1
|
Nqweniso S, Walter C, du Randt R, Adams L, Beckmann J, Coulibaly JT, Dolley D, Joubert N, Long KZ, Müller I, Nienaber M, Pühse U, Seelig H, Steinmann P, Utzinger J, Gerber M, Lang C. Associations between soil-transmitted helminth infections and physical activity, physical fitness, and cardiovascular disease risk in primary schoolchildren from Gqeberha, South Africa. PLoS Negl Trop Dis 2023; 17:e0011664. [PMID: 37831637 PMCID: PMC10575529 DOI: 10.1371/journal.pntd.0011664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 09/15/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND/AIM School-aged children in low- and middle-income countries carry the highest burden of intestinal helminth infections, such as soil-transmitted helminths (STH). STH infections have been associated with negative consequences for child physical and cognitive development and wellbeing. With the epidemiological transition and rise in cardiovascular disease (CVD), studies have shown that helminth infections may influence glucose metabolism by preventing obesity. Thus, the aim of this study was to determine the association of STH infections in schoolchildren from Gqeberha, focusing on physical activity, physical fitness, and clustered CVD risk score. METHODS This cross-sectional study involved 680 schoolchildren (356 girls and 324 boys; mean age 8.19 years, SD±1.4) from disadvantaged communities in Gqeberha (formerly, Port Elizabeth), South Africa. Stool samples were collected and examined for STH infections using the Kato-Katz method. Physical activity (accelerometer) and physical fitness (grip strength, 20 m shuttle run) were measured using standard procedures. Furthermore, anthropometry, blood pressure, as well as glycated haemoglobin and lipid profile from capillary blood samples were assessed. We employed one-way ANOVAs to identify the associations of STH infections in terms of species and infection intensity with physical activity, physical fitness, and clustered CVD risk score. RESULTS We found a low STH infection prevalence (7.2%) in our study, with participants infected with at least one intestinal helminth species. In comparison to their non-infected peers, children infected with STH had lower mean grip strength scores, but higher mean VO2max estimation and higher levels of MVPA (p < .001). When considering type and intensity of infection, a positive association of A. lumbricoides infection and MVPA was found. In contrast, light T. trichiura-infected children had significantly lower grip strength scores compared to non and heavily-infected children. VO2max and MVPA were positively associated with light T. trichiura infection. No significant association between the clustered CVD risk score and infection with any STH species was evident. CONCLUSIONS STH-infected children had lower grip strength scores than their non-infected peers, yet, achieved higher VO2max and MVPA scores. Our study highlights that the type and intensity of STH infection is relevant in understanding the disease burden of STH infections on children's health. The findings of our study must be interpreted cautiously due to the low infection rate, and more research is needed in samples with higher prevalence rates or case-control designs.
Collapse
Affiliation(s)
- Siphesihle Nqweniso
- Department of Human Movement Science, Nelson Mandela University, Gqeberha, South Africa
| | - Cheryl Walter
- Department of Human Movement Science, Nelson Mandela University, Gqeberha, South Africa
| | - Rosa du Randt
- Department of Human Movement Science, Nelson Mandela University, Gqeberha, South Africa
| | - Larissa Adams
- Department of Human Movement Science, Nelson Mandela University, Gqeberha, South Africa
| | - Johanna Beckmann
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Jean T. Coulibaly
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d’Ivoire
| | - Danielle Dolley
- Department of Human Movement Science, Nelson Mandela University, Gqeberha, South Africa
| | - Nandi Joubert
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Kurt Z. Long
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Ivan Müller
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Madeleine Nienaber
- Department of Human Movement Science, Nelson Mandela University, Gqeberha, South Africa
| | - Uwe Pühse
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Harald Seelig
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Peter Steinmann
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Markus Gerber
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| | - Christin Lang
- Department of Sport, Exercise and Health, University of Basel, Basel, Switzerland
| |
Collapse
|
2
|
Zulfiqar S, Gasser RB, Ghodsian S, Almukhtar M, Holland C, Rostami A. Strongyloides coinfection in COVID-19 patients treated with corticosteroids: A systematic review. Rev Med Virol 2023; 33:e2469. [PMID: 37353858 DOI: 10.1002/rmv.2469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/25/2023]
Abstract
The COVID-19 pandemic linked to the virus SARS-CoV-2, which began in China, affected ∼765 million people as of 30 April 2023. The widespread use of corticosteroids for the symptomatic treatment of COVID-19 could lead to the reactivation of infections of opportunistic pathogens, including Strongyloides. We sought to determine the clinical symptoms and demographic characteristics of SARS-CoV-2-Strongyloides co-infection, particularly in patients with severe disease and being treated with immunosuppressive drugs. To do this, we undertook a systematic review of the literature, and searched public accessible scientific databases-the Web of Science, Scopus, PubMed/Medline and Embase -for eligible studies (1 December 2019 to 30 August 2022). The review protocol is registered in PROSPERO (CRD42022377062). Descriptive statistical analyses were used to present the clinical and laboratory parameters of the co-infection; for this, we calculated prevalence using the following formula: positive cases/total number of cases × 100. Of a total of 593 studies identified, 17 studies reporting 26 co-infected patients met the criteria for inclusion in this review. The median age of these patients was 55.14 years. Most of cases (53.8%) were treated with dexamethasone, followed by methylprednisolone (26.9%). Eighteen of 26 patients were immigrants living in European countries or the USA; most of these immigrants originated from Latin America (58%) and South-East Asia (11%). The commonest symptoms of co-infection were abdominal pain (50%), fever (46.1%), dyspnoea (30.7%) and cough (30.7%), and frequently reported laboratory findings were high absolute eosinophil count (38.4%), high white blood cell count (30.7%), high C-reactive protein (23.0%) and high neutrophil count (19.2%). Two of the 26 patients (7.7%) had fatal outcomes. Most of the SARS-CoV-2-Strongyloides coinfected cases were immigrants living in developed countries, emphasising the need for clinicians in these countries to be aware of clinical and laboratory parameters associated with such co-infections, as well as the key importance of rapid and accurate diagnostic tests for timely and effective diagnosis and patient management.
Collapse
Affiliation(s)
- Sana Zulfiqar
- School of Medicine, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Sahar Ghodsian
- Department of Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mustafa Almukhtar
- Takhar Family Medicine and Urgent Care, Sacramento, California, United States
| | - Celia Holland
- Department of Zoology, School of Natural Sciences, Trinity College Dublin, the University of Dublin, College Green Dublin, Ireland
| | - Ali Rostami
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
3
|
Adjobimey T, Meyer J, Hennenfent A, Bara AJ, Lagnika L, Kocou B, Adjagba M, Laleye A, Hoerauf A, Parcina M. Negative association between ascaris lumbricoides seropositivity and Covid-19 severity: insights from a study in Benin. Front Immunol 2023; 14:1233082. [PMID: 37622109 PMCID: PMC10446766 DOI: 10.3389/fimmu.2023.1233082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
Introduction The COVID-19 pandemic has had devastating effects worldwide, but the trajectory of the pandemic has been milder in Low-and-Middle-Income Countries (LMICs), including those in Africa. Co-infection with helminths, such as Ascaris lumbricoides, has been suggested as a possible factor contributing to the reduced severity observed in these regions. Methods The present study investigated the association between Ascaris-specific antibody levels and COVID-19 severity in 276 SARS-CoV-2-infected individuals in Benin. Participants were categorized into asymptomatic (n=100), mild (n=150), and severe (n=26) groups based on clinical disease severity. Sera were collected and analyzed using ELISA to measure Ascaris and SARS-CoV-2-specific antibodies, while Luminex was used to assess cytokines and SARS-CoV-2-specific neutralizing antibody expression. Results and discussion The results demonstrated that asymptomatic SARS-CoV-2 seropositive individuals expressed, on average, 1.7 and 2.2-times higher levels of Ascaris antibodies compared to individuals with mild and severe COVID-19, respectively. This finding suggests an inverse correlation between Ascaris antibody levels and COVID-19 severity. Notably, logistic regression analysis showed that Ascaris seropositivity was significantly associated with a reduced risk of severe COVID-19 (OR = 0.277, p = 0.021). Interestingly, COVID-19 patients with comorbidities such as type 2 diabetes and high blood pressure showed lower expression of Ascaris antibodies. Strikingly, no correlation was observed between Ascaris antibody levels and SARS-CoV-2-specific neutralizing antibodies. On the other hand, individuals seronegative for Ascaris displayed significantly higher levels of systemic pro-inflammatory markers compared to seropositive individuals. These findings suggest that higher expression of Ascaris antibodies is associated with asymptomatic SARS-CoV-2 infections and may contribute to the reduction of the risk to develop severe COVID-19. The beneficial effect of Ascaris seropositivity on COVID-19 outcomes in Benin may be attributed to a decrease in comorbidities and pro-inflammatory markers. These observations provide valuable insights into the milder COVID-19 trajectory observed in Africa and may have implications for future therapeutic strategies.
