1
|
DeMayo MM, Cole J, Sohn MN, Bray SL, Harris AD, Patten SB, McGirr A. Procognitive Effects of Adjunctive D-Cycloserine to Intermittent Theta-Burst Stimulation in Major Depressive Disorder: Effets procognitifs de la D-cyclosérine en traitement complémentaire par la stimulation thêta-burst intermittente dans le trouble dépressif caractérisé. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2024:7067437241293984. [PMID: 39470367 PMCID: PMC11562928 DOI: 10.1177/07067437241293984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
OBJECTIVE Major depressive disorder (MDD) is associated with cognitive impairments that persist despite successful treatment. Transcranial magnetic stimulation is a noninvasive treatment for MDD that is associated with small procognitive effects on working memory and executive function. We hypothesized that pairing stimulation with N-methyl-D-aspartate (NMDA) receptor agonism would enhance the effects of stimulation and its procognitive effects. METHOD The effect of NMDA receptor agonism (D-cycloserine, 100 mg) on cognitive performance was tested in two randomized double-blind placebo-controlled trials: (1) acute effects of in the absence of stimulation (n = 20 healthy participants) and (2) a treatment study of individuals with MDD (n = 50) randomized to daily intermittent theta-burst stimulation (iTBS) with placebo or D-cycloserine for 2 weeks. Cognitive function was measured using the THINC-it battery, comprised of the Perceived Deficits Questionnaire, the Choice Reaction Time, the Trail Making Test, the Digit Symbol Substitution Test, and the 1-Back tests. RESULTS D-cycloserine had no acute effect on cognition compared to placebo. iTBS + D-cycloserine was associated with significant improvements in subjective cognitive function and correct responses on the 1-Back when compared to iTBS + placebo. Improvements in subjective cognition paralleled depressive symptoms improvement, however 1-Back improvements were not attributable to improvement in depression. CONCLUSIONS An intersectional strategy pairing iTBS with NMDA receptor agonism may restore cognitive function in MDD.
Collapse
Affiliation(s)
- Marilena M. DeMayo
- Department of Psychiatry, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Mathison Centre for Mental Health Research and Education, Calgary, Canada
- Department of Radiology, University of Calgary, Calgary, Canada
| | - Jaeden Cole
- Department of Psychiatry, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Mathison Centre for Mental Health Research and Education, Calgary, Canada
| | - Myren N. Sohn
- Department of Psychiatry, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Mathison Centre for Mental Health Research and Education, Calgary, Canada
| | - Signe L. Bray
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Mathison Centre for Mental Health Research and Education, Calgary, Canada
- Department of Radiology, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Ashley D. Harris
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Mathison Centre for Mental Health Research and Education, Calgary, Canada
- Department of Radiology, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Scott B. Patten
- Department of Psychiatry, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Mathison Centre for Mental Health Research and Education, Calgary, Canada
- Department of Community Health Sciences, University of Calgary, Calgary, Canada
| | - Alexander McGirr
- Department of Psychiatry, University of Calgary, Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
- Mathison Centre for Mental Health Research and Education, Calgary, Canada
| |
Collapse
|
2
|
Kim H, Kornman PT, Kweon J, Wassermann EM, Wright DL, Li J, Brown JC. Combined effects of pharmacological interventions and intermittent theta-burst stimulation on motor sequence learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604878. [PMID: 39211172 PMCID: PMC11361068 DOI: 10.1101/2024.07.24.604878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Drugs that modulate N-methyl-D-aspartate (NMDA) or γ-Aminobutyric acid type A (GABA A ) receptors can shed light on their role in synaptic plasticity mechanisms underlying the effects of non-invasive brain stimulation. However, research on the combined effects of these drugs and exogenous stimulation on motor learning is limited. This study aimed to investigate the effects of pharmacological interventions combined with intermittent theta-burst stimulation (iTBS) on human motor learning. Nine right-handed healthy subjects (mean age ± SD: 31.56 ± 12.96 years; 6 females) participated in this double-blind crossover study. All participants were assigned to four drug conditions in a randomized order: (1) D-cycloserine (partial NMDA receptor agonist), (2) D-cycloserine + dextromethorphan (NMDA receptor agonist + antagonist), (3) lorazepam (GABA A receptor agonist), and (4) placebo (identical microcrystalline cellulose capsule). After drug intake, participants practiced the 12-item keyboard sequential task as a baseline measure. Two hours after drug intake, iTBS was administered at the primary motor cortex. Following iTBS, the retention test was performed in the same manner as the baseline measure. Our findings revealed that lorazepam combined with iTBS impaired motor learning during the retention test. Future studies are still needed for a better understanding of the mechanisms through which TMS may influence human motor learning.
Collapse
|
3
|
Pace-Schott EF, Seo J, Bottary R. The influence of sleep on fear extinction in trauma-related disorders. Neurobiol Stress 2022; 22:100500. [PMID: 36545012 PMCID: PMC9761387 DOI: 10.1016/j.ynstr.2022.100500] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/21/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
In Posttraumatic Stress Disorder (PTSD), fear and anxiety become dysregulated following psychologically traumatic events. Regulation of fear and anxiety involves both high-level cognitive processes such as cognitive reattribution and low-level, partially automatic memory processes such as fear extinction, safety learning and habituation. These latter processes are believed to be deficient in PTSD. While insomnia and nightmares are characteristic symptoms of existing PTSD, abundant recent evidence suggests that sleep disruption prior to and acute sleep disturbance following traumatic events both can predispose an individual to develop PTSD. Sleep promotes consolidation in multiple memory systems and is believed to also do so for low-level emotion-regulatory memory processes. Consequently sleep disruption may contribute to the etiology of PTSD by interfering with consolidation in low-level emotion-regulatory memory systems. During the first weeks following a traumatic event, when in the course of everyday life resilient individuals begin to acquire and consolidate these low-level emotion-regulatory memories, those who will develop PTSD symptoms may fail to do so. This deficit may, in part, result from alterations of sleep that interfere with their consolidation, such as REM fragmentation, that have also been found to presage later PTSD symptoms. Here, sleep disruption in PTSD as well as fear extinction, safety learning and habituation and their known alterations in PTSD are first briefly reviewed. Then neural processes that occur during the early post-trauma period that might impede low-level emotion regulatory processes through alterations of sleep quality and physiology will be considered. Lastly, recent neuroimaging evidence from a fear conditioning and extinction paradigm in patient groups and their controls will be considered along with one possible neural process that may contribute to a vulnerability to PTSD following trauma.
Collapse
Affiliation(s)
- Edward F. Pace-Schott
- Massachusetts General Hospital, Department of Psychiatry, Charlestown, MA, USA
- Harvard Medical School, Department of Psychiatry, Charlestown, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Corresponding author. Harvard Medical School, Massachusetts General Hospital - East, CNY 149 13th Street, Charlestown, MA, 02129, USA.
| | - Jeehye Seo
- Massachusetts General Hospital, Department of Psychiatry, Charlestown, MA, USA
- Harvard Medical School, Department of Psychiatry, Charlestown, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Korea University, Department of Brain & Cognitive Engineering, Seongbuk-gu, Seoul, South Korea
| | - Ryan Bottary
- Massachusetts General Hospital, Department of Psychiatry, Charlestown, MA, USA
- Harvard Medical School, Department of Psychiatry, Charlestown, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA, USA
| |
Collapse
|
4
|
Lissek S, Klass A, Tegenthoff M. NMDA receptor-mediated processing in inferior frontal gyrus facilitates acquisition and extinction learning and strengthens renewal. Neurobiol Learn Mem 2022; 194:107672. [PMID: 35917993 DOI: 10.1016/j.nlm.2022.107672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/14/2022] [Accepted: 07/27/2022] [Indexed: 11/17/2022]
Abstract
While the renewal effect of extinction is considered to be invoked by attention to context during the extinction phase, there is also evidence that processing during initial learning (acquisition) may be important for later renewal. A noradrenergic agonist and a dopaminergic antagonist, administered before acquisition, did not affect renewal, however, the effects of NMDAergic neurotransmission in this regard are as yet unknown. In a previous study, administration of a single dose of the NMDA agonist D-cycloserine (DCS) before extinction learning facilitated extinction in the context of acquisition (AAA), but had no effect upon renewal. In the present fMRI study, DCS was administered prior to the initial acquisition of a predictive learning task, in order to investigate whether NMDA receptor (NMDAR) stimulation at this timepoint will modulate overall learning as well as the level of renewal, while increasing activation in the extinction- and renewal-relevant brain regions of inferior frontal gyrus (iFG) and hippocampus (HC). DCS facilitated acquisition, as well as extinction learning in the context of acquisition (AAA), and raised the level of ABA renewal. While BOLD activation during acquisition did not differ between treatment groups, activation in bilateral iFG showed a double dissociation during processing of AAA extinction trials, with DCS-mediated higher activation in right iFG and deactivation in left iFG. In contrast, placebo showed higher activation in left iFG and deactivation in right iFG. During the test (recall) phase, left iFG and right anterior hippocampus activation was increased in DCS participants who showed renewal, with activation in this region correlating with the ABA renewal level. The results demonstrate that NMDA receptor stimulation can facilitate both initial learning and extinction of associations, and in this way has an impact upon the resultant level of renewal. In particular NMDAergic processing in iFG appears relevant for the facilitation of AAA extinction and ABA recall in the test phase.
Collapse
Affiliation(s)
- Silke Lissek
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Germany.
| | - Anne Klass
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Germany
| | - Martin Tegenthoff
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Germany
| |
Collapse
|
5
|
Siddik MAB, Fendt M. D-cycloserine rescues scopolamine-induced deficits in cognitive flexibility in rats measured by the attentional set-shifting task. Behav Brain Res 2022; 431:113961. [PMID: 35691513 DOI: 10.1016/j.bbr.2022.113961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/23/2022] [Accepted: 06/07/2022] [Indexed: 11/02/2022]
Abstract
Cognitive flexibility facilitates adaptions to a changing environment in humans and animals and can be assessed with the attentional set shifting task (ASST). In various learning paradigms for laboratory rodents, the partial NMDA receptor agonist D-cycloserine has been found to have pro-cognitive effects. However, D-cycloserine has not yet been investigated for its effects on cognitive flexibility. The aim of the present study was to determine whether D-cycloserine is able to improve cognitive flexibility measured by the ASST in rats. Rats were first pre-treated with the muscarinic antagonist scopolamine (0.5 mg/kg) before the D-cycloserine administrations (20 mg/kg) to induce deficits in ASST performance. Our findings showed impaired ASST performance after scopolamine administration with significant effects on reversal phases and extra-dimensional shift. D-cycloserine treatment selectively improved the performance in the extra-dimensional shift and the last reversal phase, where scopolamine effects were most pronounced. These findings suggest that D-cycloserine can rescue deficits in cognitive flexibility.
Collapse
Affiliation(s)
- Md Abu Bokor Siddik
- Department of Psychology, Govt. Azizul Haque College, Bogura, Bangladesh; Institute for Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany
| | - Markus Fendt
- Institute for Pharmacology and Toxicology, Otto-von-Guericke University, Magdeburg, Germany; Center for Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, Germany.
| |
Collapse
|
6
|
Hertenstein E, Trinca E, Schneider CL, Wunderlin M, Fehér K, Riemann D, Nissen C. Augmentation of Psychotherapy with Neurobiological Methods: Current State and Future Directions. Neuropsychobiology 2022; 80:437-453. [PMID: 33910218 DOI: 10.1159/000514564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/18/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Psychotherapy and pharmacotherapy are first-line treatments for mental disorders. Despite recent improvements, only approximately 50% of the patients reach sustained remission, indicating a need for novel developments. The main concept put forward in this systematic review and hypothesis article is the targeted co-administration of defined neurobiological interventions and specific psychotherapeutic techniques. METHODS We conducted a systematic literature search for randomized controlled trials comparing the efficacy of augmented psychotherapy to psychotherapy alone. RESULTS Thirty-five trials fulfilled the inclusion criteria. The majority (29 trials) used augmentation strategies such as D-cycloserine, yohimbine, or sleep to enhance the effects of exposure therapy for anxiety disorders. Fewer studies investigated noninvasive brain stimulation with the aim of improving cognitive control, psychedelic compounds with the aim of enhancing existentially oriented psychotherapy, and oxytocin to improve social communication during psychotherapy. Results demonstrate small augmentation effects for the enhancement of exposure therapy - however, some of the studies found negative results. Other methods are less thoroughly researched, and results are mixed. CONCLUSIONS This approach provides an open matrix for further research and has the potential to systematically guide future studies.
