1
|
Sun Q, Karwi QG, Wong N, Lopaschuk GD. Advances in myocardial energy metabolism: metabolic remodelling in heart failure and beyond. Cardiovasc Res 2024; 120:1996-2016. [PMID: 39453987 PMCID: PMC11646102 DOI: 10.1093/cvr/cvae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/28/2024] [Accepted: 07/03/2024] [Indexed: 10/27/2024] Open
Abstract
The very high energy demand of the heart is primarily met by adenosine triphosphate (ATP) production from mitochondrial oxidative phosphorylation, with glycolysis providing a smaller amount of ATP production. This ATP production is markedly altered in heart failure, primarily due to a decrease in mitochondrial oxidative metabolism. Although an increase in glycolytic ATP production partly compensates for the decrease in mitochondrial ATP production, the failing heart faces an energy deficit that contributes to the severity of contractile dysfunction. The relative contribution of the different fuels for mitochondrial ATP production dramatically changes in the failing heart, which depends to a large extent on the type of heart failure. A common metabolic defect in all forms of heart failure [including heart failure with reduced ejection fraction (HFrEF), heart failure with preserved EF (HFpEF), and diabetic cardiomyopathies] is a decrease in mitochondrial oxidation of pyruvate originating from glucose (i.e. glucose oxidation). This decrease in glucose oxidation occurs regardless of whether glycolysis is increased, resulting in an uncoupling of glycolysis from glucose oxidation that can decrease cardiac efficiency. The mitochondrial oxidation of fatty acids by the heart increases or decreases, depending on the type of heart failure. For instance, in HFpEF and diabetic cardiomyopathies myocardial fatty acid oxidation increases, while in HFrEF myocardial fatty acid oxidation either decreases or remains unchanged. The oxidation of ketones (which provides the failing heart with an important energy source) also differs depending on the type of heart failure, being increased in HFrEF, and decreased in HFpEF and diabetic cardiomyopathies. The alterations in mitochondrial oxidative metabolism and glycolysis in the failing heart are due to transcriptional changes in key enzymes involved in the metabolic pathways, as well as alterations in redox state, metabolic signalling and post-translational epigenetic changes in energy metabolic enzymes. Of importance, targeting the mitochondrial energy metabolic pathways has emerged as a novel therapeutic approach to improving cardiac function and cardiac efficiency in the failing heart.
Collapse
Affiliation(s)
- Qiuyu Sun
- Cardiovascular Research Center, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Qutuba G Karwi
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Saint John’s, NL A1B 3V6, Canada
| | - Nathan Wong
- Cardiovascular Research Center, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Center, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2S2, Canada
| |
Collapse
|
2
|
Dai Z, Zhang H, Sui X, Wu F, Zhang C, Fan Z, Wang H, Guo Y, Yang C, Jiang S, Wang L, Xin B, Li Y. Analysis of physiological and biochemical changes and metabolic shifts during 21-Day fasting hypometabolism. Sci Rep 2024; 14:28550. [PMID: 39557965 PMCID: PMC11574170 DOI: 10.1038/s41598-024-80049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/14/2024] [Indexed: 11/20/2024] Open
Abstract
This study aimed to evaluate the impact of prolonged fasting on the physiological and biochemical alterations and metabolic shifts in healthy adults and to provide experimental data and theoretical support for the hypometabolic state induced by prolonged fasting. Thirteen volunteers were selected through public recruitment to undergo a 21-day complete fasting experiment. The experimental period lasted 34 days, including a 3-day baseline, 21-day completing fasting, 5-day calorie restriction and 5-day full recovery diet. Physiological indicators such as body weight, blood pressure, blood glucose, blood ketones, and blood uric acid were evaluated along with resting metabolic rate, routine blood tests, liver function, and heart function indexes employing traditional approaches. During the 21-day complete fasting period, there was a significant decrease in body weight (average - 14.96 ± 1.55%), a reduction in blood glucose (average - 21.63 ± 0.058%), an increase in blood ketones (from baseline 0.1 ± 0.04 mmol/L to 6.61 ± 1.25 mmol/L) and blood uric acid (from baseline 385.38 ± 57.78 µmol/L to 866.31 ± 172.01 µmol/L), a continuous decline in resting energy expenditure (average - 20.3 ± 11.13%), and the respiratory quotient tending towards fat metabolism. Most of the items in the complete blood count and liver indicators remained stable and within the normal range. Heart function showed functional adaptive changes without structural damage. Prolonged fasting can reduce the body's resting energy expenditure and adapt to body weight loss through physiological regulatory mechanisms without adverse effects on basic physiological functions or the structure of important organs. Under medical supervision, healthy adults can safely engage in prolonged fasting for up to 21 days with metabolic adaption and no damage to pivotal organ, which could provide potential technical support for human health and survival strategies in extreme conditions such as food shortages during long-duration manned spaceflight.
Collapse
Affiliation(s)
- Zhongquan Dai
- State Key Laboratory of Space Medicine, Astronaut Research and Training Center, 100094, Beijing, China.
| | - Hongyu Zhang
- State Key Laboratory of Space Medicine, Astronaut Research and Training Center, 100094, Beijing, China
| | - Xiukun Sui
- State Key Laboratory of Space Medicine, Astronaut Research and Training Center, 100094, Beijing, China
| | - Feng Wu
- State Key Laboratory of Space Medicine, Astronaut Research and Training Center, 100094, Beijing, China
| | - Cheng Zhang
- Engineering Research Center of Human Circadian Rhythm and Sleep, Space Science and Technology Institute, 518117, Shenzhen, China
| | - Zhiqi Fan
- Engineering Research Center of Human Circadian Rhythm and Sleep, Space Science and Technology Institute, 518117, Shenzhen, China
| | - Hailong Wang
- State Key Laboratory of Space Medicine, Astronaut Research and Training Center, 100094, Beijing, China
| | - Yaxiu Guo
- State Key Laboratory of Space Medicine, Astronaut Research and Training Center, 100094, Beijing, China
| | - Chao Yang
- State Key Laboratory of Space Medicine, Astronaut Research and Training Center, 100094, Beijing, China
| | - Siyu Jiang
- State Key Laboratory of Space Medicine, Astronaut Research and Training Center, 100094, Beijing, China
| | - Linjie Wang
- State Key Laboratory of Space Medicine, Astronaut Research and Training Center, 100094, Beijing, China
| | - Bingmu Xin
- Engineering Research Center of Human Circadian Rhythm and Sleep, Space Science and Technology Institute, 518117, Shenzhen, China.
| | - Yinghui Li
- State Key Laboratory of Space Medicine, Astronaut Research and Training Center, 100094, Beijing, China.
