1
|
Bustin A, Pineau X, Sridi S, van Heeswijk RB, Jaïs P, Stuber M, Cochet H. Assessment of myocardial injuries in ischaemic and non-ischaemic cardiomyopathies using magnetic resonance T1-rho mapping. Eur Heart J Cardiovasc Imaging 2024; 25:548-557. [PMID: 37987558 DOI: 10.1093/ehjci/jead319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/30/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023] Open
Abstract
AIMS To identify clinical correlates of myocardial T1ρ and to examine how myocardial T1ρ values change under various clinical scenarios. METHODS AND RESULTS A total of 66 patients (26% female, median age 57 years [Q1-Q3, 44-65 years]) with known structural heart disease and 44 controls (50% female, median age 47 years [28-57 years]) underwent cardiac magnetic resonance imaging at 1.5 T, including T1ρ mapping, T2 mapping, native T1 mapping, late gadolinium enhancement, and extracellular volume (ECV) imaging. In controls, T1ρ positively related with T2 (P = 0.038) and increased from basal to apical levels (P < 0.001). As compared with controls and remote myocardium, T1ρ significantly increased in all patients' sub-groups and all types of myocardial injuries: acute and chronic injuries, focal and diffuse tissue abnormalities, as well as ischaemic and non-ischaemic aetiologies (P < 0.05). T1ρ was independently associated with T2 in patients with acute injuries (P = 0.004) and with native T1 and ECV in patients with chronic injuries (P < 0.05). Myocardial T1ρ mapping demonstrated good intra- and inter-observer reproducibility (intraclass correlation coefficient = 0.86 and 0.83, respectively). CONCLUSION Myocardial T1ρ mapping appears to be reproducible and equally sensitive to acute and chronic myocardial injuries, whether of ischaemic or non-ischaemic origins. It may thus be a contrast-agent-free biomarker for gaining new and quantitative insight into myocardial structural disorders. These findings highlight the need for further studies through prospective and randomized trials.
Collapse
Affiliation(s)
- Aurélien Bustin
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Avenue du Haut Lévêque, 33604 Pessac, France
- Department of Cardiovascular Imaging, Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, Avenue de Magellan, 33604 Pessac, France
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - Xavier Pineau
- Department of Cardiovascular Imaging, Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, Avenue de Magellan, 33604 Pessac, France
| | - Soumaya Sridi
- Department of Cardiovascular Imaging, Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, Avenue de Magellan, 33604 Pessac, France
| | - Ruud B van Heeswijk
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - Pierre Jaïs
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Avenue du Haut Lévêque, 33604 Pessac, France
- Department of Cardiac Electrophysiology, Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, Avenue de Magellan, 33604 Pessac, France
| | - Matthias Stuber
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Avenue du Haut Lévêque, 33604 Pessac, France
- Department of Diagnostic and Interventional Radiology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 46, 1011 Lausanne, Switzerland
- Center for Biomedical Imaging (CIBM), Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - Hubert Cochet
- IHU LIRYC, Electrophysiology and Heart Modeling Institute, Université de Bordeaux, INSERM, Centre de recherche Cardio-Thoracique de Bordeaux, U1045, Avenue du Haut Lévêque, 33604 Pessac, France
- Department of Cardiovascular Imaging, Hôpital Cardiologique du Haut-Lévêque, CHU de Bordeaux, Avenue de Magellan, 33604 Pessac, France
| |
Collapse
|
2
|
Vijayakumar A, Wang M, Kailasam S. The Senescent Heart-"Age Doth Wither Its Infinite Variety". Int J Mol Sci 2024; 25:3581. [PMID: 38612393 PMCID: PMC11011282 DOI: 10.3390/ijms25073581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
Cardiovascular diseases are a leading cause of morbidity and mortality world-wide. While many factors like smoking, hypertension, diabetes, dyslipidaemia, a sedentary lifestyle, and genetic factors can predispose to cardiovascular diseases, the natural process of aging is by itself a major determinant of the risk. Cardiac aging is marked by a conglomerate of cellular and molecular changes, exacerbated by age-driven decline in cardiac regeneration capacity. Although the phenotypes of cardiac aging are well characterised, the underlying molecular mechanisms are far less explored. Recent advances unequivocally link cardiovascular aging to the dysregulation of critical signalling pathways in cardiac fibroblasts, which compromises the critical role of these cells in maintaining the structural and functional integrity of the myocardium. Clearly, the identification of cardiac fibroblast-specific factors and mechanisms that regulate cardiac fibroblast function in the senescent myocardium is of immense importance. In this regard, recent studies show that Discoidin domain receptor 2 (DDR2), a collagen-activated receptor tyrosine kinase predominantly located in cardiac fibroblasts, has an obligate role in cardiac fibroblast function and cardiovascular fibrosis. Incisive studies on the molecular basis of cardiovascular aging and dysregulated fibroblast function in the senescent heart would pave the way for effective strategies to mitigate cardiovascular diseases in a rapidly growing elderly population.
Collapse
Affiliation(s)
- Anupama Vijayakumar
- Cardiovascular Genetics Laboratory, Department of Biotechnology, Bhupat and Jyothi Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India;
| | - Mingyi Wang
- Laboratory of Cardiovascular Science, National Institute on Aging/National Institutes of Health, Baltimore, MD 21224, USA;
| | - Shivakumar Kailasam
- Department of Biotechnology, University of Kerala, Kariavattom, Trivandrum 695581, India
| |
Collapse
|
3
|
Carrick-Ranson G, Howden EJ, Brazile TL, Levine BD, Reading SA. Effects of aging and endurance exercise training on cardiorespiratory fitness and cardiac structure and function in healthy midlife and older women. J Appl Physiol (1985) 2023; 135:1215-1235. [PMID: 37855034 DOI: 10.1152/japplphysiol.00798.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 10/05/2023] [Accepted: 10/07/2023] [Indexed: 10/20/2023] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality in women in developed societies. Unfavorable structural and functional adaptations within the heart and central blood vessels with sedentary aging in women can act as the substrate for the development of debilitating CVD conditions such as heart failure with preserved ejection fraction (HFpEF). The large decline in cardiorespiratory fitness, as indicated by maximal or peak oxygen uptake (V̇o2max and V̇o2peak, respectively), that occurs in women as they age significantly affects their health and chronic disease status, as well as the risk of cardiovascular and all-cause mortality. Midlife and older women who have performed structured endurance exercise training for several years or decades of their adult lives exhibit a V̇o2max and cardiac and vascular structure and function that are on par or even superior to much younger sedentary women. Therefore, regular endurance exercise training appears to be an effective preventative strategy for mitigating the adverse physiological cardiovascular adaptations associated with sedentary aging in women. Herein, we narratively describe the aging and short- and long-term endurance exercise training adaptations in V̇o2max, cardiac structure, and left ventricular systolic and diastolic function at rest and exercise in midlife and older women. The role of circulating estrogens on cardiac structure and function is described for consideration in the timing of exercise interventions to maximize beneficial adaptations. Current research gaps and potential areas for future investigation to advance our understanding in this critical knowledge area are highlighted.
Collapse
Affiliation(s)
- Graeme Carrick-Ranson
- Department of Surgery, the University of Auckland, Auckland, New Zealand
- Department of Exercise Sciences, the University of Auckland, Auckland, New Zealand
| | - Erin J Howden
- Human Integrative Physiology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Tiffany L Brazile
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, Texas, United States
- University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Benjamin D Levine
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital, Dallas, Texas, United States
- University of Texas Southwestern Medical Center, Dallas, Texas, United States
| | - Stacey A Reading
- Department of Exercise Sciences, the University of Auckland, Auckland, New Zealand
| |
Collapse
|
4
|
Owesny P, Grune T. The link between obesity and aging - insights into cardiac energy metabolism. Mech Ageing Dev 2023; 216:111870. [PMID: 37689316 DOI: 10.1016/j.mad.2023.111870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/04/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Obesity and aging are well-established risk factors for a range of diseases, including cardiovascular diseases and type 2 diabetes. Given the escalating prevalence of obesity, the aging population, and the subsequent increase in cardiovascular diseases, it is crucial to investigate the underlying mechanisms involved. Both aging and obesity have profound effects on the energy metabolism through various mechanisms, including metabolic inflexibility, altered substrate utilization for energy production, deregulated nutrient sensing, and mitochondrial dysfunction. In this review, we aim to present and discuss the hypothesis that obesity, due to its similarity in changes observed in the aging heart, may accelerate the process of cardiac aging and exacerbate the clinical outcomes of elderly individuals with obesity.
Collapse
Affiliation(s)
- Patricia Owesny
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
| |
Collapse
|
5
|
Pappritz K, Puhl SL, Matz I, Brauer E, Shia YX, El-Shafeey M, Koch SE, Miteva K, Mucha C, Duda GN, Petersen A, Steffens S, Tschöpe C, Van Linthout S. Sex- and age-related differences in the inflammatory properties of cardiac fibroblasts: impact on the cardiosplenic axis and cardiac fibrosis. Front Cardiovasc Med 2023; 10:1117419. [PMID: 38054090 PMCID: PMC10694208 DOI: 10.3389/fcvm.2023.1117419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 10/20/2023] [Indexed: 12/07/2023] Open
Abstract
Background Age and sex are prominent risk factors for heart failure and determinants of structural and functional changes of the heart. Cardiac fibroblasts (cFB) are beyond their task as extracellular matrix-producing cells further recognized as inflammation-supporting cells. The present study aimed to evaluate the impact of sex and age on the inflammatory potential of cFB and its impact on the cardiosplenic axis and cardiac fibrosis. Materials Left ventricles (LV) of 3- and 12-months old male and female C57BL/6J mice were harvested for immunohistochemistry, immunofluorescence and cFB outgrowth culture and the spleen for flow cytometry. LV-derived cFB and respective supernatants were characterized. Results LV-derived cFB from 3-months old male mice exhibited a higher inflammatory capacity, as indicated by a higher gene expression of CC-chemokine ligand (CCL) 2, and CCL7 compared to cFB derived from 3-months old female mice. The resulting higher CCL2/chemokine C-X3-C motif ligand (Cx3CL1) and CCL7/Cx3CL1 protein ratio in cell culture supernatants of 3-months old male vs. female cFB was reflected by a higher migration of Ly6Chigh monocytes towards supernatant from 3-months old male vs. female cFB. In vivo a lower ratio of splenic pro-inflammatory Ly6Chigh to anti-inflammatory Ly6Clow monocytes was found in 3-months old male vs. female mice, suggesting a higher attraction of Ly6Chigh compared to Ly6Clow monocytes towards the heart in male vs. female mice. In agreement, the percentage of pro-inflammatory CD68+ CD206- macrophages was higher in the LV of male vs. female mice at this age, whereas the percentage of anti-inflammatory CD68+ CD206+ macrophages was higher in the LV of 3-months old female mice compared to age-matched male animals. In parallel, the percentage of splenic TGF-β+ cells was higher in both 3- and 12-months old female vs. male mice, as further reflected by the higher pro-fibrotic potential of female vs. male splenocytes at both ages. In addition, female mice displayed a higher total LV collagen content compared to age-matched male mice, whereby collagen content of female cFB was higher compared to male cFB at the age of 12-months. Conclusion Age- and sex-dependent differences in cardiac fibrosis and inflammation are related to age- and sex-dependent variations in the inflammatory properties of cardiac fibroblasts.
