1
|
Zhang C, Yuan M, Rong W, Du H, Li X, Ji T, Li J, Dai B, Ma Z, Qi H, Zhang N, Yang J, Duan X, Bi Y. Synergistic effects of Lianhuaqingwen in combination with Oseltamivir and Baloxavir against seasonal influenza virus: In vitro and in vivo assessment. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119091. [PMID: 39528119 DOI: 10.1016/j.jep.2024.119091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lianhuaqingwen (LH), a traditional Chinese medicine, presents a broad-spectrum antiviral effect and has been widely used to treat influenza. Given the potential rise of drug-resistant influenza viruses, it is necessary to develop new antiviral drugs and explore combination therapies involving LH in tandem with existing antivirals such as Oseltamivir acid (Osel) or Baloxavir (Bal). These multidrug combinations could help effectively control the seasonal influenza epidemics and reduce the disease burden. AIM OF THE STUDY This study aimed to evaluate the antiviral effects of LH, alone and in combination with Osel or Bal, against human seasonal influenza viruses in vitro and in vivo models. MATERIALS AND METHODS The antiviral efficacy of LH alone and LH in combination with Osel/Bal against seasonal influenza A viruses (IAVs) (H1N1 and H3N2 subtypes) and influenza B viruses (IBVs) (BV- and BY-lineages) was assessed in vitro using MDCK cells. The median effective concentration (EC50) was determined, and the drug synergies were analyzed. Additionally, the antiviral activity of LH monotherapy and LH + Osel/Bal combination therapy were evaluated in vivo using an H1N1-infected BABL/c mouse model by monitoring changes in body weight, survival rate, lung viral titer, pathological damage, and inflammatory reaction. RESULTS In vitro, LH alone and in combination with Osel/Bal exhibited antiviral activity against both IAVs and IBVs. The addition of LH to Osel/Bal improved the therapeutic efficacy compared to Osel/Bal alone. In vivo, LH monotherapy reduced body weight loss and increased the survival rates of H1N1-infected mice. LH in combination with Osel/Bal resulted in lower virus titers, more effective relief of pathological damage, and comparable low expression of inflammatory factors in the lungs of H1N1-infected mice compared to the use of Osel/Bal alone. Transcriptomic analysis of the lungs revealed that LH + Osel/Bal significantly increased the expression of genes associated with antiviral and anti-inflammatory effects. CONCLUSIONS This study evaluated the antiviral effects of LH monotherapy and combination therapy with Osel/Bal against human seasonal influenza viruses in vitro and in vivo models. The results suggest that combining LH with Osel or Bal could enhance the antiviral efficiency for influenza viruses compared to the monotherapy using any of these three drugs.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Life Science and Technology, Xinjiang University, Urumchi, 830046, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, 100101, China
| | - Manhua Yuan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenwan Rong
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Du
- College of Life Science and Technology, Xinjiang University, Urumchi, 830046, China
| | - Xuanxuan Li
- College of Life Science and Technology, Xinjiang University, Urumchi, 830046, China
| | - Tiannan Ji
- Department of Emergency, Department of Radiotherapy, The Fifth Medical Center of PLA General Hospital, Beijing, 100071, China
| | - Jianxiong Li
- Department of Emergency, Department of Radiotherapy, The Fifth Medical Center of PLA General Hospital, Beijing, 100071, China
| | - Bo Dai
- Department of Pharmacy, Air Force Medical Center, PLA, Beijing, 100142, China
| | - Zhenghai Ma
- College of Life Science and Technology, Xinjiang University, Urumchi, 830046, China
| | - Hui Qi
- Hebei Academy of Integrated Traditional Chinese and Western Medicine, National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, 050035, China
| | - Ning Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Yang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, 100101, China
| | - Xuefeng Duan
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Qu R, Chen M, Chen C, Cao K, Wu X, Zhou W, Qi J, Miao J, Yan D, Yang S. Risk distribution of human infections with avian influenza A (H5N1, H5N6, H9N2 and H7N9) viruses in China. Front Public Health 2024; 12:1448974. [PMID: 39512713 PMCID: PMC11540643 DOI: 10.3389/fpubh.2024.1448974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
Background This study aimed to investigate epidemiologic characteristics of major human infection with avian influenza and explore the factors underlying the spatial distributions, particularly H5N6 and H9N2, as H9N2 could directly infect mankind and contribute partial or even whole internal genes to generate novel human-lethal reassortants such as H5N6. They pose potential threats to public health and agriculture. Methods This study collected cases of H5N1, H5N6, H9N2, and H7N9 in China, along with data on ecoclimatic, environmental, social and demographic factors at the provincial level. Boosted regression tree (BRT) models, a popular approach to ecological studies, has been commonly used for risk mapping of infectious diseases, therefore, it was used to investigate the association between these variables and the occurrence of human cases for each subtype, as well as to map the probabilities of human infections. Results A total of 1,123 H5N1, H5N6, H9N2, and H7N9 human cases have been collected in China from 2011 to 2024. Factors including density of pig and density of human population emerged as common significant predictors for H5N1 (relative contributions: 5.3, 5.8%), H5N6 (10.8, 6.4%), H9N2 (11.2, 7.3%), and H7N9 (9.4, 8.0%) infection. Overall, each virus has its own ecological and social drivers. The predicted distribution probabilities for H5N1, H5N6, H9N2, and H7N9 presence are highest in Guangxi, Sichuan, Guangdong, and Jiangsu, respectively, with values of 0.86, 0.96, 0.93 and 0.99. Conclusion This study highlighted the important role of social and demographic factors in the infection of different avian influenza, and suggested that monitoring and control of predicted high-risk areas should be prioritized.
Collapse
Affiliation(s)
- Rongrong Qu
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengsha Chen
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Can Chen
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Kexin Cao
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyue Wu
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenkai Zhou
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaxing Qi
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiani Miao
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Dong Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shigui Yang
- Department of Emergency Medicine, Second Affiliated Hospital, Department of Epidemiology and Biostatistics, School of Public Health, The Key Laboratory of Intelligent Preventive Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
3
|
Hao T, Li Y, Liu P, Wang X, Xu K, Lei W, Li Y, Zhang R, Li X, Zhao X, Xu K, Lu X, Bi Y, Song H, Wu G, Zhu B, Gao GF. A chimeric mRNA vaccine of S-RBD with HA conferring broad protection against influenza and COVID-19 variants. PLoS Pathog 2024; 20:e1012508. [PMID: 39303003 PMCID: PMC11414905 DOI: 10.1371/journal.ppat.1012508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 08/14/2024] [Indexed: 09/22/2024] Open
Abstract
Influenza and coronavirus disease 2019 (COVID-19) represent two respiratory diseases that have significantly impacted global health, resulting in substantial disease burden and mortality. An optimal solution would be a combined vaccine capable of addressing both diseases, thereby obviating the need for multiple vaccinations. Previously, we conceived a chimeric protein subunit vaccine targeting both influenza virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), utilizing the receptor binding domain of spike protein (S-RBD) and the stalk region of hemagglutinin protein (HA-stalk) components. By integrating the S-RBD from the SARS-CoV-2 Delta variant with the headless hemagglutinin (HA) from H1N1 influenza virus, we constructed stable trimeric structures that remain accessible to neutralizing antibodies. This vaccine has demonstrated its potential by conferring protection against a spectrum of strains in mouse models. In this study, we designed an mRNA vaccine candidate encoding the chimeric antigen. The resultant humoral and cellular immune responses were meticulously evaluated in mouse models. Furthermore, the protective efficacy of the vaccine was rigorously examined through challenges with either homologous or heterologous influenza viruses or SARS-CoV-2 strains. Our findings reveal that the mRNA vaccine exhibited robust immunogenicity, engendering high and sustained levels of neutralizing antibodies accompanied by robust and persistent cellular immunity. Notably, this vaccine effectively afforded complete protection to mice against H1N1 or heterosubtypic H5N8 subtypes, as well as the SARS-CoV-2 Delta and Omicron BA.2 variants. Additionally, our mRNA vaccine design can be easily adapted from Delta RBD to Omicron RBD antigens, providing protection against emerging variants. The development of two-in-one vaccine targeting both influenza and COVID-19, incorporating the mRNA platform, may provide a versatile approach to combating future pandemics.
Collapse
MESH Headings
- Animals
- Mice
- SARS-CoV-2/immunology
- COVID-19/prevention & control
- COVID-19/immunology
- mRNA Vaccines/immunology
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Humans
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- COVID-19 Vaccines/immunology
- Influenza Vaccines/immunology
- Antibodies, Viral/immunology
- Mice, Inbred BALB C
- Female
- Influenza A Virus, H1N1 Subtype/immunology
- Orthomyxoviridae Infections/prevention & control
- Orthomyxoviridae Infections/immunology
- Vaccines, Synthetic/immunology
- Influenza, Human/prevention & control
- Influenza, Human/immunology
- Antibodies, Neutralizing/immunology
Collapse
Affiliation(s)
- Tianjiao Hao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yulei Li
- Clinicopathological Diagnosis & Research Center, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, People’s Republic of China
- Key Laboratory of Tumor Molecular Pathology of Guangxi Higher Education Institutes, Baise, People’s Republic of China
| | - Peipei Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Xi Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Ke Xu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Wenwen Lei
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Ying Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Rong Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, People’s Republic of China
| | - Xiaoyan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Xin Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Kun Xu
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xuancheng Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Hao Song
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing People’s Republic of China
- Beijing Institute of Infectious Diseases, Beijing, People’s Republic of China
| | - Guizhen Wu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Baoli Zhu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, People’s Republic of China
| | - George F. Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, People’s Republic of China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People’s Republic of China
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
4
|
He P, Gui M, Chen T, Zeng Y, Chen C, Lu Z, Xia N, Wang G, Chen Y. A Chymotrypsin-Dependent Live-Attenuated Influenza Vaccine Provides Protective Immunity against Homologous and Heterologous Viruses. Vaccines (Basel) 2024; 12:512. [PMID: 38793763 PMCID: PMC11126036 DOI: 10.3390/vaccines12050512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/26/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Influenza virus is one of the main pathogens causing respiratory diseases in humans. Vaccines are the most effective ways to prevent viral diseases. However, the limited protective efficacy of current influenza vaccines highlights the importance of novel, safe, and effective universal influenza vaccines. With the progress of the COVID-19 pandemic, live-attenuated vaccines delivered through respiratory mucosa have shown robustly protective efficacy. How to obtain a safe and effective live-attenuated vaccine has become a major challenge. Herein, using the influenza virus as a model, we have established a strategy to quickly obtain a live-attenuated vaccine by mutating the cleavage site of the influenza virus. This mutated influenza virus can be specifically cleaved by chymotrypsin. It has similar biological characteristics to the original strain in vitro, but the safety is improved by at least 100 times in mice. It can effectively protect against lethal doses of both homologous H1N1 and heterologous H5N1 viruses post mucosal administration, confirming that the vaccine generated by this strategy has good safety and broad-spectrum protective activities. Therefore, this study can provide valuable insights for the development of attenuated vaccines for respiratory viruses or other viruses with cleavage sites.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Guosong Wang
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China; (P.H.); (M.G.); (T.C.); (Y.Z.); (C.C.); (Z.L.)
| | - Yixin Chen
- State Key Laboratory of Vaccines for Infectious Diseases, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, School of Public Health, Xiamen University, Xiamen 361102, China; (P.H.); (M.G.); (T.C.); (Y.Z.); (C.C.); (Z.L.)
| |
Collapse
|
5
|
Gao J, Wei J, Qin S, Liu S, Mo S, Long Q, Tan S, Lu N, Xie Z, Lin J. Exploring the global immune landscape of peripheral blood mononuclear cells in H5N6-infected patient with single-cell transcriptomics. BMC Med Genomics 2023; 16:249. [PMID: 37853397 PMCID: PMC10585775 DOI: 10.1186/s12920-023-01693-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
BACKGROUND Avian influenza viruses (AIV), particularly H5N6, have risen in infection frequency, prompting major concerns. Single-cell RNA sequencing (scRNA-seq) can illustrate the immune cell landscape present in the peripheral circulation of influenza H5N6-infected individuals at the single-cell level. This study attempted to employ scRNA-seq technology to map the potentially hidden single cell landscape of influenza H5N6. METHODS High-quality transcriptomes were generated from scRNA-seq data of peripheral blood mononuclear cells (PBMCs), which were taken from a critically-ill child diagnosed with H5N6 avian influenza infection and one healthy control donor. Cluster analysis was then performed on the scRNA-seq data to identify the different cell types. The pathways, pseudotime developmental trajectories and gene regulatory networks involved in different cell subpopulations were also explored. RESULTS In total, 3,248 single cell transcriptomes were captured by scRNA-seq from PBMC of the child infected with H5N6 avian influenza and the healthy control donor and further identified seven immune microenvironment cell types. In addition, a subsequent subpopulation analysis of innate lymphoid cells (ILC) and CD4+ T cells revealed that subpopulations of ILC and CD4+ T cells were involved in cytokine and inflammation-related pathways and had significant involvement in the biological processes of oxidative stress and cell death. CONCLUSION In conclusion, characterizing the overall immune cell composition of H5N6-infected individuals by assessing the immune cell landscape in the peripheral circulation of H5N6 avian influenza-infected and healthy control donors at single-cell resolution provides key information for understanding H5N6 pathogenesis.
