1
|
Yang F, Wei N, Cai S, Liu J, Lan Q, Zhang H, Shang L, Zheng B, Wang M, Liu Y, Zhang L, Fei C, Tong W, Liu C, Kuang E, Tong G, Gu F. Genome-wide CRISPR screens identify CLC-2 as a drug target for anti-herpesvirus therapy: tackling herpesvirus drug resistance. SCIENCE CHINA. LIFE SCIENCES 2025; 68:515-526. [PMID: 39428427 DOI: 10.1007/s11427-023-2627-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 05/23/2024] [Indexed: 10/22/2024]
Abstract
The emergence of drug resistance to virus (i.e., acyclovir (ACV) to herpesviruses) has been termed one of the common clinical issues, emphasizing the discovery of new antiviral agents. To address it, a genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) screening was performed in mouse haploid embryonic stem cells infected with pseudorabies virus (PRV), an α-herpesvirus causing human and pig diseases. The results demonstrated that type 2 voltage-gated chloride channels (CLC-2) encoded by one of the identified genes, CLCN2, is a potential drug target for anti-herpesvirus therapy. CLC-2 inhibitors, omeprazole (OME) and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), can efficiently inhibit infection of multiple herpesviruses in cellulo (i.e., PRV, HSV and EBV), and effectively treat murine herpes simplex encephalitis (HSE). Additionally, DIDS was found to inhibit HSV-1 replication by blocking the PI3K/Akt pathway. Most importantly, both DIDS and OME were able to inhibit ACV-resistant HSV-1 strain infection. The study's findings suggest that targeting host-cell factors such as CLC-2 may be a promising approach to tackling herpesvirus drug resistance. The discovery of CLC-2 as a potential drug target for anti-herpesvirus therapy provides a new direction for the development of novel antiviral agents.
Collapse
Affiliation(s)
- Fayu Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, 200241, China
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730000, China
| | - Nan Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, 200241, China
| | - Shuo Cai
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, 200241, China
| | - Jing Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, 200241, China
| | - Qingping Lan
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Hao Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, 200241, China
| | - Lu Shang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, 200241, China
| | - Bo Zheng
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Mi Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, 200241, China
| | - Yingchun Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, 200241, China
| | - Lifang Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, 200241, China
| | - Chenzhong Fei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, 200241, China
| | - Wu Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Changlong Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Ersheng Kuang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Guangzhi Tong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| | - Feng Gu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai, 200241, China.
| |
Collapse
|
2
|
Wang C, Wang T, He Q, Hou Q, Duan L, Hu R, Han Y, Yang Y, Song H, Yang Z. Inhibition of the canonical Wnt/β-catenin pathway interferes with macropinocytosis to suppress pseudorabies virus proliferation. Vet Microbiol 2025; 301:110373. [PMID: 39793454 DOI: 10.1016/j.vetmic.2025.110373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/13/2025]
Abstract
Pseudorabies virus (PRV) is one of the highly contagious pathogens causing significant economic losses to the swine industry worldwide. More importantly, PRV is becoming a potential "life-threatening zoonosis" since the human-originated PRV strain was first isolated in 2019. Previously we found that the canonical Wnt/β-catenin pathway facilitates PRV proliferation, while the underlying mechanism remains unknown. In this study, the antiviral activities of the Wnt inhibitors (Adavivint, CCT251545, FH535, and iCRT14) were identified. Applying these inhibitors significantly inhibited PRV proliferation in different cell lines. Among them, CCT251545 presented the strongest anti-PRV activity with IC50 values less than 200 nM. Our in vivo studies showed that treatment with CCT251545 remarkedly decreased the viral loads and protected mice challenged with PRV. Further study found that CCT251545 neither had a virucidal effect nor affected viral adsorption while mainly interfering with the entry process of the PRV life cycle. Using the FITC-dextran uptake assay, we found that CCT251545 inhibited macropinocytosis. The formation of membrane protrusions, which is important for macropinocytosis, was also inhibited by CCT251545. Consistent with this, knockout of β-catenin suppressed the PRV macropinocytosis and the formation of protrusions. On the contrary, LiCl treatment significantly stimulated the protrusion formation and the PRV entry. Together, these findings suggest that suppression of the Wnt/β-catenin pathway inhibits the macropinocytosis-dependent entry of PRV, thereby providing potential targets for developing antiviral agents against PRV.
Collapse
Affiliation(s)
- Chongyang Wang
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Ting Wang
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Qingrun He
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Qili Hou
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Liuyuan Duan
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Ruochen Hu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yu Han
- College of Life Science, Yulin University, Yulin, China
| | - Yongchun Yang
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China
| | - Houhui Song
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, China.
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China.
| |
Collapse
|
3
|
Chen Y, Gao J, Hua R, Zhang G. Pseudorabies virus as a zoonosis: scientific and public health implications. Virus Genes 2025; 61:9-25. [PMID: 39692808 DOI: 10.1007/s11262-024-02122-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/26/2024] [Indexed: 12/19/2024]
Abstract
Pseudorabies virus (PRV) is a herpes virus, also known as Aujeszky's disease virus (ADV), which can cause a highly infectious disease pseudorabies (PR) in a variety of mammals. In the past, it has been debated whether PRV can infect humans, but more and more cases of PRV infection have been reported since 2017. The illness has claimed many victims and left survivors with serious sequelae. This indicates that humans may ignore the zoonotic ability of PRV. This review aims to summarize the pathology and pathogenesis of PRV and speculate on how it infects humans. This paper provides a comprehensive overview of the progression of PRV, including its virology characteristics, genomic organization, and genetic evolution. It also synthesises the existing literature on PRV infection in humans, and analyses the factors contributing to PRV zoonosis. Finally, the pathogenesis of PRV-infected pigs and other mammals was summarized, and the pathogenesis of PRV-infected humans was speculated.
Collapse
Affiliation(s)
- Yumei Chen
- School of Life Sciences, Zhengzhou University, No. 100, Science Avenue, 450001, Zhengzhou City, Henan Province, People's Republic of China
- Longhu Laboratory, No. 218, Ping AN Avenue, Zhengdong New District, 450046, Zhengzhou City, Henan Province, People's Republic of China
| | - Jie Gao
- School of Life Sciences, Zhengzhou University, No. 100, Science Avenue, 450001, Zhengzhou City, Henan Province, People's Republic of China
- Longhu Laboratory, No. 218, Ping AN Avenue, Zhengdong New District, 450046, Zhengzhou City, Henan Province, People's Republic of China
| | - Rongqian Hua
- School of Life Sciences, Zhengzhou University, No. 100, Science Avenue, 450001, Zhengzhou City, Henan Province, People's Republic of China
- Longhu Laboratory, No. 218, Ping AN Avenue, Zhengdong New District, 450046, Zhengzhou City, Henan Province, People's Republic of China
| | - Gaiping Zhang
- School of Life Sciences, Zhengzhou University, No. 100, Science Avenue, 450001, Zhengzhou City, Henan Province, People's Republic of China.
- Longhu Laboratory, No. 218, Ping AN Avenue, Zhengdong New District, 450046, Zhengzhou City, Henan Province, People's Republic of China.
| |
Collapse
|
4
|
Lian Z, Zhao Y, Wen W, Zhu Z, Wang W, Zhang Z, Liu P, Favoreel HW, Li X. Distinct effects of glucocorticoid on pseudorabies virus infection in neuron-like and epithelial cells. J Virol 2025:e0147224. [PMID: 39853115 DOI: 10.1128/jvi.01472-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 01/02/2025] [Indexed: 01/26/2025] Open
Abstract
Pseudorabies virus (PRV) is a porcine neurotropic alphaherpesvirus that infects peripheral tissues of its host, spreads into the nervous system, and establishes a life-long latency in neuronal cells. During productive infection, PRV replicates rapidly and causes pseudorabies or Aujeszky's disease. Reactivation from latent infection in the nervous system may lead to anterograde axonal transport of progeny virions, leading to recurrent infection of the epithelial layer and virus spread. Dexamethasone (DEX), a member of the glucocorticoid family that is widely used in clinical treatment as a high-efficiency glucocorticoid receptor (GR) agonist, is known to trigger reactivation of alphaherpesviruses like PRV and the closely related bovine alphaherpesvirus 1. In the current study, two cell type-dependent distinct regulatory mechanisms of glucocorticoid during PRV infection are described. In neuron-like cells, DEX upregulates expression of PRV IE180 and promotes viral productive infection. In addition, we found that GR activates the IE180 promoter by binding multiple GR response elements. The amino acids A465, P631, and I634 in GR were found to be critical for IE180 promoter activation. The impact of DEX on PRV productive infection in epithelial cells was also investigated. Interestingly, DEX was found to downregulate IE180 expression and suppress PRV infection in epithelial cells. Mechanistically, in epithelial cells, activation of the IE180 promoter by the VP16/Oct-1 (octamer-binding transcription factor 1) complex was suppressed by DEX-mediated degradation of Oct-1 in epithelial cells. In summary, our work reveals two distinct, cell type-dependent biological functions of glucocorticoid during PRV infection in neuron-like and epithelial cells, respectively.IMPORTANCEPseudorabies virus (PRV) can infect mucosal epithelium and the peripheral nervous system of its host, resulting in acute infection in epithelial cells and neuronal cells. In this study, we describe that glucocorticoid promotes PRV replication in neuron-like cells while it suppresses productive infection in epithelial cells through distinct regulations of the viral transactivator IE180, thereby revealing a cell type-dependent regulatory mechanism of glucocorticoid on PRV infection. Therefore, our findings provide a new perspective on the role of glucocorticoids during PRV infection.
Collapse
Affiliation(s)
- Zhengmin Lian
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yuan Zhao
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Wei Wen
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhenbang Zhu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Wenqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Zhendong Zhang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Panrao Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Herman W Favoreel
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Xiangdong Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
5
|
Guo JY, Xu K, Wang XH, Li XM, Ku YP, Zeng L, Wan B, Yang GY, Wang J, Chu BB, Pan JJ, Hao WB. Host factor DIAPH1 regulates pseudorabivirus replication by modulating the dynamics of cytoskeleton. Int J Biol Macromol 2025; 298:140112. [PMID: 39842589 DOI: 10.1016/j.ijbiomac.2025.140112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/05/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
As obligate parasites, viruses exploit host cell organelles and molecular components to complete their life cycle. Among which, viruses firstly hijack the cytoskeleton of host cells to ensure their efficiently cell entry and replication. Although formin family members play a key role in both microfilament and microtubule cytoskeletal remodeling, few studies addressed the detailed function and mechanism of formins in the process of viral infection. Here, we showed that sus scrofa DIAPH1 was involved in the regulation of cytoskeletal dynamics during PRV replication. Firstly, we found that DIAPH1 showed significant changes in the expression level and intracellular localization during PRV infection of PK-15 cells. Next, inhibition of DIAPH1 by RNA interference or small molecular inhibitor SMIFH2 was found to diminish the outcome of PRV infection. Besides, DIAPH1 partially co-localized with actin and tubulin in PRV-infected cells. Cross-talk occurred between microfilaments and microfilaments, which also had an influence on the intracellular localization of DIAPH1. What's more, inhibition of DIAPH1 induced the reorganization of microfilament and the stability of microtubule. These results suggested that DIAPH1 regulated PRV infection by remodeling microfilament and microtubule cytoskeletal dynamics.
Collapse
Affiliation(s)
- Jie-Yuan Guo
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou 450046, China
| | - Kun Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou 450046, China
| | - Xiao-Han Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou 450046, China
| | - Xin-Man Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou 450046, China
| | - Yan-Pei Ku
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou 450046, China
| | - Lei Zeng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou 450046, China
| | - Bo Wan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China
| | - Guo-Yu Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou 450046, China; Henan University of Animal Husbandry and Economy, Zhengzhou 450047, China
| | - Jiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China
| | - Bei-Bei Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China
| | - Jia-Jia Pan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China.
| | - Wen-Bo Hao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
6
|
Xu T, Zhang Y, Tao Q, Xu L, Lai SY, Ai YR, Huang JB, Yang BL, Zhu L, Xu ZW. Transcriptome analysis reveals that PRV XJ delgE/gI/TK protects against intestinal damage in nose-dropping-infected mice by regulating ECM-ITGA/ITGB-P-FAK. Microbiol Spectr 2025; 13:e0182824. [PMID: 39611821 PMCID: PMC11705885 DOI: 10.1128/spectrum.01828-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/10/2024] [Indexed: 11/30/2024] Open
Abstract
Pseudorabies virus (PRV) is an ideal model for mechanistic investigations into α-herpesvirus. The neurotropism and latent infection of PRV have been extensively studied. Apart from neurological symptoms, diarrhea caused by PRV infection is also an essential cause of mortality in newborn and weaned piglets. However, little research has been done on PRV invasion of the gut. To fill this gap, a nasal drip PRV-infection mouse model was developed, consisting of three groups: the challenged group (Group A), the immunization-challenged group (Group B), and a mock group (Group C). The results showed that immunization with PRV XJ delgE/gI/TK successfully prevented intestinal damage caused by PRV drop-nose infection. Subsequently, intestines were collected for transcriptional analysis. Differentially expressed genes analysis revealed that PRV XJ delgE/gI/TK was effective in reducing the organismal intestinal transcriptional activity caused by PRV. The Group A vs Group C and Group A vs Group B had similar Kyoto Encyclopedia of Genes and Genomes (KEGG)-enriched signaling pathways and the differentially expressed genes were primarily enriched in pathways, such as cell adhesion molecules, focal adhesion kinase, and actin cytoskeleton regulation. Notably, transcriptome analysis indicated that genes associated with the focal adhesion kinase (FAK) signaling pathway (ECM-ITGA/ITGB-p-FAK) were significantly more highly expressed in Group A than in Group B and Group C. The results of quantitative real-time PCR (RT-qPCR) and western blotting were consistent with KEGG analysis. Therefore, we hypothesized that PRV promotes self-infection through activation of the ECM-ITGA/ITGB-p-FAK signaling pathway and that PRV XJ delgE/gI/TK immunization could attenuate the intestinal damage caused by PRV by inhibiting the activation of this pathway.IMPORTANCEPseudorabies virus (PRV) poses a significant threat to the swine industry and public health due to its ability to infect multiple species, including humans, leading to substantial economic losses and potential health risks. This study addresses a critical gap in understanding the impact of PRV infection on the gut, which has been less explored compared to its neurological effects. By developing a drip-nose PRV-infection mouse model, the research indicated that PRV might promote self-infection through activation of the ECM-ITGA/ITGB-p-FAK signaling pathway, and PRV XJ delgE/gI/TK immunization effectively prevents intestinal damage by significantly reducing the expression of genes in the ECM-ITGA/ITGB-p-FAK signaling pathway. The research has important implications for the swine industry and public health by contributing to the development of better vaccines and treatments, ultimately helping to control PRV and prevent its cross-species transmission.