Collapse
Affiliation(s)
- Kathleen Pappritz
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Sarah-Lena Puhl
- Comprehensive Heart Failure Center, Universitätsklinikum Würzburg, Würzburg, Germany
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Isabel Matz
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| | - Erik Brauer
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Yi Xuan Shia
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
| | - Muhammad El-Shafeey
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Medical Biotechnology Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Suzanne E. Koch
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Kapka Miteva
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christin Mucha
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
| | - Georg N. Duda
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Ansgar Petersen
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Julius Wolff Institute, Berlin, Germany
| | - Sabine Steffens
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance (MHA), Munich, Germany
| | - Carsten Tschöpe
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Department Cardiology, Angiology, and Intensive Medicine (CVK) at the German Heart Center of the Charite (DHZC), Charité—Universitätsmedizin Berlin, Berlin, Germany
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
| | - Sophie Van Linthout
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies, Charité—Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
6
|
McNair BD, Shorthill SK, Bruns DR. More than just a small left ventricle: the right ventricular fibroblast and ECM in health and disease. Am J Physiol Heart Circ Physiol 2023; 325:H385-H397. [PMID: 37389951 PMCID: PMC10396282 DOI: 10.1152/ajpheart.00213.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023]
Abstract
Fibroblasts intricately organize and regulate the extracellular matrix (ECM) in cardiac health and disease. Excess deposition of ECM proteins causes fibrosis, resulting in disrupted signaling conduction and contributing to the development of arrhythmias and impaired cardiac function. Fibrosis is causally involved in cardiac failure in the left ventricle (LV). Fibrosis likely occurs in right ventricle (RV) failure, yet mechanisms remain unclear. Indeed, RV fibrosis is poorly understood with mechanisms often extrapolated from the LV to the RV. However, emerging data suggest that the LV and RV are distinct cardiac chambers and differ in regulation of the ECM and response to fibrotic stimuli. In the present review, we will discuss differences in ECM regulation in the healthy RV and LV. We will discuss the importance of fibrosis in the development of RV disease in pressure overload, inflammation, and aging. During this discussion, we will highlight mechanisms of fibrosis with respect to the synthesis of ECM proteins while acknowledging the importance of considering collagen breakdown. We will also discuss current knowledge of antifibrotic therapies in the RV and the need for additional research to help delineate the shared and distinct mechanisms of RV and LV fibrosis.
Collapse
Affiliation(s)
- Benjamin D McNair
- Division of Kinesiology and Health, University of Wyoming, Laramie, Wyoming, United States
| | - Samantha K Shorthill
- Division of Kinesiology and Health, University of Wyoming, Laramie, Wyoming, United States
| | - Danielle R Bruns
- Division of Kinesiology and Health, University of Wyoming, Laramie, Wyoming, United States
- Wyoming WWAMI Medical Education, Laramie, Wyoming, United States
| |
Collapse
|
7
|
Ringström N, Edling C, Nalesso G, Jeevaratnam K. Framing Heartaches: The Cardiac ECM and the Effects of Age. Int J Mol Sci 2023; 24:4713. [PMID: 36902143 PMCID: PMC10003270 DOI: 10.3390/ijms24054713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/05/2023] Open
Abstract
The cardiac extracellular matrix (ECM) is involved in several pathological conditions, and age itself is also associated with certain changes in the heart: it gets larger and stiffer, and it develops an increased risk of abnormal intrinsic rhythm. This, therefore, makes conditions such as atrial arrythmia more common. Many of these changes are directly related to the ECM, yet the proteomic composition of the ECM and how it changes with age is not fully resolved. The limited research progress in this field is mainly due to the intrinsic challenges in unravelling tightly bound cardiac proteomic components and also the time-consuming and costly dependency on animal models. This review aims to give an overview of the composition of the cardiac ECM, how different components aid the function of the healthy heart, how the ECM is remodelled and how it is affected by ageing.
Collapse
Affiliation(s)
| | | | | | - Kamalan Jeevaratnam
- Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7AL, UK
| |
Collapse
|
8
|
Alam MR, Shahid MA, Alimuzzaman S, Khan AN. Sources, extractions and applications of bio-maker collagen- A review. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
9
|
Schmitt EE, McNair BD, Polson SM, Cook RF, Bruns DR. Mechanisms of Exercise-Induced Cardiac Remodeling Differ Between Young and Aged Hearts. Exerc Sport Sci Rev 2022; 50:137-144. [PMID: 35522248 PMCID: PMC9203913 DOI: 10.1249/jes.0000000000000290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aging induces physiological and molecular changes in the heart that increase the risk for heart disease. Several of these changes are targetable by exercise. We hypothesize that the mechanisms by which exercise improves cardiac function in the aged heart differ from those in the young exercised heart.
Collapse
Affiliation(s)
| | - Benjamin D McNair
- Division of Kinesiology & Health, University of Wyoming, Laramie, WY
| | - Sydney M Polson
- Division of Kinesiology & Health, University of Wyoming, Laramie, WY
| | - Ross F Cook
- Division of Kinesiology & Health, University of Wyoming, Laramie, WY
| | | |
Collapse
|
10
|
Ageing Increases Cardiac Electrical Remodelling in Rats and Mice via NOX4/ROS/CaMKII-Mediated Calcium Signalling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8538296. [PMID: 35387264 PMCID: PMC8979732 DOI: 10.1155/2022/8538296] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/01/2022] [Indexed: 12/31/2022]
Abstract
Objective Ageing is one of the risk factors associated with cardiovascular diseases including cardiac arrhythmias and heart failure. Ageing-related cardiac dysfunction involves a complicated pathophysiological progress. Abnormal membrane voltage and Ca2+ dynamics in aged cardiomyocytes contribute to ageing-related arrhythmias. However, its underlying mechanisms have not been well clarified. Methods Young and old rats or mice were included in this study. Cardiac electrophysiological properties and functions were assessed by ECG, echocardiography, and ex vivo heart voltage and Ca2+ optical mapping. Proteomics, phosphor-proteomics, Western blotting, Masson staining, and ROS measurement were used to investigate the underlying mechanisms. Results Ageing increased the incidence of cardiac hypertrophy and fibrosis in rats. Moreover, ageing increased the occurrence of ventricular tachycardia or ventricular fibrillation induced by rapid pacing and during isoprenaline (ISO) (1 mg/kg i.p.) challenge in mice in vivo. Optical mapping with dual dyes (membrane voltage (Vm) dye and intracellular Ca2+ dye) simultaneously recording revealed that ageing increased the action potential duration (APD) and Ca2+ transient duration (CaTD) and slowed the ventricular conduction with the Langendorff-perfused mouse heart. More importantly, ageing increased the ISO-induced (1 μM) changes of APD (ΔAPD80) and CaTD (ΔCaTD50). Ageing also delayed the decay of Ca2+ transient by extending the decay time constant from 30% to 90% (τ30−90). In addition, ageing decreased the Vm/Ca2+ latency which represented the coupling of Vm/Ca2+ including between the midpoint of AP depolarization and Ca2+ upstroke, peak transmembrane voltage and peak cytosolic calcium, and time to 50% voltage repolarization and extrusion of cytosolic calcium. Optical mapping also revealed that ageing increased the ISO-induced arrhythmia incidence and occurrence of the excitation rotor. Proteomics and phosphor-proteomics assays from rat hearts demonstrated ageing-induced protein and phosphor-protein changes, suggesting that CaMKII was involved in ageing-induced change. Ageing increased the level of ROS and the expression of NOX4, oxidative CaMKII (ox-CaMKII), phosphorated CaMKII (p-CaMKII), and periostin. Conclusion Ageing accelerates cardiac remodelling and increases the susceptibility to ventricular arrhythmias through NOX4/ROS/CaMKII pathway-mediated abnormal membrane voltage and intracellular Ca2+ handling and Vm/Ca2+ coupling.
Collapse
|
11
|
Buda V, Prelipcean A, Cozma D, Man DE, Negres S, Scurtu A, Suciu M, Andor M, Danciu C, Crisan S, Dehelean CA, Petrescu L, Rachieru C. An Up-to-Date Article Regarding Particularities of Drug Treatment in Patients with Chronic Heart Failure. J Clin Med 2022; 11:2020. [PMID: 35407628 PMCID: PMC8999552 DOI: 10.3390/jcm11072020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022] Open
Abstract
Since the prevalence of heart failure (HF) increases with age, HF is now one of the most common reasons for the hospitalization of elderly people. Although the treatment strategies and overall outcomes of HF patients have improved over time, hospitalization and mortality rates remain elevated, especially in developed countries where populations are aging. Therefore, this paper is intended to be a valuable multidisciplinary source of information for both doctors (cardiologists and general physicians) and pharmacists in order to decrease the morbidity and mortality of heart failure patients. We address several aspects regarding pharmacological treatment (including new approaches in HF treatment strategies [sacubitril/valsartan combination and sodium glucose co-transporter-2 inhibitors]), as well as the particularities of patients (age-induced changes and sex differences) and treatment (pharmacokinetic and pharmacodynamic changes in drugs; cardiorenal syndrome). The article also highlights several drugs and food supplements that may worsen the prognosis of HF patients and discusses some potential drug-drug interactions, their consequences and recommendations for health care providers, as well as the risks of adverse drug reactions and treatment discontinuation, as an interdisciplinary approach to treatment is essential for HF patients.
Collapse
Affiliation(s)
- Valentina Buda
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (V.B.); (A.P.); (A.S.); (M.S.); (C.D.); (C.A.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Andreea Prelipcean
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (V.B.); (A.P.); (A.S.); (M.S.); (C.D.); (C.A.D.)
| | - Dragos Cozma
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.E.M.); (M.A.); (S.C.); (L.P.); (C.R.)
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Dana Emilia Man
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.E.M.); (M.A.); (S.C.); (L.P.); (C.R.)
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Simona Negres
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania;
| | - Alexandra Scurtu
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (V.B.); (A.P.); (A.S.); (M.S.); (C.D.); (C.A.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Maria Suciu
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (V.B.); (A.P.); (A.S.); (M.S.); (C.D.); (C.A.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Minodora Andor
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.E.M.); (M.A.); (S.C.); (L.P.); (C.R.)
| | - Corina Danciu
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (V.B.); (A.P.); (A.S.); (M.S.); (C.D.); (C.A.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Simina Crisan
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.E.M.); (M.A.); (S.C.); (L.P.); (C.R.)
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Cristina Adriana Dehelean
- Faculty of Pharmacy, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (V.B.); (A.P.); (A.S.); (M.S.); (C.D.); (C.A.D.)
- Research Center for Pharmaco-Toxicological Evaluation, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Lucian Petrescu
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.E.M.); (M.A.); (S.C.); (L.P.); (C.R.)
- Institute of Cardiovascular Diseases Timisoara, 13A Gheorghe Adam Street, 300310 Timisoara, Romania
| | - Ciprian Rachieru
- Faculty of Medicine, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania; (D.E.M.); (M.A.); (S.C.); (L.P.); (C.R.)
- Center for Advanced Research in Cardiovascular Pathology and Hemostasis, “Victor Babes” University of Medicine and Pharmacy, Eftimie Murgu Square, No. 2, 300041 Timisoara, Romania
| |
Collapse
|
12
|
Woulfe KC, Walker LA. Physiology of the Right Ventricle Across the Lifespan. Front Physiol 2021; 12:642284. [PMID: 33737888 PMCID: PMC7960651 DOI: 10.3389/fphys.2021.642284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 02/05/2021] [Indexed: 01/27/2023] Open
Abstract
The most common cause of heart failure in the United States is ischemic left heart disease; accordingly, a vast amount of work has been done to elucidate the molecular mechanisms underlying pathologies of the left ventricle (LV) as a general model of heart failure. Until recently, little attention has been paid to the right ventricle (RV) and it has commonly been thought that the mechanical and biochemical properties of the RV are similar to those of the LV. However, therapies used to treat LV failure often fail to improve ventricular function in RV failure underscoring, the need to better understand the unique physiologic and pathophysiologic properties of the RV. Importantly, hemodynamic stresses (such as pressure overload) often underlie right heart failure further differentiating RV failure as unique from LV failure. There are significant structural, mechanical, and biochemical properties distinctive to the RV that influences its function and it is likely that adaptations of the RV occur uniquely across the lifespan. We have previously reviewed the adult RV compared to the LV but there is little known about differences in the pediatric or aged RV. Accordingly, in this mini-review, we will examine the subtle distinctions between the RV and LV that are maintained physiologically across the lifespan and will highlight significant knowledge gaps in our understanding of pediatric and aging RV. Consideration of how RV function is altered in different disease states in an age-specific manner may enable us to define RV function in health and importantly, in response to pathology.