Collapse
Affiliation(s)
- Jiamin Gao
- Laboratory of Infectious Disease, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning), The Fourth People's Hospital of Nanning, Guangxi Zhuang Autonomous Region, Nanning, 530023, China
| | - Jing Wei
- Department of Intensive Care Unit, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning, 530023, Guangxi Zhuang Autonomous Region, China
| | - Simei Qin
- Department of Pediatrics, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Guangxi Zhuang Autonomous Region, Nanning, 530023, China
| | - Sheng Liu
- Department of Intensive Care Unit, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning, 530023, Guangxi Zhuang Autonomous Region, China
| | - Shuangyan Mo
- Department of Pediatrics, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Guangxi Zhuang Autonomous Region, Nanning, 530023, China
| | - Qian Long
- Department of Clinical Laboratory, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning), The Fourth People's Hospital of Nanning, Nanning, 530023, Guangxi Zhuang Autonomous Region, China
| | - Shiji Tan
- Department of Intensive Care Unit, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning, 530023, Guangxi Zhuang Autonomous Region, China
| | - Ning Lu
- Department of Intensive Care Unit, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning) and The Fourth People's Hospital of Nanning, Nanning, 530023, Guangxi Zhuang Autonomous Region, China
| | - Zhouhua Xie
- Laboratory of Infectious Disease, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning), The Fourth People's Hospital of Nanning, Guangxi Zhuang Autonomous Region, Nanning, 530023, China.
- Department of Tuberculosis, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning), The Fourth People's Hospital of Nanning, Guangxi Zhuang Autonomous Region, Nanning, 530023, China.
| | - Jianyan Lin
- Laboratory of Infectious Disease, HIV/AIDS Clinical Treatment Center of Guangxi (Nanning), The Fourth People's Hospital of Nanning, Guangxi Zhuang Autonomous Region, Nanning, 530023, China.
| |
Collapse
|
6
|
Quan C, Liu Q, Yu L, Li C, Nie K, Ding G, Zhou H, Wang X, Sun W, Wang H, Yue M, Wei L, Zheng W, Lyu Q, Xing W, Zhang Z, Carr MJ, Zhang H, Shi W. SFTSV infection is associated with transient overproliferation of monoclonal lambda-type plasma cells. iScience 2023; 26:106799. [PMID: 37250798 PMCID: PMC10212991 DOI: 10.1016/j.isci.2023.106799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 04/07/2023] [Accepted: 04/28/2023] [Indexed: 05/31/2023] Open
Abstract
The impairment of antibody-mediated immunity is a major factor associated with fatal cases of severe fever with thrombocytopenia syndrome (SFTS). By collating the clinical diagnosis reports of 30 SFTS cases, we discovered the overproliferation of monoclonal plasma cells (MCP cells, CD38+cLambda+cKappa-) in bone marrow, which has only been reported previously in multiple myeloma. The ratio of CD38+cLambda+ versus CD38+cKappa+ in SFTS cases with MCP cells was significantly higher than that in normal cases. MCP cells presented transient expression in the bone marrow, which was distinctly different from multiple myeloma. Moreover, the SFTS patients with MCP cells had higher clinical severity. Further, the overproliferation of MCP cells was also observed in SFTS virus (SFTSV)-infected mice with lethal infectious doses. Together, SFTSV infection induces transient overproliferation of monoclonal lambda-type plasma cells, which have important implications for the study of SFTSV pathogenesis, prognosis, and the rational development of therapeutics.
Collapse
Affiliation(s)
- Chuansong Quan
- Department of Infectious Disease, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
| | - Qinghua Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Lijuan Yu
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
| | - Chunjing Li
- Department of Hematology, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Kaixiao Nie
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
| | - Guoyong Ding
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250117, China
| | - Hong Zhou
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
| | - Xinli Wang
- Department of Pathology, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Wenwen Sun
- Department of Pathology, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Huiliang Wang
- Department of Infectious Disease, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Maokui Yue
- Department of Critical Care Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Li Wei
- Department of Respiratory Medicine, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Wenjun Zheng
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
| | - Qiang Lyu
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250117, China
| | - Weijia Xing
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250117, China
| | - Zhenjie Zhang
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
| | - Michael J. Carr
- National Virus Reference Laboratory, School of Medicine, University College Dublin, Dublin 4, Ireland
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, N20 W10 Kita-ku, Sapporo 001-0020, Japan
| | - Hong Zhang
- Department of Infectious Disease, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
- Department of Hematology, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Weifeng Shi
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, 271000, China
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji’nan 250117, China
| |
Collapse
|
7
|
Chen Y, Wang F, Yin L, Jiang H, Lu X, Bi Y, Zhang W, Shi Y, Burioni R, Tong Z, Song H, Qi J, Gao GF. Structural basis for a human broadly neutralizing influenza A hemagglutinin stem-specific antibody including H17/18 subtypes. Nat Commun 2022; 13:7603. [PMID: 36494358 PMCID: PMC9734383 DOI: 10.1038/s41467-022-35236-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Influenza infection continues are a persistent threat to public health. The identification and characterization of human broadly neutralizing antibodies can facilitate the development of antibody drugs and the design of universal influenza vaccines. Here, we present structural information for the human antibody PN-SIA28's heterosubtypic binding of hemagglutinin (HA) from circulating and emerging potential influenza A viruses (IAVs). Aside from group 1 and 2 conventional IAV HAs, PN-SIA28 also inhibits membrane fusion mediated by bat-origin H17 and H18 HAs. Crystallographic analyses of Fab alone or in complex with H1, H14, and H18 HA proteins reveal that PN-SIA28 binds to a highly conserved epitope in the fusion domain of different HAs, with the same CDRHs but different CDRLs for different HAs tested, distinguishing it from other structurally characterized anti-stem antibodies. The binding characteristics of PN-SIA28 provides information to support the design of increasingly potent engineered antibodies, antiviral drugs, and/or universal influenza vaccines.
Collapse
Affiliation(s)
- Yulu Chen
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Fei Wang
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Liwei Yin
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Haihai Jiang
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xishan Lu
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yuhai Bi
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101 China
| | - Wei Zhang
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Yi Shi
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Roberto Burioni
- grid.15496.3f0000 0001 0439 0892Università Vita-Salute San Raffaele, Milano, 20132 Italy
| | - Zhou Tong
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Hao Song
- grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jianxun Qi
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China
| | - George F. Gao
- grid.9227.e0000000119573309CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, 100049 China ,grid.9227.e0000000119573309Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, 100101 China ,grid.9227.e0000000119573309Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
8
|
Wang WC, Sayedahmed EE, Mittal SK. Significance of Preexisting Vector Immunity and Activation of Innate Responses for Adenoviral Vector-Based Therapy. Viruses 2022; 14:v14122727. [PMID: 36560730 PMCID: PMC9787786 DOI: 10.3390/v14122727] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
An adenoviral (AdV)-based vector system is a promising platform for vaccine development and gene therapy applications. Administration of an AdV vector elicits robust innate immunity, leading to the development of humoral and cellular immune responses against the vector and the transgene antigen, if applicable. The use of high doses (1011-1013 virus particles) of an AdV vector, especially for gene therapy applications, could lead to vector toxicity due to excessive levels of innate immune responses, vector interactions with blood factors, or high levels of vector transduction in the liver and spleen. Additionally, the high prevalence of AdV infections in humans or the first inoculation with the AdV vector result in the development of vector-specific immune responses, popularly known as preexisting vector immunity. It significantly reduces the vector efficiency following the use of an AdV vector that is prone to preexisting vector immunity. Several approaches have been developed to overcome this problem. The utilization of rare human AdV types or nonhuman AdVs is the primary strategy to evade preexisting vector immunity. The use of heterologous viral vectors, capsid modification, and vector encapsulation are alternative methods to evade vector immunity. The vectors can be optimized for clinical applications with comprehensive knowledge of AdV vector immunity, toxicity, and circumvention strategies.
Collapse
|
9
|
Mia MM, Hasan M, Ahmed S, Rahman MN. Insight into the first multi-epitope-based peptide subunit vaccine against avian influenza A virus (H5N6): An immunoinformatics approach. INFECTION, GENETICS AND EVOLUTION 2022; 104:105355. [PMID: 36007760 PMCID: PMC9394107 DOI: 10.1016/j.meegid.2022.105355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 05/22/2022] [Accepted: 08/18/2022] [Indexed: 11/26/2022]
Abstract
The rampant spread of highly pathogenic avian influenza A (H5N6) virus has drawn additional concerns along with ongoing Covid-19 pandemic. Due to its migration-related diffusion, the situation is deteriorating. Without an existing effective therapy and vaccines, it will be baffling to take control measures. In this regard, we propose a revers vaccinology approach for prediction and design of a multi-epitope peptide based vaccine. The induction of humoral and cell-mediated immunity seems to be the paramount concern for a peptide vaccine candidate; thus, antigenic B and T cell epitopes were screened from the surface, membrane and envelope proteins of the avian influenza A (H5N6) virus, and passed through several immunological filters to determine the best possible one. Following that, the selected antigenic with immunogenic epitopes and adjuvant were linked to finalize the multi-epitope-based peptide vaccine by appropriate linkers. For the prediction of an effective binding, molecular docking was carried out between the vaccine and immunological receptors (TLR8). Strong binding affinity and good docking scores clarified the stringency of the vaccines. Furthermore, molecular dynamics simulation was performed within the highest binding affinity complex to observe the stability, and minimize the designed vaccine's high mobility region to order to increase its stability. Then, Codon optimization and other physicochemical properties were performed to reveal that the vaccine would be suitable for a higher expression at cloning level and satisfactory thermostability condition. In conclusion, predicting the overall in silico assessment, we anticipated that our designed vaccine would be a plausible prevention against avian influenza A (H5N6) virus.
Collapse
Affiliation(s)
- Md Mukthar Mia
- Department of Poultry Science, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh; Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Mahamudul Hasan
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh.
| | - Shakil Ahmed
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Mohammad Nahian Rahman
- Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| |
Collapse
|
10
|
Yang J, Gong Y, Zhang C, Sun J, Wong G, Shi W, Liu W, Gao GF, Bi Y. Co-existence and co-infection of influenza A viruses and coronaviruses: Public health challenges. Innovation (N Y) 2022; 3:100306. [PMID: 35992368 PMCID: PMC9384331 DOI: 10.1016/j.xinn.2022.100306] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/14/2022] [Indexed: 02/08/2023] Open
Abstract
Since the 20th century, humans have lived through five pandemics caused by influenza A viruses (IAVs) (H1N1/1918, H2N2/1957, H3N2/1968, and H1N1/2009) and the coronavirus (CoV) severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). IAVs and CoVs both have broad host ranges and share multiple hosts. Virus co-circulation and even co-infections facilitate genetic reassortment among IAVs and recombination among CoVs, further altering virus evolution dynamics and generating novel variants with increased cross-species transmission risk. Moreover, SARS-CoV-2 may maintain long-term circulation in humans as seasonal IAVs. Co-existence and co-infection of both viruses in humans could alter disease transmission patterns and aggravate disease burden. Herein, we demonstrate how virus-host ecology correlates with the co-existence and co-infection of IAVs and/or CoVs, further affecting virus evolution and disease dynamics and burden, calling for active virus surveillance and countermeasures for future public health challenges.
Collapse
Affiliation(s)
- Jing Yang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
| | - Yuhuan Gong
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunge Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ju Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
| | - Gary Wong
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Weifeng Shi
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian 271016, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - George F. Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Wang WC, Sayedahmed EE, Sambhara S, Mittal SK. Progress towards the Development of a Universal Influenza Vaccine. Viruses 2022; 14:v14081684. [PMID: 36016306 PMCID: PMC9415875 DOI: 10.3390/v14081684] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/22/2022] [Accepted: 07/28/2022] [Indexed: 11/21/2022] Open
Abstract
Influenza viruses are responsible for millions of cases globally and significantly threaten public health. Since pandemic and zoonotic influenza viruses have emerged in the last 20 years and some of the viruses have resulted in high mortality in humans, a universal influenza vaccine is needed to provide comprehensive protection against a wide range of influenza viruses. Current seasonal influenza vaccines provide strain-specific protection and are less effective against mismatched strains. The rapid antigenic drift and shift in influenza viruses resulted in time-consuming surveillance and uncertainty in the vaccine protection efficacy. Most recent universal influenza vaccine studies target the conserved antigen domains of the viral surface glycoproteins and internal proteins to provide broader protection. Following the development of advanced vaccine technologies, several innovative strategies and vaccine platforms are being explored to generate robust cross-protective immunity. This review provides the latest progress in the development of universal influenza vaccines.
Collapse
Affiliation(s)
- Wen-Chien Wang
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (W.-C.W.); (E.E.S.)
| | - Ekramy E. Sayedahmed
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (W.-C.W.); (E.E.S.)
| | - Suryaprakash Sambhara
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
- Correspondence: (S.S.); (S.K.M.)
| | - Suresh K. Mittal
- Department of Comparative Pathobiology, Purdue Institute for Immunology, Inflammation and Infectious Disease, and Purdue University Center for Cancer Research, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907, USA; (W.-C.W.); (E.E.S.)
- Correspondence: (S.S.); (S.K.M.)
| |
Collapse
|
12
|
Strohmeier S, Amanat F, Carreño JM, Krammer F. Monoclonal antibodies targeting the influenza virus N6 neuraminidase. Front Immunol 2022; 13:944907. [PMID: 35967389 PMCID: PMC9363587 DOI: 10.3389/fimmu.2022.944907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Influenza A viruses are a diverse species that include 16 true hemagglutinin (HA) subtypes and 9 true neuraminidase (NA) subtypes. While the antigenicity of many HA subtypes is reasonably well studied, less is known about NA antigenicity, especially when it comes to non-human subtypes that only circulate in animal reservoirs. The N6 subtype NAs are mostly found in viruses infecting birds. However, they have also been identified in viruses that infect mammals, such as swine and seals. More recently, highly pathogenic H5N6 subtype viruses have caused rare infections and mortality in humans. Here, we generated murine mAbs to the N6 NA, characterized their breadth and antiviral properties in vitro and in vivo and mapped their epitopes by generating escape mutant viruses. We found that the antibodies had broad reactivity across the American and Eurasian N6 lineages, but relatively little binding to the H5N6 NA. Several of the antibodies exhibited strong NA inhibition activity and some also showed activity in the antibody dependent cellular cytotoxicity reporter assay and neutralization assay. In addition, we generated escape mutant viruses for six monoclonal antibodies and found mutations on the lateral ridge of the NA. Lastly, we observed variable protection in H4N6 mouse challenge models when the antibodies were given prophylactically.
