract
The Mirror Neurons System (MNS) consists of brain areas active during actions execution, as well as observation-imagination of the same actions. MNS represents a potential mechanism by which we understand other's action goals. We investigated MNS activation for legs actions, and its interaction with the autonomic nervous system. We performed a physiological and fMRI investigation on the common neural structures recruited during the execution, observation, and imagination of walking, and their effects on respiratory activity. Bilateral SMA were activated by all three tasks, suggesting that these areas are responsible for the core of the MNS effect for walking. Moreover, we observed in bilateral parietal opercula (OP1, secondary somatosensory cortex-SII) evidence of an MNS subtending walking execution-observation-imagination that also modulated the respiratory function. We suggest that SII, in modulating the vegetative response during motor activity but also during observation-imagination, consists of a re-enacting function which facilitates the understanding of motor actions.
Collapse
Affiliation(s)
- Antonello Pellicano
- Division for Clinical and Cognitive Sciences, Medical Faculty, RWTH Aachen University, Pauwelsstr. 17, 52074, Aachen, Germany.
| | | | - Christoph Ritter
- Brain Imaging Facility, Interdisciplinary Center for Clinical Research, RWTH Aachen University, Aachen, Germany
| | - Giovanni Buccino
- Division of Neuroscience, San Raffaele Scientific Institute, Faculty of Medicine, University San Raffaele, Milan, Italy
| | - Ferdinand Binkofski
- Division for Clinical and Cognitive Sciences, Medical Faculty, RWTH Aachen University, Pauwelsstr. 17, 52074, Aachen, Germany.
- Institute for Neuroscience and Medicine (INM-4), Research Center Jülich GmbH, Jülich, Germany.
- Jülich-Aachen-Research-Alliance (JARA), Jülich, Germany.
| |
Collapse
|
30
|
Ye X, Yang PF, Liu Q, Dillenburger BD, Friedman RM, Chen LM. A thermal nociceptive patch in the S2 cortex of nonhuman primates: a combined functional magnetic resonance imaging and electrophysiology study. Pain 2021; 162:2705-2716. [PMID: 33945242 PMCID: PMC8380756 DOI: 10.1097/j.pain.0000000000002247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/18/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Human functional magnetic resonance imaging (fMRI) and behavioral studies have established the roles of cortical areas along the Sylvian fissure in sensing subjective pain. Yet, little is known about how sensory aspects of painful information are represented and processed by neurons in these regions and how their electrophysiological activities are related to fMRI signals. The current study aims to partially address this critical knowledge gap by performing fMRI-guided microelectrode mapping and recording studies in the homologous region of the parietal operculum in squirrel monkeys under light anesthesia. In each animal studied (n = 8), we detected mesoscale mini-networks for heat nociception in cortical regions around the lateral sulcus. Within the network, we discovered a ∼1.5 × 1.5-mm2-sized cortical patch that solely contained heat nociceptive neurons that aligned with the heat fMRI activation locus. These neurons responded slowly to thermal (heat and cold) nociceptive stimuli exclusively, continued firing for several seconds after the succession of stimulation, and exhibited multidigit receptive fields and high spontaneous firing rates. Similar to the fMRI responses, increasing temperatures in the nociceptive range led to a nonlinear increase in firing rates. The finding of a clustering of heat nociceptive neurons provides novel insights into the unique functional organization of thermal nociception in the S2 subregion of the primate brain. With fMRI, it supports the existence of a modality-preferred heat nociceptive patch that is spatially separated and intermingled with touch patches containing neurons with comparable receptive fields and the presence of functionally distinct mini-networks in primate opercular cortex.
Collapse
Affiliation(s)
- Xiang Ye
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Pai-Feng Yang
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Qing Liu
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Barbara D Dillenburger
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Robert M Friedman
- Department of Psychology, Vanderbilt University, Nashville, TN 37232, USA
| | - Li Min Chen
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Psychology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
31
|
Sakai H, Ueda S, Ueno K, Kumada T. Neuroplastic Reorganization Induced by Sensory Augmentation for Self-Localization During Locomotion. FRONTIERS IN NEUROERGONOMICS 2021; 2:691993. [PMID: 38235242 PMCID: PMC10790880 DOI: 10.3389/fnrgo.2021.691993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/21/2021] [Indexed: 01/19/2024]
Abstract
Sensory skills can be augmented through training and technological support. This process is underpinned by neural plasticity in the brain. We previously demonstrated that auditory-based sensory augmentation can be used to assist self-localization during locomotion. However, the neural mechanisms underlying this phenomenon remain unclear. Here, by using functional magnetic resonance imaging, we aimed to identify the neuroplastic reorganization induced by sensory augmentation training for self-localization during locomotion. We compared activation in response to auditory cues for self-localization before, the day after, and 1 month after 8 days of sensory augmentation training in a simulated driving environment. Self-localization accuracy improved after sensory augmentation training, compared with the control (normal driving) condition; importantly, sensory augmentation training resulted in auditory responses not only in temporal auditory areas but also in higher-order somatosensory areas extending to the supramarginal gyrus and the parietal operculum. This sensory reorganization had disappeared by 1 month after the end of the training. These results suggest that the use of auditory cues for self-localization during locomotion relies on multimodality in higher-order somatosensory areas, despite substantial evidence that information for self-localization during driving is estimated from visual cues on the proximal part of the road. Our findings imply that the involvement of higher-order somatosensory, rather than visual, areas is crucial for acquiring augmented sensory skills for self-localization during locomotion.