Collapse
Affiliation(s)
- Kathleen C Woulfe
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Lori A Walker
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
13
|
Hendrickson T, Mancino C, Whitney L, Tsao C, Rahimi M, Taraballi F. Mimicking cardiac tissue complexity through physical cues: A review on cardiac tissue engineering approaches. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 33:102367. [PMID: 33549819 DOI: 10.1016/j.nano.2021.102367] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/06/2021] [Accepted: 01/15/2021] [Indexed: 02/08/2023]
Abstract
Cardiovascular diseases are the number one killer in the world.1,2 Currently, there are no clinical treatments to regenerate damaged cardiac tissue, leaving patients to develop further life-threatening cardiac complications. Cardiac tissue has multiple functional demands including vascularization, contraction, and conduction that require many synergic components to properly work. Most of these functions are a direct result of the cardiac tissue structure and composition, and, for this reason, tissue engineering strongly proposed to develop substitute engineered heart tissues (EHTs). EHTs usually have combined pluripotent stem cells and supporting scaffolds with the final aim to repair or replace the damaged native tissue. However, as simple as this idea is, indeed, it resulted, after many attempts in the field, to be very challenging. Without design complexity, EHTs remain unable to mature fully and integrate into surrounding heart tissue resulting in minimal in vivo effects.3 Lately, there has been a growing body of evidence that a complex, multifunctional approach through implementing scaffold designs, cellularization, and molecular release appears to be essential in the development of a functional cardiac EHTs.4-6 This review covers the advancements in EHTs developments focusing on how to integrate contraction, conduction, and vascularization mimics and how combinations have resulted in improved designs thus warranting further investigation to develop a clinically applicable treatment.
Collapse
Affiliation(s)
- Troy Hendrickson
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston Methodist, Houston, TX, USA; Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA; Texas A&M MD/PhD Program, Texas A&M Health Science Center, College Station, TX, USA
| | - Chiara Mancino
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston Methodist, Houston, TX, USA; Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, (MI), Italy
| | - Lauren Whitney
- Texas A&M Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Chris Tsao
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston Methodist, Houston, TX, USA
| | - Maham Rahimi
- Department of Cardiovascular Surgery, Houston Methodist, Houston, TX, USA
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, Houston Methodist, Houston, TX, USA; Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
14
|
Lubkemann A, Carpenter H, O'Brien R, Baldwin S, Lister R. Cardiac Morphology and Collagen Deposition in A Glucose-6-Phosphatase Catalytic Subunit 3 (G6PC3) Knockout Mouse model. ACTA ACUST UNITED AC 2021. [PMID: 34263175 DOI: 10.33425/2639-944x.1188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Glucose-6-phosphatase-- β (3), one of multiple isoforms of glucose-6-phosphatase, catalyzes the final step in gluconeogenesis. It is known that mutated G6P3 is associated with severe neutropenia in addition to congenital heart defects, but little is known about the histological changes in cardiac tissue as a result of mutated or deleted G6PC34. Objectives We sought to further characterize the histological alterations caused by deleted G6PC3 and determine the role of collagen deposition, myocyte proliferation and apoptosis in these changes. Methods Cardiac tissue from G6PC3 knockout mice and WT mice were harvested, imbedded and stained for markers of collagen (Trichrome), proliferation (KI-67), apoptosis (caspase 3) and hematopoietic stem cells (CD34). Slides were digitally uploaded, and Leica stain quantification was calculated. Results We demonstrated that in G6PC3 knock out adult mice have significant differences in heart morphology including decreased left ventricular collagen, decreased cellular proliferation and increased apoptosis histologically. Conclusions As compared to wild type, the hearts of G6PC3 knockout mice demonstrated significantly decreased collagen globally, a crucial component for adequate strength and contractility of myocardial tissue. More investigation should be done to further explore the functional effects of such alterations via echocardiograms.
Collapse
Affiliation(s)
- Austin Lubkemann
- Vanderbilt University Medical Center, Nashville, Tennessee.,UNC Chapel Hill, North Carolina
| | - Heidi Carpenter
- Vanderbilt University Medical Center, Nashville, Tennessee.,UNC Chapel Hill, North Carolina
| | | | - Scott Baldwin
- Vanderbilt University Medical Center, Nashville, Tennessee
| | - Rolanda Lister
- Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
15
|
Mechanosensing dysregulation in the fibroblast: A hallmark of the aging heart. Ageing Res Rev 2020; 63:101150. [PMID: 32846223 DOI: 10.1016/j.arr.2020.101150] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/03/2020] [Accepted: 08/14/2020] [Indexed: 12/16/2022]
Abstract
The myofibroblast is a specialized fibroblast that expresses α-smooth muscle actin (α-SMA) and participates in wound contraction and fibrosis. The fibroblast to myofibroblast transition depends on chemical and mechanical signals. A fibroblast senses the changes in the environment (extracellular matrix (ECM)) and transduces these changes to the cytoskeleton and the nucleus, resulting in activation or inhibition of α-SMA transcription in a process called mechanosensing. A stiff matrix greatly facilitates the transition from fibroblast to myofibroblast, and although the aging heart is much stiffer than the young one, the aging fibroblast has difficulties in transitioning into the contractile phenotype. This suggests that the events occurring downstream of the matrix, such as activation or changes in expression levels of various proteins participating in mechanotransduction can negatively alter the ability of the aging fibroblast to become a myofibroblast. In this review, we will discuss in detail the changes in ECM, receptors (integrin or non-integrin), focal adhesions, cytoskeleton, and transcription factors involved in mechanosensing that occur with aging.
Collapse
|
16
|
Differential Gender-Dependent Patterns of Cardiac Fibrosis and Fibroblast Phenotypes in Aging Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8282157. [PMID: 32566103 PMCID: PMC7267867 DOI: 10.1155/2020/8282157] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 01/08/2023]
Abstract
Aging is characterized by physiological changes within the heart leading to fibrosis and dysfunction even in individuals without underlying pathologies. Gender has been shown to influence the characteristics of cardiac aging; however, gender-dependent cardiac fibrosis occurring with age remains largely not elucidated. Thus, broadening our understanding of this phenomenon proves necessary in order to develop novel anti-fibrotic strategies in the elderly. In this study, we aim to characterize cardiac fibrosis and cardiac fibroblast (CF) populations in aged male and female mice. Echocardiography revealed eccentric hypertrophy with left ventricular dilatation in the aged male versus concentric hypertrophy with left posterior wall thickening in the female, with preserved cardiac function in both groups. Reactive fibrosis was evidenced in the myocardium and epicardium of the aged female mice hearts whereas perivascular and replacement ones where present in the male heart. Collagen I was predominant in the aged male heart whereas collagen III was the main component in the female heart. CFs in the aged male heart were mainly recruited from resident PDGFRα+ populations but not derived from epicardium as evidenced by the absence of epicardial progenitor transcription factors Tcf21, Tbx18 and Wt1. Our results present a paradigm for gender-dependent cardiac fibrosis and the origins of CFs with age. This sets forth to revisit cardiac anti-fibrotic management according to the gender in the elderly and to explore novel therapeutic targets.
Collapse
|
17
|
Soliman H, Rossi FMV. Cardiac fibroblast diversity in health and disease. Matrix Biol 2020; 91-92:75-91. [PMID: 32446910 DOI: 10.1016/j.matbio.2020.05.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/09/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022]
Abstract
The cardiac stroma plays essential roles in health and following cardiac damage. The major player of the stroma with respect to extracellular matrix deposition, maintenance and remodeling is the poorly defined fibroblast. It has long been recognized that there is considerable variability to the fibroblast phenotype. With the advent of new, high throughput analytical methods our understanding and appreciation of this heterogeneity has grown dramatically. This review aims to explore the diversity of cardiac fibroblasts and highlights new insights into the diverse nature of these cells and their progenitors as revealed by single cell sequencing and fate mapping studies. We propose that at least in part the observed heterogeneity is related to the existence of a differentiation cascade within stromal cells. Beyond in-organ heterogeneity, we also discuss how the stromal response to damage differs between non-regenerating organs such as the heart and regenerating organs such as skeletal muscle. In exploring possible causes for these differences, we outline that although fibrogenic cells from different organs overlap in many properties, they still possess organ-specific transcriptional signatures and differentiation biases that make them functionally distinct.
Collapse
Affiliation(s)
- Hesham Soliman
- Biomedical Research Centre, University of British Columbia, Vancouver, Canada; School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T1Z3, Canada; Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Fabio M V Rossi
- Biomedical Research Centre, University of British Columbia, Vancouver, Canada; School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC V6T1Z3, Canada.
| |
Collapse
|
18
|
Abstract
The ECM (extracellular matrix) network plays a crucial role in cardiac homeostasis, not only by providing structural support, but also by facilitating force transmission, and by transducing key signals to cardiomyocytes, vascular cells, and interstitial cells. Changes in the profile and biochemistry of the ECM may be critically implicated in the pathogenesis of both heart failure with reduced ejection fraction and heart failure with preserved ejection fraction. The patterns of molecular and biochemical ECM alterations in failing hearts are dependent on the type of underlying injury. Pressure overload triggers early activation of a matrix-synthetic program in cardiac fibroblasts, inducing myofibroblast conversion, and stimulating synthesis of both structural and matricellular ECM proteins. Expansion of the cardiac ECM may increase myocardial stiffness promoting diastolic dysfunction. Cardiomyocytes, vascular cells and immune cells, activated through mechanosensitive pathways or neurohumoral mediators may play a critical role in fibroblast activation through secretion of cytokines and growth factors. Sustained pressure overload leads to dilative remodeling and systolic dysfunction that may be mediated by changes in the interstitial protease/antiprotease balance. On the other hand, ischemic injury causes dynamic changes in the cardiac ECM that contribute to regulation of inflammation and repair and may mediate adverse cardiac remodeling. In other pathophysiologic conditions, such as volume overload, diabetes mellitus, and obesity, the cell biological effectors mediating ECM remodeling are poorly understood and the molecular links between the primary insult and the changes in the matrix environment are unknown. This review article discusses the role of ECM macromolecules in heart failure, focusing on both structural ECM proteins (such as fibrillar and nonfibrillar collagens), and specialized injury-associated matrix macromolecules (such as fibronectin and matricellular proteins). Understanding the role of the ECM in heart failure may identify therapeutic targets to reduce geometric remodeling, to attenuate cardiomyocyte dysfunction, and even to promote myocardial regeneration.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- From the Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, NY
| |
Collapse
|
19
|
Abstract
Heart failure (HF) is a clinical syndrome that associates clinical signs in people over 80 years of age, an increase in natriuretic peptides and abnormal cardiac structures that result from cardiac aging in many cases. The most common symptoms are grouped according to the acronym "EPOF" (shortness of breath, weight gain, edema, fatigue). Over the age of 80, comorbidities must be taken into account. The incidence and prevalence of HF significantly increases with age and makes HF the most common reason for hospitalization for people over 80, and an important health expense. The management of HF, necessarily multidisciplinary with a geriatric evaluation, has improved over time due to effective targeted treatment, but mortality, hospitalization and readmission rates remain high. Therapeutic education and patient follow-up for treatment optimization are needed.
