1
|
Pierce BG, Felbinger N, Metcalf M, Toth EA, Ofek G, Fuerst TR. Hepatitis C Virus E1E2 Structure, Diversity, and Implications for Vaccine Development. Viruses 2024; 16:803. [PMID: 38793684 PMCID: PMC11125608 DOI: 10.3390/v16050803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Hepatitis C virus (HCV) is a major medical health burden and the leading cause of chronic liver disease and cancer worldwide. More than 58 million people are chronically infected with HCV, with 1.5 million new infections occurring each year. An effective HCV vaccine is a major public health and medical need as recognized by the World Health Organization. However, due to the high variability of the virus and its ability to escape the immune response, HCV rapidly accumulates mutations, making vaccine development a formidable challenge. An effective vaccine must elicit broadly neutralizing antibodies (bnAbs) in a consistent fashion. After decades of studies from basic research through clinical development, the antigen of choice is considered the E1E2 envelope glycoprotein due to conserved, broadly neutralizing antigenic domains located in the constituent subunits of E1, E2, and the E1E2 heterodimeric complex itself. The challenge has been elicitation of robust humoral and cellular responses leading to broad virus neutralization due to the relatively low immunogenicity of this antigen. In view of this challenge, structure-based vaccine design approaches to stabilize key antigenic domains have been hampered due to the lack of E1E2 atomic-level resolution structures to guide them. Another challenge has been the development of a delivery platform in which a multivalent form of the antigen can be presented in order to elicit a more robust anti-HCV immune response. Recent nanoparticle vaccines are gaining prominence in the field due to their ability to facilitate a controlled multivalent presentation and trafficking to lymph nodes, where they can interact with both the cellular and humoral components of the immune system. This review focuses on recent advances in understanding the E1E2 heterodimeric structure to facilitate a rational design approach and the potential for development of a multivalent nanoparticle-based HCV E1E2 vaccine. Both aspects are considered important in the development of an effective HCV vaccine that can effectively address viral diversity and escape.
Collapse
Affiliation(s)
- Brian G. Pierce
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; (B.G.P.); (N.F.); (M.M.); (E.A.T.); (G.O.)
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Nathaniel Felbinger
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; (B.G.P.); (N.F.); (M.M.); (E.A.T.); (G.O.)
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Matthew Metcalf
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; (B.G.P.); (N.F.); (M.M.); (E.A.T.); (G.O.)
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Eric A. Toth
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; (B.G.P.); (N.F.); (M.M.); (E.A.T.); (G.O.)
| | - Gilad Ofek
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; (B.G.P.); (N.F.); (M.M.); (E.A.T.); (G.O.)
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Thomas R. Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA; (B.G.P.); (N.F.); (M.M.); (E.A.T.); (G.O.)
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
2
|
Pisano MB, Giadans CG, Flichman DM, Ré VE, Preciado MV, Valva P. Viral hepatitis update: Progress and perspectives. World J Gastroenterol 2021; 27:4018-4044. [PMID: 34326611 PMCID: PMC8311538 DOI: 10.3748/wjg.v27.i26.4018] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/11/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Viral hepatitis, secondary to infection with hepatitis A, B, C, D, and E viruses, are a major public health problem and an important cause of morbidity and mortality. Despite the huge medical advances achieved in recent years, there are still points of conflict concerning the pathogenesis, immune response, development of new and more effective vaccines, therapies, and treatment. This review focuses on the most important research topics that deal with issues that are currently being solved, those that remain to be solved, and future research directions. For hepatitis A virus we will address epidemiology, molecular surveillance, new susceptible populations as well as environmental and food detections. In the case of hepatitis B virus, we will discuss host factors related to disease, diagnosis, therapy, and vaccine improvement. On hepatitis C virus, we will focus on pathogenesis, immune response, direct action antivirals treatment in the context of solid organ transplantation, issues related to hepatocellular carcinoma development, direct action antivirals resistance due to selection of resistance-associated variants, and vaccination. Regarding hepatitis D virus, we describe diagnostic methodology, pathogenesis, and therapy. Finally, for hepatitis E virus, we will address epidemiology (including new emerging species), diagnosis, clinical aspects, treatment, the development of a vaccine, and environmental surveillance.
Collapse
Affiliation(s)
- María B Pisano
- Virology Institute, CONICET, School of Medical Sciences, National University of Córdoba, Cordoba X5016, Argentina
| | - Cecilia G Giadans
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP) CONICET-GCBA, Laboratory of Molecular Biology, Pathology Division, Ricardo Gutiérrez Children’s Hospital, CABA C1425, Buenos Aires, Argentina
| | - Diego M Flichman
- Institute of Biomedical Investigations in Retrovirus and AIDS (INBIRS), School of Medicine, University of Buenos Aires, CONICET, CABA C1121ABG, Buenos Aires, Argentina
| | - Viviana E Ré
- Virology Institute, CONICET, School of Medical Sciences, National University of Córdoba, Cordoba X5016, Argentina
| | - María V Preciado
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP) CONICET-GCBA, Laboratory of Molecular Biology, Pathology Division, Ricardo Gutiérrez Children’s Hospital, CABA C1425, Buenos Aires, Argentina
| | - Pamela Valva
- Multidisciplinary Institute for Investigation in Pediatric Pathologies (IMIPP) CONICET-GCBA, Laboratory of Molecular Biology, Pathology Division, Ricardo Gutiérrez Children’s Hospital, CABA C1425, Buenos Aires, Argentina
| |
Collapse
|
3
|
Cox A, Sulkowski M, Sugarman J. Ethical and Practical Issues Associated With the Possibility of Using Controlled Human Infection Trials in Developing a Hepatitis C Virus Vaccine. Clin Infect Dis 2020; 71:2986-2990. [PMID: 32442262 PMCID: PMC7778335 DOI: 10.1093/cid/ciaa640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 05/21/2020] [Indexed: 01/15/2023] Open
Abstract
Despite the existence of established treatments for hepatitis C virus (HCV), more effective means of preventing infection, such as a vaccine, are arguably needed to help reduce substantial global morbidity and mortality. Given the expected challenges of developing such a vaccine among those at heightened risk of infection, controlled human infection studies seem to be a promising potential approach to HCV vaccine development, but they raise substantial ethical and practical concerns. In this article, we describe some of the challenges related to the possibility of using controlled human infection studies to accelerate HCV vaccine development. The related ethical and practical concerns require further deliberation before such studies are planned and implemented.
Collapse
Affiliation(s)
- Andrea Cox
- School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Mark Sulkowski
- School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jeremy Sugarman
- School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
- Berman Institute of Bioethics, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Yu ML, Chen PJ, Dai CY, Hu TH, Huang CF, Huang YH, Hung CH, Lin CY, Liu CH, Liu CJ, Peng CY, Lin HC, Kao JH, Chuang WL. 2020 Taiwan consensus statement on the management of hepatitis C: part (I) general population. J Formos Med Assoc 2020; 119:1019-1040. [PMID: 32359879 DOI: 10.1016/j.jfma.2020.04.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/19/2020] [Accepted: 04/05/2020] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV) infection remains a major public health issue with high prevalence in Taiwan. Recently, the advent of direct-acting antiviral (DAA) agents, with higher efficacy, excellent safety profile, and truncated treatment duration, has revolutionized the paradigm of hepatitis C treatment and made HCV elimination possible. To provide timely guidance for optimal hepatitis C management, the Taiwan Association for the Study of the Liver (TASL) established an expert panel to publish a 2-part consensus statement on the management of hepatitis C in the DAA era. After comprehensive literature review and a consensus meeting, patient-oriented, genotype-guided recommendations on hepatitis C treatment for the general and special populations have been provided based on the latest indications and scientific evidence. In the first part of this consensus, we present the epidemiology and treatment situation of hepatitis C in Taiwan, the development of DAA, pre-treatment evaluation, post sustained virologic response (SVR) monitoring, and most importantly the treatment recommendations for the general population with compensated liver disease. The second part will focus on the treatment recommendations for the special populations.