Collapse
Affiliation(s)
- Tong Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yang Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qian Tao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lei Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Si-Yuan Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yan-Ru Ai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jian-Bo Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ben-Lu Yang
- College Of Animal Science and Technology of Jiangxi Agricultural University, Nanchang, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine Sichuan Key Laboratory of Animal Epidemic Disease and Human Health, Sichuan Agricultural University, Chengdu, China
| | - Zhi-Wen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Veterinary Medicine Sichuan Key Laboratory of Animal Epidemic Disease and Human Health, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
7
|
Duan SH, Li ZM, Yu XJ, Li D. Alphaherpesvirus in Pets and Livestock. Microorganisms 2025; 13:82. [PMID: 39858850 PMCID: PMC11767655 DOI: 10.3390/microorganisms13010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/24/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
Herpesviruses are a group of DNA viruses capable of infecting multiple mammalian species, including humans. This review primarily summarizes four common alphaherpesviruses found in pets and livestock (feline, swine, canine, and bovine) in aspects such as epidemiology, immune evasion, and latency and reactivation. Despite the fact that they primarily infect specific hosts, these viruses have the potential for cross-species transmission due to genetic mutations and/or recombination events. During infection, herpesviruses not only stimulate innate immune responses in host cells but also interfere with signaling pathways through specific proteins to achieve immune evasion. These viruses can remain latent within the host for extended periods and reactivate under certain conditions to trigger disease recurrence. They not only affect the health of animals and cause economic losses but may also pose a potential threat to humans under certain circumstances. This review deepens our understanding of the biological characteristics of these animal alphaherpesviruses and provides an important scientific basis for the prevention and control of related diseases.
Collapse
Affiliation(s)
- Shu-Hui Duan
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan 430071, China; (S.-H.D.); (Z.-M.L.)
| | - Ze-Min Li
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan 430071, China; (S.-H.D.); (Z.-M.L.)
| | - Xue-Jie Yu
- State Key Laboratory of Virology, School of Public Health, Wuhan University, Wuhan 430071, China; (S.-H.D.); (Z.-M.L.)
| | - Dan Li
- Hubei Provincial Center for Disease Control and Prevention, Institute for Infectious Disease Prevention and Control, Wuhan 430079, China
| |
Collapse
|
8
|
Ma Z, Liu D, Cao W, Guo L, Liu K, Bai J, Li X, Jiang P, Liu X. Suppression of ZBP1-mediated NLRP3 inflammasome by the tegument protein VP22 facilitates pseudorabies virus infection. mBio 2024; 15:e0194524. [PMID: 39475237 PMCID: PMC11633114 DOI: 10.1128/mbio.01945-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/07/2024] [Indexed: 12/12/2024] Open
Abstract
The interaction between Z-DNA binding protein 1 (ZBP1) and the NLR family pyrin domain-containing 3 (NLRP3) inflammasome has been uncovered in several viral infections. However, the role of this molecular pathway during infection with the alpha-herpesvirus pseudorabies virus (PRV) remains largely elusive. Here, we report that during PRV infection, ZBP1-mediated NLRP3 inflammasome activation is inhibited by the viral tegument protein VP22, thereby facilitating viral infection. Through a combination of RNA sequencing and genetic studies, we demonstrate that PRV VP22 functions as a virus-encoded virulence factor by evading the inhibitory effects of ZBP1 on virus infection. Importantly, the replication and pathogenicity of a recombinant PRV lacking VP22 are significantly increased in ZBP1-deficient cells and mice. Mechanistically, PRV VP22 interacts with ZBP1, impeding the recruitment of receptor-interacting protein kinase 3 and Caspase-8, thereby inhibiting NLRP3 activation. Furthermore, we show that the N-terminal 1-50 amino acid domain of VP22 dominantly destabilizes ZBP1-mediated function. Taken together, these findings identify a functional link between PRV infection and ZBP1-mediated NLRP3 inflammatory response, providing novel insights into the pathogenesis of PRV and other herpesviruses. IMPORTANCE Z-DNA binding protein 1 (ZBP1) functions as a pivotal innate immune sensor that regulates inflammatory cell death during viral infections. However, its role in pseudorabies virus (PRV) infection remains unknown. Here, we demonstrate that ZBP1 serves as a restrictive factor by triggering the activation of the NLR family pyrin domain-containing 3 inflammasome, a process counteracted by PRV-encoded protein VP22. Furthermore, VP22 interferes with the interaction between ZBP1 and receptor-interacting protein kinase 3/Caspase-8, particularly through its N-terminal 1-50 amino acids. Importantly, deficiency in ZBP1 enhances the replication and virulence of recombinant viruses lacking VP22 or its N-terminal 1-50 amino acids. These findings reveal how PRV escapes ZBP1-mediated inflammatory responses during infection, potentially informing the rational design of therapeutic interventions.
Collapse
Affiliation(s)
- Zicheng Ma
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Depeng Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Wandi Cao
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Lei Guo
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Kesen Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xingyi Li
- School of Computer Science, Northwestern Polytechnical University, Xi'an, Shanxi, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xing Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
9
|
Feng Z, Shi K, Yin Y, Shi Y, Feng S, Long F, Wei Z, Si H. A Quadruplex RT-qPCR for the Detection of African Swine Fever Virus, Classical Swine Fever Virus, Porcine Reproductive and Respiratory Syndrome Virus, and Porcine Pseudorabies Virus. Animals (Basel) 2024; 14:3551. [PMID: 39682516 DOI: 10.3390/ani14233551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/26/2024] [Accepted: 12/07/2024] [Indexed: 12/18/2024] Open
Abstract
African swine fever virus (ASFV), classical swine fever virus (CSFV), porcine reproductive and respiratory syndrome virus (PRRSV), and porcine pseudorabies virus (PRV) induce similar clinical signs in infected pigs, including hyperthermia, anorexia, hemorrhage, respiratory distress, neurological symptoms, and/or abortions in pregnant sows. The differential diagnosis of these diseases relies on laboratory examinations. In this study, a quadruplex RT-qPCR was established using four pairs of specific primers and probes aimed at the B646L (p72) gene of ASFV, the 5' untranslated region (5'UTR) of CSFV, the ORF6 gene of PRRSV, and the gB gene of PRV for the detection and differentiation of ASFV, CSFV, PRRSV, and PRV. The assay exhibited great sensitivity with limits of detection (LODs) of 134.585, 139.831, 147.076, and 142.331 copies/reaction for ASFV, CSFV, PRRSV, and PRV, respectively. The assay exclusively identified ASFV, CSFV, PRRSV, and PRV, yielding negative results for the other control swine viruses used in this study. The intra-assay and inter-assay coefficients of variation (CVs) were not higher than 1.12%, indicating good reproducibility of the assay. The quadruplex RT-qPCR assay was used to analyze 3116 clinical tissue samples from pigs in Guangxi province, China, from April 2023 to September 2024. ASFV, CSFV, PRRSV, and PRV had positivity rates of 10.84% (338/3116), 0.80% (25/3116), 14.92% (465/3116), and 1.38% (43/3116), respectively, demonstrating a coincidence rate of ≥99.45% with the previously described RT-qPCR assays, which were also used to test these same samples. The established assay was rapid, sensitive, and accurate in detecting and differentiating ASFV, CSFV, PRRSV, and PRV.
Collapse
Affiliation(s)
- Zhuo Feng
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Kaichuang Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Yanwen Yin
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Yuwen Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Shuping Feng
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Feng Long
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China
| | - Zuzhang Wei
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi University, Nanning 530005, China
| |
Collapse
|
10
|
Zhang X, Xu H, Sun R, Xiong G, Shi X. An insight into G-quadruplexes: Identification and potential therapeutic targets in livestock viruses. Eur J Med Chem 2024; 279:116848. [PMID: 39255642 DOI: 10.1016/j.ejmech.2024.116848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
G-quadruplexes (G4s) are non-canonical nucleic acids secondary structures that involve in the regulation of some key biological processes, such as replication, transcription, and translation. G4s have been extensively described in the genomes of human and related diseases. In recent years, G4s were identified in several livestock viruses, including those of the emerging epidemics, like Nipah virus (NiV). Since their discovery, G4s have been developed as the potential antiviral targets, and the employment of G4 ligands or interacting proteins has helped to expound the viral infectivity and pathogenesis through G4-mediated mechanisms, and highlight the potential as therapeutic approaches. However, the comprehensively studies of G4s in livestock viruses have not been summarized. This review delves into the reported literatures of G4s in livestock viruses, particular focus on the presence, biophysical identification, and possible function of G4s in viral genome, summarizing the G4 ligands, interacted proteins and aptamers on antiviral applications. The strengths and the challenges of G4 targeting in this field are also discussed. Therefore, this review will shed new light on the future development of highly potent and targeting antiviral therapy.
Collapse
Affiliation(s)
- Xianpeng Zhang
- Laboratory of Pesticide Toxicology and Pesticide Efficient Utilization, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China; Key Laboratory of Crop Physiology Ecology & Genetic Breeding, Jiangxi Agriculture University, Nanchang, Jiangxi Province, 330045, PR China
| | - Hongyu Xu
- College of Land Resources and Environment, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China
| | - Ranran Sun
- Laboratory of Pesticide Toxicology and Pesticide Efficient Utilization, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China
| | - Guihong Xiong
- Key Laboratory of Crop Physiology Ecology & Genetic Breeding, Jiangxi Agriculture University, Nanchang, Jiangxi Province, 330045, PR China
| | - Xugen Shi
- Laboratory of Pesticide Toxicology and Pesticide Efficient Utilization, College of Agronomy, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China; Key Laboratory of Crop Physiology Ecology & Genetic Breeding, Jiangxi Agriculture University, Nanchang, Jiangxi Province, 330045, PR China; Jiangxi Xiajiang Dry Direct-seeded Rice Science and Technology Backyard, Ji'an, Jiangxi Province, 331400, PR China.
| |
Collapse
|
11
|
Fan W, Yao C, Ma Y, Wang H, Liu P, Zhang Z, Chu B, Yang G, Wang M. Inhibiting UGCG prevents PRV infection by decreasing lysosome-associated autophage. Int J Biol Macromol 2024; 285:138303. [PMID: 39631580 DOI: 10.1016/j.ijbiomac.2024.138303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/28/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Glucosylceramide synthase (UGCG) is a key enzyme that catalyzes the initial glycosylation step in the biosynthesis of glycosphingolipids (GSLs) derived from glucosylceramide. UGCG is closely associated with various cellular processes, including the cell cycle, angiogenesis, multidrug resistance, and pathogen invasion. In this study, a short hairpin RNA (shRNA) library designed to target key genes involved in the sphingolipid metabolic pathway was utilized to elucidate their roles in Pseudorabies Virus (PRV). Those findings confirm a significant association between sphingolipid metabolism and PRV infection. In addition, this study demonstrated that the knockdown UGCG expression or inhibition of its activity significantly suppresses PRV infection. This suppression is accompanied by reduced expression of autophagy-related proteins that are induced by PRV infection, blockade of autophagic flux, and significant activation of the STING signaling pathway induced by PRV infection. Through extensive investigation, this research revealed that inhibition of UGCG affects the expression of lysosome-associated proteins, alters the lysosomal pH, disrupts lysosomal homeostasis, and impedes autophagolysosomal degradation. Additionally, UGCG inhibition influences the conversion of light chain 3-II (LC3-II) and the formation of LC3-STING complexes, negatively regulates the autophagic degradation of STING, and ensures sustained activation of the PRV-induced STING signaling pathway, thereby achieving resistance against PRV infection. Finally, through in vivo evaluation, this study revealed that UGCG inhibitors, Eliglustat hemitartrate and Ibiglustat, hold promise as potential therapeutics for the treatment of PRV infection. In summary, this study preliminarily elucidates the impact of UGCG on PRV infection and its associated molecular mechanisms, suggesting UGCG could serve as a potential novel target for the prevention and treatment of viral diseases such as PRV.
Collapse
Affiliation(s)
- Wenjie Fan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; The Education Department of Henan Province Henan University of Animal Husbandry and Economy, Zhengzhou, Henan Province, People's Republic of China, Zhengzhou 450046, China
| | - Chen Yao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; The Education Department of Henan Province Henan University of Animal Husbandry and Economy, Zhengzhou, Henan Province, People's Republic of China, Zhengzhou 450046, China
| | - Yanjie Ma
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; The Education Department of Henan Province Henan University of Animal Husbandry and Economy, Zhengzhou, Henan Province, People's Republic of China, Zhengzhou 450046, China
| | - Heng Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; The Education Department of Henan Province Henan University of Animal Husbandry and Economy, Zhengzhou, Henan Province, People's Republic of China, Zhengzhou 450046, China
| | - Pengxiang Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; The Education Department of Henan Province Henan University of Animal Husbandry and Economy, Zhengzhou, Henan Province, People's Republic of China, Zhengzhou 450046, China
| | - Zhen Zhang
- School of Food and Bioengineering, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan Province, People's Republic of China, Zhengzhou 450046, China
| | - Beibei Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; The Education Department of Henan Province Henan University of Animal Husbandry and Economy, Zhengzhou, Henan Province, People's Republic of China, Zhengzhou 450046, China
| | - Guoyu Yang
- School of Food and Bioengineering, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan Province, People's Republic of China, Zhengzhou 450046, China; The Education Department of Henan Province Henan University of Animal Husbandry and Economy, Zhengzhou, Henan Province, People's Republic of China, Zhengzhou 450046, China.
| | - Mengdi Wang
- School of Food and Bioengineering, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan Province, People's Republic of China, Zhengzhou 450046, China.
| |
Collapse
|
12
|
Zhang Y, Li X, Zhang J, Duan Y, Chen P, Shi L, Yuan C, Cao L, Sun M, Wang Y, Kong X, Zheng H, Wang Q. A rapid and versatile reverse genetic approach and visualization animal models for emerging zoonotic pseudorabies virus. Antiviral Res 2024; 232:106036. [PMID: 39522887 DOI: 10.1016/j.antiviral.2024.106036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Pseudorabies virus (PRV), a member of the Alphaherpesvirinae subfamily and a causative pathogen of Aujeszky's disease, has a broad host range including domestic and wild animals. PRV has been reported as a causative agent in patients with acute encephalitis in 2021, which suggests PRV might be a novel animal-origin virus in terms of zoonotic spillover and spread potential. To manage current PRV epidemics in pigs and prepare for future pandemics in other species including humans. Fundamental techniques essential for procuring such knowledge on prevention and therapy of PRV. Here, PRV CD22 strain was isolated and phylogenetic analysis showed that PRV CD22 belongs to the current epidemic strains in China. PRV CD22 was highly lethal to mice and piglets in vivo. Moreover, a rapid and efficient system to generate recombinant PRV was constructed based on PRV CD22 genomic DNA fosmid library. Using this system, a recombinant PRV strain expressing engineered labeling protein was rescued for visualization of viral infection in mouse model. Our study allows the generation of PRV that can be used for downstream treatment analyses. Once experimental or surveillance samples are obtained, PRV can be generated and treated efficiently based on our study.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China; Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Xiangtong Li
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China; Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Juan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China; Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Yueyue Duan
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China; Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Peibin Chen
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China; Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Lei Shi
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China; Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Cong Yuan
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China; Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Liyan Cao
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China; Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Maowen Sun
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China; Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Yating Wang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China; Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Xiangyu Kong
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China; Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Haixue Zheng
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| | - Qi Wang
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China; Chengdu National Agricultural Science and Technology Center, Chengdu, China.
| |
Collapse
|
13
|
Zhang WJ, Feng H, Zhang MM, Liu JS, Li LT, Chen HC, Liu ZF. Pseudorabies virus UL13 primes inflammatory response through downregulating heat shock factor 1. Virology 2024; 600:110214. [PMID: 39243656 DOI: 10.1016/j.virol.2024.110214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/11/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Pseudorabies virus is a swine alpha-herpesvirus. We demonstrated that alpha-herpesvirus infection downregulates HSF1, a master transcription factor in the heat shock response. The serine/threonine protein kinase activity of late viral protein UL13 is indispensable for HSF1 depletion and phosphorylation, and UL13 does not degrade HSF1 posttranslationally but inhibits the HSF1 mRNA level. Importantly, UL13 increased HSF1 activity even though it reduced HSF1 mRNA. Furthermore, viral replication markedly decreased in the HSF1 knockout cell line or in the presence of an HSF1-specific inhibitor. Interestingly, HSF1 knockout accelerated the activation of NF-κB and p38MAPK. The K96 loci of UL13 are important to induce high levels of IL-6, TNF-α, and IL-β cytokines while playing a crucial role in promoting mild interstitial pneumonia, liver necrosis, and severe inflammatory cell infiltration in the footpad. Thus, UL13 steers the heat shock response to promote viral replication and the inflammatory response. IMPORTANCE: PRV is a ubiquitous pathogen that infects a variety of mammals, such as pigs, ruminants, carnivores, and rodents as well as human beings, causing enormous economic losses in the swine industry. Here, we employed PRV as a model to determine the relationship between α-herpesvirus and the inflammatory response. Overall, our findings indicated that PRV infection inhibits the level of HSF1 mRNA via the serine/threonine protein kinase activity of UL13. Additionally, we discovered that HSF1 was involved in NF-κB activation upon PRV infection. PRV UL13 orchestrates the level of HSF1 mRNA, HSF1 protein phosphorylation, and priming of the inflammatory response. Our study reveals a novel mechanism employed by UL13 serine/threonine protein kinase activity to promote the inflammatory response, providing novel clues for therapy against alpha-herpesvirus infection.