| |
Collapse
|
3
|
Martinez CS, Zheng A, Xiao Q. Mitochondrial Reactive Oxygen Species Dysregulation in Heart Failure with Preserved Ejection Fraction: A Fraction of the Whole. Antioxidants (Basel) 2024; 13:1330. [PMID: 39594472 PMCID: PMC11591317 DOI: 10.3390/antiox13111330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a multifarious syndrome, accounting for over half of heart failure (HF) patients receiving clinical treatment. The prevalence of HFpEF is rapidly increasing in the coming decades as the global population ages. It is becoming clearer that HFpEF has a lot of different causes, which makes it challenging to find effective treatments. Currently, there are no proven treatments for people with deteriorating HF or HFpEF. Although the pathophysiologic foundations of HFpEF are complex, excessive reactive oxygen species (ROS) generation and increased oxidative stress caused by mitochondrial dysfunction seem to play a critical role in the pathogenesis of HFpEF. Emerging evidence from animal models and human myocardial tissues from failed hearts shows that mitochondrial aberrations cause a marked increase in mitochondrial ROS (mtROS) production and oxidative stress. Furthermore, studies have reported that common HF medications like beta blockers, angiotensin receptor blockers, angiotensin-converting enzyme inhibitors, and mineralocorticoid receptor antagonists indirectly reduce the production of mtROS. Despite the harmful effects of ROS on cardiac remodeling, maintaining mitochondrial homeostasis and cardiac functions requires small amounts of ROS. In this review, we will provide an overview and discussion of the recent findings on mtROS production, its threshold for imbalance, and the subsequent dysfunction that leads to related cardiac and systemic phenotypes in the context of HFpEF. We will also focus on newly discovered cellular and molecular mechanisms underlying ROS dysregulation, current therapeutic options, and future perspectives for treating HFpEF by targeting mtROS and the associated signal molecules.
Collapse
Affiliation(s)
| | | | - Qingzhong Xiao
- Centre for Clinical Pharmacology and Precision Medicine, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (C.S.M.); (A.Z.)
| |
Collapse
|
4
|
Ho KL, Karwi QG, Wang F, Wagg C, Zhang L, Panidarapu S, Chen B, Pherwani S, Greenwell AA, Oudit GY, Ussher JR, Lopaschuk GD. The ketogenic diet does not improve cardiac function and blunts glucose oxidation in ischaemic heart failure. Cardiovasc Res 2024; 120:1126-1137. [PMID: 38691671 PMCID: PMC11368127 DOI: 10.1093/cvr/cvae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/29/2024] [Accepted: 03/17/2024] [Indexed: 05/03/2024] Open
Abstract
AIMS Cardiac energy metabolism is perturbed in ischaemic heart failure and is characterized by a shift from mitochondrial oxidative metabolism to glycolysis. Notably, the failing heart relies more on ketones for energy than a healthy heart, an adaptive mechanism that improves the energy-starved status of the failing heart. However, whether this can be implemented therapeutically remains unknown. Therefore, our aim was to determine if increasing ketone delivery to the heart via a ketogenic diet can improve the outcomes of heart failure. METHODS AND RESULTS C57BL/6J male mice underwent either a sham surgery or permanent left anterior descending coronary artery ligation surgery to induce heart failure. After 2 weeks, mice were then treated with either a control diet or a ketogenic diet for 3 weeks. Transthoracic echocardiography was then carried out to assess in vivo cardiac function and structure. Finally, isolated working hearts from these mice were perfused with appropriately 3H or 14C labelled glucose (5 mM), palmitate (0.8 mM), and β-hydroxybutyrate (β-OHB) (0.6 mM) to assess mitochondrial oxidative metabolism and glycolysis. Mice with heart failure exhibited a 56% drop in ejection fraction, which was not improved with a ketogenic diet feeding. Interestingly, mice fed a ketogenic diet had marked decreases in cardiac glucose oxidation rates. Despite increasing blood ketone levels, cardiac ketone oxidation rates did not increase, probably due to a decreased expression of key ketone oxidation enzymes. Furthermore, in mice on the ketogenic diet, no increase in overall cardiac energy production was observed, and instead, there was a shift to an increased reliance on fatty acid oxidation as a source of cardiac energy production. This resulted in a decrease in cardiac efficiency in heart failure mice fed a ketogenic diet. CONCLUSION We conclude that the ketogenic diet does not improve heart function in failing hearts, due to ketogenic diet-induced excessive fatty acid oxidation in the ischaemic heart and a decrease in insulin-stimulated glucose oxidation.
Collapse
Affiliation(s)
- Kim L Ho
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Qutuba G Karwi
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Faqi Wang
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Cory Wagg
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Liyan Zhang
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Sai Panidarapu
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Brandon Chen
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Simran Pherwani
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Amanda A Greenwell
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Gavin Y Oudit
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Gary D Lopaschuk
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Zhong J, Chen H, Liu Q, Zhou S, Liu Z, Xiao Y. GLP-1 receptor agonists and myocardial metabolism in atrial fibrillation. J Pharm Anal 2024; 14:100917. [PMID: 38799233 PMCID: PMC11127228 DOI: 10.1016/j.jpha.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/15/2023] [Accepted: 12/07/2023] [Indexed: 05/29/2024] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia. Many medical conditions, including hypertension, diabetes, obesity, sleep apnea, and heart failure (HF), increase the risk for AF. Cardiomyocytes have unique metabolic characteristics to maintain adenosine triphosphate production. Significant changes occur in myocardial metabolism in AF. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have been used to control blood glucose fluctuations and weight in the treatment of type 2 diabetes mellitus (T2DM) and obesity. GLP-1RAs have also been shown to reduce oxidative stress, inflammation, autonomic nervous system modulation, and mitochondrial function. This article reviews the changes in metabolic characteristics in cardiomyocytes in AF. Although the clinical trial outcomes are unsatisfactory, the findings demonstrate that GLP-1 RAs can improve myocardial metabolism in the presence of various risk factors, lowering the incidence of AF.