Collapse
Affiliation(s)
| | - Ersilia Trinca
- University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
| | | | - Marina Wunderlin
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Kristoffer Fehér
- University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
| | - Dieter Riemann
- Clinic of Psychiatry and Psychotherapy, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Nissen
- University Hospital of Psychiatry and Psychotherapy, Bern, Switzerland
| |
Collapse
|
7
|
Piubelli L, Murtas G, Rabattoni V, Pollegioni L. The Role of D-Amino Acids in Alzheimer's Disease. J Alzheimers Dis 2021; 80:475-492. [PMID: 33554911 DOI: 10.3233/jad-201217] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD), the main cause of dementia worldwide, is characterized by a complex and multifactorial etiology. In large part, excitatory neurotransmission in the central nervous system is mediated by glutamate and its receptors are involved in synaptic plasticity. The N-methyl-D-aspartate (NMDA) receptors, which require the agonist glutamate and a coagonist such as glycine or the D-enantiomer of serine for activation, play a main role here. A second D-amino acid, D-aspartate, acts as agonist of NMDA receptors. D-amino acids, present in low amounts in nature and long considered to be of bacterial origin, have distinctive functions in mammals. In recent years, alterations in physiological levels of various D-amino acids have been linked to various pathological states, ranging from chronic kidney disease to neurological disorders. Actually, the level of NMDA receptor signaling must be balanced to promote neuronal survival and prevent neurodegeneration: this signaling in AD is affected mainly by glutamate availability and modulation of the receptor's functions. Here, we report the experimental findings linking D-serine and D-aspartate, through NMDA receptor modulation, to AD and cognitive functions. Interestingly, AD progression has been also associated with the enzymes related to D-amino acid metabolism as well as with glucose and serine metabolism. Furthermore, the D-serine and D-/total serine ratio in serum have been recently proposed as biomarkers of AD progression. A greater understanding of the role of D-amino acids in excitotoxicity related to the pathogenesis of AD will facilitate novel therapeutic treatments to cure the disease and improve life expectancy.
Collapse
Affiliation(s)
- Luciano Piubelli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Giulia Murtas
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Valentina Rabattoni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy
| |
Collapse
|
8
|
Hanson JL, Nacewicz BM. Amygdala Allostasis and Early Life Adversity: Considering Excitotoxicity and Inescapability in the Sequelae of Stress. Front Hum Neurosci 2021; 15:624705. [PMID: 34140882 PMCID: PMC8203824 DOI: 10.3389/fnhum.2021.624705] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 04/23/2021] [Indexed: 12/19/2022] Open
Abstract
Early life adversity (ELA), such as child maltreatment or child poverty, engenders problems with emotional and behavioral regulation. In the quest to understand the neurobiological sequelae and mechanisms of risk, the amygdala has been of major focus. While the basic functions of this region make it a strong candidate for understanding the multiple mental health issues common after ELA, extant literature is marked by profound inconsistencies, with reports of larger, smaller, and no differences in regional volumes of this area. We believe integrative models of stress neurodevelopment, grounded in "allostatic load," will help resolve inconsistencies in the impact of ELA on the amygdala. In this review, we attempt to connect past research studies to new findings with animal models of cellular and neurotransmitter mediators of stress buffering to extreme fear generalization onto testable research and clinical concepts. Drawing on the greater impact of inescapability over unpredictability in animal models, we propose a mechanism by which ELA aggravates an exhaustive cycle of amygdala expansion and subsequent toxic-metabolic damage. We connect this neurobiological sequela to psychosocial mal/adaptation after ELA, bridging to behavioral studies of attachment, emotion processing, and social functioning. Lastly, we conclude this review by proposing a multitude of future directions in preclinical work and studies of humans that suffered ELA.
Collapse
Affiliation(s)
- Jamie L. Hanson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Brendon M. Nacewicz
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
9
|
Dempsey-Jones H, Steudte-Schmiedgen S, Browning M, Makin TR, Woud ML, Harmer CJ, Margraf J, Reinecke A. Human perceptual learning is delayed by the N-methyl-D-aspartate receptor partial agonist D-cycloserine. J Psychopharmacol 2021; 35:253-264. [PMID: 33570017 PMCID: PMC7924109 DOI: 10.1177/0269881120986349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND The optimisation of learning has long been a focus of scientific research, particularly in relation to improving psychological treatment and recovery of brain function. Previously, partial N-methyl-D-aspartate agonists have been shown to augment reward learning, procedural learning and psychological therapy, but many studies also report no impact of these compounds on the same processes. AIMS Here we investigate whether administration of an N-methyl-D-aspartate partial agonist (D-cycloserine) modulates a previously unexplored process - tactile perceptual learning. Further, we use a longitudinal design to investigate whether N-methyl-D-aspartate-related learning effects vary with time, thereby providing a potentially simple explanation for apparent mixed effects in previous research. METHODS Thirty-four volunteers were randomised to receive one dose of 250 mg D-cycloserine or placebo 2 h before tactile sensitivity training. Tactile perception was measured using psychophysical methods before and after training, and 24/48 h later. RESULTS The placebo group showed immediate within-day tactile perception gains, but no further improvements between-days. In contrast, tactile perception remained at baseline on day one in the D-cycloserine group (no within-day learning), but showed significant overnight gains on day two. Both groups were equivalent in tactile perception by the final testing - indicating N-methyl-D-aspartate effects changed the timing, but not the overall amount of tactile learning. CONCLUSIONS In sum, we provide first evidence for modulation of perceptual learning by administration of a partial N-methyl-D-aspartate agonist. Resolving how the effects of such compounds become apparent over time will assist the optimisation of testing schedules, and may help resolve discrepancies across the learning and cognition domains.
Collapse
Affiliation(s)
- Harriet Dempsey-Jones
- Wellcome Centre for Integrated Neuroimaging, University of Oxford, Oxford, UK
- School of Psychology, University of Queensland, Brisbane, Australia
| | - Susann Steudte-Schmiedgen
- Department of Psychotherapy and Psychosomatic Medicine, Technische Universität Dresden, Dresden, Germany
| | - Michael Browning
- Department of Psychiatry, University of Oxford, Oxford, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| | - Tamar R Makin
- Wellcome Centre for Integrated Neuroimaging, University of Oxford, Oxford, UK
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Marcella L Woud
- Department of Clinical Psychology and Psychotherapy, Ruhr-University Bochum, Bochum, Germany
| | - Catherine J Harmer
- Department of Psychiatry, University of Oxford, Oxford, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| | - Juergen Margraf
- Department of Clinical Psychology and Psychotherapy, Ruhr-University Bochum, Bochum, Germany
| | | |
Collapse
|
10
|
Ebrahimi C, Gechter J, Lueken U, Schlagenhauf F, Wittchen HU, Hamm AO, Ströhle A. Augmenting extinction learning with D-cycloserine reduces return of fear: a randomized, placebo-controlled fMRI study. Neuropsychopharmacology 2020; 45:499-506. [PMID: 31634897 PMCID: PMC6969173 DOI: 10.1038/s41386-019-0552-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/22/2019] [Accepted: 10/14/2019] [Indexed: 11/08/2022]
Abstract
D-cycloserine (DCS), a partial NMDA-receptor agonist, seems to be a promising enhancer for exposure therapy in anxiety disorders. It has been tested successfully in animal models of fear extinction, where DCS enhanced extinction learning. Applied in clinical studies, results of DCS-augmented exposure therapy remain ambiguous, calling for a deeper understanding of the underlying mechanisms of DCS and its exact effect on extinction learning and return of fear (ROF) in humans. In the present study, we investigated the effect of DCS-augmented extinction learning on behavioral, psychophysiological, and neural indices of ROF during a 24-h delayed recall test. Thirty-seven participants entered a randomized, placebo-controlled, double-blind, 3-day fear conditioning and delayed extinction fMRI design. One hour before extinction training, participants received an oral dose of 50 mg of DCS or a placebo. Behavioral arousal ratings revealed a generalized ROF during extinction recall in the placebo but not DCS group. Furthermore, participants receiving DCS compared to placebo showed attenuated differential BOLD responses in left posterior hippocampus and amygdala from extinction learning to extinction recall, due to increased hippocampal recruitment in placebo and trendwise decreased amygdala responding in DCS subjects. Our finding that DCS reduces ROF in arousal ratings and neural structures subserving defensive reactions support a role for NMDA receptors in extinction memory consolidation and encourage further translational research.
Collapse
Affiliation(s)
- Claudia Ebrahimi
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
| | - Johanna Gechter
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| | - Ulrike Lueken
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Florian Schlagenhauf
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Hans-Ulrich Wittchen
- Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Dresden, Germany
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Alfons O Hamm
- Department of Biological and Clinical Psychology/Psychotherapy, University of Greifswald, Greifswald, Germany
| | - Andreas Ströhle
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
11
|
Both S, Van Veen RJB, Brom M, Weijenborg PTM. A randomized, placebo-controlled laboratory study of the effects of D-cycloserine on sexual memory consolidation in women. Psychopharmacology (Berl) 2020; 237:1291-1303. [PMID: 31984445 PMCID: PMC7196949 DOI: 10.1007/s00213-020-05457-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 01/10/2020] [Indexed: 11/29/2022]
Abstract
RATIONALE AND OBJECTIVE The aim of this study was to investigate the possible facilitating effect of the partial NMDA receptor agonist D-cycloserine (DCS) on memory consolidation of conditioned sexual responses and to examine the capability of DCS to reduce context-specificity of learning. METHODS In a randomized placebo-controlled double-blind trial, 50 healthy females were exposed to a differential conditioning procedure. Two pictures of a male abdomen were used as conditional stimuli (CSs), of which one (the CS+) was followed by the unconditional stimulus (US), a genital vibrotactile stimulus. After the conditioning session on day 1, participants received either 125 mg of DCS or a placebo. The effects of DCS on affect, sexual arousal and US expectancy in response to the CS+ and CS- were examined 24 h after the conditioning procedure. RESULTS A main effect of DCS was found on affect at the first test trials (p = 0.04, ηp2 = 0.09), and a similar non-significant but trend level effect was found for sexual arousal (p = 0.06, ηp2 = 0.07), which appeared to persist over a longer time (p = 0.07, ηp2 = 0.08). Unexpectedly, ratings of positive affect and sexual arousal in response to both the CS+ and the CS- were higher in the DCS condition compared to the control condition, possibly indicating that DCS administration reduced stimulus specificity. Since the results did not show clear evidence for context learning, we were not able to test effects on context-specificity of learning. CONCLUSION Although largely inconclusive, the results provide tentative support for a facilitating effect of DCS on affect and sexual arousal in response to stimuli that were presented in a sexual conditioning procedure, however, no conclusions can be drawn about effects of DCS on sexual reward learning, since the design and results do not lend themselves to unambiguous interpretation.
Collapse
Affiliation(s)
- S. Both
- Department of Psychosomatic Gynecology and Sexology, Leiden University Medical Center, Poortgebouw-Zuid, 4e etage, Rijnsburgerweg 10, 2333 AA Leiden, The Netherlands
| | - R. J. B. Van Veen
- Department of Psychosomatic Gynecology and Sexology, Leiden University Medical Center, Poortgebouw-Zuid, 4e etage, Rijnsburgerweg 10, 2333 AA Leiden, The Netherlands
| | - M. Brom
- Department of Psychosomatic Gynecology and Sexology, Leiden University Medical Center, Poortgebouw-Zuid, 4e etage, Rijnsburgerweg 10, 2333 AA Leiden, The Netherlands
| | - P. T. M. Weijenborg
- Department of Psychosomatic Gynecology and Sexology, Leiden University Medical Center, Poortgebouw-Zuid, 4e etage, Rijnsburgerweg 10, 2333 AA Leiden, The Netherlands
| |
Collapse
|
12
|
Amygdala GluN2B-NMDAR dysfunction is critical in abnormal aggression of neurodevelopmental origin induced by St8sia2 deficiency. Mol Psychiatry 2020; 25:2144-2161. [PMID: 30089788 PMCID: PMC7473847 DOI: 10.1038/s41380-018-0132-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 06/02/2018] [Accepted: 06/28/2018] [Indexed: 11/23/2022]
Abstract
Aggression is frequently observed in neurodevelopmental psychiatric disorders such as schizophrenia, autism, and bipolar disorder. Due to a lack of understanding of its underlying mechanisms, effective treatments for abnormal aggression are still missing. Recently, genetic variations in Sialyltransferase 2 (St8sia2) have been linked to these disorders and aggression. Here we identify abnormal aggressive behaviors and concomitant blunted fear learning in St8sia2 knockout (-/-) mice. It is worth noting that the amygdala of St8sia2-/- mice shows diminished threat-induced activation, as well as alterations in synaptic structure and function, including impaired GluN2B-containing NMDA receptor-mediated synaptic transmission and plasticity. Pharmacological rescue of NMDA receptor activity in the amygdala of St8sia2-/- mice with the partial agonist D-cycloserine restores synaptic plasticity and normalizes behavioral aberrations. Pathological aggression and associated traits were recapitulated by specific amygdala neonatal St8sia2 silencing. Our results establish a developmental link between St8sia2 deficiency and a pathological aggression syndrome, specify synaptic targets for therapeutic developments, and highlight D-cycloserine as a plausible treatment.
