1
|
De Palma ST, Hermans EC, Shamorkina TM, Trayford C, van Rijt S, Heck AJR, Nijboer CHA, de Theije CGM. Hypoxic Preconditioning Enhances the Potential of Mesenchymal Stem Cells to Treat Neonatal Hypoxic-Ischemic Brain Injury. Stroke 2025. [PMID: 40248869 DOI: 10.1161/strokeaha.124.048964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 03/16/2025] [Accepted: 04/04/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND Neonatal hypoxic-ischemic (HI) brain injury is one of the leading causes of long-term neurological morbidity in newborns. Current treatment options for HI brain injury are limited, but mesenchymal stem cell (MSC) therapy is a promising strategy to boost neuroregeneration after injury. Optimization strategies to further enhance the potential of MSCs are under development. The current study aimed to test the potency of hypoxic preconditioning of MSCs to enhance the therapeutic efficacy in a mouse model of neonatal HI injury. METHODS HI was induced on postnatal day 9 in C57Bl/6 mouse pups. MSCs were cultured under hypoxic (hypoxic-preconditioned MSCs [HP-MSCs], 1% O2) or normoxic-control (normoxic-preconditioned MSCs, 21% O2) conditions for 24 hours before use. At 10 days after HI, HP-MSCs, normoxic-preconditioned MSCs, or vehicle were intranasally administered. Gold nanoparticle-labeled MSCs were used to assess MSC migration 24 hours after intranasal administration. At 28 days post-HI, lesion size, sensorimotor outcome, and neuroinflammation were assessed by hematoxylin and eosin staining, cylinder rearing task, and IBA1 staining, respectively. In vitro, the effect of HP-MSCs was studied on transwell migration, neural stem cell differentiation and microglia activation, and the MSC intracellular proteomic content was profiled using quantitative LC-MS/ms. RESULTS Intranasally administered HP-MSCs were superior to normoxic-preconditioned MSCs in reducing lesion size and sensorimotor impairments post-HI. Moreover, hypoxic preconditioning enhanced MSC migration in an in vitro set-up, and in vivo to the lesioned hemisphere after intranasal application. In addition, HP-MSCs enhanced neural stem cell differentiation into more complex neurons in vitro but had similar anti-inflammatory effects compared with normoxic-preconditioned MSCs. Lastly, hypoxic preconditioning led to elevated abundances of proteins in MSCs related to extracellular matrix remodeling. CONCLUSIONS This study shows for the first time that hypoxic preconditioning enhanced the therapeutic efficacy of MSC therapy in a mouse model of neonatal HI brain injury by increasing the migratory and neuroregenerative capacity of MSCs.
Collapse
Affiliation(s)
- Sara T De Palma
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital (S.T.D.P., E.C.H., C.H.A.N., C.G.M.d.T.)
| | - Eva C Hermans
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital (S.T.D.P., E.C.H., C.H.A.N., C.G.M.d.T.)
| | - Tatiana M Shamorkina
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences (T.M.S., A.J.R.H.)
- Utrecht University, the Netherlands. Netherlands Proteomics Center, Utrecht (T.M.S., A.J.R.H.)
| | - Chloe Trayford
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, the Netherlands (C.T., S.v.R.)
| | - Sabine van Rijt
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, the Netherlands (C.T., S.v.R.)
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences (T.M.S., A.J.R.H.)
- Utrecht University, the Netherlands. Netherlands Proteomics Center, Utrecht (T.M.S., A.J.R.H.)
| | - Cora H A Nijboer
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital (S.T.D.P., E.C.H., C.H.A.N., C.G.M.d.T.)
| | - Caroline G M de Theije
- Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital (S.T.D.P., E.C.H., C.H.A.N., C.G.M.d.T.)
| |
Collapse
|
2
|
Lu YP, Luo YL, Wu ZY, Han C, Jin YZ, Han JM, Chen SY, Teng F, Han F, Liu XX, Lu YM. Semaphorin 3s signaling in the central nervous system: Mechanisms and therapeutic implication for brain diseases. Pharmacol Ther 2025; 267:108800. [PMID: 39855276 DOI: 10.1016/j.pharmthera.2025.108800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/16/2024] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
Class 3 semaphorins (Sema3s), identified as secreted soluble proteins, present many therapeutic potentials. Recent evidence has suggested that Sema3s as molecular cue participate in neuroregulation, angiogenesis, and microenvironment homeostasis of the central nervous system. Moreover, Sema3s signaling pathways may be targeted for enhancing neural network connectivity, promoting neural regeneration and repair, and inhibiting pathological angiogenesis. Due to the complex co-expression patterns and crosstalk among Sema3s, new drugs targeting Sema3s-related signaling pathways are expected to be discovered to counter brain diseases. This review summarizes the specific roles of Sema3s in pathological processes of various brain diseases, and provides potential targeted strategies for the prevention and treatment.
Collapse
Affiliation(s)
- Ya-Ping Lu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases of Ministry of Education, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 210019, China
| | - Yi-Ling Luo
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Zhou-Yue Wu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases of Ministry of Education, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Chao Han
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Yin-Zhi Jin
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Jun-Ming Han
- Department of Neurosurgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Shu-Yang Chen
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases of Ministry of Education, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Fei Teng
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases of Ministry of Education, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 210019, China; The affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Northern Jiangsu Institute of Clinical Medicine, Huaian 223300, China; International Joint Laboratory for Drug Target of Critical Illnesses, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiu-Xiu Liu
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases of Ministry of Education, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China.
| | - Ying-Mei Lu
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China; Institute of Brain Science, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
3
|
Ganguly K, Adhikary K, Acharjee A, Acharjee P, Trigun SK, Mutlaq AS, Ashique S, Yasmin S, Alshahrani AM, Ansari MY. Biological significance and pathophysiological role of Matrix Metalloproteinases in the Central Nervous System. Int J Biol Macromol 2024; 280:135967. [PMID: 39322129 DOI: 10.1016/j.ijbiomac.2024.135967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/21/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
Matrix Metalloproteinases (MMPs), which are endopeptidase reliant on zinc, are low in embryonic tissues but increases in response to a variety of physiological stimulus and pathological stresses. Neuro-glial cells, endothelial cells, fibroblasts, and leucocytes secrete MMPs, which cleave extracellular matrix proteins in a time-dependent manner. MMPs affect synaptic plasticity and the development of short-term memory by controlling the size, shape, and excitatory synapses' function through the lateral diffusion of receptors. In addition, MMPs influence the Extracellular Matrix proteins in the Peri-Neuronal Net at the Neuro-glial interface, which aids in the establishment of long-term memory. Through modulating neuronal, and glial cells migration, differentiation, Neurogenesis, and survival, MMPs impact brain development in mammals. In adult brains, MMPs play a beneficial role in physiological plasticity, which includes learning, memory consolidation, social interaction, and complex behaviors, by proteolytically altering a wide variety of factors, including growth factors, cytokines, receptors, DNA repair enzymes, and matrix proteins. Additionally, stress, depression, addiction, hepatic encephalopathy, and stroke may all have negative effects on MMPs. In addition to their role in glioblastoma development, MMPs influence neurological diseases such as epilepsy, schizophrenia, autism spectrum disorder, brain damage, pain, neurodegeneration, and Alzheimer's and Parkinson's. To help shed light on the potential of MMPs as a therapeutic target for neurodegenerative diseases, this review summarizes their regulation, mode of action, and participation in brain physiological plasticity and pathological damage. Finally, by employing different MMP-based nanotools and inhibitors, MMPs may also be utilized to map the anatomical and functional connectome of the brain, analyze its secretome, and treat neurodegenerative illnesses.
Collapse
Affiliation(s)
- Krishnendu Ganguly
- Department of Medical Lab Technology, Paramedical College Durgapur, Helen Keller Sarani, Durgapur 713212, West Bengal, India.
| | - Krishnendu Adhikary
- Department of Medical Lab Technology, Paramedical College Durgapur, Helen Keller Sarani, Durgapur 713212, West Bengal, India.
| | - Arup Acharjee
- Molecular Omics Laboratory, Department of Zoology, University of Allahabad, Allahabad, Uttar Pradesh, India.
| | - Papia Acharjee
- Biochemistry Section, Department of Zoology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | - Surendra Kumar Trigun
- Biochemistry Section, Department of Zoology, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| | | | - Sumel Ashique
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur 713212, West Bengal, India.
| | - Sabina Yasmin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia.
| | - Asma M Alshahrani
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Khalid University, Abha, Saudi Arabia; Department of Clinical Pharmacy, Shaqra University, Saudi Arabia.
| | - Mohammad Yousuf Ansari
- MM college of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana 133207, India.
| |
Collapse
|
4
|
Du H, Xu Y, Zhu L. Role of Semaphorins in Ischemic Stroke. Front Mol Neurosci 2022; 15:848506. [PMID: 35350431 PMCID: PMC8957939 DOI: 10.3389/fnmol.2022.848506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke is one of the major causes of neurological morbidity and mortality in the world. Although the management of ischemic stroke has been improved significantly, it still imposes a huge burden on the health and property. The integrity of the neurovascular unit (NVU) is closely related with the prognosis of ischemic stroke. Growing evidence has shown that semaphorins, a family of axon guidance cues, play a pivotal role in multiple pathophysiological processes in NVU after ischemia, such as regulating the immune system, angiogenesis, and neuroprotection. Modulating the NVU function via semaphorin signaling has a potential to develop a novel therapeutic strategy for ischemic stroke. We, therefore, review recent progresses on the role of semphorin family members in neurons, glial cells and vasculature after ischemic stroke.