Collapse
Affiliation(s)
- Tomabu Adjobimey
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
- Laboratoire de Biologie intégrative pour l’Innovation thérapeutique (BioInov), Faculté des Sciences et Techniques (FAST), Université d’Abomey Calavi, Abomey Calavi, Benin
| | - Julia Meyer
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Anneka Hennenfent
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Anick J. Bara
- Laboratoire de Biologie intégrative pour l’Innovation thérapeutique (BioInov), Faculté des Sciences et Techniques (FAST), Université d’Abomey Calavi, Abomey Calavi, Benin
| | - Latifou Lagnika
- Laboratoire de Biologie intégrative pour l’Innovation thérapeutique (BioInov), Faculté des Sciences et Techniques (FAST), Université d’Abomey Calavi, Abomey Calavi, Benin
| | - Bienvenu Kocou
- Laboratoire de Biologie intégrative pour l’Innovation thérapeutique (BioInov), Faculté des Sciences et Techniques (FAST), Université d’Abomey Calavi, Abomey Calavi, Benin
| | - Marius Adjagba
- Laboratoire de Cytogénétique, Faculté des Sciences de la Santé (FSS), Université d’Abomey-Calavi, Cotonou, Benin
| | - Anatole Laleye
- Laboratoire de Cytogénétique, Faculté des Sciences de la Santé (FSS), Université d’Abomey-Calavi, Cotonou, Benin
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
- Bonn-Cologne Site, German Center for Infectious Disease Research (DZIF), Bonn, Germany
| | - Marijo Parcina
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| |
Collapse
|
4
|
Pierce DR, McDonald M, Merone L, Becker L, Thompson F, Lewis C, Ryan RYM, Hii SF, Zendejas-Heredia PA, Traub RJ, Field MA, Rahman T, Croese J, Loukas A, McDermott R, Giacomin PR. Effect of experimental hookworm infection on insulin resistance in people at risk of type 2 diabetes. Nat Commun 2023; 14:4503. [PMID: 37495576 PMCID: PMC10372076 DOI: 10.1038/s41467-023-40263-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023] Open
Abstract
The reduced prevalence of insulin resistance and type 2 diabetes in countries with endemic parasitic worm infections suggests a protective role for worms against metabolic disorders, however clinical evidence has been non-existent. This 2-year randomised, double-blinded clinical trial in Australia of hookworm infection in 40 male and female adults at risk of type 2 diabetes assessed the safety and potential metabolic benefits of treatment with either 20 (n = 14) or 40 (n = 13) Necator americanus larvae (L3) or Placebo (n = 13) (Registration ACTRN12617000818336). Primary outcome was safety defined by adverse events and completion rate. Homoeostatic model assessment of insulin resistance, fasting blood glucose and body mass were key secondary outcomes. Adverse events were more frequent in hookworm-treated participants, where 44% experienced expected gastrointestinal symptoms, but completion rates were comparable to Placebo. Fasting glucose and insulin resistance were lowered in both hookworm-treated groups at 1 year, and body mass was reduced after L3-20 treatment at 2 years. This study suggests hookworm infection is safe in people at risk of type 2 diabetes and associated with improved insulin resistance, warranting further exploration of the benefits of hookworms on metabolic health.
Collapse
Affiliation(s)
- Doris R Pierce
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Malcolm McDonald
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Lea Merone
- College of Health Sciences, James Cook University, Cairns, QLD, Australia
| | - Luke Becker
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Fintan Thompson
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- University of South Australia, Adelaide, SA, Australia
| | - Chris Lewis
- College of Health Sciences, James Cook University, Cairns, QLD, Australia
| | - Rachael Y M Ryan
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Sze Fui Hii
- Melbourne Veterinary School, Faculty of Science, University of Melbourne, Parkville, VIC, Australia
| | - Patsy A Zendejas-Heredia
- Melbourne Veterinary School, Faculty of Science, University of Melbourne, Parkville, VIC, Australia
| | - Rebecca J Traub
- Melbourne Veterinary School, Faculty of Science, University of Melbourne, Parkville, VIC, Australia
| | - Matthew A Field
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- College of Public Health, Medical & Vet Sciences, James Cook University, Cairns, QLD, Australia
- Immunogenomics Laboratory, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Tony Rahman
- The Department of Gastroenterology and Hepatology, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - John Croese
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Robyn McDermott
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- University of South Australia, Adelaide, SA, Australia
| | - Paul R Giacomin
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia.
| |
Collapse
|
5
|
Atagozli T, Elliott DE, Ince MN. Helminth Lessons in Inflammatory Bowel Diseases (IBD). Biomedicines 2023; 11:1200. [PMID: 37189818 PMCID: PMC10135676 DOI: 10.3390/biomedicines11041200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 05/17/2023] Open
Abstract
Helminths are multicellular invertebrates that colonize the gut of many vertebrate animals including humans. This colonization can result in pathology, which requires treatment. It can also lead to a commensal and possibly even a symbiotic relationship where the helminth and the host benefit from each other's presence. Epidemiological data have linked helminth exposure to protection from immune disorders that include a wide range of diseases, such as allergies, autoimmune illnesses, and idiopathic inflammatory disorders of the gut, which are grouped as inflammatory bowel diseases (IBD). Treatment of moderate to severe IBD involves the use of immune modulators and biologics, which can cause life-threatening complications. In this setting, their safety profile makes helminths or helminth products attractive as novel therapeutic approaches to treat IBD or other immune disorders. Helminths stimulate T helper-2 (Th2) and immune regulatory pathways, which are targeted in IBD treatment. Epidemiological explorations, basic science studies, and clinical research on helminths can lead to the development of safe, potent, and novel therapeutic approaches to prevent or treat IBD in addition to other immune disorders.
Collapse
Affiliation(s)
- Tyler Atagozli
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Iowa Carver College of Medicine, Iowa City, IA 52246, USA
| | - David E. Elliott
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Iowa Carver College of Medicine, Iowa City, IA 52246, USA
- Iowa City Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| | - Mirac Nedim Ince
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Iowa Carver College of Medicine, Iowa City, IA 52246, USA
- Iowa City Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| |
Collapse
|
6
|
Piazzesi A, Putignani L. Impact of helminth-microbiome interactions on childhood health and development-A clinical perspective. Parasite Immunol 2023; 45:e12949. [PMID: 36063358 DOI: 10.1111/pim.12949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 12/01/2022]
Abstract
Humans have co-existed with parasites for virtually the entirety of our existence as a species. Today, nearly one third of the human population is infected with at least one helminthic species, most of which reside in the intestinal tract, where they have co-evolved alongside the human gut microbiota (GM). Appreciation for the interconnected relationship between helminths and GM has increased in recent years. Here, we review the evidence of how helminths and GM can influence various aspects of childhood development and the onset of paediatric diseases. We discuss the emerging evidence of how many of the changes that parasitic worms inflict on their host is enacted through gut microbes. In this light, we argue that helminth-induced microbiota modifications are of great importance in both facing the global challenge of overcoming parasitic infections, and in replicating helminthic protective effects against inflammatory diseases. We propose that deepening our knowledge of helminth-microbiota interactions will uncover novel, safer and more effective therapeutic strategies in combatting an array of childhood disorders.
Collapse
Affiliation(s)
- Antonia Piazzesi
- Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lorenza Putignani
- Department of Diagnostic and Laboratory Medicine, Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Multimodal Laboratory Medicine Research Area, Unit of Human Microbiome, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
7
|
Pham K, Mertelsmann A, Mages K, Kingery JR, Mazigo HD, Jaka H, Kalokola F, Changalucha JM, Kapiga S, Peck RN, Downs JA. Effects of helminths and anthelmintic treatment on cardiometabolic diseases and risk factors: A systematic review. PLoS Negl Trop Dis 2023; 17:e0011022. [PMID: 36827239 PMCID: PMC9956023 DOI: 10.1371/journal.pntd.0011022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/12/2022] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Globally, helminth infections and cardiometabolic diseases often overlap in populations and individuals. Neither the causal relationship between helminth infections and cardiometabolic diseases nor the effect of helminth eradication on cardiometabolic risk have been reviewed systematically in a large number of human and animal studies. METHODS We conducted a systematic review assessing the reported effects of helminth infections and anthelmintic treatment on the development and/or severity of cardiometabolic diseases and risk factors. The search was limited to the most prevalent human helminths worldwide. This study followed PRISMA guidelines and was registered prospectively in PROSPERO (CRD42021228610). Searches were performed on December 10, 2020 and rerun on March 2, 2022 using Ovid MEDLINE ALL (1946 to March 2, 2022), Web of Science, Cochrane Library, Global Index Medicus, and Ovid Embase (1974 to March 2, 2022). Randomized clinical trials, cohort, cross-sectional, case-control, and animal studies were included. Two reviewers performed screening independently. RESULTS Eighty-four animal and human studies were included in the final analysis. Most studies reported on lipids (45), metabolic syndrome (38), and diabetes (30), with fewer on blood pressure (18), atherosclerotic cardiovascular disease (11), high-sensitivity C-reactive protein (hsCRP, 5), and non-atherosclerotic cardiovascular disease (4). Fifteen different helminth infections were represented. On average, helminth-infected participants had less dyslipidemia, metabolic syndrome, diabetes, and atherosclerotic cardiovascular disease. Eleven studies examined anthelmintic treatment, of which 9 (82%) reported post-treatment increases in dyslipidemia, metabolic syndrome, and diabetes or glucose levels. Results from animal and human studies were generally consistent. No consistent effects of helminth infections on blood pressure, hsCRP, or cardiac function were reported except some trends towards association of schistosome infection with lower blood pressure. The vast majority of evidence linking helminth infections to lower cardiometabolic diseases was reported in those with schistosome infections. CONCLUSIONS Helminth infections may offer protection against dyslipidemia, metabolic syndrome, diabetes, and atherosclerotic cardiovascular disease. This protection may lessen after anthelmintic treatment. Our findings highlight the need for mechanistic trials to determine the pathways linking helminth infections with cardiometabolic diseases. Such studies could have implications for helminth eradication campaigns and could generate new strategies to address the global challenge of cardiometabolic diseases.
