1
|
Assone T, Menezes SM, Gonçalves FDT, Folgosi VA, Braz M, Smid J, Haziot ME, Marcusso RMN, Dahy FE, de Oliveira ACP, Vanderlinden E, Claes S, Daelemans D, Vercauteren J, Schols D, Casseb J, Van Weyenbergh J. IL-10 predicts incident neuroinflammatory disease and proviral load dynamics in a large Brazilian cohort of people living with human T-lymphotropic virus type 1. Front Immunol 2024; 15:1416476. [PMID: 38962007 PMCID: PMC11219816 DOI: 10.3389/fimmu.2024.1416476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/07/2024] [Indexed: 07/05/2024] Open
Abstract
Human T-Lymphotropic Virus type-1 (HTLV-1) is a unique retrovirus associated with both leukemogenesis and a specific neuroinflammatory condition known as HTLV-1-Associated Myelopathy (HAM). Currently, most proposed HAM biomarkers require invasive CSF sampling, which is not suitable for large cohorts or repeated prospective screening. To identify non-invasive biomarkers for incident HAM in a large Brazilian cohort of PLwHTLV-1 (n=615 with 6,673 person-years of clinical follow-up), we selected all plasma samples available at the time of entry in the cohort (between 1997-2019), in which up to 43 cytokines/chemokines and immune mediators were measured. Thus, we selected 110 People Living with HTLV-1 (PLwHTLV-1), of which 68 were neurologically asymptomatic (AS) at baseline and 42 HAM patients. Nine incident HAM cases were identified among 68 AS during follow-up. Using multivariate logistic regression, we found that lower IL-10, IL-4 and female sex were independent predictors of clinical progression to definite HAM (AUROC 0.91), and outperformed previously suggested biomarkers age, sex and proviral load (AUROC 0.77). Moreover, baseline IL-10 significantly predicted proviral load dynamics at follow-up in all PLwHTLV-1. In an exploratory analysis, we identified additional plasma biomarkers which were able to discriminate iHAM from either AS (IL6Rα, IL-27) or HAM (IL-29/IFN-λ1, Osteopontin, and TNFR2). In conclusion, female sex and low anti-inflammatory IL-10 and IL-4 are independent risk factors for incident HAM in PLwHTLV-1,while proviral load is not, in agreement with IL-10 being upstream of proviral load dynamics. Additional candidate biomarkers IL-29/IL-6R/TNFR2 represent plausible therapeutic targets for future clinical trials in HAM patients.
Collapse
Affiliation(s)
- Tatiane Assone
- Laboratory of Dermatology and Immunodeficiencies, Department of Dermatology, Medical School, University of São Paulo Brazil/Institute of Tropical Medicine of São Paulo, São Paulo, Brazil
- Laboratory of Immunohematology and Forensic Hematology-LIM40, Department of Forensic Medicine, Medical Ethics, Social Medicine and Work, University of São Paulo Medical School, São Paulo, Brazil
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Soraya Maria Menezes
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Fernanda de Toledo Gonçalves
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Victor Angelo Folgosi
- Laboratory of Dermatology and Immunodeficiencies, Department of Dermatology, Medical School, University of São Paulo Brazil/Institute of Tropical Medicine of São Paulo, São Paulo, Brazil
- Laboratory of Immunohematology and Forensic Hematology-LIM40, Department of Forensic Medicine, Medical Ethics, Social Medicine and Work, University of São Paulo Medical School, São Paulo, Brazil
| | - Marcos Braz
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
- Programa de Pós-graduação em Ciências da Saúde, Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Bahia, Brazil
| | - Jerusa Smid
- Institute of Infectious Diseases “Emilio Ribas” (IIER) de São Paulo, São Paulo, Brazil
| | - Michel E. Haziot
- Institute of Infectious Diseases “Emilio Ribas” (IIER) de São Paulo, São Paulo, Brazil