Collapse
|
13
|
Masmudi-Martín M, Navarro-Lobato I, López-Aranda MF, Delgado G, Martín-Montañez E, Quiros-Ortega ME, Carretero-Rey M, Narváez L, Garcia-Garrido MF, Posadas S, López-Téllez JF, Blanco E, Jiménez-Recuerda I, Granados-Durán P, Paez-Rueda J, López JC, Khan ZU. RGS14 414 treatment induces memory enhancement and rescues episodic memory deficits. FASEB J 2019; 33:11804-11820. [PMID: 31365833 DOI: 10.1096/fj.201900429rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Memory deficits affect a large proportion of the human population and are associated with aging and many neurologic, neurodegenerative, and psychiatric diseases. Treatment of this mental disorder has been disappointing because all potential candidates studied thus far have failed to produce consistent effects across various types of memory and have shown limited to no effects on memory deficits. Here, we show that the promotion of neuronal arborization through the expression of the regulator of G-protein signaling 14 of 414 amino acids (RGS14414) not only induced robust enhancement of multiple types of memory but was also sufficient for the recovery of recognition, spatial, and temporal memory, which are kinds of episodic memory that are primarily affected in patients or individuals with memory dysfunction. We observed that a surge in neuronal arborization was mediated by up-regulation of brain-derived neurotrophic factor (BDNF) signaling and that the deletion of BDNF abrogated both neuronal arborization activation and memory enhancement. The activation of BDNF-dependent neuronal arborization generated almost 2-fold increases in synapse numbers in dendrites of pyramidal neurons and in neurites of nonpyramidal neurons. This increase in synaptic connections might have evoked reorganization within neuronal circuits and eventually supported an increase in the activity of such circuits. Thus, in addition to showing the potential of RGS14414 for rescuing memory deficits, our results suggest that a boost in circuit activity could facilitate memory enhancement and the reversal of memory deficits.-Masmudi-Martín, M., Navarro-Lobato, I., López-Aranda, M. F., Delgado, G., Martín-Montañez, E., Quiros-Ortega, M. E., Carretero-Rey, M., Narváez, L., Garcia-Garrido, M. F., Posadas, S., López-Téllez, J. F., Blanco, E., Jiménez-Recuerda, I., Granados-Durán, P., Paez-Rueda, J., López, J. C., Khan, Z. U. RGS14414 treatment induces memory enhancement and rescues episodic memory deficits.
Collapse
Affiliation(s)
- Mariam Masmudi-Martín
- Laboratory of Neurobiology, Centro de Investigaciones Medico Sanitaria (CIMES), University of Malaga, Malaga, Spain.,Department of Medicine, University of Malaga, Malaga, Spain
| | - Irene Navarro-Lobato
- Laboratory of Neurobiology, Centro de Investigaciones Medico Sanitaria (CIMES), University of Malaga, Malaga, Spain.,Department of Medicine, University of Malaga, Malaga, Spain
| | - Manuel F López-Aranda
- Laboratory of Neurobiology, Centro de Investigaciones Medico Sanitaria (CIMES), University of Malaga, Malaga, Spain.,Department of Medicine, University of Malaga, Malaga, Spain
| | - Gloria Delgado
- Laboratory of Neurobiology, Centro de Investigaciones Medico Sanitaria (CIMES), University of Malaga, Malaga, Spain.,Department of Medicine, University of Malaga, Malaga, Spain
| | - Elisa Martín-Montañez
- Department of Pharmacology, Faculty of Medicine, Campus Teatinos, University of Malaga, Malaga, Spain.,Institute of Biomedical Research in Malaga (IBIMA), University of Malaga, Malaga, Spain
| | - Maria E Quiros-Ortega
- Laboratory of Neurobiology, Centro de Investigaciones Medico Sanitaria (CIMES), University of Malaga, Malaga, Spain.,Department of Medicine, University of Malaga, Malaga, Spain
| | - Marta Carretero-Rey
- Laboratory of Neurobiology, Centro de Investigaciones Medico Sanitaria (CIMES), University of Malaga, Malaga, Spain.,Department of Medicine, University of Malaga, Malaga, Spain
| | - Lucía Narváez
- Laboratory of Neurobiology, Centro de Investigaciones Medico Sanitaria (CIMES), University of Malaga, Malaga, Spain.,Department of Medicine, University of Malaga, Malaga, Spain
| | - Maria F Garcia-Garrido
- Laboratory of Neurobiology, Centro de Investigaciones Medico Sanitaria (CIMES), University of Malaga, Malaga, Spain.,Department of Medicine, University of Malaga, Malaga, Spain
| | - Sinforiano Posadas
- Laboratory of Neurobiology, Centro de Investigaciones Medico Sanitaria (CIMES), University of Malaga, Malaga, Spain.,Department of Medicine, University of Malaga, Malaga, Spain
| | - Juan F López-Téllez
- Laboratory of Neurobiology, Centro de Investigaciones Medico Sanitaria (CIMES), University of Malaga, Malaga, Spain.,Department of Medicine, University of Malaga, Malaga, Spain
| | - Eduardo Blanco
- Department of Pedagogy and Psychology, University of Lleida, Lleida, Spain
| | - Inmaculada Jiménez-Recuerda
- Laboratory of Neurobiology, Centro de Investigaciones Medico Sanitaria (CIMES), University of Malaga, Malaga, Spain.,Department of Medicine, University of Malaga, Malaga, Spain
| | - Pablo Granados-Durán
- Laboratory of Neurobiology, Centro de Investigaciones Medico Sanitaria (CIMES), University of Malaga, Malaga, Spain.,Department of Medicine, University of Malaga, Malaga, Spain
| | - Jose Paez-Rueda
- Laboratory of Neurobiology, Centro de Investigaciones Medico Sanitaria (CIMES), University of Malaga, Malaga, Spain
| | - Juan C López
- Animal Behavior and Neuroscience Laboratory, Department of Experimental Psychology, Faculty of Psychology, University of Seville, Seville, Spain
| | - Zafar U Khan
- Laboratory of Neurobiology, Centro de Investigaciones Medico Sanitaria (CIMES), University of Malaga, Malaga, Spain.,Department of Medicine, University of Malaga, Malaga, Spain.,Institute of Biomedical Research in Malaga (IBIMA), University of Malaga, Malaga, Spain.,Centro Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Institute of Health Carlos III, Madrid, Spain
| |
Collapse
|
14
|
Lin CH, Lane HY. The Role of N-Methyl-D-Aspartate Receptor Neurotransmission and Precision Medicine in Behavioral and Psychological Symptoms of Dementia. Front Pharmacol 2019; 10:540. [PMID: 31191302 PMCID: PMC6539199 DOI: 10.3389/fphar.2019.00540] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/29/2019] [Indexed: 12/16/2022] Open
Abstract
While the world’s population is aging, the prevalence of dementia and the associated behavioral and psychological symptoms of dementia (BPSD) rises rapidly. BPSD are associated with worsening of cognitive function and poorer prognosis. No pharmacological treatment has been approved to be beneficial for BPSD to date. Dysfunction of the N-methyl-D-aspartate receptor (NMDAR)-related neurotransmission leads to cognitive impairment and behavioral changes, both of which are core symptoms of BPSD. Memantine, an NMDAR partial antagonist, is used to treat moderate to severe Alzheimer’s disease (AD). On the other hand, a D-amino acid oxidase inhibitor improved early-phase AD. Whether to enhance or to attenuate the NMDAR may depend on the phases of dementia. It will be valuable to develop biomarkers indicating the activity of NMDAR, particularly in BPSD. In addition, recent reports suggest that gender difference exists in the treatment of dementia. Selecting subpopulations of patients with BPSD who are prone to improvement with treatment would be important. We reviewed literatures regarding the treatment of BPSD, focusing on the NMDAR-related modulation and precision medicine. Future studies examining the NMDAR modulators with the aid of potential biomarkers to tailor the treatment for individualized patients with BPSD are warranted.
Collapse
Affiliation(s)
- Chieh-Hsin Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan.,School of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Department of Psychiatry and Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan.,Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| |
Collapse
|
15
|
Malikowska-Racia N, Salat K. Recent advances in the neurobiology of posttraumatic stress disorder: A review of possible mechanisms underlying an effective pharmacotherapy. Pharmacol Res 2019; 142:30-49. [PMID: 30742899 DOI: 10.1016/j.phrs.2019.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/24/2019] [Accepted: 02/01/2019] [Indexed: 12/24/2022]
Abstract
Recent progress in the field of neurobiology supported by clinical evidence gradually reveals the mystery of human brain functioning. So far, many psychiatric disorders have been described in great detail, although there are still plenty of cases that are misunderstood. These include posttraumatic stress disorder (PTSD), which is a unique disease that combines a wide range of neurobiological changes, which involve disturbances of the hypothalamic-pituitary-adrenal gland axis, hyperactivation of the amygdala complex, and attenuation of some hippocampal and cortical functions. Such multiplicity results in differential symptomatology, including elevated anxiety, nightmares, fear retrieval episodes that may trigger delusions and hallucinations, sleep disturbances, and many others that strongly interfere with the quality of the patient's life. Because of widespread neurological changes and the disease manifestation, the pharmacotherapy of PTSD remains unclear and requires a multidimensional approach and involvement of polypharmacotherapy. Hopefully, more and more neuroscientists and clinicians will study PTSD, which will provide us with new information that would possibly accelerate establishment of well-tolerated and effective pharmacotherapy. In this review, we have focused on neurobiological changes regarding PTSD, addressing the most disturbed brain structures and neurotransmissions, as well as discussing in detail the recently taken and novel therapeutic paths.
Collapse
Affiliation(s)
- Natalia Malikowska-Racia
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland.
| | - Kinga Salat
- Department of Pharmacodynamics, Chair of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna St., 30-688 Krakow, Poland
| |
Collapse
|
16
|
Bryzgalov DV, Kuznetsova IL, Rogaev EI. Enhancement of Declarative Memory: From Genetic Regulation to Non-invasive Stimulation. BIOCHEMISTRY (MOSCOW) 2018; 83:1124-1138. [PMID: 30472951 DOI: 10.1134/s0006297918090146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The problem of memory enhancement is extremely important in intellectual activity areas and therapy of different types of dementia, including Alzheimer's disease (AD). The attempts to solve this problem have come from different research fields. In the first part of our review, we describe the results of targeting certain genes involved in memory-associated molecular pathways. The second part of the review is focused on the deep stimulation of brain structures that can slow down memory loss in AD. The third part describes the results of the use of non-invasive brain stimulation techniques for memory modulation, consolidation, and retrieval in healthy people and animal models. Integration of data from different research fields is essential for the development of efficient strategies for memory enhancement.
Collapse
Affiliation(s)
- D V Bryzgalov
- Memory, Oscillations, Brain States (MOBS) Team, Brain Plasticity Unit, CNRS UMR 8249, ESPCI Paris, Paris, France.
| | - I L Kuznetsova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia
| | - E I Rogaev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, 119991, Russia. .,Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA 01605, USA.,Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia.,Lomonosov Moscow State University, Faculty of Bioengineering and Bioinformatics, Moscow, 119234, Russia
| |
Collapse
|
17
|
Craske MG. Honoring the Past, Envisioning the Future: ABCT's 50th Anniversary Presidential Address. Behav Ther 2018; 49:151-164. [PMID: 29530256 DOI: 10.1016/j.beth.2017.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 05/11/2017] [Accepted: 05/12/2017] [Indexed: 12/17/2022]
Abstract
The theme of the Association for Behavioral and Cognitive Therapies (ABCT) 50th Anniversary was to honor the past and envision the future. From the wisdom, foresight, and determination of the pioneers of our organization, and the continuous upholding of the scientific method over the last 50 years, cognitive behavioral therapy (CBT) has become the most empirically supported psychological treatment for a wide array of mental health problems. Yet, we still have a long way to go. This address outlines a vision for the future of CBT, which involves greater collaborative science, with all minds working together on the same problem, and greater attention to the risk factors and critical processes that underlie psychopathology and explain treatment change. Such knowledge generation can inform the development of new, more efficient and more effective therapies that are tailored with more precision to the needs of each person. Latest technologies provide tools for a precision focus while at the same time increasing the reach of our treatments to the many for whom traditional therapies are unavailable. Our impact will be greatly enhanced by large samples with common methods and measures that inform a precision approach. We have come a long way since ABCT was founded in 1966, and we are poised to make even larger strides in our mission to enhance health and well-being by harnessing science, our major guiding principle.