Collapse
Affiliation(s)
- Khanh Pham
- Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, United States of America
- Center for Global Health, Weill Cornell Medical College, New York, New York, United States of America
| | - Anna Mertelsmann
- Division of Infectious Diseases, Weill Cornell Medicine, New York, New York, United States of America
| | - Keith Mages
- Samuel J. Wood Library, Weill Cornell Medicine, New York, New York, United States of America
| | - Justin R. Kingery
- Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America
| | - Humphrey D. Mazigo
- Department of Parasitology, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Hyasinta Jaka
- Department of Internal Medicine, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
- Department of Internal Medicine, Mwanza College of Health and Allied Sciences, Mwanza, Tanzania
| | - Fredrick Kalokola
- Department of Internal Medicine, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
- Department of Medicine, Weill Bugando School of Medicine, Mwanza, Tanzania
| | | | - Saidi Kapiga
- Mwanza Intervention Trials Unit, Mwanza, Tanzania
| | - Robert N. Peck
- Center for Global Health, Weill Cornell Medical College, New York, New York, United States of America
- Department of Medicine, Weill Bugando School of Medicine, Mwanza, Tanzania
- Mwanza Intervention Trials Unit, Mwanza, Tanzania
| | - Jennifer A. Downs
- Center for Global Health, Weill Cornell Medical College, New York, New York, United States of America
- Department of Medicine, Weill Bugando School of Medicine, Mwanza, Tanzania
| |
Collapse
|
8
|
Oliveira FMS, Cruz RE, Pinheiro GRG, Caliari MV. Comorbidities involving parasitic diseases: A look at the benefits and complications. Exp Biol Med (Maywood) 2022; 247:1819-1826. [PMID: 35876147 PMCID: PMC9679356 DOI: 10.1177/15353702221108387] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Parasitic infections acquired by the population cause substantial morbidity worldwide, with individuals from developing countries being most affected. Some parasites remain in the host for long periods, settling in different organs, manipulating the flow of nutrients and metabolites, and influencing the immune response, favoring their adaptation. The host attempts to counteract the metabolic and immunological alterations and the possible damage caused by infection. These metabolic and immunological changes experienced by the host can influence the progression of other existing morbidities or those that will be acquired in the future. Cancer and metabolic diseases are also frequent causes of morbidity in the world population. The large numbers of individuals affected by cancer and metabolic diseases and the high prevalence of morbidity caused by parasitic diseases favor the development of comorbidity involving these pathologies. This review provides an overview of major advances in research on cancer and metabolic diseases associated with parasitic infections. Information about hosts and parasites such as alterations of the immune response, metabolism and adaptation mechanisms of the parasites, and parasitic molecules with therapeutic potential is provided, as well as the beneficial results or complications related to the comorbidities discussed herein. We emphasize the need to conduct additional studies addressing comorbidities associated with parasitic infections to improve the understanding of the impact of this association on the progression of morbidities, as well as the possibility of the therapeutic use of and therapeutic approaches involving parasites.
Collapse
Affiliation(s)
- Fabrício Marcus Silva Oliveira
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Ruth Elizabeth Cruz
- Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Guilherme Rafael Gomide Pinheiro
- Department of Preventive Veterinary Medicine, Veterinary School, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil
| | - Marcelo Vidigal Caliari
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil,Marcelo Vidigal Caliari.
| |
Collapse
|
9
|
Vianney TJ, Berger DJ, Doyle SR, Sankaranarayanan G, Serubanja J, Nakawungu PK, Besigye F, Sanya RE, Holroyd N, Allan F, Webb EL, Elliott AM, Berriman M, Cotton JA. Genome-wide analysis of Schistosoma mansoni reveals limited population structure and possible praziquantel drug selection pressure within Ugandan hot-spot communities. PLoS Negl Trop Dis 2022; 16:e0010188. [PMID: 35981002 PMCID: PMC9426917 DOI: 10.1371/journal.pntd.0010188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/30/2022] [Accepted: 07/05/2022] [Indexed: 12/23/2022] Open
Abstract
Populations within schistosomiasis control areas, especially those in Africa, are recommended to receive regular mass drug administration (MDA) with praziquantel (PZQ) as the main strategy for controlling the disease. The impact of PZQ treatment on schistosome genetics remains poorly understood, and is limited by a lack of high-resolution genetic data on the population structure of parasites within these control areas. We generated whole-genome sequence data from 174 individual miracidia collected from both children and adults from fishing communities on islands in Lake Victoria in Uganda that had received either annual or quarterly MDA with PZQ over four years, including samples collected immediately before and four weeks after treatment. Genome variation within and between samples was characterised and we investigated genomic signatures of natural selection acting on these populations that could be due to PZQ treatment. The parasite population on these islands was more diverse than found in nearby villages on the lake shore. We saw little or no genetic differentiation between villages, or between the groups of villages with different treatment intensity, but slightly higher genetic diversity within the pre-treatment compared to post-treatment parasite populations. We identified classes of genes significantly enriched within regions of the genome with evidence of recent positive selection among post-treatment and intensively treated parasite populations. The differential selection observed in post-treatment and pre-treatment parasite populations could be linked to any reduced susceptibility of parasites to praziquantel treatment.
Collapse
Affiliation(s)
- Tushabe John Vianney
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and the London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Duncan J. Berger
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Stephen R. Doyle
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom
| | | | - Joel Serubanja
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and the London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Prossy Kabuubi Nakawungu
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and the London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Fred Besigye
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and the London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Richard E. Sanya
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and the London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Health and Systems for Health Unit, African Population and Health Research Center, Nairobi, Kenya
| | - Nancy Holroyd
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Fiona Allan
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Emily L. Webb
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Alison M. Elliott
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and the London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Matthew Berriman
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - James A. Cotton
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
10
|
Schmidt V, Hogan AE, Fallon PG, Schwartz C. Obesity-Mediated Immune Modulation: One Step Forward, (Th)2 Steps Back. Front Immunol 2022; 13:932893. [PMID: 35844529 PMCID: PMC9279727 DOI: 10.3389/fimmu.2022.932893] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/27/2022] [Indexed: 11/15/2022] Open
Abstract
Over the past decades, the relationship between the immune system and metabolism has become a major research focus. In this arena of immunometabolism the capacity of adipose tissue to secrete immunomodulatory molecules, including adipokines, within the underlying low-grade inflammation during obesity brought attention to the impact obesity has on the immune system. Adipokines, such as leptin and adiponectin, influence T cell differentiation into different T helper subsets and their activation during immune responses. Furthermore, within the cellular milieu of adipose tissue nutrient availability regulates differentiation and activation of T cells and changes in cellular metabolic pathways. Upon activation, T cells shift from oxidative phosphorylation to oxidative glycolysis, while the differential signaling of the kinase mammalian target of rapamycin (mTOR) and the nuclear receptor PPARγ, amongst others, drive the subsequent T cell differentiation. While the mechanisms leading to a shift from the typical type 2-dominated milieu in lean people to a Th1-biased pro-inflammatory environment during obesity are the subject of extensive research, insights on its impact on peripheral Th2-dominated immune responses become more evident. In this review, we will summarize recent findings of how Th2 cells are metabolically regulated during obesity and malnutrition, and how these states affect local and systemic Th2-biased immune responses.
Collapse
Affiliation(s)
- Viviane Schmidt
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Andrew E. Hogan
- Kathleen Lonsdale Human Health Institute, Maynooth University, Maynooth, Ireland
- Obesity Immunology Research, St. Vincent’s University Hospital and University College Dublin, Dublin, Ireland
| | - Padraic G. Fallon
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Christian Schwartz
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- *Correspondence: Christian Schwartz,
| |
Collapse
|
11
|
Yingklang M, Chaidee A, Dangtakot R, Jantawong C, Haonon O, Sitthirach C, Hai NT, Cha’on U, Anutrakulchai S, Kamsa-ard S, Pinlaor S. Association of Strongyloides stercoralis infection and type 2 diabetes mellitus in northeastern Thailand: Impact on diabetic complication-related renal biochemical parameters. PLoS One 2022; 17:e0269080. [PMID: 35639713 PMCID: PMC9154194 DOI: 10.1371/journal.pone.0269080] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/13/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Several studies have demonstrated that helminth infections provide a degree of protection against Type 2 diabetes mellitus (T2DM). However, the relationship between Strongyloides stercoralis infection and T2DM has scarcely been investigated and the protective effect of infection against development of diabetic complications is unclear. In this study, we aimed to investigate the relationship between S. stercoralis infection and T2DM in a rural area of Khon Kaen Province, Thailand. The impact of S. stercoralis infection on diabetic complication-related kidney function biochemical parameters and body-mass index (BMI) was also assessed. METHODOLOGY Using a cross-sectional study design, S. stercoralis infection and T2DM assessments were conducted between October 2020 and May 2021. Associations between S. stercoralis infection, T2DM, and socioeconomic factors were analyzed using multivariable logistic regression analyses. Diabetic complication-related biochemical parameters relating largely to kidney function (estimated glomerular filtration rate (eGFR), urine albumin-to-creatinine ratio (UACR), serum creatinine, uric acid, alanine transaminase (ALT), and low-density lipoprotein cholesterol (LDL-C)) and BMI of participants with and without T2DM were compared between groups with or without S. stercoralis infection. RESULTS One hundred and seven out of 704 individuals (15.20%) were positive for S. stercoralis, and 283 people were diagnosed with T2DM. Of those with T2DM, 11.31% (32/283) were infected with S. stercoralis and of those without T2DM, 17.82% (75/421) were infected with S. stercoralis. Multivariate analysis revealed that T2DM was inversely correlated with S. stercoralis infection (Adjusted OR = 0.49; 95% CI: 0.30, 0.78; p = 0.003), while male, increasing age, lower education level, and alcohol intake were positively associated with infection. Those infected with S. stercoralis had lower eGFR levels and higher ALT and UACR levels than those in the uninfected group. CONCLUSION This finding indicates that S. stercoralis infection was inversely associated with T2DM in northeastern Thailand, but participants infected with S. stercoralis had lower eGFR levels and higher ALT and UACR levels. Infection with S. stercoralis might lead to worse complication-related renal biochemical parameters.