Collapse
Affiliation(s)
- Ming-Lung Yu
- Hepatobiliary Division, Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Medicine and Hepatitis Research Center, College of Medicine, Center for Cancer Research and Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Pei-Jer Chen
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Chia-Yen Dai
- Hepatobiliary Division, Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Medicine and Hepatitis Research Center, College of Medicine, Center for Cancer Research and Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tsung-Hui Hu
- Division of Hepato-Gastroenterology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chung-Feng Huang
- Hepatobiliary Division, Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Medicine and Hepatitis Research Center, College of Medicine, Center for Cancer Research and Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Hsiang Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University School of Medicine, Taipei, Taiwan
| | - Chao-Hung Hung
- Division of Hepato-Gastroenterology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chun-Yen Lin
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan; School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chen-Hua Liu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Jen Liu
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Cheng-Yuan Peng
- Center for Digestive Medicine, Department of Internal Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Han-Chieh Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jia-Horng Kao
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Wan-Long Chuang
- Hepatobiliary Division, Department of Internal Medicine and Hepatitis Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan; School of Medicine and Hepatitis Research Center, College of Medicine, Center for Cancer Research and Center for Liquid Biopsy, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
5
|
Atcheson E, Li W, Bliss CM, Chinnakannan S, Heim K, Sharpe H, Hutchings C, Dietrich I, Nguyen D, Kapoor A, Jarvis MA, Klenerman P, Barnes E, Simmonds P. Use of an Outbred Rat Hepacivirus Challenge Model for Design and Evaluation of Efficacy of Different Immunization Strategies for Hepatitis C Virus. Hepatology 2020; 71:794-807. [PMID: 31400152 PMCID: PMC7154631 DOI: 10.1002/hep.30894] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 08/05/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS The lack of immunocompetent small animal models for hepatitis C virus (HCV) has greatly hindered the development of effective vaccines. Using rodent hepacivirus (RHV), a homolog of HCV that shares many characteristics of HCV infection, we report the development and application of an RHV outbred rat model for HCV vaccine development. APPROACH AND RESULTS Simian adenovirus (ChAdOx1) encoding a genetic immune enhancer (truncated shark class II invariant chain) fused to the nonstructural (NS) proteins NS3-NS5B from RHV (ChAd-NS) was used to vaccinate Sprague-Dawley rats, resulting in high levels of cluster of differentiation 8-positive (CD8+ ) T-cell responses. Following RHV challenge (using 10 or 100 times the minimum infectious dose), 42% of vaccinated rats cleared infection within 6-8 weeks, while all mock vaccinated controls became infected with high-level viremia postchallenge. A single, 7-fold higher dose of ChAd-NS increased efficacy to 67%. Boosting with ChAd-NS or with a plasmid encoding the same NS3-NS5B antigens increased efficacy to 100% and 83%, respectively. A ChAdOx1 vector encoding structural antigens (ChAd-S) was also constructed. ChAd-S alone showed no efficacy. Strikingly, when combined with ChAd-NS, ChAD-S produced 83% efficacy. Protection was associated with a strong CD8+ interferon gamma-positive recall response against NS4. Next-generation sequencing of a putative RHV escape mutant in a vaccinated rat identified mutations in both identified immunodominant CD8+ T-cell epitopes. CONCLUSIONS A simian adenovirus vector vaccine strategy is effective at inducing complete protective immunity in the rat RHV model. The RHV Sprague-Dawley rat challenge model enables comparative testing of vaccine platforms and antigens and identification of correlates of protection and thereby provides a small animal experimental framework to guide the development of an effective vaccine for HCV in humans.
Collapse
Affiliation(s)
- Erwan Atcheson
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | - Wenqin Li
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | - Carly M. Bliss
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | | | - Kathrin Heim
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | - Hannah Sharpe
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | - Claire Hutchings
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | - Isabelle Dietrich
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | - Dung Nguyen
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | - Amit Kapoor
- Centre for Vaccines and ImmunityThe Research Institute at Nationwide Children’s HospitalColumbusOH
| | | | - Paul Klenerman
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | - Peter Simmonds
- Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| |
Collapse
|
6
|
Cox AL. Challenges and Promise of a Hepatitis C Virus Vaccine. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a036947. [PMID: 31548228 DOI: 10.1101/cshperspect.a036947] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An estimated 1.5-2 million new hepatitis C virus (HCV) infections occur globally each year. Critical to the World Health Organization's (WHO) HCV elimination strategy is an 80% reduction in incidence of HCV infections by 2030. However, even among high-income countries, few are on target to achieve the WHO's incident infection-reduction goal. A preventative vaccine could have a major impact in achieving incidence-reduction targets globally. However, barriers to HCV vaccine development are significant and include at-risk populations that are often marginalized: viral diversity, limited options for testing HCV vaccines, and an incomplete understanding of protective immune responses. In part because of those factors, testing of only one vaccine strategy has been completed in at-risk individuals as of 2019. Despite challenges, immunity against HCV protects against chronic infection in some repeated HCV exposures and an effective HCV vaccine could prevent transmission regardless of risk factors. Ultimately, prophylactic vaccines will likely be necessary to achieve global HCV elimination.
Collapse
Affiliation(s)
- Andrea L Cox
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
7
|
Echevarria D, Gutfraind A, Boodram B, Layden J, Ozik J, Page K, Cotler SJ, Major M, Dahari H. Modeling indicates efficient vaccine-based interventions for the elimination of hepatitis C virus among persons who inject drugs in metropolitan Chicago. Vaccine 2019; 37:2608-2616. [PMID: 30962092 DOI: 10.1016/j.vaccine.2019.02.081] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/07/2019] [Accepted: 02/22/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Persons who inject drugs (PWID) are at highest risk for acquiring and transmitting hepatitis C (HCV) infection. The recent availability of oral direct-acting antiviral (DAA) therapy with reported cure rates >90% can prevent HCV transmission, making HCV elimination an attainable goal among PWID. The World Health Organization (WHO) recently proposed a 90% reduction in HCV incidence as a key objective. However, given barriers to the use of DAAs in PWID, including cost, restricted access to DAAs, and risk of reinfection, combination strategies including the availability of effective vaccines are needed to eradicate HCV as a public health threat. This study aims to model the cost and efficacy of a dual modality approach using HCV vaccines combined with DAAs to reduce HCV incidence by 90% and prevalence by 50% in PWID populations. METHODS We developed a mathematical model that represents the HCV epidemic among PWID and calibrated it to empirical data from metropolitan Chicago, Illinois. Four medical interventions were considered: vaccination of HCV naive PWID, DAA treatment, DAA treatment followed by vaccination, and, a combination of vaccination and DAA treatment. RESULTS The combination of vaccination and DAAs is the lowest cost-expensive intervention for achieving the WHO target of 90% incidence reduction. The use of DAAs without a vaccine is much less cost-effective with the additional risk of reinfection after treatment. Vaccination of naïve PWID alone, even when scaled-up to all reachable PWID, cannot achieve 90% reduction of incidence in high-prevalence populations due to infections occurring before vaccination. Similarly, the lowest cost-expensive way to halve prevalence in 15 years is through the combination of vaccination and DAAs. CONCLUSIONS The modeling results underscore the importance of developing an effective HCV vaccine and augmenting DAAs with vaccines in HCV intervention strategies in order to achieve efficient reductions in incidence and prevalence.
