1
|
Lorenz N, McGregor R, Whitcombe AL, Sharma P, Ramiah C, Middleton F, Baker MG, Martin WJ, Wilson NJ, Chung AW, Moreland NJ. An acute rheumatic fever immune signature comprising inflammatory markers, IgG3, and Streptococcus pyogenes-specific antibodies. iScience 2024; 27:110558. [PMID: 39184444 PMCID: PMC11342286 DOI: 10.1016/j.isci.2024.110558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 08/27/2024] Open
Abstract
Understanding the immune profile of acute rheumatic fever (ARF), a serious post-infectious sequelae of Streptococcal pyogenes (group A Streptococcus [GAS]), could inform disease pathogenesis and management. Circulating cytokines, immunoglobulins, and complement were analyzed in participants with first-episode ARF, swab-positive GAS pharyngitis and matched healthy controls. A striking elevation of total IgG3 was observed in ARF (90% > clinical reference range for normal). ARF was also associated with an inflammatory triad with significant correlations between interleukin-6, C-reactive protein, and complement C4 absent in controls. Quantification of GAS-specific antibody responses revealed that subclass polarization was remarkably consistent across the disease spectrum; conserved protein antigens polarized to IgG1, while M-protein responses polarized to IgG3 in all groups. However, the magnitude of responses was significantly higher in ARF. Taken together, these findings emphasize the association of exaggerated GAS antibody responses, IgG3, and inflammatory cytokines in ARF and suggest IgG3 testing could beneficially augment clinical diagnosis.
Collapse
Affiliation(s)
- Natalie Lorenz
- School of Medical Science, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Reuben McGregor
- School of Medical Science, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Alana L. Whitcombe
- School of Medical Science, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Prachi Sharma
- School of Medical Science, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Ciara Ramiah
- School of Medical Science, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Francis Middleton
- School of Medical Science, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Michael G. Baker
- Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Auckland, New Zealand
- Department of Public Health, University of Otago, Wellington, New Zealand
| | | | - Nigel J. Wilson
- Starship Children’s Hospital, Health New Zealand – Te Whatu Ora, Auckland, New Zealand
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Nicole J. Moreland
- School of Medical Science, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Weerasekara M, Vidanapathirana G, Li C, Tennegedara A, Dissanayake R, Ekanayake A, Abeykoon M, Kothalawala M, Liyanapathirana V, Ip M. Characterization of group A streptococci causing invasive diseases in Sri Lanka. Access Microbiol 2024; 6:000697.v4. [PMID: 39045254 PMCID: PMC11261727 DOI: 10.1099/acmi.0.000697.v4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 05/08/2024] [Indexed: 07/25/2024] Open
Abstract
Group A β haemolytic streptococcus (GAS) or Streptococcus pyogenes is a human pathogen that causes an array of infections, including pharyngitis, cellulitis, impetigo, scarlet fever, toxic shock syndrome, and necrotizing fasciitis. The present study characterizes 51 GAS isolates from invasive infections in Sri Lanka, focusing on resistance profiles, genetic determinants of resistance, and virulence markers. Isolates were tested for sensitivity to penicillin, erythromycin, clindamycin, and tetracycline. The presence of erm(A), erm(B), and mef(A) was detected in erythromycin-resistant isolates, while tet(M) was detected in the tetracycline-resistant isolates. PCR was used to identify SpeA, SpeB, SpeC, SpeF, SpeG, smez, and ssa as virulence markers. Selected GAS isolates were emm-typed using the updated CDC protocol. All 51 isolates were susceptible to penicillin. The number of isolates non-susceptible to erythromycin was 16. The commonest resistance determinant identified was erm(B) (11/16). Tetracycline non-susceptibility was found in 36 (70.6 %) isolates and 26 of them contained the tet(M) gene. Thirteen (25.5 %) isolates were resistant to both tetracycline and erythromycin, while 12 (23.5 %) isolates were sensitive to both antibiotics. The commonest virulence markers detected among the isolates were SpeB (44, 86.3 %), SpeG (36, 70.6 %), and SpeF (35, 68.6 %), while SpeJ (15, 29.4 %), SpeA (10, 19.6 %), and ssa (5,9.8 %) were less common. The emm types were diverse. In conclusion, the GAS isolates studied showed resistance to erythromycin and tetracycline, while retaining universal susceptibility to penicillin. Additionally, these isolates exhibited diverse genetic backgrounds, displaying varying patterns of virulence genes and emm types.