Collapse
|
18
|
d-Cycloserine facilitates extinction learning and enhances extinction-related brain activation. Neurobiol Learn Mem 2017; 144:235-247. [DOI: 10.1016/j.nlm.2017.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/13/2017] [Accepted: 08/10/2017] [Indexed: 11/23/2022]
|
19
|
Goff DC. D-cycloserine in Schizophrenia: New Strategies for Improving Clinical Outcomes by Enhancing Plasticity. Curr Neuropharmacol 2017; 15:21-34. [PMID: 26915421 PMCID: PMC5327448 DOI: 10.2174/1570159x14666160225154812] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/13/2015] [Accepted: 01/30/2016] [Indexed: 12/25/2022] Open
Abstract
Background Dysregulation of N-methyl D-aspartate (NMDA) receptor signaling is strongly implicated in schizophrenia. Based on the ketamine model of NMDA receptor hypoactivity, therapeutic approaches designed to maintain a sustained increase in agonist activity at the glycine site of the NMDA receptor have produced promising, although inconsistent, efficacy for negative symptoms. Methods A review of the published literature on D-cycloserine (DCS) pharmacology in animal models and in clinical studies was performed. Findings relevant to DCS effects on memory and plasticity and their potential clinical application to schizophrenia were summarized. Results Studies in animals and clinical trials in patients with anxiety disorders have demonstrated that single or intermittent dosing with DCS enhances memory consolidation. Preliminary trials in patients with schizophrenia suggest that intermittent dosing with DCS may produce persistent improvement of negative symptoms and enhance learning when combined with cognitive behavioral therapy for delusions or with cognitive remediation. The pharmacology of DCS is complex, since it acts as a “super agonist” at NMDA receptors containing GluN2C subunits and, under certain conditions, it may act as an antagonist at NMDA receptors containing GluN2B subunits. Conclusions There are preliminary findings that support a role for D-cycloserine in schizophrenia as a strategy to enhance neuroplasticity and memory. However, additional studies with DCS are needed to confirm these findings. In addition, clinical trials with positive and negative allosteric modulators with greater specificity for NMDA receptor subtypes are needed to identify the optimal strategy for enhancing neuroplasticity in schizophrenia.
Collapse
Affiliation(s)
- Donald C Goff
- Nathan Kline Institute for Psychiatric Research, NYU School of Medicine, USA
| |
Collapse
|
20
|
McGuire JF, Wu MS, Piacentini J, McCracken JT, Storch EA. A Meta-Analysis of D-Cycloserine in Exposure-Based Treatment: Moderators of Treatment Efficacy, Response, and Diagnostic Remission. J Clin Psychiatry 2017; 78:196-206. [PMID: 27314661 PMCID: PMC5967394 DOI: 10.4088/jcp.15r10334] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 11/02/2015] [Indexed: 12/24/2022]
Abstract
OBJECTIVE This meta-analysis examined treatment efficacy, treatment response, and diagnostic remission effect sizes and moderators of D-cycloserine-augmented exposure treatment in randomized controlled trials (RCTs) of individuals with anxiety disorders, obsessive-compulsive disorder (OCD), and posttraumatic stress disorder (PTSD). DATA SOURCES AND STUDY SELECTION The terms D-cycloserine AND randomized controlled trial were used to search the PubMed (1965-May 2015), PsycINFO, and Scopus databases for randomized placebo-controlled trials of D-cycloserine-augmented exposure therapy for anxiety disorders, OCD, and PTSD. DATA EXTRACTION Clinical variables and effect sizes were extracted from 20 RCTs (957 participants). A random-effects model calculated the effect sizes for treatment efficacy, treatment response, and diagnostic remission using standardized rating scales. Subgroup analyses and meta-regression were used to examine potential moderators. RESULTS A small, nonsignificant benefit of D-cycloserine augmentation compared to placebo augmentation was identified across treatment efficacy (g = 0.15), response (risk ratio [RR] = 1.08), and remission (RR = 1.109), with a moderately significant effect (P = .03) for anxiety disorders specifically (g = 0.33). At initial follow-up assessments, a small, nonsignificant effect size of D-cycloserine augmentation compared to placebo was found for treatment efficacy (g = 0.21), response (RR = 1.06), and remission (RR = 1.12). Specific treatment moderators (eg, comorbidity, medication status, gender, publication year) were found across conditions for both acute treatment and initial follow-up assessments. CONCLUSIONS D-Cycloserine does not universally enhance treatment outcomes but demonstrates promise for anxiety disorders. Distinct treatment moderators may account for discrepant findings across RCTs and disorders. Future trials may be strengthened by accounting for identified moderators in their design, with ongoing research needed on the mechanisms of D-cycloserine to tailor treatment protocols and maximize its benefit.
Collapse
Affiliation(s)
- Joseph F. McGuire
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA
| | - Monica S. Wu
- Department of Psychology, University of South Florida, Tampa, FL, Department of Pediatrics, University of South Florida, Tampa, FL
| | - John Piacentini
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, Department of Pediatrics, University of South Florida, Tampa, FL
| | - James T. McCracken
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA
| | - Eric A. Storch
- Department of Psychology, University of South Florida, Tampa, FL, Department of Pediatrics, University of South Florida, Tampa, FL, Departments of Psychiatry and Behavioral Neuroscience, University of South Florida, Tampa, FL, Rogers Behavioral Health – Tampa Bay, Tampa, FL, All Children's Hospital, Johns Hopkins Medicine, St. Petersburg, FL, Department of Health Policy and Management, University of South Florida, Tampa, FL
| |
Collapse
|
21
|
Abstract
Anxiety disorders (separation anxiety disorder, selective mutism, specific phobias, social anxiety disorder, panic disorder, agoraphobia, and generalised anxiety disorder) are common and disabling conditions that mostly begin during childhood, adolescence, and early adulthood. They differ from developmentally normative or stress-induced transient anxiety by being marked (ie, out of proportion to the actual threat present) and persistent, and by impairing daily functioning. Most anxiety disorders affect almost twice as many women as men. They often co-occur with major depression, alcohol and other substance-use disorders, and personality disorders. Differential diagnosis from physical conditions-including thyroid, cardiac, and respiratory disorders, and substance intoxication and withdrawal-is imperative. If untreated, anxiety disorders tend to recur chronically. Psychological treatments, particularly cognitive behavioural therapy, and pharmacological treatments, particularly selective serotonin-reuptake inhibitors and serotonin-noradrenaline-reuptake inhibitors, are effective, and their combination could be more effective than is treatment with either individually. More research is needed to increase access to and to develop personalised treatments.
Collapse
Affiliation(s)
- Michelle G Craske
- Department of Psychology and Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Murray B Stein
- Department of Psychiatry and Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA, USA; VA San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
22
|
Günthner J, Scholl J, Favaron E, Harmer CJ, Johansen-Berg H, Reinecke A. The NMDA receptor partial agonist d-cycloserine does not enhance motor learning. J Psychopharmacol 2016; 30:994-9. [PMID: 27436230 PMCID: PMC5066480 DOI: 10.1177/0269881116658988] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
RATIONALE There has recently been increasing interest in pharmacological manipulations that could potentially enhance exposure-based cognitive behaviour therapy for anxiety disorders. One such medication is the partial NMDA agonist d-cycloserine. It has been suggested that d-cycloserine enhances cognitive behaviour therapy by making learning faster. While animal studies have supported this view of the drug accelerating learning, evidence in human studies has been mixed. We therefore designed an experiment to measure the effects of d-cycloserine on human motor learning. METHODS Fifty-four healthy human volunteers were randomly assigned to a single dose of 250mg d-cycloserine versus placebo in a double-blind design. They then performed a motor sequence learning task. RESULTS D-cycloserine did not increase the speed of motor learning or the overall amount learnt. However, we noted that participants on d-cycloserine tended to respond more carefully (shifting towards slower, but more correct responses). CONCLUSION The results suggest that d-cycloserine does not exert beneficial effects on psychological treatments via mechanisms involved in motor learning. Further studies are needed to clarify the influence on other cognitive mechanisms.
Collapse
Affiliation(s)
- Jan Günthner
- Department of Psychiatry, University of Oxford, Oxford, UK,Department of Addictive Behaviour and Addiction Medicine, Central Institute of Mental Health (CIMH), University of Heidelberg, Medical Faculty Mannheim, Mannheim, Germany
| | - Jacqueline Scholl
- Department of Psychiatry, University of Oxford, Oxford, UK Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Elisa Favaron
- Department of Psychiatry, University of Oxford, Oxford, UK
| | | | - Heidi Johansen-Berg
- Oxford Centre for Functional MRI of the Brain, University of Oxford, Oxford, UK
| | | |
Collapse
|
23
|
Connor DA, Gould TJ. The role of working memory and declarative memory in trace conditioning. Neurobiol Learn Mem 2016; 134 Pt B:193-209. [PMID: 27422017 PMCID: PMC5755400 DOI: 10.1016/j.nlm.2016.07.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 07/07/2016] [Accepted: 07/11/2016] [Indexed: 01/18/2023]
Abstract
Translational assays of cognition that are similarly implemented in both lower and higher-order species, such as rodents and primates, provide a means to reconcile preclinical modeling of psychiatric neuropathology and clinical research. To this end, Pavlovian conditioning has provided a useful tool for investigating cognitive processes in both lab animal models and humans. This review focuses on trace conditioning, a form of Pavlovian conditioning typified by the insertion of a temporal gap (i.e., trace interval) between presentations of a conditioned stimulus (CS) and an unconditioned stimulus (US). This review aims to discuss pre-clinical and clinical work investigating the mnemonic processes recruited for trace conditioning. Much work suggests that trace conditioning involves unique neurocognitive mechanisms to facilitate formation of trace memories in contrast to standard Pavlovian conditioning. For example, the hippocampus and prefrontal cortex (PFC) appear to play critical roles in trace conditioning. Moreover, cognitive mechanistic accounts in human studies suggest that working memory and declarative memory processes are engaged to facilitate formation of trace memories. The aim of this review is to integrate cognitive and neurobiological accounts of trace conditioning from preclinical and clinical studies to examine involvement of working and declarative memory.
Collapse
Affiliation(s)
- David A Connor
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA 19122, United States
| | - Thomas J Gould
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA 19122, United States.
| |
Collapse
|
24
|
Kapolowicz MR, Thompson LT. Acute high-intensity noise induces rapid Arc protein expression but fails to rapidly change GAD expression in amygdala and hippocampus of rats: Effects of treatment with D-cycloserine. Hear Res 2016; 342:69-79. [PMID: 27702572 DOI: 10.1016/j.heares.2016.09.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 08/26/2016] [Accepted: 09/30/2016] [Indexed: 10/20/2022]
Abstract
Tinnitus is a devastating auditory disorder impacting a growing number of people each year. The aims of the current experiment were to assess neuronal mechanisms involved in the initial plasticity after traumatic noise exposure that could contribute to the emergence of tinnitus and to test a potential pharmacological treatment to alter this early neural plasticity. Specifically, this study addressed rapid effects of acute noise trauma on amygdalo-hippocampal circuitry, characterizing biomarkers of both excitation and inhibition in these limbic regions, and compared them to expression of these same markers in primary auditory cortex shortly after acute noise trauma. To assess excitatory plasticity, activity-regulated cytoskeleton-associated (Arc) protein expression was evaluated in male rats 45 min after bilateral exposure to acute high-intensity noise (16 kHz, 115 dB SPL, for 1 h), sufficient to cause acute cochlear trauma, a common cause of tinnitus in humans and previously shown sufficient to induce tinnitus in rat models of this auditory neuropathology. Western blot analyses confirmed that up-regulation of amygdalo-hippocampal Arc expression occurred rapidly post-noise trauma, corroborating several lines of evidence from our own and other laboratories indicating that limbic brain structures, i.e. outside of the classical auditory pathways, exhibit plasticity early in the initiation of tinnitus. Western blot analyses revealed no noise-induced changes in amygdalo-hippocampal expression of glutamate decarboxylase (GAD), the biosynthetic enzyme required for GABAergic inhibition. No changes in either Arc or GAD protein expression were observed in primary auditory cortex in this immediate post-noise exposure period, confirming other reports that auditory cortical plasticity may not occur until later in the development of tinnitus. As a further control, our experiments compared Arc protein expression between groups exposed to the quiet background of a sound-proof chamber to those exposed not only to the traumatic noise described above, but also to an intermediate, non-traumatic noise level (70 dB SPL) for the same duration in each of these three brain regions. We found that non-traumatic noise did not up-regulate Arc protein expression in these brain regions. To see if changes in Arc expression due to acute traumatic noise exposure were stress-related, we compared circulating serum corticosterone in controls and rats exposed to traumatic noise at the time when changes in Arc were observed, and found no significant differences in this stress hormone in our experimental conditions. Finally, the ability of D-cycloserine (DCS; an NMDA-receptor NR1 partial agonist) to reduce or prevent the noise trauma-related plastic changes in the biomarker, Arc, was tested. D-cycloserine prevented traumatic noise-induced up-regulation of Arc protein expression in amygdala but not in hippocampus, suggesting that DCS alone is not fully effective in eliminating regionally-specific early plastic changes after traumatic noise exposure.