Collapse
|
20
|
Wierich MC, Schipke J, Brandenberger C, Abdellatif M, Eisenberg T, Madeo F, Sedej S, Mühlfeld C. Cardioprotection by spermidine does not depend on structural characteristics of the myocardial microcirculation in aged mice. Exp Gerontol 2019; 119:82-88. [PMID: 30703435 DOI: 10.1016/j.exger.2019.01.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/21/2019] [Accepted: 01/25/2019] [Indexed: 11/17/2022]
Abstract
AIMS Ageing is associated with cardiovascular disease and reduced cardiac function. This cardiac functional decline is accompanied by cardiac remodeling and alterations in cardiomyocyte composition. Recently, it was shown that the natural polyamine spermidine preserves cardiac function and cardiomyocyte composition in old mice. As cardiac function critically relies on blood supply, we tested whether spermidine has also beneficial effects on ageing-associated changes of the myocardial microcirculation. METHODS Using transmission electron microscopy, the left ventricular capillaries of young (4-months old) and aged (24-months old) C57BL/6J male mice were investigated by stereology. Aged mice were subdivided into an untreated group and a group that was fed spermidine late in life for 6 months. Specifically, total volume, surface area and length of capillaries as well as endothelial thickness were estimated. Additionally, the total length of precapillary arterioles was assessed. The protein level of VEGF-A was measured using Western blot. RESULTS Ageing was associated with whole heart and left ventricular hypertrophy. All total capillary-related values (including volume, surface area and length) were significantly higher in 24-month-old mice compared with 4-month-old mice. Moreover, VEGF-A expression was significantly enhanced in aged mice. The mean thickness of the endothelium was not different, but the mean area of myocardium supplied by capillaries was smaller in old mice. Spermidine treatment had no significant effect on the ageing-associated structural changes or VEGF-A expression. CONCLUSIONS In conclusion, in the left ventricles of aged mice the growth of capillaries and arterioles supplying cardiomyocytes were in proportion to whole organ hypertrophy. Spermidine had no effect on quantitative characteristics of capillaries or arterioles, suggesting that the beneficial effects of spermidine on the ageing heart do not depend on the quantitative structural characteristics of the microcirculation which does not exclude potential functional differences between the groups.
Collapse
Affiliation(s)
- Marie-Christin Wierich
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany
| | - Julia Schipke
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Christina Brandenberger
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | | | - Tobias Eisenberg
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria; BioTechMed, Graz, Austria
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria; BioTechMed, Graz, Austria
| | - Christian Mühlfeld
- Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany.
| |
Collapse
|
21
|
Woulfe KC, Bruns DR. From pediatrics to geriatrics: Mechanisms of heart failure across the life-course. J Mol Cell Cardiol 2018; 126:70-76. [PMID: 30458169 DOI: 10.1016/j.yjmcc.2018.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 10/29/2018] [Accepted: 11/14/2018] [Indexed: 01/08/2023]
Abstract
Heart failure (HF) is a significant public health problem and a disease with high 5-year mortality. Although age is the primary risk factor for development of HF, it is a disease which impacts patients of all ages. Historically, HF has been studied as a one-size fits all strategy- with the majority of both clinical and basic science investigations employing adult male subjects or adult male pre-clinical animal models. We postulate that inclusion of biological variables in HF studies is necessary to improve our understanding of mechanisms of HF and improve outcomes. In this review, we will discuss age-specific differences in HF patients, particularly focusing on the pediatric and geriatric age groups. In addition, we will also discuss the biological variable of sex. Characterizing and understanding the mechanistic differences in these distinct HF populations can provide insights that will benefit and personalize therapeutic interventions. Further, we propose that future investigations into the cellular mechanisms involved in the developing and juvenile heart may provide valuable insights for targets that would be beneficial in aging patients.
Collapse
Affiliation(s)
- Kathleen C Woulfe
- University of Colorado-Denver; Department of Medicine, Division of Cardiology, 12700 E 19th Ave Aurora, CO, USA.
| | - Danielle R Bruns
- University of Wyoming, Division of Kinesiology & Health, Laramie, WY, USA
| |
Collapse
|
22
|
Hu C, Huber S, Latif SR, Santacana-Laffitte G, Mojibian HR, Baldassarre LA, Peters DC. REPAIRit: Improving Myocardial Nulling and Ghosting Artifacts of 3D Navigator-Gated Late Gadolinium Enhancement Imaging During Arrhythmia. J Magn Reson Imaging 2018; 49:688-699. [DOI: 10.1002/jmri.26284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 11/05/2022] Open
Affiliation(s)
- Chenxi Hu
- Department of Radiology and Biomedical Imaging; Yale School of Medicine; New Haven Connecticut USA
| | - Steffen Huber
- Department of Radiology and Biomedical Imaging; Yale School of Medicine; New Haven Connecticut USA
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine; New Haven Connecticut USA
| | - Syed R. Latif
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine; New Haven Connecticut USA
| | - Guido Santacana-Laffitte
- Department of Radiology and Biomedical Imaging; Yale School of Medicine; New Haven Connecticut USA
| | - Hamid R. Mojibian
- Department of Radiology and Biomedical Imaging; Yale School of Medicine; New Haven Connecticut USA
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine; New Haven Connecticut USA
| | - Lauren A. Baldassarre
- Department of Radiology and Biomedical Imaging; Yale School of Medicine; New Haven Connecticut USA
- Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine; New Haven Connecticut USA
| | - Dana C. Peters
- Department of Radiology and Biomedical Imaging; Yale School of Medicine; New Haven Connecticut USA
| |
Collapse
|
23
|
Ahmad S, Valli H, Chadda KR, Cranley J, Jeevaratnam K, Huang CLH. Ventricular pro-arrhythmic phenotype, arrhythmic substrate, ageing and mitochondrial dysfunction in peroxisome proliferator activated receptor-γ coactivator-1β deficient (Pgc-1β -/-) murine hearts. Mech Ageing Dev 2018; 173:92-103. [PMID: 29763629 PMCID: PMC6004599 DOI: 10.1016/j.mad.2018.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 04/19/2018] [Accepted: 05/11/2018] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Ageing and age-related bioenergetic conditions including obesity, diabetes mellitus and heart failure constitute clinical ventricular arrhythmic risk factors. MATERIALS AND METHODS Pro-arrhythmic properties in electrocardiographic and intracellular recordings were compared in young and aged, peroxisome proliferator-activated receptor-γ coactivator-1β knockout (Pgc-1β-/-) and wild type (WT), Langendorff-perfused murine hearts, during regular and programmed stimulation (PES), comparing results by two-way ANOVA. RESULTS AND DISCUSSION Young and aged Pgc-1β-/- showed higher frequencies and durations of arrhythmic episodes through wider PES coupling-interval ranges than WT. Both young and old, regularly-paced, Pgc-1β-/- hearts showed slowed maximum action potential (AP) upstrokes, (dV/dt)max (∼157 vs. 120-130 V s-1), prolonged AP latencies (by ∼20%) and shortened refractory periods (∼58 vs. 51 ms) but similar AP durations (∼50 ms at 90% recovery) compared to WT. However, Pgc-1β-/- genotype and age each influenced extrasystolic AP latencies during PES. Young and aged WT ventricles displayed distinct, but Pgc-1β-/- ventricles displayed similar dependences of AP latency upon (dV/dt)max resembling aged WT. They also independently increased myocardial fibrosis. AP wavelengths combining activation and recovery terms paralleled contrasting arrhythmic incidences in Pgc-1β-/- and WT hearts. Mitochondrial dysfunction thus causes pro-arrhythmic Pgc-1β-/- phenotypes by altering AP conduction through reducing (dV/dt)max and causing age-dependent fibrotic change.
Collapse
Affiliation(s)
- Shiraz Ahmad
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
| | - Haseeb Valli
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
| | - Karan R Chadda
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom; Faculty of Health and Medical Sciences, University of Surrey, GU2 7AL, Guildford, Surrey, United Kingdom
| | - James Cranley
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
| | - Kamalan Jeevaratnam
- Faculty of Health and Medical Sciences, University of Surrey, GU2 7AL, Guildford, Surrey, United Kingdom; PU-RCSI School of Medicine, Perdana University, 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Christopher L-H Huang
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, United Kingdom.
| |
Collapse
|
24
|
Trial J, Cieslik KA. Changes in cardiac resident fibroblast physiology and phenotype in aging. Am J Physiol Heart Circ Physiol 2018; 315:H745-H755. [PMID: 29906228 DOI: 10.1152/ajpheart.00237.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The cardiac fibroblast plays a central role in tissue homeostasis and in repair after injury. With aging, dysregulated cardiac fibroblasts have a reduced capacity to activate a canonical transforming growth factor-β-Smad pathway and differentiate poorly into contractile myofibroblasts. That results in the formation of an insufficient scar after myocardial infarction. In contrast, in the uninjured aged heart, fibroblasts are activated and acquire a profibrotic phenotype that leads to interstitial fibrosis, ventricular stiffness, and diastolic dysfunction, all conditions that may lead to heart failure. There is an apparent paradox in aging, wherein reparative fibrosis is impaired but interstitial, adverse fibrosis is augmented. This could be explained by analyzing the effectiveness of signaling pathways in resident fibroblasts from young versus aged hearts. Whereas defective signaling by transforming growth factor-β leads to insufficient scar formation by myofibroblasts, enhanced activation of the ERK1/2 pathway may be responsible for interstitial fibrosis mediated by activated fibroblasts. Listen to this article's corresponding podcast at https://ajpheart.podbean.com/e/fibroblast-phenotypic-changes-in-the-aging-heart/ .
Collapse
Affiliation(s)
- JoAnn Trial
- Division of Cardiovascular Sciences, Department of Medicine, Baylor College of Medicine , Houston, Texas
| | - Katarzyna A Cieslik
- Division of Cardiovascular Sciences, Department of Medicine, Baylor College of Medicine , Houston, Texas
| |
Collapse
|
25
|
Aging-Induced Biological Changes and Cardiovascular Diseases. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7156435. [PMID: 29984246 PMCID: PMC6015721 DOI: 10.1155/2018/7156435] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/23/2018] [Accepted: 05/03/2018] [Indexed: 12/12/2022]
Abstract
Aging is characterized by functional decline in homeostatic regulation and vital cellular events. This process can be linked with the development of cardiovascular diseases (CVDs). In this review, we discussed aging-induced biological alterations that are associated with CVDs through the following aspects: (i) structural, biochemical, and functional modifications; (ii) autonomic nervous system (ANS) dysregulation; (iii) epigenetic alterations; and (iv) atherosclerosis and stroke development. Aging-mediated structural and biochemical modifications coupled with gradual loss of ANS regulation, vascular stiffening, and deposition of collagen and calcium often disrupt cardiovascular system homeostasis. The structural and biochemical adjustments have been consistently implicated in the progressive increase in mechanical burden and functional breakdown of the heart and vessels. In addition, cardiomyocyte loss in this process often reduces adaptive capacity and cardiovascular function. The accumulation of epigenetic changes also plays important roles in the development of CVDs. In summary, the understanding of the aging-mediated changes remains promising towards effective diagnosis, discovery of new drug targets, and development of new therapies for the treatment of CVDs.