Collapse
Affiliation(s)
- Jiani Zhong
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Hang Chen
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, 410008, China
| | - Qiming Liu
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Shenghua Zhou
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Zhenguo Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, School of Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Yichao Xiao
- Department of Cardiovascular Medicine, Second Xiangya Hospital, Central South University, Changsha, 410011, China
| |
Collapse
|
6
|
Pherwani S, Connolly D, Sun Q, Karwi QG, Carr M, Ho KL, Wagg CS, Zhang L, Levasseur J, Silver H, Dyck JRB, Lopaschuk GD. Ketones provide an extra source of fuel for the failing heart without impairing glucose oxidation. Metabolism 2024; 154:155818. [PMID: 38369056 DOI: 10.1016/j.metabol.2024.155818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND Cardiac glucose oxidation is decreased in heart failure with reduced ejection fraction (HFrEF), contributing to a decrease in myocardial ATP production. In contrast, circulating ketones and cardiac ketone oxidation are increased in HFrEF. Since ketones compete with glucose as a fuel source, we aimed to determine whether increasing ketone concentration both chronically with the SGLT2 inhibitor, dapagliflozin, or acutely in the perfusate has detrimental effects on cardiac glucose oxidation in HFrEF, and what effect this has on cardiac ATP production. METHODS 8-week-old male C57BL6/N mice underwent sham or transverse aortic constriction (TAC) surgery to induce HFrEF over 3 weeks, after which TAC mice were randomized to treatment with either vehicle or the SGLT2 inhibitor, dapagliflozin (DAPA), for 4 weeks (raises blood ketones). Cardiac function was assessed by echocardiography. Cardiac energy metabolism was measured in isolated working hearts perfused with 5 mM glucose, 0.8 mM palmitate, and either 0.2 mM or 0.6 mM β-hydroxybutyrate (βOHB). RESULTS TAC hearts had significantly decreased %EF compared to sham hearts, with no effect of DAPA. Glucose oxidation was significantly decreased in TAC hearts compared to sham hearts and did not decrease further in TAC hearts treated with high βOHB or in TAC DAPA hearts, despite βOHB oxidation rates increasing in both TAC vehicle and TAC DAPA hearts at high βOHB concentrations. Rather, increasing βOHB supply to the heart selectively decreased fatty acid oxidation rates. DAPA significantly increased ATP production at both βOHB concentrations by increasing the contribution of glucose oxidation to ATP production. CONCLUSION Therefore, increasing ketone concentration increases energy supply and ATP production in HFrEF without further impairing glucose oxidation.
Collapse
Affiliation(s)
- Simran Pherwani
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - David Connolly
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Qiuyu Sun
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Qutuba G Karwi
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta T6G 2S2, Canada; Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Newfoundland and Labrador, St. John's A1B 3V6, Canada
| | - Michael Carr
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Kim L Ho
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Cory S Wagg
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Liyan Zhang
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Jody Levasseur
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Heidi Silver
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Jason R B Dyck
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada; Department of Pediatrics, University of Alberta, Edmonton, Alberta T6G 2S2, Canada.
| |
Collapse
|
7
|
Schulman-Geltzer EB, Fulghum KL, Singhal RA, Hill BG, Collins HE. Cardiac mitochondrial metabolism during pregnancy and the postpartum period. Am J Physiol Heart Circ Physiol 2024; 326:H1324-H1335. [PMID: 38551485 DOI: 10.1152/ajpheart.00127.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
The goal of the present study was to characterize changes in mitochondrial respiration in the maternal heart during pregnancy and after birth. Timed pregnancy studies were performed in 12-wk-old female FVB/NJ mice, and cardiac mitochondria were isolated from the following groups of mice: nonpregnant (NP), midpregnancy (MP), late pregnancy (LP), and 1-wk postbirth (PB). Similar to our previous studies, we observed increased heart size during all stages of pregnancy (e.g., MP and LP) and postbirth (e.g., PB) compared with NP mice. Differential cardiac gene and protein expression analyses revealed changes in several mitochondrial transcripts at LP and PB, including several mitochondrial complex subunits and members of the Slc family, important for mitochondrial substrate transport. Respirometry revealed that pyruvate- and glutamate-supported state 3 respiration was significantly higher in PB vs. LP mitochondria, with respiratory control ratio (RCR) values higher in PB mitochondria. In addition, we found that PB mitochondria respired more avidly when given 3-hydroxybutyrate (3-OHB) than mitochondria from NP, MP, and LP hearts, with no differences in RCR. These increases in respiration in PB hearts occurred independent of changes in mitochondrial yield but were associated with higher abundance of 3-hydroxybutyrate dehydrogenase 1. Collectively, these findings suggest that, after birth, maternal cardiac mitochondria have an increased capacity to use 3-OHB, pyruvate, and glutamate as energy sources; however, increases in mitochondrial efficiency in the postpartum heart appear limited to carbohydrate and amino acid metabolism.NEW & NOTEWORTHY Few studies have detailed the physiological adaptations that occur in the maternal heart. We and others have shown that pregnancy-induced cardiac growth is associated with significant changes in cardiac metabolism. Here, we examined mitochondrial respiration and substrate preference in isolated mitochondria from the maternal heart. We show that following birth, cardiac mitochondria are "primed" to respire on carbohydrate, amino acid, and ketone bodies. However, heightened respiratory efficiency is observed only with carbohydrate and amino acid sources. These results suggest that significant changes in mitochondrial respiration occur in the maternal heart in the postpartum period.
Collapse
Affiliation(s)
- Emily B Schulman-Geltzer
- Division of Environmental Medicine, Department of Medicine, Center for Cardiometabolic ScienceChristina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky, United States
| | - Kyle L Fulghum
- Division of Environmental Medicine, Department of Medicine, Center for Cardiometabolic ScienceChristina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky, United States
| | - Richa A Singhal
- Division of Environmental Medicine, Department of Medicine, Center for Cardiometabolic ScienceChristina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky, United States
| | - Bradford G Hill
- Division of Environmental Medicine, Department of Medicine, Center for Cardiometabolic ScienceChristina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky, United States
| | - Helen E Collins
- Division of Environmental Medicine, Department of Medicine, Center for Cardiometabolic ScienceChristina Lee Brown Envirome Institute, University of Louisville, Louisville, Kentucky, United States
| |
Collapse
|
8
|
Gopalasingam N, Moeslund N, Christensen KH, Berg‐Hansen K, Seefeldt J, Homilius C, Nielsen EN, Dollerup MR, Alstrup Olsen AK, Johannsen M, Boedtkjer E, Møller N, Eiskjær H, Gormsen LC, Nielsen R, Wiggers H. Enantiomer-Specific Cardiovascular Effects of the Ketone Body 3-Hydroxybutyrate. J Am Heart Assoc 2024; 13:e033628. [PMID: 38563382 PMCID: PMC11262493 DOI: 10.1161/jaha.123.033628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/16/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND The ketone body 3-hydroxybutyrate (3-OHB) increases cardiac output (CO) by 35% to 40% in healthy people and people with heart failure. The mechanisms underlying the effects of 3-OHB on myocardial contractility and loading conditions as well as the cardiovascular effects of its enantiomeric forms, D-3-OHB and L-3-OHB, remain undetermined. METHODS AND RESULTS Three groups of 8 pigs each underwent a randomized, crossover study. The groups received 3-hour infusions of either D/L-3-OHB (racemic mixture), 100% L-3-OHB, 100% D-3-OHB, versus an isovolumic control. The animals were monitored with pulmonary artery catheter, left ventricle pressure-volume catheter, and arterial and coronary sinus blood samples. Myocardial biopsies were evaluated with high-resolution respirometry, coronary arteries with isometric myography, and myocardial kinetics with D-[11C]3-OHB and L-[11C]3-OHB positron emission tomography. All three 3-OHB infusions increased 3-OHB levels (P<0.001). D/L-3-OHB and L-3-OHB increased CO by 2.7 L/min (P<0.003). D-3-OHB increased CO nonsignificantly (P=0.2). Circulating 3-OHB levels correlated with CO for both enantiomers (P<0.001). The CO increase was mediated through arterial elastance (afterload) reduction, whereas contractility and preload were unchanged. Ex vivo, D- and L-3-OHB dilated coronary arteries equally. The mitochondrial respiratory capacity remained unaffected. The myocardial 3-OHB extraction increased only during the D- and D/L-3-OHB infusions. D-[11C]3-OHB showed rapid cardiac uptake and metabolism, whereas L-[11C]3-OHB demonstrated much slower pharmacokinetics. CONCLUSIONS 3-OHB increased CO by reducing afterload. L-3-OHB exerted a stronger hemodynamic response than D-3-OHB due to higher circulating 3-OHB levels. There was a dissocitation between the myocardial metabolism and hemodynamic effects of the enantiomers, highlighting L-3-OHB as a potent cardiovascular agent with strong hemodynamic effects.