Collapse
Affiliation(s)
- Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Fatima Amanat
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- *Correspondence: Florian Krammer,
| |
Collapse
|
13
|
Sun H, Deng G, Sun H, Song J, Zhang W, Li H, Wei X, Li F, Zhang X, Liu J, Pu J, Sun Y, Tong Q, Bi Y, Xie Y, Qi J, Chang KC, Gao GF, Liu J. N-linked glycosylation enhances hemagglutinin stability in avian H5N6 influenza virus to promote adaptation in mammals. PNAS NEXUS 2022; 1:pgac085. [PMID: 36741455 PMCID: PMC9896958 DOI: 10.1093/pnasnexus/pgac085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/05/2022] [Indexed: 02/07/2023]
Abstract
Clade 2.3.4.4 avian H5Ny viruses, namely H5N2, H5N6, and H5N8, have exhibited unprecedented intercontinental spread in poultry. Among them, only H5N6 viruses are frequently reported to infect mammals and cause serious human infections. In this study, the genetic and biological characteristics of surface hemagglutinin (HA) from clade 2.3.4.4 H5Ny avian influenza viruses (AIVs) were examined for adaptation in mammalian infection. Phylogenetic analysis identified an amino acid (AA) deletion at position 131 of HA as a distinctive feature of H5N6 virus isolated from human patients. This single AA deletion was found to enhance H5N6 virus replication and pathogenicity in vitro and in mammalian hosts (mice and ferrets) through HA protein acid and thermal stabilization that resulted in reduced pH threshold from pH 5.7 to 5.5 for viral-endosomal membrane fusion. Mass spectrometry and crystal structure revealed that the AA deletion in HA at position 131 introduced an N-linked glycosylation site at 129, which increases compactness between HA monomers, thus stabilizes the trimeric structure. Our findings provide a molecular understanding of how HA protein stabilization promotes cross-species avian H5N6 virus infection to mammalian hosts.
Collapse
Affiliation(s)
| | | | | | | | | | - Han Li
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaohui Wei
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Fangtao Li
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xin Zhang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiyu Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Juan Pu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yipeng Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Qi Tong
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Yufeng Xie
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China,Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Kin-Chow Chang
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - George Fu Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China,Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China,WHO Collaborating Center for Reference and Research on Influenza, Beijing 102206, China
| | - Jinhua Liu
- To whom correspondence should be addressed:
| |
Collapse
|
14
|
Dou M, Song W, Lin Y, Chen Q, Lu C, Liu Z. Clinical characteristics and viral analysis of severe influenza A [H1N1]pdm09 in Guangzhou, 2019. J Med Virol 2022; 94:2568-2577. [PMID: 35146773 DOI: 10.1002/jmv.27642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/08/2022] [Accepted: 01/31/2022] [Indexed: 11/06/2022]
Abstract
OBJECTIVE To understand the clinical characteristics of and analyze viral genes in patients with severe pneumonia due to [H1N1]pdm09 influenza virus in Guangzhou, 2019. METHODS The clinical data of 120 inpatients with laboratory-confirmed influenza A H1N1 virus from January to March 2019 were collected and analyzed. The subjects were diagnosed according to the criteria of the "Diagnosis and Treatment Program of Influenza A H1N1 (third Edition 2009)" issued by the Ministry of Health and were divided into severe and nonsevere groups. Serum samples during fever were collected for cytokine analysis, and the viral genes were analyzed after the virus cultured in MDCK cells. The data were analyzed by SPSS 16 software, and the results of gene sequencing were analyzed by MEGA 6 software. RESULTS Among the 120 inpatients, 36 (30%) were severe and 84 (70%) were nonsevere patients. The average age of severe patients was 53.11 ±19.94 years, the average age of nonsevere patients, at 44.03 ±24.47 years. There was no significant difference between the two groups (p< 0.05). There were significant differences in the rates of moist rales and dyspnea in critically ill patients (p< 0.05). There were significant differences in the white blood cell count (WBC), lactate dehydrogenase (LDH), creatine kinase (CK), serum creatinine (sCr), procalcitonin (PCT) and C-reactive protein (CRP) in severe patients with type A H1N1. Chest radiologic findings in severe patients showed ground glass shadows or pulmonary solid changes, and the difference was statistically significant for pulmonary fibrosis. Chronic lung disease (52.8%) and cardiovascular disease (27.8%) were independent risk factors for severe disease (p< 0.05). There were significant differences in secondary infections by Staphylococcus aureus (11.1%), pulmonary Aspergillus (22%) and Acinetobacter baumannii (16.7%) in critically ill patients (p< 0.05). Serum IL-8 in critically ill patients was significantly higher than those in nonsevere patients and healthy controls. The origin of virus strains in severe and nonsevere patients was the same, and there was no obvious mutation in the amino acid region of the antigenic site of the HA protein, but compared with the results of gene sequencing in previous years, the mutation sites showed a trend of annual accumulation. In conclusion, there was a high risk of severe pneumonia caused by H1N1 influenza A virus in Guangzhou in spring 2019. Long-term continuous surveillance, prevention and control of the virus should be carried out to predict its epidemiology and distribution. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Min Dou
- Department of Laboratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenjun Song
- State Key Laboratory of Respiratory Disease, Institute of Integration of Traditional and Western Medicine, Guangzhou Medical University, Guangzhou, China
| | - Yongping Lin
- Department of Laboratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Qigao Chen
- Department of Laboratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Chang Lu
- Department of Laboratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhongmin Liu
- Department of Laboratory Medicine, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
15
|
Abstract
The continuous emergence and reemergence of diverse subtypes of influenza A viruses, which are known as "HxNy" and are mediated through the reassortment of viral genomes, account for seasonal epidemics, occasional pandemics, and zoonotic outbreaks. We summarize and discuss the characteristics of historic human pandemic HxNy viruses and diverse subtypes of HxNy among wild birds, mammals, and live poultry markets. In addition, we summarize the key molecular features of emerging infectious HxNy influenza viruses from the perspectives of the receptor binding of Hx, the inhibitor-binding specificities and drug-resistance features of Ny, and the matching of the gene segments. Our work enhances our understanding of the potential threats of novel reassortant influenza viruses to public health and provides recommendations for effective prevention, control, and research of this pathogen.
Collapse
Affiliation(s)
- William J Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Yan Wu
- Department of Pathogen Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Weifeng Shi
- Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - George F Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences (CAS), Beijing 100101, China
| |
Collapse
|
16
|
Bai Y, Zhang R, Liu Q, Guo R, Li G, Sun B, Zhang D, Chen Y, Huang X. Selenium Deficiency Causes Inflammatory Injury in the Bursa of Fabricius of Broiler Chickens by Activating the Toll-like Receptor Signaling Pathway. Biol Trace Elem Res 2022; 200:780-789. [PMID: 33768429 PMCID: PMC7993907 DOI: 10.1007/s12011-021-02688-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/21/2021] [Indexed: 12/29/2022]
Abstract
The aim of our study was to observe the effect of selenium (Se) deficiency on inflammatory injury in the bursa of Fabricius of broiler chickens and to determine the role of the Toll-like receptor (TLR)/myeloid differential protein-88 (MyD88)/nuclear factor-κB (NF-κB) signaling pathway during this process. Here, we revealed that severe inflammatory injury occurred in the broiler bursa of Fabricius with Se deficiency via histopathology. Moreover, the ultrastructural pathological results showed that the nuclear, mitochondrial, endoplasmic reticulum and cytomembrane structures were damaged to varying degrees. Additionally, interleukin-2 (IL-2), interleukin-6 (IL-6), and interferon (IFN-γ) mRNA expression was markedly upregulated in the broiler bursa of Fabricius with Se deficiency. Furthermore, TLR, toll-interleukin-1 receptor domain-containing adapter-inducing interferon-β (TRIF), MyD88, and NF-κB mRNA expression was also markedly elevated in the broiler bursa of Fabricius with Se deficiency. The above results suggested that Se deficiency increases the expression of numerous proinflammatory cytokines and is probably due to the activation of the TLR/MyD88/NF-κB signaling pathway, which causes inflammatory injury in the bursa of Fabricius of broiler chickens. Our findings provide a theoretical reference for further studying the underlying mechanism of Se deficiency-induced inflammatory injury in the bursa of Fabricius of broiler chickens.
Collapse
Affiliation(s)
- Yu Bai
- Department of Veterinary Pathology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, China
- Department of Veterinary Pathophysiology, College of Animal Medicine, China Agricultural University, Beijing, 100193, China
| | - Ruili Zhang
- Department of Veterinary Pathology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Qing Liu
- Department of Veterinary Pathology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Rong Guo
- Department of Veterinary Pathology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Guangxing Li
- Department of Veterinary Pathology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Bin Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, 163000, China
| | - Di Zhang
- Department of Veterinary Pathology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Yang Chen
- Department of Veterinary Pathology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaodan Huang
- Department of Veterinary Pathology, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
17
|
Xiang B, Song J, Chen L, Liang J, Li X, Yu D, Lin Q, Liao M, Ren T, Xu C. Duck-origin H5N6 avian influenza viruses induce different pathogenic and inflammatory effects in mice. Transbound Emerg Dis 2021; 68:3509-3518. [PMID: 33316151 DOI: 10.1111/tbed.13956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/19/2020] [Accepted: 12/09/2020] [Indexed: 12/28/2022]
Abstract
Since 2013, H5N6 highly pathogenic avian influenza viruses have caused considerable economic losses in the poultry industry and have caused 24 laboratory-confirmed human cases. In this study, we isolated nine (B1-B9) H5N6 viruses from healthy ducks in Guangdong Province, Southern China from December 2018 to April 2019. Phylogenetic analysis revealed that B1, B2, B3, B4, B5, B7, B8, and B9 clustered into the G1.1 genotype and shared high sequence similarity with human H5N6 isolates from Southern China in 2017 and 2018. Meanwhile, B6 clustered into the G1.1.9 genotype. The hemagglutinin (HA), neuraminidase (NA) and nonstructural protein (NS) gene segments of B6 were closely related to the human H5N6 isolates, while the other genomic segments were closely related to H5N6 viruses isolated from waterfowl in Southern China. Compared to B7, B6 had higher pathogenicity and induced stronger inflammatory responses in mice. B6 carried a full-length PB1-F2 protein (90 aa), while the rest carried an 11-amino acid C-terminal-truncated PB1-F2. The PB1-F2 protein may increase the virulence of B6 compared to that of B7. Our findings provide insight into the pathogenic mechanisms of H5N6 viruses in mammals and emphasize the need for continued surveillance of circulating H5N6 viruses in ducks.
Collapse
Affiliation(s)
- Bin Xiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jie Song
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Libin Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Jianpeng Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Xin Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Deshui Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Qiuyan Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Tao Ren
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| | - Chenggang Xu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China
| |
Collapse
|
18
|
Bui CHT, Kuok DIT, Yeung HW, Ng KC, Chu DKW, Webby RJ, Nicholls JM, Peiris JSM, Hui KPY, Chan MCW. Risk Assessment for Highly Pathogenic Avian Influenza A(H5N6/H5N8) Clade 2.3.4.4 Viruses. Emerg Infect Dis 2021; 27:2619-2627. [PMID: 34545790 PMCID: PMC8462306 DOI: 10.3201/eid2710.210297] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The numerous global outbreaks and continuous reassortments of highly pathogenic avian influenza (HPAI) A(H5N6/H5N8) clade 2.3.4.4 viruses in birds pose a major risk to the public health. We investigated the tropism and innate host responses of 5 recent HPAI A(H5N6/H5N8) avian isolates of clades 2.3.4.4b, e, and h in human airway organoids and primary human alveolar epithelial cells. The HPAI A(H5N6/H5N8) avian isolates replicated productively but with lower competence than the influenza A(H1N1)pdm09, HPAI A(H5N1), and HPAI A(H5N6) isolates from humans in both or either models. They showed differential cellular tropism in human airway organoids; some infected all 4 major epithelial cell types: ciliated cells, club cells, goblet cells, and basal cells. Our results suggest zoonotic potential but low transmissibility of the HPAI A(H5N6/H5N8) avian isolates among humans. These viruses induced low levels of proinflammatory cytokines/chemokines, which are unlikely to contribute to the pathogenesis of severe disease.
Collapse
|
19
|
Hu Z, Shi L, Zhao J, Gu H, Hu J, Wang X, Liu X, Hu S, Gu M, Cao Y, Liu X. Role of the Hemagglutinin Residue 227 in Immunogenicity of H5 and H7 Subtype Avian Influenza Vaccines in Chickens. Avian Dis 2021; 64:445-450. [PMID: 33347548 DOI: 10.1637/aviandiseases-d-20-00013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/22/2020] [Indexed: 11/05/2022]
Abstract
Many H5 and H7 subtype avian influenza vaccines are poorly immunogenic in terms of inducing hemagglutination-inhibition (HI) antibody titers. Residue 227 (H3 numbering) in the receptor binding site in the hemagglutinin (HA) is critical for the detectability of HI antibodies induced by H5 influenza vaccines. However, whether the effect of residue 227 on immunogenicity can be generalized in different subtypes is unclear. In this study, the impact of HA residue 227 on immunogenicity of H5N1, H5N6, and H7N9 avian influenza vaccines was evaluated in chickens. Polymorphism analysis revealed that S227 is overwhelmingly dominant in HA of the H5N1 and H7N9 subtypes, whereas this amino acid is present in a small proportion of H5N6 viruses. The H5N1, H5N6, and H7N9 vaccines harboring S227 in HA induced relatively low HI titers at week 2 postimmunization (pi), and antibody titers increased at week 3 pi. S227N substitution in these vaccines consistently enhanced HI titers significantly. Another H5N6 vaccine harboring Q227 in HA elicited a robust HI antibody response, and Q227S substitution led to a significant drop of HI titers. Cross-HI testing against the wild-type and mutant viruses revealed that the amino acid at position 227 was associated with the detectability of HI titers induced by H5 and H7 avian influenza vaccines. The results indicate an important role of residue 227 in HA in immunogenicity of H5 and H7 subtype avian influenza vaccines in chickens. Our findings also provided useful information for vaccine seed virus selection and genetic engineering for immunogenicity enhancement of avian influenza vaccines.