Collapse
Affiliation(s)
- Wen-Jing Zhang
- National Key Laboratory of Agricultural Microbiology and Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Han Feng
- National Key Laboratory of Agricultural Microbiology and Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mei-Mei Zhang
- National Key Laboratory of Agricultural Microbiology and Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing-Song Liu
- National Key Laboratory of Agricultural Microbiology and Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin-Tao Li
- National Key Laboratory of Agricultural Microbiology and Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huan-Chun Chen
- National Key Laboratory of Agricultural Microbiology and Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zheng-Fei Liu
- National Key Laboratory of Agricultural Microbiology and Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
14
|
Li XM, Xu K, Wang JY, Guo JY, Wang XH, Zeng L, Wan B, Wang J, Chu BB, Yang GY, Pan JJ, Hao WB. The actin cytoskeleton is important for pseudorabies virus infection. Virology 2024; 600:110233. [PMID: 39255726 DOI: 10.1016/j.virol.2024.110233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/06/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
Viruses are dependent on the host factors for their replication and survival. Therefore, identification of host factors that druggable for antiviral development is crucial. The actin cytoskeleton plays an important role in the virus infection. The dynamics change of actin and its function are regulated by multiple actin-associated proteins (AAPs). However, the role and mechanism of various AAPs in the life cycle of virus are still enigmatic. In this study, we analyzed the roles of actin and AAPs in the replication of pseudorabies virus (PRV). Using a library of compounds targeting AAPs, our data found that multiple AAPs, such as Rho-GTPases, Rock, Myosin and Formin were involved in PRV infection. Besides, our result demonstrated that the actin-binding protein Drebrin was also participated in PRV infection. Further studies are necessary to elucidate the molecular mechanism of AAPs in the virus life cycle, in the hope of mining host factors for antiviral developments.
Collapse
Affiliation(s)
- Xin-Man Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, 450046, China
| | - Kun Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, 450046, China
| | - Jin-Yuan Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, 450046, China
| | - Jie-Yuan Guo
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, 450046, China
| | - Xiao-Han Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, 450046, China
| | - Lei Zeng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, 450046, China
| | - Bo Wan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China
| | - Jiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China
| | - Bei-Bei Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China
| | - Guo-Yu Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, 450046, China; Henan University of Animal Husbandry and Economy, Zhengzhou, 450047, China
| | - Jia-Jia Pan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Zhengzhou, 450046, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Zhengzhou, 450046, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, China.
| | - Wen-Bo Hao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
15
|
Li X, Zheng J, Lv X, Han Y, Jiang B, Zhang X, Zhang G, Ren L. Vimentin as a universal receptor for pseudorabies virus infection in pig and human cells. Int J Biol Macromol 2024; 283:137638. [PMID: 39549807 DOI: 10.1016/j.ijbiomac.2024.137638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/18/2024]
Abstract
Pseudorabies virus (PRV), known to infect pigs and found in various species, including humans, shows zoonotic potential. This study identified vimentin (VIM), a highly conserved intermediate filament protein expressed in multiple mammalian species and tissues, as a universal receptor for PRV infections in human and porcine cells. The adsorption of PRV is positively correlated with the level of VIM expressed in different cells. Overexpression and knockdown of VIM significantly increase and decrease PRV adsorption in cells, respectively. Dot blot assay and VOPBA showed that purified VIM can directly bind to PRV virions efficiently in a dose-dependent manner. PRV and VIM are co-localized at the cell membrane of PRV-infected cells. Moreover, PRV mainly binds to host VIM via its conserved amino acid residues in PRV gD (W98, G162, Y164, C205) and gH (C439) and the Rod domain (residues 96-404) of VIM. In addition, regulating the expression of VIM also influences the entry, replication, and release of PRV, which has a similar result to the adsorption. These results demonstrate that VIM, as a universal receptor, can facilitate PRV infection in multiple stages in human and porcine cells, highlighting the zoonosis characteristics of PRV and the need for more attention.
Collapse
Affiliation(s)
- Xue Li
- College of Animal Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Jiawei Zheng
- College of Animal Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Xinru Lv
- College of Animal Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Yaqi Han
- College of Animal Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Boheng Jiang
- College of Animal Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Xinwei Zhang
- College of Animal Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Guoqing Zhang
- College of Animal Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, 5333 Xi'an Road, Changchun 130062, China
| | - Linzhu Ren
- College of Animal Sciences, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
| |
Collapse
|
16
|
Sun M, Shi Y, Lei B, Zhang W, Feng J, Ge S, Yuan W, Zhao K. A pH-triggered self-releasing humic acid hydrogel loaded with porcine interferon α/γ achieves anti-pseudorabies virus effects by oral administration. Vet Res 2024; 55:153. [PMID: 39568063 PMCID: PMC11580204 DOI: 10.1186/s13567-024-01411-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/16/2024] [Indexed: 11/22/2024] Open
Abstract
Interferon α (IFNα) and interferon γ (IFNγ) play pivotal roles in mediating crucial biological functions, including antiviral activity and immune regulation. However, the efficacy of monomeric IFN is limited, and its administration relies solely on injection. To address this issue, we successfully expressed and purified a recombinant porcine IFNα and IFNγ fusion protein (rPoIFNα/γ). Furthermore, we developed a pH-triggered humic acid hydrogel delivery system that effectively protects rPoIFNα/γ from gastric acid degradation, enhancing its oral bioavailability. Neither the humic acid hydrogel nor rPoIFNα/γ exhibited cytotoxic effects on porcine kidney-15 (PK-15) cells in vitro. The replication of vesicular stomatitis virus and pseudorabies virus (PRV) was effectively inhibited by rPoIFNα/γ, resulting in an antiviral activity of approximately 104 U/mL. Scanning electron microscopy revealed that the humic acid hydrogel had a loose and porous honeycomb structure. The IFNα/γ@PAMgel hydrogel effectively adsorbed rPoIFNα/γ, as confirmed by Fourier transform infrared spectroscopy analysis, demonstrating a favourable IFN-loading capacity. In vitro experiments revealed that IFNα/γ@PAMgel swelled and released IFNα/γ rapidly at pH 7.4 but not at pH 1.2. The oral administration of IFNα/γ@PAMgel in mice enhanced the proliferation and differentiation of CD4+ and CD8+ cells. Additionally, mice infected with PRV and treated with IFNα/γ@PAMgel presented increased transcription levels of interferon-stimulated genes in the serum, reduced mortality rates, lower viral loads in various tissues, and decreased levels of organ damage. In conclusion, this study demonstrates that orally administered IFNα/γ@PAMgel has antiviral and immunomodulatory effects, highlighting its potential as a therapeutic agent against PRV infection.
Collapse
Affiliation(s)
- Maoyuan Sun
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Yongli Shi
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Baishi Lei
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Wuchao Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Jingjing Feng
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China
| | - Shenghu Ge
- Hebei Mingzhu Biotechnology Co., Ltd., Xingtai, China
| | - Wanzhe Yuan
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China.
| | - Kuan Zhao
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
17
|
Cai MP, Qu CL, Du MH, Wang SY, Yang GY, Chu BB, Ming SL. Role of Rab35 in modulating lipid metabolism and viral entry during pseudorabies virus infection. Int J Biol Macromol 2024; 282:137492. [PMID: 39528177 DOI: 10.1016/j.ijbiomac.2024.137492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/21/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Pseudorabies virus (PRV), the causative agent of Aujeszky's disease in swine, is a significant pathogen in veterinary medicine. Rab35 is a key regulatory GTPase involved in diverse cellular functions, including endocytic recycling, cytokinesis, and the regulation of the actin cytoskeleton. Although Rab35's roles in these processes are well-documented, its contribution to PRV replication dynamics had not been previously elucidated. Our study demonstrated that PRV infection led to an increase in Rab35 expression at both the mRNA and protein levels in both in vitro cell culture and in vivo models. Elevated Rab35 expression was associated with an acceleration of PRV replication, whereas knocking down Rab35 expression significantly impeded viral proliferation. Further investigation revealed that while Rab35 depletion did not impact the initial attachment of PRV to host cells, it critically suppressed subsequent viral entry and effectively obstructed the transcription of early PRV genes. The downregulation of Rab35 disrupted the expression of enzymes critical to lipid synthesis, which are upregulated during PRV infection. Moreover, Rab35 knockdown disrupted lipid dynamics necessary for the virus to integrate into clathrin-coated pits, a pivotal mechanism for PRV cellular entry. These findings collectively suggest that Rab35 plays a facilitatory role in PRV infection by modulating lipid metabolism and the viral entry process, thereby offering new insights into the complex intracellular mechanisms underlying PRV replication.
Collapse
Affiliation(s)
- Meng-Pan Cai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan Province, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, Henan Province, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
| | - Cheng-Long Qu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan Province, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, Henan Province, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
| | - Meng-Hua Du
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan Province, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, Henan Province, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
| | - Shu-Yi Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan Province, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, Henan Province, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
| | - Guo-Yu Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, Henan Province, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan Province, China
| | - Bei-Bei Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan Province, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, Henan Province, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan Province, China; Longhu Advanced Immunization Laboratory, Zhengzhou 450046, Henan Province, China; International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou 450046, Henan Province, China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou 450046, Henan Province, China.
| | - Sheng-Li Ming
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, Henan Province, China; Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou 450046, Henan Province, China; Key Laboratory of Veterinary Biotechnology of Henan Province, Henan Agricultural University, Zhengzhou 450046, Henan Province, China.
| |
Collapse
|
18
|
Chen Z, Li D, Wang T, Li Y, Qin P, Zhu H, Zhang M, Li W, Yu L, Duan H, Chen L, Li Y, Zheng G. Salvianolic acid A inhibits pseudorabies virus infection by directly inactivating the virus particle. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:156015. [PMID: 39244942 DOI: 10.1016/j.phymed.2024.156015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Pseudorabies virus (PRV), a member of the family Herpesviridae, is responsible for significant economic losses in the pig industry and has recently been associated with human viral encephalitis, leading to severe neurological symptoms post-recovery. Despite the widespread impact of PRV, there are currently no approved effective drugs for treating PRV-related diseases in humans or pigs. Therefore, the exploration and discovery of safe and effective drugs for the prevention and treatment of PRV infection is of paramount importance. PURPOSE The objective of this study is to screen and identify natural compounds with antiviral activity against PRV. METHODS First, we used a strain of PRV with green fluorescent protein (PRV-GFP) to screen a natural product chemical library to identify potential antiviral drugs. Next, we assessed the antiviral abilities of salvianolic acid A (SAA) in vitro using virus titer assay, qPCR, and IFA. We investigated the mechanisms of SAA's antiviral activity through viral attachment, internalization, inactivation, and nuclease digestion assay. Finally, we evaluated the efficacy of SAA in inactivating PRV using mice as the experimental subjects. RESULTS This study screened 206 natural compounds for anti-PRV activity in vitro, resulting in the identification of seven potential antiviral agents. Notably, SAA emerged as a promising candidate with significant anti-PRV activity. The mechanism of action may be that SAA can directly inactivate the virus by disrupting viral envelope. In vivo experiments have shown that pre-incubation of SAA and PRV can effectively inhibit the infectivity and pathogenicity of PRV in mice. CONCLUSION This study offers valuable insights into the antiviral properties of SAA, potentially informing strategies for controlling PRV epidemics and treating related diseases in both humans and animals.
Collapse
Affiliation(s)
- Zilu Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Dongliang Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan, Agricultural University, Zhengzhou 450046, PR China
| | - Tianliang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Yaqin Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Panpan Qin
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China
| | - Hongsen Zhu
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Mengjia Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Wentao Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, PR China; Hubei Hongshan Laboratory, Wuhan, 430070, PR China
| | - Linyang Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan, Agricultural University, Zhengzhou 450046, PR China
| | - Hong Duan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan, Agricultural University, Zhengzhou 450046, PR China
| | - Lu Chen
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan, Agricultural University, Zhengzhou 450046, PR China
| | - Yongtao Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, PR China; Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Henan, Agricultural University, Zhengzhou 450046, PR China.
| | - Guanmin Zheng
- School of Medicine, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China.
| |
Collapse
|
19
|
Qi M, Yang M, Luo R, Fang L, Chen Y, Gao J, Jiao Z, Shi Y, Peng G. A novel neuro-attenuated vaccine candidate with excellent safety and protective efficacy against highly virulent Feline Herpesvirus-1. Vet Microbiol 2024; 298:110276. [PMID: 39442428 DOI: 10.1016/j.vetmic.2024.110276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
Feline herpesvirus 1 (FHV-1) is a major pathogen responsible for respiratory, ocular and nervous system symptoms in felines. FHV-1 can remain latenct in ganglia and is difficult to eliminate completely with drug treatment. Currently, commercially FHV-1 vaccines are not sufficiently effective and provide only limited durations of protection. To enhance vaccine efficacy and reduce latent virus in tissues, two gene deletion mutants of FHV-1 conveyed excellent proliferation ability, genetic stability and attenuated FHV-1 virulence were constructed by CRISPR/Cas9-mediated homologous recombination, designated as FHV-△US3 and FHV-△UL50. Recombinant FHV-1 induce stronger cellular and humoral immune responses, as well as better protective effects than those of commercial vaccines. Notably, FHV-△US3 and FHV-△UL50 reveal neuro-attenuated, as viral residue in the trigeminal ganglia are significantly reduced. The knockout of the UL50 gene in FHV-1 has not been previously reported. In this study, we aimed to evaluate the safety and immunogenicity of FHV-△UL50, highlighting its potential as a novel neuroattenuated vaccine candidate.