Collapse
Affiliation(s)
- Nigopan Gopalasingam
- Department of CardiologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of CardiologyGødstrup HospitalHerningDenmark
| | - Niels Moeslund
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of Heart, Lung and Vascular SurgeryAarhus University HospitalAarhusDenmark
| | - Kristian Hylleberg Christensen
- Department of CardiologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Kristoffer Berg‐Hansen
- Department of CardiologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | - Jacob Seefeldt
- Department of CardiologyAarhus University HospitalAarhusDenmark
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
| | | | - Erik Nguyen Nielsen
- Department of Nuclear Medicine and PETAarhus University HospitalAarhusDenmark
| | | | - Aage K. Alstrup Olsen
- Department of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of Nuclear Medicine and PETAarhus University HospitalAarhusDenmark
| | | | | | - Niels Møller
- Department of Endocrinology and MetabolismAarhus UniversityAarhusDenmark
| | - Hans Eiskjær
- Department of CardiologyAarhus University HospitalAarhusDenmark
| | | | - Roni Nielsen
- Department of CardiologyAarhus University HospitalAarhusDenmark
| | - Henrik Wiggers
- Department of CardiologyAarhus University HospitalAarhusDenmark
| |
Collapse
|
9
|
Hoque MM, Gbadegoye JO, Hassan FO, Raafat A, Lebeche D. Cardiac fibrogenesis: an immuno-metabolic perspective. Front Physiol 2024; 15:1336551. [PMID: 38577624 PMCID: PMC10993884 DOI: 10.3389/fphys.2024.1336551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
Cardiac fibrosis is a major and complex pathophysiological process that ultimately culminates in cardiac dysfunction and heart failure. This phenomenon includes not only the replacement of the damaged tissue by a fibrotic scar produced by activated fibroblasts/myofibroblasts but also a spatiotemporal alteration of the structural, biochemical, and biomechanical parameters in the ventricular wall, eliciting a reactive remodeling process. Though mechanical stress, post-infarct homeostatic imbalances, and neurohormonal activation are classically attributed to cardiac fibrosis, emerging evidence that supports the roles of immune system modulation, inflammation, and metabolic dysregulation in the initiation and progression of cardiac fibrogenesis has been reported. Adaptive changes, immune cell phenoconversions, and metabolic shifts in the cardiac nonmyocyte population provide initial protection, but persistent altered metabolic demand eventually contributes to adverse remodeling of the heart. Altered energy metabolism, mitochondrial dysfunction, various immune cells, immune mediators, and cross-talks between the immune cells and cardiomyocytes play crucial roles in orchestrating the transdifferentiation of fibroblasts and ensuing fibrotic remodeling of the heart. Manipulation of the metabolic plasticity, fibroblast-myofibroblast transition, and modulation of the immune response may hold promise for favorably modulating the fibrotic response following different cardiovascular pathological processes. Although the immunologic and metabolic perspectives of fibrosis in the heart are being reported in the literature, they lack a comprehensive sketch bridging these two arenas and illustrating the synchrony between them. This review aims to provide a comprehensive overview of the intricate relationship between different cardiac immune cells and metabolic pathways as well as summarizes the current understanding of the involvement of immune-metabolic pathways in cardiac fibrosis and attempts to identify some of the previously unaddressed questions that require further investigation. Moreover, the potential therapeutic strategies and emerging pharmacological interventions, including immune and metabolic modulators, that show promise in preventing or attenuating cardiac fibrosis and restoring cardiac function will be discussed.
Collapse
Affiliation(s)
- Md Monirul Hoque
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Joy Olaoluwa Gbadegoye
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Fasilat Oluwakemi Hassan
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Amr Raafat
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Djamel Lebeche
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
- Medicine-Cardiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
- Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
10
|
Wang H, Shen M, Shu X, Guo B, Jia T, Feng J, Lu Z, Chen Y, Lin J, Liu Y, Zhang J, Zhang X, Sun D. Cardiac Metabolism, Reprogramming, and Diseases. J Cardiovasc Transl Res 2024; 17:71-84. [PMID: 37668897 DOI: 10.1007/s12265-023-10432-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023]
Abstract
Cardiovascular diseases (CVD) account for the largest bulk of deaths worldwide, posing a massive burden on societies and the global healthcare system. Besides, the incidence and prevalence of these diseases are on the rise, demanding imminent action to revert this trend. Cardiovascular pathogenesis harbors a variety of molecular and cellular mechanisms among which dysregulated metabolism is of significant importance and may even proceed other mechanisms. The healthy heart metabolism primarily relies on fatty acids for the ultimate production of energy through oxidative phosphorylation in mitochondria. Other metabolites such as glucose, amino acids, and ketone bodies come next. Under pathological conditions, there is a shift in metabolic pathways and the preference of metabolites, termed metabolic remodeling or reprogramming. In this review, we aim to summarize cardiovascular metabolism and remodeling in different subsets of CVD to come up with a new paradigm for understanding and treatment of these diseases.
Collapse
Affiliation(s)
- Haichang Wang
- Heart Hospital, Xi'an International Medical Center, Xi'an, China
| | - Min Shen
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Xiaofei Shu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Baolin Guo
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Tengfei Jia
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Jiaxu Feng
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Zuocheng Lu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Yanyan Chen
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Jie Lin
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Yue Liu
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Jiye Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China
| | - Xuan Zhang
- Institute for Hospital Management Research, Chinese PLA General Hospital, Beijing, China.