Collapse
Affiliation(s)
- Hiroyuki Sakai
- Human Science Laboratory, Toyota Central R&D Laboratories, Inc., Tokyo, Japan
| | - Sayako Ueda
- TOYOTA Collaboration Center, RIKEN Center for Brain Science, Wako, Japan
| | - Kenichi Ueno
- Support Unit for Functional Magnetic Resonance Imaging, RIKEN Center for Brain Science, Wako, Japan
| | | |
Collapse
|
32
|
Gale DJ, Flanagan JR, Gallivan JP. Human Somatosensory Cortex Is Modulated during Motor Planning. J Neurosci 2021; 41:5909-5922. [PMID: 34035139 PMCID: PMC8265805 DOI: 10.1523/jneurosci.0342-21.2021] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022] Open
Abstract
Recent data and motor control theory argues that movement planning involves preparing the neural state of primary motor cortex (M1) for forthcoming action execution. Theories related to internal models, feedback control, and predictive coding also emphasize the importance of sensory prediction (and processing) before (and during) the movement itself, explaining why motor-related deficits can arise from damage to primary somatosensory cortex (S1). Motivated by this work, here we examined whether motor planning, in addition to changing the neural state of M1, changes the neural state of S1, preparing it for the sensory feedback that arises during action. We tested this idea in two human functional MRI studies (N = 31, 16 females) involving delayed object manipulation tasks, focusing our analysis on premovement activity patterns in M1 and S1. We found that the motor effector to be used in the upcoming action could be decoded, well before movement, from neural activity in M1 in both studies. Critically, we found that this effector information was also present, well before movement, in S1. In particular, we found that the encoding of effector information in area 3b (S1 proper) was linked to the contralateral hand, similarly to that found in M1, whereas in areas 1 and 2 this encoding was present in both the contralateral and ipsilateral hemispheres. Together, these findings suggest that motor planning not only prepares the motor system for movement but also changes the neural state of the somatosensory system, presumably allowing it to anticipate the sensory information received during movement.SIGNIFICANCE STATEMENT Whereas recent work on motor cortex has emphasized the critical role of movement planning in preparing neural activity for movement generation, it has not investigated the extent to which planning also modulates the activity in the adjacent primary somatosensory cortex. This reflects a key gap in knowledge, given that recent motor control theories emphasize the importance of sensory feedback processing in effective movement generation. Here, we find through a convergence of experiments and analyses, that the planning of object manipulation tasks, in addition to modulating the activity in the motor cortex, changes the state of neural activity in different subfields of the human S1. We suggest that this modulation prepares the S1 for the sensory information it will receive during action execution.
Collapse
Affiliation(s)
- Daniel J Gale
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - J Randall Flanagan
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Department of Psychology, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Jason P Gallivan
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Department of Psychology, Queen's University, Kingston, Ontario K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
33
|
Tomaiuolo F, Campana S, Voci L, Lasaponara S, Doricchi F, Petrides M. The Precentral Insular Cortical Network for Speech Articulation. Cereb Cortex 2021; 31:3723-3731. [PMID: 33825880 DOI: 10.1093/cercor/bhab043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/30/2020] [Accepted: 02/08/2021] [Indexed: 11/13/2022] Open
Abstract
Apraxia of speech is a motor disorder characterized by the impaired ability to coordinate the sequential articulatory movements necessary to produce speech. The critical cortical area(s) involved in speech apraxia remain controversial because many of the previously reported cases had additional aphasic impairments, preventing localization of the specific cortical circuit necessary for the somatomotor execution of speech. Four patients with "pure speech apraxia" (i.e., who had no aphasic and orofacial motor impairments) are reported here. The critical lesion in all four patients involved, in the left hemisphere, the precentral gyrus of the insula (gyrus brevis III) and, to a lesser extent, the nearby areas with which it is strongly connected: the adjacent subcentral opercular cortex (part of secondary somatosensory cortex) and the most inferior part of the central sulcus where the orofacial musculature is represented. There was no damage to rostrally adjacent Broca's area in the inferior frontal gyrus. The present study demonstrates the critical circuit for the coordination of complex articulatory movements prior to and during the execution of the motor speech plans. Importantly, this specific cortical circuit is different from those that relate to the cognitive aspects of language production (e.g., Broca's area on the inferior frontal gyrus).
Collapse
Affiliation(s)
- Francesco Tomaiuolo
- Department of Clinical and Experimental Medicine, Messina University, Piazza Pugliatti, 1 Messina, Italy 98122
| | - Serena Campana
- Neurorehabilitation Unit, Auxilium Vitae Volterra, Volterra, Italy 56048
| | - Loredana Voci
- Neurorehabilitation Unit, Auxilium Vitae Volterra, Volterra, Italy 56048
| | - Stefano Lasaponara
- Dipartimento di Scienze Umane, Libera Università Maria Santissima Assunta LUMSA, Rome, Italy 00193.,Laboratorio di Neuropsicologia dell'attenzione, Fondazione Santa Lucia IRCCS, Rome, Italy 00179
| | - Fabrizio Doricchi
- La Sapienza University, Rome, Italy 00185.,Laboratorio di Neuropsicologia dell'attenzione, Fondazione Santa Lucia IRCCS, Rome, Italy 00179
| | - Michael Petrides
- Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec, Canada, H3A 2B4
| |
Collapse
|
34
|
Zonnino A, Farrens AJ, Ress D, Sergi F. Measurement of stretch-evoked brainstem function using fMRI. Sci Rep 2021; 11:12544. [PMID: 34131162 PMCID: PMC8206209 DOI: 10.1038/s41598-021-91605-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/28/2021] [Indexed: 11/10/2022] Open
Abstract
Knowledge on the organization of motor function in the reticulospinal tract (RST) is limited by the lack of methods for measuring RST function in humans. Behavioral studies suggest the involvement of the RST in long latency responses (LLRs). LLRs, elicited by precisely controlled perturbations, can therefore act as a viable paradigm to measure motor-related RST activity using functional Magnetic Resonance Imaging (fMRI). Here we present StretchfMRI, a novel technique developed to study RST function associated with LLRs. StretchfMRI combines robotic perturbations with electromyography and fMRI to simultaneously quantify muscular and neural activity during stretch-evoked LLRs without loss of reliability. Using StretchfMRI, we established the muscle-specific organization of LLR activity in the brainstem. The observed organization is partially consistent with animal models, with activity primarily in the ipsilateral medulla for flexors and in the contralateral pons for extensors, but also includes other areas, such as the midbrain and bilateral pontomedullary contributions.