Collapse
Affiliation(s)
- Mingyu Qi
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Hongshan Lab, Wuhan, China
| | - Mengfang Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Hongshan Lab, Wuhan, China
| | - Ruxue Luo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Hongshan Lab, Wuhan, China
| | - Lingying Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Hongshan Lab, Wuhan, China
| | - Yixi Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Hongshan Lab, Wuhan, China
| | - Jianuo Gao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Hongshan Lab, Wuhan, China
| | - Zhe Jiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Hongshan Lab, Wuhan, China.
| | - Yuejun Shi
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Hongshan Lab, Wuhan, China.
| | - Guiqing Peng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China; Hongshan Lab, Wuhan, China.
| |
Collapse
|
20
|
Wu J, Zhang J, Zhou J, Luo Y, Wang X, Yang R, Zhu J, Jia M, Zhang L, Fu L, Yan N, Wang Y. Prevalence and Genetic Variation Investigation of the Pseudorabies Virus in Southwest China. Animals (Basel) 2024; 14:3103. [PMID: 39518826 PMCID: PMC11544765 DOI: 10.3390/ani14213103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/13/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
In 2022, a significant PRV outbreak in a southwestern China pig farm led to a high incidence of sow abortion. A serological analysis using gE antigen-based ELISA revealed a high prevalence (69.30%) of PRV gE antibodies among the affected pigs, with a significant variation across different pig populations (1.11-76.12%). We collected additional 5552 pig serum samples and 580 pig cerebrospinal fluid (CSF) samples from various pig farms in Southwest China between 2022 and 2024. The seropositive rates for PRV gE antibodies ranged from 2.36% and 8.65% in the serum samples, while the positive detection rates for the PRV gE gene in the cerebrospinal fluid samples, as determined by PCR, were between 1.06% and 2.36%. The PCR analysis and sequencing of the PRV gB, gC, gE, and TK genes from eight randomly selected samples identified two distinct strains, CQ1 and CQ2. CQ1's gC gene showed similarity to the vaccine strain Bartha, while the other genes aligned with Chinese classical strains, suggesting its potential genetic recombination. CQ2 aligned with the Chinese classical strain SC. Although the overall PRV infection in Southwest China's pig farms is relatively low, occasional outbreaks with high positivity rates are observed. These findings highlight the necessity for increased surveillance and stringent control measures to safeguard the swine industry.
Collapse
Affiliation(s)
- Jiaqi Wu
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (J.W.); (J.Z.); (Y.L.); (X.W.); (M.J.); (L.Z.)
| | - Juan Zhang
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (J.W.); (J.Z.); (Y.L.); (X.W.); (M.J.); (L.Z.)
| | - Jun Zhou
- Sichuan Boce Testing Technology Co., Ltd., Chengdu 610023, China;
| | - Yi Luo
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (J.W.); (J.Z.); (Y.L.); (X.W.); (M.J.); (L.Z.)
| | - Xinrong Wang
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (J.W.); (J.Z.); (Y.L.); (X.W.); (M.J.); (L.Z.)
| | - Rui Yang
- Chongqing Academy of Animal Science, Chongqing 408599, China (L.F.)
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Junhai Zhu
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (J.W.); (J.Z.); (Y.L.); (X.W.); (M.J.); (L.Z.)
| | - Meiyu Jia
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (J.W.); (J.Z.); (Y.L.); (X.W.); (M.J.); (L.Z.)
| | - Longxiang Zhang
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (J.W.); (J.Z.); (Y.L.); (X.W.); (M.J.); (L.Z.)
| | - Lizhi Fu
- Chongqing Academy of Animal Science, Chongqing 408599, China (L.F.)
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Nan Yan
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (J.W.); (J.Z.); (Y.L.); (X.W.); (M.J.); (L.Z.)
| | - Yue Wang
- College of Veterinary Medicine, Southwest University, Chongqing 400715, China; (J.W.); (J.Z.); (Y.L.); (X.W.); (M.J.); (L.Z.)
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| |
Collapse
|
21
|
Xu L, Tao Q, Zhang Y, Lee FQ, Xu T, Deng LS, Jian ZJ, Zhao J, Lai SY, Zhou YC, Zhu L, Xu ZW. The host cells suppress the proliferation of pseudorabies virus by regulating the PI3K/Akt/mTOR pathway. Microbiol Spectr 2024; 12:e0135124. [PMID: 39436133 PMCID: PMC11619243 DOI: 10.1128/spectrum.01351-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/06/2024] [Indexed: 10/23/2024] Open
Abstract
Pseudorabies virus (PRV), a member of the alpha-herpesviruses, can infect both the nervous and reproductive systems of pigs, causing neonatal mortality and reproductive failure in sows, which incurs substantial economic losses. Neurotropism is a common characteristic of various viruses, allowing them to cross the blood-brain barrier and access the central nervous system. However, the precise mechanisms by which PRV affects the blood-brain barrier are not well understood. To investigate the mechanism of PRV's interaction with the blood-brain barrier and its engagement with the PI3K/Akt signaling pathway during infection, an in vitro monolayer cell model of the blood-brain barrier was established. Our research found that PRV activates Matrix metallopeptidase 2 (MMP2), which degrades Zonula occludens-1 (ZO-1) and consequently enhances the permeability of the blood-brain barrier. PRV infection elevated the transcriptional levels of tissue inhibitor of metalloproteinases 1 (TIMP1) and inhibited its degradation through the ubiquitin-proteasome pathway, leading to higher intracellular concentrations of TIMP1 protein. TIMP1 regulates apoptosis and inhibits PRV replication in mouse brain microvascular endothelial cells through the PI3K/Akt/mTOR signaling pathway. In summary, our study delineates the mechanism through which PRV compromises the blood-brain barrier and provides insights into the host's antiviral defense mechanisms post-infection. IMPORTANCE PRV, known for its neurotropic properties, is capable of inducing severe neuronal damage. Our study discovered that following PRV infection, the expression of MMP2 was upregulated, leading to the degradation of ZO-1. Furthermore, upon PRV infection in the host, the promoter of TIMP1 is significantly activated, resulting in a significant increase in TIMP1 protein levels. This upregulation of TIMP1 inhibits the proliferation of PRV through the PI3K/Akt signaling pathway. This study elucidated the mechanism through which PRV, including the PRV XJ delgE/gI/TK strains, compromises the blood-brain barrier and identifies the antiviral response characterized by the activation of the PI3K/Akt signaling pathway within infected host cells. These findings provide potential therapeutic targets for the clinical management and treatment of PRV.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qian Tao
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yang Zhang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Feng-qin Lee
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tong Xu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Li-shuang Deng
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhi-jie Jian
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jun Zhao
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Si-yuan Lai
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuan-cheng Zhou
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Ling Zhu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhi-wen Xu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
22
|
Qi C, Zhao D, Wang X, Hu L, Wang Y, Wu H, Li F, Zhou J, Zhang T, Qi A, Huo Y, Tu Q, Zhong S, Yuan H, Lv D, Yan S, Ouyang H, Pang D, Xie Z. Identification of porcine PARP11 as a restricted factor for pseudorabies virus. Front Cell Infect Microbiol 2024; 14:1414827. [PMID: 39445214 PMCID: PMC11496260 DOI: 10.3389/fcimb.2024.1414827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction PRV infection in swine can cause devastating disease and pose a potential threat to humans. Advancing the interplay between PRV and host is essential to elucidate the pathogenic mechanism of PRV and identify novel anti-PRV targets. Methods PARP11-KO PK-15 cells were firstly constructed by CRISPR/Cas9 technology. Next, the effect of PARP11-KO on PRV infection was determined by RT-qPCR, TCID50 assay, RNA-seq, and western blot. Results and discussion In this study, we identified PARP11 as a host factor that can significantly affect PRV infection. Inhibition of PARP11 and knockout of PARP11 can significantly promoted PRV infection. Subsequently, we further found that PARP11 knockout upregulated the transcription of NXF1 and CRM1, resulting in enhanced transcription of viral genes. Furthermore, we also found that PARP11 knockout could activate the autophagy pathway and suppress the mTOR pathway during PRV infection. These findings could provide insight into the mechanism in which PARP11 participated during PRV infection and offer a potential target to develop anti-PRV therapies.
Collapse
Affiliation(s)
- Chunyun Qi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Dehua Zhao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Xi Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Lanxin Hu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yao Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Heyong Wu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Feng Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Jian Zhou
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Tianyi Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Aosi Qi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Yuran Huo
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Qiuse Tu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Shuyu Zhong
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Hongming Yuan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
- Chongqing Research Institute, Jilin University, Chongqing, China
- Center for Animal Science and Technology Research, Chongqing Jitang Biotechnology Research Institute Co., Ltd, Chongqing, China
| | - Dongmei Lv
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
- Chongqing Research Institute, Jilin University, Chongqing, China
- Center for Animal Science and Technology Research, Chongqing Jitang Biotechnology Research Institute Co., Ltd, Chongqing, China
| | - Shouqing Yan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
| | - Hongsheng Ouyang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
- Chongqing Research Institute, Jilin University, Chongqing, China
- Center for Animal Science and Technology Research, Chongqing Jitang Biotechnology Research Institute Co., Ltd, Chongqing, China
- Laboratory of Biotechnology and Biomedical Research, Shenzhen Kingsino Technology Co., Ltd., Shenzhen, China
| | - Daxin Pang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
- Chongqing Research Institute, Jilin University, Chongqing, China
- Center for Animal Science and Technology Research, Chongqing Jitang Biotechnology Research Institute Co., Ltd, Chongqing, China
| | - Zicong Xie
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Sciences, Jilin University, Changchun, Jilin, China
- Chongqing Research Institute, Jilin University, Chongqing, China
- Center for Animal Science and Technology Research, Chongqing Jitang Biotechnology Research Institute Co., Ltd, Chongqing, China
| |
Collapse
|
23
|
Li H, Zhang R, Qu J, Kang Y, Zhang J, Guo R, Li J, Zhang X, Han L, Xie H, Wang X. Development and immunogenicity evaluation of a quadruple-gene-deleted pseudorabies virus strain. Front Microbiol 2024; 15:1479794. [PMID: 39372271 PMCID: PMC11449858 DOI: 10.3389/fmicb.2024.1479794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024] Open
Abstract
Since 2011, the emergence of Pseudorabies virus (PRV) variants has led to significant vaccine failures, resulting in severe economic losses in China's swine industry. Conventional PRV vaccines have shown limited efficacy against these emergent variants, underscoring the urgent need for novel immunization strategies. This study aimed to develop and evaluate a novel recombinant PRV vaccine candidate with improved safety and immunogenicity profiles. Utilizing the homology-directed repair (HDR)-CRISPR/Cas9 system, we generated a recombinant PRV strain, designated PRV SX-10ΔgI/gE/TK/UL24, with deletions in the gI, gE, TK, and UL24 genes. In vitro analyses demonstrated that the recombinant virus exhibited similar replication kinetics and growth curves comparable to the parental strain. The immunological properties of the recombinant PRV were assessed in murine and porcine models. All animals inoculated with PRV SX-10ΔgI/gE/TK/UL24 survived without exhibiting significant clinical signs or pathological alterations. Immunological assays revealed that PRV SX-10ΔgI/gE/TK/UL24 elicited significantly higher levels of gB-specific antibodies, neutralizing antibodies, and cytokines (including IFN-γ, IL-2, and IL-4) compared to both the Bartha-K61 and PRV SX-10ΔgI/gE/TK strains. Notably, both murine and porcine subjects immunized with PRV SX-10ΔgI/gE/TK/UL24 demonstrated enhanced protection against challenges with the variant PRV SX-10 strain, compared to other vaccine strains. These findings suggest that PRV SX-10ΔgI/gE/TK/UL24 represents a promising PRV vaccine candidate strain, offering valuable insights for the prevention and control of PRV in clinical applications.
Collapse
Affiliation(s)
- Hui Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Riteng Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jiahao Qu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Yahao Kang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jingnan Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Ruhai Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - JunDa Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiao Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Likang Han
- College of Veterinary Medicine, Gansu Agricultural University, Anning, China
| | - Honglin Xie
- School of Animal Science and Technology, Foshan University, Foshan, China
| | - Xinglong Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
24
|
Cao S, Zhang L, Zhou M, Zhu S. Transcriptomic insights into pseudorabies virus suppressed cell death pathways in neuroblastoma cells. Front Microbiol 2024; 15:1430396. [PMID: 39364165 PMCID: PMC11447949 DOI: 10.3389/fmicb.2024.1430396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/07/2024] [Indexed: 10/05/2024] Open
Abstract
Pseudorabies virus (PRV) exhibits a complex interplay of host-pathogen interactions, primarily by modulating host cell death pathways to optimize its replication and spread in Neuro-2a cells. Using high-throughput RNA sequencing, we identified 2,382 upregulated differentially expressed genes (DEGs) and 3,998 downregulated DEGs, indicating a intricate interaction between viral pathogenesis and host cellular responses. This research offers valuable insights into the molecular processes involved in PRV infection, highlighting the substantial inhibition of crucial cell death pathways in Neuro-2a cells, including necroptosis, pyroptosis, autophagy, ferroptosis, and cuproptosis. Cells infected with PRV exhibit decreased expression of genes critical in these pathways, potentially as a mechanism to avoid host immune reactions and ensure cell survival to support ongoing viral replication. This extensive inhibition of apoptosis and metabolic alterations highlights the sophisticated tactics utilized by PRV, enhancing our comprehension of herpesvirus biology and the feasibility of creating specific antiviral treatments. This research contributes to our understanding of how viruses manipulate host cell death and presents potential opportunities for therapeutic interventions to disrupt the virus's lifecycle.
Collapse
Affiliation(s)
| | | | - Mo Zhou
- Swine Infectious Diseases Division, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, China
| | - Shanyuan Zhu
- Swine Infectious Diseases Division, Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Engineering Technology Research Center for Modern Animal Science and Novel Veterinary Pharmaceutic Development, Jiangsu Agri-animal Husbandry Vocational College, Taizhou, China
| |
Collapse
|
25
|
You D, Xu T, Huang BZ, Wu F, Deng LS, Liu ZY, Ge LP, Liu ZH, Sun J, Zeng X, Zhou YC, Lai SY, Ai YR, Huang JB, Zhu L, Xu ZW. Rapid, sensitive, and visual detection of pseudorabies virus with an RPA-CRISPR/EsCas13d-based dual-readout portable platform. Anal Chim Acta 2024; 1318:342918. [PMID: 39067912 DOI: 10.1016/j.aca.2024.342918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Pseudorabies viruses (PRV) pose a major threat to the global pig industry and public health. Rapid, intuitive, affordable, and accurate diagnostic testing is critical for controlling and eradicating infectious diseases. In this study, a portable detection platform based on RPA-CRISPR/EsCas13d was developed. The platform exhibits high sensitivity (1 copy/μL), good specificity, and no cross-reactivity with common pathogens. The platform uses rapid preamplification technology to provide visualization results (lateral flow assays or visual fluorescence) within 1 h. Fifty pig samples (including tissues, oral fluids, and serum) were tested using this platform and real-time quantitative polymerase chain reaction (qPCR), showing 34.0 % (17 of 50) PRV positivity with the portable CRISPR/EsCas13d dual-readout platform, consistent with the qPCR results. These results highlight the stability, sensitivity, efficiency, and low equipment requirements of the portable platform. Additionally, a novel point-of-care test is being developed for clinical use in remote rural and resource-limited areas, which could be a prospective measure for monitoring the progression of pseudorabies and other infectious diseases worldwide.