Collapse
Affiliation(s)
- Huaping Du
- Department of Neurology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| | - Yuan Xu
- Department of Neurology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| | - Li Zhu
- Department of Neurology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
- Suzhou Key Laboratory of Thrombosis and Vascular Biology, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Collaborative Innovation Center of Hematology of Jiangsu Province, National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
- *Correspondence: Li Zhu,
| |
Collapse
|
5
|
Pentz R, Iulita MF, Mikutra-Cencora M, Ducatenzeiler A, Bennett DA, Cuello AC. A new role for matrix metalloproteinase-3 in the NGF metabolic pathway: Proteolysis of mature NGF and sex-specific differences in the continuum of Alzheimer's pathology. Neurobiol Dis 2021; 148:105150. [PMID: 33130223 PMCID: PMC7856186 DOI: 10.1016/j.nbd.2020.105150] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Matrix metalloproteinase-3 (MMP-3) has been associated with risk of Alzheimer's disease (AD). In this study we introduce a novel role for MMP-3 in degrading nerve growth factor (NGF) in vivo and examine its mRNA and protein expression across the continuum of AD pathology. We provide evidence that MMP-3 participates in the degradation of mature NGF in vitro and in vivo and that it is secreted from the rat cerebral cortex in an activity-dependent manner. We show that cortical MMP-3 is upregulated in the McGill-R-Thy1-APP transgenic rat model of AD-like amyloidosis. A similar upregulation was found in AD and MCI brains as well as in cognitively normal individuals with elevated amyloid deposition. We also observed that frontal cortex MMP-3 protein levels are higher in males. MMP-3 protein correlated with more AD neuropathology, markers of NGF metabolism, and lower cognitive scores in males but not in females. These results suggest that MMP-3 upregulation in AD might contribute to NGF dysmetabolism, and therefore to cholinergic atrophy and cognitive deficits, in a sex-specific manner. MMP-3 should be further investigated as a biomarker candidate or as a therapeutic target in AD.
Collapse
Affiliation(s)
- Rowan Pentz
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada.
| | - M Florencia Iulita
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada; Sant Pau Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Maya Mikutra-Cencora
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada.
| | | | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA.
| | - A Claudio Cuello
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada; Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada.
| |
Collapse
|
6
|
Rohlwink UK, Walker NF, Ordonez AA, Li YJ, Tucker EW, Elkington PT, Wilkinson RJ, Wilkinson KA. Matrix Metalloproteinases in Pulmonary and Central Nervous System Tuberculosis-A Review. Int J Mol Sci 2019; 20:E1350. [PMID: 30889803 PMCID: PMC6471445 DOI: 10.3390/ijms20061350] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/27/2019] [Accepted: 03/03/2019] [Indexed: 01/06/2023] Open
Abstract
Tuberculosis (TB) remains the single biggest infectious cause of death globally, claiming almost two million lives and causing disease in over 10 million individuals annually. Matrix metalloproteinases (MMPs) are a family of proteolytic enzymes with various physiological roles implicated as key factors contributing to the spread of TB. They are involved in the breakdown of lung extracellular matrix and the consequent release of Mycobacterium tuberculosis bacilli into the airways. Evidence demonstrates that MMPs also play a role in central nervous system (CNS) tuberculosis, as they contribute to the breakdown of the blood brain barrier and are associated with poor outcome in adults with tuberculous meningitis (TBM). However, in pediatric TBM, data indicate that MMPs may play a role in both pathology and recovery of the developing brain. MMPs also have a significant role in HIV-TB-associated immune reconstitution inflammatory syndrome in the lungs and the brain, and their modulation offers potential novel therapeutic avenues. This is a review of recent research on MMPs in pulmonary and CNS TB in adults and children and in the context of co-infection with HIV. We summarize different methods of MMP investigation and discuss the translational implications of MMP inhibition to reduce immunopathology.
Collapse
Affiliation(s)
- Ursula K Rohlwink
- Neuroscience Institute, University of Cape Town, Faculty of Health Sciences, Anzio Road, Observatory 7925, South Africa.
| | - Naomi F Walker
- TB Centre and Department of Clinical Research, London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, UK.
| | - Alvaro A Ordonez
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Yifan J Li
- Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, South Africa.
| | - Elizabeth W Tucker
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
- Division of Pediatric Critical Care, Johns Hopkins All Children's Hospital, St. Petersburg, FL 33701, USA.
| | - Paul T Elkington
- NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
| | - Robert J Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa.
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
- Department of Medicine, Imperial College London, London W2 1PG, UK.
| | - Katalin A Wilkinson
- Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town 7925, South Africa.
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
7
|
Hui DHF, Tam KJ, Jiao IZF, Ong CJ. Semaphorin 3C as a Therapeutic Target in Prostate and Other Cancers. Int J Mol Sci 2019; 20:E774. [PMID: 30759745 PMCID: PMC6386986 DOI: 10.3390/ijms20030774] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/05/2019] [Accepted: 02/08/2019] [Indexed: 12/21/2022] Open
Abstract
The semaphorins represent a large family of signaling molecules with crucial roles in neuronal and cardiac development. While normal semaphorin function pertains largely to development, their involvement in malignancy is becoming increasingly evident. One member, Semaphorin 3C (SEMA3C), has been shown to drive a number of oncogenic programs, correlate inversely with cancer prognosis, and promote the progression of multiple different cancer types. This report surveys the body of knowledge surrounding SEMA3C as a therapeutic target in cancer. In particular, we summarize SEMA3C's role as an autocrine andromedin in prostate cancer growth and survival and provide an overview of other cancer types that SEMA3C has been implicated in including pancreas, brain, breast, and stomach. We also propose molecular strategies that could potentially be deployed against SEMA3C as anticancer agents such as biologics, small molecules, monoclonal antibodies and antisense oligonucleotides. Finally, we discuss important considerations for the inhibition of SEMA3C as a cancer therapeutic agent.
Collapse
Affiliation(s)
- Daniel H F Hui
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada.
| | - Kevin J Tam
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada.
| | - Ivy Z F Jiao
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada.
| | - Christopher J Ong
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC V6H 3Z6, Canada.
| |
Collapse
|
8
|
Diao Y, Chen Y, Zhang P, Cui L, Zhang J. Molecular guidance cues in the development of visual pathway. Protein Cell 2017; 9:909-929. [PMID: 29181831 PMCID: PMC6208478 DOI: 10.1007/s13238-017-0490-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/30/2017] [Indexed: 01/23/2023] Open
Abstract
70%–80% of our sensory input comes from vision. Light hit the retina at the back of our eyes and the visual information is relayed into the dorsal lateral geniculate nuclei (dLGN) and primary visual cortex (V1) thereafter, constituting the image-forming visual circuit. Molecular cues are one of the key factors to guide the wiring and refinement of the image-forming visual circuit during pre- and post-embryonic stages. Distinct molecular cues are involved in different developmental stages and nucleus, suggesting diverse guidance mechanisms. In this review, we summarize molecular guidance cues throughout the image-forming visual circuit, including chiasm determination, eye-specific segregation and refinement in the dLGN, and at last the reciprocal connections between the dLGN and V1.
Collapse
Affiliation(s)
- Yupu Diao
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Yuqing Chen
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Peijun Zhang
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai, 200031, China
| | - Liyuan Cui
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Jiayi Zhang
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
9
|
Matrix Metalloproteinases During Axonal Regeneration, a Multifactorial Role from Start to Finish. Mol Neurobiol 2016; 54:2114-2125. [PMID: 26924318 DOI: 10.1007/s12035-016-9801-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/16/2016] [Indexed: 12/19/2022]
Abstract
By proteolytic cleavage, matrix metalloproteinases (MMPs) not only remodel the extracellular matrix (ECM) but they also modify the structure and activity of other proteinases, growth factors, signaling molecules, cell surface receptors, etc. Their vast substrate repertoire adds a complex extra dimension of biological control and turns MMPs into important regulatory nodes in the protease web. In the central nervous system (CNS), the detrimental impact of elevated MMP activities has been well-described for traumatic injuries and many neurodegenerative diseases. Nonetheless, there is ample proof corroborating MMPs as fine regulators of CNS physiology, and well-balanced MMP activity is instrumental to development, plasticity, and repair. In this manuscript, we review the emerging evidence for MMPs as beneficial modulators of axonal regeneration in the mammalian CNS. By exploring the multifactorial causes underlying the inability of mature axons to regenerate, and describing how MMPs can help to overcome these hurdles, we emphasize the benign actions of these Janus-faced proteases.
Collapse
|
10
|
Frantz LAF, Schraiber JG, Madsen O, Megens HJ, Cagan A, Bosse M, Paudel Y, Crooijmans RPMA, Larson G, Groenen MAM. Evidence of long-term gene flow and selection during domestication from analyses of Eurasian wild and domestic pig genomes. Nat Genet 2015; 47:1141-8. [PMID: 26323058 DOI: 10.1038/ng.3394] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 08/10/2015] [Indexed: 12/18/2022]
Abstract
Traditionally, the process of domestication is assumed to be initiated by humans, involve few individuals and rely on reproductive isolation between wild and domestic forms. We analyzed pig domestication using over 100 genome sequences and tested whether pig domestication followed a traditional linear model or a more complex, reticulate model. We found that the assumptions of traditional models, such as reproductive isolation and strong domestication bottlenecks, are incompatible with the genetic data. In addition, our results show that, despite gene flow, the genomes of domestic pigs have strong signatures of selection at loci that affect behavior and morphology. We argue that recurrent selection for domestic traits likely counteracted the homogenizing effect of gene flow from wild boars and created 'islands of domestication' in the genome. Our results have major ramifications for the understanding of animal domestication and suggest that future studies should employ models that do not assume reproductive isolation.