Collapse
Affiliation(s)
- Manachai Yingklang
- Department of Epidemiology and Biostatistics, Faculty of Public Health, Khon Kaen University, Khon Kaen, Thailand
- Chronic Kidney Disease Prevention in The Northeastern Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Apisit Chaidee
- Chronic Kidney Disease Prevention in The Northeastern Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Rungtiwa Dangtakot
- Department of Medical Technology, Faculty of Allied Health Science, Nakhon Ratchasima College, Nakhon Ratchasima, Thailand
| | - Chanakan Jantawong
- Department of Medical Technology, Faculty of Allied Health Science, Nakhon Ratchasima College, Nakhon Ratchasima, Thailand
| | - Ornuma Haonon
- Department of Medical Technology, Faculty of Allied Health Science, Nakhon Ratchasima College, Nakhon Ratchasima, Thailand
| | - Chutima Sitthirach
- Chronic Kidney Disease Prevention in The Northeastern Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Nguyen Thi Hai
- Chronic Kidney Disease Prevention in The Northeastern Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Parasitology, Thai Nguyen University of Medicine and Pharmacy, Thai Nguyen, Vietnam
| | - Ubon Cha’on
- Chronic Kidney Disease Prevention in The Northeastern Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sirirat Anutrakulchai
- Chronic Kidney Disease Prevention in The Northeastern Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Internal Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Supot Kamsa-ard
- Department of Epidemiology and Biostatistics, Faculty of Public Health, Khon Kaen University, Khon Kaen, Thailand
| | - Somchai Pinlaor
- Chronic Kidney Disease Prevention in The Northeastern Thailand, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
12
|
Queiroz-Glauss CP, Vieira MS, Gonçalves-Pereira MH, Almeida SS, Freire RH, Gomes MA, Alvarez-Leite JI, Santiago HC. Helminth infection modulates number and function of adipose tissue Tregs in high fat diet-induced obesity. PLoS Negl Trop Dis 2022; 16:e0010105. [PMID: 35499991 PMCID: PMC9098094 DOI: 10.1371/journal.pntd.0010105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/12/2022] [Accepted: 04/01/2022] [Indexed: 11/23/2022] Open
Abstract
Background Epidemiological and experimental studies have shown a protective effect of helminth infections in weight gain and against the development of metabolic dysfunctions in the host. However, the mechanisms Treg cells exert in the helminth-obesity interface has been poorly investigated. The present study aimed to verify the influence of Heligmosomoides polygyrus infection in early stages of high fat diet-induced obesity. Principal findings The presence of infection was able to prevent exacerbated weight gain in mice fed with high fat diet when compared to non-infected controls. In addition, infected animals displayed improved insulin sensitivity and decreased fat accumulation in the liver. Obesity-associated inflammation was reduced in the presence of infection, demonstrated by lower levels of leptin and resistin, lower infiltration of Th1 and Th17 cells in adipose tissue, higher expression of IL10 and adiponectin, increased infiltration of Th2 and eosinophils in adipose tissue of infected animals. Of note, the parasite infection was associated with increased Treg frequency in adipose tissue which showed higher expression of cell surface markers of function and activation, like LAP and CD134. The infection could also increase adipose Treg suppressor function in animals on high fat diet. Conclusion These data suggest that H. polygyrus modulates adipose tissue Treg cells with implication for weight gain and metabolic syndrome. Helminth infections are known to modulate the immune system being responsible for protecting the host from developing allergic and autoimmune disorders (Hygiene Hypothesis). We hypothesized that the same immunomodulatory effect could have an impact on immunometabolic diseases, such as obesity and its linked diseases such as type 2 diabetes. Weight disorders have reached epidemic levels, nearly tripling since 1975 and being responsible for almost 5 million premature deaths each year, but have been spared in areas of high helminth prevalence. To test our hypothesis C57BL/6 male mice were fed control or high fat diet, for five weeks, in the presence or not of infection with the worm Heligmosomoides polygyrus. Weight gain, development of metabolic disorders, inflammation and cellular migration to the adipose tissue were evaluated. In accordance with our hypothesis, we found that the presence of infection prevented the exacerbated weight gain and also improved metabolic parameters in animals fed a high fat diet. This was associated with the infection’s ability to modulate parameters of a cell responsible for regulatory functions: Tregs. In the light of these findings, helminth infection could be protective against weight gain and metabolic disturbances.
Collapse
Affiliation(s)
- Camila P. Queiroz-Glauss
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mariana S. Vieira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcela Helena Gonçalves-Pereira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Stephanie S. Almeida
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rachel H. Freire
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria A. Gomes
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jacqueline I. Alvarez-Leite
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Helton C. Santiago
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- * E-mail:
| |
Collapse
|
13
|
PrayGod G, Filteau S, Range N, Ramaiya K, Jeremiah K, Rehman AM, Krogh-Madsen R, Friis H, Faurholt-Jepsen D. The association of Schistosoma and geohelminth infections with β-cell function and insulin resistance among HIV-infected and HIV-uninfected adults: A cross-sectional study in Tanzania. PLoS One 2022; 17:e0262860. [PMID: 35077485 PMCID: PMC8789133 DOI: 10.1371/journal.pone.0262860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 01/06/2022] [Indexed: 01/15/2023] Open
Abstract
Objectives Data on the role of helminths on diabetes in Africa are limited. We investigated whether Schistosoma and geohelminth infections are associated with β-cell function and insulin resistance among adults. Methods A cross-sectional study was conducted among adults during 2016–2017. Demography, Schistosoma and geohelminth infections, HIV and insulin data were collected. Insulin during an oral glucose tolerance test (fasting, 30, and 120-min), overall insulin secretion index, insulinogenic index, HOMA-β, and HOMA-IR were main outcome measures for β-cell function and insulin resistance, respectively. Generalized estimating equations and generalized linear models assessed the association of Schistosoma and geohelminth infections with outcome measures separately by HIV status. Outcomes were presented as marginal means with 95% CI. Results Data were obtained for 1718 participants. Schistosoma infection was associated with higher 30-min insulin (24.2 mU/L, 95% CI: 6.9, 41.6) and overall insulin secretion index (13.3 pmol/L/mmol/L; 3.7, 22.9) among HIV-uninfected participants but with lower fasting insulin (-0.9 mU/L; -1.6, -0.2), 120-min insulin (-12.0 mU/L; -18.9, -5.1), and HOMA-IR (-0.3 mmol/L; -0.6, -0.05) among HIV-infected participants not yet on antiretroviral therapy (ART). Among HIV-infected participants not on ART, geohelminth infection was associated with lower fasting insulin (-0.9 mU/L; -1.6, -0.2), 120-min insulin (-9.1 mU/L; -17.3, -1.0), HOMA-β (-8.9 mU/L)/(mmol/L; -15.3, -2.6) and overall insulin release index (-5.1 pmol/L/mmol/L; -10.3, 0.02), although this was marginally significant. There was no association among those on ART. Conclusions Schistosoma infection was associated with higher β-cell function among HIV-uninfected participants whereas Schistosoma and geohelminth infections were associated with reduced β-cell function among HIV-infected participants not on ART.
Collapse
Affiliation(s)
- George PrayGod
- Mwanza Research Centre, National Institute for Medical Research, Mwanza, Tanzania
- * E-mail:
| | - Suzanne Filteau
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Nyagosya Range
- Muhimbili Research Centre, National Institute for Medical Research, Dar es Saalam, Tanzania
| | | | - Kidola Jeremiah
- Mwanza Research Centre, National Institute for Medical Research, Mwanza, Tanzania
| | - Andrea M. Rehman
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Rikke Krogh-Madsen
- Centre for Physical Activity Research, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Henrik Friis
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
14
|
Sanya RE, Nalwoga A, Grencis RK, Elliott AM, Webb EL, Andia Biraro I. Profiles of inflammatory markers and their association with cardiometabolic parameters in rural and urban Uganda. Wellcome Open Res 2021. [DOI: 10.12688/wellcomeopenres.16651.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background: Inflammation may be one of the pathways explaining differences in cardiometabolic risk between urban and rural residents. We investigated associations of inflammatory markers with rural versus urban residence, and with selected cardiometabolic parameters previously observed to differ between rural and urban residents: homeostatic model assessment of insulin resistance (HOMA-IR), fasting blood glucose (FBG), blood pressure (BP) and body mass index (BMI). Methods: From two community surveys conducted in Uganda, 313 healthy individuals aged ≥ 10 years were selected by age- and sex-stratified random sampling (rural Lake Victoria island communities, 212; urban Entebbe municipality, 101). Fluorescence intensities of plasma cytokines and chemokines were measured using a bead-based multiplex immunoassay. We used linear regression to examine associations between the analytes and rural-urban residence and principal component analysis (PCA) to further investigate patterns in the relationships. Correlations between analytes and metabolic parameters were assessed using Pearson’s correlation coefficient. Results: The urban setting had higher mean levels of IL-5 (3.27 vs 3.14, adjusted mean difference [95% confidence interval] 0.12[0.01,0.23] p=0.04), IFN-⍺ (26.80 vs 20.52, 6.30[2.18,10.41] p=0.003), EGF (5.67 vs 5.07, 0.60[0.32,0.98] p<0.00001), VEGF (3.68 vs 3.28, 0.40[0.25,0.56] p<0.00001), CD40 Ligand (4.82 vs 4.51, 0.31[0.12, 0.50] p=0.001) and Serpin-E1 (9.57 vs 9.46, 0.11[0.05,0.17] p<0.00001), but lower levels of GMCSF (2.94 vs 3.05, -0.10[-0.19,-0.02] p=0.02), CCL2 (2.82 vs 3.10, -0.45[-0.70,-0.21] p<0.00001) and CXCL10 (5.48 vs 5.96, -0.49[-0.71,-0.27] p<0.00001), compared to the rural setting. In PCA, the urban setting had lower representation of some classical inflammatory mediators but higher representation of various chemoattractants and vasoactive peptides. HOMA-IR, FBG, BP and BMI were positively correlated with several principal components characterised by pro-inflammatory analytes. Conclusions: In developing countries, immunological profiles differ between rural and urban environments. Differential expression of certain pro-inflammatory mediators may have important health consequences including contributing to increased cardiometabolic risk observed in the urban environment.