Collapse
|
26
|
Farris SD, Moussavi-Harami F, Stempien-Otero A. Heart failure with preserved ejection fraction and skeletal muscle physiology. Heart Fail Rev 2018; 22:141-148. [PMID: 28255866 DOI: 10.1007/s10741-017-9603-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for half of all heart failure in the USA, increases in prevalence with aging, and has no effective therapies. Intriguingly, the pathophysiology of HFpEF has many commonalities with the aged cardiovascular system including reductions in diastolic compliance, chronotropic defects, increased resistance in the peripheral vasculature, and poor energy substrate utilization. Decreased exercise capacity is a cardinal symptom of HFpEF. However, its severity is often out of proportion to changes in cardiac output. This observation has led to studies of muscle function in HFpEF revealing structural, biomechanical, and metabolic changes. These data, while incomplete, support a hypothesis that similar to aging, HFPEF is a systemic process. Understanding the mechanisms leading to exercise intolerance in this condition may lead to strategies to improve morbidity in both HFpEF and aging.
Collapse
Affiliation(s)
- Stephen D Farris
- Department of Medicine, Division of Cardiology, University of Washington School of Medicine, Seattle, WA, USA
| | - Farid Moussavi-Harami
- Department of Medicine, Division of Cardiology, University of Washington School of Medicine, Seattle, WA, USA
| | - April Stempien-Otero
- Department of Medicine, Division of Cardiology, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
27
|
Valli H, Ahmad S, Chadda KR, Al-Hadithi ABAK, Grace AA, Jeevaratnam K, Huang CLH. Age-dependent atrial arrhythmic phenotype secondary to mitochondrial dysfunction in Pgc-1β deficient murine hearts. Mech Ageing Dev 2017; 167:30-45. [PMID: 28919427 PMCID: PMC5652526 DOI: 10.1016/j.mad.2017.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 08/24/2017] [Accepted: 09/13/2017] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Ageing and several age-related chronic conditions including obesity, insulin resistance and hypertension are associated with mitochondrial dysfunction and represent independent risk factors for atrial fibrillation (AF). MATERIALS AND METHODS Atrial arrhythmogenesis was investigated in Langendorff-perfused young (3-4 month) and aged (>12 month), wild type (WT) and peroxisome proliferator activated receptor-γ coactivator-1β deficient (Pgc-1β-/-) murine hearts modeling age-dependent chronic mitochondrial dysfunction during regular pacing and programmed electrical stimulation (PES). RESULTS AND DISCUSSION The Pgc-1β-/- genotype was associated with a pro-arrhythmic phenotype progressing with age. Young and aged Pgc-1β-/- hearts showed compromised maximum action potential (AP) depolarization rates, (dV/dt)max, prolonged AP latencies reflecting slowed action potential (AP) conduction, similar effective refractory periods and baseline action potential durations (APD90) but shortened APD90 in APs in response to extrasystolic stimuli at short stimulation intervals. Electrical properties of APs triggering arrhythmia were similar in WT and Pgc-1β-/- hearts. Pgc-1β-/- hearts showed accelerated age-dependent fibrotic change relative to WT, with young Pgc-1β-/- hearts displaying similar fibrotic change as aged WT, and aged Pgc-1β-/- hearts the greatest fibrotic change. Mitochondrial deficits thus result in an arrhythmic substrate, through slowed AP conduction and altered repolarisation characteristics, arising from alterations in electrophysiological properties and accelerated structural change.
Collapse
Affiliation(s)
- Haseeb Valli
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
| | - Shiraz Ahmad
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
| | - Karan R Chadda
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom; Faculty of Health and Medical Sciences, University of Surrey, GU2 7AL, Guildford, Surrey, United Kingdom
| | - Ali B A K Al-Hadithi
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom
| | - Andrew A Grace
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, United Kingdom
| | - Kamalan Jeevaratnam
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom; Faculty of Health and Medical Sciences, University of Surrey, GU2 7AL, Guildford, Surrey, United Kingdom; PU-RCSI School of Medicine, Perdana University, 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Christopher L-H Huang
- Physiological Laboratory, University of Cambridge, Downing Street, Cambridge, CB2 3EG, United Kingdom; Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QW, United Kingdom.
| |
Collapse
|
28
|
Jeevaratnam K, Chadda KR, Salvage SC, Valli H, Ahmad S, Grace AA, Huang CLH. Ion channels, long QT syndrome and arrhythmogenesis in ageing. Clin Exp Pharmacol Physiol 2017; 44 Suppl 1:38-45. [PMID: 28024120 PMCID: PMC5763326 DOI: 10.1111/1440-1681.12721] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/18/2016] [Accepted: 12/19/2016] [Indexed: 01/08/2023]
Abstract
Ageing is associated with increased prevalences of both atrial and ventricular arrhythmias, reflecting disruption of the normal sequence of ion channel activation and inactivation generating the propagated cardiac action potential. Experimental models with specific ion channel genetic modifications have helped clarify the interacting functional roles of ion channels and how their dysregulation contributes to arrhythmogenic processes at the cellular and systems level. They have also investigated interactions between these ion channel abnormalities and age-related processes in producing arrhythmic tendency. Previous reviews have explored the relationships between age and loss-of-function Nav 1.5 mutations in producing arrhythmogenicity. The present review now explores complementary relationships arising from gain-of-function Nav 1.5 mutations associated with long QT3 (LQTS3). LQTS3 patients show increased risks of life-threatening ventricular arrhythmias, particularly after 40 years of age, consistent with such interactions between the ion channel abnormailities and ageing. In turn clinical evidence suggests that ageing is accompanied by structural, particularly fibrotic, as well as electrophysiological change. These abnormalities may result from biochemical changes producing low-grade inflammation resulting from increased production of reactive oxygen species and superoxide. Experimental studies offer further insights into the underlying mechanisms underlying these phenotypes. Thus, studies in genetically modified murine models for LQTS implicated action potential recovery processes in arrhythmogenesis resulting from functional ion channel abnormalities. In addition, ageing wild type (WT) murine models demonstrated both ion channel alterations and fibrotic changes with ageing. Murine models then suggested evidence for interactions between ageing and ion channel mutations and provided insights into potential arrhythmic mechanisms inviting future exploration.
Collapse
Affiliation(s)
- Kamalan Jeevaratnam
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,School of Medicine, Perdana University-Royal College of Surgeons Ireland, Serdang, Selangor Darul Ehsan, Malaysia
| | - Karan R Chadda
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,Physiological Laboratory, University of Cambridge, Cambridge, UK
| | | | - Haseeb Valli
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Shiraz Ahmad
- Physiological Laboratory, University of Cambridge, Cambridge, UK
| | - Andrew A Grace
- Division of Cardiovascular Biology, Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Christopher L-H Huang
- Physiological Laboratory, University of Cambridge, Cambridge, UK.,Division of Cardiovascular Biology, Department of Biochemistry, University of Cambridge, Cambridge, UK
| |
Collapse
|
29
|
Abstract
Heart failure is the quintessential cardiovascular syndrome of aging that results from common cardiovascular conditions in older adults in conjunction with age-associated changes in cardiovascular structure and function. To a large extent, heart failure is a geriatric syndrome in much the same way that dementia, falls, and frailty are geriatric syndromes. The incidence and prevalence of heart failure increase strikingly with age and make heart failure the most common reason for hospitalization among older adults. Although outcomes for older adults with heart failure have improved over time, mortality, hospitalization, and rehospitalization rates remain high.
Collapse
Affiliation(s)
- Kumar Dharmarajan
- Section of Cardiovascular Medicine, Department of Internal Medicine, Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, Yale University School of Medicine, 1 Church Street, Suite 200, New Haven, CT 06510, USA.
| | - Michael W Rich
- Division of Cardiology, Department of Internal Medicine, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8086, St Louis, MO 63110, USA
| |
Collapse
|
30
|
Meschiari CA, Ero OK, Pan H, Finkel T, Lindsey ML. The impact of aging on cardiac extracellular matrix. GeroScience 2017; 39:7-18. [PMID: 28299638 PMCID: PMC5352584 DOI: 10.1007/s11357-017-9959-9] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/05/2017] [Indexed: 12/24/2022] Open
Abstract
Age-related changes in cardiac homeostasis can be observed at the cellular, extracellular, and tissue levels. Progressive cardiomyocyte hypertrophy, inflammation, and the gradual development of cardiac fibrosis are hallmarks of cardiac aging. In the absence of a secondary insult such as hypertension, these changes are subtle and result in slight to moderate impaired myocardial function, particularly diastolic function. While collagen deposition and cross-linking increase during aging, extracellular matrix (ECM) degradation capacity also increases due to increased expression of matrix metalloproteinases (MMPs). Of the MMPs elevated with cardiac aging, MMP-9 has been extensively evaluated and its roles are reviewed here. In addition to proteolytic activity on ECM components, MMPs oversee cell signaling during the aging process by modulating cytokine, chemokine, growth factor, hormone, and angiogenic factor expression and activity. In association with elevated MMP-9, macrophage numbers increase in an age-dependent manner to regulate the ECM and angiogenic responses. Understanding the complexity of the molecular interactions between MMPs and the ECM in the context of aging may provide novel diagnostic indicators for the early detection of age-related fibrosis and cardiac dysfunction.
Collapse
Affiliation(s)
- Cesar A Meschiari
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street, Room G351-04, Jackson, MS, USA
| | - Osasere Kelvin Ero
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street, Room G351-04, Jackson, MS, USA
| | - Haihui Pan
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Toren Finkel
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD, USA
| | - Merry L Lindsey
- Mississippi Center for Heart Research, Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street, Room G351-04, Jackson, MS, USA.
- G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS, 39216-4505, USA.
| |
Collapse
|
31
|
Ruegsegger GN, Toedebusch RG, Braselton JF, Childs TE, Booth FW. Left ventricle transcriptomic analysis reveals connective tissue accumulation associates with initial age-dependent decline in V̇o2peak from its lifetime apex. Physiol Genomics 2016; 49:53-66. [PMID: 27913688 DOI: 10.1152/physiolgenomics.00083.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/08/2016] [Accepted: 11/28/2016] [Indexed: 12/17/2022] Open
Abstract
Peak oxygen consumption (V̇o2peak) strongly predicts morbidity and mortality better than other established risk factors, yet mechanisms associated with its age-associated decline are unknown. Our laboratory has shown that V̇o2peak first begins to decrease at the same age of 19-20 wk in both sedentary and wheel-running, female Wistar rats (Toedebusch et al., Physiol Genomics 48: 101-115, 2016). Here, we employed a total systemic approach using unsupervised interrogation of mRNA with RNA sequencing. The purpose of our study was to analyze transcriptomic profiles from both sedentary (SED) and wheel-running (RUN) conditions as a strategy to identify pathways in the left ventricle that may contribute to the initial reductions in V̇o2peak occurring between 19 and 27 wk of age. Transcriptomic comparisons were made within both SED and RUN rats between 19 and 27 wk (n = 5-8). Analysis of mRNAs shared in SED and RUN between 19 and 27 wk found 17 upregulated (e.g., Adra1d, Rpl17, Xpo7) and 8 downregulated (e.g., Cdo1, Ctfg, Sfrp1) mRNAs, at 19 wk, respectively. Furthermore, bioinformatics analysis of mRNAs common to SED and RUN produced networks suggestive of increased connective tissue development at 27 vs. 19 wk. Additionally, Ctfg mRNA was negatively associated with V̇o2peak in both SED and RUN (P < 0.05). In summary, transcriptomic analysis revealed mRNAs and networks associated with increased connective tissue development, decreased α-adrenergic activity, and decreased protein translation in the left ventricle that could, in part, potentially influence the initiation of the lifelong reduction in V̇o2peak, independent of physical activity levels.