Collapse
Affiliation(s)
- Andrea Zonnino
- Human Robotics Laboratory, Department of Biomedical Engineering, University of Delaware, Newark, DE, 19713, USA
| | - Andria J Farrens
- Human Robotics Laboratory, Department of Biomedical Engineering, University of Delaware, Newark, DE, 19713, USA
| | - David Ress
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, 77020, USA
| | - Fabrizio Sergi
- Human Robotics Laboratory, Department of Biomedical Engineering, University of Delaware, Newark, DE, 19713, USA.
| |
Collapse
|
35
|
Caspers S, Röckner ME, Jockwitz C, Bittner N, Teumer A, Herms S, Hoffmann P, Nöthen MM, Moebus S, Amunts K, Cichon S, Mühleisen TW. Pathway-Specific Genetic Risk for Alzheimer's Disease Differentiates Regional Patterns of Cortical Atrophy in Older Adults. Cereb Cortex 2021; 30:801-811. [PMID: 31402375 DOI: 10.1093/cercor/bhz127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/30/2019] [Accepted: 05/18/2019] [Indexed: 11/13/2022] Open
Abstract
Brain aging is highly variable and represents a challenge to delimit aging from disease processes. Moreover, genetic factors may influence both aging and disease. Here we focused on this issue and investigated effects of multiple genetic loci previously identified to be associated with late-onset Alzheimer's disease (AD) on brain structure of older adults from a population sample. We calculated a genetic risk score (GRS) using genome-wide significant single-nucleotide polymorphisms from genome-wide association studies of AD and tested its effect on cortical thickness (CT). We observed a common pattern of cortical thinning (right inferior frontal, left posterior temporal, medial occipital cortex). To identify CT changes by specific biological processes, we subdivided the GRS effect according to AD-associated pathways and performed follow-up analyses. The common pattern from the main analysis was further differentiated by pathway-specific effects yielding a more bilateral pattern. Further findings were located in the superior parietal and mid/anterior cingulate regions representing 2 unique pathway-specific patterns. All patterns, except the superior parietal pattern, were influenced by apolipoprotein E. Our step-wise approach revealed atrophy patterns that partially resembled imaging findings in early stages of AD. Our study provides evidence that genetic burden for AD contributes to structural brain variability in normal aging.
Collapse
Affiliation(s)
- Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, D-52428 Jülich, Germany.,Institute for Anatomy I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Melanie E Röckner
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, D-52428 Jülich, Germany.,Institute of Human Genetics, University Hospital Bonn, Bonn, Germany
| | - Christiane Jockwitz
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, D-52428 Jülich, Germany.,JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany.,Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Medical Faculty, Aachen, Germany
| | - Nora Bittner
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, D-52428 Jülich, Germany.,Institute for Anatomy I, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Stefan Herms
- Institute of Human Genetics, University Hospital Bonn, Bonn, Germany.,Department of Biomedicine, University of Basel, Basel, Switzerland.,Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Per Hoffmann
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, D-52428 Jülich, Germany.,Institute of Human Genetics, University Hospital Bonn, Bonn, Germany.,Department of Biomedicine, University of Basel, Basel, Switzerland.,Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Markus M Nöthen
- Institute of Human Genetics, University Hospital Bonn, Bonn, Germany.,Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany
| | - Susanne Moebus
- Institute for Medical Informatics, Biometry and Epidemiology, University of Duisburg-Essen, Essen, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, D-52428 Jülich, Germany.,JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany.,C. & O. Vogt Institute for Brain Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sven Cichon
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, D-52428 Jülich, Germany.,Institute of Human Genetics, University Hospital Bonn, Bonn, Germany.,Department of Biomedicine, University of Basel, Basel, Switzerland.,Department of Genomics, Life & Brain Center, University of Bonn, Bonn, Germany.,Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Thomas W Mühleisen
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, D-52428 Jülich, Germany.,Department of Biomedicine, University of Basel, Basel, Switzerland.,C. & O. Vogt Institute for Brain Research, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
36
|
Within- and across-network alterations of the sensorimotor network in Parkinson's disease. Neuroradiology 2021; 63:2073-2085. [PMID: 34019112 PMCID: PMC8589810 DOI: 10.1007/s00234-021-02731-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/02/2021] [Indexed: 12/03/2022]
Abstract
Purpose Parkinson’s disease (PD) is primarily defined by motor symptoms and is associated with alterations of sensorimotor areas. Evidence for network changes of the sensorimotor network (SMN) in PD is inconsistent and a systematic evaluation of SMN in PD yet missing. We investigate functional connectivity changes of the SMN in PD, both, within the network, and to other large-scale connectivity networks. Methods Resting-state fMRI was assessed in 38 PD patients under long-term dopaminergic treatment and 43 matched healthy controls (HC). Independent component analysis (ICA) into 20 components was conducted and the SMN was identified within the resulting networks. Functional connectivity within the SMN was analyzed using a dual regression approach. Connectivity between the SMN and the other networks from group ICA was investigated with FSLNets. We investigated for functional connectivity changes between patients and controls as well as between medication states (OFF vs. ON) in PD and for correlations with clinical parameters. Results There was decreased functional connectivity within the SMN in left inferior parietal and primary somatosensory cortex in PD OFF. Across networks, connectivity between SMN and two motor networks as well as two visual networks was diminished in PD OFF. All connectivity decreases partially normalized in PD ON. Conclusion PD is accompanied by functional connectivity losses of the SMN, both, within the network and in interaction to other networks. The connectivity changes in short- and long-range connections are probably related to impaired sensory integration for motor function in PD. SMN decoupling can be partially compensated by dopaminergic therapy. Supplementary Information The online version contains supplementary material available at 10.1007/s00234-021-02731-w.
Collapse
|
37
|
Kessner SS, Schlemm E, Gerloff C, Thomalla G, Cheng B. Grey and white matter network disruption is associated with sensory deficits after stroke. NEUROIMAGE-CLINICAL 2021; 31:102698. [PMID: 34023668 PMCID: PMC8163991 DOI: 10.1016/j.nicl.2021.102698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/04/2022]
Abstract
Somatosensory deficits occur in about 60% of patients after ischaemic stroke. Clinical and imaging data of 101 ischaemic stroke patients were analysed. Stroke lesions may disrupt grey (GM) and/or white matter (WM) network. Lesion volume explains 23% of sensory deficit variance; GM / WM disruption adds 14% Subnetwork of postcentral, supramarginal, transverse temporal gyri involved.