Collapse
|
15
|
Wolday D, Gebrecherkos T, Arefaine ZG, Kiros YK, Gebreegzabher A, Tasew G, Abdulkader M, Abraha HE, Desta AA, Hailu A, Tollera G, Abdella S, Tesema M, Abate E, Endarge KL, Hundie TG, Miteku FK, Urban BC, Schallig HHDF, Harris VC, de Wit TFR. Effect of co-infection with intestinal parasites on COVID-19 severity: A prospective observational cohort study. EClinicalMedicine 2021; 39:101054. [PMID: 34368662 DOI: 10.1101/2021.02.02.21250995] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 05/28/2023] Open
Abstract
Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection results in a spectrum of clinical presentations. Evidence from Africa indicates that significantly less COVID-19 patients suffer from serious symptoms than in the industrialized world. We and others previously postulated a partial explanation for this phenomenon, being a different, more activated immune system due to parasite infections. Here, we aimed to test this hypothesis by investigating a potential correlation of co-infection with parasites with COVID-19 severity in an endemic area in Africa. Methods: Ethiopian COVID-19 patients were enrolled and screened for intestinal parasites, between July 2020 and March 2021. The primary outcome was the proportion of patients with severe COVID-19. Ordinal logistic regression models were used to estimate the association between parasite infection, and COVID-19 severity. Models were adjusted for sex, age, residence, education level, occupation, body mass index, and comorbidities. Findings: 751 SARS-CoV-2 infected patients were enrolled, of whom 284 (37.8%) had intestinal parasitic infection. Only 27/255 (10.6%) severe COVID-19 patients were co-infected with intestinal parasites, while 257/496 (51.8%) non-severe COVID-19 patients were parasite positive (p<0.0001). Patients co-infected with parasites had lower odds of developing severe COVID-19, with an adjusted odds ratio (aOR) of 0.23 (95% CI 0.17-0.30; p<0.0001) for all parasites, aOR 0.37 ([95% CI 0.26-0.51]; p<0.0001) for protozoa, and aOR 0.26 ([95% CI 0.19-0.35]; p<0.0001) for helminths. When stratified by species, co-infection with Entamoeba spp., Hymenolepis nana, Schistosoma mansoni, and Trichuris trichiura implied lower probability of developing severe COVID-19. There were 11 deaths (1.5%), and all were among patients without parasites (p = 0.009). Interpretation: Parasite co-infection is associated with a reduced risk of severe COVID-19 in African patients. Parasite-driven immunomodulatory responses may mute hyper-inflammation associated with severe COVID-19. Funding: European and Developing Countries Clinical Trials Partnership (EDCTP) - European Union, and Joep Lange Institute (JLI), The Netherlands. Trial registration: Clinicaltrials.gov: NCT04473365.
Collapse
Affiliation(s)
- Dawit Wolday
- Mekelle University College of Health Sciences, Mekelle, Ethiopia
| | | | | | | | | | - Geremew Tasew
- Ethiopian Public Health institute, Addis Ababa, Ethiopia
| | | | | | | | | | | | - Saro Abdella
- Ethiopian Public Health institute, Addis Ababa, Ethiopia
| | | | - Ebba Abate
- Ethiopian Public Health institute, Addis Ababa, Ethiopia
| | | | | | | | - Britta C Urban
- Department of Clinical Sciences, Respiratory Clinical Research Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Henk H D F Schallig
- Department of Medical Microbiology and Infection Prevention, Experimental Parasitology Unit, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Vanessa C Harris
- Department of Medical Microbiology and Infection Prevention, Experimental Parasitology Unit, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute of Global Health and Development, Department of Global Health, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Tobias F Rinke de Wit
- Amsterdam Institute of Global Health and Development, Department of Global Health, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Joep Lange Institute, Amsterdam, the Netherlands
| |
Collapse
|
16
|
Wolday D, Gebrecherkos T, Arefaine ZG, Kiros YK, Gebreegzabher A, Tasew G, Abdulkader M, Abraha HE, Desta AA, Hailu A, Tollera G, Abdella S, Tesema M, Abate E, Endarge KL, Hundie TG, Miteku FK, Urban BC, Schallig HH, Harris VC, de Wit TFR. Effect of co-infection with intestinal parasites on COVID-19 severity: A prospective observational cohort study. EClinicalMedicine 2021; 39:101054. [PMID: 34368662 PMCID: PMC8324426 DOI: 10.1016/j.eclinm.2021.101054] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection results in a spectrum of clinical presentations. Evidence from Africa indicates that significantly less COVID-19 patients suffer from serious symptoms than in the industrialized world. We and others previously postulated a partial explanation for this phenomenon, being a different, more activated immune system due to parasite infections. Here, we aimed to test this hypothesis by investigating a potential correlation of co-infection with parasites with COVID-19 severity in an endemic area in Africa. Methods: Ethiopian COVID-19 patients were enrolled and screened for intestinal parasites, between July 2020 and March 2021. The primary outcome was the proportion of patients with severe COVID-19. Ordinal logistic regression models were used to estimate the association between parasite infection, and COVID-19 severity. Models were adjusted for sex, age, residence, education level, occupation, body mass index, and comorbidities. Findings: 751 SARS-CoV-2 infected patients were enrolled, of whom 284 (37.8%) had intestinal parasitic infection. Only 27/255 (10.6%) severe COVID-19 patients were co-infected with intestinal parasites, while 257/496 (51.8%) non-severe COVID-19 patients were parasite positive (p<0.0001). Patients co-infected with parasites had lower odds of developing severe COVID-19, with an adjusted odds ratio (aOR) of 0.23 (95% CI 0.17-0.30; p<0.0001) for all parasites, aOR 0.37 ([95% CI 0.26-0.51]; p<0.0001) for protozoa, and aOR 0.26 ([95% CI 0.19-0.35]; p<0.0001) for helminths. When stratified by species, co-infection with Entamoeba spp., Hymenolepis nana, Schistosoma mansoni, and Trichuris trichiura implied lower probability of developing severe COVID-19. There were 11 deaths (1.5%), and all were among patients without parasites (p = 0.009). Interpretation: Parasite co-infection is associated with a reduced risk of severe COVID-19 in African patients. Parasite-driven immunomodulatory responses may mute hyper-inflammation associated with severe COVID-19. Funding: European and Developing Countries Clinical Trials Partnership (EDCTP) - European Union, and Joep Lange Institute (JLI), The Netherlands. Trial registration: Clinicaltrials.gov: NCT04473365.
Collapse
Affiliation(s)
- Dawit Wolday
- Mekelle University College of Health Sciences, Mekelle, Ethiopia
| | | | | | | | | | - Geremew Tasew
- Ethiopian Public Health institute, Addis Ababa, Ethiopia
| | | | | | | | | | | | - Saro Abdella
- Ethiopian Public Health institute, Addis Ababa, Ethiopia
| | | | - Ebba Abate
- Ethiopian Public Health institute, Addis Ababa, Ethiopia
| | | | | | | | - Britta C. Urban
- Department of Clinical Sciences, Respiratory Clinical Research Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Henk H.D.F. Schallig
- Department of Medical Microbiology and Infection Prevention, Experimental Parasitology Unit, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Vanessa C. Harris
- Department of Medical Microbiology and Infection Prevention, Experimental Parasitology Unit, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Institute of Global Health and Development, Department of Global Health, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Tobias F. Rinke de Wit
- Amsterdam Institute of Global Health and Development, Department of Global Health, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Joep Lange Institute, Amsterdam, the Netherlands
- Corresponding author: at Amsterdam Institute of Global Health and Development, Department of Global Health, Amsterdam University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
17
|
Hansen M, Bowden E, Currie BJ, Ward L, Andrews RM, Dhurrkay RG, Gurruwiwi GG, Kearns T. Strongyloides stercoralis seropositivity is not associated with increased symptoms in a remote Aboriginal community. Intern Med J 2021; 51:1286-1291. [PMID: 32372503 DOI: 10.1111/imj.14884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 01/23/2023]
Abstract
BACKGROUND Strongyloides stercoralis is a soil-transmitted helminth, endemic in remote Aboriginal and Torres Strait Islander communities in northern Australia with estimates of prevalences up to 60%. Hyperinfection in the setting of immunosuppression is a rare, but well recognised cause of significant morbidity and mortality. However, the morbidity associated with chronic uncomplicated infection is less well characterised. AIMS To measure the prevalence of symptoms potentially attributable to S. stercoralis infection and their association with seropositivity. METHODS This retrospective matched case-control study reviewed records of primary healthcare presentations for symptoms in the 12 months before and after an ivermectin mass drug administration (MDA) in a remote Aboriginal community. RESULTS One hundred and seventy-five S. stercoralis seropositive cases were matched with 175 seronegative controls. The most frequently reported symptom overall in the 12 months prior to the MDA was cough followed by abdominal pain, weight loss/malnutrition, diarrhoea and pruritis. Seropositive cases were not more likely than matched controls to have symptoms typically attributed to strongyloidiasis. In the seropositive cohort, we found no difference in symptoms in the 12 months before and after an ivermectin MDA despite a reduction in seroprevalence. CONCLUSION We found no evidence to suggest that S. stercoralis seropositivity was associated with increased symptoms when compared to matched seronegative controls. Treatment with ivermectin did not reduce symptoms in seropositive cases. Without evidence to support that population-based screening or treatment programmes reduce symptoms, the emphasis must remain on identifying and managing those few individuals with immunosuppression that predisposes them to potentially life-threatening hyperinfection.
Collapse
Affiliation(s)
- Martin Hansen
- Infectious Diseases Department, Royal Darwin Hospital, Northern Territory, Australia
| | - Emily Bowden
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Bart J Currie
- Infectious Diseases Department, Royal Darwin Hospital, Northern Territory, Australia.,Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Linda Ward
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Ross M Andrews
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia.,Research School of Population Health, Australian National University, Canberra, Australian Capital Territory, Australia
| | | | | | - Therese Kearns
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| |
Collapse
|
18
|
The determinants of lipid profiles in early adolescence in a Ugandan birth cohort. Sci Rep 2021; 11:16503. [PMID: 34389769 PMCID: PMC8363641 DOI: 10.1038/s41598-021-96035-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/02/2021] [Indexed: 12/04/2022] Open
Abstract
Dyslipidaemia in adolescence tracks into adulthood and is an important risk factor for cardiovascular disease. Little is known about the effects of environmental exposures and early-life exposure to infectious diseases common to tropical regions on lipids. In 1119 early adolescent participants in the Entebbe Mother and Baby Study, we used linear regression to examine whether prenatal, childhood or adolescent factors are associated with lipid levels. Reduced high-density lipoprotein (HDL) and elevated triglyceride levels were common (prevalence 31% and 14%, respectively), but elevated low-density lipoprotein (LDL) or total cholesterol (TC) were rare. Current malaria infection was associated with lower mean LDL (adjusted ß − 0.51; 95% CI − 0.81, − 0.21), HDL (adjusted ß − 0.40; 95% CI − 0.56, − 0.23), and TC levels (adjusted ß − 0.62; 95% CI − 0.97, − 0.27), but higher mean triglyceride levels (geometric mean ratio (GMR) 1.47; 95% CI 1.18–1.84). Early-life asymptomatic malaria was associated with modest reductions in HDL and TC. Body mass index (BMI) was positively associated with LDL, TC, and triglycerides. No associations with helminth infection were found. Our findings suggest that early-life factors have only marginal effects on the lipid profile. Current malaria infection and BMI are strongly associated with lipids and important to consider when trying to improve the lipid profile.