Collapse
Affiliation(s)
| | - Ryan G Toedebusch
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Joshua F Braselton
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Thomas E Childs
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
| | - Frank W Booth
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri; .,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri.,Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri; and.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
32
|
Cannatà A, Camparini L, Sinagra G, Giacca M, Loffredo FS. Pathways for salvage and protection of the heart under stress: novel routes for cardiac rejuvenation. Cardiovasc Res 2016; 111:142-53. [DOI: 10.1093/cvr/cvw106] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/10/2016] [Indexed: 01/07/2023] Open
|
33
|
Harada M, Tabako S. Carotid atherosclerosis is associated with left ventricular diastolic function. J Echocardiogr 2016; 14:120-9. [PMID: 27364492 DOI: 10.1007/s12574-016-0296-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/06/2016] [Accepted: 05/13/2016] [Indexed: 01/19/2023]
Abstract
BACKGROUND It has been reported that carotid intima-media thickness (IMT) correlates with the risk of stroke or cardiovascular disease. The purpose of this study was to analyze the relationships between echocardiographic findings and carotid atherosclerosis. METHODS A total of 234 patients (62 ± 15 years) were referred for echocardiography to evaluate the left ventricular (LV) function. The LV ejection fraction, the ratio of the peak velocity of early rapid filling and the peak velocity of atrial filling (E/A), and the peak early diastolic mitral annular velocity (e') were obtained by echocardiography. The maximum IMT (Max-IMT) and plaque score (PS) were measured by carotid ultrasonography within 1 month of the echocardiographic examination. RESULTS The mean values of Max-IMT and carotid PS were 2.41 ± 1.23 mm and 8.5 ± 6.3, respectively. The decreased mean E/A (0.94 ± 0.39) and mitral e' (5.5 ± 1.9 cm/s) indicated LV diastolic dysfunction. A good correlation was observed between Max-IMT and PS (r = 0.83, p < 0.0001). It was shown that 2.8 mm of Max-IMT was equivalent to 10.1 of carotid PS, which indicated severe carotid atherosclerosis. In multiple logistic stepwise regression analysis, among the echocardiographic parameters, only e' was independently associated with severe carotid atherosclerosis (Max-IMT ≥ 2.8 mm or PS ≥ 10.1). CONCLUSIONS The present study demonstrated that decreased early diastolic mitral annular velocity relates to the parameter reflecting carotid atherosclerosis. Therefore, the presence of severe carotid atherosclerosis may affect LV diastolic dysfunction.
Collapse
Affiliation(s)
- Masahiko Harada
- Department of Clinical Functional Physiology, Toho University Medical Center Omori Hospital, 6-11-1 Omori-nishi, Oota-ku, Tokyo, 143-8541, Japan.
| | - Satoshi Tabako
- Department of Clinical Functional Physiology, Toho University Medical Center Omori Hospital, 6-11-1 Omori-nishi, Oota-ku, Tokyo, 143-8541, Japan
| |
Collapse
|
34
|
Horn MA, Trafford AW. Aging and the cardiac collagen matrix: Novel mediators of fibrotic remodelling. J Mol Cell Cardiol 2016; 93:175-85. [PMID: 26578393 PMCID: PMC4945757 DOI: 10.1016/j.yjmcc.2015.11.005] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 01/05/2023]
Abstract
Cardiovascular disease is a leading cause of death worldwide and there is a pressing need for new therapeutic strategies to treat such conditions. The risk of developing cardiovascular disease increases dramatically with age, yet the majority of experimental research is executed using young animals. The cardiac extracellular matrix (ECM), consisting predominantly of fibrillar collagen, preserves myocardial integrity, provides a means of force transmission and supports myocyte geometry. Disruptions to the finely balanced control of collagen synthesis, post-synthetic deposition, post-translational modification and degradation may have detrimental effects on myocardial functionality. It is now well established that the aged heart is characterized by fibrotic remodelling, but the mechanisms responsible for this are incompletely understood. Furthermore, studies using aged animal models suggest that interstitial remodelling with disease may be age-dependent. Thus with the identification of new therapeutic strategies targeting fibrotic remodelling, it may be necessary to consider age-dependent mechanisms. In this review, we discuss remodelling of the cardiac collagen matrix as a function of age, whilst highlighting potential novel mediators of age-dependent fibrotic pathways.
Collapse
Affiliation(s)
- Margaux A Horn
- Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, 3.06 Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, United Kingdom.
| | - Andrew W Trafford
- Institute of Cardiovascular Sciences, Manchester Academic Health Sciences Centre, 3.06 Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, United Kingdom
| |
Collapse
|
35
|
Alencar AK, da Silva JS, Lin M, Silva AM, Sun X, Ferrario CM, Cheng C, Sudo RT, Zapata-Sudo G, Wang H, Groban L. Effect of Age, Estrogen Status, and Late-Life GPER Activation on Cardiac Structure and Function in the Fischer344×Brown Norway Female Rat. J Gerontol A Biol Sci Med Sci 2016; 72:152-162. [PMID: 27006078 DOI: 10.1093/gerona/glw045] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/25/2016] [Indexed: 01/08/2023] Open
Abstract
Age-associated changes in cardiac structure and function, together with estrogen loss, contribute to the progression of heart failure with preserved ejection fraction in older women. To investigate the effects of aging and estrogen loss on the development of its precursor, asymptomatic left ventricular diastolic dysfunction, echocardiograms were performed in 10 middle-aged (20 months) and 30 old-aged (30 months) female Fischer344×Brown-Norway rats, 4 and 8 weeks after ovariectomy (OVX) and sham procedures (gonads left intact). The cardioprotective potential of administering chronic G1, the selective agonist to the new G-protein-coupled estrogen receptor (GPER), was further evaluated in old rats (Old-OVX+G1) versus age-matched, vehicle-treated OVX and gonadal intact rats. Advanced age and estrogen loss led to decreases in myocardial relaxation and elevations in filling pressure, in part, due to reductions in phosphorylated phospholamban and increases in cardiac collagen deposition. Eight weeks of G-protein-coupled estrogen receptor activation in Old-OVX+G1 rats reversed the adverse effects of age and estrogen loss on myocardial relaxation through increases in sarcoplasmic reticulum Ca2+ ATPase expression and reductions in interstitial fibrosis. These findings may explain the preponderance of heart failure with preserved ejection fraction in older postmenopausal women and provide a promising, late-life therapeutic target to reverse or halt the progression of left ventricular diastolic dysfunction.
Collapse
Affiliation(s)
- Allan K Alencar
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jaqueline S da Silva
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marina Lin
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Ananssa M Silva
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Xuming Sun
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Carlos M Ferrario
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Cheping Cheng
- Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Roberto T Sudo
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gisele Zapata-Sudo
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hao Wang
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina. .,Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina.,The Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina.,The Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
36
|
He Y, Yu S, Hu J, Cui Y, Liu P. Changes in the Anatomic and Microscopic Structure and the Expression of HIF-1α and VEGF of the Yak Heart with Aging and Hypoxia. PLoS One 2016; 11:e0149947. [PMID: 26914488 PMCID: PMC4767878 DOI: 10.1371/journal.pone.0149947] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 02/08/2016] [Indexed: 11/18/2022] Open
Abstract
The study aimed to identify the changes of anatomic and microscopic structure and the expression and localization of hypoxia-inducible factor (HIF)-1α and vascular endothelial growth factor (VEGF) in the myocardium and coronary artery of the yak heart adapted to chronic hypoxia with aging. Thirty-two yaks (1 day, 6 months, 1 year, 2 years, and 5 year old) were included, and immunoelectronmicroscopy, immunohistochemistry, and enzyme-linked immunosorbent assay (ELISA) were used. Right ventricular hypertrophy was not present in yaks with aging. There was no intima thickening phenomenon in the coronary artery. The ultrastructure of myofibrils, mitochondria, and collagen fibers and the diameter and quantity of collagen changed significantly with aging. The enzymatic activity of complexes I, II, and V increased with age. Immunogold labeling showed the localization of HIF-1α protein in the cytoplasm and nuclei of endothelial cells and cytoplasm of cardiac muscle cells, and VEGF protein in the nuclei and perinuclei areas of smooth muscle cells of coronary artery, and in the cytoplasm and nuclei of endothelial cells. ELISA results showed that HIF-1α secretion significantly increased in the myocardium and coronary artery from an age of 1 day to 2 years of yaks and decreased in old yaks. However, VEGF protein always increased with aging. The findings of this study suggest that 6 months is a key age of yak before which there are some adaptive changes to deal with low-oxygen environment, and there is a maturation of the yak heart from the age of 6 months to 2 years.
Collapse
Affiliation(s)
- Yanyu He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Sijiu Yu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Junwei Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| | - Yan Cui
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China
- * E-mail:
| | - Penggang Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, Gansu, China
| |
Collapse
|
37
|
Sangaralingham SJ, Wang BH, Huang L, Kumfu S, Ichiki T, Krum H, Burnett JC. Cardiorenal fibrosis and dysfunction in aging: Imbalance in mediators and regulators of collagen. Peptides 2016; 76:108-14. [PMID: 26774586 PMCID: PMC4754975 DOI: 10.1016/j.peptides.2016.01.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 12/19/2015] [Accepted: 01/08/2016] [Indexed: 01/01/2023]
Abstract
Cardiorenal fibrosis is a biological process that increases with age and contributes to dysfunction of the heart and kidney. While numerous circulating and tissue hormones, cytokines and enzymes have been identified in the development of cardiorenal fibrosis, several reports have suggested that the anti-fibrotic natriuretic peptide system (NPS), pro-fibrotic renin-angiotensin-aldosterone system (RAAS), transforming growth factor-beta 1 (TGF-β1), matrix metalloproteinases (MMPs) and tissue inhibitor of metalloproteinases (TIMPs) are fundamental regulators and mediators of this process. However, the simultaneous assessment of these components in the development of age-mediated cardiorenal fibrotic remodeling is not completely understood. Thus, we assessed cardiorenal structure and function, the circulating NPS and RAAS and the cardiorenal tissue gene expression of collagen (Col) I, Col III, TGF-β1, MMP-9 and TIMP-1 in 2 and 20 month old Fischer rats. Our studies determined that aging was characterized by an increase in cardiorenal fibrosis that was accompanied with cardiorenal dysfunction. These alterations were associated with lower circulating atrial and C-type natriuretic peptides and higher angiotensin II and aldosterone levels in the aged rats. Moreover, we observed a decrease in Col I and III and an increase in TIMP- mRNA expressions in the aged heart and kidney, while TGF-β1 expression increased and MMP-9 decreased only in the aged kidney. We conclude that the age-mediated alterations in these fibrotic regulator and mediator profiles favors collagen accumulation due to an imbalance between the NPS and RAAS as well as a decline in the degradative pathway, thus suggesting a therapeutic opportunity to target these components.
Collapse
Affiliation(s)
- S Jeson Sangaralingham
- Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA.
| | - Bing H Wang
- Centre of Cardiovascular Research and Education in Therapeutics, School of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Li Huang
- Centre of Cardiovascular Research and Education in Therapeutics, School of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Sirinart Kumfu
- Centre of Cardiovascular Research and Education in Therapeutics, School of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - Tomoko Ichiki
- Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| | - Henry Krum
- Centre of Cardiovascular Research and Education in Therapeutics, School of Epidemiology and Preventive Medicine, Monash University, Melbourne, Australia
| | - John C Burnett
- Cardiorenal Research Laboratory, Division of Cardiovascular Diseases, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
38
|
Mesenchymal stem cell-derived inflammatory fibroblasts mediate interstitial fibrosis in the aging heart. J Mol Cell Cardiol 2015; 91:28-34. [PMID: 26718722 DOI: 10.1016/j.yjmcc.2015.12.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/08/2015] [Accepted: 12/20/2015] [Indexed: 12/24/2022]
Abstract
Pathologic fibrosis in the aging mouse heart is associated with dysregulated resident mesenchymal stem cells (MSC) arising from reduced stemness and aberrant differentiation into dysfunctional inflammatory fibroblasts. Fibroblasts derived from aging MSC secrete higher levels of 1) collagen type 1 (Col1) that directly contributes to fibrosis, 2) monocyte chemoattractant protein-1 (MCP-1) that attracts leukocytes from the blood and 3) interleukin-6 (IL-6) that facilitates transition of monocytes into myeloid fibroblasts. The transcriptional activation of these proteins is controlled via the farnesyltransferase (FTase)-Ras-Erk pathway. The intrinsic change in the MSC phenotype acquired by advanced age is specific for the heart since MSC originating from bone wall (BW-MSC) or fibroblasts derived from them were free of these defects. The potential therapeutic interventions other than clinically approved strategies based on findings presented in this review are discussed as well. This article is a part of a Special Issue entitled "Fibrosis and Myocardial Remodeling".