Somatosensory deficits after ischaemic stroke are common and can occur in patients with lesions in the anterior parietal cortex and subcortical nuclei. It is less clear to what extent damage to white matter tracts within the somatosensory system may contribute to somatosensory deficits after stroke. We compared the roles of cortical damage and disruption of subcortical white matter tracts as correlates of somatosensory deficit after ischaemic stroke. Clinical and imaging data were assessed in incident stroke patients. Somatosensory deficits were measured using a standardized somatosensory test. Remote effects were quantified by projecting the MRI-based segmented stroke lesions onto a predefined atlas of white matter connectivity. Direct ischaemic damage to grey matter was computed by lesion overlap with grey matter areas. The association between lesion impact scores and sensory deficit was assessed statistically. In 101 patients, median sensory score was 188/193 (97.4%). Lesion volume was associated with somatosensory deficit, explaining 23.3% of variance. Beyond this, the stroke-induced grey and white matter disruption within a subnetwork of the postcentral, supramarginal, and transverse temporal gyri explained an additional 14% of the somatosensory outcome variability. On mutual comparison, white matter network disruption was a stronger predictor than grey matter damage. Ischaemic damage to both grey and white matter are structural correlates of acute somatosensory disturbance after ischaemic stroke. Our data suggest that white matter integrity of a somatosensory network of primary and secondary cortex is a prerequisite for normal processing of somatosensory inputs and might be considered as an additional parameter for stroke outcome prediction in the future.
Collapse
Affiliation(s)
- Simon S Kessner
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Eckhard Schlemm
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Götz Thomalla
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bastian Cheng
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
38
|
Burton H, Reeder RM, Holden T, Agato A, Firszt JB. Cortical Regions Activated by Spectrally Degraded Speech in Adults With Single Sided Deafness or Bilateral Normal Hearing. Front Neurosci 2021; 15:618326. [PMID: 33897343 PMCID: PMC8058229 DOI: 10.3389/fnins.2021.618326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/04/2021] [Indexed: 11/13/2022] Open
Abstract
Those with profound sensorineural hearing loss from single sided deafness (SSD) generally experience greater cognitive effort and fatigue in adverse sound environments. We studied cases with right ear, SSD compared to normal hearing (NH) individuals. SSD cases were significantly less correct in naming last words in spectrally degraded 8- and 16-band vocoded sentences, despite high semantic predictability. Group differences were not significant for less intelligible 4-band sentences, irrespective of predictability. SSD also had diminished BOLD percent signal changes to these same sentences in left hemisphere (LH) cortical regions of early auditory, association auditory, inferior frontal, premotor, inferior parietal, dorsolateral prefrontal, posterior cingulate, temporal-parietal-occipital junction, and posterior opercular. Cortical regions with lower amplitude responses in SSD than NH were mostly components of a LH language network, previously noted as concerned with speech recognition. Recorded BOLD signal magnitudes were averages from all vertices within predefined parcels from these cortex regions. Parcels from different regions in SSD showed significantly larger signal magnitudes to sentences of greater intelligibility (e.g., 8- or 16- vs. 4-band) in all except early auditory and posterior cingulate cortex. Significantly lower response magnitudes occurred in SSD than NH in regions prior studies found responsible for phonetics and phonology of speech, cognitive extraction of meaning, controlled retrieval of word meaning, and semantics. The findings suggested reduced activation of a LH fronto-temporo-parietal network in SSD contributed to difficulty processing speech for word meaning and sentence semantics. Effortful listening experienced by SSD might reflect diminished activation to degraded speech in the affected LH language network parcels. SSD showed no compensatory activity in matched right hemisphere parcels.
Collapse
Affiliation(s)
- Harold Burton
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO, United States
| | - Ruth M Reeder
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, Saint Louis, MO, United States
| | - Tim Holden
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, Saint Louis, MO, United States
| | - Alvin Agato
- Department of Neuroscience, Washington University School of Medicine, Saint Louis, MO, United States
| | - Jill B Firszt
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
39
|
Kitada R, Kwon J, Doizaki R, Nakagawa E, Tanigawa T, Kajimoto H, Sadato N, Sakamoto M. Brain networks underlying the processing of sound symbolism related to softness perception. Sci Rep 2021; 11:7399. [PMID: 33795716 PMCID: PMC8016892 DOI: 10.1038/s41598-021-86328-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 03/15/2021] [Indexed: 01/02/2023] Open
Abstract
Unlike the assumption of modern linguistics, there is non-arbitrary association between sound and meaning in sound symbolic words. Neuroimaging studies have suggested the unique contribution of the superior temporal sulcus to the processing of sound symbolism. However, because these findings are limited to the mapping between sound symbolism and visually presented objects, the processing of sound symbolic information may also involve the sensory-modality dependent mechanisms. Here, we conducted a functional magnetic resonance imaging experiment to test whether the brain regions engaged in the tactile processing of object properties are also involved in mapping sound symbolic information with tactually perceived object properties. Thirty-two healthy subjects conducted a matching task in which they judged the congruency between softness perceived by touch and softness associated with sound symbolic words. Congruency effect was observed in the orbitofrontal cortex, inferior frontal gyrus, insula, medial superior frontal gyrus, cingulate gyrus, and cerebellum. This effect in the insula and medial superior frontal gyri was overlapped with softness-related activity that was separately measured in the same subjects in the tactile experiment. These results indicate that the insula and medial superior frontal gyrus play a role in processing sound symbolic information and relating it to the tactile softness information.
Collapse
Affiliation(s)
- Ryo Kitada
- Division of Psychology, School of Social Sciences, Nanyang Technological University, 48 Nanyang Avenue, Singapore, 639818, Singapore.