Collapse
Affiliation(s)
- Desarae Echevarria
- The Program for Experimental & Theoretical Modeling, Division of Hepatology, Department of Medicine, Loyola University, Medical Center, Maywood, IL, USA
| | - Alexander Gutfraind
- The Program for Experimental & Theoretical Modeling, Division of Hepatology, Department of Medicine, Loyola University, Medical Center, Maywood, IL, USA; Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, IL, USA
| | - Basmattee Boodram
- Community Health Sciences, School of Public Health, University of Illinois at Chicago, Chicago, IL, USA
| | - Jennifer Layden
- Health Protection Office, Illinois Department of Public Health, Chicago, IL, USA
| | - Jonathan Ozik
- Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL, USA; Decision and Infrastructure Sciences, Argonne National Laboratory, Argonne, IL, USA
| | - Kimberly Page
- Division of Epidemiology, Biostatistics and Preventive Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Scott J Cotler
- The Program for Experimental & Theoretical Modeling, Division of Hepatology, Department of Medicine, Loyola University, Medical Center, Maywood, IL, USA
| | - Marian Major
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Harel Dahari
- The Program for Experimental & Theoretical Modeling, Division of Hepatology, Department of Medicine, Loyola University, Medical Center, Maywood, IL, USA.
| |
Collapse
|
8
|
Ward JW, Hinman AR. What Is Needed to Eliminate Hepatitis B Virus and Hepatitis C Virus as Global Health Threats. Gastroenterology 2019; 156:297-310. [PMID: 30391470 DOI: 10.1053/j.gastro.2018.10.048] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/23/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023]
Abstract
Hepatitis B virus (HBV) and hepatitis C virus (HCV) cause 1.3 million deaths annually. To prevent more than 7 million deaths by 2030, the World Health Organization set goals to eliminate HBV and HCV, defined as a 90% reduction in new infections and a 65% reduction in deaths, and prevent more than 7 million related deaths by 2030. Elimination of HBV and HCV is feasible because of characteristics of the viruses, reliable diagnostic tools, and available cost-effective or cost-saving interventions. Broad implementation of infant immunization against HBV, blood safety, and infection-control programs have greatly reduced the burden of HBV and HCV infections. To achieve elimination, priorities include implementation of HBV vaccine-based strategies to prevent perinatal transmission, safe injection practices and HCV treatment for persons who inject drugs, and testing and treatment for HBV- and HCV-infected persons. With sufficient capacity, HBV and HCV elimination programs can meet their goals.
Collapse
Affiliation(s)
- John W Ward
- The Task Force for Global Health, Decatur, Georgia; Centers for Disease Control and Prevention, Atlanta, Georgia.
| | | |
Collapse
|
9
|
Bailey JR, Barnes E, Cox AL. Approaches, Progress, and Challenges to Hepatitis C Vaccine Development. Gastroenterology 2019; 156:418-430. [PMID: 30268785 PMCID: PMC6340767 DOI: 10.1053/j.gastro.2018.08.060] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/12/2018] [Accepted: 08/14/2018] [Indexed: 12/16/2022]
Abstract
Risk factors for hepatitis C virus (HCV) infection vary, and there were an estimated 1.75 million new cases worldwide in 2015. The World Health Organization aims for a 90% reduction in new HCV infections by 2030. An HCV vaccine would prevent transmission, regardless of risk factors, and significantly reduce the global burden of HCV-associated disease. Barriers to development include virus diversity, limited models for testing vaccines, and our incomplete understanding of protective immune responses. Although highly effective vaccines could prevent infection altogether, immune responses that increase the rate of HCV clearance and prevent chronic infection may be sufficient to reduce disease burden. Adjuvant envelope or core protein and virus-vectored nonstructural antigen vaccines have been tested in healthy volunteers who are not at risk for HCV infection; viral vectors encoding nonstructural proteins are the only vaccine strategy to be tested in at-risk individuals. Despite development challenges, a prophylactic vaccine is necessary for global control of HCV.
Collapse
Affiliation(s)
- Justin R. Bailey
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Eleanor Barnes
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine and the Oxford NIHR Biomedical Research Centre, Oxford University, UK
| | - Andrea L. Cox
- Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland,Reprint requests Address requests for reprints to: Andrea L. Cox, MD, PhD, Division of Infectious Diseases, Johns Hopkins University School of Medicine, 551 Rangos Building, 855 N Wolfe Street, Baltimore, Maryland 21205. fax: (443)769-1221.
| |
Collapse
|
10
|
Fuerst TR, Pierce BG, Keck ZY, Foung SKH. Designing a B Cell-Based Vaccine against a Highly Variable Hepatitis C Virus. Front Microbiol 2018; 8:2692. [PMID: 29379486 PMCID: PMC5775222 DOI: 10.3389/fmicb.2017.02692] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023] Open
Abstract
The ability to use structure-based design and engineering to control the molecular shape and reactivity of an immunogen to induce protective responses shows great promise, along with corresponding advancements in vaccine testing and evaluation systems. We describe in this review new paradigms for the development of a B cell-based HCV vaccine. Advances in test systems to measure in vitro and in vivo antibody-mediated virus neutralization include retroviral pseudotype particles expressing HCV E1E2 glycoproteins (HCVpp), infectious cell culture-derived HCV virions (HCVcc), and surrogate animal models mimicking acute HCV infection. Their applications have established the role of broadly neutralizing antibodies to control HCV infection. However, the virus has immunogenic regions in the viral envelope glycoproteins that are associated with viral escape or non-neutralizing antibodies. These regions serve as immunologic decoys that divert the antibody response from less prominent conserved regions mediating virus neutralization. This review outlines the immunogenic regions on E2, which are roughly segregated into the hypervariable region 1 (HVR1), and five clusters of overlapping epitopes designated as antigenic domains A-E. Understanding the molecular architecture of conserved neutralizing epitopes within these antigenic domains, and how other antigenic regions or decoys deflect the immune response from these conserved regions will provide a roadmap for the rational design of an HCV vaccine.