Collapse
Affiliation(s)
- Laurent A F Frantz
- Animal Breeding and Genomics Group, Wageningen University, Wageningen, the Netherlands.,Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Joshua G Schraiber
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California, USA.,Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Ole Madsen
- Animal Breeding and Genomics Group, Wageningen University, Wageningen, the Netherlands
| | - Hendrik-Jan Megens
- Animal Breeding and Genomics Group, Wageningen University, Wageningen, the Netherlands
| | - Alex Cagan
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Mirte Bosse
- Animal Breeding and Genomics Group, Wageningen University, Wageningen, the Netherlands
| | - Yogesh Paudel
- Animal Breeding and Genomics Group, Wageningen University, Wageningen, the Netherlands
| | | | - Greger Larson
- Palaeogenomics and Bio-Archaeology Research Network, Research Laboratory for Archaeology and History of Art, University of Oxford, Oxford, UK
| | - Martien A M Groenen
- Animal Breeding and Genomics Group, Wageningen University, Wageningen, the Netherlands
| |
Collapse
|
11
|
Kanaan NM, Collier TJ, Cole-Strauss A, Grabinski T, Mattingly ZR, Winn ME, Steece-Collier K, Sortwell CE, Manfredsson FP, Lipton JW. The longitudinal transcriptomic response of the substantia nigra to intrastriatal 6-hydroxydopamine reveals significant upregulation of regeneration-associated genes. PLoS One 2015; 10:e0127768. [PMID: 25992874 PMCID: PMC4439078 DOI: 10.1371/journal.pone.0127768] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/20/2015] [Indexed: 12/29/2022] Open
Abstract
We hypothesized that the study of gene expression at 1, 2, 4, 6 and 16 weeks in the substantia nigra (SN) after intrastriatal 6-OHDA in the Sprague-Dawley rat (rattus norvegicus) would identify cellular responses during the degenerative process that could be axoprotective. Specifically, we hypothesized that genes expressed within the SN that followed a profile of being highly upregulated early after the lesion (during active axonal degeneration) and then progressively declined to baseline over 16 weeks as DA neurons died are indicative of potential protective responses to the striatal 6-OHDA insult. Utilizing a κ-means cluster analysis strategy, we demonstrated that one such cluster followed this hypothesized expression pattern over time, and that this cluster contained several interrelated transcripts that are classified as regeneration-associated genes (RAGs) including Atf3, Sprr1a, Ecel1, Gadd45a, Gpnmb, Sox11, Mmp19, Srgap1, Rab15,Lifr, Trib3, Tgfb1, and Sema3c. All exemplar transcripts tested from this cluster (Sprr1a, Ecel1, Gadd45a, Atf3 and Sox11) were validated by qPCR and a smaller subset (Sprr1a, Gadd45a and Sox11) were shown to be exclusively localized to SN DA neurons using a dual label approach with RNAScope in situ hybridization and immunohistochemistry. Upregulation of RAGs is typically associated with the response to axonal injury in the peripheral nerves and was not previously reported as part of the axodegenerative process for DA neurons of the SN. Interestingly, as part of this cluster, other transcripts were identified based on their expression pattern but without a RAG provenance in the literature. These "RAG-like" transcripts need further characterization to determine if they possess similar functions to or interact with known RAG transcripts. Ultimately, it is hoped that some of the newly identified axodegeneration-reactive transcripts could be exploited as axoprotective therapies in PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Nicholas M. Kanaan
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States of America
- Morris. K. Udall Center of Excellence in Parkinson’s Disease Research, Michigan State University, Grand Rapids, MI, United States of America
- Hauenstein Neuroscience Center, Mercy Health Saint Mary’s, Grand Rapids, Michigan, United States of America
| | - Timothy J. Collier
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States of America
- Morris. K. Udall Center of Excellence in Parkinson’s Disease Research, Michigan State University, Grand Rapids, MI, United States of America
- Hauenstein Neuroscience Center, Mercy Health Saint Mary’s, Grand Rapids, Michigan, United States of America
| | - Allyson Cole-Strauss
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States of America
- Morris. K. Udall Center of Excellence in Parkinson’s Disease Research, Michigan State University, Grand Rapids, MI, United States of America
| | - Tessa Grabinski
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States of America
| | - Zachary R. Mattingly
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States of America
| | - Mary E. Winn
- Bioinformatics & Biostatistics Core, Van Andel Research Institute, Grand Rapids, MI, United States of America
| | - Kathy Steece-Collier
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States of America
- Morris. K. Udall Center of Excellence in Parkinson’s Disease Research, Michigan State University, Grand Rapids, MI, United States of America
- Hauenstein Neuroscience Center, Mercy Health Saint Mary’s, Grand Rapids, Michigan, United States of America
| | - Caryl E. Sortwell
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States of America
- Morris. K. Udall Center of Excellence in Parkinson’s Disease Research, Michigan State University, Grand Rapids, MI, United States of America
- Hauenstein Neuroscience Center, Mercy Health Saint Mary’s, Grand Rapids, Michigan, United States of America
| | - Fredric P. Manfredsson
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States of America
| | - Jack W. Lipton
- Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States of America
- Morris. K. Udall Center of Excellence in Parkinson’s Disease Research, Michigan State University, Grand Rapids, MI, United States of America
- Hauenstein Neuroscience Center, Mercy Health Saint Mary’s, Grand Rapids, Michigan, United States of America
- * E-mail:
| |
Collapse
|
12
|
Van Hove I, Verslegers M, Hu TT, Carden M, Arckens L, Moons L. A proteomic approach to understand MMP-3-driven developmental processes in the postnatal cerebellum: Chaperonin CCT6A and MAP kinase as contributing factors. Dev Neurobiol 2015; 75:1033-48. [DOI: 10.1002/dneu.22272] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 01/16/2015] [Accepted: 01/16/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Inge Van Hove
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section; Department of Biology; KU Leuven Leuven Belgium
| | - Mieke Verslegers
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section; Department of Biology; KU Leuven Leuven Belgium
| | - Tjing-Tjing Hu
- Laboratory of Neuroplasticity and Neuroproteomics, Animal Physiology and Neurobiology Section; Department of Biology; KU Leuven Leuven Belgium
| | - Martin Carden
- School of Biosciences, University of Kent; Canterbury CT2 7NJ United Kingdom
| | - Lutgarde Arckens
- Laboratory of Neuroplasticity and Neuroproteomics, Animal Physiology and Neurobiology Section; Department of Biology; KU Leuven Leuven Belgium
| | - Lieve Moons
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section; Department of Biology; KU Leuven Leuven Belgium
| |
Collapse
|
13
|
Py NA, Bonnet AE, Bernard A, Marchalant Y, Charrat E, Checler F, Khrestchatisky M, Baranger K, Rivera S. Differential spatio-temporal regulation of MMPs in the 5xFAD mouse model of Alzheimer's disease: evidence for a pro-amyloidogenic role of MT1-MMP. Front Aging Neurosci 2014; 6:247. [PMID: 25278878 PMCID: PMC4166961 DOI: 10.3389/fnagi.2014.00247] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/02/2014] [Indexed: 12/03/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are pleiotropic endopeptidases involved in a variety of neurodegenerative/neuroinflammatory processes through their interactions with a large number of substrates. Among those, the amyloid precursor protein (APP) and the beta amyloid peptide (Aβ) are largely associated with the development of Alzheimer’s disease (AD). However, the regulation and potential contribution of MMPs to AD remains unclear. In this study, we investigated the evolution of the expression of MMP-2, MMP-9, and membrane-type 1-MMP (MT1-MMP) in the hippocampus at different stages of the pathology (asymptomatic, prodromal-like and symptomatic) in the 5xFAD transgenic mouse AD model. In parallel we also followed the expression of functionally associated factors. Overall, the expression of MMP-2, MMP-9, and MT1-MMP was upregulated concomitantly with the tissue inhibitor of MMPs-1 (TIMP-1) and several markers of inflammatory/glial response. The three MMPs exhibited age- and cell-dependent upregulation of their expression, with MMP-2 and MMP-9 being primarily located to astrocytes, and MT1-MMP to neurons. MMP-9 and MT1-MMP were also prominently present in amyloid plaques. The levels of active MT1-MMP were highly upregulated in membrane-enriched fractions of hippocampus at 6 months of age (symptomatic phase), when the levels of APP, its metabolites APP C-terminal fragments (CTFs), and Aβ trimers were the highest. Overexpression of MT1-MMP in HEK cells carrying the human APP Swedish mutation (HEKswe) strongly increased β-secretase derived C-terminal APP fragment (C99) and Aβ levels, whereas MMP-2 overexpression nearly abolished Aβ production without affecting C99. Our data consolidate the emerging idea of a regulatory interplay between MMPs and the APP/Aβ system, and demonstrate for the first time the pro-amyloidogenic features of MT1-MMP. Further investigation will be justified to evaluate this MMP as a novel potential therapeutic target in AD.
Collapse
Affiliation(s)
- Nathalie A Py
- Faculty of Medicine, Aix-Marseille Université, CNRS, NICN, UMR7259 Marseille, France
| | - Amandine E Bonnet
- Faculty of Medicine, Aix-Marseille Université, CNRS, NICN, UMR7259 Marseille, France
| | - Anne Bernard
- Faculty of Medicine, Aix-Marseille Université, CNRS, NICN, UMR7259 Marseille, France
| | - Yannick Marchalant
- Faculty of Medicine, Aix-Marseille Université, CNRS, NICN, UMR7259 Marseille, France
| | - Eliane Charrat
- Faculty of Medicine, Aix-Marseille Université, CNRS, NICN, UMR7259 Marseille, France
| | | | - Michel Khrestchatisky
- Faculty of Medicine, Aix-Marseille Université, CNRS, NICN, UMR7259 Marseille, France
| | - Kévin Baranger
- Faculty of Medicine, Aix-Marseille Université, CNRS, NICN, UMR7259 Marseille, France ; Department of Neurology and Neuropsychology, APHM, CHU La Timone Marseille, France
| | - Santiago Rivera
- Faculty of Medicine, Aix-Marseille Université, CNRS, NICN, UMR7259 Marseille, France
| |
Collapse
|
14
|
Phillips LL, Chan JL, Doperalski AE, Reeves TM. Time dependent integration of matrix metalloproteinases and their targeted substrates directs axonal sprouting and synaptogenesis following central nervous system injury. Neural Regen Res 2014; 9:362-76. [PMID: 25206824 PMCID: PMC4146196 DOI: 10.4103/1673-5374.128237] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2014] [Indexed: 12/18/2022] Open
Abstract
Over the past two decades, many investigators have reported how extracellular matrix molecules act to regulate neuroplasticity. The majority of these studies involve proteins which are targets of matrix metalloproteinases. Importantly, these enzyme/substrate interactions can regulate degenerative and regenerative phases of synaptic plasticity, directing axonal and dendritic reorganization after brain insult. The present review first summarizes literature support for the prominent role of matrix metalloproteinases during neuroregeneration, followed by a discussion of data contrasting adaptive and maladaptive neuroplasticity that reveals time-dependent metalloproteinase/substrate regulation of postinjury synaptic recovery. The potential for these enzymes to serve as therapeutic targets for enhanced neuroplasticity after brain injury is illustrated with experiments demonstrating that metalloproteinase inhibitors can alter adaptive and maladaptive outcome. Finally, the complexity of metalloproteinase role in reactive synaptogenesis is revealed in new studies showing how these enzymes interact with immune molecules to mediate cellular response in the local regenerative environment, and are regulated by novel binding partners in the brain extracellular matrix. Together, these different examples show the complexity with which metalloproteinases are integrated into the process of neuroregeneration, and point to a promising new angle for future studies exploring how to facilitate brain plasticity.