Collapse
Affiliation(s)
- Zenglei Hu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.,Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Lei Shi
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jiangyan Zhao
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Han Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jiao Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xiaowen Liu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Shunlin Hu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Min Gu
- Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yongzhong Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China
| | - Xiufan Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China.,Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou, China.,Animal Infectious Disease Laboratory, School of Veterinary Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
20
|
Yang F, Xiao Y, Liu F, Cheng L, Yao H, Wu N, Wu H. Genetic analysis and biological characteristics of novel clade 2.3.4.4 reassortment H5N6 avian influenza viruses from poultry in eastern China in 2016. Int J Infect Dis 2021; 110:436-448. [PMID: 34364995 DOI: 10.1016/j.ijid.2021.07.074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES The continuous evolution of highly pathogenic H5N6 avian influenza viruses (AIVs) causes outbreaks in wildfowl and poultry, and occasional human infections. The aim of this study was to better understand the genetic relationships between these H5N6 AIVs from eastern China and other AIVs. METHODS In 2016, 1623 cloacal swabs were sampled from poultry in 18 LPMs in eastern China, and subsequently characterized systematically using gene sequencing, phylogenetic studies, and antigenic analysis. In addition, their pathogenicity in mammals was studied in BALB/c mice, which were inoculated with viruses, with survival rate and body weight recorded daily for 14 days. RESULTS In total, 56 H5N6 AIVs were isolated in eastern China and five representative isolates were selected for further study. In our study, the H5N6 AIVs clustered into clade 2.3.4.4, Group C, and their six internal segments were derived from H6N6 and H9N2 viruses, or both, suggesting extensive reassortant among H5N6 AIVs with other subtypes. These H5N6 viruses could replicate in the lungs without prior adaptation, and exhibited slight-to-moderate virulence in mice. CONCLUSIONS The continuous circulation of these novel H5N6 viruses suggests the importance of persistent surveillance of H5N6 AIVs in poultry.
Collapse
Affiliation(s)
- Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yixin Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Fumin Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Linfang Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
21
|
Complement Decay-Accelerating Factor is a modulator of influenza A virus lung immunopathology. PLoS Pathog 2021; 17:e1009381. [PMID: 34197564 PMCID: PMC8248730 DOI: 10.1371/journal.ppat.1009381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Clearance of viral infections, such as SARS-CoV-2 and influenza A virus (IAV), must be fine-tuned to eliminate the pathogen without causing immunopathology. As such, an aggressive initial innate immune response favors the host in contrast to a detrimental prolonged inflammation. The complement pathway bridges innate and adaptive immune system and contributes to the response by directly clearing pathogens or infected cells, as well as recruiting proinflammatory immune cells and regulating inflammation. However, the impact of modulating complement activation in viral infections is still unclear. In this work, we targeted the complement decay-accelerating factor (DAF/CD55), a surface protein that protects cells from non-specific complement attack, and analyzed its role in IAV infections. We found that DAF modulates IAV infection in vivo, via an interplay with the antigenic viral proteins hemagglutinin (HA) and neuraminidase (NA), in a strain specific manner. Our results reveal that, contrary to what could be expected, DAF potentiates complement activation, increasing the recruitment of neutrophils, monocytes and T cells. We also show that viral NA acts on the heavily sialylated DAF and propose that the NA-dependent DAF removal of sialic acids exacerbates complement activation, leading to lung immunopathology. Remarkably, this mechanism has no impact on viral loads, but rather on the host resilience to infection, and may have direct implications in zoonotic influenza transmissions. Exacerbated complement activation and immune deregulation are at the basis of several pathologies induced by respiratory viruses. Here, we report that complement decay-accelerating factor (DAF), which inhibits complement activation in healthy cells, increases disease severity upon influenza A virus (IAV) infection. Remarkably, DAF interaction with IAV proteins, hemagglutinin (HA) and neuraminidase (NA), resulted in excessive complement activation and recruitment of innate and adaptive immune cells, without affecting viral loads. Furthermore, we observed that viral NA directly cleaves DAF and promotes complement activation, providing a possible link between IAV-DAF interaction and pathology. Therefore, our results unveil a novel pathway that could modulate disease severity, which may help to understand the increased pathogenicity of zoonotic and pandemic IAV infections.
Collapse
|
22
|
Xiao Y, Yang F, Liu F, Cheng L, Yao H, Wu N, Wu H. Development of an antigen-ELISA and a colloidal gold-based immunochromatographic strip based on monoclonal antibodies for detection of avian influenza A(H5) viruses. J Vet Diagn Invest 2021; 33:969-974. [PMID: 34166136 DOI: 10.1177/10406387211027538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Avian influenza A(H5) viruses (avian IAVs) pose a major threat to the economy and public health. We developed an antigen-ELISA (ag-ELISA) and a colloidal gold-based immunochromatographic strip for the rapid detection of avian A(H5) viruses. Both detection methods displayed no cross-reactivity with other viruses (e.g., other avian IAVs, infectious bursal disease virus, Newcastle disease virus, infectious bronchitis virus, avian paramyxovirus). The ag-ELISA was sensitive down to 0.5 hemagglutinin (HA) units/100 µL of avian A(H5) viruses and 7.5 ng/mL of purified H5 HA proteins. The immunochromatographic strip was sensitive down to 1 HA unit/100 µL of avian A(H5) viruses. Both detection methods exhibited good reproducibility with CVs < 10%. For 200 random poultry samples, the sensitivity and specificity of the ag-ELISA were 92.6% and 98.8%, respectively, and for test strips were 88.9% and 98.3%, respectively. Both detection methods displayed high specificity, sensitivity, and stability, making them suitable for rapid detection and field investigation of avian A(H5) viruses.
Collapse
Affiliation(s)
- Yixin Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fumin Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Linfang Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Nanping Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Haibo Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and National Clinical Research Center for Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Li J, Wei J, Xu Z, Jiang C, Li M, Chen J, Li Y, Yang M, Gu Y, Wang F, Shu Y, Yang Y, Sun L, Liu Y. Cytokine/Chemokine Expression Is Closely Associated Disease Severity of Human Adenovirus Infections in Immunocompetent Adults and Predicts Disease Progression. Front Immunol 2021; 12:691879. [PMID: 34163488 PMCID: PMC8215364 DOI: 10.3389/fimmu.2021.691879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/20/2021] [Indexed: 12/12/2022] Open
Abstract
Increasing human Adenovirus (HAdV) infections complicated with acute respiratory distress syndrome (ARDS) even fatal outcome were reported in immunocompetent adolescent and adult patients. Here, we characterized the cytokine/chemokine expression profiles of immunocompetent patients complicated with ARDS during HAdV infection and identified biomarkers for disease severity/progression. Forty-eight cytokines/chemokines in the plasma samples from 19 HAdV-infected immunocompetent adolescent and adult patients (ten complicated with ARDS) were measured and analyzed in combination with clinical indices. Immunocompetent patients with ARDS caused by severe acute respiratory disease coronavirus (SARS-CoV)-2, 2009 pandemic H1N1 (panH1N1) or bacteria were included for comparative analyses. Similar indices of disease course/progression were found in immunocompetent patients with ARDS caused by HAdV, SARS-CoV-2 or panH1N infections, whereas the HAdV-infected group showed a higher prevalence of viremia, as well as increased levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and creatine kinase (CK). Expression levels of 33 cytokines/chemokines were increased significantly in HAdV-infected patients with ARDS compared with that in healthy controls, and many of them were also significantly higher than those in SARS-CoV-2-infected and panH1N1-infected patients. Expression of interferon (IFN)-γ, interleukin (IL)-1β, hepatocyte growth factor (HGF), monokine induced by IFN-γ (MIG), IL-6, macrophage-colony stimulating factor (M-CSF), IL-10, IL-1α and IL-2Ra was significantly higher in HAdV-infected patients with ARDS than that in those without ARDS, and negatively associated with the ratio of the partial pressure of oxygen in arterial blood/fraction of inspired oxygen (PaO2/FiO2). Analyses of the receiver operating characteristic curve (ROC) showed that expression of IL-10, M-CSF, MIG, HGF, IL-1β, IFN-γ and IL-2Ra could predict the progression of HAdV infection, with the highest area under the curve (AUC) of 0.944 obtained for IL-10. Of note, the AUC value for the combination of IL-10, IFN-γ, and M-CSF reached 1. In conclusion, the “cytokine storm” occurred during HAdV infection in immunocompetent patients, and expression of IL-10, M-CSF, MIG, HGF, IL-1β, IFN-γ and IL-2Ra was closely associated with disease severity and could predict disease progression.
Collapse
Affiliation(s)
- Jin Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Jinli Wei
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Zhixiang Xu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Chunmei Jiang
- Department of Infectious Disease, The People's Hospital of Longhua, Shenzhen, China
| | - Mianhuan Li
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Jie Chen
- Research and Development Department, Guangzhou Sagene Biotech Co., Ltd., Guangzhou, China
| | - Yanjie Li
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Minghui Yang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yuchen Gu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Fuxiang Wang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Litao Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
24
|
Li Y, Quan C, Xing W, Wang P, Gao J, Zhang Z, Jiang X, Ma C, Carr MJ, He Q, Gao L, Bi Y, Tang H, Shi W. Rapid humoral immune responses are required for recovery from haemorrhagic fever with renal syndrome patients. Emerg Microbes Infect 2021; 9:2303-2314. [PMID: 32990499 PMCID: PMC8284976 DOI: 10.1080/22221751.2020.1830717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Haemorrhagic fever with renal syndrome (HFRS) following Hantaan virus (HTNV) infection displays variable clinical signs. Humoral responses elicited during HTNV infections are considered important, however, this process remains poorly understood. Herein, we have investigated the phenotype, temporal dynamics, and characteristics of B-cell receptor (BCR) repertoire in an HFRS cohort. The serological profiles were characterized by a lowered expression level of nucleoprotein (NP)-specific antibody in severe cases. Importantly, B-cell subsets were activated and proliferated within the first two weeks of symptom onset and moderate cases reacted more rapidly. BCR analysis in the recovery phase revealed a dramatic increase in the immunoglobulin gene diversity which was more significantly progressed in moderate infections. In severe cases, B-cell-related transcription was lower with inflammatory sets overactivated. Taken together, these data suggest the clinical signs and disease recovery in HFRS patients were positively impacted by rapid and efficacious humoral responses.
Collapse
Affiliation(s)
- Yaoni Li
- Baoji Center Hospital, Baoji, People's Republic of China
| | - Chuansong Quan
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Weijia Xing
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Peihan Wang
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Jiming Gao
- Institute of Immunology, Shandong First Medical University& Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Zhenjie Zhang
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Xiaolin Jiang
- Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China
| | - Chuanmin Ma
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Michael J Carr
- National Virus Reference Laboratory, School of Medicine, University College Dublin, Dublin, Ireland.,Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-ku, Japan
| | - Qian He
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Lei Gao
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Yuhai Bi
- Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Hua Tang
- Institute of Immunology, Shandong First Medical University& Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Weifeng Shi
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, People's Republic of China
| |
Collapse
|
25
|
Wen F, Yang J, Guo J, Wang C, Cheng Q, Tang Z, Luo K, Yuan S, Huang S, Li Y. Genetic characterization of an H5N6 avian influenza virus with multiple origins from a chicken in southern China, October 2019. BMC Vet Res 2021; 17:200. [PMID: 34049549 PMCID: PMC8161609 DOI: 10.1186/s12917-021-02903-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/17/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Highly pathogenic avian influenza viruses (HPAIVs) of H5 subtype pose a great threat to the poultry industry and human health. In recent years, H5N6 subtype has rapidly replaced H5N1 as the most predominate HPAIV subtype circulating in domestic poultry in China. In this study, we describe the genetic and phylogenetic characteristics of a prevalent H5N6 strain in Guangdong, China. RESULTS Nucleotide sequencing identified a H5N6 subtype HPAIV, designated as A/chicken/Dongguan/1101/2019 (DG/19), with a multibasic cleavage site in the hemagglutinin (HA). Phylogenetic analysis revealed DG/19 was a reassortant of H5N1, H5N2, H5N8, and H6N6 subtypes of avian influenza viruses. A number of mammalian adaptive markers such as D36N in the HA were identified. CONCLUSIONS Our results showed that HPAIV H5N6 strains still emerge in well-managed groups of chicken farms. Considering the increasing prevalence of H5N6 HPAIV, and the fact that H5N6 HPAIVs are well adapted to migratory birds, an enhanced surveillance for the East Asian-Australasian flyway should be undertaken to prevent potential threats to the poultry industry and human health.
Collapse
Affiliation(s)
- Feng Wen
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China.
| | - Jing Yang
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Jinyue Guo
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Congying Wang
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Qing Cheng
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Zheng Tang
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Kaijian Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Sheng Yuan
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Shujian Huang
- College of Life Science and Engineering, Foshan University, Foshan, 528231, Guangdong, China
| | - Yong Li
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China.
| |
Collapse
|
26
|
Liu WJ, Xiao H, Dai L, Liu D, Chen J, Qi X, Bi Y, Shi Y, Gao GF, Liu Y. Avian influenza A (H7N9) virus: from low pathogenic to highly pathogenic. Front Med 2021; 15:507-527. [PMID: 33860875 PMCID: PMC8190734 DOI: 10.1007/s11684-020-0814-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022]
Abstract
The avian influenza A (H7N9) virus is a zoonotic virus that is closely associated with live poultry markets. It has caused infections in humans in China since 2013. Five waves of the H7N9 influenza epidemic occurred in China between March 2013 and September 2017. H7N9 with low-pathogenicity dominated in the first four waves, whereas highly pathogenic H7N9 influenza emerged in poultry and spread to humans during the fifth wave, causing wide concern. Specialists and officials from China and other countries responded quickly, controlled the epidemic well thus far, and characterized the virus by using new technologies and surveillance tools that were made possible by their preparedness efforts. Here, we review the characteristics of the H7N9 viruses that were identified while controlling the spread of the disease. It was summarized and discussed from the perspectives of molecular epidemiology, clinical features, virulence and pathogenesis, receptor binding, T-cell responses, monoclonal antibody development, vaccine development, and disease burden. These data provide tools for minimizing the future threat of H7N9 and other emerging and re-emerging viruses, such as SARS-CoV-2.