Collapse
Affiliation(s)
- Thomas R Fuerst
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States.,Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Brian G Pierce
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD, United States.,Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, United States
| | - Zhen-Yong Keck
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| | - Steven K H Foung
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
11
|
Midgard H, Weir A, Palmateer N, Lo Re V, Pineda JA, Macías J, Dalgard O. HCV epidemiology in high-risk groups and the risk of reinfection. J Hepatol 2016; 65:S33-S45. [PMID: 27641987 DOI: 10.1016/j.jhep.2016.07.012] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/08/2016] [Accepted: 07/12/2016] [Indexed: 12/18/2022]
Abstract
Injecting risk behaviours among people who inject drugs (PWID) and high-risk sexual practices among men who have sex with men (MSM) are important routes of hepatitis C virus (HCV) transmission. Current direct-acting antiviral treatment offers unique opportunities for reductions in HCV-related liver disease burden and epidemic control in high-risk groups, but these prospects could be counteracted by HCV reinfection due to on-going risk behaviours after successful treatment. Based on existing data from small and heterogeneous studies of interferon-based treatment, the incidence of reinfection after sustained virological response range from 2-6/100 person years among PWID to 10-15/100 person years among human immunodeficiency virus-infected MSM. These differences mainly reflect heterogeneity in study populations with regards to risk behaviours, but also reflect variations in study designs and applied virological methods. Increasing levels of reinfection are to be expected as we enter the interferon-free treatment era. Individual- and population-level efforts to address and prevent reinfection should therefore be undertaken when providing HCV care for people with on-going risk behaviour. Constructive strategies include acknowledgement, education and counselling, harm reduction optimization, scaled-up treatment including treatment of injecting networks, post-treatment screening, and rapid retreatment of reinfections.
Collapse
Affiliation(s)
- Håvard Midgard
- Department of Infectious Diseases, Akershus University Hospital, Lørenskog, Norway; Institute for Clinical Medicine, University of Oslo, Norway; Department of Gastroenterology, Oslo University Hospital, Norway.
| | - Amanda Weir
- School of Health and Life Sciences, Glasgow Caledonian University, United Kingdom; NHS National Services Scotland, Health Protection Scotland, Glasgow, United Kingdom
| | - Norah Palmateer
- School of Health and Life Sciences, Glasgow Caledonian University, United Kingdom; NHS National Services Scotland, Health Protection Scotland, Glasgow, United Kingdom
| | - Vincent Lo Re
- Division of Infectious Diseases, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, United States
| | - Juan A Pineda
- Unidad de Enfermedades Infecciosas y Microbiología, Hospital Universitario de Valme, Sevilla, Spain
| | - Juan Macías
- Unidad de Enfermedades Infecciosas y Microbiología, Hospital Universitario de Valme, Sevilla, Spain
| | - Olav Dalgard
- Department of Infectious Diseases, Akershus University Hospital, Lørenskog, Norway; Institute for Clinical Medicine, University of Oslo, Norway
| |
Collapse
|
12
|
Abstract
A brief history of vaccination is presented since the Jenner's observation, through the first golden age of vaccinology (from Pasteur's era to 1938), the second golden age (from 1940 to 1970), until the current period. In the first golden age, live, such as Bacille Calmette Guérin (BCG), and yellow fever, inactivated, such as typhoid, cholera, plague, and influenza, and subunit vaccines, such as tetanus and diphtheria toxoids, have been developed. In the second golden age, the cell culture technology enabled polio, measles, mumps, and rubella vaccines be developed. In the era of modern vaccines, in addition to the conjugate polysaccharide, hepatitis A, oral typhoid, and varicella vaccines, the advent of molecular biology enabled to develop hepatitis B, acellular pertussis, papillomavirus, and rotavirus recombinant vaccines. Great successes have been achieved in the fight against infectious diseases, including the smallpox global eradication, the nearly disappearance of polio, the control of tetanus, diphtheria, measles, rubella, yellow fever, and rabies. However, much work should still be done for improving old vaccines, such as BCG, anthrax, smallpox, plague, or for developing effective vaccines against old or emerging infectious threats, such as human-immunodeficiency-virus, malaria, hepatitis C, dengue, respiratory-syncytial-virus, cytomegalovirus, multiresistant bacteria, Clostridium difficile, Ebola virus. In addition to search for innovative and effective vaccines and global infant coverage, even risk categories should adequately be protected. Despite patients under immunosuppressive therapy are globally increasing, their vaccine coverage is lower than recommended, even in developed and affluent countries.
Collapse
Affiliation(s)
| | - Simonetta Salemi
- c S. Andrea University Hospital , Via di Grottarossa Rome, Italy
| | - Raffaele D'Amelio
- b Sapienza University of Rome , Department of Clinical and Molecular Medicine , Via di Grottarossa Rome, Italy.,c S. Andrea University Hospital , Via di Grottarossa Rome, Italy
| |
Collapse
|
13
|
Sacks-Davis R, McBryde E, Grebely J, Hellard M, Vickerman P. Many hepatitis C reinfections that spontaneously clear may be undetected: Markov-chain Monte Carlo analysis of observational study data. J R Soc Interface 2015; 12:20141197. [PMID: 25589564 DOI: 10.1098/rsif.2014.1197] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hepatitis C virus (HCV) reinfection rates are probably underestimated due to reinfection episodes occurring between study visits. A Markov model of HCV reinfection and spontaneous clearance was fitted to empirical data. Bayesian post-estimation was used to project reinfection rates, reinfection spontaneous clearance probability and duration of reinfection. Uniform prior probability distributions were assumed for reinfection rate (more than 0), spontaneous clearance probability (0-1) and duration (0.25-6.00 months). Model estimates were 104 per 100 person-years (95% CrI: 21-344), 0.84 (95% CrI: 0.59-0.98) and 1.3 months (95% CrI: 0.3-4.1) for reinfection rate, spontaneous clearance probability and duration, respectively. Simulation studies were used to assess model validity, demonstrating that the Bayesian model estimates provided useful information about the possible sources and magnitude of bias in epidemiological estimates of reinfection rates, probability of reinfection clearance and duration or reinfection. The quality of the Bayesian estimates improved for larger samples and shorter test intervals. Uncertainty in model estimates notwithstanding, findings suggest that HCV reinfections frequently and quickly result in spontaneous clearance, with many reinfection events going unobserved.
Collapse
Affiliation(s)
- Rachel Sacks-Davis
- Centre for Population Health, Burnet Institute, Melbourne, Australia Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Emma McBryde
- Centre for Population Health, Burnet Institute, Melbourne, Australia Victorian Infectious Diseases Service, Royal Melbourne Hospital, Melbourne, Australia Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Jason Grebely
- The Kirby Institute, University of New South Wales, Sydney, Australia
| | - Margaret Hellard
- Centre for Population Health, Burnet Institute, Melbourne, Australia Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Peter Vickerman
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| |
Collapse
|
14
|
Shaheen MA, Idrees M. Evidence-based consensus on the diagnosis, prevention and management of hepatitis C virus disease. World J Hepatol 2015; 7:616-627. [PMID: 25848486 PMCID: PMC4381185 DOI: 10.4254/wjh.v7.i3.616] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/01/2014] [Accepted: 12/10/2014] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a potent human pathogen and is one of the main causes of chronic hepatitis round the world. The present review describes the evidence-based consensus on the diagnosis, prevention and management of HCV disease. Various techniques, for the detection of anti-HCV immunoglobulin G immunoassays, detection of HCV RNA by identifying virus-specific molecules nucleic acid testings, recognition of core antigen for diagnosis of HCV, quantitative antigen assay, have been used to detect HCV RNA and core antigen. Advanced technologies such as nanoparticle-based diagnostic assays, loop-mediated isothermal amplification and aptamers and Ortho trak-C assay have also come to the front that provides best detection results with greater ease and specificity for detection of HCV. It is of immense importance to prevent this infection especially among the sexual partners, injecting drug users, mother-to-infant transmission of HCV, household contact, healthcare workers and people who get tattoos and piercing on their skin. Management of this infection is intended to eradicate it out of the body of patients. Management includes examining the treatment (efficacy and protection), assessment of hepatic condition before commencing therapy, controlling the parameters upon which dual and triple therapies work, monitoring the body after treatment and adjusting the co-factors. Examining the treatment in some special groups of people (HIV/HCV co-infected, hemodialysis patients, renal transplanted patients).