- Faculty of Intercultural Studies, Kobe University, 1-2-1 TsuruKabuto, Nada-ku, Kobe, 657-8501, Japan.
| | - Jinhwan Kwon
- Kyoto University of Education, Fukakusa-Fujimori-cho 1, Fushimi-ku, Kyoto, 612-8522, Japan
| | - Ryuichi Doizaki
- Department of Informatics, Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Eri Nakagawa
- National Institute for Physiological Sciences, Nishigonaka 38, Myodaiji-cho, Okazaki, 444-8585, Japan
| | - Tsubasa Tanigawa
- National Institute for Physiological Sciences, Nishigonaka 38, Myodaiji-cho, Okazaki, 444-8585, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa, 240-0193, Japan
| | - Hiroyuki Kajimoto
- Department of Informatics, Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Norihiro Sadato
- National Institute for Physiological Sciences, Nishigonaka 38, Myodaiji-cho, Okazaki, 444-8585, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Shonan Village, Hayama, Kanagawa, 240-0193, Japan
| | - Maki Sakamoto
- Department of Informatics, Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| |
Collapse
|
40
|
Cytoarchitectonics of the Rolandic operculum: morphofunctional ponderings. Brain Struct Funct 2021; 226:941-950. [PMID: 33743075 DOI: 10.1007/s00429-021-02258-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/10/2021] [Indexed: 12/30/2022]
Abstract
Constantin von Economo (1876-1931) had a long-standing interest in the cellular structure of the human cerebral cortex. In the present article I highlight a historical paper that von Economo published in 1930 on the cytoarchitectonics of the Rolandic operculum, an English translation of which I provide as supplementary material. I further discuss some morphofunctional aspects of the human opercular cortex from a modern perspective, as well as the clinical relevance to language dysfunctions, the operculum syndrome, and epilepsy.
Collapse
|
41
|
Kerley CI, Cai LY, Yu C, Crawford LM, Elenberger JM, Singh ES, Schilling KG, Aboud KS, Landman BA, Rex TS. Joint analysis of structural connectivity and cortical surface features: correlates with mild traumatic brain injury. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2021; 11596:115960R. [PMID: 34354324 PMCID: PMC8336656 DOI: 10.1117/12.2580902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mild traumatic brain injury (mTBI) is a complex syndrome that affects up to 600 per 100,000 individuals, with a particular concentration among military personnel. About half of all mTBI patients experience a diverse array of chronic symptoms which persist long after the acute injury. Hence, there is an urgent need for better understanding of the white matter and gray matter pathologies associated with mTBI to map which specific brain systems are impacted and identify courses of intervention. Previous works have linked mTBI to disruptions in white matter pathways and cortical surface abnormalities. Herein, we examine these hypothesized links in an exploratory study of joint structural connectivity and cortical surface changes associated with mTBI and its chronic symptoms. Briefly, we consider a cohort of 12 mTBI and 26 control subjects. A set of 588 cortical surface metrics and 4,753 structural connectivity metrics were extracted from cortical surface regions and diffusion weighted magnetic resonance imaging in each subject. Principal component analysis (PCA) was used to reduce the dimensionality of each metric set. We then applied independent component analysis (ICA) both to each PCA space individually and together in a joint ICA approach. We identified a stable independent component across the connectivity-only and joint ICAs which presented significant group differences in subject loadings (p<0.05, corrected). Additionally, we found that two mTBI symptoms, slowed thinking and forgetfulness, were significantly correlated (p<0.05, corrected) with mTBI subject loadings in a surface-only ICA. These surface-only loadings captured an increase in bilateral cortical thickness.
Collapse
Affiliation(s)
| | - Leon Y Cai
- Department of Biomedical Engineering, Vanderbilt University
| | - Chang Yu
- Department of Computer Science, Vanderbilt University
| | - Logan M Crawford
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center
| | - Jason M Elenberger
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center
| | - Eden S Singh
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center
| | - Kurt G Schilling
- Vanderbilt University Institute of Imaging Science, Vanderbilt University
| | | | - Bennett A Landman
- Department of Electrical Engineering, Vanderbilt University
- Department of Biomedical Engineering, Vanderbilt University
- Department of Computer Science, Vanderbilt University
- Vanderbilt University Institute of Imaging Science, Vanderbilt University
- Vanderbilt Brain Institute, Vanderbilt University
| | - Tonia S Rex
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center
| |
Collapse
|
42
|
Duarte D, Bauer CCC, Pinto CB, Saleh Velez FG, Estudillo-Guerra MA, Pacheco-Barrios K, Gunduz ME, Crandell D, Merabet L, Fregni F. Cortical plasticity in phantom limb pain: A fMRI study on the neural correlates of behavioral clinical manifestations. Psychiatry Res Neuroimaging 2020; 304:111151. [PMID: 32738724 PMCID: PMC9394643 DOI: 10.1016/j.pscychresns.2020.111151] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/29/2022]
Abstract
The neural mechanism of phantom limb pain (PLP) is related to the intense brain reorganization process implicating plasticity after deafferentation mostly in sensorimotor system. There is a limited understanding of the association between the sensorimotor system and PLP. We used a novel task-based functional magnetic resonance imaging (fMRI) approach to (1) assess neural activation within a-priori selected regions-of-interested (motor cortex [M1], somatosensory cortex [S1], and visual cortex [V1]), (2) quantify the cortical representation shift in the affected M1, and (3) correlate these changes with baseline clinical characteristics. In a sample of 18 participants, we found a significantly increased activity in M1 and S1 as well as a shift in motor cortex representation that was not related to PLP intensity. In an exploratory analyses (not corrected for multiple comparisons), they were directly correlated with time since amputation; and there was an association between increased activity in M1 with a lack of itching sensation and V1 activation was negatively correlated with PLP. Longer periods of amputation lead to compensatory changes in sensory-motor areas; and itching seems to be a protective marker for less signal changes. We confirmed that PLP intensity is not associated with signal changes in M1 and S1 but in V1.