Collapse
|
19
|
Abd Al-Khaliq I, Mahdi I, Nasser A. Intestinal Parasitic Infections in Relation to COVID-19 in Baghdad City. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND: COVID-19 is resulted from severe acute respiratory syndrome coronavirus 2, which initiated in China in December 2019. Parasites are efficient immune modulators because their ability to stimulate an immune response in infected persons.
AIM: This study aims to detect if there is a probable relationship between intestinal parasitic infections and COVID-19.
METHODS: Ninety patients consulted at Al-Kindy Teaching Hospital (Al-Shifa center) from October 2020 till April 2021, confirmed infection with COVID-19 by PCR. Stool examination was done for detecting intestinal parasites.
RESULTS: From 90 patients, males were 63 (70%), with median age 32 years, while females were 27 (30%), with age 24–44 years. Asymptomatic patients were 8.1 (9%), patients with moderate symptoms 22.5 (25%) cases, while the rest were 59.4 (66%) cases who required enter to the intensive care unit, with symptoms including cough (80%), dyspnea (74%), fever (56%), headache (43%), chest pain (37%), sore throat (35%), myalgia (32%), diarrhea (27%), and hemoptysis (3%).
CONCLUSION: There is inverse relationship between parasitic infection and COVID-19 infections, and it is significant to understand the action between parasites and microbiome, also its function in COVID-19 pathogenicity.
Collapse
|
20
|
Eosinophils and helminth infection: protective or pathogenic? Semin Immunopathol 2021; 43:363-381. [PMID: 34165616 DOI: 10.1007/s00281-021-00870-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023]
Abstract
Since the earliest descriptions of this enigmatic cell, eosinophils have been implicated in both protective and pathogenic immune responses to helminth infection. Nevertheless, despite substantial data from in vitro studies, human infections, and animal models, their precise role in helminth infection remains incompletely understood. This is due to a number of factors, including the heterogeneity of the many parasites included in the designation "helminth," the complexity and redundancy in the host immune response to helminths, and the pleiotropic functions of eosinophils themselves. This review examines the consequences of helminth-associated eosinophilia in the context of protective immunity, pathogenesis, and immunoregulation.
Collapse
|
21
|
Chen JY, Zhou JK, Pan W. Immunometabolism: Towards a Better Understanding the Mechanism of Parasitic Infection and Immunity. Front Immunol 2021; 12:661241. [PMID: 34122419 PMCID: PMC8191844 DOI: 10.3389/fimmu.2021.661241] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/13/2021] [Indexed: 12/26/2022] Open
Abstract
As a relatively successful pathogen, several parasites can establish long-term infection in host. This “harmonious symbiosis” status relies on the “precise” manipulation of host immunity and metabolism, however, the underlying mechanism is still largely elusive. Immunometabolism is an emerging crossed subject in recent years. It mainly discusses the regulatory mechanism of metabolic changes on reprogramming the key transcriptional and post-transcriptional events related to immune cell activation and effect, which provides a novel insight for understanding how parasites regulate the infection and immunity in hosts. The present study reviewed the current research progress on metabolic reprogramming mechanism exploited by parasites to modulate the function in various immune cells, highlighting the future exploitation of key metabolites or metabolic events to clarify the underlying mechanism of anti-parasite immunity and design novel intervention strategies against parasitic infection.
Collapse
Affiliation(s)
- Jing-Yue Chen
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,The First Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Ji-Kai Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China.,The First Clinical Medicine, Xuzhou Medical University, Xuzhou, China
| | - Wei Pan
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
22
|
Douglas B, Oyesola O, Cooper MM, Posey A, Tait Wojno E, Giacomin PR, Herbert DR. Immune System Investigation Using Parasitic Helminths. Annu Rev Immunol 2021; 39:639-665. [PMID: 33646858 DOI: 10.1146/annurev-immunol-093019-122827] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Coevolutionary adaptation between humans and helminths has developed a finely tuned balance between host immunity and chronic parasitism due to immunoregulation. Given that these reciprocal forces drive selection, experimental models of helminth infection are ideally suited for discovering how host protective immune responses adapt to the unique tissue niches inhabited by these large metazoan parasites. This review highlights the key discoveries in the immunology of helminth infection made over the last decade, from innate lymphoid cells to the emerging importance of neuroimmune connections. A particular emphasis is placed on the emerging areas within helminth immunology where the most growth is possible, including the advent of genetic manipulation of parasites to study immunology and the use of engineered T cells for therapeutic options. Lastly,we cover the status of human challenge trials with helminths as treatment for autoimmune disease, which taken together, stand to keep the study of parasitic worms at the forefront of immunology for years to come.
Collapse
Affiliation(s)
- Bonnie Douglas
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; ,
| | - Oyebola Oyesola
- Department of Immunology, University of Washington, Seattle, Washington 98109, USA; ,
| | - Martha M Cooper
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland 4878, Australia; ,
| | - Avery Posey
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; .,Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.,Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania 19104, USA
| | - Elia Tait Wojno
- Department of Immunology, University of Washington, Seattle, Washington 98109, USA; ,
| | - Paul R Giacomin
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland 4878, Australia; ,
| | - De'Broski R Herbert
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; ,
| |
Collapse
|
23
|
Cortes‐Selva D, Fairfax K. Schistosome and intestinal helminth modulation of macrophage immunometabolism. Immunology 2021; 162:123-134. [PMID: 32614982 PMCID: PMC7808165 DOI: 10.1111/imm.13231] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/12/2022] Open
Abstract
Macrophages are fundamental to sustain physiological equilibrium and to regulate the pathogenesis of parasitic and metabolic processes. The functional heterogeneity and immune responses of macrophages are shaped by cellular metabolism in response to the host's intrinsic factors, environmental cues and other stimuli during disease. Parasite infections induce a complex cascade of cytokines and metabolites that profoundly remodel the metabolic status of macrophages. In particular, helminths polarize macrophages to an M2 state and induce a metabolic shift towards reliance on oxidative phosphorylation, lipid oxidation and amino acid metabolism. Accumulating data indicate that helminth-induced activation and metabolic reprogramming of macrophages underlie improvement in overall whole-body metabolism, denoted by improved insulin sensitivity, body mass in response to high-fat diet and atherogenic index in mammals. This review aims to highlight the metabolic changes that occur in human and murine-derived macrophages in response to helminth infections and helminth products, with particular interest in schistosomiasis and soil-transmitted helminths.
Collapse
Affiliation(s)
- Diana Cortes‐Selva
- Division of Microbiology and ImmunologyDepartment of PathologyUniversity of UtahSalt Lake CityUTUSA
- Janssen BiotherapeuticsJanssen R&DSpring HousePAUSA
| | - Keke Fairfax
- Division of Microbiology and ImmunologyDepartment of PathologyUniversity of UtahSalt Lake CityUTUSA
| |
Collapse
|
24
|
Rennie C, Fernandez R, Donnelly S, McGrath KCY. The Impact of Helminth Infection on the Incidence of Metabolic Syndrome: A Systematic Review and Meta-Analysis. Front Endocrinol (Lausanne) 2021; 12:728396. [PMID: 34456879 PMCID: PMC8397462 DOI: 10.3389/fendo.2021.728396] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/20/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND There are a growing number of publications that report an absence of inflammatory based disease among populations that are endemic to parasitic worms (helminths) demonstrating the ability of these parasites to potentially regulate human immune responses. The aim of this systematic review and meta-analysis was to determine the impact of helminth infection on metabolic outcomes in human populations. METHODS Using PRISMA guidelines, six databases were searched for studies published up to August 2020. Random effects meta-analysis was performed to estimate pooled proportions with 95% confidence intervals using the Review Manager Software version 5.4.1. RESULTS Fourteen studies were included in the review. Fasting blood glucose was significantly lower in persons with infection (MD -0.22, 95% CI -0.40- -0.04, P=0.02), HbA1c levels were lower, although not significantly, and prevalence of the metabolic syndrome (P=0.001) and type 2 diabetes was lower (OR 1.03, 95% CI 0.34-3.09, P<0.0001). Infection was negatively associated with type 2 diabetes when comparing person with diabetes to the group without diabetes (OR 0.44, 95% CI 0.29-0.67, P=0.0001). CONCLUSIONS While infection with helminths was generally associated with improved metabolic function, there were notable differences in efficacy between parasite species. Based on the data assessed, live infection with S. mansoni resulted in the most significant positive changes to metabolic outcomes. SYSTEMATIC REVIEW REGISTRATION Website: PROSPERO Identified: CRD42021227619.