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, 127 West Changle Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
11
|
Chen C, Wang J, Zhu X, Hu J, Liu C, Liu L. Energy metabolism and redox balance: How phytochemicals influence heart failure treatment. Biomed Pharmacother 2024; 171:116136. [PMID: 38215694 DOI: 10.1016/j.biopha.2024.116136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/31/2023] [Accepted: 01/04/2024] [Indexed: 01/14/2024] Open
Abstract
Heart Failure (HF) epitomizes a formidable global health quandary characterized by marked morbidity and mortality. It has been established that severe derangements in energy metabolism are central to the pathogenesis of HF, culminating in an inadequate cardiac energy milieu, which, in turn, precipitates cardiac pump dysfunction and systemic energy metabolic failure, thereby steering the trajectory and potential recuperation of HF. The conventional therapeutic paradigms for HF predominantly target amelioration of heart rate, and cardiac preload and afterload, proffering symptomatic palliation or decelerating the disease progression. However, the realm of therapeutics targeting the cardiac energy metabolism remains largely uncharted. This review delineates the quintessential characteristics of cardiac energy metabolism in healthy hearts, and the metabolic aberrations observed during HF, alongside the associated metabolic pathways and targets. Furthermore, we delve into the potential of phytochemicals in rectifying the redox disequilibrium and the perturbations in energy metabolism observed in HF. Through an exhaustive analysis of recent advancements, we underscore the promise of phytochemicals in modulating these pathways, thereby unfurling a novel vista on HF therapeutics. Given their potential in orchestrating cardiac energy metabolism, phytochemicals are emerging as a burgeoning frontier for HF treatment. The review accentuates the imperative for deeper exploration into how these phytochemicals specifically intervene in cardiac energy metabolism, and the subsequent translation of these findings into clinical applications, thereby broadening the horizon for HF treatment modalities.
Collapse
Affiliation(s)
- Cong Chen
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Jie Wang
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China.
| | - Xueying Zhu
- Department of Anatomy, School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Jun Hu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Chao Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| | - Lanchun Liu
- Guang'anmen Hospital, China Academy of Chinese Medicine Sciences, Beijing 100053, China
| |
Collapse
|
12
|
Wei J, Duan X, Chen J, Zhang D, Xu J, Zhuang J, Wang S. Metabolic adaptations in pressure overload hypertrophic heart. Heart Fail Rev 2024; 29:95-111. [PMID: 37768435 DOI: 10.1007/s10741-023-10353-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
This review article offers a detailed examination of metabolic adaptations in pressure overload hypertrophic hearts, a condition that plays a pivotal role in the progression of heart failure with preserved ejection fraction (HFpEF) to heart failure with reduced ejection fraction (HFrEF). The paper delves into the complex interplay between various metabolic pathways, including glucose metabolism, fatty acid metabolism, branched-chain amino acid metabolism, and ketone body metabolism. In-depth insights into the shifts in substrate utilization, the role of different transporter proteins, and the potential impact of hypoxia-induced injuries are discussed. Furthermore, potential therapeutic targets and strategies that could minimize myocardial injury and promote cardiac recovery in the context of pressure overload hypertrophy (POH) are examined. This work aims to contribute to a better understanding of metabolic adaptations in POH, highlighting the need for further research on potential therapeutic applications.
Collapse
Affiliation(s)
- Jinfeng Wei
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Xuefei Duan
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jiaying Chen
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Dengwen Zhang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jindong Xu
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jian Zhuang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
| | - Sheng Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- Linzhi People's Hospital, Linzhi, Tibet, China.
| |
Collapse
|
13
|
Wu Y, Pei Z, Qu P. NAD +-A Hub of Energy Metabolism in Heart Failure. Int J Med Sci 2024; 21:369-375. [PMID: 38169534 PMCID: PMC10758143 DOI: 10.7150/ijms.89370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
Heart failure is a condition where reduced levels of adenosine triphosphate (ATP) affect energy supply in myocardial cells. Nicotinamide adenine dinucleotide (NAD+) plays a crucial role as a coenzyme for electron transfer in energy metabolism. Decreased NAD+ levels in myocardial cells lead to inadequate ATP production and increased susceptibility to heart failure. Researchers are exploring ways to increase NAD+ levels to alleviate heart failure. Targets such as sirtuin2 (sirt2), sirtuin3 (sirt3), Poly (ADP-ribose) polymerase (PARP), and diastolic regulatory proteins are being investigated. NAD+ supplementation has shown promise, even in heart failure with preserved ejection fraction (HFpEF). By focusing on NAD+ as a central component of energy metabolism, it is possible to improve myocardial activity, heart function, and address energy deficiency in heart failure.
Collapse
Affiliation(s)
- Yaoxin Wu
- Faculty of Medicine, Dalian University of Technology, 116024, Dalian, China
| | - Zuowei Pei
- Faculty of Medicine, Dalian University of Technology, 116024, Dalian, China
- Department of Cardiology, Central Hospital of Dalian University of Technology, Dalian, 116033, China
| | - Peng Qu
- Faculty of Medicine, Dalian University of Technology, 116024, Dalian, China
| |
Collapse
|
14
|
Chase D, Eykyn TR, Shattock MJ, Chung YJ. Empagliflozin improves cardiac energetics during ischaemia/reperfusion by directly increasing cardiac ketone utilization. Cardiovasc Res 2023; 119:2672-2680. [PMID: 37819017 PMCID: PMC10730240 DOI: 10.1093/cvr/cvad157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/07/2023] [Accepted: 07/27/2023] [Indexed: 10/13/2023] Open
Abstract
AIMS Empagliflozin (EMPA), a potent inhibitor of the renal sodium-glucose cotransporter 2 and an effective treatment for Type 2 diabetes, has been shown to have cardioprotective effects, independent of improved glycaemic control. Several non-canonical mechanisms have been proposed to explain these cardiac effects, including increasing circulating ketone supply to the heart. This study aims to test whether EMPA directly alters cardiac ketone metabolism independent of supply. METHODS AND RESULTS The direct effects of EMPA on cardiac function and metabolomics were investigated in Langendorff rat heart perfused with buffer containing 5 mM glucose, 4 mM β-hydroxybutyrate (βHb) and 0.4 mM intralipid, subject to low flow ischaemia/reperfusion. Cardiac energetics were monitored in situ using 31P NMR spectroscopy. Steady-state 13C labelling was performed by switching 12C substrates for 13C1 glucose or 13C4 βHb and 13C incorporation into metabolites determined using 2D 1H-13C HSQC NMR spectroscopy. EMPA treatment improved left ventricular-developed pressure during ischaemia and reperfusion compared to vehicle-treated hearts. In EMPA-treated hearts, total adenosine triphosphate (ATP) and phosphocreatine (PCr) levels, and Gibbs free energy for ATP hydrolysis were significantly higher during ischaemia and reperfusion. EMPA treatment did not alter the incorporation of 13C from glucose into glycolytic products lactate or alanine neither during ischaemia nor reperfusion. In ischaemia, EMPA led to a decrease in 13C1 glucose incorporation and a concurrent increase in 13C4 βHb incorporation into tricarboxylic acid (TCA) cycle intermediates succinate, citrate, and glutamate. During reperfusion, the concentration of metabolites originating from 13C1 glucose was similar to vehicle but those originating from 13C4 βHb remained elevated in EMPA-treated hearts. CONCLUSION Our findings indicate that EMPA causes a switch in metabolism away from glucose oxidation towards increased ketone utilization in the rat heart, thereby improving function and energetics both during ischaemia and recovery during reperfusion. This preference of ketone utilization over glucose was observed under conditions of constant supply of substrate, suggesting that EMPA acts directly by modulating cardiac substrate preference, independent of substrate availability. The mechanisms underlying our findings are currently unknown, warranting further study.