Collapse
Affiliation(s)
- Madumali Weerasekara
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Peradeniya, Peradeniya, Sri Lanka
| | - Gihani Vidanapathirana
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Peradeniya, Peradeniya, Sri Lanka
- Department of Microbiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Carmen Li
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR
| | - Asanka Tennegedara
- Department of Microbiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Rasadanie Dissanayake
- Department of Microbiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Asela Ekanayake
- Department of Microbiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | | | | | - Veranja Liyanapathirana
- Department of Microbiology, Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Margaret Ip
- Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR
| |
Collapse
|
3
|
Kim TH. Toxic Shock Syndrome (TSS) Caused by Group A Streptococcus: Novel Insights Within the Context of a Familiar Clinical Syndrome. J Korean Med Sci 2024; 39:e154. [PMID: 38711318 PMCID: PMC11074494 DOI: 10.3346/jkms.2024.39.e154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/08/2024] Open
Abstract
The emergence of invasive infections attributed to group A Streptococcus (GAS) infections, has resurged since the 1980s. The recent surge in reports of toxic shock syndrome due to GAS in Japan in 2024, while sensationalized in the media, does not represent a novel infectious disease per se, as its diagnosis, treatment, and prevention are already well-established. However, due to signs of increasing incidence since 2011, further research is needed. Health authorities in neighboring countries like The Republic of Korea should not only issue travel advisories but also establish meticulous surveillance systems and initiate epidemiological studies on the genotypic variations of this disease while awaiting various epidemiological research findings from Japan.
Collapse
Affiliation(s)
- Tae Hyong Kim
- Division of Infectious Diseases, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, Soonchunhyang University College of Medicine, Seoul, Korea.
| |
Collapse
|
4
|
Smeesters PR, de Crombrugghe G, Tsoi SK, Leclercq C, Baker C, Osowicki J, Verhoeven C, Botteaux A, Steer AC. Global Streptococcus pyogenes strain diversity, disease associations, and implications for vaccine development: a systematic review. THE LANCET. MICROBE 2024; 5:e181-e193. [PMID: 38070538 DOI: 10.1016/s2666-5247(23)00318-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 02/12/2024]
Abstract
The high strain diversity of Streptococcus pyogenes serves as a major obstacle to vaccine development against this leading global pathogen. We did a systematic review of studies in PubMed, MEDLINE, and Embase that reported the global distribution of S pyogenes emm-types and emm-clusters from Jan 1, 1990, to Feb 23, 2023. 212 datasets were included from 55 countries, encompassing 74 468 bacterial isolates belonging to 211 emm-types. Globally, an inverse correlation was observed between strain diversity and the UNDP Human Development Index (HDI; r=-0·72; p<0·0001), which remained consistent upon subanalysis by global region and site of infection. Greater strain diversity was associated with a lower HDI, suggesting the role of social determinants in diseases caused by S pyogenes. We used a population-weighted analysis to adjust for the disproportionate number of epidemiological studies from high-income countries and identified 15 key representative isolates as vaccine targets. Strong strain type associations were observed between the site of infection (invasive, skin, and throat) and several streptococcal lineages. In conclusion, the development of a truly global vaccine to reduce the immense burden of diseases caused by S pyogenes should consider the multidimensional diversity of the pathogen, including its social and environmental context, and not merely its geographical distribution.
Collapse
Affiliation(s)
- Pierre R Smeesters
- Department of Paediatrics, Brussels University Hospital, Academic Children Hospital Queen Fabiola, Université libre de Bruxelles, Brussels, Belgium; Molecular Bacteriology Laboratory, European Plotkin Institute for Vaccinology, Université Libre de Bruxelles, Brussels, Belgium; Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia.
| | - Gabrielle de Crombrugghe
- Department of Paediatrics, Brussels University Hospital, Academic Children Hospital Queen Fabiola, Université libre de Bruxelles, Brussels, Belgium; Molecular Bacteriology Laboratory, European Plotkin Institute for Vaccinology, Université Libre de Bruxelles, Brussels, Belgium
| | - Shu Ki Tsoi
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Infectious Diseases Unit, Royal Children's Hospital Melbourne, Melbourne, VIC, Australia
| | - Céline Leclercq
- Department of Paediatrics, Brussels University Hospital, Academic Children Hospital Queen Fabiola, Université libre de Bruxelles, Brussels, Belgium
| | - Ciara Baker
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia
| | - Joshua Osowicki
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Infectious Diseases Unit, Royal Children's Hospital Melbourne, Melbourne, VIC, Australia
| | - Caroline Verhoeven
- Laboratoire d'enseignement des Mathématiques, Université Libre de Bruxelles, Brussels, Belgium
| | - Anne Botteaux
- Molecular Bacteriology Laboratory, European Plotkin Institute for Vaccinology, Université Libre de Bruxelles, Brussels, Belgium
| | - Andrew C Steer
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, VIC, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC, Australia; Infectious Diseases Unit, Royal Children's Hospital Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Lacey JA, Bennett J, James TB, Hines BS, Chen T, Lee D, Sika-Paotonu D, Anderson A, Harwood M, Tong SY, Baker MG, Williamson DA, Moreland NJ. A worldwide population of Streptococcus pyogenes strains circulating among school-aged children in Auckland, New Zealand: a genomic epidemiology analysis. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2024; 42:100964. [PMID: 38035130 PMCID: PMC10684382 DOI: 10.1016/j.lanwpc.2023.100964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/20/2023] [Accepted: 10/29/2023] [Indexed: 12/02/2023]
Abstract
Background Acute rheumatic fever (ARF) is a serious post-infectious sequala of Group A Streptococcus (GAS, Streptococcus pyogenes). In New Zealand (NZ) ARF is a major cause of health inequity. This study describes the genomic analysis of GAS isolates associated with childhood skin and throat infections in Auckland NZ. Methods Isolates (n = 469) collected between March 2018 and October 2019 from the throats and skin of children (5-14 years) underwent whole genomic sequencing. Equal representation across three ethnic groups was ensured through sample quotas with isolates obtained from Indigenous Māori (n = 157, 33%), NZ European/Other (n = 149, 32%) and Pacific Peoples children (n = 163, 35%). Using in silico techniques isolates were classified, assessed for diversity, and examined for distribution differences between groups. Comparisons were also made with GAS strains identified globally. Findings Genomic analysis revealed a diverse population consisting of 65 distinct sequence clusters. These sequence clusters spanned 49 emm-types, with 11 emm-types comprised of several, distinct sequence clusters. There is evidence of multiple global introductions of different lineages into the population, as well as local clonal expansion. The M1UK lineage comprised 35% of all emm1 isolates. Interpretation The GAS population was characterized by a high diversity of strains, resembling patterns observed in low- and middle-income countries. However, strains associated with outbreaks and antimicrobial resistance commonly found in high-income countries were also observed. This unique combination poses challenges for vaccine development, disease management and control. Funding The work was supported by the Health Research Council of New Zealand (HRC), award number 16/005.