Collapse
Affiliation(s)
- D Duarte
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA; Department of Psychiatry and Behavioural Neurosciences, McMaster University. 100 West 5th Street, Hamilton, ON L8N 3K7, Canada
| | - C C C Bauer
- McGovern Institute for Brain Research, MIT. 43 Vassar St, Cambridge, MA 02139, USA; Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM 3001, 76230 Juriquilla, Querétaro, 76230, México; Department of Psychology, Northeastern University, 805 Columbus Avenue, Boston, MA 02139, USA.
| | - C B Pinto
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA
| | - F G Saleh Velez
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA; University of Chicago Medical Center, Department of Neurology, University of Chicago. 5841 S Maryland Ave # C411, Chicago, IL 60637, USA
| | - M A Estudillo-Guerra
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA
| | - K Pacheco-Barrios
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA; Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud. Lima, Peru. Av. La Fontana 750 Edificio El Cubo, La Molina - Perú
| | - M E Gunduz
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA
| | - D Crandell
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA
| | - L Merabet
- Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School. 243 Charles St, Boston, MA 02114, USA
| | - F Fregni
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School. 96 13th Street, Charlestown, Boston, MA 02129, USA; Massachusetts General Hospital, Harvard Medical School. 55 Fruit St, Boston, MA 02114, USA.
| |
Collapse
|
43
|
Kogler L, Müller VI, Werminghausen E, Eickhoff SB, Derntl B. Do I feel or do I know? Neuroimaging meta-analyses on the multiple facets of empathy. Cortex 2020; 129:341-355. [PMID: 32562973 PMCID: PMC7390692 DOI: 10.1016/j.cortex.2020.04.031] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 12/15/2019] [Accepted: 04/22/2020] [Indexed: 01/10/2023]
Abstract
Empathy is a multidimensional construct including affective and cognitive components while maintaining the distinction between one-self and others. Our meta-analyses focused on shared and distinct networks underlying cognitive (taking somebody else's perspective in emotional/painful situations) and affective (self-referentially feeling somebody else's emotions/pain) empathy for various states including painful and emotional situations. Furthermore, a comparison with direct pain experience was carried out. For cognitive empathy, consistent activation in the anterior dorsal medial frontal gyrus (dmPFG) and the supramarginal gyrus (SMG) occurred. For affective empathy, convergent activation of the posterior dmPFG and the inferior frontal gyrus (IFG) was found. Consistent activation of the anterior insula (AI), the anterior dmPFG and the SMG was observed for empathy for pain, while convergent recruitment of the temporo-parietal junction, precuneus, posterior dmPFG, and the IFG was revealed in the meta-analysis across empathy for emotion experiments. The AI and the dmPFG/mid-cingulate cortex (MCC) showed overlapping as well as distinct neural activation for pain processing and empathy for pain. Taken together, we were able to show difference in the meta-analytic networks across cognitive and affective empathy as well as for pain and empathy processing. Based on the current results, distinct functions along the midline structures of the brain during empathy processing are apparent. Our data are lending further support for a multidimensional concept of empathy.
Collapse
Affiliation(s)
- Lydia Kogler
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Tübingen, Tübingen, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany.
| | - Veronika I Müller
- Institute of Neuroscience und Medicine, INM-7, Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Elena Werminghausen
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience und Medicine, INM-7, Research Centre Jülich, Jülich, Germany; Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Birgit Derntl
- Department of Psychiatry and Psychotherapy, Medical Faculty, University of Tübingen, Tübingen, Germany; Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany; LEAD Graduate School & Research Network, University of Tübingen, Tübingen, Germany
| |
Collapse
|
44
|
Lundblad LC, Olausson H, Wasling P, Jood K, Wysocka A, Hamilton JP, McIntyre S, Backlund Wasling H. Tactile direction discrimination in humans after stroke. Brain Commun 2020; 2:fcaa088. [PMID: 32954335 PMCID: PMC7472910 DOI: 10.1093/braincomms/fcaa088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 04/27/2020] [Accepted: 05/22/2020] [Indexed: 11/24/2022] Open
Abstract
Sensing movements across the skin surface is a complex task for the tactile sensory system, relying on sophisticated cortical processing. Functional MRI has shown that judgements of the direction of tactile stimuli moving across the skin are processed in distributed cortical areas in healthy humans. To further study which brain areas are important for tactile direction discrimination, we performed a lesion study, examining a group of patients with first-time stroke. We measured tactile direction discrimination in 44 patients, bilaterally on the dorsum of the hands and feet, within 2 weeks (acute), and again in 28 patients 3 months after stroke. The 3-month follow-up also included a structural MRI scan for lesion delineation. Fifty-nine healthy participants were examined for normative direction discrimination values. We found abnormal tactile direction discrimination in 29/44 patients in the acute phase, and in 21/28 3 months after stroke. Lesions that included the opercular parietal area 1 of the secondary somatosensory cortex, the dorsolateral prefrontal cortex or the insular cortex were always associated with abnormal tactile direction discrimination, consistent with previous functional MRI results. Abnormal tactile direction discrimination was also present with lesions including white matter and subcortical regions. We have thus delineated cortical, subcortical and white matter areas important for tactile direction discrimination function. The findings also suggest that tactile dysfunction is common following stroke.