Collapse
Affiliation(s)
- Dylan Chase
- British Heart Foundation Centre of Research Excellence, King’s College London, The Rayne Institute, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK
| | - Thomas R Eykyn
- British Heart Foundation Centre of Research Excellence, King’s College London, The Rayne Institute, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, UK
| | - Michael J Shattock
- British Heart Foundation Centre of Research Excellence, King’s College London, The Rayne Institute, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK
| | - Yu Jin Chung
- British Heart Foundation Centre of Research Excellence, King’s College London, The Rayne Institute, 4th Floor, Lambeth Wing, St Thomas’ Hospital, London SE1 7EH, UK
| |
Collapse
|
15
|
Szibor M, Mühlon M, Doenst T, Pohjoismäki JLO. Spatial adjustment of bioenergetics, a possible determinant of contractile adaptation and development of contractile failure. FRONTIERS IN MOLECULAR MEDICINE 2023; 3:1305960. [PMID: 39086691 PMCID: PMC11285667 DOI: 10.3389/fmmed.2023.1305960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/23/2023] [Indexed: 08/02/2024]
Abstract
Cardiomyocytes depend on mitochondrial oxidative phosphorylation (OXPHOS) for energy metabolism, which is facilitated by the mitochondrial electron transfer system (ETS). In a series of thermogenic redox reactions, electrons are shuttled through the ETS to oxygen as the final electron acceptor. This electron transfer is coupled to proton translocation across the inner mitochondrial membrane, which itself is the main driving force for ATP production. Oxygen availability is thus a prerequisite for ATP production and consequently contractility. Notably, cardiomyocytes are exceptionally large cells and densely packed with contractile structures, which constrains intracellular oxygen distribution. Moreover, oxygen must pass through layers of actively respiring mitochondria to reach the ones located in the innermost contractile compartment. Indeed, uneven oxygen distribution was observed in cardiomyocytes, suggesting that local ATP supply may also vary according to oxygen availability. Here, we discuss how spatial adjustment of bioenergetics to intracellular oxygen fluctuations may underlie cardiac contractile adaptation and how this adaptation may pose a risk for the development of contractile failure.
Collapse
Affiliation(s)
- Marten Szibor
- Department of Cardiothoracic Surgery, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Friedrich-Schiller University of Jena, Jena, Germany
- BioMediTech and Tampere University Hospital, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Marie Mühlon
- Department of Cardiothoracic Surgery, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Friedrich-Schiller University of Jena, Jena, Germany
| | - Torsten Doenst
- Department of Cardiothoracic Surgery, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Friedrich-Schiller University of Jena, Jena, Germany
| | - Jaakko L. O. Pohjoismäki
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
16
|
Ritterhoff J, Tian R. Metabolic mechanisms in physiological and pathological cardiac hypertrophy: new paradigms and challenges. Nat Rev Cardiol 2023; 20:812-829. [PMID: 37237146 DOI: 10.1038/s41569-023-00887-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
Cardiac metabolism is vital for heart function. Given that cardiac contraction requires a continuous supply of ATP in large quantities, the role of fuel metabolism in the heart has been mostly considered from the perspective of energy production. However, the consequence of metabolic remodelling in the failing heart is not limited to a compromised energy supply. The rewired metabolic network generates metabolites that can directly regulate signalling cascades, protein function, gene transcription and epigenetic modifications, thereby affecting the overall stress response of the heart. In addition, metabolic changes in both cardiomyocytes and non-cardiomyocytes contribute to the development of cardiac pathologies. In this Review, we first summarize how energy metabolism is altered in cardiac hypertrophy and heart failure of different aetiologies, followed by a discussion of emerging concepts in cardiac metabolic remodelling, that is, the non-energy-generating function of metabolism. We highlight challenges and open questions in these areas and finish with a brief perspective on how mechanistic research can be translated into therapies for heart failure.
Collapse
Affiliation(s)
- Julia Ritterhoff
- Molecular and Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg, Germany.
- Mitochondria and Metabolism Center, Department of Anaesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anaesthesiology and Pain Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
17
|
Wang H, Liu X, Zhou Q, Liu L, Jia Z, Qi Y, Xu F, Zhang Y. Current status and emerging trends of cardiac metabolism from the past 20 years: A bibliometric study. Heliyon 2023; 9:e21952. [PMID: 38045208 PMCID: PMC10692779 DOI: 10.1016/j.heliyon.2023.e21952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 12/05/2023] Open
Abstract
Background Abnormal cardiac metabolism is a key factor in the development of cardiovascular diseases. Consequently, there has been considerable emphasis on researching and developing drugs that regulate metabolism. This study employed bibliometric methods to comprehensively and objectively analyze the relevant literature, offering insights into the knowledge dynamics in this field. Methods The data source for this study was the Web of Science Core Collection (WoSCC), from which the collected data were imported into bibliometric software for analysis. Results The United States was the leading contributor, accounting for 38.33 % of publications. The University of Washington and Damian J. Tyler were the most active institution and author, respectively. The American Journal of Physiology-Heart and Circulatory Physiology, Journal of Molecular and Cellular Cardiology, Cardiovascular Research, Circulation Research, and American Journal of Physiology-Endocrinology and Metabolism were highly influential journals that published numerous high-quality articles on cardiac metabolism. Common keywords in this research area included heart failure, insulin resistance, skeletal muscle, mitochondria, as well as topic words such as cardiac metabolism, fatty acid oxidation, glucose metabolism, and myocardial metabolism. Co-citation analysis has shown that research on heart failure and in vitro modeling of cardiovascular disease has gained prominence in recent years and making it a research hotspot. Conclusion Research on cardiac metabolism is steadily growing, with a specific focus on heart failure and the interplay between mitochondrial dysfunction, insulin resistance, and cardiac metabolism. An emerging trend in this field involves the enhancement of maturation in human induced pluripotent stem cell-derived cardiomyocyte (hiPSC-CM) through the manipulation of cardiac metabolism.