Collapse
Affiliation(s)
- Jake A. Lacey
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Julie Bennett
- The Department of Public Health, University of Otago, Wellington, New Zealand
- The Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Taylah B. James
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Benjamin S. Hines
- School of Mathematics and Statistics, University of Melbourne, Melbourne, Victoria, Australia
| | - Tiffany Chen
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| | - Darren Lee
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Anneka Anderson
- Te Kupenga Hauora Māori, The University of Auckland, New Zealand
| | - Matire Harwood
- Department of General Practice and Primary Healthcare, The University of Auckland, Auckland, New Zealand
| | - Steven Y.C. Tong
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael G. Baker
- The Department of Public Health, University of Otago, Wellington, New Zealand
- The Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Deborah A. Williamson
- Department of Infectious Diseases at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Reference Laboratory, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Nicole J. Moreland
- The Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Auckland, New Zealand
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Raynes JM, Young PG, Lorenz N, Loh JM, McGregor R, Baker EN, Proft T, Moreland NJ. Identification of an immunodominant region on a group A Streptococcus T-antigen reveals temperature-dependent motion in pili. Virulence 2023; 14:2180228. [PMID: 36809931 PMCID: PMC9980535 DOI: 10.1080/21505594.2023.2180228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Group A Streptococcus (GAS) is a globally important pathogen causing a broad range of human diseases. GAS pili are elongated proteins with a backbone comprised repeating T-antigen subunits, which extend from the cell surface and have important roles in adhesion and establishing infection. No GAS vaccines are currently available, but T-antigen-based candidates are in pre-clinical development. This study investigated antibody-T-antigen interactions to gain molecular insight into functional antibody responses to GAS pili. Large, chimeric mouse/human Fab-phage libraries generated from mice vaccinated with the complete T18.1 pilus were screened against recombinant T18.1, a representative two-domain T-antigen. Of the two Fab identified for further characterization, one (designated E3) was cross-reactive and also recognized T3.2 and T13, while the other (H3) was type-specific reacting with only T18.1/T18.2 within a T-antigen panel representative of the major GAS T-types. The epitopes for the two Fab, determined by x-ray crystallography and peptide tiling, overlapped and mapped to the N-terminal region of the T18.1 N-domain. This region is predicted to be buried in the polymerized pilus by the C-domain of the next T-antigen subunit. However, flow cytometry and opsonophagocytic assays showed that these epitopes were accessible in the polymerized pilus at 37°C, though not at lower temperature. This suggests that there is motion within the pilus at physiological temperature, with structural analysis of a covalently linked T18.1 dimer indicating "knee-joint" like bending occurs between T-antigen subunits to expose this immunodominant region. This temperature dependent, mechanistic flexing provides new insight into how antibodies interact with T-antigens during infection.
Collapse
Affiliation(s)
- Jeremy M. Raynes
- School of Medical Sciences, The University of Auckland, Auckland, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Paul G. Young
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand,School of Biological Sciences, The University of Auckland, Auckland, New Zealand,CONTACT Paul G. Young
| | - Natalie Lorenz
- School of Medical Sciences, The University of Auckland, Auckland, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Jacelyn M.S. Loh
- School of Medical Sciences, The University of Auckland, Auckland, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Reuben McGregor
- School of Medical Sciences, The University of Auckland, Auckland, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Edward N. Baker
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand,School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Thomas Proft
- School of Medical Sciences, The University of Auckland, Auckland, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Nicole J. Moreland
- School of Medical Sciences, The University of Auckland, Auckland, New Zealand,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand,Nicole J. Moreland
| |
Collapse
|
7
|
Willaert C, Lecomte S, Arribard N, Sierra-Colomina M. Pediatric Rheumatic Fever With Acute Fulminant Carditis: A Case Report. Cureus 2023; 15:e47226. [PMID: 38021931 PMCID: PMC10653751 DOI: 10.7759/cureus.47226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 12/01/2023] Open
Abstract
Acute rheumatic fever (ARF) is a multi-system inflammatory autoimmune disease. It is a significant cause of heart disease and early death worldwide, especially in children in developing countries. We present a case of acute fulminant rheumatic carditis in a child with no obvious predisposing factors, who resided in a developed country where this disease is not endemic. After pathological examination, a diagnosis of ARF with pancarditis was confirmed. This disease was not suspected before the pathological examination because of its low prevalence in Belgium.