Collapse
Affiliation(s)
- M R Kapolowicz
- Behavioral & Brain Sciences, Neuroscience, The University of Texas at Dallas, 800W. Campbell Rd., BSB 14, Richardson, TX, 75080, USA
| | - L T Thompson
- Behavioral & Brain Sciences, Neuroscience, The University of Texas at Dallas, 800W. Campbell Rd., BSB 14, Richardson, TX, 75080, USA.
| |
Collapse
|
25
|
Otto MW, Kredlow MA, Smits JAJ, Hofmann SG, Tolin DF, de Kleine RA, van Minnen A, Evins AE, Pollack MH. Enhancement of Psychosocial Treatment With D-Cycloserine: Models, Moderators, and Future Directions. Biol Psychiatry 2016; 80:274-283. [PMID: 26520240 PMCID: PMC4808479 DOI: 10.1016/j.biopsych.2015.09.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 09/11/2015] [Accepted: 09/15/2015] [Indexed: 01/02/2023]
Abstract
Advances in the understanding of the neurobiology of fear extinction have resulted in the development of d-cycloserine (DCS), a partial glutamatergic N-methyl-D-aspartate agonist, as an augmentation strategy for exposure treatment. We review a decade of research that has focused on the efficacy of DCS for augmenting the mechanisms (e.g., fear extinction) and outcome of exposure treatment across the anxiety disorders. Following a series of small-scale studies offering strong support for this clinical application, more recent larger-scale studies have yielded mixed results, with some showing weak or no effects. We discuss possible explanations for the mixed findings, pointing to both patient and session (i.e., learning experiences) characteristics as possible moderators of efficacy, and offer directions for future research in this area. We also review recent studies that have aimed to extend the work on DCS augmentation of exposure therapy for the anxiety disorders to DCS enhancement of learning-based interventions for addiction, anorexia nervosa, schizophrenia, and depression. Here, we attend to both DCS effects on facilitating therapeutic outcomes and additional therapeutic mechanisms beyond fear extinction (e.g., appetitive extinction, hippocampal-dependent learning).
Collapse
|
26
|
Sperl MFJ, Panitz C, Hermann C, Mueller EM. A pragmatic comparison of noise burst and electric shock unconditioned stimuli for fear conditioning research with many trials. Psychophysiology 2016; 53:1352-65. [PMID: 27286734 DOI: 10.1111/psyp.12677] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 04/28/2016] [Indexed: 01/01/2023]
Abstract
Several methods that are promising for studying the neurophysiology of fear conditioning (e.g., EEG, MEG) require a high number of trials to achieve an adequate signal-to-noise ratio. While electric shock and white noise burst are among the most commonly used unconditioned stimuli (US) in conventional fear conditioning studies with few trials, it is unknown whether these stimuli are equally well suited for paradigms with many trials. Here, N = 32 participants underwent a 260-trial differential fear conditioning and extinction paradigm with a 240-trial recall test 24 h later and neutral faces as conditioned stimuli. In a between-subjects design, either white noise bursts (n = 16) or electric shocks (n = 16) served as US, and intensities were determined using the most common procedure for each US (i.e., a fixed 95 dB noise burst and a work-up procedure for electric shocks, respectively). In addition to differing US types, groups also differed in closely linked US-associated characteristics (e.g., calibration methods, stimulus intensities, timing). Subjective ratings (arousal/valence), skin conductance, and evoked heart period changes (i.e., fear bradycardia) indicated more reliable, extinction-resistant, and stable conditioning in the white noise burst versus electric shock group. In fear conditioning experiments where many trials are presented, white noise burst should serve as US.
Collapse
Affiliation(s)
- Matthias F J Sperl
- Faculty of Psychology, Personality Psychology and Assessment, University of Marburg, Marburg, Germany.,Faculty of Psychology and Sports Science, Clinical Psychology and Psychotherapy, University of Giessen, Giessen, Germany
| | - Christian Panitz
- Faculty of Psychology, Personality Psychology and Assessment, University of Marburg, Marburg, Germany.,Faculty of Psychology and Sports Science, Clinical Psychology and Psychotherapy, University of Giessen, Giessen, Germany
| | - Christiane Hermann
- Faculty of Psychology and Sports Science, Clinical Psychology and Psychotherapy, University of Giessen, Giessen, Germany
| | - Erik M Mueller
- Faculty of Psychology, Personality Psychology and Assessment, University of Marburg, Marburg, Germany.,Faculty of Psychology and Sports Science, Clinical Psychology and Psychotherapy, University of Giessen, Giessen, Germany
| |
Collapse
|
27
|
Neural signatures of human fear conditioning: an updated and extended meta-analysis of fMRI studies. Mol Psychiatry 2016; 21:500-8. [PMID: 26122585 DOI: 10.1038/mp.2015.88] [Citation(s) in RCA: 427] [Impact Index Per Article: 47.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 04/01/2015] [Accepted: 05/26/2015] [Indexed: 02/07/2023]
Abstract
Classical Pavlovian fear conditioning remains the most widely employed experimental model of fear and anxiety, and continues to inform contemporary pathophysiological accounts of clinical anxiety disorders. Despite its widespread application in human and animal studies, the neurobiological basis of fear conditioning remains only partially understood. Here we provide a comprehensive meta-analysis of human fear-conditioning studies carried out with functional magnetic resonance imaging (fMRI), yielding a pooled sample of 677 participants from 27 independent studies. As a distinguishing feature of this meta-analysis, original statistical brain maps were obtained from the authors of 13 of these studies. Our primary analyses demonstrate that human fear conditioning is associated with a consistent and robust pattern of neural activation across a hypothesized genuine network of brain regions resembling existing anatomical descriptions of the 'central autonomic-interoceptive network'. This finding is discussed with a particular emphasis on the neural substrates of conscious fear processing. Our associated meta-analysis of functional deactivations-a scarcely addressed dynamic in fMRI fear-conditioning studies-also suggests the existence of a coordinated brain response potentially underlying the 'safety signal' (that is, non-threat) processing. We attempt to provide an integrated summary on these findings with the view that they may inform ongoing studies of fear-conditioning processes both in healthy and clinical populations, as investigated with neuroimaging and other experimental approaches.
Collapse
|
28
|
Brown LA, LeBeau RT, Chat KY, Craske MG. Associative learning versus fear habituation as predictors of long-term extinction retention. Cogn Emot 2016; 31:687-698. [DOI: 10.1080/02699931.2016.1158695] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Lily A. Brown
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Richard T. LeBeau
- Department of Psychology, University of California, Los Angeles, CA, USA
- VA West Los Angeles Medical Center, CA, USA
| | - Ka Yi Chat
- Department of Psychology, Boston University, Boston, MA, USA
| | - Michelle G. Craske
- Department of Psychology, University of California, Los Angeles, CA, USA
| |
Collapse
|
29
|
Goff D. The Therapeutic Role of d-Cycloserine in Schizophrenia. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2016; 76:39-66. [PMID: 27288073 DOI: 10.1016/bs.apha.2016.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The ketamine model for schizophrenia has led to several therapeutic strategies for enhancing N-methyl d-aspartate (NMDA) receptor activity, including agonists directed at the glycine receptor site and inhibitors of glycine reuptake. Because ketamine may primarily block NMDA receptors on inhibitory interneurons, drugs that reduce glutamate release have also been investigated as a means of countering a deficit in inhibitory input. These approaches have met with some success for the treatment of negative and positive symptoms, but results have not been consistent. An emerging approach with the NMDA partial agonist, d-cycloserine (DCS), aims to enhance plasticity by intermittent treatment. Early trials have demonstrated benefit with intermittent DCS dosing for negative symptoms and memory. When combined with cognitive remediation, intermittent DCS treatment enhanced learning on a practiced auditory discrimination task and when added to cognitive behavioral therapy, DCS improved delusional severity in subjects who received DCS with the first CBT session. These studies require replication, but point toward a promising strategy for the treatment of schizophrenia and other disorders of plasticity.
Collapse
Affiliation(s)
- D Goff
- NYU School of Medicine, New York, United States.
| |
Collapse
|
30
|
Sasaki K, Omotuyi OI, Ueda M, Shinohara K, Ueda H. NMDA receptor agonists reverse impaired psychomotor and cognitive functions associated with hippocampal Hbegf-deficiency in mice. Mol Brain 2015; 8:83. [PMID: 26637193 PMCID: PMC4670538 DOI: 10.1186/s13041-015-0176-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 12/01/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Structural and functional changes of the hippocampus are correlated with psychiatric disorders and cognitive dysfunctions. Genetic deletion of heparin-binding epidermal growth factor-like growth factor (HB-EGF), which is predominantly expressed in cortex and hippocampus, also causes similar psychiatric and cognitive dysfunctions, accompanying down-regulated NMDA receptor signaling. However, little is known of such dysfunctions in hippocampus-specific Hbegf cKO mice. RESULTS We successfully developed hippocampus-specific cKO mice by crossbreeding floxed Hbegf and Gng7-Cre knock-in mice, as Gng7 promoter-driven Cre is highly expressed in hippocampal neurons as well as striatal medium spiny neurons. In mice lacking hippocampus Hbegf gene, there was a decreased neurogenesis in the subgranular zone (SGZ) of the dentate gyrus as well as down-regulation of PSD-95/NMDA-receptor-NR1/NR2B subunits and related NMDA receptor signaling. Psychiatric, social-behavioral and cognitive abnormalities were also observed in hippocampal cKO mice. Interestingly, D-cycloserine and nefiracetam, positive allosteric modulators (PAMs) of NMDA receptor reversed the apparent reduction in NMDA receptor signaling and most behavioral abnormalities. Furthermore, decreased SGZ neurogenesis in hippocampal cKO mice was reversed by nefiracetam. CONCLUSIONS The present study demonstrates that PAMs of NMDA receptor have pharmacotherapeutic potentials to reverse down-regulated NMDA receptor signaling, neuro-socio-cognitive abnormalities and decreased neurogenesis in hippocampal cKO mice.
Collapse
Affiliation(s)
- Keita Sasaki
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan.
| | - Olaposi Idowu Omotuyi
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan.
| | - Mutsumi Ueda
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan.
| | - Kazuyuki Shinohara
- Department of Neurobiology and Behavior, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8523, Japan.
| | - Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521, Japan.
| |
Collapse
|
31
|
Augmenting NMDA receptor signaling boosts experience-dependent neuroplasticity in the adult human brain. Proc Natl Acad Sci U S A 2015; 112:15331-6. [PMID: 26621715 DOI: 10.1073/pnas.1509262112] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Experience-dependent plasticity is a fundamental property of the brain. It is critical for everyday function, is impaired in a range of neurological and psychiatric disorders, and frequently depends on long-term potentiation (LTP). Preclinical studies suggest that augmenting N-methyl-d-aspartate receptor (NMDAR) signaling may promote experience-dependent plasticity; however, a lack of noninvasive methods has limited our ability to test this idea in humans until recently. We examined the effects of enhancing NMDAR signaling using d-cycloserine (DCS) on a recently developed LTP EEG paradigm that uses high-frequency visual stimulation (HFvS) to induce neural potentiation in visual cortex neurons, as well as on three cognitive tasks: a weather prediction task (WPT), an information integration task (IIT), and a n-back task. The WPT and IIT are learning tasks that require practice with feedback to reach optimal performance. The n-back assesses working memory. Healthy adults were randomized to receive DCS (100 mg; n = 32) or placebo (n = 33); groups were similar in IQ and demographic characteristics. Participants who received DCS showed enhanced potentiation of neural responses following repetitive HFvS, as well as enhanced performance on the WPT and IIT. Groups did not differ on the n-back. Augmenting NMDAR signaling using DCS therefore enhanced activity-dependent plasticity in human adults, as demonstrated by lasting enhancement of neural potentiation following repetitive HFvS and accelerated acquisition of two learning tasks. Results highlight the utility of considering cellular mechanisms underlying distinct cognitive functions when investigating potential cognitive enhancers.