| | - Rosa M. N. Marcusso
- Institute of Infectious Diseases “Emilio Ribas” (IIER) de São Paulo, São Paulo, Brazil
| | - Flávia E. Dahy
- Institute of Infectious Diseases “Emilio Ribas” (IIER) de São Paulo, São Paulo, Brazil
| | | | - Evelien Vanderlinden
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Sandra Claes
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Dirk Daelemans
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Jurgen Vercauteren
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Jorge Casseb
- Laboratory of Dermatology and Immunodeficiencies, Department of Dermatology, Medical School, University of São Paulo Brazil/Institute of Tropical Medicine of São Paulo, São Paulo, Brazil
- Laboratory of Immunohematology and Forensic Hematology-LIM40, Department of Forensic Medicine, Medical Ethics, Social Medicine and Work, University of São Paulo Medical School, São Paulo, Brazil
| | - Johan Van Weyenbergh
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
2
|
Rocamonde B, Futsch N, Orii N, Allatif O, Penalva de Oliveira AC, Mahieux R, Casseb J, Dutartre H. Immunoprofiling of fresh HAM/TSP blood samples shows altered innate cell responsiveness. PLoS Negl Trop Dis 2021; 15:e0009940. [PMID: 34767551 PMCID: PMC8631667 DOI: 10.1371/journal.pntd.0009940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/30/2021] [Accepted: 10/21/2021] [Indexed: 11/28/2022] Open
Abstract
The Human T-cell Leukemia Virus-1 (HTLV-1)-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP) is a devastating neurodegenerative disease with no effective treatment, which affects an increasing number of people in Brazil. Immune cells from the adaptive compartment are involved in disease manifestation but whether innate cell functions participate in disease occurrence has not been evaluated. In this study, we analyzed innate cell responses at steady state and after blood cell stimulation using an agonist of the toll-like receptor (TLR)7/8-signaling pathway in blood samples from HTLV-1-infected volunteers, including asymptomatic carriers and HAM/TSP patients. We observed a lower response of IFNα+ DCs and monocytes in HAM/TSP compared to asymptomatic carriers, as a potential consequence of corticosteroid treatments. In contrast, a higher frequency of monocytes producing MIP-1α and pDC producing IL-12 was detected in HAM/TSP blood samples, together with higher IFNγ responsiveness of NK cells, suggesting an increased sensitivity to inflammatory response in HAM/TSP patients compared to asymptomatic carriers. This sustained inflammatory responsiveness could be linked or be at the origin of the neuroinflammatory status in HAM/TSP patients. Therefore, the mechanism underlying this dysregulations could shed light onto the origins of HAM/TSP disease. The infection by the Human T-cell Leukemia Virus-1 (HTLV-1) is quite frequent in Brazil. Between 1–5% of infected individuals develop a devastating neurodegenerative disease (HAM/TSP) as a result of a sustained inflammation in the central nervous system, with no effective treatment. So far, inflammation has been linked to the deregulated activation of T-cells, but the role of innate cells has not been investigated yet. In this work, we aimed to characterize the responsiveness of innate cells, as this immune population is cornerstone of efficient immune response, but also might participate in disease exacerbation found in chronic infection. Our findings suggest an impaired antiviral response and increased inflammatory responsiveness by dendritic cells and monocytes in HAM/TSP patients compared to asymptomatic carriers. This sustained inflammatory responsiveness upon innate cell activation could participate in the establishment of the HAM/TSP disease.