Collapse
Affiliation(s)
- Linda L Phillips
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Julie L Chan
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Adele E Doperalski
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Thomas M Reeves
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
15
|
Altered neuronal architecture and plasticity in the visual cortex of adult MMP-3-deficient mice. Brain Struct Funct 2014; 220:2675-89. [DOI: 10.1007/s00429-014-0819-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 06/05/2014] [Indexed: 12/21/2022]
|
16
|
Gong M, Simaite D, Kühnen P, Heldmann M, Spagnoli F, Blankenstein O, Hübner N, Hussain K, Raile K. Two novel GATA6 mutations cause childhood-onset diabetes mellitus, pancreas malformation and congenital heart disease. Horm Res Paediatr 2013; 79:250-6. [PMID: 23635550 DOI: 10.1159/000348844] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 02/11/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND GATA6 mutations are the most frequent cause of pancreatic agenesis and diabetes in human sporadic cases. In families, dominantly inherited mutations show a variable phenotype also in terms of endocrine and exocrine pancreatic disease. We report two novel GATA6 mutations in an independent cohort of 8 children with pancreas aplasia or hypoplasia and diabetes. METHODS We sequenced GATA6 in 8 children with diabetes and inborn pancreas abnormalities, i.e. hypoplasia or aplasia in which other known candidate genes causing monogenic diabetes and pancreatic defects had been excluded. RESULTS We found two novel heterozygous GATA6 mutations (c.951_954dup and c.754_904del) in 2 patients with sporadic pancreas hypoplasia, diabetes and severe cardiac defects (common truncus arteriosus and tetralogy of Fallot), but not in the remaining 6 patients. GATA6 mutations in carriers exhibited hypoplastic pancreas with absent head in 1 patient and with increased echogenicity and decreasing exocrine function in the other patient. Additionally, hepatobiliary malformations and brain atrophy were found in 1 patient. CONCLUSION Our 2 cases with novel GATA6 mutations add more phenotype characteristics of GATA6 haploinsufficiency. In agreement with an increasing number of published cases, the wide phenotypic spectrum of GATA6 diabetes syndrome should draw the attention of both pediatric endocrinologists and geneticists.
Collapse
Affiliation(s)
- Maolian Gong
- Max Delbrück Center for Molecular Medicine, Charité, Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wójtowicz T, Mozrzymas JW. Matrix metalloprotease activity shapes the magnitude of EPSPs and spike plasticity within the hippocampal CA3 network. Hippocampus 2013; 24:135-53. [DOI: 10.1002/hipo.22205] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Tomasz Wójtowicz
- Laboratory of Neuroscience, Department of Biophysics; Wroclaw Medical University; Chalubinskiego 3 50368 Wroclaw Poland
| | - Jerzy W. Mozrzymas
- Laboratory of Neuroscience, Department of Biophysics; Wroclaw Medical University; Chalubinskiego 3 50368 Wroclaw Poland
| |
Collapse
|
18
|
MMP-3 contributes to nigrostriatal dopaminergic neuronal loss, BBB damage, and neuroinflammation in an MPTP mouse model of Parkinson's disease. Mediators Inflamm 2013; 2013:370526. [PMID: 23853428 PMCID: PMC3703803 DOI: 10.1155/2013/370526] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/29/2013] [Indexed: 11/17/2022] Open
Abstract
The present study examined whether matrix metalloproteinase-3 (MMP-3) participates in the loss of dopaminergic (DA) neurons in the nigrostriatal pathway in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease with blood brain barrier (BBB) damage and infiltration of peripheral immune cells. Tyrosine hydroxylase (TH) immunostaining of brain sections from MPTP-treated mice showed that MPTP induced significant degeneration of nigrostriatal DA neurons. Moreover, FITC-labeled albumin detection and immunostaining revealed that MPTP caused damage to the BBB and increased the number of ED-1- and CD-3-immunopositive cells in the substantia nigra (SN). Genetic ablation of MMP-3 reduced the nigrostriatal DA neuron loss and improved motor function. This neuroprotective effect afforded by MMP-3 deletion was associated with the suppression of BBB disruption and a decrease in the number of ED-1- and CD-3-immunopositive cells in the SN. These data suggest that MMP-3 could play a crucial role in neurodegenerative diseases such as PD in which BBB damage and neuroinflammation are implicated.
Collapse
|
19
|
Ould-Yahoui A, Sbai O, Baranger K, Bernard A, Gueye Y, Charrat E, Clément B, Gigmes D, Dive V, Girard SD, Féron F, Khrestchatisky M, Rivera S. Role of Matrix Metalloproteinases in Migration and Neurotrophic Properties of Nasal Olfactory Stem and Ensheathing Cells. Cell Transplant 2013; 22:993-1010. [DOI: 10.3727/096368912x657468] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Adult olfactory ectomesenchymal stem cells (OE-MSCs) and olfactory ensheathing cells (OECs), both from the nasal olfactory lamina propria, display robust regenerative properties when transplanted into the nervous system, but the mechanisms supporting such therapeutic effects remain unknown. Matrix metalloproteinases (MMPs) are an important family of proteinases contributing to cell motility and axonal outgrowth across the extracellular matrix (ECM) in physiological and pathological conditions. In this study, we have characterized for the first time in nasal human OE-MSCs the expression profile of some MMPs currently associated with cell migration and invasiveness. We demonstrate different patterns of expression for MMP-1, MMP-2, MMP-9, and MT1-MMP upon cell migration when compared with nonmigrating cells. Our results establish a correspondence between the localization of these proteinases in the migration front with the ability of cells to migrate. Using various modulators of MMP activity, we also show that at least MMP-2, MMP-9, and MT1-MMP contribute to OE-MSC migration in an in vitro 3D test. Furthermore, we demonstrate under the same conditions of culture used for in vivo transplantation that OE-MSCs and OECs secrete neurotrophic factors that promote neurite outgrowth of cortical and dorsal root ganglia (DRG) neurons, as well as axo-dendritic differentiation of cortical neurons. These effects were abolished by the depletion of MMP-2 and MMP-9 from the culture conditioned media. Altogether, our results provide the first evidence that MMPs may contribute to the therapeutic features of OE-MSCs and OECs through the control of their motility and/or their neurotrophic properties. Our data provide new insight into the mechanisms of neuroregeneration and will contribute to optimization of cell therapy strategies.
Collapse
Affiliation(s)
- Adlane Ould-Yahoui
- Aix-Marseille Univ, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 7259, 13344, Marseille, France
- CNRS, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 7259, 13344, Marseille, France
| | - Oualid Sbai
- Aix-Marseille Univ, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 7259, 13344, Marseille, France
- CNRS, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 7259, 13344, Marseille, France
| | - Kévin Baranger
- Aix-Marseille Univ, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 7259, 13344, Marseille, France
- CNRS, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 7259, 13344, Marseille, France
| | - Anne Bernard
- Aix-Marseille Univ, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 7259, 13344, Marseille, France
- CNRS, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 7259, 13344, Marseille, France
| | - Yatma Gueye
- Aix-Marseille Univ, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 7259, 13344, Marseille, France
- CNRS, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 7259, 13344, Marseille, France
| | - Eliane Charrat
- Aix-Marseille Univ, Institut de Chimie Radicalaire, Equipe Chimie Radicalaire, Organique et Polymères de Spécialité, UMR 7273, Marseille, France
- CNRS, Institut de Chimie Radicalaire, Equipe Chimie Radicalaire, Organique et Polymères de Spécialité, UMR 7273, Marseille, France
| | - Benoît Clément
- Aix-Marseille Univ, Institut de Chimie Radicalaire, Equipe Chimie Radicalaire, Organique et Polymères de Spécialité, UMR 7273, Marseille, France
- CNRS, Institut de Chimie Radicalaire, Equipe Chimie Radicalaire, Organique et Polymères de Spécialité, UMR 7273, Marseille, France
| | - Didier Gigmes
- Aix-Marseille Univ, Institut de Chimie Radicalaire, Equipe Chimie Radicalaire, Organique et Polymères de Spécialité, UMR 7273, Marseille, France
- CNRS, Institut de Chimie Radicalaire, Equipe Chimie Radicalaire, Organique et Polymères de Spécialité, UMR 7273, Marseille, France
| | - Vincent Dive
- Département d'Ingénierie et d'Etudes des Protéines (DIEP), CEA/Saclay, Gif-sur-Yvette, France
| | - Stéphane D. Girard
- Aix-Marseille Univ, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 7259, 13344, Marseille, France
- CNRS, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 7259, 13344, Marseille, France
| | - François Féron
- Aix-Marseille Univ, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 7259, 13344, Marseille, France
- CNRS, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 7259, 13344, Marseille, France
| | - Michel Khrestchatisky
- Aix-Marseille Univ, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 7259, 13344, Marseille, France
- CNRS, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 7259, 13344, Marseille, France
| | - Santiago Rivera
- Aix-Marseille Univ, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 7259, 13344, Marseille, France
- CNRS, Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 7259, 13344, Marseille, France
| |
Collapse
|
20
|
Van Hove I, Lemmens K, Van de Velde S, Verslegers M, Moons L. Matrix metalloproteinase-3 in the central nervous system: a look on the bright side. J Neurochem 2012; 123:203-16. [PMID: 22862420 DOI: 10.1111/j.1471-4159.2012.07900.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/11/2012] [Accepted: 07/27/2012] [Indexed: 01/03/2023]
Abstract
Matrix metalloproteinases (MMPs) are a large family of proteases involved in many cell-matrix and cell-cell signalling processes through activation, inactivation or release of extracellular matrix (ECM) and non-ECM molecules, such as growth factors and receptors. Uncontrolled MMP activities underlie the pathophysiology of many disorders. Also matrix metalloproteinase-3 (MMP-3) or stromelysin-1 contributes to several pathologies, such as cancer, asthma and rheumatoid arthritis, and has also been associated with neurodegenerative diseases like Alzheimer's disease, Parkinson's disease and multiple sclerosis. However, based on defined MMP spatiotemporal expression patterns, the identification of novel candidate molecular targets and in vitro and in vivo studies, a beneficial role for MMPs in CNS physiology and recovery is emerging. The main purpose of this review is to shed light on the recently identified roles of MMP-3 in normal brain development and in plasticity and regeneration after CNS injury and disease. As such, MMP-3 is correlated with neuronal migration and neurite outgrowth and guidance in the developing CNS and contributes to synaptic plasticity and learning in the adult CNS. Moreover, a strict spatiotemporal MMP-3 up-regulation in the injured or diseased CNS might support remyelination and neuroprotection, as well as genesis and migration of stem cells in the damaged brain.