Collapse
Affiliation(s)
- Dong You
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tong Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bing-Zhou Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Fang Wu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Li-Shuang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhe-Yan Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | | | | | - Jing Sun
- ChongQing Academy of Animal Sciences, China
| | - Xiu Zeng
- ChongQing Academy of Animal Sciences, China
| | - Yuan-Cheng Zhou
- Key Laboratory of Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China; Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Si-Yuan Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yan-Ru Ai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jian-Bo Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China.
| | - Zhi-Wen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China; Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China.
| |
Collapse
|
26
|
Xu L, Tao Q, Xu T, Yang Y, Zhang Y, Liu Z, Zhou Y, Zhu L, Xu Z. Pathogenicity characteristics of different subgenotype pseudorabies virus in newborn piglets. Front Vet Sci 2024; 11:1438354. [PMID: 39170631 PMCID: PMC11335603 DOI: 10.3389/fvets.2024.1438354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/31/2024] [Indexed: 08/23/2024] Open
Abstract
Pseudorabies virus is a major pathogen in the pig industry, causing substantial economic losses. The emergence of pseudorabies virus variant strains in China has led to extensive spread, raising concerns about their potential impact. However, the differences in pathogenicity between the classical strains and the variant strains of genotype II are not well understood. In this study, we isolated three pseudorabies virus strains to evaluate their replication characteristics and to examine the differences in virulence genes among various subgenotypes strains. Additionally, a piglet infection model was utilized to investigate the clinical features of infection, tissue tropism, and the inflammatory responses induced by these strains. Our results showed that the genotype II variant strains (MS, XJ, LS, and CZ) had significantly larger plaque sizes and higher replication capacities than the genotype II classical strain Fa. The animal experiments revealed significant differences in pathogenicity among the pseudorabies virus subgenotype strains, with the variant strains showing higher mortality rates, more severe clinical symptoms, increased nasal virus shedding, and a more robust inflammatory response compared to the genotype II classical strain. There were also notable differences in tissue tropism among the strains. In terms of tissue viral loads, the genotype II variant strains did not exhibit a significant advantage over the genotype I classical strain. Furthermore, our findings indicate that antibodies against the genotype II classical strains have a reduced neutralizing capacity against the genotype II variant strains. On the other hand, antibodies against the genotype II variant strains displayed similar neutralizing abilities against both classical and variant strains. Overall, these findings offer important insights into the distinctions among pseudorabies virus subgenotypes and their implications for the clinical control of pseudorabies virus infections in pig farming.
Collapse
Affiliation(s)
- Lei Xu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qian Tao
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tong Xu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yanting Yang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yang Zhang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zheyan Liu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuancheng Zhou
- Livestock and Poultry Biological Products Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, China
| | - Ling Zhu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
27
|
Rao CH, Huang R, Bai YZ, Yu C, Chen M, Peng JM, Xu SJ, Sun MX, Wang SJ, Yang YB, An TQ, Tian ZJ, Lyu C, Cai XH, Zheng C, Meng F, Tang YD. MARCH8 inhibits pseudorabies virus replication by trapping the viral cell-to-cell fusion complex in the trans-Golgi network. Int J Biol Macromol 2024; 274:133463. [PMID: 38944094 DOI: 10.1016/j.ijbiomac.2024.133463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/01/2024]
Abstract
The membrane-associated RING-CH 8 protein (MARCH8), a member of the E3 ubiquitin ligase family, has broad-spectrum antiviral activity. However, some viruses hijack MARCH8 to promote virus replication, highlighting its dual role in the viral lifecycle. Most studies on MARCH8 have focused on RNA viruses, leaving its role in DNA viruses largely unexplored. Pseudorabies virus (PRV) is a large DNA virus that poses a potential threat to humans. In this study, we found that MARCH8 inhibited PRV replication at the cell-to-cell fusion stage. Interestingly, our findings proved that MARCH8 blocks gB cleavage by recruiting furin but this activity does not inhibit viral infection in vitro. Furthermore, we confirmed that MARCH8 inhibits cell-to-cell fusion independent of its E3 ubiquitin ligase activity but dependent on the interaction with the cell-to-cell fusion complex (gB, gD, gH, and gL). Finally, we discovered that the distribution of the cell-to-cell fusion complex is significantly altered and trapped within the trans-Golgi network. Overall, our results indicate that human MARCH8 acts as a potent antiviral host factor against PRV via trapping the cell-to-cell fusion complex in the trans-Golgi network.
Collapse
Affiliation(s)
- Cui-Hong Rao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Rui Huang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yuan-Zhe Bai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Changqing Yu
- Engineering Center of Agricultural Biosafety Assessment and Biotechnology, School of Advanced Agricultural Sciences, Yibin Vocational and Technical College, Yibin, China
| | - Meng Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Jin-Mei Peng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Shi-Jia Xu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Ming-Xia Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China; Heilongjiang Provincial Research Center for Veterinary Biomedicine, Harbin, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Shu-Jie Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Yong-Bo Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Tong-Qing An
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Zhi-Jun Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China
| | - Chuang Lyu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China; Qingdao Key Laboratory of Livestock & Poultry Pathogen Biotechnology, Qingdao Jiazhi Biotechnology Co., Ltd., Qingdao 266100, China
| | - Xue-Hui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China; Heilongjiang Provincial Research Center for Veterinary Biomedicine, Harbin, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology & Infection Diseases, University of Calgary, Calgary, Alberta, Canada.
| | - Fandan Meng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China.
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin 150001, China; Heilongjiang Provincial Research Center for Veterinary Biomedicine, Harbin, China; Qingdao Key Laboratory of Livestock & Poultry Pathogen Biotechnology, Qingdao Jiazhi Biotechnology Co., Ltd., Qingdao 266100, China.
| |
Collapse
|
28
|
Jiang L, Cheng J, Pan H, Yang F, Zhu X, Wu J, Pan H, Yan P, Zhou J, Gao Q, Huan C, Gao S. Analysis of the recombination and evolution of the new type mutant pseudorabies virus XJ5 in China. BMC Genomics 2024; 25:752. [PMID: 39090561 PMCID: PMC11295580 DOI: 10.1186/s12864-024-10664-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 07/25/2024] [Indexed: 08/04/2024] Open
Abstract
Pseudorabies have caused enormous economic losses in China's pig industry and have recurred on many large pig farms since late 2011. The disease is caused by highly pathogenic, antigenic variant pseudorabies virus (vPRV) strains. Our laboratory isolated a pseudorabies virus in 2015 and named it XJ5. The pathogenic ability of this mutant strain was much stronger than that of the original isolate. After we sequenced its whole genome (GenBank accession number: OP512542), we found that its overall structure was not greatly changed compared with that of the previous strain Ea (KX423960.1). The whole genome alignment showed that XJ5 had a strong genetic relationship with the strains isolated in China after 2012 reported in GenBank. Based on the isolation time of XJ5 and the mutation and recombination analysis of programs, we found that the whole genome homology of XJ5 and other strains with Chinese isolates was greater than 95%, while the homology with strains outside Asia was less than 94%, which indicated that there may be some recombination and mutation patterns. We found that virulent PRV isolates emerged successively in China in 2011 and formed two different evolutionary clades from foreign isolates. At the same time, this may be due to improper immunization and the presence of wild strains in the field, and recent reports have confirmed that Bartha vaccine strains recombine with wild strains to obtain new pathogenic strains. We performed genetic evolution analysis of XJ5 isolated and sequenced in our laboratory to trace its possible mutations and recombination. We found that XJ5 may be the result of natural mutation of a virus in a branch of mutant strains widely existing in China.
Collapse
Affiliation(s)
- Luyao Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Jinlong Cheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Hao Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Fan Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Xiemin Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Jiayan Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Haochun Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Ping Yan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Jinzhu Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
- Jiangsu Academy of Agricultural Sciences Veterinary Institute, Nanjing, 210014, Jiangsu, China
| | - Qingqing Gao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China
| | - Changchao Huan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China.
| | - Song Gao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Institutes of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, Jiangsu, China.
- Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, 225009, Jiangsu, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
29
|
Mosu N, Yasukochi M, Nakajima S, Nakamura K, Ogata M, Iguchi K, Kanno K, Ishikawa T, Sugita K, Murakami H, Kuramochi K, Saito T, Takeda S, Watashi K, Fujino K, Kamisuki S. Isolation, structural determination, and antiviral activities of a novel alanine-conjugated polyketide from Talaromyces sp. J Antibiot (Tokyo) 2024; 77:499-505. [PMID: 38816448 DOI: 10.1038/s41429-024-00740-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 06/01/2024]
Abstract
Antiviral agents are highly sought after. In this study, a novel alkylated decalin-type polyketide, alaspelunin, was isolated from the culture broth of the fungus Talaromyces speluncarum FMR 16671, and its structure was determined using spectroscopic analyses (1D/2D NMR and MS). The compound was condensed with alanine, and its absolute configuration was determined using Marfey's method. Furthermore, the antiviral activity of alaspelunin against various viruses was evaluated, and it was found to be effective against both severe acute respiratory syndrome coronavirus 2 and pseudorabies (Aujeszky's disease) virus, a pathogen affecting pigs. Our results suggest that this compound is a potential broad-spectrum antiviral agent.
Collapse
Affiliation(s)
- Nozomi Mosu
- School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Mitsuki Yasukochi
- School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Shogo Nakajima
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
- Choju Medical Institute, Yamanaka 19-14, Noyoricho, Toyohashi-shi, Aichi, 441-8124, Japan
| | - Kou Nakamura
- School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Masaya Ogata
- School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Keita Iguchi
- School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Kazuki Kanno
- School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Tomohiro Ishikawa
- Graduate School of Life Science, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Kazutoshi Sugita
- School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Hironobu Murakami
- School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
- Center for Human and Animal Symbiosis Science, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Kouji Kuramochi
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Tatsuo Saito
- Department of Chemistry for Life Sciences and Agriculture, Faculty of Life Sciences, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya-ku, Tokyo, 156-8502, Japan
| | - Shiro Takeda
- School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
- Center for Human and Animal Symbiosis Science, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, 1-23-1, Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
- Department of Applied Biological Science, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Kan Fujino
- School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
- Center for Human and Animal Symbiosis Science, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan
| | - Shinji Kamisuki
- School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan.
- Center for Human and Animal Symbiosis Science, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa, 252-5201, Japan.
| |
Collapse
|
30
|
Huang R, Rao CH, Bai YZ, Yu C, Chen M, Peng JM, Xu SJ, Sun Y, Fandan M, Lyu C, Khan M, An TQ, Tian ZJ, Cai XH, Wang G, Tang YD. MARCH1 and MARCH2 inhibit pseudorabies virus replication by trapping the viral cell-to-cell fusion complex in trans-Golgi network. Vet Microbiol 2024; 295:110164. [PMID: 38936155 DOI: 10.1016/j.vetmic.2024.110164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 06/29/2024]
Abstract
The membrane-associated RING-CH (MARCH) family of proteins are members of the E3 ubiquitin ligase family and are essential for a variety of biological functions. Currently, MARCH proteins are discovered to execute antiviral functions by directly triggering viral protein degradation or blocking the furin cleavage of viral class I fusion proteins. Here, we report a novel antiviral mechanism of MARCH1 and MARCH2 (MARCH1/2) in the replication of Pseudorabies virus (PRV), a member of the Herpesviridae family. We discovered MARCH1/2 restrict PRV replication at the cell-to-cell fusion step. Furthermore, MARCH1/2 block gB cleavage, and this is dependent on their E3 ligase activity. Interestingly, the blocking of gB cleavage by MARCH1/2 does not contribute to their antiviral activity in vitro. We discovered that MARCH1/2 are associated with the cell-to-cell fusion complex of gB, gD, gH, and gL and trap these viral proteins in the trans-Golgi network (TGN) rather than degrading them. Overall, we conclude that MARCH1/2 inhibit PRV by trapping the viral cell-to-cell fusion complex in TGN.
Collapse
Affiliation(s)
- Rui Huang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, China
| | - Cui-Hong Rao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuan-Zhe Bai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Changqing Yu
- Engineering Center of Agricultural Biosafety Assessment and Biotechnology, School of Advanced Agricultural Sciences, Yibin Vocational and Technical College, Yibin, China
| | - Meng Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China; Heilongjiang Provincial Research Center for Veterinary Biomedicine, Harbin, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Jin-Mei Peng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Shi-Jia Xu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yue Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Meng Fandan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chuang Lyu
- Qingdao Key Laboratory of Livestock & Poultry Pathogen Biotechnology, Qingdao Jiazhi Biotechnology Co., Ltd., Qingdao 266100, China
| | - Mirwaise Khan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tong-Qing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhi-Jun Tian
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xue-Hui Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China; Heilongjiang Provincial Research Center for Veterinary Biomedicine, Harbin, China.
| | - Gang Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Veterinary Medicine, Shandong Agricultural University, Tai'an 271000, China.
| | - Yan-Dong Tang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China; Heilongjiang Provincial Research Center for Veterinary Biomedicine, Harbin, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China.
| |
Collapse
|
31
|
Wang J, Jin X, Yan S, Zhao H, Pang D, Ouyang H, Tang X. Yeast β-glucan promotes antiviral type I interferon response via dectin-1. Vet Microbiol 2024; 295:110107. [PMID: 38838382 DOI: 10.1016/j.vetmic.2024.110107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 06/07/2024]
Abstract
Pseudorabies virus (PRV), an alphaherpesvirus, is a neglected zoonotic pathogen. Dectin-1 sensing of β-glucan (BG) induces trained immunity, which can possibly form a new strategy for the prevention of viral infection. However, alphaherpesvirus including PRV have received little to no investigation in the context of trained immunity. Here, we found that BG pretreatment improved the survival rate, weight loss outcomes, alleviated histological injury and decreased PRV copy number of tissues in PRV-infected mice. Type I interferons (IFNs) including IFN-α/β levels in serum were significantly increased by BG. However, these effects were abrogated in the presence of Dectin-1 antagonist. Dectin-1-mediated effect of BG was also confirmed in porcine and murine macrophages. These results suggested that BG have effects on type I IFNs with antiviral property involved in Dectin-1. In piglets, oral or injected immunization with BG and PRV vaccine could significantly elevated the level of PRV-specific IgG and type I IFNs. And it also increased the antibody levels of porcine reproductive and respiratory syndrome virus vaccine and classical swine fever vaccine that were later immunized, indicating a broad-spectrum effect on improving vaccine immunity. On the premise that the cost was greatly reducing, the immunological effect of oral was better than injection administration. Our findings highlighted that BG induced type I IFNs related antiviral effect against PRV involved in Dectin-1 and potential application value as a feed additive to help control the spread of PRV and future emerging viruses.