Collapse
Affiliation(s)
- Brenda Rocamonde
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111—Université Claude Bernard Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France, Equipe labelisée par la Fondation pour la Recherche Médicale, Labex Ecofect
| | - Nicolas Futsch
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111—Université Claude Bernard Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France, Equipe labelisée par la Fondation pour la Recherche Médicale, Labex Ecofect
| | - Noemia Orii
- Faculdade de Medicina/Instituto de Medicina Tropical de São Paulo/Universidade da São Paulo, São Paulo, SP, Brazil
| | - Omran Allatif
- International Center for Research in Infectiology, service BIBS, INSERM U1111—Université Claude Bernard Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France
| | | | - Renaud Mahieux
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111—Université Claude Bernard Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France, Equipe labelisée par la Fondation pour la Recherche Médicale, Labex Ecofect
| | - Jorge Casseb
- Faculdade de Medicina/Instituto de Medicina Tropical de São Paulo/Universidade da São Paulo, São Paulo, SP, Brazil
| | - Hélène Dutartre
- International Center for Research in Infectiology, Retroviral Oncogenesis Laboratory, INSERM U1111—Université Claude Bernard Lyon 1, CNRS, Ecole Normale Supérieure de Lyon, Université Lyon, Lyon, France, Equipe labelisée par la Fondation pour la Recherche Médicale, Labex Ecofect
- * E-mail:
| |
Collapse
|
3
|
Mukund K, Nayak P, Ashokkumar C, Rao S, Almeda J, Betancourt-Garcia MM, Sindhi R, Subramaniam S. Immune Response in Severe and Non-Severe Coronavirus Disease 2019 (COVID-19) Infection: A Mechanistic Landscape. Front Immunol 2021; 12:738073. [PMID: 34721400 PMCID: PMC8548832 DOI: 10.3389/fimmu.2021.738073] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/08/2021] [Indexed: 12/18/2022] Open
Abstract
The mechanisms underlying the immune remodeling and severity response in coronavirus disease 2019 (COVID-19) are yet to be fully elucidated. Our comprehensive integrative analyses of single-cell RNA sequencing (scRNAseq) data from four published studies, in patients with mild/moderate and severe infections, indicate a robust expansion and mobilization of the innate immune response and highlight mechanisms by which low-density neutrophils and megakaryocytes play a crucial role in the cross talk between lymphoid and myeloid lineages. We also document a marked reduction of several lymphoid cell types, particularly natural killer cells, mucosal-associated invariant T (MAIT) cells, and gamma-delta T (γδT) cells, and a robust expansion and extensive heterogeneity within plasmablasts, especially in severe COVID-19 patients. We confirm the changes in cellular abundances for certain immune cell types within a new patient cohort. While the cellular heterogeneity in COVID-19 extends across cells in both lineages, we consistently observe certain subsets respond more potently to interferon type I (IFN-I) and display increased cellular abundances across the spectrum of severity, as compared with healthy subjects. However, we identify these expanded subsets to have a more muted response to IFN-I within severe disease compared to non-severe disease. Our analyses further highlight an increased aggregation potential of the myeloid subsets, particularly monocytes, in COVID-19. Finally, we provide detailed mechanistic insights into the interaction between lymphoid and myeloid lineages, which contributes to the multisystemic phenotype of COVID-19, distinguishing severe from non-severe responses.
Collapse
Affiliation(s)
- Kavitha Mukund
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Priya Nayak
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Chethan Ashokkumar
- Plexision Inc., Pittsburgh, PA, United States
- Hillman Center for Pediatric Transplantation, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sohail Rao
- DHR Health and DHR Health Institute for Research and Development, Edinburg, TX, United States
| | - Jose Almeda
- DHR Health and DHR Health Institute for Research and Development, Edinburg, TX, United States
| | | | - Rakesh Sindhi
- Plexision Inc., Pittsburgh, PA, United States
- Hillman Center for Pediatric Transplantation, University of Pittsburgh, Pittsburgh, PA, United States
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
4
|
Aghajanian S, Teymoori-Rad M, Molaverdi G, Mozhgani SH. Immunopathogenesis and Cellular Interactions in Human T-Cell Leukemia Virus Type 1 Associated Myelopathy/Tropical Spastic Paraparesis. Front Microbiol 2020; 11:614940. [PMID: 33414779 PMCID: PMC7783048 DOI: 10.3389/fmicb.2020.614940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/17/2020] [Indexed: 01/15/2023] Open
Abstract
HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP) is a neuropathological disorder in 1–3% of individuals infected with Human T-lymphotropic virus 1 (HTLV-1). This condition is characterized by progressive spastic lower limb weakness and paralysis, lower back pain, bladder incontinence, and mild sensory disturbances resembling spinal forms of multiple sclerosis. This disease also causes chronic disability and is therefore associated with high health burden in areas where HTLV-1 infection is endemic. Despite various efforts in understanding the virus and discovery of novel diagnostic markers, and cellular and viral interactions, HAM/TSP management is still unsatisfactory and mainly focused on symptomatic alleviation, and it hasn’t been explained why only a minority of the virus carriers develop HAM/TSP. This comprehensive review focuses on host and viral factors in association with immunopathology of the disease in hope of providing new insights for drug therapies or other forms of intervention.