Collapse
Affiliation(s)
- Inge Van Hove
- Laboratory of Neural Circuit Development and Regeneration, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
21
|
Murray M, Santi L, Monaghan R, Houle JD, Barr GA. Peripheral nerve graft with immunosuppression modifies gene expression in axotomized CNS neurons. J Comp Neurol 2012; 519:3433-55. [PMID: 21800297 DOI: 10.1002/cne.22714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Adult central nervous system (CNS) neurons do not regenerate severed axons unaided but may regenerate axons into apposed predegenerated peripheral nerve grafts (PNGs). We examined gene expression by using microarray technology in laser-dissected lateral vestibular (LV) neurons whose axons were severed by a lateral hemisection at C3 (HX) and in lateral vestibular nucleus (LVN) neurons that were hemisected at C3 and that received immunosuppression with cyclosporine A (CsA) and a predegenerated PNG (termed I-PNG) into the lesion site. The results provide an expression analysis of temporal changes that occur in LVN neurons in nonregenerative and potentially regenerative states and over a period of 42 days. Axotomy alone resulted in a prolonged change in regulation of probe sets, with more being upregulated than downregulated. Apposition of a PNG with immunosuppression muted gene expression overall. Axotomized neurons (HX) upregulated genes commonly associated with axonal growth, whereas axotomized neurons whose axons were apposed to the PNG showed diminished expression of many of these genes but greater expression of genes related to energy production. The results suggest that axotomized LVN neurons express many genes thought to be associated with regeneration to a greater extent than LVN neurons that are apposed to a PNG. Thus the LVN neurons remain in a regenerative state following axotomy but the conditions provided by the I-PNG appear to be neuroprotective, preserving or enhancing mitochondrial activity, which may provide required energy for regeneration. We speculate that the graft also enables sufficient axonal synthesis of cytoskeletal components to allow axonal growth without marked increase in expression of genes normally associated with regeneration.
Collapse
Affiliation(s)
- Marion Murray
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129, USA.
| | | | | | | | | |
Collapse
|
22
|
Howell MD, Gottschall PE. Lectican proteoglycans, their cleaving metalloproteinases, and plasticity in the central nervous system extracellular microenvironment. Neuroscience 2012; 217:6-18. [PMID: 22626649 DOI: 10.1016/j.neuroscience.2012.05.034] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/10/2012] [Accepted: 05/11/2012] [Indexed: 01/18/2023]
Abstract
The extracellular matrix (ECM) in the central nervous system actively orchestrates and modulates changes in neural structure and function in response to experience, after injury, during disease, and with changes in neuronal activity. A component of the multi-protein, ECM aggregate in brain, the chondroitin sulfate (CS)-bearing proteoglycans (PGs) known as lecticans, inhibit neurite outgrowth, alter dendritic spine shape, elicit closure of critical period plasticity, and block target reinnervation and functional recovery after injury as the major component of a glial scar. While removal of the CS chains from lecticans with chondroitinase ABC improves plasticity, proteolytic cleavage of the lectican core protein may change the conformation of the matrix aggregate and also modulate neural plasticity. This review centers on the roles of the lecticans and the endogenous metalloproteinase families that proteolytically cleave lectican core proteins, the matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTSs), in neural plasticity. These extracellular metalloproteinases modulate structural neural plasticity-including changes in neurite outgrowth and dendritic spine remodeling-and synaptic plasticity. Some of these actions have been demonstrated to occur via cleavage of the PG core protein. Other actions of the proteases include cleavage of non-matrix substrate proteins, whereas still other actions may occur directly at the cell surface without proteolytic cleavage. The data convincingly demonstrate that metalloproteinases modulate physiological and pathophysiological neural plasticity.
Collapse
Affiliation(s)
- M D Howell
- University of Arkansas for Medical Sciences, Department of Pharmacology and Toxicology, Little Rock, AR 72205, USA
| | | |
Collapse
|
23
|
Epilepsy gene LGI1 regulates postnatal developmental remodeling of retinogeniculate synapses. J Neurosci 2012; 32:903-10. [PMID: 22262888 DOI: 10.1523/jneurosci.5191-11.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Retinogeniculate connections undergo postnatal refinement in the developing visual system. Here we report that non-ion channel epilepsy gene LGI1 (leucine-rich glioma-inactivated), mutated in human autosomal dominant lateral temporal lobe epilepsy (ADLTE), regulates postnatal pruning of retinal axons in visual relay thalamus. By introducing an ADLTE-associated truncated mutant LGI1 (836delC) or excess full-length LGI1 into transgenic mice, we found that mutant LGI1 blocks, whereas excess LGI1 accelerates, retinogeniculate axon pruning. The normal postnatal single fiber strengthening was arrested by mutant LGI1 and, contrastingly, was enhanced by excess wild-type LGI1. The maximum response of the retinogeniculate synapses, conversely, remained the same in mature LGI1 transgenic mice, indicating that mutant LGI1 blocks, whereas excess wild-type LGI1 promotes, weak axon fiber elimination. Heterozygous deletion of the LGI1 gene, as found in ADLTE patients, inhibited postnatal retinogeniculate synapse elimination, an effect similar to the ADLTE truncated mutant LGI1. The results identify sensory axon remodeling defects in a sensory aura-associated human epilepsy disorder.
Collapse
|
24
|
Gomez TM. Pioneering studies on the mechanisms of neuronal morphogenesis. Dev Neurobiol 2011; 71:780-4. [PMID: 21805681 DOI: 10.1002/dneu.20902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 04/27/2011] [Accepted: 04/28/2011] [Indexed: 11/06/2022]
Abstract
Axon outgrowth and pathfinding occurs through a complex series of interacting biochemical signaling pathways that regulate the motility of neuronal growth cones. Over the past 30 years, Paul Letourneau and his students have explored the molecular basis of growth cone motility and have contributed immensely to this field. In celebration of his 65th birthday, this essay is written in gratitude for Paul's many contributions and training.
Collapse
Affiliation(s)
- Timothy M Gomez
- Department of Neuroscience, University of Wisconsin, Madison, Wisconsin 53706, USA.
| |
Collapse
|
25
|
Metzincin proteases and their inhibitors: foes or friends in nervous system physiology? J Neurosci 2010; 30:15337-57. [PMID: 21084591 DOI: 10.1523/jneurosci.3467-10.2010] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Members of the metzincin family of metalloproteinases have long been considered merely degradative enzymes for extracellular matrix molecules. Recently, however, there has been growing appreciation for these proteinases and their endogenous inhibitors, tissue inhibitors of metalloproteinases (TIMPs), as fine modulators of nervous system physiology and pathology. Present all along the phylogenetic tree, in all neural cell types, from the nucleus to the synapse and in the extracellular space, metalloproteinases exhibit a complex spatiotemporal profile of expression in the nervous parenchyma and at the neurovascular interface. The irreversibility of their proteolytic activity on numerous biofactors (e.g., growth factors, cytokines, receptors, DNA repair enzymes, matrix proteins) is ideally suited to sustain structural changes that are involved in physiological or postlesion remodeling of neural networks, learning consolidation or impairment, neurodegenerative and neuroinflammatory processes, or progression of malignant gliomas. The present review provides a state of the art overview of the involvement of the metzincin/TIMP system in these processes and the prospects of new therapeutic strategies based on the control of metalloproteinase activity.