Collapse
Affiliation(s)
- Caroline Willaert
- Pediatrics, Academic Children Hospital Queen Fabiola, Université Libre de Bruxelles, Brussels, BEL
| | - Sophie Lecomte
- Pathology, CHU Brugmann, Université Libre de Bruxelles, Brussels, BEL
| | - Nicolas Arribard
- Pediatric Cardiology, Academic Children Hospital Queen Fabiola, Université Libre de Bruxelles, Brussels, BEL
| | | |
Collapse
|
8
|
Wald ER, Eickhoff J, Flood GE, Heinz MV, Liu D, Agrawal A, Morse RP, Raney VM, Veerapandiyan A, Madan JC. Estimate of the incidence of PANDAS and PANS in 3 primary care populations. Front Pediatr 2023; 11:1170379. [PMID: 37808558 PMCID: PMC10551157 DOI: 10.3389/fped.2023.1170379] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/06/2023] [Indexed: 10/10/2023] Open
Abstract
Objective Pediatric Autoimmune Neuropsychiatric Disorder Associated with Streptococcal infection (PANDAS) and Pediatric Acute-Onset Neuropsychiatric syndrome (PANS) are presumed autoimmune complications of infection or other instigating events. To determine the incidence of these disorders, we performed a retrospective review for the years 2017-2019 at three academic medical centers. Methods We identified the population of children receiving well-child care at each institution. Potential cases of PANS and PANDAS were identified by including children age 3-12 years at the time they received one of five new diagnoses: avoidant/restrictive food intake disorder, other specified eating disorder, separation anxiety disorder of childhood, obsessive-compulsive disorder, or other specified disorders involving an immune mechanism, not elsewhere classified. Tic disorders was not used as a diagnostic code to identify cases. Data were abstracted; cases were classified as PANDAS or PANS if standard definitions were met. Results The combined study population consisted of 95,498 individuals. The majority were non-Hispanic Caucasian (85%), 48% were female and the mean age was 7.1 (SD 3.1) years. Of 357 potential cases, there were 13 actual cases [mean age was 6.0 (SD 1.8) years, 46% female and 100% non-Hispanic Caucasian]. The estimated annual incidence of PANDAS/PANS was 1/11,765 for children between 3 and 12 years with some variation between different geographic areas. Conclusion Our results indicate that PANDAS/PANS is a rare disorder with substantial heterogeneity across geography and time. A prospective investigation of the same question is warranted.
Collapse
Affiliation(s)
- Ellen R. Wald
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Jens Eickhoff
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Grace E. Flood
- Medical Director Clinical Analytics and Reporting, University of Wisconsin, Madison, WI, United States
| | - Michael V. Heinz
- Department of Pediatrics, Children’s Hospital at Dartmouth, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Daniel Liu
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Alisha Agrawal
- Department of Pediatrics, Children’s Hospital at Dartmouth, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Richard P. Morse
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Veronica M. Raney
- Department of Psychiatry, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Aravindhan Veerapandiyan
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Juliette C. Madan
- Department of Pediatrics, Children’s Hospital at Dartmouth, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
- Department of Psychiatry, Children’s Hospital at Dartmouth, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| |
Collapse
|
9
|
Asturias EJ, Excler JL, Ackland J, Cavaleri M, Fulurija A, Long R, McCulloch M, Sriskandan S, Sun W, Zühlke L, Kim JH, Dale JB, Steer AC. Safety of Streptococcus pyogenes Vaccines: Anticipating and Overcoming Challenges for Clinical Trials and Post-Marketing Monitoring. Clin Infect Dis 2023; 77:917-924. [PMID: 37232372 PMCID: PMC10506775 DOI: 10.1093/cid/ciad311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/09/2023] [Accepted: 05/23/2023] [Indexed: 05/27/2023] Open
Abstract
Streptococcus pyogenes (Strep A) infections result in a vastly underestimated burden of acute and chronic disease globally. The Strep A Vaccine Global Consortium's (SAVAC's) mission is to accelerate the development of safe, effective, and affordable S. pyogenes vaccines. The safety of vaccine recipients is of paramount importance. A single S. pyogenes vaccine clinical trial conducted in the 1960s raised important safety concerns. A SAVAC Safety Working Group was established to review the safety assessment methodology and results of more recent early-phase clinical trials and to consider future challenges for vaccine safety assessments across all phases of vaccine development. No clinical or biological safety signals were detected in any of these early-phase trials in the modern era. Improvements in vaccine safety assessments need further consideration, particularly for pediatric clinical trials, large-scale efficacy trials, and preparation for post-marketing pharmacovigilance.