Collapse
Affiliation(s)
- William J Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, 518114, China.
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
| | - Haixia Xiao
- Laboratory of Protein Engineering and Vaccines, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences (CAS), Tianjin, 300308, China
| | - Lianpan Dai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Di Liu
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan, 430071, China
- National Virus Resource Center, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy Sciences, Beijing, 100049, China
- Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianjun Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Chinese Academy of Sciences, Wuhan, 430071, China
- National Virus Resource Center, Chinese Academy of Sciences, Wuhan, 430071, China
- University of Chinese Academy Sciences, Beijing, 100049, China
- Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaopeng Qi
- Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yuhai Bi
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, 518114, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy Sciences, Beijing, 100049, China
- Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yi Shi
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, 518114, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy Sciences, Beijing, 100049, China
- Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Beijing, 100101, China
| | - George F Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, Shenzhen Third People's Hospital, Shenzhen, 518114, China.
| |
Collapse
|
27
|
Kim EH, Kim YL, Kim SM, Yu KM, Casel MAB, Jang SG, Pascua PNQ, Webby RJ, Choi YK. Pathogenic assessment of avian influenza viruses in migratory birds. Emerg Microbes Infect 2021; 10:565-577. [PMID: 33666526 PMCID: PMC8018353 DOI: 10.1080/22221751.2021.1899769] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Several subtypes of avian influenza (AI) viruses have caused human infections in recent years; however, there is a severe knowledge gap regarding the capacity of wild bird viruses to infect mammals. To assess the risk of mammalian infection by AI viruses from their natural reservoirs, a panel of isolates from 34 wild birds was examined in animal models. All selected AI virus subtypes were found to predominantly possess Eurasian lineage, although reassortment with North American lineage AI viruses was also noted in some isolates. When used to infect chickens, 20 AI isolates could be recovered from oropharyngeal swabs at 5 days post-infection (dpi) without causing significant morbidity. Similarly, mild to no observable disease was observed in mice infected with these viruses although the majority replicated efficiently in murine lungs. As expected, wild bird AI isolates were found to recognize avian-like receptors, while a few strains also exhibited detectable human-like receptor binding. Selected strains were further tested in ferrets, and 15 out of 20 were found to shed the virus in the upper respiratory tract until 5 dpi. Overall, we demonstrate that a diversity of low-pathogenic AI viruses carried by wild migratory birds have the capacity to infect land-based poultry and mammalian hosts while causing minimal signs of clinical disease. This study reiterates that there is a significant capacity for interspecies transmission of AI viruses harboured by wild aquatic birds. Thus, these viruses pose a significant threat to human health underscoring the need for continued surveillance.
Collapse
Affiliation(s)
- Eun-Ha Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea.,Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Korea
| | - Young-Ll Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea.,Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Korea
| | - Se Mi Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea.,Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Korea
| | - Kwang-Min Yu
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea.,Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Korea
| | - Mark Anthony B Casel
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea.,Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Korea
| | - Seung-Gyu Jang
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea
| | - Philippe Noriel Q Pascua
- Virology Division, Department. of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Richard J Webby
- Virology Division, Department. of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Young Ki Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea.,Zoonotic Infectious Diseases Research Center, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
28
|
Gao R, Gu M, Shi L, Liu K, Li X, Wang X, Hu J, Liu X, Hu S, Chen S, Peng D, Jiao X, Liu X. N-linked glycosylation at site 158 of the HA protein of H5N6 highly pathogenic avian influenza virus is important for viral biological properties and host immune responses. Vet Res 2021; 52:8. [PMID: 33436086 PMCID: PMC7805195 DOI: 10.1186/s13567-020-00879-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
Since 2014, clade 2.3.4.4 has become the dominant epidemic branch of the Asian lineage H5 subtype highly pathogenic avian influenza virus (HPAIV) in southern and eastern China, while the H5N6 subtype is the most prevalent. We have shown earlier that lack of glycosylation at position 158 of the hemagglutinin (HA) glycoprotein due to the T160A mutation is a key determinant of the dual receptor binding property of clade 2.3.4.4 H5NX subtypes. Our present study aims to explore other effects of this site among H5N6 viruses. Here we report that N-linked glycosylation at site 158 facilitated the assembly of virus-like particles and enhanced virus replication in A549, MDCK, and chicken embryonic fibroblast (CEF) cells. Consistently, the HA-glycosylated H5N6 virus induced higher levels of inflammatory factors and resulted in stronger pathogenicity in mice than the virus without glycosylation at site 158. However, H5N6 viruses without glycosylation at site 158 were more resistant to heat and bound host cells better than the HA-glycosylated viruses. H5N6 virus without glycosylation at this site triggered the host immune response mechanism to antagonize the viral infection, making viral pathogenicity milder and favoring virus spread. These findings highlight the importance of glycosylation at site 158 of HA for the pathogenicity of the H5N6 viruses.
Collapse
Affiliation(s)
- Ruyi Gao
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Min Gu
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Liwei Shi
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Kaituo Liu
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Xiuli Li
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China
| | - Xiaoquan Wang
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jiao Hu
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Xiaowen Liu
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Shunlin Hu
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Sujuan Chen
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Daxin Peng
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu, China
| | - Xinan Jiao
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China.,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China.,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu, China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, No.48 East Wenhui Road, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
29
|
Li Y, Li H, Han J, Yang L. The preliminary comparative results between Covid-19 and non-Covid-19 patients in Western China. BMC Infect Dis 2020; 20:935. [PMID: 33297990 PMCID: PMC7724448 DOI: 10.1186/s12879-020-05680-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 12/03/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND This study aims to investigate the comparative clinical characteristics of Covid-19 and non-Covid-19 patients. METHODS Fifteen Covid-19 and 93 non-Covid-19 patients were included in RNA testing. All epidemiological and clinical data were collected and analyzed, and then comparative results were carried out. RESULTS Covid-19 patients were older (46.40 ± 18.21 years vs 34.43 ± 18.80 years) and had a higher body weight (70.27 ± 10.67 kg vs 60.54 ± 12.33 kg, P < 0.05). The main symptoms that were similar between Covid-19 and non-Covid-19 patients, and Covid-19 patients showed a lower incidence of sputum production (6.67% vs 45.16%, P < 0.01) and a lower white-cell count (4.83 × 109/L vs 7.43 × 109/L) and lymphocyte count (0.90 × 109/L vs 1.57 × 109/L, P < 0.01). Although there were no differences, C-reactive protein and interleukin-6 were elevated in Covid-19 patients. The sensitivity and negative predictive value of CT images were 0.87 and 0.97, respectively. Covid-19 patients showed a higher contact history of Wuhan residents (80% vs 30.11%) and higher familial clustering (53.33% vs 8.60%, P < 0.001). Covid-19 patients showed a higher major adverse events (ARDS, 13.33%; death, 6.67%; P < 0.05). CONCLUSION Our results suggested that Covid-19patients had a significant history of exposure and familial clustering and a higher rate of severe status; biochemical indicators showed lymphocyte depletion.
Collapse
Affiliation(s)
- Yanzi Li
- Department of Medical Administration, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hongxia Li
- Department of Medical Administration, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jianfeng Han
- Department of Administrative Office, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| | - Lin Yang
- Department of Administrative Office, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China. .,Department of Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
30
|
Yang Y, Yang M, Yuan J, Wang F, Wang Z, Li J, Zhang M, Xing L, Wei J, Peng L, Wong G, Zheng H, Wu W, Shen C, Liao M, Feng K, Li J, Yang Q, Zhao J, Liu L, Liu Y. Laboratory Diagnosis and Monitoring the Viral Shedding of SARS-CoV-2 Infection. Innovation (N Y) 2020. [PMID: 33169119 DOI: 10.1101/2020.02.11.20021493] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
The worldwide epidemic of coronavirus disease 2019 (COVID-19) is ongoing. Rapid and accurate detection of the causative virus SARS-CoV-2 is vital for the treatment and control of COVID-19. In this study, the comparative sensitivity of different respiratory specimen types were retrospectively analyzed using 3,552 clinical samples from 410 COVID-19 patients confirmed by Guangdong CDC (Center for Disease Control and Prevention). Except for bronchoalveolar lavage fluid (BALF), the sputum possessed the highest positive rate (73.4%-87.5%), followed by nasal swabs (53.1%-85.3%) for both severe and mild cases during the first 14 days after illness onset (d.a.o.). Viral RNA could be detected in all BALF samples collected from the severe group within 14 d.a.o. and lasted up to 46 d.a.o. Moreover, although viral RNA was negative in the upper respiratory samples, it was also positive in BALF samples in most cases from the severe group during treatment. Notably, no viral RNA was detected in BALF samples from the mild group. Despite typical ground-glass opacity observed via computed tomographic scans, no viral RNA was detected in the first three or all upper respiratory tract specimens from some COVID-19 patients. In conclusion, sputum is most sensitive for routine laboratory diagnosis of COVID-19, followed by nasal swabs. Detection of viral RNA in BALF improves diagnostic accuracy in severe COVID-19 patients.
Collapse
Affiliation(s)
- Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen 518112, China
| | - Minghui Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen 518112, China
| | - Jing Yuan
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen 518112, China
| | - Fuxiang Wang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen 518112, China
| | - Zhaoqin Wang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen 518112, China
| | - Jinxiu Li
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen 518112, China
| | - Mingxia Zhang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen 518112, China
| | - Li Xing
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen 518112, China
| | - Jinli Wei
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen 518112, China
| | - Ling Peng
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen 518112, China
| | - Gary Wong
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Haixia Zheng
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen 518112, China
| | - Weibo Wu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen 518112, China
| | - Chenguang Shen
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen 518112, China
| | - Mingfeng Liao
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen 518112, China
| | - Kai Feng
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen 518112, China
| | - Jianming Li
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen 518112, China
| | - Qianting Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen 518112, China
| | - Juanjuan Zhao
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen 518112, China
| | - Lei Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen 518112, China
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen 518112, China
| |
Collapse
|
31
|
Bi Y, Li J, Li S, Fu G, Jin T, Zhang C, Yang Y, Ma Z, Tian W, Li J, Xiao S, Li L, Yin R, Zhang Y, Wang L, Qin Y, Yao Z, Meng F, Hu D, Li D, Wong G, Liu F, Lv N, Wang L, Fu L, Yang Y, Peng Y, Ma J, Sharshov K, Shestopalov A, Gulyaeva M, Gao GF, Chen J, Shi Y, Liu WJ, Chu D, Huang Y, Liu Y, Liu L, Liu W, Chen Q, Shi W. Dominant subtype switch in avian influenza viruses during 2016-2019 in China. Nat Commun 2020; 11:5909. [PMID: 33219213 PMCID: PMC7679419 DOI: 10.1038/s41467-020-19671-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023] Open
Abstract
We have surveyed avian influenza virus (AIV) genomes from live poultry markets within China since 2014. Here we present a total of 16,091 samples that were collected from May 2016 to February 2019 in 23 provinces and municipalities in China. We identify 2048 AIV-positive samples and perform next generation sequencing. AIV-positive rates (12.73%) from samples had decreased substantially since 2016, compared to that during 2014-2016 (26.90%). Additionally, H9N2 has replaced H5N6 and H7N9 as the dominant AIV subtype in both chickens and ducks. Notably, novel reassortants and variants continually emerged and disseminated in avian populations, including H7N3, H9N9, H9N6 and H5N6 variants. Importantly, almost all of the H9 AIVs and many H7N9 and H6N2 strains prefer human-type receptors, posing an increased risk for human infections. In summary, our nation-wide surveillance highlights substantial changes in the circulation of AIVs since 2016, which greatly impacts the prevention and control of AIVs in China and worldwide.
Collapse
Affiliation(s)
- Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 101408, Beijing, China.