Collapse
|
32
|
Brom M, Laan E, Everaerd W, Spinhoven P, Trimbos B, Both S. d-Cycloserine reduces context specificity of sexual extinction learning. Neurobiol Learn Mem 2015; 125:202-10. [PMID: 26456134 DOI: 10.1016/j.nlm.2015.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 09/07/2015] [Accepted: 09/28/2015] [Indexed: 11/19/2022]
Abstract
BACKGROUND d-Cycloserine (DCS) enhances extinction processes in animals. Although classical conditioning is hypothesized to play a pivotal role in the aetiology of appetitive motivation problems, no research has been conducted on the effect of DCS on the reduction of context specificity of extinction in human appetitive learning, while facilitation hereof is relevant in the context of treatment of problematic reward-seeking behaviors. METHODS Female participants were presented with two conditioned stimuli (CSs) that either predicted (CS+) or did not predict (CS-) a potential sexual reward (unconditioned stimulus (US); genital vibrostimulation). Conditioning took place in context A and extinction in context B. Subjects received DCS (125mg) or placebo directly after the experiment on day 1 in a randomized, double-blind, between-subject fashion (Placebo n=31; DCS n=31). Subsequent testing for CS-evoked conditioned responses (CRs) in both the conditioning (A) and the extinction context (B) took place 24h later on day 2. Drug effects on consolidation were then assessed by comparing the recall of sexual extinction memories between the DCS and the placebo groups. RESULTS Post learning administration of DCS facilitates sexual extinction memory consolidation and affects extinction's fundamental context specificity, evidenced by reduced conditioned genital and subjective sexual responses, relative to placebo, for presentations of the reward predicting cue 24h later outside the extinction context. CONCLUSIONS DCS makes appetitive extinction memories context-independent and prevents the return of conditioned response. NMDA receptor glycine site agonists may be potential pharmacotherapies for the prevention of relapse of appetitive motivation disorders with a learned component.
Collapse
Affiliation(s)
- Mirte Brom
- Institute of Psychology, Clinical Psychology Unit, Leiden University, Wassenaarseweg 52, 2333 AK, The Netherlands; Leiden University Medical Centre, Department of Psychosomatic Gynaecology & Sexology, VRSP, Rijnsburgerweg 10, Zone PG4-Z, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| | - Ellen Laan
- Department of Sexology and Psychosomatic Obstetrics and Gynaecology, Academic Medical Centre, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| | - Walter Everaerd
- Department Clinical Psychology, University of Amsterdam, Weesperplein 4, 1018 XA Amsterdam, The Netherlands.
| | - Philip Spinhoven
- Institute of Psychology, Clinical Psychology Unit, Leiden University, Wassenaarseweg 52, 2333 AK, The Netherlands; Department of Psychiatry, Leiden University Medical Centre, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| | - Baptist Trimbos
- Leiden University Medical Centre, Department of Gynaecology, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| | - Stephanie Both
- Leiden University Medical Centre, Department of Psychosomatic Gynaecology & Sexology, VRSP, Rijnsburgerweg 10, Zone PG4-Z, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
| |
Collapse
|
33
|
Haaker J, Lonsdorf TB, Kalisch R. Effects of post-extinction l-DOPA administration on the spontaneous recovery and reinstatement of fear in a human fMRI study. Eur Neuropsychopharmacol 2015; 25:1544-55. [PMID: 26238968 DOI: 10.1016/j.euroneuro.2015.07.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 04/29/2015] [Accepted: 07/14/2015] [Indexed: 12/29/2022]
Abstract
Relapse is a pertinent problem in the treatment of anxiety disorders. In the laboratory, relapse is modeled as return of conditioned fear responses after successful fear extinction and is explained by insufficient retrieval and/or expression of the fear-inhibitory extinction memory that is generated during extinction learning. We have shown in mice and humans that return of fear can be prevented by administration of a single dose of the dopamine precursor l-3,4-dihydroxyphenylalanine (l-DOPA) immediately after extinction. In mice, this effect could be attributed to an enhancement of extinction memory consolidation. In our human study, we could not exclude that l-DOPA might have acted by interfering with the consolidation of the original fear memory. In the present study, we therefore used a combined differential cue and context conditioning paradigm where initial fear conditioning and extinction were conducted one day apart, in analogy to previous mouse studies. l-DOPA (N=21) or placebo (N=19) were administered after extinction, precluding any action on fear memory consolidation. In the return-of-fear test conducted one week later, drug effects on conditioned skin conductance responses were absent. However, we found evidence indicative of reduced neural activity, measured with functional magnetic resonance imaging (fMRI), in the l-DOPA group in areas related to conditioned fear and return of fear (amygdala, posterior hippocampus) and enhanced activity in a key area of extinction retrieval/expression (ventromedial prefrontal cortex), relative to placebo controls. These findings require further corroboration in additional experiments. Implications for further investigations on the role of the dopamine system in extinction and on the neuropharmacological augmentation of extinction-based therapies are discussed.
Collapse
Affiliation(s)
- Jan Haaker
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Karolinska Institutet, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Tina B Lonsdorf
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Raffael Kalisch
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Neuroimaging Center (NIC), Focus Program Translational Neuroscience, Johannes Gutenberg University Medical Center Mainz, Germany
| |
Collapse
|
34
|
Mueller EM, Pizzagalli DA. One-year-old fear memories rapidly activate human fusiform gyrus. Soc Cogn Affect Neurosci 2015; 11:308-16. [PMID: 26416784 DOI: 10.1093/scan/nsv122] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 09/21/2015] [Indexed: 11/14/2022] Open
Abstract
Fast threat detection is crucial for survival. In line with such evolutionary pressure, threat-signaling fear-conditioned faces have been found to rapidly (<80 ms) activate visual brain regions including the fusiform gyrus on the conditioning day. Whether remotely fear conditioned stimuli (CS) evoke similar early processing enhancements is unknown. Here, 16 participants who underwent a differential face fear-conditioning and extinction procedure on day 1 were presented the initial CS 24 h after conditioning (Recent Recall Test) as well as 9-17 months later (Remote Recall Test) while EEG was recorded. Using a data-driven segmentation procedure of CS evoked event-related potentials, five distinct microstates were identified for both the recent and the remote memory test. To probe intracranial activity, EEG activity within each microstate was localized using low resolution electromagnetic tomography analysis (LORETA). In both the recent (41-55 and 150-191 ms) and remote (45-90 ms) recall tests, fear conditioned faces potentiated rapid activation in proximity of fusiform gyrus, even in participants unaware of the contingencies. These findings suggest that rapid processing enhancements of conditioned faces persist over time.
Collapse
Affiliation(s)
- Erik M Mueller
- Department of Clinical Psychology, Justus-Liebig University Giessen, 35394 Giessen, Germany and
| | - Diego A Pizzagalli
- Center for Depression, Anxiety and Stress Research & McLean Imaging Center, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
| |
Collapse
|
35
|
An Overview of Translationally Informed Treatments for Posttraumatic Stress Disorder: Animal Models of Pavlovian Fear Conditioning to Human Clinical Trials. Biol Psychiatry 2015; 78:E15-27. [PMID: 26238379 PMCID: PMC4527085 DOI: 10.1016/j.biopsych.2015.06.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 05/07/2015] [Accepted: 06/02/2015] [Indexed: 01/13/2023]
Abstract
Posttraumatic stress disorder manifests after exposure to a traumatic event and is characterized by avoidance/numbing, intrusive symptoms and flashbacks, mood and cognitive disruptions, and hyperarousal/reactivity symptoms. These symptoms reflect dysregulation of the fear system likely caused by poor fear inhibition/extinction, increased generalization, and/or enhanced consolidation or acquisition of fear. These phenotypes can be modeled in animal subjects using Pavlovian fear conditioning, allowing investigation of the underlying neurobiology of normative and pathological fear. Preclinical studies reveal a number of neurotransmitter systems and circuits critical for aversive learning and memory that have informed the development of therapies used in human clinical trials. In this review, we discuss the evidence for a number of established and emerging pharmacotherapies and device-based treatments for posttraumatic stress disorder that have been developed via a bench to bedside translational model.
Collapse
|
36
|
D-Cycloserine acts via increasing the GluN1 protein expressions in the frontal cortex and decreases the avoidance and risk assessment behaviors in a rat traumatic stress model. Behav Brain Res 2015. [PMID: 26225843 DOI: 10.1016/j.bbr.2015.07.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
D-cycloserine (DCS), an FDA approved anti-tuberculosis drug has extensively been studied for its cognitive enhancer effects in psychiatric disorders. DCS may enhance the effects of fear extinction trainings in animals during exposure therapy and hence we investigated the effects of DCS on distinct behavioral parameters in a predator odor stress model and tested the optimal duration for repeated daily administrations of the agent. Cat fur odor blocks were used to produce stress and avoidance and risk assessment behavioral parameters were used where DCS or saline were used as treatments in adjunct to extinction trainings. We observed that DCS facilitated extinction training by providing further extinction of avoidance responses, risk assessment behaviors and increased the contact with the cue in a setting where DCS was administered before extinction trainings for 3 days without producing a significant tolerance. In amygdala and hippocampus, GluN1 protein expressions decreased 72h after the fear conditioning in the traumatic stress group suggesting a possible down-regulation of NMDARs. We observed that extinction learning increased GluN1 proteins both in the amygdaloid complex and the dorsal hippocampus of the rats receiving extinction training or extinction training with DCS. Our findings also indicate that DCS with extinction training increased GluN1 protein levels in the frontal cortex. We may suggest that action of DCS relies on enhancement of the consolidation of fear extinction in the frontal cortex.
Collapse
|
37
|
Pace-Schott EF, Germain A, Milad MR. Effects of sleep on memory for conditioned fear and fear extinction. Psychol Bull 2015; 141:835-57. [PMID: 25894546 DOI: 10.1037/bul0000014] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Learning and memory for extinction of conditioned fear is a basic mammalian mechanism for regulating negative emotion. Sleep promotes both the consolidation of memory and the regulation of emotion. Sleep can influence consolidation and modification of memories associated with both fear and its extinction. After brief overviews of the behavior and neural circuitry associated with fear conditioning, extinction learning, and extinction memory in the rodent and human, interactions of sleep with these processes will be examined. Animal and human studies suggest that sleep can serve to consolidate both fear and extinction memory. In humans, sleep also promotes generalization of extinction memory. Time-of-day effects on extinction learning and generalization are also seen. Rapid eye movement (REM) may be a sleep stage of particular importance for the consolidation of both fear and extinction memory as evidenced by selective REM deprivation experiments. REM sleep is accompanied by selective activation of the same limbic structures implicated in the learning and memory of fear and extinction. Preliminary evidence also suggests extinction learning can take place during slow wave sleep. Study of low-level processes such as conditioning, extinction, and habituation may allow sleep effects on emotional memory to be identified and inform study of sleep's effects on more complex, emotionally salient declarative memories. Anxiety disorders are marked by impairments of both sleep and extinction memory. Improving sleep quality may ameliorate anxiety disorders by strengthening naturally acquired extinction. Strategically timed sleep may be used to enhance treatment of anxiety by strengthening therapeutic extinction learned via exposure therapy. (PsycINFO Database Record
Collapse
Affiliation(s)
- Edward F Pace-Schott
- Department of Psychiatry, Harvard Medical School and Massachusetts General Hospital
| | - Anne Germain
- Department of Psychiatry, University of Pittsburgh
| | | |
Collapse
|
38
|
Portero-Tresserra M, Del Olmo N, Martí-Nicolovius M, Guillazo-Blanch G, Vale-Martínez A. D-cycloserine prevents relational memory deficits and suppression of long-term potentiation induced by scopolamine in the hippocampus. Eur Neuropsychopharmacol 2014; 24:1798-807. [PMID: 25453488 DOI: 10.1016/j.euroneuro.2014.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 10/01/2014] [Accepted: 10/11/2014] [Indexed: 01/31/2023]
Abstract
Previous research has demonstrated that systemic D-cycloserine (DCS), a partial agonist of the N-methyl-D-aspartate receptor (NMDAR), enhances memory processes in different learning paradigms and attenuates mnemonic deficits produced by diverse pharmacological manipulations. In the present study two experiments were conducted in rats to investigate whether DCS administered in the hippocampus may rescue relational memory deficits and improve deficient synaptic plasticity, both induced by an intracerebral injection of the muscarinic receptor antagonist scopolamine (SCOP). In experiment 1, we assessed whether DCS would prevent SCOP-induced amnesia in an olfactory learning paradigm requiring the integrity of the cholinergic system, the social transmission of food preference (STFP). The results showed that DCS (10 μg/site) injected into the ventral hippocampus (vHPC) before STFP acquisition compensated the 24-h retention deficit elicited by post-training intra-vHPC SCOP (40 μg/site), although it did not affect memory expression in non-SCOP treated rats. In experiment 2, we evaluated whether the perfusion of DCS in hippocampal slices may potentiate synaptic plasticity in CA1 synapses and thus recover SCOP-induced deficits in long-term potentiation (LTP). We found that DCS (50 µM and 100 µM) was able to rescue SCOP (100 µM)-induced LTP maintenance impairment, in agreement with the behavioral findings. Additionally, DCS alone (50 µM and 100 µM) enhanced field excitatory postsynaptic potentials prior to high frequency stimulation, although it did not significantly potentiate LTP. Our results suggest that positive modulation of the NMDAR, by activation of the glycine-binding site, may compensate relational memory impairments due to hippocampal muscarinic neurotransmission dysfunction possibly through enhancements in LTP maintenance.