Collapse
Affiliation(s)
- Claire Rennie
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Ritin Fernandez
- School of Nursing, University of Wollongong, Wollongong, NSW, Australia
- Centre for Research in Nursing and Health, St George Hospital, Sydney, NSW, Australia
- Centre for Evidence Based Initiatives in Health Care a JBI Centre of Excellence, Sydney, NSW, Australia
| | - Sheila Donnelly
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- *Correspondence: Kristine CY McGrath, ; Sheila Donnelly,
| | - Kristine CY McGrath
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
- *Correspondence: Kristine CY McGrath, ; Sheila Donnelly,
| |
Collapse
|
25
|
Specific Antibodies and Arachidonic Acid Mediate the Protection Induced by the Schistosoma mansoni Cysteine Peptidase-Based Vaccine in Mice. Vaccines (Basel) 2020; 8:vaccines8040682. [PMID: 33207535 PMCID: PMC7712720 DOI: 10.3390/vaccines8040682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 12/20/2022] Open
Abstract
Several reports have documented the reproducible and considerable efficacy of the cysteine peptidase-based schistosomiasis vaccine in the protection of mice and hamsters against infection with Schistosoma mansoni and Schistosomahaematobium, respectively. Here, we attempt to identify and define the protection mechanism(s) of the vaccine in the outbred CD-1 mice-S. mansoni model. Mice were percutaneously exposed to S. mansoni cercariae following immunization twice with 0 or 10 μg S. mansoni recombinant cathepsin B1 (SmCB1) or L3 (SmCL3). They were examined at specified intervals post infection (pi) for the level of serum antibodies, uric acid, which amplifies type 2 immune responses and is an anti-oxidant, lipids, in particular, arachidonic acid (ARA), which is an endoschistosomicide and ovocide, as well as uric acid and ARA in the lung and liver. Memory IgG1, IgG2a, and IgG2b antibodies to the cysteine peptidase immunogen were detectable at and following day 17 pi. Serum, lung, and liver uric acid levels in immunized mice were higher than in naïve and unimmunized mice, likely as a consequence of cysteine peptidase-mediated catabolic activity. Increased circulating uric acid in cysteine peptidase-immunized mice was associated with elevation in the amount of ARA in lung and liver at every test interval, and in serum starting at day 17 pi. Together, the results suggest the collaboration of humoral antibodies and ARA schistosomicidal potential in the attrition of challenge S. mansoni (p < 0.0005) at the liver stage, and ARA direct parasite egg killing (p < 0.005). The anti-oxidant and reactive oxygen species-scavenger properties of uric acid may be responsible for the cysteine peptidase vaccine protection ceiling. This article represents a step towards clarifying the protection mechanism of the cysteine peptidase-based schistosomiasis vaccine.
Collapse
|
26
|
Sanya RE, Andia Biraro I, Nampijja M, Zziwa C, Nanyunja C, Nsubuga D, Kiwanuka S, Tumusiime J, Nassuuna J, Walusimbi B, Cose S, Ocama P, Grencis RK, Elliott AM, Webb EL. Contrasting impact of rural, versus urban, living on glucose metabolism and blood pressure in Uganda. Wellcome Open Res 2020; 5:39. [PMID: 32875121 PMCID: PMC7447960 DOI: 10.12688/wellcomeopenres.15616.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2020] [Indexed: 01/13/2023] Open
Abstract
Background: The burden of cardiometabolic diseases, including cardiovascular diseases and diabetes, is increasing in sub-Saharan Africa and this has been linked to urbanisation. Helminths, through their immunomodulatory properties, may protect against these disorders. We hypothesised that the rural environment protects against cardiometabolic diseases and that helminths may influence rural-urban disparity of cardiometabolic disease risk. Methods: We compared metabolic parameters of individuals aged ≥10 years living in rural, high-helminth-transmission and urban, lower-helminth-transmission settings in Uganda. Cross-sectional surveys were conducted in rural Lake Victoria island fishing communities and in urban sub-wards in Entebbe municipality. Helminth infection and outcomes, including insulin resistance (computed using the homeostatic model assessment of insulin resistance [HOMA-IR]), fasting blood glucose, fasting blood lipids, blood pressure, body mass index (BMI), waist and hip circumference, were assessed. Results: We analysed 1,898 rural and 930 urban participants. Adjusting for BMI, exercise, smoking, alcohol intake, age and sex, urban residents had lower mean fasting glucose (adjusted mean difference [95%CI] 0.18 [-0.32, -0.05] p=0.01) and HOMA-IR (-0.26 [-0.40, -0.11] p=0.001) but higher blood pressure (systolic, 5.45 [3.75, 7.15] p<0.001; diastolic, 1.93 [0.57, 3.29] p=0.006). Current helminth infection did not explain the observed differences. Conclusions: In the Ugandan context, living in rural fishing communities may protect against hypertension but worsen glucose metabolism.
Collapse
Affiliation(s)
- Richard E Sanya
- Immunomodulation and Vaccines Programme, Medical Research Council/ Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda.,Department of Internal Medicine, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Irene Andia Biraro
- Department of Internal Medicine, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Margaret Nampijja
- Immunomodulation and Vaccines Programme, Medical Research Council/ Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda.,Maternal and Child Wellbeing Unit, African Population and Health Research Center, Nairobi, Kenya
| | - Christopher Zziwa
- Immunomodulation and Vaccines Programme, Medical Research Council/ Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Carol Nanyunja
- Immunomodulation and Vaccines Programme, Medical Research Council/ Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Denis Nsubuga
- Immunomodulation and Vaccines Programme, Medical Research Council/ Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Samuel Kiwanuka
- Immunomodulation and Vaccines Programme, Medical Research Council/ Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Josephine Tumusiime
- Immunomodulation and Vaccines Programme, Medical Research Council/ Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Jacent Nassuuna
- Immunomodulation and Vaccines Programme, Medical Research Council/ Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Bridgious Walusimbi
- Immunomodulation and Vaccines Programme, Medical Research Council/ Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Stephen Cose
- Immunomodulation and Vaccines Programme, Medical Research Council/ Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda.,Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
| | - Ponsiano Ocama
- Department of Internal Medicine, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Richard K Grencis
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Alison M Elliott
- Immunomodulation and Vaccines Programme, Medical Research Council/ Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda.,Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
| | - Emily L Webb
- MRC Tropical Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
27
|
Nakanjako D, Zalwango F, Wairagala P, Luboga F, Andia Biraro I, Bukirwa VD, Mboowa MG, Cose S, Seeley J, Elliott A. Career development for infection and immunity research in Uganda: a decade of experience from the Makerere University - Uganda Virus Research Institute research and training programme. AAS Open Res 2020; 3:26. [PMID: 32734140 PMCID: PMC7372530 DOI: 10.12688/aasopenres.13066.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/10/2020] [Indexed: 11/23/2022] Open
Abstract
Background: The Makerere University/Uganda Virus Research Institute (UVRI) Centre of Excellence for Infection & Immunity Research and Training (MUII) is a collaborative programme supporting excellence in Infection and Immunity (I&I) research in Uganda. Set up in 2008, MUII aims to produce internationally competitive Ugandan and East African I&I research leaders, and develop human and infrastructural resources to support research and training excellence. We undertook an internal evaluation of MUII’s achievements, challenges and lessons learned between 08-2008 and 12-2019, to inform programmes seeking to build Africa’s health research expertise. Methods: Quantitative data were abstracted from programme annual reports. Qualitative data were obtained in 03-04/2019: a cross-sectional evaluation was undertaken among a purposefully selected representative sample of 27 trainees and two programme staff. Qualitative data was analysed according to pre-determined themes of achievements, challenges, lessons learned and recommendations for improvement. Results: By 12-2019, MUII had supported 68 fellowships at master’s-level and above (50% female: 23 Masters, 27 PhD, 15 post-doctoral, three group-leaders) and over 1,000 internships. Fellows reported career advancement, mentorship by experts, and improved research skills and outputs. Fellows have published over 300 papers, secured grants worth over £20m, established over 40 international collaborations, and taken on research and academic leadership positions in the country. Key lessons were: i) Efficient administration provides a conducive environment for high quality research; ii) Institutions need supportive policies for procurement, including provisions for purchases of specific biological research reagents from international manufacturers; iii) Strong international and multi-disciplinary collaboration provides a critical mass of expertise to mentor researchers in development; and iv) Mentorship catalyses young scientists to progress from graduate trainees to productive academic researchers, relevant to society’s most pressing health challenges. Conclusions: Sustainable academic productivity can be achieved through efficient operational support, global collaboration and mentorship to provide solutions to Africa’s health challenges.