Collapse
Affiliation(s)
- Edwin J Asturias
- Colorado School of Public Health, University of Colorado, Aurora Colorado, USA
- Children’s Hospital, Anschutz Medical Campus, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jean-Louis Excler
- Director General’s Office, International Vaccine Institute, Seoul, Republic of Korea
| | | | - Marco Cavaleri
- Anti-Infectives and Vaccines, European Medicines Agency, Amsterdam, The Netherlands
| | - Alma Fulurija
- Group A Streptococcal and Rheumatic Heart Disease Team, Telethon Kids Institute, Perth, Australia
| | - Raj Long
- Safety and pharmacovigilance, Bill & Melinda Gates Foundation, London, United Kingdom
| | - Mignon McCulloch
- Department of Paediatrics, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | | | | | - Liesl Zühlke
- South African Medical Research Council, Parowvallei, Cape Town, South Africa
- Division of Paediatric Cardiology, Department of Paediatrics, Institute of Child Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Jerome H Kim
- Director General’s Office, International Vaccine Institute, Seoul, Republic of Korea
- College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - James B Dale
- College of Medicine, University of Tennessee Health Science Center, Memphis Tennessee, USA
| | - Andrew C Steer
- Infection and Immunity Theme, Tropical Diseases Research Group, Murdoch Children's Research Institute, Parkville Victoria, Australia
| |
Collapse
|
10
|
Rafeek RAM, Hamlin AS, Andronicos NM, Lawlor CS, McMillan DJ, Sriprakash KS, Ketheesan N. Characterization of an experimental model to determine streptococcal M protein–induced autoimmune cardiac and neurobehavioral abnormalities. Immunol Cell Biol 2022; 100:653-666. [PMID: 35792671 PMCID: PMC9545610 DOI: 10.1111/imcb.12571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/28/2022] [Accepted: 07/05/2022] [Indexed: 11/29/2022]
Abstract
Group A streptococcal (GAS) infection is associated with a spectrum of autoimmune diseases including acute rheumatic fever/rheumatic heart disease (ARF/RHD) and neurobehavioral abnormalities. Antibodies against GAS M proteins cross‐react with host tissue proteins in the heart and brain leading to the symptomatology observed in ARF/RHD. As throat carriage of Streptococcus dysgalactiae subspecies equisimilis (SDSE) has been reported to be relatively high in some ARF/RHD endemic regions compared with GAS, and both SDSE and GAS express coiled‐coil surface protein called M protein, we hypothesized that streptococci other than GAS can also associated with ARF/RHD and neurobehavioral abnormalities. Neurobehavioral assessments and electrocardiography were performed on Lewis rats before and after exposure to recombinant GAS and SDSE M proteins. Histological assessments were performed to confirm inflammatory changes in cardiac and neuronal tissues. ELISA and Western blot analysis were performed to determine the cross‐reactivity of antibodies with host connective, cardiac and neuronal tissue proteins. Lewis rats injected with M proteins either from GAS or SDSE developed significant cardiac functional and neurobehavioral abnormalities in comparison to control rats injected with phosphate‐buffered saline. Antibodies against GAS and SDSE M proteins cross‐reacted with cardiac, connective and neuronal proteins. Serum from rats injected with streptococcal antigens showed higher immunoglobulin G binding to the striatum and cortex of the brain. Cardiac and neurobehavioral abnormalities observed in our experimental model were comparable to the cardinal symptoms observed in patients with ARF/RHD. Here for the first time, we demonstrate in an experimental model that M proteins from different streptococcal species could initiate and drive the autoimmune‐mediated cardiac tissue damage and neurobehavioral abnormalities.
Collapse
Affiliation(s)
- Rukshan AM Rafeek
- School of Science & Technology University of New England Armidale NSW Australia
| | - Adam S Hamlin
- School of Science & Technology University of New England Armidale NSW Australia
| | | | - Craig S Lawlor
- School of Science & Technology University of New England Armidale NSW Australia
| | - David J McMillan
- School of Science & Technology University of New England Armidale NSW Australia
- School of Science, Technology, Engineering and Genecology Research Centre University of the Sunshine Coast Sippy Downs QLDAustralia
| | - Kadaba S Sriprakash
- School of Science & Technology University of New England Armidale NSW Australia
- Infection and Inflammation Laboratory QIMR Berghofer Medical Research Institute Herston QLDAustralia
| | - Natkunam Ketheesan
- School of Science & Technology University of New England Armidale NSW Australia
- School of Science, Technology, Engineering and Genecology Research Centre University of the Sunshine Coast Sippy Downs QLDAustralia
| |
Collapse
|
11
|
Whitcombe AL, McGregor R, Bennett J, Gurney JK, Williamson DA, Baker MG, Moreland NJ. OUP accepted manuscript. J Infect Dis 2022; 226:167-176. [PMID: 35134931 PMCID: PMC9373162 DOI: 10.1093/infdis/jiac043] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/01/2022] [Indexed: 11/26/2022] Open
Abstract
Background Group A Streptococcus (GAS) causes superficial pharyngitis and skin infections as well as serious autoimmune sequelae such as acute rheumatic fever (ARF) and subsequent rheumatic heart disease. ARF pathogenesis remains poorly understood. Immune priming by repeated GAS infections is thought to trigger ARF, and there is growing evidence for the role of skin infections in this process. Methods We utilized our recently developed 8-plex immunoassay, comprising antigens used in clinical serology for diagnosis of ARF (SLO, DNase B, SpnA), and 5 conserved putative GAS vaccine antigens (Spy0843, SCPA, SpyCEP, SpyAD, Group A carbohydrate), to characterize antibody responses in sera from New Zealand children with a range of clinically diagnosed GAS disease: ARF (n = 79), GAS-positive pharyngitis (n = 94), GAS-positive skin infection (n = 51), and matched healthy controls (n = 90). Results The magnitude and breadth of antibodies in ARF was very high, giving rise to a distinct serological profile. An average of 6.5 antigen-specific reactivities per individual was observed in ARF, compared to 4.2 in skin infections and 3.3 in pharyngitis. Conclusions ARF patients have a unique serological profile, which may be the result of repeated precursor pharyngitis and skin infections that progressively boost antibody breadth and magnitude.