- Shenzhen Key Laboratory of Pathogen and Immunity, Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, 518112, Shenzhen, China.
| | - Juan Li
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, 271016, Taian, China
| | - Shanqin Li
- University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Guanghua Fu
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, 350013, Fuzhou, China
| | - Tao Jin
- China National Genebank-Shenzhen, BGI-Shenzhen, 518083, Shenzhen, China
| | - Cheng Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID, Chinese Academy of Sciences, 100101, Beijing, China
- College of Life Science and Technology, Xinjiang University, 830046, Urumchi, China
| | - Yongchun Yang
- Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 311300, Hangzhou, China
| | - Zhenghai Ma
- College of Life Science and Technology, Xinjiang University, 830046, Urumchi, China
| | - Wenxia Tian
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, 030801, Taigu, China
| | - Jida Li
- Institute of Zoonosis, College of Public Hygiene, Zunyi Medical University, 563003, Zunyi, China
| | - Shuqi Xiao
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, Shaanxi, China
| | - Liqiang Li
- China National Genebank-Shenzhen, BGI-Shenzhen, 518083, Shenzhen, China
| | - Renfu Yin
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, Jilin University, 130062, Jilin, China
| | - Yi Zhang
- Institute of Zoonosis, College of Public Hygiene, Zunyi Medical University, 563003, Zunyi, China
| | - Lixin Wang
- School of Basic Medicine and Life Science, Hainan Medical University, 571101, Haikou, China
| | - Yantao Qin
- Diqing Tibetan Autonomous Prefecture Centers for Disease Control and Prevention, 674400, Shangri-la, China
| | - Zhongzi Yao
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, CASCIRE, Chinese Academy of Sciences, 430071, Wuhan, China
| | - Fanyu Meng
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, 271016, Taian, China
| | - Dongfang Hu
- College of Animal Science and Technology, Henan Institute of Science and Technology, 453003, Xinxiang, China
| | - Delong Li
- College of Animal Science, Southwest University, 402460, Chongqing, China
| | - Gary Wong
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, 200031, Shanghai, China
- Département de microbiologie-infectiologie et d'immunologie, Université Laval, Québec City, G1V 0A6, Canada
| | - Fei Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID, Chinese Academy of Sciences, 100101, Beijing, China
| | - Na Lv
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID, Chinese Academy of Sciences, 100101, Beijing, China
| | - Liang Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID, Chinese Academy of Sciences, 100101, Beijing, China
| | - Lifeng Fu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yang Yang
- University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Yun Peng
- University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Jinmin Ma
- China National Genebank-Shenzhen, BGI-Shenzhen, 518083, Shenzhen, China
| | - Kirill Sharshov
- Federal Research Center of Fundamental and Translational Medicine, Federal State Budget Scientific Institution, Siberian Branch of Russian Academy of Sciences, Novosibirsk State University, Novosibirsk, Russia, 630090
| | - Alexander Shestopalov
- Federal Research Center of Fundamental and Translational Medicine, Federal State Budget Scientific Institution, Siberian Branch of Russian Academy of Sciences, Novosibirsk State University, Novosibirsk, Russia, 630090
| | - Marina Gulyaeva
- Federal Research Center of Fundamental and Translational Medicine, Federal State Budget Scientific Institution, Siberian Branch of Russian Academy of Sciences, Novosibirsk State University, Novosibirsk, Russia, 630090
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 101408, Beijing, China
- Shenzhen Key Laboratory of Pathogen and Immunity, Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, 518112, Shenzhen, China
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), 102206, Beijing, China
| | - Jianjun Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, CASCIRE, Chinese Academy of Sciences, 430071, Wuhan, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 101408, Beijing, China
| | - William J Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), 102206, Beijing, China
| | - Dong Chu
- General Station for Surveillance of Wildlife-borne Infectious Diseases, State Forestry and Grassland Administration, 110034, Shenyang, Liaoning Province, PR China
| | - Yu Huang
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, 350013, Fuzhou, China
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, 518112, Shenzhen, China
| | - Lei Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, Guangdong Key Laboratory for Diagnosis and Treatment of Emerging Infectious Diseases, State Key Discipline of Infectious Disease, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen Third People's Hospital, 518112, Shenzhen, China
| | - Wenjun Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 101408, Beijing, China
| | - Quanjiao Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, CASCIRE, Chinese Academy of Sciences, 430071, Wuhan, China.
| | - Weifeng Shi
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, 271016, Taian, China.
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, 271000, Taian, China.
| |
Collapse
|
32
|
Yang Y, Yang M, Yuan J, Wang F, Wang Z, Li J, Zhang M, Xing L, Wei J, Peng L, Wong G, Zheng H, Wu W, Shen C, Liao M, Feng K, Li J, Yang Q, Zhao J, Liu L, Liu Y. Laboratory Diagnosis and Monitoring the Viral Shedding of SARS-CoV-2 Infection. Innovation (N Y) 2020; 1:100061. [PMID: 33169119 PMCID: PMC7609236 DOI: 10.1016/j.xinn.2020.100061] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/31/2020] [Indexed: 01/08/2023] Open
Abstract
The worldwide epidemic of coronavirus disease 2019 (COVID-19) is ongoing. Rapid and accurate detection of the causative virus SARS-CoV-2 is vital for the treatment and control of COVID-19. In this study, the comparative sensitivity of different respiratory specimen types were retrospectively analyzed using 3,552 clinical samples from 410 COVID-19 patients confirmed by Guangdong CDC (Center for Disease Control and Prevention). Except for bronchoalveolar lavage fluid (BALF), the sputum possessed the highest positive rate (73.4%-87.5%), followed by nasal swabs (53.1%-85.3%) for both severe and mild cases during the first 14 days after illness onset (d.a.o.). Viral RNA could be detected in all BALF samples collected from the severe group within 14 d.a.o. and lasted up to 46 d.a.o. Moreover, although viral RNA was negative in the upper respiratory samples, it was also positive in BALF samples in most cases from the severe group during treatment. Notably, no viral RNA was detected in BALF samples from the mild group. Despite typical ground-glass opacity observed via computed tomographic scans, no viral RNA was detected in the first three or all upper respiratory tract specimens from some COVID-19 patients. In conclusion, sputum is most sensitive for routine laboratory diagnosis of COVID-19, followed by nasal swabs. Detection of viral RNA in BALF improves diagnostic accuracy in severe COVID-19 patients.
Collapse
Affiliation(s)
- Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen 518112, China
| | - Minghui Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen 518112, China
| | - Jing Yuan
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen 518112, China
| | - Fuxiang Wang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen 518112, China
| | - Zhaoqin Wang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen 518112, China
| | - Jinxiu Li
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen 518112, China
| | - Mingxia Zhang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen 518112, China
| | - Li Xing
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen 518112, China
| | - Jinli Wei
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen 518112, China
| | - Ling Peng
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen 518112, China
| | - Gary Wong
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Haixia Zheng
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen 518112, China
| | - Weibo Wu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen 518112, China
| | - Chenguang Shen
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen 518112, China
| | - Mingfeng Liao
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen 518112, China
| | - Kai Feng
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen 518112, China
| | - Jianming Li
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen 518112, China
| | - Qianting Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen 518112, China
| | - Juanjuan Zhao
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen 518112, China
| | - Lei Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen 518112, China
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen 518112, China
| |
Collapse
|
33
|
Liu WJ, Li J, Zou R, Pan J, Jin T, Li L, Liu P, Zhao Y, Yu X, Wang H, Liu G, Jiang H, Bi Y, Liu L, Yuen KY, Liu Y, Gao GF. Dynamic PB2-E627K substitution of influenza H7N9 virus indicates the in vivo genetic tuning and rapid host adaptation. Proc Natl Acad Sci U S A 2020; 117:23807-23814. [PMID: 32873642 PMCID: PMC7519270 DOI: 10.1073/pnas.2013267117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Avian-origin influenza viruses overcome the bottleneck of the interspecies barrier and infect humans through the evolution of variants toward more efficient replication in mammals. The dynamic adaptation of the genetic substitutions and the correlation with the virulence of avian-origin influenza virus in patients remain largely elusive. Here, based on the one-health approach, we retrieved the original virus-positive samples from patients with H7N9 and their surrounding poultry/environment. The specimens were directly deep sequenced, and the subsequent big data were integrated with the clinical manifestations. Unlike poultry/environment-derived samples with the consistent dominance of avian signature 627E of H7N9 polymerase basic protein 2 (PB2), patient specimens had diverse ratios of mammalian signature 627K, indicating the rapid dynamics of H7N9 adaptation in patients during the infection process. In contrast, both human- and poultry/environment-related viruses had constant dominance of avian signature PB2-701D. The intrahost dynamic adaptation was confirmed by the gradual replacement of 627E by 627K in H7N9 in the longitudinally collected specimens from one patient. These results suggest that host adaptation for better virus replication to new hosts, termed "genetic tuning," actually occurred in H7N9-infected patients in vivo. Notably, our findings also demonstrate the correlation between rapid host adaptation of H7N9 PB2-E627K and the fatal outcome and disease severity in humans. The feature of H7N9 genetic tuning in vivo and its correlation with the disease severity emphasize the importance of testing for the evolution of this avian-origin virus during the course of infection.
Collapse
Affiliation(s)
- William J Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, 518112 Shenzhen, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206 Beijing, China
| | - Jun Li
- Hangzhou Center for Disease Control and Prevention, 310021 Hangzhou, China
| | - Rongrong Zou
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, 518112 Shenzhen, China
| | - Jingcao Pan
- Hangzhou Center for Disease Control and Prevention, 310021 Hangzhou, China
| | - Tao Jin
- BGI-Shenzhen, 518083 Shenzhen, China
- China National GeneBank, BGI-Shenzhen, 518083 Shenzhen, China
| | | | - Peipei Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206 Beijing, China
| | - Yingze Zhao
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206 Beijing, China
| | - Xinfen Yu
- Hangzhou Center for Disease Control and Prevention, 310021 Hangzhou, China
| | - Haoqiu Wang
- Hangzhou Center for Disease Control and Prevention, 310021 Hangzhou, China
| | - Guang Liu
- BGI-Shenzhen, 518083 Shenzhen, China
- China National GeneBank, BGI-Shenzhen, 518083 Shenzhen, China
| | - Hui Jiang
- BGI-Shenzhen, 518083 Shenzhen, China
- China National GeneBank, BGI-Shenzhen, 518083 Shenzhen, China
| | - Yuhai Bi
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, 518112 Shenzhen, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
- Center for Influenza Research and Early-Warning, Chinese Academy of Sciences, 100101 Beijing, China
| | - Lei Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, 518112 Shenzhen, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases and the HKU-Shenzhen Hospital, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, 518112 Shenzhen, China;
| | - George F Gao
- Shenzhen Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious Diseases, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, 518112 Shenzhen, China;
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 102206 Beijing, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101 Beijing, China
- Center for Influenza Research and Early-Warning, Chinese Academy of Sciences, 100101 Beijing, China
| |
Collapse
|
34
|
Bai R, Sikkema RS, Li CR, Munnink BBO, Wu J, Zou L, Jing Y, Lu J, Yuan R, Liao M, Koopmans MP, Ke CW. Antigenic Variation of Avian Influenza A(H5N6) Viruses, Guangdong Province, China, 2014-2018. Emerg Infect Dis 2020. [PMID: 31538920 PMCID: PMC6759240 DOI: 10.3201/2510.190274] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Market surveillance showed continuing circulation of avian influenza A(H5N6) virus in live poultry markets in Guangdong Province in 2017, despite compulsory vaccination for avian influenza A(H5Nx) and A(H7N9). We analyzed H5N6 viruses from 2014-2018 from Guangdong Province, revealing antigenic drift and decreased antibody response against the vaccine strain in vaccinated chickens.
Collapse
|
35
|
Yang Y, Shen C, Li J, Yuan J, Wei J, Huang F, Wang F, Li G, Li Y, Xing L, Peng L, Yang M, Cao M, Zheng H, Wu W, Zou R, Li D, Xu Z, Wang H, Zhang M, Zhang Z, Gao GF, Jiang C, Liu L, Liu Y. Plasma IP-10 and MCP-3 levels are highly associated with disease severity and predict the progression of COVID-19. J Allergy Clin Immunol 2020; 146:119-127.e4. [PMID: 32360286 PMCID: PMC7189843 DOI: 10.1016/j.jaci.2020.04.027] [Citation(s) in RCA: 488] [Impact Index Per Article: 97.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND The outbreak of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 was first reported in Wuhan, December 2019, and continuously poses a serious threat to public health, highlighting the urgent need of identifying biomarkers for disease severity and progression. OBJECTIVE We sought to identify biomarkers for disease severity and progression of COVID-19. METHODS Forty-eight cytokines in the plasma samples from 50 COVID-19 cases including 11 critically ill, 25 severe, and 14 moderate patients were measured and analyzed in combination with clinical data. RESULTS Levels of 14 cytokines were found to be significantly elevated in COVID-19 cases and showed different expression profiles in patients with different disease severity. Moreover, expression levels of IFN-γ-induced protein 10, monocyte chemotactic protein-3, hepatocyte growth factor, monokine-induced gamma IFN, and macrophage inflammatory protein 1 alpha, which were shown to be highly associated with disease severity during disease progression, were remarkably higher in critically ill patients, followed by severe and then the moderate patients. Serial detection of the 5 cytokines in 16 cases showed that continuously high levels were associated with deteriorated progression of disease and fatal outcome. Furthermore, IFN-γ-induced protein 10 and monocyte chemotactic protein-3 were excellent predictors for the progression of COVID-19, and the combination of the 2 cytokines showed the biggest area under the curve of the receiver-operating characteristics calculations with a value of 0.99. CONCLUSIONS In this study, we report biomarkers that are highly associated with disease severity and progression of COVID-19. These findings add to our understanding of the immunopathologic mechanisms of severe acute respiratory syndrome coronavirus 2 infection, and provide potential therapeutic targets and strategies.
Collapse
Affiliation(s)
- Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Chenguang Shen
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Jinxiu Li
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Jing Yuan
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Jinli Wei
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Fengmin Huang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical College, Beijing, China
| | - Fuxiang Wang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Guobao Li
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Yanjie Li
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Li Xing
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Ling Peng
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Minghui Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Mengli Cao
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Haixia Zheng
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Weibo Wu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Rongrong Zou
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Delin Li
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Zhixiang Xu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Haiyan Wang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Mingxia Zhang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - Zheng Zhang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Science, Beijing, China
| | - Chengyu Jiang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical College, Beijing, China.
| | - Lei Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China.
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
36
|
Efficacy of Neuraminidase Inhibitors against H5N6 Highly Pathogenic Avian Influenza Virus in a Nonhuman Primate Model. Antimicrob Agents Chemother 2020; 64:AAC.02561-19. [PMID: 32284377 DOI: 10.1128/aac.02561-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/03/2020] [Indexed: 02/07/2023] Open
Abstract
Attention has been paid to H5N6 highly pathogenic avian influenza virus (HPAIV) because of its heavy burden on the poultry industry and human mortality. Since an influenza A virus carrying N6 neuraminidase (NA) has never spread in humans, the potential for H5N6 HPAIV to cause disease in humans and the efficacy of antiviral drugs against the virus need to be urgently assessed. We used nonhuman primates to elucidate the pathogenesis of H5N6 HPAIV as well as to determine the efficacy of antiviral drugs against the virus. H5N6 HPAIV infection led to high fever in cynomolgus macaques. The lung injury caused by the virus was severe, with diffuse alveolar damage and neutrophil infiltration. In addition, an increase in interferon alpha (IFN-α) showed an inverse correlation with virus titers during the infection process. Oseltamivir was effective for reducing H5N6 HPAIV propagation, and continuous treatment with peramivir reduced virus propagation and the severity of symptoms in the early stage. This study also showed pathologically severe lung injury states in cynomolgus macaques infected with H5N6 HPAIV, even in those that received early antiviral drug treatments, indicating the need for close monitoring and further studies on virus pathogenicity and new antiviral therapies.