Collapse
Affiliation(s)
- Linda C Lundblad
- Department of Clinical Neurophysiology, Sahlgrenska University Hospital, S-413 45 Gothenburg, Sweden
- Institute of Neuroscience and Physiology, University of Gothenburg, S-405 30 Gothenburg, Sweden
| | - Håkan Olausson
- Department of Clinical Neurophysiology, Sahlgrenska University Hospital, S-413 45 Gothenburg, Sweden
- Institute of Neuroscience and Physiology, University of Gothenburg, S-405 30 Gothenburg, Sweden
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, SE-581 83 Linköping, Sweden
| | - Pontus Wasling
- Institute of Neuroscience and Physiology, University of Gothenburg, S-405 30 Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, S-413 45 Gothenburg, Sweden
| | - Katarina Jood
- Institute of Neuroscience and Physiology, University of Gothenburg, S-405 30 Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, S-413 45 Gothenburg, Sweden
| | - Anna Wysocka
- Department of Neurology, Sahlgrenska University Hospital, S-413 45 Gothenburg, Sweden
| | - J Paul Hamilton
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, SE-581 83 Linköping, Sweden
| | - Sarah McIntyre
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, SE-581 83 Linköping, Sweden
| | - Helena Backlund Wasling
- Institute of Neuroscience and Physiology, University of Gothenburg, S-405 30 Gothenburg, Sweden
| |
Collapse
|
45
|
Ter Wal M, Platonov A, Cardellicchio P, Pelliccia V, LoRusso G, Sartori I, Avanzini P, Orban GA, Tiesinga PHE. Human stereoEEG recordings reveal network dynamics of decision-making in a rule-switching task. Nat Commun 2020; 11:3075. [PMID: 32555174 PMCID: PMC7300004 DOI: 10.1038/s41467-020-16854-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 05/26/2020] [Indexed: 01/17/2023] Open
Abstract
The processing steps that lead up to a decision, i.e., the transformation of sensory evidence into motor output, are not fully understood. Here, we combine stereoEEG recordings from the human cortex, with single-lead and time-resolved decoding, using a wide range of temporal frequencies, to characterize decision processing during a rule-switching task. Our data reveal the contribution of rostral inferior parietal lobule (IPL) regions, in particular PFt, and the parietal opercular regions in decision processing and demonstrate that the network representing the decision is common to both task rules. We reconstruct the sequence in which regions engage in decision processing on single trials, thereby providing a detailed picture of the network dynamics involved in decision-making. The reconstructed timeline suggests that the supramarginal gyrus in IPL links decision regions in prefrontal cortex with premotor regions, where the motor plan for the response is elaborated.
Collapse
Affiliation(s)
- Marije Ter Wal
- Department of Neuroinformatics, Donders Institute, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
- School of Psychology, University of Birmingham, Edgbaston, B15 2TT, UK.
| | - Artem Platonov
- Department of Medicine and Surgery, University of Parma, Via Volturno 39E, 43125, Parma, Italy
| | - Pasquale Cardellicchio
- Department of Medicine and Surgery, University of Parma, Via Volturno 39E, 43125, Parma, Italy
| | - Veronica Pelliccia
- Claudio Munari Center for Epilepsy Surgery, Niguarda Hospital, Ospedale Ca'Granda Niguarda, Piazza dell'Ospedale Maggiore, 3, 20162, Milan, Italy
| | - Giorgio LoRusso
- Claudio Munari Center for Epilepsy Surgery, Niguarda Hospital, Ospedale Ca'Granda Niguarda, Piazza dell'Ospedale Maggiore, 3, 20162, Milan, Italy
| | - Ivana Sartori
- Claudio Munari Center for Epilepsy Surgery, Niguarda Hospital, Ospedale Ca'Granda Niguarda, Piazza dell'Ospedale Maggiore, 3, 20162, Milan, Italy
| | - Pietro Avanzini
- Institute of Neuroscience, CNR, via Volturno 39E, 43125, Parma, Italy
| | - Guy A Orban
- Department of Medicine and Surgery, University of Parma, Via Volturno 39E, 43125, Parma, Italy
| | - Paul H E Tiesinga
- Department of Neuroinformatics, Donders Institute, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
46
|
Quaglieri A, Mari E, Boccia M, Piccardi L, Guariglia C, Giannini AM. Brain Network Underlying Executive Functions in Gambling and Alcohol Use Disorders: An Activation Likelihood Estimation Meta-Analysis of fMRI Studies. Brain Sci 2020; 10:E353. [PMID: 32517334 PMCID: PMC7348890 DOI: 10.3390/brainsci10060353] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Neuroimaging and neuropsychological studies have suggested that common features characterize both Gambling Disorder (GD) and Alcohol Use Disorder (AUD), but these conditions have rarely been compared. METHODS We provide evidence for the similarities and differences between GD and AUD in neural correlates of executive functions by performing an activation likelihood estimation meta-analysis of 34 functional magnetic resonance imaging studies involving executive function processes in individuals diagnosed with GD and AUD and healthy controls (HC). RESULTS GD showed greater bilateral clusters of activation compared with HC, mainly located in the head and body of the caudate, right middle frontal gyrus, right putamen, and hypothalamus. Differently, AUD showed enhanced activation compared with HC in the right lentiform nucleus, right middle frontal gyrus, and the precuneus; it also showed clusters of deactivation in the bilateral middle frontal gyrus, left middle cingulate cortex, and inferior portion of the left putamen. CONCLUSIONS Going beyond the limitations of a single study approach, these findings provide evidence, for the first time, that both disorders are associated with specific neural alterations in the neural network for executive functions.
Collapse
Affiliation(s)
- Alessandro Quaglieri
- Department of Psychology, “Sapienza” University of Rome, 00185 Rome, Italy; (E.M.); (M.B.); (L.P.); (C.G.); (A.M.G.)
| | - Emanuela Mari
- Department of Psychology, “Sapienza” University of Rome, 00185 Rome, Italy; (E.M.); (M.B.); (L.P.); (C.G.); (A.M.G.)
| | - Maddalena Boccia
- Department of Psychology, “Sapienza” University of Rome, 00185 Rome, Italy; (E.M.); (M.B.); (L.P.); (C.G.); (A.M.G.)
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Laura Piccardi
- Department of Psychology, “Sapienza” University of Rome, 00185 Rome, Italy; (E.M.); (M.B.); (L.P.); (C.G.); (A.M.G.)
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Cecilia Guariglia
- Department of Psychology, “Sapienza” University of Rome, 00185 Rome, Italy; (E.M.); (M.B.); (L.P.); (C.G.); (A.M.G.)