Collapse
Affiliation(s)
- Damalie Nakanjako
- Makerere University-Uganda Virus Research Institute Infection and Immunity (MUII), Uganda Virus Research Institute, Entebbe, Uganda.,Department of Medicine, School of Medicine, Makerere University, College of Health Sciences, Kampala, Uganda
| | - Flavia Zalwango
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit,, Uganda Virus Research Institute, Entebbe, Uganda
| | - Pamela Wairagala
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit,, Uganda Virus Research Institute, Entebbe, Uganda
| | - Fiona Luboga
- Makerere University-Uganda Virus Research Institute Infection and Immunity (MUII), Uganda Virus Research Institute, Entebbe, Uganda
| | - Irene Andia Biraro
- Makerere University-Uganda Virus Research Institute Infection and Immunity (MUII), Uganda Virus Research Institute, Entebbe, Uganda.,Department of Medicine, School of Medicine, Makerere University, College of Health Sciences, Kampala, Uganda
| | - Victoria Diana Bukirwa
- Makerere University-Uganda Virus Research Institute Infection and Immunity (MUII), Uganda Virus Research Institute, Entebbe, Uganda
| | - Mary Gorrethy Mboowa
- Makerere University-Uganda Virus Research Institute Infection and Immunity (MUII), Uganda Virus Research Institute, Entebbe, Uganda
| | - Steve Cose
- Makerere University-Uganda Virus Research Institute Infection and Immunity (MUII), Uganda Virus Research Institute, Entebbe, Uganda.,Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit,, Uganda Virus Research Institute, Entebbe, Uganda
| | - Janet Seeley
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit,, Uganda Virus Research Institute, Entebbe, Uganda.,Global Health and Development Department, London School of Hygiene and Tropical Medicine, London, UK
| | - Alison Elliott
- Makerere University-Uganda Virus Research Institute Infection and Immunity (MUII), Uganda Virus Research Institute, Entebbe, Uganda.,Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit,, Uganda Virus Research Institute, Entebbe, Uganda
| |
Collapse
|
28
|
Zinsou JF, Janse JJ, Honpkehedji YY, Dejon-Agobé JC, García-Tardón N, Hoekstra PT, Massinga-Loembe M, Corstjens PLAM, van Dam GJ, Giera M, Kremsner PG, Yazdanbakhsh M, Adegnika AA, Guigas B. Schistosoma haematobium infection is associated with lower serum cholesterol levels and improved lipid profile in overweight/obese individuals. PLoS Negl Trop Dis 2020; 14:e0008464. [PMID: 32614822 PMCID: PMC7363109 DOI: 10.1371/journal.pntd.0008464] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/15/2020] [Accepted: 06/08/2020] [Indexed: 02/07/2023] Open
Abstract
Infection with parasitic helminths has been reported to improve insulin sensitivity and glucose homeostasis, lowering the risk for type 2 diabetes. However, little is known about its impact on whole-body lipid homeostasis, especially in obese individuals. For this purpose, a cross-sectional study was carried out in lean and overweight/obese adults residing in the Lambaréné region of Gabon, an area endemic for Schistosoma haematobium. Helminth infection status, peripheral blood immune cell counts, and serum metabolic and lipid/lipoprotein levels were analyzed. We found that urine S. haematobium egg-positive individuals exhibited lower serum total cholesterol (TC; 4.42 vs 4.01 mmol/L, adjusted mean difference [95%CI] -0.30 [-0.68,-0.06]; P = 0.109), high-density lipoprotein (HDL)-C (1.44 vs 1.12 mmol/L, -0.24 [-0.43,-0.06]; P = 0.009) and triglyceride (TG; 0.93 vs 0.72 mmol/L, -0.20 [-0.39,-0.03]; P = 0.022) levels than egg-negative individuals. However, when stratified according to body mass index, these effects were only observed in overweight/obese infected individuals. Similarly, significant negative correlations between the intensity of infection, assessed by serum circulating anodic antigen (CAA) concentrations, and TC (r = -0.555; P<0.001), HDL-C (r = -0.327; P = 0.068), LDL-C (r = -0.396; P = 0.025) and TG (r = -0.381; P = 0.032) levels were found in overweight/obese individuals but not in lean subjects. Quantitative lipidomic analysis showed that circulating levels of some lipid species associated with cholesterol-rich lipoprotein particles were also significantly reduced in overweight/obese infected individuals in an intensity-dependent manner. In conclusion, we reported that infection with S. haematobium is associated with improved lipid profile in overweight/obese individuals, a feature that might contribute reducing the risk of cardiometabolic diseases in such population. Infection with parasitic helminths has been reported to be beneficial for metabolic homeostasis by improving insulin sensitivity and lowering the risk for developing type 2 diabetes. Elevated circulating cholesterol and triglyceride levels associated with obesity are also risk factors for cardiometabolic diseases. In the framework of a cross-sectional study conducted in an endemic rural area, we have investigated the impact of infection with Schistosoma hematobium on serum lipid homeostasis in adult individuals with a broad range of body weight. We found that helminth infection is associated with a lower serum total cholesterol (TC), high-density lipoprotein (HDL)-C and triglyceride (TG) levels, especially in overweight/obese individuals. Furthermore, significant negative correlations between the intensity of infection and TC, HDL-C, LDL-C and TG levels were also found in overweight/obese individuals but not in lean subjects. Altogether our study show for the first time that infection with Schistosoma hematobium is associated with an improved serum lipid profile in overweight/obese humans, a feature that may contribute to protection against cardiometabolic diseases in such population. Further investigation is however required to elucidate the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Jeannot F. Zinsou
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Jacqueline J. Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Yabo Y. Honpkehedji
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | | | - Noemí García-Tardón
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Pytsje T. Hoekstra
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marguerite Massinga-Loembe
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany
- German Center for Infection Research, Tübingen, Tübingen, Germany
| | - Paul L. A. M. Corstjens
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Govert J. van Dam
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter G. Kremsner
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ayola A. Adegnika
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
- Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany
- German Center for Infection Research, Tübingen, Tübingen, Germany
| | - Bruno Guigas
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
29
|
Nakanjako D, Zalwango F, Wairagala P, Luboga F, Andia Biraro I, Bukirwa VD, Mboowa MG, Cose S, Seeley J, Elliott A. Career development for infection and immunity research in Uganda: a decade of experience from the Makerere University – Uganda Virus Research Institute research and training programme. AAS Open Res 2020; 3:26. [DOI: 10.12688/aasopenres.13066.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2020] [Indexed: 11/20/2022] Open
Abstract
Background: The Makerere University/Uganda Virus Research Institute (UVRI) Centre of Excellence for Infection & Immunity Research and Training (MUII) is a collaborative programme supporting excellence in Infection and Immunity (I&I) research in Uganda. Set up in 2008, MUII aims to produce internationally competitive Ugandan and East African I&I research leaders, and develop human and infrastructural resources to support research and training excellence. We undertook an internal evaluation of MUII’s achievements, challenges and lessons learned between August 2008 and December 2019, to inform programmes seeking to build Africa’s health research expertise. Methods: Quantitative data were abstracted from programme annual reports. Qualitative data were obtained in March and April 2019: a cross-sectional evaluation was undertaken among a purposefully selected representative sample of 27 trainees and two programme staff. Qualitative data was analysed according to pre-determined themes of achievements, challenges, lessons learned and recommendations for improvement. Results: By December 2019, MUII had supported 68 fellowships at master’s-level and above (50% female: 23 Masters, 27 PhD, 15 post-doctoral, three group-leader fellows) and over 1,000 internships. Fellows reported career advancement, mentorship by experts, and improved research skills and outputs. Fellows have published over 300 papers, secured grants worth over £20m, established over 40 international collaborations, and taken on research and academic leadership positions in the country. Key lessons for success include the following: efficient administration provides an enabling environment; institutions need supportive policies for procurement, including provisions for purchases of specific biological research reagents from international manufacturers; strong international, multi-disciplinary collaboration provides a critical mass of expertise to mentor researchers in development; and mentorship catalyses young scientists to progress from graduate trainees to productive academic researchers, relevant to society’s most pressing health challenges. Conclusions: Sustainable academic productivity can be achieved through efficient operational support, global collaboration and mentorship to provide solutions to Africa’s health challenges.
Collapse
|
30
|
Sanya RE, Andia Biraro I, Nampijja M, Zziwa C, Nanyunja C, Nsubuga D, Kiwanuka S, Tumusiime J, Nassuuna J, Walusimbi B, Cose S, Ocama P, Grencis RK, Elliott AM, Webb EL. Contrasting impact of rural, versus urban, living on glucose metabolism and blood pressure in Uganda. Wellcome Open Res 2020; 5:39. [DOI: 10.12688/wellcomeopenres.15616.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2020] [Indexed: 11/20/2022] Open
Abstract
Background: The burden of cardiometabolic diseases, including cardiovascular diseases and diabetes, is increasing in sub-Saharan Africa and this has been linked to urbanisation. Helminths, through their immunomodulatory properties, may protect against these disorders. We hypothesised that the rural environment protects against cardiometabolic diseases and that helminths may influence rural-urban disparity of cardiometabolic disease risk. Methods: We compared metabolic parameters of individuals aged ≥10 years living in rural, high-helminth-transmission and urban, lower-helminth-transmission settings in Uganda. Cross-sectional surveys were conducted in rural Lake Victoria island communities and in urban sub-wards in Entebbe municipality. Helminth infection and outcomes, including insulin resistance (computed using the homeostatic model assessment of insulin resistance [HOMA-IR]), fasting blood glucose, fasting blood lipids, blood pressure, body mass index (BMI), waist and hip circumference, were assessed. Results: We analysed 1,898 rural and 930 urban participants. Adjusting for BMI, exercise, smoking, alcohol intake, age and sex, urban residents had lower mean fasting glucose (adjusted mean difference [95%CI] -0.13 [-0.24, -0.01] p=0.04) and HOMA-IR (-0.13 [-0.25, -0.01] p=0.04) but higher blood pressure (systolic, 4.64 [3.23, 6.06] p<0.001; diastolic, 1.89 [0.81, 2.97] p=0.001). Current helminth infection did not explain the observed differences. Conclusions: In low-income countries, rural living may protect against hypertension but impair glucose metabolism.
Collapse
|
31
|
Moyat M, Coakley G, Harris NL. The interplay of type 2 immunity, helminth infection and the microbiota in regulating metabolism. Clin Transl Immunology 2019; 8:e01089. [PMID: 31719981 PMCID: PMC6837856 DOI: 10.1002/cti2.1089] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/18/2019] [Accepted: 10/20/2019] [Indexed: 12/17/2022] Open
Abstract
Type 2 immunity has recently emerged as a critical player in metabolic status, with numerous studies investigating the role of type 2 immune cells within adipose tissue. Metabolic dysfunction is often characterised as a low-grade or chronic inflammatory state within tissues, and type 2 immunity may facilitate a return to metabolic homeostasis. A complex network of type 2 resident cells including M2 macrophages, eosinophils and ILC2s has been identified within adipose tissue. Although the effector cells in this equilibrium have not been clearly identified, any alteration of the type 2 microenvironment resulted in an altered metabolic state. Historically, the type 2 immune response has been associated with helminth infection. The type 2 immune response drives host resistance and plays an important role in promoting tissue repair following the migration of helminth larvae through tissues. Although helminths are largely eradicated in developed countries, infection rates remain high in poor communities within the developing world. Interestingly, there is strong evidence that helminth infection is inversely correlated with autoimmune or inflammatory disorders. Recently, an increasing amount of epidemiological and field studies suggest that it could be the same for obesity and metabolic syndrome. In the current review, we summarise the literature linking type 2 immunity to improved adipose tissue function. We then discuss more recent evidence indicating that helminth infection can provide protection against metabolic syndrome. Lastly, we explore the possible contributions of altered nutrient uptake, adipose tissue function and/or the intestinal microbiota with the ability of helminths to alter metabolic status.
Collapse
Affiliation(s)
- Mati Moyat
- Department of Immunology and PathologyMonash University Central Clinical SchoolMelbourneVICAustralia
| | - Gillian Coakley
- Department of Immunology and PathologyMonash University Central Clinical SchoolMelbourneVICAustralia
| | - Nicola L Harris
- Department of Immunology and PathologyMonash University Central Clinical SchoolMelbourneVICAustralia
| |
Collapse
|