Collapse
|
15
|
Maltezou HC, Lionis C. The financial crisis and the expected effects on vaccinations in Europe: a literature review. Infect Dis (Lond) 2015; 47:437-46. [PMID: 25739315 DOI: 10.3109/23744235.2015.1018315] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Starting in 2008 several European countries experienced a financial crisis. Historically, diseases whose prevention and treatment depend highly on the continuity of healthcare re-emerge during political and financial crises. Evidence suggests that the current financial crisis has had an impact on the health and welfare of Europeans and that population health status and morbidity as well as mortality patterns may change in the coming years. At the same time decisions about expenditure for health services may impact the ability of public health providers to respond. It is expected that the current crisis will further exacerbate socioeconomic and health inequalities and novel vulnerable groups will emerge in addition to existing ones. We review the available evidence and discuss how the current crisis may have an impact on vaccine-preventable diseases and influence vaccination coverage rates in Europe.
Collapse
Affiliation(s)
- Helena C Maltezou
- From the 1 Department for Interventions in Health Care Facilities, Hellenic Center for Disease Control and Prevention , Athens
| | | |
Collapse
|
16
|
Graham CS, Swan T. A path to eradication of hepatitis C in low- and middle-income countries. Antiviral Res 2015; 119:89-96. [PMID: 25615583 DOI: 10.1016/j.antiviral.2015.01.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 01/08/2015] [Accepted: 01/12/2015] [Indexed: 12/11/2022]
Abstract
We are entering a new era in the treatment of hepatitis C virus (HCV) infection and almost all patient groups in high-income countries have the potential to be cured with all-oral, highly potent combinations of direct-acting antiviral drugs. Soon the main barrier to curing hepatitis C, even in wealthy countries, will be the high price of these all-oral regimens. The gulf between the advances in HCV drug development and access to treatment for individual patients will be even greater in low- and middle-income countries (LMIC) where 80% of the global burden of HCV infection and mortality exists. Ensuring that people in LMIC have access to regimens against HCV will require a similar level of advocacy and public-private partnerships as has transformed the control of other global diseases such as HIV. Numerous challenges will need to be overcome. These include improving low-cost diagnostic tests, especially in sub-Saharan Africa where the false-positive rate is unacceptably high, reducing iatrogenic spread of HCV, addressing transmission among people who inject drugs (PWID), and ensuring affordable access to antiviral treatment for all people living with HCV infection in LMIC. This article forms part of a symposium in Antiviral Research on "Hepatitis C: next steps toward global eradication."
Collapse
Affiliation(s)
- Camilla S Graham
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Tracy Swan
- Treatment Action Group, New York, NY, United States
| |
Collapse
|
17
|
Young AM, Stephens DB, Khaleel HA, Havens JR. Hepatitis C vaccine clinical trials among people who use drugs: potential for participation and involvement in recruitment. Contemp Clin Trials 2014; 41:9-16. [PMID: 25553715 DOI: 10.1016/j.cct.2014.12.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/20/2014] [Accepted: 12/22/2014] [Indexed: 10/24/2022]
Abstract
Candidate prophylactic HCV vaccines are approaching phase III clinical trial readiness, yet little is known about the potential for participation among target groups or innovative ways to promote enrollment within 'hard-to-reach' populations. This study describes HCV vaccine trial participation willingness among a high-risk sample of people who use drugs and their willingness to assist researchers by promoting the trial among peers. Willingness to participate in and encourage peers' participation in an HCV vaccine trial was assessed among injection and non-injection drug users enrolled in a cohort study in Kentucky using interviewer-administered questionnaires (n=165 and 415, respectively, with willingness to participate assessed among HCV-seronegative participants only). Generalized linear mixed models were used to determine correlates to being "very likely" to participate or encourage participation in a trial. Most reported being likely to participate or encourage participation in a vaccine trial (63% and 87%, respectively). Men were significantly less likely to report willingness to encourage others' participation, while willingness to encourage was higher among lower income, HCV-seropositive, heroin-using, and methamphetamine-using participants. Unemployment, lesser education, receipt of financial support from more peers, and nonmedical prescription drug use were positively associated with willingness to participate. Differential enrollment in HCV vaccine clinical trials by socioeconomic status may occur, underscoring ethical considerations and need for avoiding coercion. Notably, the data suggest that a peer-driven approach to promoting trial participation among people who use drugs could be feasible in this population and that HCV-seropositive individuals and women could be especially instrumental in these efforts.
Collapse
Affiliation(s)
- April M Young
- Department of Epidemiology, University of Kentucky, Lexington, KY, United States; Center on Drug and Alcohol Research, University of Kentucky, Lexington, KY, United States.
| | - Dustin B Stephens
- Department of Behavioral Science, University of Kentucky, Lexington, KY, United States
| | - Hanan A Khaleel
- Department of Epidemiology, University of Kentucky, Lexington, KY, United States
| | - Jennifer R Havens
- Center on Drug and Alcohol Research, University of Kentucky, Lexington, KY, United States; Department of Behavioral Science, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
18
|
Mutational escape of CD8+ T cell epitopes: implications for prevention and therapy of persistent hepatitis virus infections. Med Microbiol Immunol 2014; 204:29-38. [PMID: 25537849 PMCID: PMC4305108 DOI: 10.1007/s00430-014-0372-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 09/01/2014] [Indexed: 12/16/2022]
Abstract
Over the past two decades, much has been learned about how human viruses evade T cell immunity to establish persistent infection. The lessons are particularly relevant to two hepatotropic viruses, HBV and HCV, that are very significant global public health problems. Although HCV and HBV are very different, the natural history of persistent infections with these viruses in humans shares some common features including failure of T cell immunity. During recent years, large sequence studies of HCV have characterized intra-host evolution as well as sequence diversity between hosts in great detail. Combined with studies of CD8+ T cell phenotype and function, it is now apparent that the T cell response shapes viral evolution. In turn, HCV sequence diversity influences the quality of the CD8+ T cell response and thus infection outcome. Here, we review published studies of CD8+ T cell selection pressure and mutational escape of the virus. Potential consequences for therapeutic strategies to restore T cell immunity against persistent human viruses, most notably HBV, are discussed.