Collapse
Affiliation(s)
- Hongqin Wang
- Institute of Geriatric, Xiyuan Hospital, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaolin Liu
- Institute of Geriatric, Xiyuan Hospital, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Qingbing Zhou
- Institute of Geriatric, Xiyuan Hospital, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Liu
- Institute of Geriatric, Xiyuan Hospital, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Zijun Jia
- Institute of Geriatric, Xiyuan Hospital, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Yifei Qi
- Institute of Geriatric, Xiyuan Hospital, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Fengqin Xu
- Institute of Geriatric, Xiyuan Hospital, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Zhang
- Institute of Geriatric, Xiyuan Hospital, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
18
|
Guerrero-Orriach JL, Carmona-Luque MD, Raigón-Ponferrada A. Beneficial Effects of Halogenated Anesthetics in Cardiomyocytes: The Role of Mitochondria. Antioxidants (Basel) 2023; 12:1819. [PMID: 37891898 PMCID: PMC10604121 DOI: 10.3390/antiox12101819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
In the last few years, the use of anesthetic drugs has been related to effects other than those initially related to their fundamental effect, hypnosis. Halogenated anesthetics, mainly sevoflurane, have been used as a therapeutic tool in patients undergoing cardiac surgery, thanks to the beneficial effect of the cardiac protection they generate. This effect has been described in several research studies. The mechanism by which they produce this effect has been associated with the effects generated by anesthetic preconditioning and postconditioning. The mechanisms by which these effects are induced are directly related to the modulation of oxidative stress and the cellular damage generated by the ischemia/reperfusion procedure through the overexpression of different enzymes, most of them included in the Reperfusion Injury Salvage Kinase (RISK) and the Survivor Activating Factor Enhancement (SAFE) pathways. Mitochondria is the final target of the different routes of pre- and post-anesthetic conditioning, and it is preserved from the damage generated in moments of lack of oxygen and after the recovery of the normal oxygen concentration. The final consequence of this effect has been related to better cardiac function in this type of patient, with less myocardial damage, less need for inotropic drugs to achieve normal myocardial function, and a shorter hospital stay in intensive care units. The mechanisms through which mitochondrial homeostasis is maintained and its relationship with the clinical effect are the basis of our review. From a translational perspective, we provide information regarding mitochondrial physiology and physiopathology in cardiac failure and the role of halogenated anesthetics in modulating oxidative stress and inducing myocardial conditioning.
Collapse
Affiliation(s)
- José Luis Guerrero-Orriach
- Institute of Biomedical Research in Malaga, 29010 Malaga, Spain
- Department of Anesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain
- Department of Pharmacology and Pediatrics, School of Medicine, University of Malaga, 29010 Malaga, Spain
| | - María Dolores Carmona-Luque
- Maimonides Biomedical Research Institute of Cordoba (IMIBIC), University of Córdoba, 14004 Cordoba, Spain;
- Cellular Therapy Unit, Reina Sofia University Hospital, 14004 Cordoba, Spain
- Cell Therapy Group, University of Cordoba, 14004 Cordoba, Spain
| | - Aida Raigón-Ponferrada
- Institute of Biomedical Research in Malaga, 29010 Malaga, Spain
- Department of Anesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain
- Department of Pharmacology and Pediatrics, School of Medicine, University of Malaga, 29010 Malaga, Spain
| |
Collapse
|
19
|
Tabatabaei Dakhili SA, Yang K, Locatelli CAA, Saed CT, Greenwell AA, Chan JSF, Chahade JJ, Scharff J, Al-Imarah S, Eaton F, Crawford PA, Gopal K, Mulvihill EE, Ussher JR. Ketone ester administration improves glycemia in obese mice. Am J Physiol Cell Physiol 2023; 325:C750-C757. [PMID: 37575059 DOI: 10.1152/ajpcell.00300.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023]
Abstract
During periods of prolonged fasting/starvation, the liver generates ketones [i.e., β-hydroxybutyrate (βOHB)] that primarily serve as alternative substrates for ATP production. Previous studies have demonstrated that elevations in skeletal muscle ketone oxidation contribute to obesity-related hyperglycemia, whereas inhibition of succinyl CoA:3-ketoacid CoA transferase (SCOT), the rate-limiting enzyme of ketone oxidation, can alleviate obesity-related hyperglycemia. As circulating ketone levels are a key determinant of ketone oxidation rates, we tested the hypothesis that increases in circulating ketone levels would worsen glucose homeostasis secondary to increases in muscle ketone oxidation. Accordingly, male C57BL/6J mice were subjected to high-fat diet-induced obesity, whereas their lean counterparts received a standard chow diet. Lean and obese mice were orally administered either a ketone ester (KE) or placebo, followed by a glucose tolerance test. In tandem, we conducted isolated islet perifusion experiments to quantify insulin secretion in response to ketones. We observed that exogenous KE administration robustly increases circulating βOHB levels, which was associated with an improvement in glucose tolerance only in obese mice. These observations were independent of muscle ketone oxidation, as they were replicated in mice with a skeletal muscle-specific SCOT deficiency. Furthermore, the R-isomer of βOHB produced greater increases in perifusion insulin levels versus the S-isomer in isolated islets from obese mice. Taken together, acute elevations in circulating ketones promote glucose-lowering in obesity. Given that only the R-isomer of βOHB is oxidized, further studies are warranted to delineate the precise role of β-cell ketone oxidation in regulating insulin secretion.NEW & NOTEWORTHY It has been demonstrated that increased skeletal muscle ketone metabolism contributes to obesity-related hyperglycemia. Since increases in ketone supply are key determinants of organ ketone oxidation rates, we determined whether acute elevations in circulating ketones following administration of an oral ketone ester may worsen glucose homeostasis in lean or obese mice. Our work demonstrates the opposite, as acute elevations in circulating ketones improved glucose tolerance in obese mice.
Collapse
Affiliation(s)
- Seyed Amirhossein Tabatabaei Dakhili
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Kunyan Yang
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Cassandra A A Locatelli
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Christina T Saed
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Amanda A Greenwell
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jordan S F Chan
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jadin J Chahade
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Jared Scharff
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Shahad Al-Imarah
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Farah Eaton
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Peter A Crawford
- Division of Molecular Medicine, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States
| | - Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Erin E Mulvihill
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
20
|
Li Q, Zhang S, Yang G, Wang X, Liu F, Li Y, Chen Y, Zhou T, Xie D, Liu Y, Zhang L. Energy metabolism: A critical target of cardiovascular injury. Biomed Pharmacother 2023; 165:115271. [PMID: 37544284 DOI: 10.1016/j.biopha.2023.115271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023] Open
Abstract
Cardiovascular diseases are the main killers threatening human health. Many studies have shown that abnormal energy metabolism plays a key role in the occurrence and development of acute and chronic cardiovascular diseases. Regulating cardiac energy metabolism is a frontier topic in the treatment of cardiovascular diseases. However, we are not very clear about the choice of different substrates, the specific mechanism of energy metabolism participating in the course of cardiovascular disease, and how to develop appropriate drugs to regulate energy metabolism to treat cardiovascular disease. Therefore, this paper reviews how energy metabolism participates in cardiovascular pathophysiological processes and potential drugs aimed at interfering energy metabolism.It is expected to provide good suggestions for promoting the clinical prevention and treatment of cardiovascular diseases from the perspective of energy metabolism.