Collapse
|
39
|
Dworatzek E, Baczko I, Kararigas G. Effects of aging on cardiac extracellular matrix in men and women. Proteomics Clin Appl 2015; 10:84-91. [DOI: 10.1002/prca.201500031] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/20/2015] [Accepted: 08/03/2015] [Indexed: 01/01/2023]
Affiliation(s)
- Elke Dworatzek
- Institute of Gender in Medicine and Center for Cardiovascular Research; Charite University Hospital; Berlin Germany
- DZHK (German Centre for Cardiovascular Research); Berlin Partner Site; Berlin Germany
| | - Istvan Baczko
- Department of Pharmacology and Pharmacotherapy; University of Szeged; Szeged Hungary
| | - Georgios Kararigas
- Institute of Gender in Medicine and Center for Cardiovascular Research; Charite University Hospital; Berlin Germany
- DZHK (German Centre for Cardiovascular Research); Berlin Partner Site; Berlin Germany
| |
Collapse
|
40
|
Beliveau P, Cheriet F, Anderson SA, Taylor JL, Arai AE, Hsu LY. Quantitative assessment of myocardial fibrosis in an age-related rat model by ex vivo late gadolinium enhancement magnetic resonance imaging with histopathological correlation. Comput Biol Med 2015; 65:103-13. [PMID: 26313531 DOI: 10.1016/j.compbiomed.2015.07.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/28/2015] [Accepted: 07/29/2015] [Indexed: 10/23/2022]
Abstract
Late gadolinium enhanced (LGE) cardiac magnetic resonance (CMR) imaging can detect the presence of myocardial infarction from ischemic cardiomyopathies (ICM). However, it is more challenging to detect diffuse myocardial fibrosis from non-ischemic cardiomyopathy (NICM) with this technique due to more subtle and heterogeneous enhancement of the myocardium. This study investigates whether high-resolution LGE CMR can detect age-related myocardial fibrosis using quantitative texture analysis with histological validation. LGE CMR of twenty-four rat hearts (twelve 6-week-old and twelve 2-year-old) was performed using a 7T MRI scanner. Picrosirius red was used as the histopathology reference for collagen staining. Fibrosis in the myocardium was quantified with standard deviation (SD) threshold methods from the LGE CMR images and 3D contrast texture maps that were computed from gray level co-occurrence matrix of the CMR images. There was a significant increase of collagen fibers in the aged compared to the young rat histology slices (2.60±0.27 %LV vs. 1.24±0.29 %LV, p<0.01). Both LGE CMR and texture images showed a significant increase of myocardial fibrosis in the elderly compared to the young rats. Fibrosis in the LGE CMR images correlated strongly with histology with the 3 SD threshold (r=0.84, y=0.99x+0.00). Similarly, fibrosis in the contrast texture maps correlated with the histology using the 4 SD threshold (r=0.89, y=1.01x+0.00). High resolution ex-vivo LGE CMR can detect the presence of diffuse fibrosis that naturally developed in elderly rat hearts. Our results suggest that texture analysis may improve the assessment of myocardial fibrosis in LGE CMR images.
Collapse
Affiliation(s)
- Pascale Beliveau
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA; Institute of Biomedical Engineering, Ecole Polytechnique of Montreal, Montreal, Canada
| | - Farida Cheriet
- Institute of Biomedical Engineering, Ecole Polytechnique of Montreal, Montreal, Canada
| | - Stasia A Anderson
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Joni L Taylor
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrew E Arai
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Li-Yueh Hsu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
41
|
|
42
|
The role of extracellular matrix in age-related conduction disorders: a forgotten player? JOURNAL OF GERIATRIC CARDIOLOGY : JGC 2015; 12:76-82. [PMID: 25678907 PMCID: PMC4308461 DOI: 10.11909/j.issn.1671-5411.2015.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 11/21/2014] [Accepted: 11/28/2014] [Indexed: 12/21/2022]
Abstract
Cardiovascular aging is a physiological process gradually leading to structural degeneration and functional loss of all the cardiac and vascular components. Conduction system is also deeply influenced by the aging process with relevant reflexes in the clinical side. Age-related arrhythmias carry significant morbidity and mortality and represent a clinical and economical burden. An important and unjustly unrecognized actor in the pathophysiology of aging is represented by the extracellular matrix (ECM) that not only structurally supports the heart determining its mechanical and functional properties, but also sends a biological signaling regulating cellular function and maintaining tissue homeostasis. At the biophysical level, cardiac ECM exhibits a peculiar degree of anisotropy, which is among the main determinants of the conductive properties of the specialized electrical conduction system. Age-associated alterations of cardiac ECM are therefore able to profoundly affect the function of the conduction system with striking impact on the patient clinical conditions. This review will focus on the ECM changes that occur during aging in the heart conduction system and on their translation to the clinical scenario. Potential diagnostic and therapeutical perspectives arising from the knowledge on ECM age-associated alterations are further discussed.
Collapse
|
43
|
Morita N, Mandel WJ, Kobayashi Y, Karagueuzian HS. Cardiac fibrosis as a determinant of ventricular tachyarrhythmias. J Arrhythm 2014; 30:389-394. [PMID: 25642299 DOI: 10.1016/j.joa.2013.12.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Animal and emerging clinical studies have demonstrated that increased ventricular fibrosis in a setting of reduced repolarization reserve promotes early afterdepolarizations (EADs) and triggered activity that can initiate ventricular tachycardia and ventricular fibrillation (VT/VF). Increased ventricular fibrosis plays a key facilitatory role in allowing oxidative and metabolic stress-induced EADs to manifest as triggered activity causing VT/VF. The lack of such an arrhythmogenic effect by the same stressors in normal non-fibrotic hearts highlights the importance of fibrosis in the initiation of VT/VF. These findings suggest that antifibrotic therapy combined with therapy designed to increase ventricular repolarization reserve may act synergistically to reduce the risk of sudden cardiac death.
Collapse
Affiliation(s)
- Norishige Morita
- Division of Cardiology, Department of Medicine, Tokai University Hachioji Hospital, Tokyo, Japan
| | - William J Mandel
- Translational Arrhythmia Research Section, Division of Cardiology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Yoshinori Kobayashi
- Division of Cardiology, Department of Medicine, Tokai University Hachioji Hospital, Tokyo, Japan
| | - Hrayr S Karagueuzian
- Division of Cardiology, Department of Medicine, Tokai University Hachioji Hospital, Tokyo, Japan
| |
Collapse
|
44
|
Dedkov EI, Bogatyryov Y, McCooey DS, Christensen LP, Weiss RM, Tomanek RJ. Effect of Chronic Heart Rate Reduction by If Current Inhibitor Ivabradine on Left Ventricular Remodeling and Systolic Performance in Middle-Aged Rats With Postmyocardial Infarction Heart Failure. J Cardiovasc Pharmacol Ther 2014; 20:299-312. [DOI: 10.1177/1074248414553231] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 08/14/2014] [Indexed: 11/15/2022]
Abstract
Background: A large myocardial infarction (MI) initiates progressive cardiac remodeling that leads to systolic heart failure (HF). Long-term heart rate reduction (HRR) induced by the I f current inhibitor ivabradine (IVA) ameliorates left ventricular (LV) remodeling and improves systolic performance in young post-MI rats. However, the beneficial effects of chronic IVA treatment in middle-aged rats remain to be determined. Methods: A large MI was induced in 12-month-old rats by left coronary artery ligation. Rats were treated with IVA via osmotic pumps intraperitoneal in a dose of 10.5 mg/kg/d (MI + IVA) and compared with MI and sham-operated animals 12 weeks after MI. Results: Heart rate in MI + IVA rats was on average 29% lower than that of rats in the MI group. Left ventricular remodeling was comparable between post-MI groups, although MI + IVA rats did not show the compensatory thickening of the noninfarcted myocardium. Chronic HRR had no effect on transverse cardiac myocyte size and capillary growth, but it reduced the collagen content in noninfarcted myocardium. Left ventricular systolic performance remained similarly impaired in MI and MI + IVA rats. Moreover, abrupt IVA withdrawal led to worsening HF and reduction of coronary reserve. Conclusion: Our data reveal that chronic IVA-induced HRR does not provide sustainable benefits for LV systolic performance in middle-aged rats with post-MI HF.
Collapse
Affiliation(s)
- Eduard I. Dedkov
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Yevgen Bogatyryov
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Daniela Scaldaferri McCooey
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Lance P. Christensen
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Robert M. Weiss
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Cardiovascular Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Robert J. Tomanek
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- Cardiovascular Center, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
45
|
Loffredo FS, Nikolova AP, Pancoast JR, Lee RT. Heart failure with preserved ejection fraction: molecular pathways of the aging myocardium. Circ Res 2014; 115:97-107. [PMID: 24951760 DOI: 10.1161/circresaha.115.302929] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Age-related diastolic dysfunction is a major factor in the epidemic of heart failure. In patients hospitalized with heart failure, HFpEF is now as common as heart failure with reduced ejection fraction. We now have many successful treatments for heart failure with reduced ejection fraction, while specific treatment options for HFpEF patients remain elusive. The lack of treatments for HFpEF reflects our very incomplete understanding of this constellation of diseases. There are many pathophysiological factors in HFpEF, but aging appears to play an important role. Here, we propose that aging of the myocardium is itself a specific pathophysiological process. New insights into the aging heart, including hormonal controls and specific molecular pathways, such as microRNAs, are pointing to myocardial aging as a potentially reversible process. While the overall process of aging remains mysterious, understanding the molecular pathways of myocardial aging has never been more important. Unraveling these pathways could lead to new therapies for the enormous and growing problem of HFpEF.
Collapse
Affiliation(s)
- Francesco S Loffredo
- From the Department of Stem Cell and Regenerative Biology, Harvard University, Brigham Regenerative Medicine Center, Cambridge, MA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA; and Harvard Stem Cell Institute, Cambridge, MA
| | - Andriana P Nikolova
- From the Department of Stem Cell and Regenerative Biology, Harvard University, Brigham Regenerative Medicine Center, Cambridge, MA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA; and Harvard Stem Cell Institute, Cambridge, MA
| | - James R Pancoast
- From the Department of Stem Cell and Regenerative Biology, Harvard University, Brigham Regenerative Medicine Center, Cambridge, MA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA; and Harvard Stem Cell Institute, Cambridge, MA
| | - Richard T Lee
- From the Department of Stem Cell and Regenerative Biology, Harvard University, Brigham Regenerative Medicine Center, Cambridge, MA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA; and Harvard Stem Cell Institute, Cambridge, MA.
| |
Collapse
|
46
|
Macrophages in cardiac homeostasis, injury responses and progenitor cell mobilisation. Stem Cell Res 2014; 13:705-14. [PMID: 25087895 DOI: 10.1016/j.scr.2014.06.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 06/26/2014] [Indexed: 12/23/2022] Open
Abstract
Macrophages are an immune cell type found in every organ of the body. Classically, macrophages are recognised as housekeeping cells involved in the detection of foreign antigens and danger signatures, and the clearance of tissue debris. However, macrophages are increasingly recognised as a highly versatile cell type with a diverse range of functions that are important for tissue homeostasis and injury responses. Recent research findings suggest that macrophages contribute to tissue regeneration and may play a role in the activation and mobilisation of stem cells. This review describes recent advances in our understanding of the role played by macrophages in cardiac tissue maintenance and repair following injury. We examine the involvement of exogenous and resident tissue macrophages in cardiac inflammatory responses and their potential activity in regulating cardiac regeneration.