Collapse
|
19
|
Bailey JR, Wasilewski LN, Snider AE, El-Diwany R, Osburn WO, Keck Z, Foung SKH, Ray SC. Naturally selected hepatitis C virus polymorphisms confer broad neutralizing antibody resistance. J Clin Invest 2014; 125:437-47. [PMID: 25500884 DOI: 10.1172/jci78794] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/16/2014] [Indexed: 12/19/2022] Open
Abstract
For hepatitis C virus (HCV) and other highly variable viruses, broadly neutralizing mAbs are an important guide for vaccine development. The development of resistance to anti-HCV mAbs is poorly understood, in part due to a lack of neutralization testing against diverse, representative panels of HCV variants. Here, we developed a neutralization panel expressing diverse, naturally occurring HCV envelopes (E1E2s) and used this panel to characterize neutralizing breadth and resistance mechanisms of 18 previously described broadly neutralizing anti-HCV human mAbs. The observed mAb resistance could not be attributed to polymorphisms in E1E2 at known mAb-binding residues. Additionally, hierarchical clustering analysis of neutralization resistance patterns revealed relationships between mAbs that were not predicted by prior epitope mapping, identifying 3 distinct neutralization clusters. Using this clustering analysis and envelope sequence data, we identified polymorphisms in E2 that confer resistance to multiple broadly neutralizing mAbs. These polymorphisms, which are not at mAb contact residues, also conferred resistance to neutralization by plasma from HCV-infected subjects. Together, our method of neutralization clustering with sequence analysis reveals that polymorphisms at noncontact residues may be a major immune evasion mechanism for HCV, facilitating viral persistence and presenting a challenge for HCV vaccine development.
Collapse
|
20
|
Shahid I, ALMalki WH, Hafeez MH, Hassan S. Hepatitis C virus infection treatment: An era of game changer direct acting antivirals and novel treatment strategies. Crit Rev Microbiol 2014; 42:535-47. [PMID: 25373616 DOI: 10.3109/1040841x.2014.970123] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Chronic hepatitis C virus infection and associated liver diseases represent a major health care burden all over the world. The current standard of care, i.e. peginterferon-alfa (PEG-IFNα) plus ribavirin (RBV) are associated with frequent and sometimes serious adverse effects and contraindications, which further limit their therapeutic efficacy. The approval of first and second generation HCV protease inhibitors represents a major breakthrough in the development of novel direct acting antivirals (DAAs) against different HCV genotypes and establishes a new standard of care for chronically infected HCV genotypes 1 patients. Similarly, next generation protease inhibitors and HCV RNA polymerase inhibitors have shown better pharmacokinetics and pharmacodynamics in terms of broader HCV genotypes coverage, better safety profile, fewer drug interactions and possible once daily administration than first generation direct acting antivirals. The testing of adenovirus-based vector vaccines, which escalates the innate and acquired immune responses against the most conserved regions of the HCV genome in chimpanzees and humans, may be a promising therapeutic approach against HCV infection in coming future. This review article presents up-to-date knowledge and recent developments in HCV therapeutics, insights the shortcomings of current HCV therapies and key lessons from the therapeutic potential of improved anti-HCV treatment strategies.
Collapse
Affiliation(s)
- Imran Shahid
- a Department of Molecular Biology , Applied and Functional Genomics Lab, CEMB, University of the Punjab , Near Thokar Niaz Baig , Lahore , Pakistan .,b Department of Pharmacology and Toxicology , College of Pharmacy, Umm Al Qura University , Al-Abidiyah , Makkah , Saudi Arabia
| | - Waleed Hassan ALMalki
- b Department of Pharmacology and Toxicology , College of Pharmacy, Umm Al Qura University , Al-Abidiyah , Makkah , Saudi Arabia
| | - Muhammad Hassan Hafeez
- c Department of Gastroenterology and Hepatology , Fatima Memorial Hospital and College of Medicine and Dentistry , Shadman , Lahore , Pakistan , and
| | - Sajida Hassan
- a Department of Molecular Biology , Applied and Functional Genomics Lab, CEMB, University of the Punjab , Near Thokar Niaz Baig , Lahore , Pakistan .,d Viral Hepatitis Program, Laboratory of Medicine, University of Washington , Seattle , WA , USA
| |
Collapse
|
21
|
Callendret B, Eccleston HB, Hall S, Satterfield W, Capone S, Folgori A, Cortese R, Nicosia A, Walker CM. T-cell immunity and hepatitis C virus reinfection after cure of chronic hepatitis C with an interferon-free antiviral regimen in a chimpanzee. Hepatology 2014; 60:1531-40. [PMID: 24975498 PMCID: PMC4242208 DOI: 10.1002/hep.27278] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 06/20/2014] [Indexed: 01/15/2023]
Abstract
UNLABELLED Memory CD8+ T cells generated by spontaneous resolution of hepatitis C virus (HCV) infection rapidly control secondary infections and reduce the risk of virus persistence. Here, CD8+ T-cell immunity and response to reinfection were assessed in a chimpanzee cured of an earlier chronic infection with an interferon (IFN)-free antiviral regimen. CD8+ T cells expanded from liver immediately before and 2 years after cure of chronic infection with two direct-acting antivirals (DAAs) targeted epitopes in the E2, nonstructural (NS)5a, and NS5b proteins. A second infection to assess CD8+ T-cell responsiveness resulted in rapid suppression of HCV replication by week 2, but viremia rebounded 3 weeks later and the infection persisted. The E2, NS5a, and NS5b proteins remained dominant CD8+ T-cell targets after reinfection. Resurgent HCV replication was temporally associated with mutational escape of NS5a and NS5b class I epitopes that had also mutated during the first chronic infection. Two epitopes in E2 remained intact throughout both persistent infections. Intrahepatic CD8+ T cells targeting intact and escape-prone epitopes differed in expression of phenotypic markers of functional exhaustion 2 years after successful DAA therapy and in the capacity to expand in liver upon reinfection. CONCLUSIONS The intrahepatic HCV-specific CD8+ T-cell repertoire established during chronic infection was narrowly focused, but very stable, after cure with DAA. Existing intrahepatic CD8+ T cells targeting dominant epitopes of the challenge virus failed to prevent persistence. Vaccination after DAA cure may be necessary to broaden T-cell responses and reduce the risk of a second persistent infection.
Collapse
Affiliation(s)
- Benoit Callendret
- Center for Vaccines and Immunity, Nationwide Children's Hospital, Columbus, OH
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Baumert TF, Fauvelle C, Chen DY, Lauer GM. A prophylactic hepatitis C virus vaccine: a distant peak still worth climbing. J Hepatol 2014; 61:S34-44. [PMID: 25443345 DOI: 10.1016/j.jhep.2014.09.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/04/2014] [Accepted: 09/05/2014] [Indexed: 12/23/2022]
Abstract
Hepatitis C virus (HCV) infects an estimated more than 150 million people and is a leading cause of liver disease worldwide. The development of direct-acting antivirals (DAAs) will markedly improve the outcome of antiviral treatment with cure of the majority of treated patients. However, several hurdles remain before HCV infection can be considered a menace of the past: High treatment costs will most likely result in absent or limited access in middle and low resource countries and will lead to selective use even in wealthier countries. The limited efficacy of current HCV screening programs leads to a majority of cases being undiagnosed or diagnosed at a late stage and DAAs will not cure virus-induced end-stage liver disease such as hepatocellular carcinoma. Certain patient subgroups may not respond or not be eligible for DAA-based treatment strategies. Finally, reinfection remains possible, making control of HCV infection in people with ongoing infection risk difficult. The unmet medical needs justify continued efforts to develop an effective vaccine, protecting from chronic HCV infection as a mean to impact the epidemic on a global scale. Recent progress in the understanding of virus-host interactions provides new perspectives for vaccine development, but many critical questions remain unanswered. In this review, we focus on what is known about the immune correlates of HCV control, highlight key mechanisms of viral evasion that pose challenges for vaccine development and suggest areas of further investigation that could enable a rational approach to vaccine design. Within this context we also discuss insights from recent HCV vaccination studies and what they suggest about the best way to go forward.