Collapse
|
26
|
Henningsen J, Rigbolt KTG, Blagoev B, Pedersen BK, Kratchmarova I. Dynamics of the skeletal muscle secretome during myoblast differentiation. Mol Cell Proteomics 2010; 9:2482-96. [PMID: 20631206 DOI: 10.1074/mcp.m110.002113] [Citation(s) in RCA: 228] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
During recent years, increased efforts have focused on elucidating the secretory function of skeletal muscle. Through secreted molecules, skeletal muscle affects local muscle biology in an auto/paracrine manner as well as having systemic effects on other tissues. Here we used a quantitative proteomics platform to investigate the factors secreted during the differentiation of murine C2C12 skeletal muscle cells. Using triple encoding stable isotope labeling by amino acids in cell culture, we compared the secretomes at three different time points of muscle differentiation and followed the dynamics of protein secretion. We identified and quantitatively analyzed 635 secreted proteins, including 35 growth factors, 40 cytokines, and 36 metallopeptidases. The extensive presence of these proteins that can act as potent signaling mediators to other cells and tissues strongly highlights the important role of the skeletal muscle as a prominent secretory organ. In addition to previously reported molecules, we identified many secreted proteins that have not previously been shown to be released from skeletal muscle cells nor shown to be differentially released during the process of myogenesis. We found 188 of these secreted proteins to be significantly regulated during the process of myogenesis. Comparative analyses of selected secreted proteins revealed little correlation between their mRNA and protein levels, indicating pronounced regulation by posttranscriptional mechanisms. Furthermore, analyses of the intracellular levels of members of the semaphorin family and their corresponding secretion dynamics demonstrated that the release of secreted proteins is tightly regulated by the secretory pathway, the stability of the protein, and/or the processing of secreted proteins. Finally, we provide 299 unique hydroxyproline sites mapping to 48 distinct secreted proteins and have discovered a novel hydroxyproline motif.
Collapse
Affiliation(s)
- Jeanette Henningsen
- Center for Experimental BioInformatics, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M, Denmark
| | | | | | | | | |
Collapse
|
27
|
Conant K, Wang Y, Szklarczyk A, Dudak A, Mattson MP, Lim ST. Matrix metalloproteinase-dependent shedding of intercellular adhesion molecule-5 occurs with long-term potentiation. Neuroscience 2010; 166:508-21. [PMID: 20045450 PMCID: PMC3535483 DOI: 10.1016/j.neuroscience.2009.12.061] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 12/22/2009] [Accepted: 12/23/2009] [Indexed: 12/21/2022]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that can be released or activated in a neuronal activity dependent manner. Although pathologically elevated levels of MMPs may be synaptotoxic, physiologically appropriate levels of MMPs may instead enhance synaptic transmission. MMP inhibitors can block long term potentiation (LTP), and at least one family member can affect an increase in the volume of dendritic spines. While the mechanism by which MMPs affect these changes is not completely understood, one possibility is that the cleavage of specific synaptic cell adhesion molecules plays a role. In the present study, we have examined the ability of neuronal activity to stimulate rapid MMP dependent shedding of the intercellular adhesion molecule-5 (ICAM-5), a synaptic adhesion molecule that is thought to inhibit the maturation and enlargement of dendritic spines. Since such cleavage would likely occur within minutes if it were relevant to a process such as LTP, we focused on post stimulus time points of 30 min or less. We show that NMDA can stimulate rapid shedding of ICAM-5 from cortical neurons in dissociated cell cultures and that such shedding is diminished by pretreatment of cultures with inhibitors that target MMP-3 and -9, proteases thought to influence synaptic plasticity. Additional studies suggest that MMP mediated cleavage of ICAM-5 occurs at amino acid 780, so that the major portion of the ectodomain is released. Since reductions in ICAM-5 have been linked to changes in dendritic spine morphology that are associated with LTP, we also examined the possibility that MMP dependent ICAM-5 shedding occurs following high frequency tetanic stimulation of murine hippocampal slices. Results show that the shedding of ICAM-5 occurs in association with LTP, and that both LTP and the associated ICAM-5 shedding are reduced when slices are pretreated with an MMP inhibitor. Together, these findings suggest that neuronal activity is linked to the shedding of a molecule that may inhibit dendritic spine enlargement and that MMPs can affect this change. While further studies will be necessary to determine the extent to which cleavage of ICAM-5 in particular contributes to MMP dependent LTP, our data support an emerging body of literature suggesting that MMPs are critical mediators of synaptic plasticity.
Collapse
Affiliation(s)
- Katherine Conant
- Department of Neurology, Johns Hopkins University, Baltimore, MD
- Department of Neuroscience, Georgetown University, Washington, DC
| | - Yue Wang
- Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD
| | - Arek Szklarczyk
- Department of Neurology, Johns Hopkins University, Baltimore, MD
| | - Amanda Dudak
- Department of Neuroscience, Georgetown University, Washington, DC
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD
| | - Seung T. Lim
- Department of Neuroscience, Georgetown University, Washington, DC
| |
Collapse
|
28
|
Kunapuli P, Lo K, Hawthorn L, Cowell JK. Reexpression of LGI1 in glioma cells results in dysregulation of genes implicated in the canonical axon guidance pathway. Genomics 2010; 95:93-100. [PMID: 19835947 PMCID: PMC2821952 DOI: 10.1016/j.ygeno.2009.10.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 10/05/2009] [Accepted: 10/05/2009] [Indexed: 12/17/2022]
Abstract
The LGI1 gene suppresses invasion in glioma cells and predisposes to epilepsy. In a gene expression array comparison between parental cells and T98G cell clones forced to express LGI1, we demonstrate that the canonical axon guidance pathway is the most significantly affected. In particular, aspects of axon guidance that involve reorganization of the actin cytoskeleton, which is also involved in cell movement and invasion, were affected. Analysis of actin fiber organization using fluorescence microscopy demonstrated that different T98G cell clones expressing the exogenous LGI1 gene show high levels of stress fibers compared with controls. Since stress fiber formation is associated with loss of cell mobility, we used scratch wound assays to demonstrate that LGI1-expressing clones show a significant reduction in cell mobility. LGI1 reexpression also resulted in loss of the PDGFRA and EGFR proteins, suggesting a rapid turnover of these receptors despite increased mRNA levels for PDGFRA. LGI1 suppression of invasion is associated with loss of ERK/MAPK1 activation. LGI1 is a secreted protein, and when the culture supernatant from cells expressing FLAG- and GFP-tagged proteins were applied to parental T98G cells, ERK/MAPK1 phosphorylation and cell mobility was suppressed, demonstrating that the LGI1 protein acts as a suppressive agent for cell movement in this assay. These observations support a previous suggestion that LGI1 can reduce cellular invasion in in vitro assays and, as a secreted agent, may be developed as a means of treating metastatic cancer. In addition, this observation provides a mechanistic link for LGI1's common role in metastasis and epilepsy development.
Collapse
Affiliation(s)
- Padmaja Kunapuli
- MCG Cancer Center, Medical College of Georgia, Augusta, 30912, USA
| | | | | | | |
Collapse
|
29
|
Ould-yahoui A, Tremblay E, Sbai O, Ferhat L, Bernard A, Charrat E, Gueye Y, Lim NH, Brew K, Risso JJ, Dive V, Khrestchatisky M, Rivera S. A new role for TIMP-1 in modulating neurite outgrowth and morphology of cortical neurons. PLoS One 2009; 4:e8289. [PMID: 20011518 PMCID: PMC2788270 DOI: 10.1371/journal.pone.0008289] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Accepted: 11/19/2009] [Indexed: 01/06/2023] Open
Abstract
Background Tissue inhibitor of metalloproteinases-1 (TIMP-1) displays pleiotropic activities, both dependent and independent of its inhibitory activity on matrix metalloproteinases (MMPs). In the central nervous system (CNS), TIMP-1 is strongly upregulated in reactive astrocytes and cortical neurons following excitotoxic/inflammatory stimuli, but no information exists on its effects on growth and morphology of cortical neurons. Principal Findings We found that 24 h incubation with recombinant TIMP-1 induced a 35% reduction in neurite length and significantly increased growth cones size and the number of F-actin rich microprocesses. TIMP-1 mediated reduction in neurite length affected both dendrites and axons after 48 h treatment. The effects on neurite length and morphology were not elicited by a mutated form of TIMP-1 inactive against MMP-1, -2 and -3, and still inhibitory for MMP-9, but were mimicked by a broad spectrum MMP inhibitor. MMP-9 was poorly expressed in developing cortical neurons, unlike MMP-2 which was present in growth cones and whose selective inhibition caused neurite length reductions similar to those induced by TIMP-1. Moreover, TIMP-1 mediated changes in cytoskeleton reorganisation were not accompanied by modifications in the expression levels of actin, βIII-tubulin, or microtubule assembly regulatory protein MAP2c. Transfection-mediated overexpression of TIMP-1 dramatically reduced neuritic arbour extension in the absence of detectable levels of released extracellular TIMP-1. Conclusions Altogether, TIMP-1 emerges as a modulator of neuronal outgrowth and morphology in a paracrine and autrocrine manner through the inhibition, at least in part, of MMP-2 and not MMP-9. These findings may help us understand the role of the MMP/TIMP system in post-lesion pre-scarring conditions.