Collapse
Affiliation(s)
- Jiaqi Wang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, China
| | - Xuemin Jin
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shihan Yan
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, China
| | - Haoran Zhao
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, China
| | - Daxin Pang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, China; Chongqing Research Institute, Jilin University, Chongqing 401123, China; Chongqing Jitang Biotechnology Research Institute Co. Ltd., Chongqing, China
| | - Hongsheng Ouyang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, China; Chongqing Research Institute, Jilin University, Chongqing 401123, China; Chongqing Jitang Biotechnology Research Institute Co. Ltd., Chongqing, China
| | - Xiaochun Tang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, China; Chongqing Research Institute, Jilin University, Chongqing 401123, China; Chongqing Jitang Biotechnology Research Institute Co. Ltd., Chongqing, China.
| |
Collapse
|
32
|
Tuladhar ET, Shrestha S, Vernon S, Droit L, Mihindukulasuriya KA, Tamang M, Karki L, Elong Ngono A, Jha B, Awal BK, Chalise BS, Jha R, Shresta S, Wang D, Manandhar KD. Gemykibivirus detection in acute encephalitis patients from Nepal. mSphere 2024; 9:e0021924. [PMID: 38904383 PMCID: PMC11287993 DOI: 10.1128/msphere.00219-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/08/2024] [Indexed: 06/22/2024] Open
Abstract
Acute encephalitis syndrome (AES) causes significant morbidity and mortality worldwide. In Nepal, Japanese encephalitis virus (JEV) accounts for ~5-20% of AES cases, but ~75% of AES cases are of unknown etiology. We identified a gemykibivirus in CSF collected in 2020 from an 8-year-old male patient with AES using metagenomic next-generation sequencing. Gemykibiviruses are single stranded, circular DNA viruses in the family Genomoviridae. The complete genome of 2,211 nucleotides was sequenced, which shared 98.69% nucleotide identity to its closest relative, Human associated gemykibivirus 2 isolate SAfia-449D. Two real-time PCR assays were designed, and screening of 337 cerebrospinal fluid (CSF) and 164 serum samples from AES patients in Nepal collected in 2020 and 2022 yielded 11 CSF and 1 serum sample that were positive in both PCR assays. Complete genomes of seven of the positives were sequenced. These results identify a potential candidate etiologic agent of encephalitis in Nepal. IMPORTANCE Viral encephalitis is a devastating disease, but unfortunately, worldwide, the causative virus in many cases is unknown. Therefore, it is important to identify viruses that could be responsible for cases of human encephalitis. Here, using metagenomic sequencing of CSF, we identified a gemykibivirus in a male child from Nepal with acute encephalitis syndrome (AES). We subsequently detected gemykibivirus DNA in CSF or serum of 12 more encephalitis patients by real-time PCR. The virus genomes we identified are highly similar to gemykibiviruses previously detected in CSF of three encephalitis patients from Sri Lanka. These results raise the possibility that gemykibivirus could be an underrecognized human pathogen.
Collapse
Affiliation(s)
- Eans Tara Tuladhar
- Tribhuvan University Central Department of Biotechnology, Kathmandu, Nepal
| | - Smita Shrestha
- Tribhuvan University Central Department of Biotechnology, Kathmandu, Nepal
| | - Susan Vernon
- Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Lindsay Droit
- Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | | | - Mamta Tamang
- Tribhuvan University Central Department of Biotechnology, Kathmandu, Nepal
| | - Lata Karki
- Tribhuvan University Central Department of Biotechnology, Kathmandu, Nepal
| | | | - Bimlesh Jha
- National Public Health Laboratory, Kathmandu, Nepal
| | | | | | - Runa Jha
- National Public Health Laboratory, Kathmandu, Nepal
| | - Sujan Shresta
- La Jolla Institute for Immunology, San Diego, California, USA
| | - David Wang
- Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | | |
Collapse
|
33
|
Chengyue W, Mengdong W, Xiaoquan W, Yeping C, Hao L, Liumei S, Jianle R, Zhendong Z. TRIM26 facilitates PRV infection through NDP52-mediated autophagic degradation of MAVS. Vet Res 2024; 55:84. [PMID: 38965634 PMCID: PMC11225307 DOI: 10.1186/s13567-024-01336-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/22/2024] [Indexed: 07/06/2024] Open
Abstract
Pseudorabies virus (PRV) has evolved multiple strategies to evade host antiviral responses to benefit virus replication and establish persistent infection. Recently, tripartite motif 26 (TRIM26), a TRIM family protein, has been shown to be involved in a broad range of biological processes involved in innate immunity, especially in regulating viral infection. Herein, we found that the expression of TRIM26 was significantly induced after PRV infection. Surprisingly, the overexpression of TRIM26 promoted PRV production, while the depletion of this protein inhibited virus replication, suggesting that TRIM26 could positively regulate PRV infection. Further analysis revealed that TRIM26 negatively regulates the innate immune response by targeting the RIG-I-triggered type I interferon signalling pathway. TRIM26 was physically associated with MAVS independent of viral infection and reduced MAVS expression. Mechanistically, we found that NDP52 interacted with both TRIM26 and MAVS and that TRIM26-induced MAVS degradation was almost entirely blocked in NDP52-knockdown cells, demonstrating that TRIM26 degrades MAVS through NDP52-mediated selective autophagy. Our results reveal a novel mechanism by which PRV escapes host antiviral innate immunity and provide insights into the crosstalk among virus infection, autophagy, and the innate immune response.
Collapse
Affiliation(s)
- Wu Chengyue
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Wang Mengdong
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Wang Xiaoquan
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Chen Yeping
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Li Hao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Sun Liumei
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Ren Jianle
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Zhang Zhendong
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China.
| |
Collapse
|
34
|
Kong Z, Chen X, Gong L, Wang L, Zhang Y, Guan K, Yao W, Kang Y, Lu X, Zhang Y, Du Y, Sun A, Zhuang G, Zhao J, Wan B, Zhang G. Pseudorabies virus tegument protein US2 antagonizes antiviral innate immunity by targeting cGAS-STING signaling pathway. Front Immunol 2024; 15:1403070. [PMID: 39015575 PMCID: PMC11250390 DOI: 10.3389/fimmu.2024.1403070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/30/2024] [Indexed: 07/18/2024] Open
Abstract
Background The cGAS-STING axis-mediated type I interferon pathway is a crucial strategy for host defense against DNA virus infection. Numerous evasion strategies developed by the pseudorabies virus (PRV) counteract host antiviral immunity. To what extent PRV-encoded proteins evade the cGAS-STING signaling pathway is unknown. Methods Using US2 stably expressing cell lines and US2-deficient PRV model, we revealed that the PRV tegument protein US2 reduces STING protein stability and downregulates STING-mediated antiviral signaling. Results To promote K48-linked ubiquitination and STING degradation, US2 interacts with the LBD structural domain of STING and recruits the E3 ligase TRIM21. TRIM21 deficiency consistently strengthens the host antiviral immune response brought on by PRV infection. Additionally, US2-deficient PRV is less harmful in mice. Conclusions Our study implies that PRV US2 inhibits IFN signaling by a new mechanism that selectively targets STING while successfully evading the host antiviral response. As a result, the present study reveals a novel strategy by which PRV evades host defense and offers explanations for why the Bartha-K61 classical vaccine strain failed to offer effective defense against PRV variant strains in China, indicating that US2 may be a key target for developing gene-deficient PRV vaccines.
Collapse
Affiliation(s)
- Zhengjie Kong
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Xing Chen
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Lele Gong
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Lele Wang
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yifeng Zhang
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Wanzi Yao
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Yu Kang
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Xinyi Lu
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Yuhang Zhang
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yongkun Du
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Aijun Sun
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Guoqing Zhuang
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Jianguo Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bo Wan
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Gaiping Zhang
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agriculture University, Zhengzhou, China
- Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
35
|
Xu G, Hou B, Xue C, Xu Q, Qu L, Hao X, Liu Y, Wang D, Li Z, Jin X. Acute Retinal Necrosis Associated with Pseudorabies Virus Infection: A Case Report and Literature Review. Ocul Immunol Inflamm 2024; 32:594-601. [PMID: 36863003 DOI: 10.1080/09273948.2023.2181188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/02/2023] [Accepted: 02/11/2023] [Indexed: 03/04/2023]
Abstract
PURPOSE To analyze a case of acute retinal necrosis (ARN) associated with pseudorabies virus (PRV) infection and discusses the clinical characteristics of PRV-induced ARN (PRV-ARN). METHODS Case report and literature review of ocular features in PRV-ARN. RESULTS A 52-year-old female diagnosed with encephalitis presented with bilateral vision loss, mild anterior uveitis, vitreous opacity, occlusive retinal vasculitis, and retinal detachment in her left eye. The result of metagenomic next-generation sequencing (mNGS) indicated that both cerebrospinal fluids and vitreous fluid tested positive for PRV. CONCLUSION PRV, a zoonosis, can infect both humans and mammals. Patients affected with PRV may experience severe encephalitis and oculopathy, and the infection has been associated with high mortality and disability. ARN is the most common ocular disease, which develops rapidly following encephalitis and is characterized by five figures: bilateral onset, rapid progression, severe visual impairment, poor response to systemic antiviral drugs, and an unfavorable prognosis.
Collapse
Affiliation(s)
- Guangcan Xu
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Baoke Hou
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
- Medical School, Chinese PLA, Beijing, China
| | - Cuiping Xue
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Quangang Xu
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Linghui Qu
- Department of Ophthalmology, The 74th Army Group Hospital, Guangzhou, China
| | - Xiaolu Hao
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Ying Liu
- Department of Ophthalmology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing, China
| | - Dajiang Wang
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
- Medical School, Chinese PLA, Beijing, China
| | - Zhaohui Li
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
- Medical School, Chinese PLA, Beijing, China
| | - Xin Jin
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
- Medical School, Chinese PLA, Beijing, China
| |
Collapse
|
36
|
Wang D, Chen D, Xu S, Wei F, Zhao H. Comparative proteomic analysis of PK-15 cells infected with wild-type strain and its EP0 gene-deleted mutant strain of pseudorabies virus. J Vet Sci 2024; 25:e54. [PMID: 39083206 PMCID: PMC11291433 DOI: 10.4142/jvs.24069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/27/2024] [Accepted: 06/06/2024] [Indexed: 08/02/2024] Open
Abstract
IMPORTANCE As one of the main etiologic agents of infectious diseases in pigs, pseudorabies virus (PRV) infections have caused enormous economic losses worldwide. EP0, one of the PRV early proteins (EP) plays a vital role in PRV infections, but the mechanisms are unclear. OBJECTIVE This study examined the function of EP0 to provide a direction for its in-depth analysis. METHODS In this study, the EP0-deleted PRV mutant was obtained, and Tandem Mass Tag-based proteomic analysis was used to screen the differentially expressed proteins (DEPs) quantitatively in EP0-deleted PRV- or wild-type PRV-infected porcine kidney 15 cells. RESULTS This study identified 7,391 DEPs, including 120 and 21 up-regulated and down-regulated DEPs, respectively. Western blot analysis confirmed the changes in the expression of the selected proteins, such as speckled protein 100. Comprehensive analysis revealed 141 DEPs involved in various biological processes and molecular functions, such as transcription regulator activity, biological regulation, and localization. CONCLUSIONS AND RELEVANCE These results holistically outlined the functions of EP0 during a PRV infection and might provide a direction for more detailed function studies of EP0 and the stimulation of lytic PRV infections.
Collapse
Affiliation(s)
- Di Wang
- School of Agroforestry and Medicine, The Open University of China, Beijing 100039, China
| | - Dongjie Chen
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China.
| | - Shengkui Xu
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Fang Wei
- Institute of Animal Inspection and Quarantine, Chinese Academy of Inspection and Quarantine, Beijing 100176, China
| | - Hongyuan Zhao
- School of Modern Agriculture & Biotechnology, Ankang University, Ankang 725000, China.
| |
Collapse
|
37
|
Liang DG, Guo YK, Zhao SB, Yang GY, Han YQ, Chu BB, Ming SL. Pseudorabies virus hijacks the Rab6 protein to promote viral assembly and egress. Vet Res 2024; 55:68. [PMID: 38807225 PMCID: PMC11134627 DOI: 10.1186/s13567-024-01328-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
Pseudorabies virus (PRV) is recognized as the aetiological agent responsible for Aujeszky's disease, or pseudorabies, in swine populations. Rab6, a member of the small GTPase family, is implicated in various membrane trafficking processes, particularly exocytosis regulation. Its involvement in PRV infection, however, has not been documented previously. In our study, we observed a significant increase in the Rab6 mRNA and protein levels in both PK-15 porcine kidney epithelial cells and porcine alveolar macrophages, as well as in the lungs and spleens of mice infected with PRV. The overexpression of wild-type Rab6 and its GTP-bound mutant facilitated PRV proliferation, whereas the GDP-bound mutant form of Rab6 had no effect on viral propagation. These findings indicated that the GTPase activity of Rab6 was crucial for the successful spread of PRV. Further investigations revealed that the reduction in Rab6 levels through knockdown significantly hampered PRV proliferation and disrupted virus assembly and egress. At the molecular level, Rab6 was found to interact with the PRV glycoproteins gB and gE, both of which are essential for viral assembly and egress. Our results collectively suggest that PRV exploits Rab6 to expedite its assembly and egress and identify Rab6 as a promising novel target for therapeutic treatment for PRV infection.
Collapse
Affiliation(s)
- Dong-Ge Liang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, Henan, China
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Yu-Kun Guo
- Animal Diseases and Public Health Engineering Research Center of Henan Province, College of Food and Drugs, Luoyang Polytechnic, Luoyang, 471023, Henan, China
| | - Shi-Bo Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, Henan, China
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Guo-Yu Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, Henan, China
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, 450046, Henan, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, Henan, China
| | - Ying-Qian Han
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, Henan, China.
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
| | - Bei-Bei Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, Henan, China.
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
- Longhu Advanced Immunization Laboratory, Zhengzhou, 450046, Henan, China.
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, 450046, Henan, China.
| | - Sheng-Li Ming
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, Henan, China.