Collapse
|
37
|
Liu Y, Zhang C, Huang F, Yang Y, Wang F, Yuan J, Zhang Z, Qin Y, Li X, Zhao D, Li S, Tan S, Wang Z, Li J, Shen C, Li J, Peng L, Wu W, Cao M, Xing L, Xu Z, Chen L, Zhou C, Liu WJ, Liu L, Jiang C. Elevated plasma levels of selective cytokines in COVID-19 patients reflect viral load and lung injury. Natl Sci Rev 2020; 7:1003-1011. [PMID: 34676126 PMCID: PMC7107806 DOI: 10.1093/nsr/nwaa037] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/21/2020] [Accepted: 03/02/2020] [Indexed: 01/01/2023] Open
Abstract
A recent outbreak of pneumonia in Wuhan, China was found to be caused by a 2019 novel coronavirus (2019-nCoV or SARS-CoV-2 or HCoV-19). We previously reported the clinical features of 12 patients with 2019-nCoV infections in Shenzhen, China. To further understand the pathogenesis of COVID-19 and find better ways to monitor and treat the disease caused by 2019-nCoV, we measured the levels of 48 cytokines in the blood plasma of those 12 COVID-19 patients. Thirty-eight out of the 48 measured cytokines in the plasma of 2019-nCoV-infected patients were significantly elevated compared to healthy individuals. Seventeen cytokines were linked to 2019-nCoV loads. Fifteen cytokines, namely M-CSF, IL-10, IFN-α2, IL-17, IL-4, IP-10, IL-7, IL-1ra, G-CSF, IL-12, IFN-γ, IL-1α, IL-2, HGF and PDGF-BB, were strongly associated with the lung-injury Murray score and could be used to predict the disease severity of 2019-nCoV infections by calculating the area under the curve of the receiver-operating characteristics. Our results suggest that 2019-nCoV infections trigger extensive changes in a wide array of cytokines, some of which could be potential biomarkers of disease severity of 2019-nCoV infections. These findings will likely improve our understanding of the immunopathologic mechanisms of this emerging disease. Our results also suggest that modulators of cytokine responses may play a therapeutic role in combating the disease once the functions of these elevated cytokines have been characterized.
Collapse
Affiliation(s)
- Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Cong Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical College, Beijing 100005, China
| | - Fengming Huang
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical College, Beijing 100005, China
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Fuxiang Wang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Jing Yuan
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Zheng Zhang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Yuhao Qin
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical College, Beijing 100005, China
| | - Xiaoyun Li
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical College, Beijing 100005, China
| | - Dandan Zhao
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical College, Beijing 100005, China
| | - Shunwang Li
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical College, Beijing 100005, China
| | - Shuguang Tan
- The NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China
| | - Zhaoqin Wang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Jinxiu Li
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Chenguang Shen
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Jianming Li
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Ling Peng
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Weibo Wu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Mengli Cao
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Li Xing
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Zhixiang Xu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Li Chen
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Congzhao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - William J Liu
- The NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China
| | - Lei Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China
| | - Chengyu Jiang
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
38
|
Influenza A virus PB1‐F2 protein: An ambivalent innate immune modulator and virulence factor. J Leukoc Biol 2020; 107:763-771. [DOI: 10.1002/jlb.4mr0320-206r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/14/2022] Open
|
39
|
Liu Y, Yang Y, Zhang C, Huang F, Wang F, Yuan J, Wang Z, Li J, Li J, Feng C, Zhang Z, Wang L, Peng L, Chen L, Qin Y, Zhao D, Tan S, Yin L, Xu J, Zhou C, Jiang C, Liu L. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. SCIENCE CHINA. LIFE SCIENCES 2020; 63:364-374. [PMID: 32048163 PMCID: PMC7088566 DOI: 10.1007/s11427-020-1643-8] [Citation(s) in RCA: 1326] [Impact Index Per Article: 265.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 02/08/2020] [Indexed: 11/29/2022]
Abstract
The outbreak of the 2019-nCoV infection began in December 2019 in Wuhan, Hubei province, and rapidly spread to many provinces in China as well as other countries. Here we report the epidemiological, clinical, laboratory, and radiological characteristics, as well as potential biomarkers for predicting disease severity in 2019-nCoV-infected patients in Shenzhen, China. All 12 cases of the 2019-nCoV-infected patients developed pneumonia and half of them developed acute respiratory distress syndrome (ARDS). The most common laboratory abnormalities were hypoalbuminemia, lymphopenia, decreased percentage of lymphocytes (LYM) and neutrophils (NEU), elevated C-reactive protein (CRP) and lactate dehydrogenase (LDH), and decreased CD8 count. The viral load of 2019-nCoV detected from patient respiratory tracts was positively linked to lung disease severity. ALB, LYM, LYM (%), LDH, NEU (%), and CRP were highly correlated to the acute lung injury. Age, viral load, lung injury score, and blood biochemistry indexes, albumin (ALB), CRP, LDH, LYM (%), LYM, and NEU (%), may be predictors of disease severity. Moreover, the Angiotensin II level in the plasma sample from 2019-nCoV infected patients was markedly elevated and linearly associated to viral load and lung injury. Our results suggest a number of potential diagnosis biomarkers and angiotensin receptor blocker (ARB) drugs for potential repurposing treatment of 2019-nCoV infection.
Collapse
Affiliation(s)
- Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China.
| | - Yang Yang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China
| | - Cong Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical College, Beijing, 100005, China
| | - Fengming Huang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical College, Beijing, 100005, China
| | - Fuxiang Wang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China
| | - Jing Yuan
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China
| | - Zhaoqin Wang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China
| | - Jinxiu Li
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China
| | - Jianming Li
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China
| | - Cheng Feng
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China
| | - Zheng Zhang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China
| | - Lifei Wang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China
| | - Ling Peng
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China
| | - Li Chen
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China
| | - Yuhao Qin
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical College, Beijing, 100005, China
| | - Dandan Zhao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical College, Beijing, 100005, China
| | - Shuguang Tan
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lu Yin
- Emergence Department Peking Union Medical College Hospital, Beijing, 100731, China
| | - Jun Xu
- Emergence Department Peking Union Medical College Hospital, Beijing, 100731, China
| | - Congzhao Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Chengyu Jiang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Biochemistry, Peking Union Medical College, Beijing, 100005, China.
| | - Lei Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen, 518112, China.
| |
Collapse
|
40
|
|
41
|
Sun J, Zhao L, Li X, Meng W, Chu D, Yang X, Peng P, Zhi M, Qin S, Fu T, Li J, Lu S, Wang W, He X, Yu M, Lv X, Ma W, Liao M, Liu Z, Zhang G, Wang Y, Li Y, Chai H, Lu J, Hua Y. Novel H5N6 avian influenza virus reassortants with European H5N8 isolated in migratory birds, China. Transbound Emerg Dis 2019; 67:648-660. [PMID: 31580519 DOI: 10.1111/tbed.13380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 12/21/2022]
Abstract
Five novel H5N6 influenza viruses, including four highly pathogenic avian influenza viruses and one low pathogenic avian influenza virus, were isolated from migratory birds in Ningxia, China, in November 2017. To understand the genetic origination of the novel H5N6 virus, and the infectivity and pathogenicity of the four highly pathogenic avian influenza viruses in mammals, phylogeographic analyses and infection studies in mice were performed. The phylogenetic and phylogeographic analyses showed that the H5N6 isolates, which are closely related to the viruses from Korea, Japan and the Netherlands, originated from reassortant virus between H5N8 and HxN6 viruses from western Russia. The animal study revealed that the SBD-87 isolate presented moderate virulence in mice, suggesting a potential public risk to humans and a potential threat to public health.
Collapse
Affiliation(s)
- Jing Sun
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Lu Zhao
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Harbin, China
| | - Xiang Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Weiyue Meng
- Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Dong Chu
- General Station for Surveillance of Wildlife Disease & Wildlife Borne Diseases, National Forestry and Grassland Administration, Shenyang, China
| | - Xiaoyu Yang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Peng Peng
- General Station for Surveillance of Wildlife Disease & Wildlife Borne Diseases, National Forestry and Grassland Administration, Shenyang, China
| | - Min Zhi
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Siyuan Qin
- General Station for Surveillance of Wildlife Disease & Wildlife Borne Diseases, National Forestry and Grassland Administration, Shenyang, China
| | - Tian Fu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Jinghao Li
- General Station for Surveillance of Wildlife Disease & Wildlife Borne Diseases, National Forestry and Grassland Administration, Shenyang, China
| | - Shaoxia Lu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Weidong Wang
- Monitoring Center for Terrestrial Wildlife Epidemic Diseases, Yinchuan, China
| | - Xin He
- Monitoring Center for Terrestrial Wildlife Epidemic Diseases, Yinchuan, China
| | - Mengqi Yu
- Monitoring Center for Terrestrial Wildlife Epidemic Diseases, Yinchuan, China
| | - Xinru Lv
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Wenge Ma
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Mengying Liao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Zhensheng Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China.,Key Laboratory of Conservation Biology, National Forestry and Grassland Administration, Harbin, China
| | - Guogang Zhang
- Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Yulong Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Yanbing Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Harbin, China
| | - Hongliang Chai
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China.,Key Laboratory of Conservation Biology, National Forestry and Grassland Administration, Harbin, China
| | - Jun Lu
- Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Yuping Hua
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| |
Collapse
|
42
|
Zhou B, Liang X, Feng Q, Li J, Pan X, Xie P, Jiang Z, Yang Z. Ergosterol peroxide suppresses influenza A virus-induced pro-inflammatory response and apoptosis by blocking RIG-I signaling. Eur J Pharmacol 2019; 860:172543. [PMID: 31323223 DOI: 10.1016/j.ejphar.2019.172543] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/06/2019] [Accepted: 07/15/2019] [Indexed: 12/25/2022]
Abstract
Ergosterol peroxide has been shown to exhibit anti-tumor, antioxidant and anti-bacterial properties. However, the effects of ergosterol peroxide isolated from the herbal Baphicacanthus cusia root on influenza virus infection remain poorly understood. In the present study, ergosterol peroxide (compound 22) was obtained from the B. cusia root and subjected to investigation regarding its immunoregulatory effect on influenza A virus (IAV)-induced inflammation in A549 human alveolar epithelial cells. The structure of compound 22 isolated from B. cusia root. was elucidated by NMR analyses. Structure determination showed that the chemical structure of compound 22 closely resembles that of ergosterol peroxide. We observed that ergosterol peroxide treatment significantly suppressed IAV-induced upregulation of RIG-I expression. Additionally, ergosterol peroxide inhibited the activation of RIG-I downstream signaling pathways, including p38 MAP kinase and NF-κB, which ultimately resulted in the reduced production of an array of pro-inflammatory mediators and interferons (IFN-β and IFN-λ1). Interestingly, inhibitory effects of ergosterol peroxide on the expression of IFNs did not affect the expression of antiviral effectors or enhance viral replication. On the other hand, ergosterol peroxide effectively abolished the amplified production of pro-inflammatory mediators in cells pretreated with IFN-β (500 ng/ml) prior to IAV infection. Moreover, Annexin V and Hoechst 33258 staining revealed that increased apoptosis of IAV-infected cells was reversed by the presence of ergosterol peroxide. Our findings suggest that ergosterol peroxide from the B. cusia root suppressed IAV-associated inflammation and apoptosis via blocking RIG-I signaling, which may serve as a supplementary approach to the treatment of influenza.
Collapse
Affiliation(s)
- Beixian Zhou
- Department of Pharmacy, The People's Hospital of Gaozhou, Gaozhou, Guangdong, 525200, China
| | - Xiaoli Liang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, National Clinical Centre of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Qitong Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China
| | - Jing Li
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, National Clinical Centre of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Xiping Pan
- Institute of Chinese Integrative Medicine, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Peifang Xie
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, National Clinical Centre of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510120, China
| | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Diseases, Guangzhou Institute of Respiratory Health, National Clinical Centre of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 510120, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau, 999078, China.
| |
Collapse
|
43
|
Bai R, Sikkema RS, Li CR, Munnink BBO, Wu J, Zou L, Jing Y, Lu J, Yuan R, Liao M, Koopmans MP, Ke CW. Antigenic Variation of Avian Influenza A(H5N6) Viruses, Guangdong Province, China, 2014-2018. Emerg Infect Dis 2019; 25:1932-1945. [PMID: 31538920 PMCID: PMC6759240 DOI: 10.3201/eid2510.190274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Market surveillance showed continuing circulation of avian influenza A(H5N6) virus in live poultry markets in Guangdong Province in 2017, despite compulsory vaccination for avian influenza A(H5Nx) and A(H7N9). We analyzed H5N6 viruses from 2014-2018 from Guangdong Province, revealing antigenic drift and decreased antibody response against the vaccine strain in vaccinated chickens.