Collapse
Affiliation(s)
- Thomas F Baumert
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, USA; Inserm Unité 1110, France; Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, France; Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| | - Catherine Fauvelle
- Inserm Unité 1110, France; Institut de Recherche sur les Maladies Virales et Hépatiques, Université de Strasbourg, France
| | - Diana Y Chen
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, USA
| | - Georg M Lauer
- Gastrointestinal Unit, Massachusetts General Hospital and Harvard Medical School, USA.
| |
Collapse
|
23
|
Thoens C, Berger C, Trippler M, Siemann H, Lutterbeck M, Broering R, Schlaak J, Heinemann FM, Heinold A, Nattermann J, Scherbaum N, Alter G, Timm J. KIR2DL3⁺NKG2A⁻ natural killer cells are associated with protection from productive hepatitis C virus infection in people who inject drugs. J Hepatol 2014; 61:475-81. [PMID: 24780303 DOI: 10.1016/j.jhep.2014.04.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 03/18/2014] [Accepted: 04/11/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS Despite continuous high-risk behavior, a subgroup among people who inject drugs (PWID) remains seronegative for hepatitis C virus (HCV) suggesting that a state of "natural resistance" to HCV Infection may exist. Homozygosity for KIR2DL3 and its ligand HLA-C1 group alleles has been associated with control of HCV infection, however, the mechanism mediating this protective effect remained unclear. METHODS Peripheral NK cells from PWID (n=104) were phenotypically and functionally characterized by multicolor flow cytometry. Expression levels of the NK cell receptor ligands were analysed in liver biopsies and primary human hepatocytes. RESULTS HCV seronegative PWID (n=34) had increased levels of KIR2DL3(+)NKG2A(-) NK cells compared to healthy controls (n=10; p<0.001) and PWID with chronic (n=38; p<0.001) or resolved infection (n=37; p<0.001). There was an inverse correlation between the frequency of KIR2DL3(+) and NKG2A(+) NK cells (r=-0.53; p<0.0001). Importantly, expression of HLA-E, the ligand for NKG2A, was significantly upregulated in liver biopsies of HCV infected patients (n=51) compared to HBV infected patients (n=22; p<0.01) and correlated with HCV viral load (r=0.32; p<0.0029). In functional analyses KIR2DL3(-)NKG2A(+) NK cells but not KIR2DL3(+)NKG2A(-) NK cells were significantly inhibited by HLA-E ligation. Accordingly, interferon gamma secretion of NK cells from PWID with chronic infection but not from HCV seronegative PWID was significantly suppressed in the presence of HLA-E. CONCLUSIONS KIR2DL3(+)NKG2A(-) NK cells are not sensitive to HLA-E-mediated inhibition and may thereby control early HCV infection prior to seroconversion and result in an apparent state of "natural resistance" to HCV in PWID.
Collapse
Affiliation(s)
- Christine Thoens
- Institute of Virology, University of Duisburg-Essen, University Hospital, Essen, Germany
| | | | - Martin Trippler
- Department for Gastroenterology and Hepatology, University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Holger Siemann
- Addiction Research Group, Department of Psychiatry and Psychotherapy, Rhine State Hospital, Hospital of the University of Duisburg-Essen, Essen, Germany
| | - Melanie Lutterbeck
- Department for Gastroenterology and Hepatology, University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Ruth Broering
- Department for Gastroenterology and Hepatology, University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Jörg Schlaak
- Department for Gastroenterology and Hepatology, University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Falko M Heinemann
- Institute for Transfusion Medicine, University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Andreas Heinold
- Institute for Transfusion Medicine, University of Duisburg-Essen, University Hospital, Essen, Germany
| | - Jacob Nattermann
- Department of Internal Medicine, University of Bonn, Bonn, Germany
| | - Norbert Scherbaum
- Addiction Research Group, Department of Psychiatry and Psychotherapy, Rhine State Hospital, Hospital of the University of Duisburg-Essen, Essen, Germany
| | - Galit Alter
- The Ragon Institute of MGH, MIT and Harvard, Boston, USA
| | - Joerg Timm
- Institute of Virology, University of Duisburg-Essen, University Hospital, Essen, Germany.
| |
Collapse
|
24
|
Knolle PA, Thimme R. Hepatic immune regulation and its involvement in viral hepatitis infection. Gastroenterology 2014; 146:1193-207. [PMID: 24412289 DOI: 10.1053/j.gastro.2013.12.036] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/22/2013] [Accepted: 12/27/2013] [Indexed: 02/08/2023]
Abstract
The liver has unique immune regulatory functions that promote the induction of tolerance rather than responses to antigens encountered locally. These functions are mediated by local expression of coinhibitory receptors and immunosuppressive mediators that help prevent overwhelming tissue damage. Over the years, we have gained more insight into the local regulatory cues that determine the functional complexity of immune responses regulated locally in the liver. Both the unique hepatic microenvironment and the particular liver sinusoidal cell populations, in addition to hepatocytes, actively modulate immune responses locally in the liver and thereby determine the outcome of hepatic immune responses. This is of high biological and clinical relevance in hepatitis B virus and hepatitis C virus infections, which can cause acute and persistent infections associated with chronic inflammation in humans that eventually progress to cirrhosis and hepatocellular carcinoma. Here, we review current knowledge about the balance between immunity and tolerance in the liver and how this may affect our understanding of the determinants of hepatitis B virus and hepatitis C virus clearance, persistence, and virus-induced liver disease.
Collapse
Affiliation(s)
- Percy A Knolle
- Institute of Molecular Immunology, Technische Universität München and Institutes of Molecular Medicine and Experimental Immunology, Universität Bonn, Bonn.
| | - Robert Thimme
- Department of Medicine, Clinic for Gastroenterology, Hepatology, Endocrinology, Infectious Diseases, University Hospital Freiburg, Freiburg, Germany
| |
Collapse
|
25
|
Barreiro P, Fernandez-Montero JV, de Mendoza C, Labarga P, Soriano V. Towards hepatitis C eradication from the HIV-infected population. Antiviral Res 2014; 105:1-7. [PMID: 24534673 DOI: 10.1016/j.antiviral.2014.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 01/23/2014] [Accepted: 02/06/2014] [Indexed: 02/07/2023]
Abstract
Around 10-15% of the 35 million people living with HIV worldwide have chronic hepatitis C virus (HCV) infection and are prone to develop liver-related complications. Exposure to HCV is almost universal among injecting drug users and is on the rise among homosexual men. Response to peginterferon-ribavirin therapy is generally lower in coinfection compared to HCV monoinfection. For this reason, the advent of direct-acting antivirals (DAA) is eagerly awaited for this population. The results of trials using DAA in coinfection show that treatment response rates are similar to those obtained in HCV monoinfection. Thus, HIV should no longer be considered as a "special" population, as long as antiretroviral therapy is given and drug interactions are taken into account. Envisioning HCV eradication from the HIV population faces major challenges ahead, including identification of the large number of undiagnosed individuals, and ensuring wide access to the best but often expensive HCV medications. This article forms part of a symposium in Antiviral Research on "Hepatitis C: next steps toward global eradication".