Collapse
Affiliation(s)
- Alana L Whitcombe
- School of Medical Sciences and Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| | - Reuben McGregor
- School of Medical Sciences and Maurice Wilkins Centre, University of Auckland, Auckland, New Zealand
| | - Julie Bennett
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Jason K Gurney
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Deborah A Williamson
- University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Michael G Baker
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Nicole J Moreland
- Correspondence: Nicole J. Moreland, BSc, PhD, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, New Zealand ()
| |
Collapse
|
12
|
Lorenz N, Ho TKC, McGregor R, Davies MR, Williamson DA, Gurney JK, Smeesters PR, Baker MG, Moreland NJ. Serological Profiling of Group A Streptococcus Infections in Acute Rheumatic Fever. Clin Infect Dis 2021; 73:2322-2325. [PMID: 33639619 DOI: 10.1093/cid/ciab180] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Indexed: 01/28/2023] Open
Abstract
Rheumatic fever is a serious post-infectious sequela of group A Streptococcus (GAS). Prior GAS exposures were mapped in sera using a large panel of M-type specific peptides. Rheumatic fever patients had serological evidence of significantly more GAS exposures than matched controls suggesting immune priming by repeat infections contributes to pathogenesis.
Collapse
Affiliation(s)
- Natalie Lorenz
- School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Biodiscovery, Auckland, New Zealand
| | - Timothy K C Ho
- School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Reuben McGregor
- School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Biodiscovery, Auckland, New Zealand
| | - Mark R Davies
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Deborah A Williamson
- Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Jason K Gurney
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Pierre R Smeesters
- Molecular Bacteriology Laboratory, Université Libre de Bruxelles, Brussels, Belgium
| | - Michael G Baker
- Maurice Wilkins Centre for Biodiscovery, Auckland, New Zealand.,Department of Public Health, University of Otago, Wellington, New Zealand
| | - Nicole J Moreland
- School of Medical Sciences, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Biodiscovery, Auckland, New Zealand
| |
Collapse
|
13
|
Kotit S, Phillips DIW, Afifi A, Yacoub M. The "Cairo Accord"- Towards the Eradication of RHD: An Update. Front Cardiovasc Med 2021; 8:690227. [PMID: 34277735 PMCID: PMC8282907 DOI: 10.3389/fcvm.2021.690227] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/07/2021] [Indexed: 01/18/2023] Open
Abstract
Rheumatic heart disease (RHD) is the most common cause of acquired heart disease in children and young adults. It continues to be prevalent in many low- and middle-income countries where it causes significant morbidity and mortality. Following the 2017 Cairo conference "Rheumatic Heart Disease: from Molecules to the Global Community," experts from 21 countries formulated an approach for addressing the problem of RHD: "The Cairo Accord on Rheumatic Heart Disease." The Accord attempts to set policy priorities for the eradication of acute rheumatic fever (ARF) and RHD and builds on a recent series of policy initiatives and calls to action. We present an update on the recommendations of the Cairo Accord and discuss recent progress toward the eradication of RHD, including contributions from our own Aswan Rheumatic Heart Disease Registry (ARGI).