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Anna Maria Giannini
- Department of Psychology, “Sapienza” University of Rome, 00185 Rome, Italy; (E.M.); (M.B.); (L.P.); (C.G.); (A.M.G.)
| |
Collapse
|
47
|
Lee Masson H, Op de Beeck H, Boets B. Reduced task-dependent modulation of functional network architecture for positive versus negative affective touch processing in autism spectrum disorders. Neuroimage 2020; 219:117009. [PMID: 32504816 DOI: 10.1016/j.neuroimage.2020.117009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023] Open
Abstract
Individuals with autism spectrum disorders (ASD) experience impairments in social communication and interaction, and often show difficulties with receiving and offering touch. Despite the high prevalence of abnormal reactions to touch in ASD, and the importance of touch communication in human relationships, the neural mechanisms underlying atypical touch processing in ASD remain largely unknown. To answer this question, we provided both pleasant and unpleasant touch stimulation to male adults with and without ASD during functional neuroimaging. By employing generalized psychophysiological interaction analysis combined with an independent component analysis approach, we characterize stimulus-dependent changes in functional connectivity patterns for processing two tactile stimuli that evoke different emotions (i.e., pleasant vs. unpleasant touch). Results reveal that neurotypical male adults showed extensive stimulus-sensitive modulations of the functional network architecture in response to the different types of touch, both at the level of brain regions and large-scale networks. Conversely, far fewer stimulus-sensitive modulations were observed in the ASD group. These aberrant functional connectivity profiles in the ASD group were marked by hypo-connectivity of the parietal operculum and major pain networks and hyper-connectivity between the semantic and limbic networks. Lastly, individuals presenting more social deficits and a more negative attitude towards social touch showed greater hyper-connectivity between the limbic and semantic networks. These findings suggest that reduced stimulus-related modulation of this functional network architecture is associated with abnormal processing of touch in ASD.
Collapse
Affiliation(s)
- Haemy Lee Masson
- Brain and Cognition, KU Leuven, 3000, Leuven, Belgium; Center for Developmental Psychiatry, KU Leuven, 3000, Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium; Leuven Autism Research (LAuRes) Consortium, KU Leuven, 3000, Leuven, Belgium.
| | - Hans Op de Beeck
- Brain and Cognition, KU Leuven, 3000, Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium
| | - Bart Boets
- Center for Developmental Psychiatry, KU Leuven, 3000, Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium; Leuven Autism Research (LAuRes) Consortium, KU Leuven, 3000, Leuven, Belgium
| |
Collapse
|
48
|
Gu R, Liu J, Cui F. Pain and social decision-making: New insights from the social framing effect. BRAIN SCIENCE ADVANCES 2020. [DOI: 10.26599/bsa.2019.9050020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
This paper focuses on the social function of painful experience as revealed by recent studies on social decision-making. Observing others suffering from physical pain evokes empathic reactions that can lead to prosocial behavior (e.g., helping others at a cost to oneself), which might be regarded as the social value of pain derived from evolution. Feelings of guilt may also be elicited when one takes responsibility for another’s pain. These social emotions play a significant role in various cognitive processes and may affect behavioral preferences. In addition, the influence of others’ pain on decision-making is highly sensitive to social context. Combining neuroimaging techniques with a novel decision paradigm, we found that when asking participants to trade-off personal benefits against providing help to other people, verbally describing the causal relationship between their decision and other people’s pain (i.e., framing) significantly changed participants’ preferences. This social framing effect was associated with neural activation in the temporoparietal junction (TPJ), which is a brain area that is important in social cognition and in social emotions. Further, transcranial direct current stimulation (tDCS) on this region successfully modulated the magnitude of the social framing effect. These findings add to the knowledge about the role of perception of others’ pain in our social life.
Collapse
Affiliation(s)
- Ruolei Gu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Liu
- School of Psychology, Shenzhen University, Shenzhen 518060, China
- Center for Brain Disorders and Cognitive Neuroscience, Shenzhen 518060, China
| | - Fang Cui
- School of Psychology, Shenzhen University, Shenzhen 518060, China
- Center for Brain Disorders and Cognitive Neuroscience, Shenzhen 518060, China
| |
Collapse
|
49
|
Cattaneo L, Giampiccolo D, Meneghelli P, Tramontano V, Sala F. Cortico-cortical connectivity between the superior and inferior parietal lobules and the motor cortex assessed by intraoperative dual cortical stimulation. Brain Stimul 2020; 13:819-831. [DOI: 10.1016/j.brs.2020.02.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/07/2020] [Accepted: 02/18/2020] [Indexed: 01/02/2023] Open
|
50
|
Kim J, Bülthoff I, Bülthoff HH. Cortical Representation of Tactile Stickiness Evoked by Skin Contact and Glove Contact. Front Integr Neurosci 2020; 14:19. [PMID: 32327980 PMCID: PMC7160846 DOI: 10.3389/fnint.2020.00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/23/2020] [Indexed: 11/13/2022] Open
Abstract
Even when we are wearing gloves, we can easily detect whether a surface that we are touching is sticky or not. However, we know little about the similarities between brain activations elicited by this glove contact and by direct contact with our bare skin. In this functional magnetic resonance imaging (fMRI) study, we investigated which brain regions represent stickiness intensity information obtained in both touch conditions, i.e., skin contact and glove contact. First, we searched for neural representations mediating stickiness for each touch condition separately and found regions responding to both mainly in the supramarginal gyrus and the secondary somatosensory cortex. Second, we explored whether surface stickiness is encoded in common neural patterns irrespective of how participants touched the sticky stimuli. Using a cross-condition decoding method, we tested whether the stickiness intensities could be decoded from fMRI signals evoked by skin contact using a classifier trained on the responses elicited by glove contact, and vice versa. Our results found shared neural encoding patterns in the bilateral angular gyri and the inferior frontal gyrus (IFG) and suggest that these areas represent stickiness intensity information regardless of how participants touched the sticky stimuli. Interestingly, we observed that neural encoding patterns of these areas were reflected in participants’ intensity ratings. This study revealed common and distinct brain activation patterns of tactile stickiness using two different touch conditions, which may broaden the understanding of neural mechanisms related to surface texture perception.
Collapse
Affiliation(s)
- Junsuk Kim
- Department of Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Department of Industrial ICT Engineering, Dong-Eui University, Busan, South Korea
| | - Isabelle Bülthoff
- Department of Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Heinrich H Bülthoff
- Department of Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|