Collapse
Affiliation(s)
- Adlane Ould-yahoui
- Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 6184, Centre National de la Recherche Scientifique (CNRS) - Université de la Méditerranée, Marseille, France
| | - Evelyne Tremblay
- Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 6184, Centre National de la Recherche Scientifique (CNRS) - Université de la Méditerranée, Marseille, France
| | - Oualid Sbai
- Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 6184, Centre National de la Recherche Scientifique (CNRS) - Université de la Méditerranée, Marseille, France
| | - Lotfi Ferhat
- Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 6184, Centre National de la Recherche Scientifique (CNRS) - Université de la Méditerranée, Marseille, France
| | - Anne Bernard
- Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 6184, Centre National de la Recherche Scientifique (CNRS) - Université de la Méditerranée, Marseille, France
| | - Eliane Charrat
- Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 6184, Centre National de la Recherche Scientifique (CNRS) - Université de la Méditerranée, Marseille, France
| | - Yatma Gueye
- Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 6184, Centre National de la Recherche Scientifique (CNRS) - Université de la Méditerranée, Marseille, France
| | - Ngee Han Lim
- Kennedy Institute of Rheumatology Division, Imperial College of London, London, United Kingdom
| | - Keith Brew
- Department of Biomedical Sciences, Florida Atlantic University, Boca Raton, Florida, United States of America
| | - Jean-Jacques Risso
- Département de Recherche Marine et Subaquatique, IMNSSA, UMR MD2 PPCOE, Université de la Méditerranée, Toulon Armées, France
| | - Vincent Dive
- Département d'Ingénierie et d'Etudes des Protéines (DIEP), Commissariat à l'Energie Atomique (CEA), Gif-sur-Yvette, France
| | - Michel Khrestchatisky
- Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 6184, Centre National de la Recherche Scientifique (CNRS) - Université de la Méditerranée, Marseille, France
| | - Santiago Rivera
- Neurobiologie des Interactions Cellulaires et Neurophysiopathologie (NICN), UMR 6184, Centre National de la Recherche Scientifique (CNRS) - Université de la Méditerranée, Marseille, France
- * E-mail:
| |
Collapse
|
30
|
Folgueras AR, Valdés-Sánchez T, Llano E, Menéndez L, Baamonde A, Denlinger BL, Belmonte C, Juárez L, Lastra A, García-Suárez O, Astudillo A, Kirstein M, Pendás AM, Fariñas I, López-Otín C. Metalloproteinase MT5-MMP is an essential modulator of neuro-immune interactions in thermal pain stimulation. Proc Natl Acad Sci U S A 2009; 106:16451-6. [PMID: 19805319 PMCID: PMC2752566 DOI: 10.1073/pnas.0908507106] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Indexed: 01/14/2023] Open
Abstract
Peripheral interactions between nociceptive fibers and mast cells contribute to inflammatory pain, but little is known about mechanisms mediating neuro-immune communication. Here we show that metalloproteinase MT5-MMP (MMP-24) is an essential mediator of peripheral thermal nociception and inflammatory hyperalgesia. We report that MT5-MMP is expressed by CGRP-containing peptidergic nociceptors in dorsal root ganglia and that Mmp24-deficient mice display enhanced sensitivity to noxious thermal stimuli under basal conditions. Consistently, mutant peptidergic sensory neurons hyperinnervate the skin, a phenotype that correlates with changes in the regulated cleavage of the cell-cell adhesion molecule N-cadherin. In contrast to basal nociception, Mmp24(-/-) mice do not develop thermal hyperalgesia during inflammation, a phenotype that appears associated with alterations in N-cadherin-mediated cell-cell interactions between mast cells and sensory fibers. Collectively, our findings demonstrate an essential role of MT5-MMP in the development of dermal neuro-immune synapses and suggest that this metalloproteinase may be a target for pain control.
Collapse
Affiliation(s)
| | - Teresa Valdés-Sánchez
- Departamento de Biología Celular and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Universidad de Valencia, 46100-Burjassot, Spain
| | - Elena Llano
- Departamento de Bioquímica y Biología Molecular and
| | - Luis Menéndez
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006-Oviedo, Spain
| | - Ana Baamonde
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006-Oviedo, Spain
| | - Bristol L. Denlinger
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, 03550-San Juan de Alicante, Spain; and
| | - Carlos Belmonte
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, 03550-San Juan de Alicante, Spain; and
| | - Lucía Juárez
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006-Oviedo, Spain
| | - Ana Lastra
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, 33006-Oviedo, Spain
| | - Olivia García-Suárez
- Servicio de Anatomía Patológica, Hospital Central de Asturias, 33006-Oviedo, Spain
| | - Aurora Astudillo
- Servicio de Anatomía Patológica, Hospital Central de Asturias, 33006-Oviedo, Spain
| | - Martina Kirstein
- Departamento de Biología Celular and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Universidad de Valencia, 46100-Burjassot, Spain
| | | | - Isabel Fariñas
- Departamento de Biología Celular and Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas, Universidad de Valencia, 46100-Burjassot, Spain
| | | |
Collapse
|
31
|
Varju P, Chang KC, Hrabovszky E, Merchenthaler I, Liposits Z. Temporal profile of estrogen-dependent gene expression in LHRH-producing GT1–7 cells. Neurochem Int 2009; 54:119-34. [DOI: 10.1016/j.neuint.2008.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Accepted: 11/06/2008] [Indexed: 01/27/2023]
|
32
|
Meléndez-Herrera E, Colín-Castelán D, Varela-Echavarría A, Gutiérrez-Ospina G. Semaphorin-3A and its receptor neuropilin-1 are predominantly expressed in endothelial cells along the rostral migratory stream of young and adult mice. Cell Tissue Res 2008; 333:175-84. [PMID: 18574596 DOI: 10.1007/s00441-008-0643-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 05/09/2008] [Indexed: 11/29/2022]
Abstract
In the adult brain, neuroblasts originating in the subventricular zone migrate through the rostral migratory stream to the olfactory bulb. While migrating, neuroblasts undergo progressive differentiation until reaching their final locations and fates. Because molecules involved in migration may also exert differentiating effects on young neurons, the identification of factors that support migration could also shed light on the processes of adult neuroblast differentiation. This is the case for members of the family of semaphorins and of its cognate receptors, the neuropilins. Here, we have evaluated the presence of semaphorin-3A and of its receptor neuropilin-1 along the rostral migratory stream in young and adult mice by using immunocytochemical, histochemical, and in situ hybridization techniques. Our morphological studies show that semaphorin-3A and neuropilin-1 are both mainly expressed on endothelial cells along the rostral migratory stream during postnatal development. Our results suggest that endothelial cells constitute the primary source and target of semaphorin-3A along the rostral migratory stream. Moreover, the present work outlines the potential role of blood vessels on neuroblast migration in the postnatal rostral migratory stream.
Collapse
Affiliation(s)
- Esperanza Meléndez-Herrera
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, México City, D.F., México
| | | | | | | |
Collapse
|
33
|
Identification of SOX4 target genes using phylogenetic footprinting-based prediction from expression microarrays suggests that overexpression of SOX4 potentiates metastasis in hepatocellular carcinoma. Oncogene 2008; 27:5578-89. [PMID: 18504433 DOI: 10.1038/onc.2008.168] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A comprehensive microarray analysis of hepatocellular carcinoma (HCC) revealed distinct synexpression patterns during intrahepatic metastasis. Recent evidence has demonstrated that synexpression group member genes are likely to be regulated by master control gene(s). Here we investigate the functions and gene regulation of the transcription factor SOX4 in intrahepatic metastatic HCC. SOX4 is important in tumor metastasis as RNAi knockdown reduces tumor cell migration, invasion, in vivo tumorigenesis and metastasis. A multifaceted approach integrating gene profiling, binding site computation and empirical verification by chromatin immunoprecipitation and gene ablation refined the consensus SOX4 binding motif and identified 32 binding loci in 31 genes with high confidence. RNAi knockdown of two SOX4 target genes, neuropilin 1 and semaphorin 3C, drastically reduced cell migration activity in HCC cell lines suggesting that SOX4 exerts some of its action via regulation of these two downstream targets. The discovery of 31 previously unidentified targets expands our knowledge of how SOX4 modulates HCC progression and implies a range of novel SOX4 functions. This integrated approach sets a paradigm whereby a subset of member genes from a synexpression group can be regulated by one master control gene and this is exemplified by SOX4 and advanced HCC.
Collapse
|
34
|
Chauvet S, Cohen S, Yoshida Y, Fekrane L, Livet J, Gayet O, Segu L, Buhot MC, Jessell TM, Henderson CE, Mann F. Gating of Sema3E/PlexinD1 signaling by neuropilin-1 switches axonal repulsion to attraction during brain development. Neuron 2007; 56:807-22. [PMID: 18054858 PMCID: PMC2700040 DOI: 10.1016/j.neuron.2007.10.019] [Citation(s) in RCA: 187] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 08/10/2007] [Accepted: 10/01/2007] [Indexed: 12/31/2022]
Abstract
The establishment of functional neural circuits requires the guidance of axons in response to the actions of secreted and cell-surface molecules such as the semaphorins. Semaphorin 3E and its receptor PlexinD1 are expressed in the brain, but their functions are unknown. Here, we show that Sema3E/PlexinD1 signaling plays an important role in initial development of descending axon tracts in the forebrain. Early errors in axonal projections are reflected in behavioral deficits in Sema3E null mutant mice. Two distinct signaling mechanisms can be distinguished downstream of Sema3E. On corticofugal and striatonigral neurons expressing PlexinD1 but not Neuropilin-1, Sema3E acts as a repellent. In contrast, on subiculo-mammillary neurons coexpressing PlexinD1 and Neuropilin-1, Sema3E acts as an attractant. The extracellular domain of Neuropilin-1 is sufficient to convert repulsive signaling by PlexinD1 to attraction. Our data therefore reveal a "gating" function of neuropilins in semaphorin-plexin signaling during the assembly of forebrain neuronal circuits.