Collapse
|
39
|
Stone TW, Darlington LG. The kynurenine pathway as a therapeutic target in cognitive and neurodegenerative disorders. Br J Pharmacol 2014; 169:1211-27. [PMID: 23647169 DOI: 10.1111/bph.12230] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/16/2013] [Accepted: 04/24/2013] [Indexed: 02/06/2023] Open
Abstract
Understanding the neurochemical basis for cognitive function is one of the major goals of neuroscience, with a potential impact on the diagnosis, prevention and treatment of a range of psychiatric and neurological disorders. In this review, the focus will be on a biochemical pathway that remains under-recognized in its implications for brain function, even though it can be responsible for moderating the activity of two neurotransmitters fundamentally involved in cognition - glutamate and acetylcholine. Since this pathway - the kynurenine pathway of tryptophan metabolism - is induced by immunological activation and stress, it also stands in a unique position to mediate the effects of environmental factors on cognition and behaviour. Targeting the pathway for new drug development could, therefore, be of value not only for the treatment of existing psychiatric conditions, but also for preventing the development of cognitive disorders in response to environmental pressures.
Collapse
Affiliation(s)
- Trevor W Stone
- Institute of Neuroscience & Psychology, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK.
| | | |
Collapse
|
40
|
Reinecke A, Thilo K, Filippini N, Croft A, Harmer CJ. Predicting rapid response to cognitive-behavioural treatment for panic disorder: the role of hippocampus, insula, and dorsolateral prefrontal cortex. Behav Res Ther 2014; 62:120-8. [PMID: 25156399 DOI: 10.1016/j.brat.2014.07.017] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 07/26/2014] [Accepted: 07/29/2014] [Indexed: 11/19/2022]
Abstract
Although cognitive-behavioural therapy (CBT) is an effective first-line intervention for anxiety disorders, treatments remain long and cost-intensive, difficult to access, and a subgroup of patients fails to show any benefits at all. This study aimed to identify functional and structural brain markers that predict a rapid response to CBT. Such knowledge will be important to establish the mechanisms underlying successful treatment and to develop more effective, shorter interventions. Fourteen unmedicated patients with panic disorder underwent 3 T functional and structural magnetic resonance imaging (MRI) before receiving four sessions of exposure-based CBT. Symptom severity was measured before and after treatment. During functional MRI, patients performed an emotion regulation task, either viewing negative images naturally, or intentionally down-regulating negative affect by using previously taught strategies of cognitive reappraisal. Structural MRI images were analysed including left and right segmentation and volume estimation. Improved response to brief CBT was predicted by increased pre-treatment activation in bilateral insula and left dorsolateral prefrontal cortex (dlPFC) during threat processing, as well as increased right hippocampal gray matter volume. Previous work links these regions to improved threat processing and fear memory activation, suggesting that the activation of such mechanisms is crucial for exposure-based CBT to be effective.
Collapse
Affiliation(s)
| | - Kai Thilo
- Oxford Psychologists Ltd., Oxford, UK
| | - Nicola Filippini
- Department of Psychiatry, University of Oxford, UK; Centre for Functional Magnetic Resonance Imaging of the Brain, University of Oxford, UK
| | - Alison Croft
- Oxford Cognitive Therapy Centre, Warneford Hospital, Oxford, UK
| | | |
Collapse
|
41
|
McGuire JF, Lewin AB, Storch EA. Enhancing exposure therapy for anxiety disorders, obsessive-compulsive disorder and post-traumatic stress disorder. Expert Rev Neurother 2014; 14:893-910. [PMID: 24972729 DOI: 10.1586/14737175.2014.934677] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Translating findings from basic science, several compounds have been identified that may enhance therapeutic outcomes and/or expedite treatment gains when administered alongside exposure-based treatments. Four of these compounds (referred to as cognitive enhancers) have been evaluated in the context of randomized controlled trials for anxiety disorders (e.g., specific phobias, panic disorder, social anxiety disorder), obsessive-compulsive disorder and post-traumatic stress disorder. These cognitive enhancers include D-cycloserine, yohimbine hydrochloride, glucocorticoids and cortisol and brain-derived neurotrophic factor. There is consistent evidence that cognitive enhancers can enhance therapeutic outcomes and/or expedite treatment gains across anxiety disorders, obsessive-compulsive disorder and post-traumatic stress disorder. Emerging evidence has highlighted the importance of within-session fear habituation and between-session fear learning, which can either enhance fear extinction or reconsolidate of fear responses. Although findings from these trials are promising, there are several considerations that warrant further evaluation prior to widespread use of cognitive enhancers in exposure-based treatments. Consistent trial design and large sample sizes are important in future studies of cognitive enhancers.
Collapse
Affiliation(s)
- Joseph F McGuire
- Department of Psychology, University of South Florida, 4202 E. Fowler Avenue, PCD 4118G, Tampa, FL, USA
| | | | | |
Collapse
|
42
|
Lonsdorf TB, Haaker J, Fadai T, Kalisch R. No evidence for enhanced extinction memory consolidation through noradrenergic reuptake inhibition-delayed memory test and reinstatement in human fMRI. Psychopharmacology (Berl) 2014; 231:1949-62. [PMID: 24193372 DOI: 10.1007/s00213-013-3338-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 10/14/2013] [Indexed: 01/12/2023]
Abstract
RATIONALE One promising approach in the current ambition to maximise treatment benefit for anxiety disorders is the pharmacological enhancement of cognitive-behavioural treatment efficacy, which can be experimentally modelled by pharmacological enhancement of extinction learning/consolidation. Noradrenaline (NA) is involved in memory consolidation, and NAergic innervations are found in brain areas implicated in fear conditioning and extinction. OBJECTIVES Thus, to enhance extinction memory consolidation through boosted NAergic signalling, we administered 4 mg reboxetine (RBX) immediately after extinction learning (day 2, 24 h after conditioning on day 1) in a randomised, placebo (PLC)-controlled design. At a delayed memory test (day 8), we probed cued and contextual fear and extinction memories before and after a reinstatement manipulation. RESULTS After reinstatement, we find significantly enhanced amygdala and posterior hippocampus activation in the RBX group, areas implicated in fear memory expression, while the PLC group exhibited enhanced activation in areas associated with extinction memory expression (vmPFC, anterior hippocampus). No group differences were found in skin conductance responses. CONCLUSIONS Thus, our data do not support our hypothesis that enhancement of NA signalling may facilitate extinction memory consolidation and provide preliminary evidence that this might rather enhance fear memories on a neural but not physiological (skin conductance responses) level.
Collapse
Affiliation(s)
- Tina B Lonsdorf
- Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf (UKE), Martinistrasse 52, 20246, Hamburg, Germany,
| | | | | | | |
Collapse
|
43
|
Cain CK, McCue M, Bello I, Creedon T, Tang DI, Laska E, Goff DC. d-Cycloserine augmentation of cognitive remediation in schizophrenia. Schizophr Res 2014; 153:177-83. [PMID: 24485587 PMCID: PMC4547356 DOI: 10.1016/j.schres.2014.01.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/11/2014] [Accepted: 01/13/2014] [Indexed: 12/21/2022]
Abstract
d-Cycloserine (DCS) has been shown to enhance memory and, in a previous trial, once-weekly DCS improved negative symptoms in schizophrenia subjects. We hypothesized that DCS combined with a cognitive remediation (CR) program would improve memory of a practiced auditory discrimination task and that gains would generalize to performance on unpracticed cognitive tasks. Stable, medicated adult schizophrenia outpatients participated in the Brain Fitness CR program 3-5 times per week for 8weeks. Subjects were randomly assigned to once-weekly adjunctive treatment with DCS (50mg) or placebo administered before the first session each week. Primary outcomes were performance on an auditory discrimination task, the MATRICS cognitive battery composite score and the Scale for the Assessment of Negative Symptoms (SANS) total score. 36 subjects received study drug and 32 completed the trial (average number of CR sessions=26.1). Performance on the practiced auditory discrimination task significantly improved in the DCS group compared to the placebo group. DCS was also associated with significantly greater negative symptom improvement for subjects symptomatic at baseline (SANS score ≥20). However, improvement on the MATRICS battery was observed only in the placebo group. Considered with previous results, these findings suggest that DCS augments CR and alleviates negative symptoms in schizophrenia patients. However, further work is needed to evaluate whether CR gains achieved with DCS can generalize to other unpracticed cognitive tasks.
Collapse
Affiliation(s)
- Christopher K. Cain
- Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY, USA, 10962,Child and Adolescent Psychiatry Department, NYU Langone Medical Center, One Park Avenue, New York City, NY, USA, 10016
| | - Margaret McCue
- Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA.
| | - Iruma Bello
- Psychiatry Department, NYU Langone Medical Center, 550 First Avenue, New York City, NY 10016, USA.
| | - Timothy Creedon
- Psychiatry Department, Harvard Medical School, 401 Park Drive, Boston, MA 02215, USA.
| | - Dei-in Tang
- Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY, USA, 10962
| | - Eugene Laska
- Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA.
| | - Donald C. Goff
- Psychiatry Department, NYU Langone Medical Center, 550 First Avenue, New York City, NY, USA, 10016,Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY, USA, 10962
| |
Collapse
|
44
|
Christmas D, Diaper A, Wilson S, Rich A, Phillips S, Udo de Haes J, Sjogren M, Nutt D. A randomised trial of the effect of the glycine reuptake inhibitor Org 25935 on cognitive performance in healthy male volunteers. Hum Psychopharmacol 2014; 29:163-71. [PMID: 24424780 DOI: 10.1002/hup.2384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 11/25/2013] [Accepted: 11/25/2013] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Cognitive impairment is integral to many neurological illnesses. Specific enhancement of glutamatergic transmission may improve memory and learning. Org 25935 increases the synaptic availability of glycine, an obligate co-agonist with glutamate at N-methyl-D-aspartate receptors. We hypothesised that Org 25935 would acutely improve the learning and memory of healthy volunteers. METHODS A randomised, double-blind, parallel-group, single-dose study of Org 25935 and placebo was carried out. Thirty-two healthy male volunteers took either 12-mg Org 25935 or matching placebo and were later assessed with the manikin task, digit span and verbal memory tests. Systematic assessments of cardiovascular and adverse events were also taken. RESULTS There was no effect of Org 25935 on reaction time, number of correct responses or learning (greater or slower improvement over successive tasks) compared with placebo. Org 25935 caused significantly more dizziness and drowsiness compared with placebo; these side effects were mainly mild. CONCLUSIONS A single dose of Org 25935 does not improve learning or memory in healthy male individuals. However, the drug was well tolerated, and it remains to be seen whether it would have a positive effect on cognition in patient groups with pre-existing cognitive deficits.