Collapse
Affiliation(s)
| | - David I. W. Phillips
- Developmental Origins of Health and Disease Division, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | | | - Magdi Yacoub
- Aswan Heart Centre, Aswan, Egypt
- Heart Science Centre, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
14
|
Pilapitiya DH, Harris PWR, Hanson-Manful P, McGregor R, Kowalczyk R, Raynes JM, Carlton LH, Dobson RCJ, Baker MG, Brimble M, Lukomski S, Moreland NJ. Antibody responses to collagen peptides and streptococcal collagen-like 1 proteins in acute rheumatic fever patients. Pathog Dis 2021; 79:6311134. [PMID: 34185083 DOI: 10.1093/femspd/ftab033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 06/26/2021] [Indexed: 11/13/2022] Open
Abstract
Acute rheumatic fever (ARF) is a serious post-infectious immune sequelae of Group A streptococcus (GAS). Pathogenesis remains poorly understood, including the events associated with collagen autoantibody generation. GAS express streptococcal collagen-like proteins (Scl) that contain a collagenous domain resembling human collagen. Here, the relationship between antibody reactivity to GAS Scl proteins and human collagen in ARF was investigated. Serum IgG specific for a representative Scl protein (Scl1.1) together with collagen-I and collagen-IV mimetic peptides were quantified in ARF patients (n = 36) and healthy matched controls (n = 36). Reactivity to Scl1.1 was significantly elevated in ARF compared to controls (P < 0.0001) and this was mapped to the collagen-like region of the protein, rather than the N-terminal non-collagenous region. Reactivity to collagen-1 and collagen-IV peptides was also significantly elevated in ARF cases (P < 0.001). However, there was no correlation between Scl1.1 and collagen peptide antibody binding, and hierarchical clustering of ARF cases by IgG reactivity showed two distinct clusters, with Scl1.1 antigens in one and collagen peptides in the other, demonstrating that collagen autoantibodies are not immunologically related to those targeting Scl1.1. Thus, anti-collagen antibodies in ARF appear to be generated as part of the autoreactivity process, independent of any mimicry with GAS collagen-like proteins.
Collapse
Affiliation(s)
- Devaki H Pilapitiya
- School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| | - Paul W R Harris
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Auckland, New Zealand.,School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Paulina Hanson-Manful
- School of Medical Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Reuben McGregor
- School of Medical Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Renata Kowalczyk
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Jeremy M Raynes
- School of Medical Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Lauren H Carlton
- School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| | - Renwick C J Dobson
- Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Auckland, New Zealand.,Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michael G Baker
- Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Auckland, New Zealand.,Department of Public Health, University of Otago, Wellington, New Zealand
| | - Margaret Brimble
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Slawomir Lukomski
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Nicole J Moreland
- School of Medical Sciences, The University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Biodiscovery, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
15
|
Streptococcus pyogenes ("Group A Streptococcus"), a Highly Adapted Human Pathogen-Potential Implications of Its Virulence Regulation for Epidemiology and Disease Management. Pathogens 2021; 10:pathogens10060776. [PMID: 34205500 PMCID: PMC8234341 DOI: 10.3390/pathogens10060776] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/02/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022] Open
Abstract
Streptococcus pyogenes (group A streptococci; GAS) is an exclusively human pathogen. It causes a variety of suppurative and non-suppurative diseases in people of all ages worldwide. Not all can be successfully treated with antibiotics. A licensed vaccine, in spite of its global importance, is not yet available. GAS express an arsenal of virulence factors responsible for pathological immune reactions. The transcription of all these virulence factors is under the control of three types of virulence-related regulators: (i) two-component systems (TCS), (ii) stand-alone regulators, and (iii) non-coding RNAs. This review summarizes major TCS and stand-alone transcriptional regulatory systems, which are directly associated with virulence control. It is suggested that this treasure of knowledge on the genetics of virulence regulation should be better harnessed for new therapies and prevention methods for GAS infections, thereby changing its global epidemiology for the better.
Collapse
|
16
|
Robinson JL. Paediatrics: how to manage pharyngitis in an era of increasing antimicrobial resistance. Drugs Context 2021; 10:dic-2020-11-6. [PMID: 33828608 PMCID: PMC8007209 DOI: 10.7573/dic.2020-11-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
The goal of this narrative review of pharyngitis is to summarize the practical aspects of the management of sore throat in children in high- and middle-income countries. A traditional review of the literature was performed. Most cases of pharyngitis are viral and self-limited, although rarely viral pharyngitis due to Epstein–Barr leads to airway obstruction. Bacterial pharyngitis is usually due to group A streptococcus (GAS), occurs primarily in children aged 5–15 years, and presents as sore throat in the absence of rhinitis, laryngitis or cough. Again, most cases are self-limited; antibiotics hasten recovery by only 1–2 days. Guidelines vary by country, but antibiotics are commonly recommended for proven GAS pharyngitis as they may prevent rare but severe complications, in particular rheumatic fever (RF). In this era of antimicrobial stewardship, it should be extremely rare that antibiotics are prescribed for presumed GAS pharyngitis until GAS has been detected. Even with proven GAS pharyngitis, it is controversial whether children at low risk for RF should routinely be prescribed antibiotics as the number needed to treat to prevent one case of RF is undoubtedly very large. When treatment is offered, the antibiotics of choice are penicillin or amoxicillin as they are narrow spectrum and resistance resulting in clinical failure is yet to be documented. A 10-day oral course is recommended as shorter courses appear to be less likely to clear carriage of GAS. However, the evidence that one needs to clear carriage to prevent RF is low quality and indirect.