Collapse
Affiliation(s)
- Sepehr Aghajanian
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Majid Teymoori-Rad
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazale Molaverdi
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | - Sayed-Hamidreza Mozhgani
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
5
|
Francis-Morris A, Mackie NE, Eliahoo J, Ramzan F, Fidler S, Pollock KM. Compromised CD4:CD8 ratio recovery in people living with HIV aged over 50 years: an observational study. HIV Med 2019; 21:109-118. [PMID: 31617962 PMCID: PMC7003811 DOI: 10.1111/hiv.12800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2019] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Persistent CD4:CD8 ratio inversion (< 1) is associated with mortality in older people. We investigated the interaction of the effects of baseline CD8 count and age at HIV diagnosis on CD4:CD8 ratio recovery with antiretroviral therapy (ART). METHODS An observational study (1 January 2007 to 31 December 2016) was carried out using routinely collected data from the HIV outpatient services at Imperial College Healthcare NHS Trust, London, UK. CD4 and CD8 counts, prior to and during ART, treatment during primary HIV infection (PHI) and HIV-1 viral load were included in univariate and multivariate analyses using Cox proportional hazard regression. RESULTS Data were included for 876 patients starting ART, where HIV suppression was achieved. Of these patients, 741 of 876 (84.6%) were male and 507 of 876 (57.9%) were Caucasian. The median time on ART was 38 [interquartile range (IQR) 17-66] months. CD8 count change on ART was bidirectional; low CD8 counts (≤ 600 cells/μL) increased and high CD8 counts (> 900 cells/μL) decreased. The median pre-ART CD4:CD8 ratio was 0.41 (IQR 0.24-0.63), and recovery (≥ 1) occurred in 274 of 876 patients (31.3%). Pre- and post-ART CD4:CD8 ratios were lower in those aged > 50 years compared with young adults aged 18-30 years (P < 0.001 and P = 0.002, respectively). After adjustment, younger age at HIV diagnosis (P < 0.001) and treatment during PHI (P < 0.001) were favourable for CD4:CD8 ratio normalization. CONCLUSIONS Older age (> 50 years) at HIV diagnosis was associated with persistent CD4:CD8 ratio inversion, whereas treatment of PHI was protective. These findings confirm the need for testing and early treatment of people aged > 50 years, and could be used in a risk management algorithm for enhanced surveillance.
Collapse
Affiliation(s)
- A Francis-Morris
- Section of Virology, Department of Infectious Disease, Imperial College London, London, UK
| | - N E Mackie
- Jefferiss Wing, Imperial College Healthcare NHS Trust, London, UK
| | - J Eliahoo
- Statistical Advisory Service, Imperial College London, London, UK
| | - F Ramzan
- Jefferiss Wing, Imperial College Healthcare NHS Trust, London, UK
| | - S Fidler
- Section of Virology, Department of Infectious Disease, Imperial College London, London, UK.,National Institute for Health Research Imperial Biomedical Research Centre, London, UK
| | - K M Pollock
- Section of Virology, Department of Infectious Disease, Imperial College London, London, UK.,Jefferiss Wing, Imperial College Healthcare NHS Trust, London, UK.,National Institute for Health Research Imperial Biomedical Research Centre, London, UK
| |
Collapse
|