Collapse
Affiliation(s)
- David Christmas
- Academic Unit of Psychiatry; University of Bristol; Bristol UK
- Cambridge and Peterborough NHS Foundation Trust; Cambridge UK
| | - Alison Diaper
- Academic Unit of Psychiatry; University of Bristol; Bristol UK
| | - Sue Wilson
- Academic Unit of Psychiatry; University of Bristol; Bristol UK
- Neuropsychopharmacology Unit; Imperial College London; London UK
| | - Ann Rich
- Academic Unit of Psychiatry; University of Bristol; Bristol UK
| | | | | | | | - David Nutt
- Neuropsychopharmacology Unit; Imperial College London; London UK
| |
Collapse
|
45
|
Lonsdorf TB, Haaker J, Kalisch R. Long-term expression of human contextual fear and extinction memories involves amygdala, hippocampus and ventromedial prefrontal cortex: a reinstatement study in two independent samples. Soc Cogn Affect Neurosci 2014; 9:1973-83. [PMID: 24493848 DOI: 10.1093/scan/nsu018] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Human context conditioning studies have focused on acquisition and extinction. Subsequent long-term changes in fear behaviors not only depend on associative learning processes during those phases but also on memory consolidation processes and the later ability to retrieve and express fear and extinction memories. Clinical theories explain relapse after successful exposure-based treatment with return of fear memories and remission with stable extinction memory expression. We probed contextual fear and extinction memories 1 week (Day8) after conditioning (Day1) and subsequent extinction (Day2) by presenting conditioned contexts before (Test1) and after (Test2) a reinstatement manipulation. We find consistent activation patterns in two independent samples: activation of a subgenual part of the ventromedial prefrontal cortex before reinstatement (Test1) and (albeit with different temporal profiles between samples) of the amygdala after reinstatement (Test2) as well as up-regulation of anterior hippocampus activity after reinstatement (Test2 > Test1). These areas have earlier been implicated in the expression of cued extinction and fear memories. The present results suggest a general role for these structures in defining the balance between fear and extinction memories, independent of the conditioning mode. The results are discussed in the light of hypotheses implicating the anterior hippocampus in the processing of situational ambiguity.
Collapse
Affiliation(s)
- Tina B Lonsdorf
- Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf (UKE), Martinistrasse 52, 20246 Hamburg, Germany and Neuroimaging Center Mainz (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany t.lonsdorf@uke
| | - Jan Haaker
- Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf (UKE), Martinistrasse 52, 20246 Hamburg, Germany and Neuroimaging Center Mainz (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Raffael Kalisch
- Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf (UKE), Martinistrasse 52, 20246 Hamburg, Germany and Neuroimaging Center Mainz (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany Institute for Systems Neuroscience, University Medical Center Hamburg-Eppendorf (UKE), Martinistrasse 52, 20246 Hamburg, Germany and Neuroimaging Center Mainz (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany
| |
Collapse
|
46
|
Ogden KK, Khatri A, Traynelis SF, Heldt SA. Potentiation of GluN2C/D NMDA receptor subtypes in the amygdala facilitates the retention of fear and extinction learning in mice. Neuropsychopharmacology 2014; 39:625-37. [PMID: 24008353 PMCID: PMC3895240 DOI: 10.1038/npp.2013.241] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 08/15/2013] [Accepted: 08/29/2013] [Indexed: 12/16/2022]
Abstract
NMDA receptors are glutamate receptor ion channels that contribute to synaptic plasticity and are important for many forms of learning and memory. In the amygdala, NMDA receptors are critical for the acquisition, retention, and extinction of classically conditioned fear responses. Although the GluN2B subunit has been implicated in both the acquisition and extinction of conditioned fear, GluN2C-knockout mice show reduced conditioned fear responses. Moreover, D-cycloserine (DCS), which facilitates fear extinction, selectively enhances the activity of GluN2C-containing NMDA receptors. To further define the contribution of GluN2C receptors to fear learning, we infused the GluN2C/GluN2D-selective potentiator CIQ bilaterally into the basolateral amygdala (3, 10, or 30 μg/side) following either fear conditioning or fear extinction training. CIQ both increased the expression of conditioned fear 24 h later and enhanced the extinction of the previously conditioned fear response. These results support a critical role for GluN2C receptors in the amygdala in the consolidation of learned fear responses and suggest that increased activity of GluN2C receptors may underlie the therapeutic actions of DCS.
Collapse
Affiliation(s)
- Kevin K Ogden
- Department of Pharmacology, Emory University, Atlanta, GA, USA
| | - Alpa Khatri
- Department of Pharmacology, Emory University, Atlanta, GA, USA
| | - Stephen F Traynelis
- Department of Pharmacology, Emory University, Atlanta, GA, USA,Department of Pharmacology, 5025 Rollins Research Center, Emory University, 1510 Clifton Road, Atlanta 30322, GA, USA, Tel: +404-727-0357, Fax: +404-727-0365, E-mail:
| | - Scott A Heldt
- Department of Anatomy and Neurobiology,Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN, USA,Neuroscience Institute, University of Tennessee Health Science Center, 855 Monroe Ave, Memphis, Memphis, TN 38163, USA, Tel: 901-448-5965, Fax: 901-448-7193, E-mail:
| |
Collapse
|
47
|
Siette J, Reichelt AC, Westbrook RF. A bout of voluntary running enhances context conditioned fear, its extinction, and its reconsolidation. Learn Mem 2014; 21:73-81. [PMID: 24429425 PMCID: PMC3895230 DOI: 10.1101/lm.032557.113] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Three experiments used rats to examine the effect of a single bout of voluntary activity (wheel running) on the acquisition, extinction, and reconsolidation of context conditioned fear. In Experiment 1, rats provided with access to a wheel for 3 h immediately before or after a shocked exposure to a context froze more when tested in that context than rats provided with access to the wheels 6 h after the shocked exposure or rats not provided with access to the wheels. In Experiment 2, rats provided with access to the wheels immediately before or after a nonshocked exposure to the conditioned context froze less when tested in that context than rats provided with access to the wheels 6 h after the nonshocked exposure or rats not provided with access to the wheels. In Experiment 3, rats provided with access to wheels immediately after an extended nonshocked exposure to the conditioned context again froze less, whereas rats provided with access to the wheels after a brief nonshocked exposure froze more on the subsequent test than sedentary controls. These results show that a single bout of running can enhance acquisition, extinction, and reconsolidation of context conditioned fear.
Collapse
Affiliation(s)
- Joyce Siette
- School of Psychology, University of New South Wales, Sydney NSW 2034, Australia
| | | | | |
Collapse
|
48
|
Sleep-dependent declarative memory consolidation--unaffected after blocking NMDA or AMPA receptors but enhanced by NMDA coagonist D-cycloserine. Neuropsychopharmacology 2013; 38:2688-97. [PMID: 23887151 PMCID: PMC3828540 DOI: 10.1038/npp.2013.179] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/02/2013] [Accepted: 07/23/2013] [Indexed: 01/03/2023]
Abstract
Sleep has a pivotal role in the consolidation of declarative memory. The coordinated neuronal replay of information encoded before sleep has been identified as a key process. It is assumed that the repeated reactivation of firing patterns in glutamatergic neuron assemblies translates into plastic synaptic changes underlying the formation of longer-term neuronal representations. Here, we tested the effects of blocking and enhancing glutamatergic neurotransmission during sleep on declarative memory consolidation in humans. We conducted three placebo-controlled, crossover, double-blind studies in which participants learned a word-pair association task. Afterwards, they slept in a sleep laboratory and received glutamatergic modulators. Our first two studies aimed at impairing consolidation by administering the NMDA receptor blocker ketamine and the AMPA receptor blocker caroverine during retention sleep, which, paradoxically, remained unsuccessful, inasmuch as declarative memory performance was unaffected by the treatment. However, in the third study, administration of the NMDA receptor coagonist D-cycloserine (DCS) during retention sleep facilitated consolidation of declarative memory (word pairs) but not consolidation of a procedural control task (finger sequence tapping). Administration of DCS during a wake interval remained without effect on retention of word pairs but improved encoding of numbers. From the overall pattern, we conclude that the consolidation of hippocampus-dependent declarative memory during sleep relies on NMDA-related plastic processes that differ from those processes leading to wake encoding. We speculate that glutamatergic activation during sleep is not only involved in consolidation but also in forgetting of hippocampal memory with both processes being differentially sensitive to DCS and unselective blockade of NMDA and AMPA receptors.
Collapse
|
49
|
Papenberg G, Li SC, Nagel IE, Nietfeld W, Schjeide BM, Schröder J, Bertram L, Heekeren HR, Lindenberger U, Bäckman L. Dopamine and glutamate receptor genes interactively influence episodic memory in old age. Neurobiol Aging 2013; 35:1213.e3-8. [PMID: 24332987 DOI: 10.1016/j.neurobiolaging.2013.11.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 08/23/2013] [Accepted: 11/15/2013] [Indexed: 10/26/2022]
Abstract
Both the dopaminergic and glutamatergic systems modulate episodic memory consolidation. Evidence from animal studies suggests that these two neurotransmitters may interact in influencing memory performance. Given that individual differences in episodic memory are heritable, we investigated whether variations of the dopamine D2 receptor gene (rs6277, C957T) and the N-methyl-D-aspartate 3A (NR3A) gene, coding for the N-methyl-D-aspartate 3A subunit of the glutamate N-methyl-D-aspartate receptor (rs10989591, Val362Met), interactively modulate episodic memory in large samples of younger (20-31 years; n = 670) and older (59-71 years; n = 832) adults. We found a reliable gene-gene interaction, which was observed in older adults only: older individuals carrying genotypes associated with greater D2 and N-methyl-D-aspartate receptor efficacy showed better episodic performance. These results are in line with findings showing magnification of genetic effects on memory in old age, presumably as a consequence of reduced brain resources. Our findings underscore the need for investigating interactive effects of multiple genes to understand individual difference in episodic memory.
Collapse
Affiliation(s)
- Goran Papenberg
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden.
| | - Shu-Chen Li
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Department of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Irene E Nagel
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| | - Wilfried Nietfeld
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Brit-Maren Schjeide
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Julia Schröder
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany; Charité Research Group on Geriatrics, Charité-Universitätsmedizin, Berlin, Germany
| | - Lars Bertram
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Hauke R Heekeren
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Department of Education and Psychology, Freie Universität Berlin, Berlin, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Lars Bäckman
- Aging Research Center, Karolinska Institute and Stockholm University, Stockholm, Sweden
| |
Collapse
|
50
|
Gonzalez P, Machado I, Vilcaes A, Caruso C, Roth GA, Schiöth H, Lasaga M, Scimonelli T. Molecular mechanisms involved in interleukin 1-beta (IL-1β)-induced memory impairment. Modulation by alpha-melanocyte-stimulating hormone (α-MSH). Brain Behav Immun 2013; 34:141-50. [PMID: 23968970 DOI: 10.1016/j.bbi.2013.08.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 08/05/2013] [Accepted: 08/14/2013] [Indexed: 11/26/2022] Open
Abstract
Pro-inflammatory cytokines can affect cognitive processes such as learning and memory. Particularly, interleukin-1β (IL-1β) influences the consolidation of hippocampus-dependent memories. We previously reported that administration of IL-1β in dorsal hippocampus impaired contextual fear memory consolidation. Different mechanisms have been implicated in the action of IL-1β on long-term potentiation (LTP), but the processes by which this inhibition occurs in vivo remain to be elucidated. We herein report that intrahippocampal injection of IL-1β induced a significant increase in p38 phosphorylation after contextual fear conditioning. Also, treatment with SB203580, an inhibitor of p38, reversed impairment induced by IL-1β on conditioned fear behavior, indicating that this MAPK would be involved in the effect of the cytokine. We also showed that IL-1β administration produced a decrease in glutamate release from dorsal hippocampus synaptosomes and that treatment with SB203580 partially reversed this effect. Our results indicated that IL-1β-induced impairment in memory consolidation could be mediated by a decrease in glutamate release. This hypothesis is sustained by the fact that treatment with d-cycloserine (DCS), a partial agonist of the NMDA receptor, reversed the effect of IL-1β on contextual fear memory. Furthermore, we demonstrated that IL-1β produced a temporal delay in ERK phosphorylation and that DCS administration reversed this effect. We also observed that intrahippocampal injection of IL-1β decreased BDNF expression after contextual fear conditioning. We previously demonstrated that α-MSH reversed the detrimental effect of IL-1β on memory consolidation. The present results demonstrate that α-MSH administration did not modify the decrease in glutamate release induced by IL-1β. However, intrahippocampal injection of α-MSH prevented the effect on ERK phosphorylation and BDNF expression induced by IL-1β after contextual fear conditioning. Therefore, in the present study we determine possible molecular mechanisms involved in the impairment induced by IL-1β on fear memory consolidation. We also established how this effect could be modulated by α-MSH.
Collapse
Affiliation(s)
- P Gonzalez
- IFEC-CONICET, Depto. Farmacología, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Argentina
| | | | | | | | | | | | | | | |
Collapse
|