- Key Laboratory of Animal Growth and Development of Henan Province, Henan Agricultural University, Zhengzhou, 450046, Henan, China.
| |
Collapse
|
38
|
Liu Y, Qin Y, Yang B, Zheng H, Qiao S, Luo Z, Li R. Pseudorabies virus usurps non-muscle myosin heavy chain IIA to dampen viral DNA recognition by cGAS for antagonism of host antiviral innate immunity. J Virol 2024; 98:e0048324. [PMID: 38639486 PMCID: PMC11092326 DOI: 10.1128/jvi.00483-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 03/28/2024] [Indexed: 04/20/2024] Open
Abstract
Alphaherpesvirus pseudorabies virus (PRV) causes severe economic losses to the global pig industry and has garnered increasing attention due to its broad host range including humans. PRV has developed a variety of strategies to antagonize host antiviral innate immunity. However, the underlying mechanisms have not been fully elucidated. In our previous work, we demonstrated that non-muscle myosin heavy chain IIA (NMHC-IIA), a multifunctional cytoskeleton protein, attenuates innate immune responses triggered by RNA viruses. In the current study, we reported a previously unrecognized role of NMHC-IIA in counteracting PRV-induced cyclic GMP-AMP synthase (cGAS)-dependent type I interferon (IFN-I) production. Mechanistically, PRV infection led to an elevation of NMHC-IIA, strengthening the interaction between poly (ADP-ribose) polymerase 1 (PARP1) and cGAS. This interaction impeded cGAS recognition of PRV DNA and hindered downstream signaling activation. Conversely, inhibition of NMHC-IIA by Blebbistatin triggered innate immune responses and enhanced resistance to PRV proliferation both in vitro and in vivo. Taken together, our findings unveil that PRV utilizes NMHC-IIA to antagonize host antiviral immune responses via impairing DNA sensing by cGAS. This in-depth understanding of PRV immunosuppression not only provides insights for potential PRV treatment strategies but also highlights NMHC-IIA as a versatile immunosuppressive regulator usurped by both DNA and RNA viruses. Consequently, NMHC-IIA holds promise as a target for the development of broad-spectrum antiviral drugs.IMPORTANCECyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) axis plays a vital role in counteracting alphaherpesvirus infections. Alphaherpesviruses exploit various strategies for antagonizing cGAS-STING-mediated antiviral immune responses. However, limited examples of pseudorabies virus (PRV)-caused immunosuppression have been documented. Our findings reveal a novel role of non-muscle myosin heavy chain IIA (NMHC-IIA) in suppressing PRV-triggered innate immune responses to facilitate viral propagation both in vitro and in vivo. In detail, NMHC-IIA recruits poly (ADP-ribose) polymerase 1 (PARP1) to augment its interaction with cGAS, which impairs cGAS recognition of PRV DNA. Building on our previous demonstration of NMHC-IIA's immunosuppressive role during RNA virus infections, these findings indicate that NMHC-IIA acts as a broad-spectrum suppressor of host antiviral innate immunity in response to both DNA and RNA viruses. Therefore, NMHC-IIA will be a promising target for the development of comprehensive antiviral strategies.
Collapse
Affiliation(s)
- Yingqi Liu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Yidan Qin
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Bingbing Yang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Hongmei Zheng
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Zhong Luo
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| |
Collapse
|
39
|
Ma Y, Shi K, Chen Z, Shi Y, Zhou Q, Mo S, Wei H, Hu L, Mo M. Simultaneous Detection of Porcine Respiratory Coronavirus, Porcine Reproductive and Respiratory Syndrome Virus, Swine Influenza Virus, and Pseudorabies Virus via Quadruplex One-Step RT-qPCR. Pathogens 2024; 13:341. [PMID: 38668296 PMCID: PMC11054806 DOI: 10.3390/pathogens13040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024] Open
Abstract
Porcine respiratory coronavirus (PRCoV), porcine reproductive and respiratory syndrome virus (PRRSV), swine influenza virus (SIV), and pseudorabies virus (PRV) are significant viruses causing respiratory diseases in pigs. Sick pigs exhibit similar clinical symptoms such as fever, cough, runny nose, and dyspnea, making it very difficult to accurately differentially diagnose these diseases on site. In this study, a quadruplex one-step reverse-transcription real-time quantitative PCR (RT-qPCR) for the detection of PRCoV, PRRSV, SIV, and PRV was established. The assay showed strong specificity, high sensitivity, and good repeatability. It could detect only PRCoV, PRRSV, SIV, and PRV, without cross-reactions with TGEV, PEDV, PRoV, ASFV, FMDV, PCV2, PDCoV, and CSFV. The limits of detection (LODs) for PRCoV, PRRSV, SIV, and PRV were 129.594, 133.205, 139.791, and 136.600 copies/reaction, respectively. The intra-assay and inter-assay coefficients of variation (CVs) ranged from 0.29% to 1.89%. The established quadruplex RT-qPCR was used to test 4909 clinical specimens, which were collected in Guangxi Province, China, from July 2022 to September 2023. PRCoV, PRRSV, SIV, and PRV showed positivity rates of 1.36%, 10.17%, 4.87%, and 0.84%, respectively. In addition, the previously reported RT-qPCR was also used to test these specimens, and the agreement between these methods was higher than 99.43%. The established quadruplex RT-qPCR can accurately detect these four porcine respiratory viruses simultaneously, providing an accurate and reliable detection technique for clinical diagnosis.
Collapse
Affiliation(s)
- Yan Ma
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.M.); (Y.S.)
| | - Kaichuang Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.M.); (Y.S.)
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (Q.Z.); (S.M.); (H.W.); (L.H.)
| | - Zhenhai Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China;
| | - Yuwen Shi
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.M.); (Y.S.)
| | - Qingan Zhou
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (Q.Z.); (S.M.); (H.W.); (L.H.)
| | - Shenglan Mo
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (Q.Z.); (S.M.); (H.W.); (L.H.)
| | - Haina Wei
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (Q.Z.); (S.M.); (H.W.); (L.H.)
| | - Liping Hu
- Guangxi Center for Animal Disease Control and Prevention, Nanning 530001, China; (Q.Z.); (S.M.); (H.W.); (L.H.)
| | - Meilan Mo
- College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (Y.M.); (Y.S.)
| |
Collapse
|
40
|
Zhou Q, Shi D, Tang YD, Zhang L, Hu B, Zheng C, Huang L, Weng C. Pseudorabies virus gM and its homologous proteins in herpesviruses induce mitochondria-related apoptosis involved in viral pathogenicity. PLoS Pathog 2024; 20:e1012146. [PMID: 38669242 PMCID: PMC11051632 DOI: 10.1371/journal.ppat.1012146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Apoptosis is a critical host antiviral defense mechanism. But many viruses have evolved multiple strategies to manipulate apoptosis and escape host antiviral immune responses. Herpesvirus infection regulated apoptosis; however, the underlying molecular mechanisms have not yet been fully elucidated. Hence, the present study aimed to study the relationship between herpesvirus infection and apoptosis in vitro and in vivo using the pseudorabies virus (PRV) as the model virus. We found that mitochondria-dependent apoptosis was induced by PRV gM, a late protein encoded by PRV UL10, a virulence-related gene involved in enhancing PRV pathogenicity. Mechanistically, gM competitively combines with BCL-XL to disrupt the BCL-XL-BAK complex, resulting in BCL-2-antagonistic killer (BAK) oligomerization and BCL-2-associated X (BAX) activation, which destroys the mitochondrial membrane potential and activates caspase-3/7 to trigger apoptosis. Interestingly, similar apoptotic mechanisms were observed in other herpesviruses (Herpes Simplex Virus-1 [HSV-1], human cytomegalovirus [HCMV], Equine herpesvirus-1 [EHV-1], and varicella-zoster virus [VZV]) driven by PRV gM homologs. Compared with their parental viruses, the pathogenicity of PRV-ΔUL10 or HSV-1-ΔUL10 in mice was reduced with lower apoptosis and viral replication, illustrating that UL10 is a key virulence-related gene in PRV and HSV-1. Consistently, caspase-3 deletion also diminished the replication and pathogenicity of PRV and HSV-1 in vitro and in mice, suggesting that caspase-3-mediated apoptosis is closely related to the replication and pathogenicity of PRV and HSV-1. Overall, our findings firstly reveal the mechanism by which PRV gM and its homologs in several herpesviruses regulate apoptosis to enhance the viral replication and pathogenicity, and the relationship between gM-mediated apoptosis and herpesvirus pathogenicity suggests a promising approach for developing attenuated live vaccines and therapy for herpesvirus-related diseases.
Collapse
Affiliation(s)
- Qiongqiong Zhou
- Division of Fundamental Immunology, State Key Laboratory of Animal Disease Prevention and Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, Heilongjiang, China
| | - Deshi Shi
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yan-Dong Tang
- Division of Fundamental Immunology, State Key Laboratory of Animal Disease Prevention and Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, Heilongjiang, China
| | - Longfeng Zhang
- Division of Fundamental Immunology, State Key Laboratory of Animal Disease Prevention and Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Boli Hu
- MOA Key Laboratory of Animal Virology, Zhejiang University Center for Veterinary Sciences, Hangzhou, Zhejiang, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology & Infection Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Li Huang
- Division of Fundamental Immunology, State Key Laboratory of Animal Disease Prevention and Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, Heilongjiang, China
| | - Changjiang Weng
- Division of Fundamental Immunology, State Key Laboratory of Animal Disease Prevention and Control, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
- Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, Heilongjiang, China
| |
Collapse
|
41
|
Gui M, Wu C, Qi R, Zeng Y, Huang P, Cao J, Chen T, Chen K, Lin L, Han Q, He P, Fu R, Wu Q, Yuan Q, Zhang T, Xia N, Wang G, Chen Y. Swine pseudorabies virus attenuated vaccine reprograms the kidney cancer tumor microenvironment and synergizes with PD-1 blockade. J Med Virol 2024; 96:e29568. [PMID: 38549430 DOI: 10.1002/jmv.29568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/27/2024] [Accepted: 03/02/2024] [Indexed: 04/02/2024]
Abstract
The global incidence rate of kidney cancer (KC) has been steadily increasing over the past 30 years. With the aging global population, kidney cancer has become an escalating concern that necessitates vigilant surveillance. Nowadays, surgical intervention remains the optimal therapeutic approach for kidney cancer, while the availability of efficacious treatments for advanced tumors remains limited. Oncolytic viruses, an emerging form of immunotherapy, have demonstrated encouraging anti-neoplastic properties and are progressively garnering public acceptance. However, research on oncolytic viruses in kidney cancer is relatively limited. Furthermore, given the high complexity and heterogeneity of kidney cancer, it is crucial to identify an optimal oncolytic virus agent that is better suited for its treatment. The present study investigates the oncolytic activity of the Pseudorabies virus live attenuated vaccine (PRV-LAV) against KC. The findings clearly demonstrate that PRV-LAV exhibits robust oncolytic activity targeting KC cell lines. Furthermore, the therapeutic efficacy of PRV-LAV was confirmed in both a subcutaneous tumor-bearing nude mouse model and a syngeneic mouse model of KC. Combined RNA-seq analysis and flow cytometry revealed that PRV-LAV treatment substantially enhances the infiltration of a diverse range of lymphocytes, including T cells, B cells, macrophages, and NK cells. Additionally, PRV-LAV treatment enhances T cell activation and exerts antitumor effects. Importantly, the combination of PRV-LAV with anti-PD-1 antibodies, an approved drug for KC treatment, synergistically enhances the efficacy against KC. Overall, the discovery of PRV-LAV as an effective oncolytic virus holds significant importance for improving the treatment efficacy and survival rates of KC patients.
Collapse
Affiliation(s)
- Mengxuan Gui
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Chongxin Wu
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Ruoyao Qi
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Yue Zeng
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Pengfei Huang
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Jiali Cao
- Department of Laboratory Medicine, Fujian Key Clinical Specialty of Laboratory Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen
| | - Tian Chen
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Kaiyun Chen
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Lina Lin
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Qiangyuan Han
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Peiqing He
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Rao Fu
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Qian Wu
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Quan Yuan
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Tianying Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Guosong Wang
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| | - Yixin Chen
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen, People's Republic of China
| |
Collapse
|
42
|
Guo H, Liu Q, Yang D, Zhang H, Kuang Y, Li Y, Chen H, Wang X. Brincidofovir Effectively Inhibits Proliferation of Pseudorabies Virus by Disrupting Viral Replication. Viruses 2024; 16:464. [PMID: 38543829 PMCID: PMC10975951 DOI: 10.3390/v16030464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 05/23/2024] Open
Abstract
Pseudorabies is an acute and febrile infectious disease caused by pseudorabies virus (PRV), a member of the family Herpesviridae. Currently, PRV is predominantly endemoepidemic and has caused significant economic losses among domestic pigs. Other animals have been proven to be susceptible to PRV, with a mortality rate of 100%. In addition, 30 human cases of PRV infection have been reported in China since 2017, and all patients have shown severe neurological symptoms and eventually died or developed various neurological sequelae. In these cases, broad-spectrum anti-herpesvirus drugs and integrated treatments were mostly applied. However, the inhibitory effect of the commonly used anti-herpesvirus drugs (e.g., acyclovir, etc.) against PRV were evaluated and found to be limited in this study. It is therefore urgent and important to develop drugs that are clinically effective against PRV infection. Here, we constructed a high-throughput method for screening antiviral drugs based on fluorescence-tagged PRV strains and multi-modal microplate readers that detect fluorescence intensity to account for virus proliferation. A total of 2104 small molecule drugs approved by the U.S. Food and Drug Administration (FDA) were studied and validated by applying this screening model, and 104 drugs providing more than 75% inhibition of fluorescence intensity were selected. Furthermore, 10 drugs that could significantly inhibit PRV proliferation in vitro were strictly identified based on their cytopathic effects, virus titer, and viral gene expression, etc. Based on the determined 50% cytotoxic concentration (CC50) and 50% inhibitory concentration (IC50), the selectivity index (SI) was calculated to be 26.3-3937.2 for these 10 drugs, indicating excellent drugability. The antiviral effects of the 10 drugs were then assessed in a mouse model. It was found that 10 mg/kg brincidofovir administered continuously for 5 days provided 100% protection in mice challenged with lethal doses of the human-origin PRV strain hSD-1/2019. Brincidofovir significantly attenuated symptoms and pathological changes in infected mice. Additionally, time-of-addition experiments confirmed that brincidofovir inhibited the proliferation of PRV mainly by interfering with the viral replication stage. Therefore, this study confirms that brincidofovir can significantly inhibit PRV both in vitro and in vivo and is expected to be an effective drug candidate for the clinical treatment of PRV infections.
Collapse
Affiliation(s)
- Huihui Guo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.G.); (Q.L.); (D.Y.); (H.Z.); (Y.K.); (Y.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Qingyun Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.G.); (Q.L.); (D.Y.); (H.Z.); (Y.K.); (Y.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Dan Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.G.); (Q.L.); (D.Y.); (H.Z.); (Y.K.); (Y.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.G.); (Q.L.); (D.Y.); (H.Z.); (Y.K.); (Y.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Kuang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.G.); (Q.L.); (D.Y.); (H.Z.); (Y.K.); (Y.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Yafei Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.G.); (Q.L.); (D.Y.); (H.Z.); (Y.K.); (Y.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.G.); (Q.L.); (D.Y.); (H.Z.); (Y.K.); (Y.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan 430070, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (H.G.); (Q.L.); (D.Y.); (H.Z.); (Y.K.); (Y.L.); (H.C.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Huazhong Agricultural University, Wuhan 430070, China
- International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan 430070, China
| |
Collapse
|
43
|
Ma Z, Guo L, Pan M, Jiang C, Liu D, Gao Y, Bai J, Jiang P, Liu X. Inhibition of pseudorabies virus replication via upregulated interferon response by targeting 7-dehydrocholesterol reductase. Vet Microbiol 2024; 290:110000. [PMID: 38278042 DOI: 10.1016/j.vetmic.2024.110000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 01/28/2024]
Abstract
Pseudorabies virus (PRV) is an alpha-herpesvirus capable of infecting a range of animal species, particularly its natural host, pigs, resulting in substantial economic losses for the swine industry. Recent research has shed light on the significant role of cholesterol metabolism in the replication of various viruses. However, the specific role of cholesterol metabolism in PRV infection remains unknown. Here, we demonstrated that the expression of 7-dehydrocholesterol reductase (DHCR7) is upregulated following PRV infection, as evidenced by the proteomic analysis. Subsequently, we showed that DHCR7 plays a crucial role in promoting PRV replication by converting 7-dehydrocholesterol (7-DHC) into cholesterol, leading to increased cellular cholesterol levels. Importantly, DHCR7 inhibits the phosphorylation of interferon regulatory factor 3 (IRF3), resulting in reduced levels of interferon-beta (IFN-β) and interferon-stimulated genes (ISGs). Finally, we revealed that the DHCR7 inhibitor, trans-1,4-bis(2-chlorobenzylaminomethyl) cyclohexane dihydrochloride (AY9944), significantly suppresses PRV replication both in vitro and in vivo. Taken together, the study has established a connection between cholesterol metabolism and PRV replication, offering novel insights that may guide future approaches to the prevention and treatment of PRV infections.