Collapse
|
47
|
Kim SY, Lee J. Exercise Training suppresses vascular fibrosis in aging obesity induced rats. J Exerc Nutrition Biochem 2014; 18:175-80. [PMID: 25566453 PMCID: PMC4241917 DOI: 10.5717/jenb.2014.18.2.175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 05/13/2014] [Accepted: 05/21/2014] [Indexed: 11/24/2022] Open
Abstract
[Purpose] The aim of this study was to investigate the effects of exercise training (ET) on vascular fibrosis in aging model rats with diet-induced obesity. [Methods] Twenty-four male Sprague-Dawley rats were divided into 3 groups: Aging control (A-C), A-C with high fat diet (AHF), AHF with ET (AHF + ET). Aging was induced by D-galactose (D-gal) and obesity was induced by HFD (60% fat) for 9 weeks. The experimental rats performed swimming (60 min/day, 5 days/week) for 8 weeks. All rat aorta samples were harvested for RT-PCR and morphologic analyses. [Results] The exercise training significantly decreased levels of AT-1, TGF-ß and Coll-1 gene expression compared to AHF group. The AHF + ET group showed a reduced collagen accumulation in the aorta media compared to AHF group. [Conclusion] These results suggest that ET could protect the aging obesity aorta against down-regulation of fibrotic factors (AT-1, TGF-ß and Coll-1 gene) and fibrosis by inhibition of collagen accumulation in the aorta media.
Collapse
Affiliation(s)
- Shin Young Kim
- Department of Anatomy and Cell Biology, Collage of Medicine, Han-Yang University, Seoul, 133-791, Korea
| | - Jin Lee
- Department of Anatomy and Cell Biology, Collage of Medicine, Han-Yang University, Seoul, 133-791, Korea
| |
Collapse
|
48
|
Wang YS, Li SH, Guo J, Mihic A, Wu J, Sun L, Davis K, Weisel RD, Li RK. Role of miR-145 in cardiac myofibroblast differentiation. J Mol Cell Cardiol 2014; 66:94-105. [PMID: 24001939 DOI: 10.1016/j.yjmcc.2013.08.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 08/14/2013] [Accepted: 08/22/2013] [Indexed: 12/24/2022]
Abstract
Following a myocardial infarction (MI), fibroblasts differentiate to myofibroblasts, which possess some of the characteristics of smooth muscle cells (SMCs) and contribute to wound healing. Previous studies suggested that the miR-143/-145 cluster plays a critical role in SMC differentiation. Therefore, we determined whether miR-145 promoted differentiation of cardiac fibroblasts to myofibroblasts. Following coronary occlusion in mice, myocardial miR-145 expression was downregulated at 3 days but was restored at 7 days. In vitro studies showed that hypoxia also downregulated miR-145 in cardiac fibroblasts. The number of α-smooth muscle actin (α-SMA) positive cells in fibroblast cultures was employed to determine their transdifferentiation to cardiac myofibroblasts and was increased by 73.5% after transient transfection with miR-145. Ultrastructural analysis of α-SMA stress fibers revealed that ~95% of the α-SMA(+) cells treated with miR-145 organized their actin-filament bundles with a specific orientation compared to only 15% in the scrambled control group. This orientation of the SMA bundles and their integration with the filamentous actin fibers of the cytoskeleton permit infarct wound contraction. Structural and functional studies showed that miR-145 induced a myofibroblast phenotype, and miR-145 also potentiated the production of mature collagen by myofibroblasts. Repression of KLF5, a target of miR-145, was validated by a chimeric luciferase construct tagged with the full-length 3'-UTR of KLF5. A dramatic decrease in KLF5 and a corresponding increase in myocardin expression were observed after transfecting cultured fibroblasts with miR-145. Similar results were found in vivo: the transient decrease in miR-145 expression 3 days post-MI was associated with an increase in KLF5 and a decrease in myocardin. In addition, in vivo delivery of a miR-145 antagomir 1 day prior to and 2 and 6 days after MI decreased myofibroblast formation and increased scar size. The antagomir also reversed the suppressed expression of KLF5 protein in the scar region at day 7 after MI. In summary, we describe a novel association between miR-145 and fibroblast differentiation toward myofibroblasts. These observations provide a new approach to promote endogenous scar healing and contracture by stimulating the transdifferentiation of cardiac fibroblasts to myofibroblasts.
Collapse
Affiliation(s)
- Yao-Sheng Wang
- Division of Cardiovascular Surgery and Toronto General Research Institute, University Health Network and Department of Surgery, Division of Cardiac Surgery, University of Toronto, Toronto, ON, Canada
| | - Shu-Hong Li
- Division of Cardiovascular Surgery and Toronto General Research Institute, University Health Network and Department of Surgery, Division of Cardiac Surgery, University of Toronto, Toronto, ON, Canada
| | - Jian Guo
- Division of Cardiovascular Surgery and Toronto General Research Institute, University Health Network and Department of Surgery, Division of Cardiac Surgery, University of Toronto, Toronto, ON, Canada
| | - Anton Mihic
- Division of Cardiovascular Surgery and Toronto General Research Institute, University Health Network and Department of Surgery, Division of Cardiac Surgery, University of Toronto, Toronto, ON, Canada
| | - Jun Wu
- Division of Cardiovascular Surgery and Toronto General Research Institute, University Health Network and Department of Surgery, Division of Cardiac Surgery, University of Toronto, Toronto, ON, Canada
| | - Lu Sun
- Division of Cardiovascular Surgery and Toronto General Research Institute, University Health Network and Department of Surgery, Division of Cardiac Surgery, University of Toronto, Toronto, ON, Canada
| | - Kelly Davis
- Division of Cardiovascular Surgery and Toronto General Research Institute, University Health Network and Department of Surgery, Division of Cardiac Surgery, University of Toronto, Toronto, ON, Canada
| | - Richard D Weisel
- Division of Cardiovascular Surgery and Toronto General Research Institute, University Health Network and Department of Surgery, Division of Cardiac Surgery, University of Toronto, Toronto, ON, Canada
| | - Ren-Ke Li
- Division of Cardiovascular Surgery and Toronto General Research Institute, University Health Network and Department of Surgery, Division of Cardiac Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
49
|
Trombetta-eSilva J, Eadie EP, Zhang Y, Norris RA, Borg TK, Bradshaw AD. The effects of age and the expression of SPARC on extracellular matrix production by cardiac fibroblasts in 3-D cultures. PLoS One 2013; 8:e79715. [PMID: 24223185 PMCID: PMC3819255 DOI: 10.1371/journal.pone.0079715] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 10/04/2013] [Indexed: 01/05/2023] Open
Abstract
Fibrillar collagen is the primary component of the cardiac interstitial extracellular matrix. This extracellular matrix undergoes dramatic changes from birth to adulthood and then into advanced age. As evidence, fibrillar collagen content was compared in sections from neonates, adult, and old hearts and was found to increase at each respective age. Cardiac fibroblasts are the principle cell type that produce and control fibrillar collagen content. To determine whether fibroblast production, processing, and deposition of collagen differed with age, primary cardiac fibroblasts from neonate, adult, and old mice were isolated and cultured in 3-dimensional (3D) fibrin gels. Fibroblasts from each age aligned in fibrin gels along points of tension and deposited extracellular matrix. By confocal microscopy, wild-type neonate fibroblasts appeared to deposit less collagen into fibrillar structures than fibroblasts from adults. However, by immunoblot analysis, differences in procollagen production and processing of collagen I were not detected in neonate versus adult fibroblasts. In contrast, fibroblasts from old mice demonstrated increased efficiency of procollagen processing coupled with decreased production of total collagen. SPARC is a collagen-binding protein previously shown to affect cardiac collagen deposition. Accordingly, in the absence of SPARC, less collagen appeared to be associated with fibroblasts of each age grown in fibrin gels. In addition, the increased efficiency of procollagen alpha 1(I) processing in old wild-type fibroblasts was not detected in old SPARC-null fibroblasts. Increased levels of fibronectin were detected in wild-type neonate fibroblasts over that of adult and old fibroblasts but not in SPARC-null neonate fibroblasts versus older ages. Immunostaining of SPARC overlapped with that of collagen I but not to that of fibronectin in 3D cultures. Hence, whereas increases in procollagen processing, influenced by SPARC expression, plausibly contribute to increased collagen deposition in old hearts, other cellular mechanisms likely affect differential collagen deposition by neonate fibroblasts.
Collapse
Affiliation(s)
- Jessica Trombetta-eSilva
- Department of Craniofacial Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Erik P. Eadie
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Yuhua Zhang
- Gazes Cardiac Research Institute, Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Russell A. Norris
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Thomas K. Borg
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Amy D. Bradshaw
- Department of Craniofacial Biology, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Gazes Cardiac Research Institute, Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Ralph H. Johnson Department of Veteran’s Affairs Medical Center, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
50
|
Cieslik KA, Trial J, Crawford JR, Taffet GE, Entman ML. Adverse fibrosis in the aging heart depends on signaling between myeloid and mesenchymal cells; role of inflammatory fibroblasts. J Mol Cell Cardiol 2013; 70:56-63. [PMID: 24184998 DOI: 10.1016/j.yjmcc.2013.10.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/02/2013] [Accepted: 10/22/2013] [Indexed: 11/18/2022]
Abstract
Aging has been associated with adverse fibrosis. Here we formulate a new hypothesis and present new evidence that unresponsiveness of mesenchymal stem cells (MSC) and fibroblasts to transforming growth factor beta (TGF-β), due to reduced expression of TGF-β receptor I (TβRI), provides a foundation for cardiac fibrosis in the aging heart via two mechanisms. 1) TGF-β promotes expression of Nanog, a transcription factor that retains MSC in a primitive state. In MSC derived from the aging heart, Nanog expression is reduced and therefore MSC gradually differentiate and the number of mesenchymal fibroblasts expressing collagen increases. 2) As TGF-β signaling pathway components negatively regulate transcription of monocyte chemoattractant protein-1 (MCP-1), a reduced expression of TβRI prevents aging mesenchymal cells from shutting down their own MCP-1 expression. Elevated MCP-1 levels that originated from MSC attract transendothelial migration of mononuclear leukocytes from blood to the tissue. MCP-1 expressed by mesenchymal fibroblasts promotes further migration of monocytes and T lymphocytes away from the endothelial barrier and supports the monocyte transition into macrophages and finally into myeloid fibroblasts. Both myeloid and mesenchymal fibroblasts contribute to fibrosis in the aging heart via collagen synthesis. This article is part of a Special Issue entitled "Myocyte-Fibroblast Signalling in Myocardium ".
Collapse
Affiliation(s)
- Katarzyna A Cieslik
- Division of Cardiovascular Sciences and the DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, and Houston Methodist, Houston, TX 77030, USA.
| | - JoAnn Trial
- Division of Cardiovascular Sciences and the DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, and Houston Methodist, Houston, TX 77030, USA
| | - Jeffrey R Crawford
- Division of Cardiovascular Sciences and the DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, and Houston Methodist, Houston, TX 77030, USA
| | - George E Taffet
- Division of Cardiovascular Sciences and the DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, and Houston Methodist, Houston, TX 77030, USA
| | - Mark L Entman
- Division of Cardiovascular Sciences and the DeBakey Heart Center, Department of Medicine, Baylor College of Medicine, and Houston Methodist, Houston, TX 77030, USA.
| |
Collapse
|