Collapse
Affiliation(s)
- Sophie Chauvet
- Developmental Biology Institute of Marseille Luminy, CNRS UMR 6216, University of Mediterranee, Case 907, Parc Scientifique de Luminy, 13288 Marseille cedex 09, France
| | - Samia Cohen
- Developmental Biology Institute of Marseille Luminy, CNRS UMR 6216, University of Mediterranee, Case 907, Parc Scientifique de Luminy, 13288 Marseille cedex 09, France
| | - Yutaka Yoshida
- Howard Hughes Medical Institute, Departments of Biochemistry & Molecular Biophysics, and Neuroscience, Columbia University, 701 West 168th Street, New York, NY 10032, USA
- Center for Motor Neuron Biology and Disease, Columbia University, 701 West 168th Street, New York, NY 10032, USA
| | - Lylia Fekrane
- Developmental Biology Institute of Marseille Luminy, CNRS UMR 6216, University of Mediterranee, Case 907, Parc Scientifique de Luminy, 13288 Marseille cedex 09, France
| | - Jean Livet
- Department of Molecular and Cellular Biology, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138, USA
| | - Odile Gayet
- INSERM U624, Case 915, Parc Scientifique de Luminy, 13288 Marseille cedex 09, France
| | - Louis Segu
- Laboratoire de Neurosciences Cognitives, CNRS UMR 5106, Avenue des Facultés, 33405 Talence cedex, France
| | - Marie-Christine Buhot
- Laboratoire de Neurosciences Cognitives, CNRS UMR 5106, Avenue des Facultés, 33405 Talence cedex, France
| | - Thomas M. Jessell
- Howard Hughes Medical Institute, Departments of Biochemistry & Molecular Biophysics, and Neuroscience, Columbia University, 701 West 168th Street, New York, NY 10032, USA
- Center for Motor Neuron Biology and Disease, Columbia University, 701 West 168th Street, New York, NY 10032, USA
| | - Christopher E. Henderson
- Departments of Pathology, Neurology and Neuroscience, Columbia University, 701 West 168th Street, New York, NY 10032, USA
- Center for Motor Neuron Biology and Disease, Columbia University, 701 West 168th Street, New York, NY 10032, USA
| | - Fanny Mann
- Developmental Biology Institute of Marseille Luminy, CNRS UMR 6216, University of Mediterranee, Case 907, Parc Scientifique de Luminy, 13288 Marseille cedex 09, France
| |
Collapse
|
35
|
Miller CM, Page-McCaw A, Broihier HT. Matrix metalloproteinases promote motor axon fasciculation in the Drosophila embryo. Development 2007; 135:95-109. [PMID: 18045838 DOI: 10.1242/dev.011072] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Matrix metalloproteinases (MMPs) are a large conserved family of extracellular proteases, a number of which are expressed during neuronal development and upregulated in nervous system diseases. Primarily on the basis of studies using pharmaceutical inhibitors, MMPs have been proposed to degrade the extracellular matrix to allow growth cone advance during development and hence play largely permissive roles in axon extension. Here we show that MMPs are not required for axon extension in the Drosophila embryo, but rather are specifically required for the execution of several stereotyped motor axon pathfinding decisions. The Drosophila genome contains only two MMP homologs, Mmp1 and Mmp2. We isolated Mmp1 in a misexpression screen to identify molecules required for motoneuron development. Misexpression of either MMP inhibits the regulated separation/defasciculation of motor axons at defined choice points. Conversely, motor nerves in Mmp1 and Mmp2 single mutants and Mmp1 Mmp2 double mutant embryos are loosely bundled/fasciculated, with ectopic axonal projections. Quantification of these phenotypes reveals that the genetic requirement for Mmp1 and Mmp2 is distinct in different nerve branches, although generally Mmp2 plays the predominant role in pathfinding. Using both an endogenous MMP inhibitor and MMP dominant-negative constructs, we demonstrate that MMP catalytic activity is required for motor axon fasciculation. In support of the model that MMPs promote fasciculation, we find that the defasciculation observed when MMP activity is compromised is suppressed by otherwise elevating interaxonal adhesion -- either by overexpressing Fas2 or by reducing Sema-1a dosage. These data demonstrate that MMP activity is essential for embryonic motor axon fasciculation.
Collapse
Affiliation(s)
- Crystal M Miller
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
36
|
Walz A, Feinstein P, Khan M, Mombaerts P. Axonal wiring of guanylate cyclase-D-expressing olfactory neurons is dependent on neuropilin 2 and semaphorin 3F. Development 2007; 134:4063-72. [PMID: 17942483 DOI: 10.1242/dev.008722] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The olfactory system of the mouse includes several subsystems that project axons from the olfactory epithelium to the olfactory bulb. Among these is a subset of neurons that do not express the canonical pathway of olfactory signal transduction, but express guanylate cyclase-D (GC-D). These GC-D-positive (GC-D+) neurons are not known to express odorant receptors. Axons of GC-D+ neurons project to the necklace glomeruli, which reside between the main and accessory olfactory bulbs. To label the subset of necklace glomeruli that receive axonal input from GC-D+ neurons, we generated two strains of mice with targeted mutations in the GC-D gene (Gucy2d). These mice co-express GC-D with an axonal marker, tau-beta-galactosidase or tauGFP, by virtue of a bicistronic strategy that leaves the coding region of the Gucy2d gene intact. With these strains, the patterns of axonal projections of GC-D+ neurons to necklace glomeruli can be visualized in whole mounts. We show that deficiency of one of the neuropilin 2 ligands of the class III semaphorin family, Sema3f, but not Sema3b, phenocopies the loss of neuropilin 2 (Nrp2) for axonal wiring of GC-D+ neurons. Some glomeruli homogeneously innervated by axons of GC-D+ neurons form ectopically within the glomerular layer, across wide areas of the main olfactory bulb. Similarly, axonal wiring of some vomeronasal sensory neurons is perturbed by a deficiency of Nrp2 or Sema3f, but not Sema3b or Sema3c. Our findings provide genetic evidence for a Nrp2-Sema3f interaction as a determinant of the wiring of axons of GC-D+ neurons into the unusual configuration of necklace glomeruli.
Collapse
Affiliation(s)
- Andreas Walz
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
37
|
Šatkauskas S, Bagnard D. Local protein synthesis in axonal growth cones: what is next? Cell Adh Migr 2007; 1:179-84. [PMID: 19262143 PMCID: PMC2634104 DOI: 10.4161/cam.1.4.5561] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 01/11/2008] [Indexed: 01/17/2023] Open
Abstract
While initially thought to be essentially a developmental characteristic, observed in artificial in vitro models, local protein synthesis in growth cones has been described in the adult, and more interestingly, during nerve regeneration. This emerging field is under intense investigation, revealing new functions of localized protein synthesis that include axon guidance, growth cone adaptation and sensitivity modulation at intermediate targets or axon regeneration. Here, we will review these functions and provide a short survey of the current knowledge on mechanisms of mRNA transport and regulation of localized protein synthesis. In addition, we will consider what lessons can be learned from localized protein synthesis in dendrites, and what developments can be expected next in the field. This latter question relates to the crucial point of which technical strategy to adopt for an ideal and pertinent analysis of the phenomenon.
Collapse
Affiliation(s)
- Saulius Šatkauskas
- INSERM U575 Physiopathologie du Système Nerveux; Strasbourg, France
- Department of Biology; Vytautas Magnus University; Kaunas, Lithuania
| | | |
Collapse
|
38
|
Mann F, Chauvet S, Rougon G. Semaphorins in development and adult brain: Implication for neurological diseases. Prog Neurobiol 2007; 82:57-79. [PMID: 17537564 DOI: 10.1016/j.pneurobio.2007.02.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 01/18/2007] [Accepted: 02/26/2007] [Indexed: 01/17/2023]
Abstract
As a group, Semaphorins are expressed in most tissues and this distribution varies considerably with age. Semaphorins are dynamically expressed during embryonic development and their expression is often associated with growing axons. This expression decreases with maturity and several observations support the idea that in adult brain the expression of secreted Semaphorins is sensitive to electrical activity and experience. The functional role of Semaphorins in guiding axonal projections is well established and more recent evidence points to additional roles in the development, function and reorganization of synaptic complexes. Semaphorins exert the majority of their effects by binding to cognate receptor proteins through their extracellular domains. A common theme is that Semaphorin-triggered signalling induces the rearrangement of the actin and microtubule cytoskeleton. Mutations in Semaphorin genes are linked to several human diseases associated with neurological changes, but their actual influence in the pathogenesis of these diseases remains to be demonstrated. In addition, Semaphorins and their receptors are likely to mediate cross-talk between neurons and other cell types, including in pathological situations where their influence can be damaging or favourable depending on the context. We discuss how the manipulation of Semaphorin function might be crucial for future clinical studies.
Collapse
Affiliation(s)
- Fanny Mann
- CNRS UMR 6216, Université de la Méditerranée, Developmental Biology Institute of Marseille Luminy, Case 907, Parc Scientifique de Luminy, 13288 Marseille Cedex 09, France
| | | | | |
Collapse
|
39
|
Baba T, Kariya M, Higuchi T, Mandai M, Matsumura N, Kondoh E, Miyanishi M, Fukuhara K, Takakura K, Fujii S. Neuropilin-1 promotes unlimited growth of ovarian cancer by evading contact inhibition. Gynecol Oncol 2007; 105:703-11. [PMID: 17376520 DOI: 10.1016/j.ygyno.2007.02.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 02/05/2007] [Accepted: 02/05/2007] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Neuropilin-1 (NRP-1) is a receptor for both semaphorin and vascular endothelial growth factor and is up-regulated in a variety of human cancers. While there are some reports of NRP-1 expression in ovarian neoplasm, those results differ in pattern of its expression and its role in ovarian cancer is still unclear. We sought to investigate the expression pattern and role of NRP-1 in ovarian cancer. METHODS NRP-1 expression was analyzed with eighty-seven ovarian tissue samples by immunohistochemistry and four ovarian cell lines by quantitative RT-PCR and Western blotting. To detect its molecular role in ovarian cancer, WST-1 assay, invasion assay and soft agar assay were performed with or without NRP-1 suppression by the introduction of short hairpin RNAs. RESULTS NRP-1 expression was found to be enhanced in ovarian cancer compared with ovarian surface epithelium (OSE), benign adenoma and tumors of low malignant potential. In vitro, NRP-1 expression was augmented threefold during malignant transformation of OSE cells with oncogene ras, suggesting an association between NRP-1 and oncogenesis. Suppression of NRP-1 reduced cell proliferation in a dense state, indicating that persistently high expression of NRP-1 in ovarian cancer enhances proliferation through evasion of contact inhibition. Suppression of NRP-1 also decreased cell growth in soft agar and invasion to the extracellular matrix in vitro. CONCLUSIONS These results suggest that NRP-1 is not only associated with oncogenesis, but also with ovarian cancer malignancy, and this molecule is a targeting candidate for the treatment of ovarian malignancies.
Collapse
Affiliation(s)
- Tsukasa Baba
- Department of Gynecology and Obstetrics, Kyoto University Graduate School of Medicine, 54 Shogoinkawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|