Collapse
Affiliation(s)
- Joan L Robinson
- Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
17
|
Update on Post-Streptococcal Reactive Arthritis: Narrative Review of a Forgotten Disease. Curr Rheumatol Rep 2021; 23:19. [PMID: 33569668 DOI: 10.1007/s11926-021-00982-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE OF THE REVIEW This topical review attempts to build the concepts of PSRA as an independent entity and discuss prevalent diagnostic criteria. It utilizes a search strategy to collate all clinical features of PSRA reported from across the world and also discusses laboratory and treatment options in brief. RECENT FINDINGS There are several immune-mediated diseases described after acute streptococcal infections. Post-streptococcal reactive arthritis (PSRA) is a sterile, self-limiting arthritis that occur as an immune sequelae to streptococcal infection. Though PSRA resembles the arthritis of acute rheumatic fever superficially, it is a separate entity in its own right. It is different from classical reactive arthritis too. It was being recognized worldwide and more frequently in the recent past, possibly due to heightened awareness amongst clinicians. However, research on this enigmatic immune phenomenon is limited. Most acceptable hypotheses suggest molecular mimicry sensitizing the immune system towards synovial peptides such as keratin, vimentin and laminin, leading to arthritis in a genetically predisposed individual. There is still much to be learnt from this unique disease about the vagaries of the immune system.
Collapse
|
18
|
Severe Pharyngodynia Followed by Migratory Polyarthritis and High Fever in Young Immigrants: Remember That Rheumatic Fever Is Still Relevant in 2020! Case Rep Infect Dis 2020; 2020:8854868. [PMID: 33204550 PMCID: PMC7657701 DOI: 10.1155/2020/8854868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 11/22/2022] Open
Abstract
Acute rheumatic fever (ARF) is the immune-mediated sequelae of untreated group-A streptococcal infection. In this regard, rheumatic heart disease is the most prominent manifestation with devastating long-term complications. In the postantibiotic era, ARF is extremely rare in high-income countries; thus, its diagnosis might escape the clinicians' notice. However, its incidence remains high not only in certain low- and middle-income regions with poor public health systems but also in socioeconomically vulnerable populations residing in high-income countries. Herein, we report two cases of ARF in young immigrant adults in order to highlight the need for increased clinical suspicion to establish a prompt and timely diagnosis of ARF and describe in detail its differential diagnosis and approach to treatment.
Collapse
|
19
|
Alm PA. Streptococcal Infection as a Major Historical Cause of Stuttering: Data, Mechanisms, and Current Importance. Front Hum Neurosci 2020; 14:569519. [PMID: 33304252 PMCID: PMC7693426 DOI: 10.3389/fnhum.2020.569519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/24/2020] [Indexed: 12/02/2022] Open
Abstract
Stuttering is one of the most well-known speech disorders, but the underlying neurological mechanisms are debated. In addition to genetic factors, there are also major non-genetic contributions. It is here proposed that infection with group A beta-hemolytic streptococcus (GAS) was a major underlying cause of stuttering until the mid-1900s when penicillin was introduced in 1943. The main mechanism proposed is an autoimmune reaction from tonsillitis, targeting specific molecules, for example within the basal ganglia. It is here also proposed that GAS infections may have continued to cause stuttering to some extent, to the present date, though more rarely. If so, early diagnosis of such cases would be of importance. Childhood cases with sudden onset of stuttering after throat infection may be particularly important to assess for possible GAS infection. The support for this hypothesis primarily comes from three lines of argument. First, medical record data from the 1930s strongly indicates that there was one type of medical event in particular that preceded the onset of childhood stuttering with unexpected frequency: diseases related to GAS throat infections. In particular, this included tonsillitis and scarlet fever, but also rheumatic fever. Rheumatic fever is a childhood autoimmune sequela of GAS infection, which was a relatively widespread medical problem until the early 1960s. Second, available reports of changes of the childhood prevalence of stuttering indicate striking parallels between stuttering and the incidence of rheumatic fever, with: (1) decline from the early 1900s; (2) marked decline from the introduction of penicillin in the mid 1940s; and (3) reaching a more stable level in the 1960s. The correlations between the data for stuttering and rheumatic fever after the introduction of penicillin are very high, at about 0.95. Third, there are established biological mechanisms linking GAS tonsillitis to immunological effects on the brain. Also, a small number of more recent case reports have provided further support for the hypothesis linking stuttering to GAS infection. Overall, it is proposed that the available data provides strong evidence for the hypothesis that GAS infection was a major cause of stuttering until the mid-1900s, interacting with genetic predisposition.
Collapse
Affiliation(s)
- Per A. Alm
- Department of Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
Tanz RR, Gewitz MH, Kaplan EL, Shulman ST. Stay the Course: Targeted Evaluation, Accurate Diagnosis, and Treatment of Streptococcal Pharyngitis Prevent Acute Rheumatic Fever. J Pediatr 2020; 216:208-212. [PMID: 31561955 DOI: 10.1016/j.jpeds.2019.08.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/18/2019] [Accepted: 08/21/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Robert R Tanz
- Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL.
| | - Michael H Gewitz
- Department of Pediatrics, Maria Fareri Children's Hospital at WMCHealth, New York Medical College, Valhalla, NY
| | - Edward L Kaplan
- Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, MN
| | - Stanford T Shulman
- Department of Pediatrics, Ann and Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|