Collapse
Affiliation(s)
- Zicheng Ma
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Guo
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengjiao Pan
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chenlong Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Depeng Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanni Gao
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Xing Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
44
|
Tuladhar ET, Shrestha S, Vernon S, Droit L, Mihindukulasuriya KA, Tamang M, Karki L, Ngono AE, Jha B, Awal BK, Chalise BS, Jha R, Shresta S, Wang D, Manandhar KD. Gemykibivirus detection in acute encephalitis patients from Nepal. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.13.24302648. [PMID: 38405898 PMCID: PMC10889008 DOI: 10.1101/2024.02.13.24302648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Acute Encephalitis Syndrome (AES) causes significant morbidity and mortality worldwide. In Nepal, Japanese encephalitis virus (JEV) accounts for ~ 5-20% of AES cases, but ~75% of AES cases are of unknown etiology. We identified a gemykibivirus in CSF collected in 2020 from a male child with AES using metagenomic next-generation sequencing. Gemykibiviruses are single stranded, circular DNA viruses in the family Genomoviridae. The complete genome of 2211 nucleotides was sequenced which shared 98.69% nucleotide identity to its closest relative, Human associated gemykibivirus 2 isolate SAfia-449D. Two real-time PCR assays were designed, and screening of 337 CSF and 164 serum samples from AES patients in Nepal collected in 2020 and 2022 yielded 11 CSF and 1 serum sample that were positive in both PCR assays. Complete genomes of 7 of the positives were sequenced. These results identify a candidate etiologic agent of encephalitis in Nepal.
Collapse
Affiliation(s)
- Eans Tara Tuladhar
- Tribhuvan University Central Department of Biotechnology, Kathmandu, Nepal
| | - Smita Shrestha
- Tribhuvan University Central Department of Biotechnology, Kathmandu, Nepal
| | - Susan Vernon
- Washington University in St. Louis, Missouri, United States
| | - Lindsay Droit
- Washington University in St. Louis, Missouri, United States
| | | | - Mamta Tamang
- Tribhuvan University Central Department of Biotechnology, Kathmandu, Nepal
| | - Lata Karki
- Tribhuvan University Central Department of Biotechnology, Kathmandu, Nepal
| | | | - Bimlesh Jha
- National Public Health Laboratory, Kathmandu, Nepal
| | | | | | - Runa Jha
- National Public Health Laboratory, Kathmandu, Nepal
| | - Sujan Shresta
- La Jolla Institute for Immunology, California, United States
| | - David Wang
- Washington University in St. Louis, Missouri, United States
| | | |
Collapse
|
45
|
Zhang L, van den Born E, Segers RPAM, Raes M, Di D, Liu BB, Li WL, Hao F, Wang J, Gan Y, Yuan T, Feng ZX, Liu F, Shao GQ. Intradermal vaccination with Porcilis® Begonia can clinically protect against fatal PRV challenge with the highly virulent ZJ01 field strain. Microb Pathog 2024; 187:106513. [PMID: 38147968 DOI: 10.1016/j.micpath.2023.106513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 12/28/2023]
Abstract
Since pseudorabies (PR) re-emerged and rapidly spread in China at the end of 2011, researchers have focused on effective vaccine strategies to prevent and control pseudorabies virus (PRV) infection in pig herds. Due to the extensive application of an attenuated vaccine based on the Bartha-K61 strain isolated in Hungary in 1961 and the variation of the PRV strain, it has been suggested that traditional vaccines based on the Bartha-K61 strain offer only partial protection against variant strains. It was therefore evaluated whether the Porcilis® Begonia vaccine, which is based on the NIA-3 strain with deletions in the gE and TK genes, is efficacious against experimental infection with the virulent, contemporary Chinese PRV strain ZJ01. In this study, piglets were vaccinated with Porcilis® Begonia through either the intradermal (ID) route or the intramuscular (IM) route and subsequently challenged intranasally with strain ZJ01 at 4 weeks post-vaccination. An unvaccinated challenge group and an unvaccinated/nonchallenged group were also included in the study. All animals were monitored for 14 days after challenge. Vaccinated and negative control pigs stayed healthy during the study, while the unvaccinated control animals developed lesions associated with PRV ZJ01 challenge, and 44% of these pigs died before the end of the experiment. This study demonstrated that ID or IM vaccination of pigs with a vaccine based on the NIA-3 strain Porcilis® Begonia clinically protects against fatal PRV challenge with the ZJ01 strain.
Collapse
Affiliation(s)
- Lei Zhang
- Single Molecule Nanometry Laboratory, Nanjing Agricultural University, Nanjing, 210095, China; Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China.
| | | | | | - Maurice Raes
- MSD Animal Health, P.O. Box 31, 5830 AA, Boxmeer, the Netherlands
| | - Di Di
- MSD (Ningbo) Animal Health Technology Co., Ltd, Hangzhou Bay New Zone, Ningbo, 315336, China
| | - Bei-Bei Liu
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China
| | - Wen-Liang Li
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China
| | - Fei Hao
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China
| | - Jia Wang
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China
| | - Yuan Gan
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China
| | - Ting Yuan
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China
| | - Zhi-Xin Feng
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China
| | - Fei Liu
- Single Molecule Nanometry Laboratory, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Guo-Qing Shao
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China; GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China.
| |
Collapse
|
46
|
Ma YX, Chai YJ, Han YQ, Zhao SB, Yang GY, Wang J, Ming SL, Chu BB. Pseudorabies virus upregulates low-density lipoprotein receptors to facilitate viral entry. J Virol 2024; 98:e0166423. [PMID: 38054618 PMCID: PMC10804996 DOI: 10.1128/jvi.01664-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023] Open
Abstract
Pseudorabies virus (PRV) is the causative agent of Aujeszky's disease in pigs. The low-density lipoprotein receptor (LDLR) is a transcriptional target of the sterol-regulatory element-binding proteins (SREBPs) and participates in the uptake of LDL-derived cholesterol. However, the involvement of LDLR in PRV infection has not been well characterized. We observed an increased expression level of LDLR mRNA in PRV-infected 3D4/21, PK-15, HeLa, RAW264.7, and L929 cells. The LDLR protein level was also upregulated by PRV infection in PK-15 cells and in murine lung and brain. The treatment of cells with the SREBP inhibitor, fatostatin, or with SREBP2-specific small interfering RNA prevented the PRV-induced upregulation of LDLR expression as well as viral protein expression and progeny virus production. This suggested that PRV activated SREBPs to induce LDLR expression. Furthermore, interference in LDLR expression affected PRV proliferation, while LDLR overexpression promoted it. This indicated that LDLR was involved in PRV infection. The study also demonstrated that LDLR participated in PRV invasions. The overexpression of LDLR or inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9), which binds to LDLR and targets it for lysosomal degradation, significantly enhanced PRV attachment and entry. Mechanistically, LDLR interacted with PRV on the plasma membrane, and pretreatment of cells with LDLR antibodies was able to neutralize viral entry. An in vivo study indicated that the treatment of mice with the PCSK9 inhibitor SBC-115076 promoted PRV proliferation. The data from the study indicate that PRV hijacks LDLR for viral entry through the activation of SREBPs.IMPORTANCEPseudorabies virus (PRV) is a herpesvirus that primarily manifests as fever, pruritus, and encephalomyelitis in various domestic and wild animals. Owing to its lifelong latent infection characteristics, PRV outbreaks have led to significant financial setbacks in the global pig industry. There is evidence that PRV variant strains can infect humans, thereby crossing the species barrier. Therefore, gaining deeper insights into PRV pathogenesis and developing updated strategies to contain its spread are critical. This study posits that the low-density lipoprotein receptor (LDLR) could be a co-receptor for PRV infection. Hence, strategies targeting LDLR may provide a promising avenue for the development of effective PRV vaccines and therapeutic interventions.
Collapse
Affiliation(s)
- Ying-Xian Ma
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan, China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan, China
| | - Ya-Jing Chai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan, China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan, China
| | - Ya-Qi Han
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan, China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan, China
| | - Shi-Bo Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan, China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan, China
| | - Guo-Yu Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan, China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan, China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan, China
| | - Sheng-Li Ming
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan, China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan, China
| | - Bei-Bei Chu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
- Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Zhengzhou, Henan, China
- Key Laboratory of Animal Growth and Development, Zhengzhou, Henan, China
- International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, Henan, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, Henan, China
- Longhu Advanced Immunization Laboratory, Zhengzhou, Henan, China
| |
Collapse
|
47
|
Bo Z, Li X, Zhang C, Guo M, Cao Y, Zhang X, Wu Y. Phosphoproteomic landscape of pseudorabies virus infection reveals multiple potential antiviral targets. Microbiol Spectr 2024; 12:e0301023. [PMID: 37991362 PMCID: PMC10783065 DOI: 10.1128/spectrum.03010-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/16/2023] [Indexed: 11/23/2023] Open
Abstract
IMPORTANCE Pseudorabies virus (PRV) is a kind of alpha herpesvirus that infects a wide range of animals and even human beings. Therefore, it is important to explore the mechanisms behind PRV replication and pathogenesis. By conducting a tandem mass tag-based phosphoproteome, this study revealed the phosphorylated proteins and cellular response pathways involved in PRV infection. Findings from this study shed light on the relationship between the phosphorylated cellular proteins and PRV infection, as well as guiding the discovery of targets for the development of antiviral compounds against PRV.
Collapse
Affiliation(s)
- Zongyi Bo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaojuan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chengcheng Zhang
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Mengjiao Guo
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yongzhong Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaorong Zhang
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yantao Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
48
|
Geng XM, Xi YM, Huang XM, Wang YL, Wang XY, Ouyang K, Chen Y, Wei ZZ, Qin YF, Huang WJ. Construction of and evaluation of the immune response to two recombinant pseudorabies viruses expressing the B119L and EP364R proteins of African swine fever virus. Arch Virol 2024; 169:22. [PMID: 38193974 DOI: 10.1007/s00705-023-05935-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/31/2023] [Indexed: 01/10/2024]
Abstract
African swine fever (ASF) is an infectious disease caused by ASF virus (ASFV), which is characterized by high infectivity, rapid onset of disease, and a high mortality rate. Outbreaks of ASFV have caused great economic losses to the global pig industry, and there is a need to develop safe and effective vaccines. In this study, two recombinant pseudorabies virus (PRV) strains, rGXGG-2016-ΔgI/ΔgE-EP364R and rGXGG-2016-ΔgI/ΔgE-B119L, expressing the EP364R and B119L protein, respectively, of ASFV, were constructed by homologous recombination technology. Western blotting and immunofluorescence analysis showed that these foreign proteins were expressed in cells infected with the recombinant strains. The strains showed good genetic stability and proliferative characteristics for 20 passages in BHK-21 cells. Both of these strains were immunogenic in mice, inducing the production of specific antibodies against the expressed ASFV proteins while providing protection against lethal challenge with PRV. Thus, the recombinant strains rGXGG-2016-ΔgI/ΔgE-EP364R and rGXGG-2016-ΔgI/ΔgE-B119L could be used as candidate vaccines for both ASFV and PRV. In addition, our study identifies two potential target genes for the development of safe and efficient ASFV vaccines, provides a reference for the construction of bivalent ASFV and PRV vaccines, and demonstrates the feasibility of developing a live ASFV vector vaccine.
Collapse
Affiliation(s)
- Xin-Mei Geng
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, China
| | - Ying-Mu Xi
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, China
| | - Xiang-Mei Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, China
| | - Yang-Lin Wang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, China
| | - Xu-Ying Wang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, China
| | - Kang Ouyang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, China
| | - Ying Chen
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, China
| | - Zu-Zhang Wei
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, China
| | - Yi-Feng Qin
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China.
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, China.
| | - Wei-Jian Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, 530004, China.
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning, 530004, China.
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, 530004, China.
| |
Collapse
|
49
|
Ma Z, Jiang C, Liu D, Gao Y, Bai J, Jiang P, Liu X. Pathogenicity and immunogenicity of a quadruple gene-deleted pseudorabies virus variant as a vaccine candidate. Vet Microbiol 2024; 288:109931. [PMID: 38056181 DOI: 10.1016/j.vetmic.2023.109931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 12/08/2023]
Abstract
Since late 2011, the PRV variants have emerged in China, characterized by the increased virulence. The traditional attenuated vaccines have proven insufficient in providing complete protection, resulting in substantial economic losses to swine industry. In this study, a vaccine candidate strain, ZJ01-ΔgI/gE/TK/UL21, carrying the quadruple gene deletion was derived from the previously generated three gene-deleted virus ZJ01-ΔgI/gE/TK. As anticipated, piglets inoculated with ZJ01-ΔgI/gE/TK/UL21 exhibited normal body temperatures and showed no viral shedding, consistent with the observations from piglets treated with ZJ01-ΔgI/gE/TK. Importantly, a significant higher level of interferon induction was observed among piglets in the ZJ01-ΔgI/gE/TK/UL21 group compared to those in the ZJ01-ΔgI/gE/TK group. Upon challenge with the PRV variant ZJ01, piglets immunized with ZJ01-ΔgI/gE/TK/UL21 exhibited reduced viral shedding compared to the ZJ01-ΔgI/gE/TK group. Furthermore, piglets vaccinated with ZJ01-ΔgI/gE/TK/UL21 exhibited minimal pathological lesions in brain tissues, similar to those in the ZJ01-ΔgI/gE/TK group. These results underscore the potential of ZJ01-ΔgI/gE/TK/UL21 as a promising vaccine for controlling PRV infection.
Collapse
Affiliation(s)
- Zicheng Ma
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chenlong Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Depeng Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanni Gao
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Juan Bai
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Xing Liu
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
50
|
Xu F, Liu Q. Virus-Based Neural Circuit Tracing. ADVANCES IN NEUROBIOLOGY 2024; 41:113-131. [PMID: 39589712 DOI: 10.1007/978-3-031-69188-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Neural circuits provide an anatomical basis for functional networks. Therefore, dissecting the structure of neural circuits is an indispensable prerequisite to understanding how the brain functions. Knowing how the neural circuits organize and function under physiological conditions and their progressive alterations under pathophysiological conditions are key to understanding the underlying circuit mechanism of diseases, thus finding cures for the diseases. Recombinant neurotropic viruses are important tools for neural circuit tracing with many advantages over non-viral tracers: they allow for anterograde, retrograde, and trans-synaptic delivery of tracers in a cell-type-specific, circuit-selective manner. We herein summarize the recent developments in the viral tools for neural circuit tracing, discuss the key principles of using viral tools in neuroscience research, and highlight innovations for developing and optimizing viral tools for neural circuit tracing across diverse animal species, including nonhuman primates.
Collapse
Affiliation(s)
- Fuqiang Xu
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong, China.
| | - Qing Liu
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong, China
| |
Collapse
|