Collapse
Affiliation(s)
- Pablo Barreiro
- Department of Infectious Diseases, Hospital Carlos III, Madrid, Spain
| | | | - Carmen de Mendoza
- Department of Infectious Diseases, Hospital Carlos III, Madrid, Spain; Department of Internal Medicine, Puerta de Hierro Research Institute & Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Pablo Labarga
- Department of Infectious Diseases, Hospital Carlos III, Madrid, Spain
| | - Vincent Soriano
- Department of Infectious Diseases, Hospital Carlos III, Madrid, Spain.
| |
Collapse
|
26
|
Grebely J, Bruggmann P, Backmund M, Dore GJ. Moving the agenda forward: the prevention and management of hepatitis C virus infection among people who inject drugs. Clin Infect Dis 2014; 57 Suppl 2:S29-31. [PMID: 23884062 DOI: 10.1093/cid/cit264] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
27
|
Abstract
Prevention of hepatitis C virus (HCV) infection by vaccination has been a priority since discovery of the virus and the need has not diminished over the past 25 years. Infection rates are increasing in developed countries because of intravenous drug use. Reducing transmission will be difficult without a vaccine to prevent persistence of primary infections, and also secondary infections that may occur after cure of chronic hepatitis C with increasingly effective direct-acting antiviral (DAA) regimens. Vaccine need is also acute in resource poor countries where most new infections occur and DAAs may be unaffordable. Spontaneous resolution of HCV infection confers durable protection, but mechanisms of immunity remain obscure and contested in the context of vaccine design. A vaccine must elicit a CD4+ helper T cell response that does not fail during acute infection. The need for neutralizing antibodies versus cytotoxic CD8+ T cells is unsettled and reflected in the design of two very different vaccines evaluated in humans for safety and immunogenicity. Here we review the status of vaccine development and the scientific and practical challenges that must be met if the burden of liver disease caused by HCV is to be reduced or eliminated.
Collapse
Affiliation(s)
- Jonathan R Honegger
- The Center for Vaccines and Immunity, Nationwide Children's Hospital, Columbus, Ohio
| | - Yan Zhou
- The Center for Vaccines and Immunity, Nationwide Children's Hospital, Columbus, Ohio
| | - Christopher M Walker
- The Center for Vaccines and Immunity, Nationwide Children's Hospital, Columbus, Ohio
| |
Collapse
|
28
|
Grebely J, Dore GJ. Can hepatitis C virus infection be eradicated in people who inject drugs? Antiviral Res 2014; 104:62-72. [PMID: 24468275 DOI: 10.1016/j.antiviral.2014.01.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 01/07/2014] [Accepted: 01/11/2014] [Indexed: 12/23/2022]
Abstract
People who inject drugs (PWID) represent the core of the hepatitis C virus (HCV) epidemic in many countries and HCV-related disease burden continues to rise. There are compelling data demonstrating that with the appropriate programs, treatment for HCV infection among PWID is successful, with responses to therapy similar those observed in large randomized controlled trials in non-PWID. However, assessment and treatment for HCV infection lags far behind the numbers who could benefit from therapy, related to systems-, provider- and patient-related barriers to care. The approaching era of interferon-free directly acting antiviral therapy has the potential to provide one of the great advances in clinical medicine. Simple, tolerable and highly effective therapy will likely address many of these barriers, thereby enhancing the numbers of PWID cured of HCV infection. This commentary will consider why we should strive for the eradication of HCV infection among PWID, whether eradication of HCV infection among PWID is feasible, components that would be needed to achieve eradication of HCV infection in PWID, potential settings and strategies required to establish programs targeted towards eradicating HCV infection among PWID and the feasibility of eradication versus elimination of HCV infection among PWID. This article forms part of a symposium in Antiviral Research on "Hepatitis C: next steps toward global eradication."
Collapse
Affiliation(s)
- Jason Grebely
- The Kirby Institute, UNSW Australia, Sydney, Australia.
| | | |
Collapse
|
29
|
Grebely J, Bilodeau M, Feld JJ, Bruneau J, Fischer B, Raven JF, Roberts E, Choucha N, Myers RP, Sagan SM, Wilson JA, Bialystok F, Tyrrell DL, Houghton M, Krajden M. The Second Canadian Symposium on hepatitis C virus: a call to action. CANADIAN JOURNAL OF GASTROENTEROLOGY = JOURNAL CANADIEN DE GASTROENTEROLOGIE 2013; 27:627-32. [PMID: 24199209 PMCID: PMC3816942 DOI: 10.1155/2013/242405] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 09/15/2013] [Indexed: 02/07/2023]
Abstract
In Canada, hepatitis C virus (HCV) infection results in considerable morbidity, mortality and health-related costs. Within the next three to 10 years, it is expected that tolerable, short-duration (12 to 24 weeks) therapies capable of curing >90% of those who undergo treatment will be approved. Given that most of those already infected are aging and at risk for progressive liver disease, building research-based interdisciplinary prevention, care and treatment capacity is an urgent priority. In an effort to increase the dissemination of knowledge in Canada in this rapidly advancing field, the National CIHR Research Training Program in Hepatitis C (NCRTP-HepC) established an annual interdisciplinary Canadian Symposium on Hepatitis C Virus. The first symposium was held in Montreal, Quebec, in 2012, and the second symposium was held in Victoria, British Columbia, in 2013. The current article presents highlights from the 2013 meeting. It summarizes recent advances in HCV research in Canada and internationally, and presents the consensus of the meeting participants that Canada would benefit from having its own national HCV strategy to identify critical gaps in policies and programs to more effectively address the challenges of expanding HCV screening and treatment.
Collapse
Affiliation(s)
- Jason Grebely
- The Kirby Institute, The University of New South Wales, Sydney, New South Wales, Australia
| | - Marc Bilodeau
- Liver Unit, Department of Medicine, Université de Montréal, Montréal, Québec
| | - Jordan J Feld
- Toronto Centre for Liver Disease, University of Toronto, Toronto, Ontario
| | | | | | - Jennifer F Raven
- Canadian Institutes of Health Research – Institute of Infection and Immunity, Laurier, Québec
| | | | - Norma Choucha
- Liver Unit, Department of Medicine, Université de Montréal, Montréal, Québec
| | - Rob P Myers
- Liver Unit, Division of Gastroenterology and Hepatology, University of Calgary, Calgary, Alberta
| | - Selena M Sagan
- Department of Microbiology & Immunology, McGill University, Montreal, Quebec
| | - Joyce A Wilson
- Department of Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan
| | | | - D Lorne Tyrrell
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta
| | - Michael Houghton
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Alberta
| | - Mel Krajden
- British Columbia Centre for Disease Control, Vancouver, British Columbia
- University of British Columbia, Vancouver, British Columbia
| |
Collapse
|