Collapse
Affiliation(s)
| | | | - Cong rong Li
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China (R. Bai, C. Li, J. Wu, L. Zou, Y. Jing, J. Lu, R. Yuan, C. Ke)
- Erasmus Medical Centre, Rotterdam, the Netherlands (R.S. Sikkema, B.B. Oude Munnink, M.P.G. Koopmans)
- Southern Medical University Guangzhou (C. Li, Y. Jing, C. Ke)
- South China Agricultural University, Guangzhou (M. Liao)
| | - Bas B. Oude Munnink
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China (R. Bai, C. Li, J. Wu, L. Zou, Y. Jing, J. Lu, R. Yuan, C. Ke)
- Erasmus Medical Centre, Rotterdam, the Netherlands (R.S. Sikkema, B.B. Oude Munnink, M.P.G. Koopmans)
- Southern Medical University Guangzhou (C. Li, Y. Jing, C. Ke)
- South China Agricultural University, Guangzhou (M. Liao)
| | - Jie Wu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China (R. Bai, C. Li, J. Wu, L. Zou, Y. Jing, J. Lu, R. Yuan, C. Ke)
- Erasmus Medical Centre, Rotterdam, the Netherlands (R.S. Sikkema, B.B. Oude Munnink, M.P.G. Koopmans)
- Southern Medical University Guangzhou (C. Li, Y. Jing, C. Ke)
- South China Agricultural University, Guangzhou (M. Liao)
| | - Lirong Zou
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China (R. Bai, C. Li, J. Wu, L. Zou, Y. Jing, J. Lu, R. Yuan, C. Ke)
- Erasmus Medical Centre, Rotterdam, the Netherlands (R.S. Sikkema, B.B. Oude Munnink, M.P.G. Koopmans)
- Southern Medical University Guangzhou (C. Li, Y. Jing, C. Ke)
- South China Agricultural University, Guangzhou (M. Liao)
| | - Yi Jing
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China (R. Bai, C. Li, J. Wu, L. Zou, Y. Jing, J. Lu, R. Yuan, C. Ke)
- Erasmus Medical Centre, Rotterdam, the Netherlands (R.S. Sikkema, B.B. Oude Munnink, M.P.G. Koopmans)
- Southern Medical University Guangzhou (C. Li, Y. Jing, C. Ke)
- South China Agricultural University, Guangzhou (M. Liao)
| | - Jing Lu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China (R. Bai, C. Li, J. Wu, L. Zou, Y. Jing, J. Lu, R. Yuan, C. Ke)
- Erasmus Medical Centre, Rotterdam, the Netherlands (R.S. Sikkema, B.B. Oude Munnink, M.P.G. Koopmans)
- Southern Medical University Guangzhou (C. Li, Y. Jing, C. Ke)
- South China Agricultural University, Guangzhou (M. Liao)
| | - Runyu Yuan
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China (R. Bai, C. Li, J. Wu, L. Zou, Y. Jing, J. Lu, R. Yuan, C. Ke)
- Erasmus Medical Centre, Rotterdam, the Netherlands (R.S. Sikkema, B.B. Oude Munnink, M.P.G. Koopmans)
- Southern Medical University Guangzhou (C. Li, Y. Jing, C. Ke)
- South China Agricultural University, Guangzhou (M. Liao)
| | - Ming Liao
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China (R. Bai, C. Li, J. Wu, L. Zou, Y. Jing, J. Lu, R. Yuan, C. Ke)
- Erasmus Medical Centre, Rotterdam, the Netherlands (R.S. Sikkema, B.B. Oude Munnink, M.P.G. Koopmans)
- Southern Medical University Guangzhou (C. Li, Y. Jing, C. Ke)
- South China Agricultural University, Guangzhou (M. Liao)
| | | | | |
Collapse
|
44
|
Ramamurthy M, Sankar S, Abraham AM, Nandagopal B, Sridharan G. B cell epitopes in the intrinsically disordered regions of neuraminidase and hemagglutinin proteins of H5N1 and H9N2 avian influenza viruses for peptide-based vaccine development. J Cell Biochem 2019; 120:17534-17544. [PMID: 31111560 DOI: 10.1002/jcb.29017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/15/2019] [Accepted: 04/18/2019] [Indexed: 12/12/2022]
Abstract
Avian influenza viruses (AIV) are very active in several parts of the globe and are the cause of huge economic loss for the poultry industry and also human fatalities. Three dimensional modeling was carried out for neuraminidase (NA) and hemagglutinin (HA) proteins of AIV. The C-score, estimated TM-Score, and estimated root-mean-square deviation (RMSD) score for NA of H5N1 were -1.18, 0.57 ± 0.15, and 9.8 ± 7.6, respectively. The C-score, estimated TM-Score, and estimated RMSD score for NA of H9N2 were -1.43, 0.54 ± 0.15, and 10.5 ± 4.6, respectively. The C-score, estimated TM-Score, and estimated RMSD score for HA of H5N1 were -0.03, 0.71 ± 0.12, and 7.7 ± 4.3, respectively. The C-score, estimated TM-Score, and estimated RMSD score for HA of H9N2 were -0.57, 0.64 ± 0.13, and 8.9 ± 4.6, respectively. Intrinsically disordered regions were identified for the NA and HA proteins of H5N1 and H9N2 with the use of PONDR program. Linear B cell epitope was predicted using BepiPred 2 program for NA and HA of H5N1 and H9N2 avian influenza strains. Discontinuous epitopes were predicted by Discotope 2 program. The linear epitopes that were considered likely to be immunogenic and within the intrinsically disordered region for the NA of H5N1 was TKSTNSRSGFEMIWDPNGWTGTDSSFSVK, and for H9N2 it was VGDTPRNDDSSSSSNCRDPNNERGAP. In the case of HA of H5N1, it was QRLVPKIATRSKVNGQSG and ATGLRNSPQRERRRKK; for H9N2 it was INRTFKPLIGPRPLVNGLQG and SLKLAVGLRNVPARSSR. The discontinuous epitopes of NA of H5N1 and H9N2 were identified at various regions of the protein structure spanning from amino acid residue positions 90 to 449 and 107 to 469, respectively. Similarly, the discontinuous epitopes of HA of H5N1 and H9N2 were identified in the amino acid residue positions 27 to 517 and 136 to 521, respectively. This study has identified potential and highly immunogenic linear and conformational B-cell epitopes towards developing a vaccine against AIV both for human and poultry use.
Collapse
Affiliation(s)
- Mageshbabu Ramamurthy
- Sri Sakthi Amma Institute of Biomedical Research, Sri Narayani Hospital and Research Centre, Vellore, Tamil Nadu, India
| | - Sathish Sankar
- Sri Sakthi Amma Institute of Biomedical Research, Sri Narayani Hospital and Research Centre, Vellore, Tamil Nadu, India
| | - Asha Mary Abraham
- Department of Clinical Virology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Balaji Nandagopal
- Sri Sakthi Amma Institute of Biomedical Research, Sri Narayani Hospital and Research Centre, Vellore, Tamil Nadu, India
| | - Gopalan Sridharan
- Sri Sakthi Amma Institute of Biomedical Research, Sri Narayani Hospital and Research Centre, Vellore, Tamil Nadu, India
| |
Collapse
|
45
|
Ma C, Cui S, Sun Y, Zhao J, Zhang D, Zhang L, Zhang Y, Pan Y, Wu S, Duan W, Zhang M, Yang P, Wang Q. Avian influenza A (H9N2) virus infections among poultry workers, swine workers, and the general population in Beijing, China, 2013-2016: A serological cohort study. Influenza Other Respir Viruses 2019; 13:415-425. [PMID: 30884184 PMCID: PMC6586185 DOI: 10.1111/irv.12641] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/21/2019] [Accepted: 02/23/2019] [Indexed: 12/25/2022] Open
Abstract
Background Few studies have reported on the seroprevalence of antibodies against avian influenza A (H9N2) virus and the incidence of these infections in the northern China and among swine workers. Methods We conducted a serological cohort study among people working with poultry or swine or the general population in Beijing, China. It comprised four cross‐sectional serological surveys in November 2013, April 2014, April 2015, and April 2016. Blood samples collected from the participants were tested for anti‐H9N2 antibodies using a hemagglutination‐inhibition (HI) assay. Multivariable Poisson regression model was then used to compare the person‐month incidence rates for H9N2 viral infections among the three groups, assessed by incidence rate ratio (IRR). Results In the four cross‐sectional surveys, the highest seroprevalence of anti‐H9N2 antibodies (HI titer ≥ 80) was recorded in the poultry workers (2.77%, 19/685) in April 2016, while the lowest was recorded in the general population (0.09%, 1/1135) in April 2015. The highest incidence density rate for H9N2 infections across the whole study period was recorded among the poultry workers (3.75/1000 person‐months), followed by the swine workers (1.94/1000 person‐months) and the general population (1.78/1000 person‐months). Multivariable analysis showed that the poultry workers were at higher risk (IRR: 2.42, 95% CI: 1.07‐5.48; P = 0.034) of contracting H9N2 virus than the general population. Conclusions Although the seroprevalence of H9N2 antibodies was low in Beijing, the poultry workers were at higher risk of contracting H9N2 viral infections than the general population. Closer monitoring and strengthened protection measures for poultry workers are warranted.
Collapse
Affiliation(s)
- Chunna Ma
- Institute for Infectious Disease and Endemic Disease Control, Beijing Municipal Center for Disease Prevention and Control, Beijing, China.,Institute for Infectious Disease and Endemic Disease Control, Beijing Research Center for Preventive Medicine, Beijing, China
| | - Shujuan Cui
- Institute for Infectious Disease and Endemic Disease Control, Beijing Municipal Center for Disease Prevention and Control, Beijing, China.,Institute for Infectious Disease and Endemic Disease Control, Beijing Research Center for Preventive Medicine, Beijing, China
| | - Ying Sun
- Institute for Infectious Disease and Endemic Disease Control, Beijing Municipal Center for Disease Prevention and Control, Beijing, China.,Institute for Infectious Disease and Endemic Disease Control, Beijing Research Center for Preventive Medicine, Beijing, China
| | - Jiachen Zhao
- Institute for Infectious Disease and Endemic Disease Control, Beijing Municipal Center for Disease Prevention and Control, Beijing, China.,Institute for Infectious Disease and Endemic Disease Control, Beijing Research Center for Preventive Medicine, Beijing, China
| | - Daitao Zhang
- Institute for Infectious Disease and Endemic Disease Control, Beijing Municipal Center for Disease Prevention and Control, Beijing, China.,Institute for Infectious Disease and Endemic Disease Control, Beijing Research Center for Preventive Medicine, Beijing, China
| | - Li Zhang
- Institute for Infectious Disease and Endemic Disease Control, Beijing Municipal Center for Disease Prevention and Control, Beijing, China.,Institute for Infectious Disease and Endemic Disease Control, Beijing Research Center for Preventive Medicine, Beijing, China
| | - Yi Zhang
- Institute for Infectious Disease and Endemic Disease Control, Beijing Municipal Center for Disease Prevention and Control, Beijing, China.,Institute for Infectious Disease and Endemic Disease Control, Beijing Research Center for Preventive Medicine, Beijing, China
| | - Yang Pan
- Institute for Infectious Disease and Endemic Disease Control, Beijing Municipal Center for Disease Prevention and Control, Beijing, China.,Institute for Infectious Disease and Endemic Disease Control, Beijing Research Center for Preventive Medicine, Beijing, China.,School of Public Health, Capital Medical University, Beijing, China
| | - Shuangsheng Wu
- Institute for Infectious Disease and Endemic Disease Control, Beijing Municipal Center for Disease Prevention and Control, Beijing, China.,Institute for Infectious Disease and Endemic Disease Control, Beijing Research Center for Preventive Medicine, Beijing, China
| | - Wei Duan
- Institute for Infectious Disease and Endemic Disease Control, Beijing Municipal Center for Disease Prevention and Control, Beijing, China.,Institute for Infectious Disease and Endemic Disease Control, Beijing Research Center for Preventive Medicine, Beijing, China
| | - Man Zhang
- Institute for Infectious Disease and Endemic Disease Control, Beijing Municipal Center for Disease Prevention and Control, Beijing, China.,Institute for Infectious Disease and Endemic Disease Control, Beijing Research Center for Preventive Medicine, Beijing, China
| | - Peng Yang
- Institute for Infectious Disease and Endemic Disease Control, Beijing Municipal Center for Disease Prevention and Control, Beijing, China.,Institute for Infectious Disease and Endemic Disease Control, Beijing Research Center for Preventive Medicine, Beijing, China.,School of Public Health, Capital Medical University, Beijing, China
| | - Quanyi Wang
- Institute for Infectious Disease and Endemic Disease Control, Beijing Municipal Center for Disease Prevention and Control, Beijing, China.,Institute for Infectious Disease and Endemic Disease Control, Beijing Research Center for Preventive Medicine, Beijing, China
| |
Collapse
|
46
|
Adlhoch C, Kuiken T, Mulatti P, Smietanka K, Staubach C, Muñoz Guajardo I, Amato L, Baldinelli F. Avian influenza overview May - August 2018. EFSA J 2018; 16:e05430. [PMID: 32626052 PMCID: PMC7009402 DOI: 10.2903/j.efsa.2018.5430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Between 16 May and 15 August 2018, three highly pathogenic avian influenza (HPAI) A(H5N8) outbreaks in poultry establishments and three HPAI A(H5N6) outbreaks in wild birds were reported in Europe. Three low pathogenic avian influenza (LPAI) outbreaks were reported in three Member States. Few HPAI and LPAI bird cases have been detected in this period of the year, in accordance with the seasonal expected pattern of LPAI and HPAI. There is no evidence to date that HPAI A(H5N8) and A(H5N6) viruses circulating in Europe have caused any human infections. The risk of zoonotic transmission to the general public in Europe is considered to be very low. Several HPAI outbreaks in poultry were reported during this period from Russia. The presence of the A(H5N2) and A(H5N8) viruses in parts of Russia connected with fall migration routes of wild birds is of concern for possible introduction and spread with wild birds migrating to the EU. Although few AI outbreaks were observed in Africa, Asia and the Middle East during the reporting period, the probability of AI virus introductions from non‐EU countries via wild birds particularly via the north‐eastern route from Russia is increasing, as the fall migration of wild birds will start in the coming weeks. Further, the lower temperatures in autumn and winter may facilitate the environmental survival of avian influenza viruses potentially introduced to Europe.
Collapse
|