Collapse
Affiliation(s)
- Qiyang Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Shangzu Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Gengqiang Yang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Xin Wang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Fuxian Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yangyang Li
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Yan Chen
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Ting Zhou
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China
| | - Dingxiong Xie
- Gansu Institute of Cardiovascular Diseases, LanZhou, China.
| | - Yongqi Liu
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China; Key Laboratory of Dunhuang Medicine and Transformation Ministry of Education, China.
| | - Liying Zhang
- Provincial-Level Key Laboratory for Molecular Medicine of Major Diseases and the Prevention and Treatment with Traditional Chinese Medicine Research in Gansu Colleges and Universities, Gansu University of Chinese Medicine, Lanzhou, China; Gansu Institute of Cardiovascular Diseases, LanZhou, China.
| |
Collapse
|
21
|
Renaud D, Scholl-Bürgi S, Karall D, Michel M. Comparative Metabolomics in Single Ventricle Patients after Fontan Palliation: A Strong Case for a Targeted Metabolic Therapy. Metabolites 2023; 13:932. [PMID: 37623876 PMCID: PMC10456471 DOI: 10.3390/metabo13080932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Most studies on single ventricle (SV) circulation take a physiological or anatomical approach. Although there is a tight coupling between cardiac contractility and metabolism, the metabolic perspective on this patient population is very recent. Early findings point to major metabolic disturbances, with both impaired glucose and fatty acid oxidation in the cardiomyocytes. Additionally, Fontan patients have systemic metabolic derangements such as abnormal glucose metabolism and hypocholesterolemia. Our literature review compares the metabolism of patients with a SV circulation after Fontan palliation with that of patients with a healthy biventricular (BV) heart, or different subtypes of a failing BV heart, by Pubmed review of the literature on cardiac metabolism, Fontan failure, heart failure (HF), ketosis, metabolism published in English from 1939 to 2023. Early evidence demonstrates that SV circulation is not only a hemodynamic burden requiring staged palliation, but also a metabolic issue with alterations similar to what is known for HF in a BV circulation. Alterations of fatty acid and glucose oxidation were found, resulting in metabolic instability and impaired energy production. As reported for patients with BV HF, stimulating ketone oxidation may be an effective treatment strategy for HF in these patients. Few but promising clinical trials have been conducted thus far to evaluate therapeutic ketosis with HF using a variety of instruments, including ketogenic diet, ketone esters, and sodium-glucose co-transporter-2 (SGLT2) inhibitors. An initial trial on a small cohort demonstrated favorable outcomes for Fontan patients treated with SGLT2 inhibitors. Therapeutic ketosis is worth considering in the treatment of Fontan patients, as ketones positively affect not only the myocardial energy metabolism, but also the global Fontan physiopathology. Induced ketosis seems promising as a concerted therapeutic strategy.
Collapse
Affiliation(s)
- David Renaud
- Fundamental and Biomedical Sciences, Paris-Cité University, 75006 Paris, France
- Health Sciences Faculty, Universidad Europea Miguel de Cervantes, 47012 Valladolid, Spain
- Fundacja Recover, 05-124 Skrzeszew, Poland
| | - Sabine Scholl-Bürgi
- Department of Child and Adolescent Health, Division of Pediatrics I—Inherited Metabolic Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Daniela Karall
- Department of Child and Adolescent Health, Division of Pediatrics I—Inherited Metabolic Disorders, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Miriam Michel
- Department of Child and Adolescent Health, Division of Pediatrics III—Cardiology, Pulmonology, Allergology and Cystic Fibrosis, Medical University of Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
22
|
Fan L, Meng C, Wang X, Wang Y, Li Y, Lv S, Zhang J. Driving force of deteriorated cellular environment in heart failure: Metabolic remodeling. Clinics (Sao Paulo) 2023; 78:100263. [PMID: 37557005 PMCID: PMC10432917 DOI: 10.1016/j.clinsp.2023.100263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 08/11/2023] Open
Abstract
Heart Failure (HF) has been one of the leading causes of death worldwide. Though its latent mechanism and therapeutic manipulation are updated and developed ceaselessly, there remain great gaps in the cognition of heart failure. High morbidity and readmission rates among HF patients are waiting to be addressed. Recent studies have found that myocardial energy metabolism was closely related to heart failure, in which substrate utilization, as well as intermediate metabolism disorders, insulin resistance, oxidative stress, and mitochondrial dysfunction, might underlie systolic dysfunction and progression of HF. This article centers on the changes and counteraction of cardiac energy metabolism in the failing heart. Therefore, targeting impaired energy provision is of great potential in the treatment of HF. And shifting the objective from traditional neurohormones to improving the cellular environment is expected to further optimize the management of HF.
Collapse
Affiliation(s)
- Lu Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Chenchen Meng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiaoming Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yunjiao Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yanyang Li
- Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Shichao Lv
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Key Laboratory of Traditional Research of TCM Prescription and Syndrome, Tianjin, China.
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
23
|
Lopaschuk GD, Dyck JRB. Ketones and the cardiovascular system. NATURE CARDIOVASCULAR RESEARCH 2023; 2:425-437. [PMID: 39196044 DOI: 10.1038/s44161-023-00259-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/28/2023] [Indexed: 08/29/2024]
Abstract
Ketone bodies, the main one being β-hydroxybutyrate, have emerged as important regulators of the cardiovascular system. In healthy individuals, as well as in individuals with heart failure or post-myocardial infarction, ketones provide a supplemental energy source for both the heart and the vasculature. In the failing heart, this additional energy may contribute to improved cardiac performance, whereas increasing ketone oxidation in vascular smooth muscle and endothelial cells enhances cell proliferation and prevents blood vessel rarefication. Ketones also have important actions in signaling pathways, posttranslational modification pathways and gene transcription; many of which modify cell proliferation, inflammation, oxidative stress, endothelial function and cardiac remodeling. Attempts to therapeutically increase ketone delivery to the cardiovascular system are numerous and have shown mixed results in terms of effectiveness. Here we review the bioenergetic and signaling effects of ketones on the cardiovascular system, and we discuss how ketones can potentially be used to treat cardiovascular diseases.
Collapse
Affiliation(s)
- Gary D Lopaschuk
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | - Jason R B Dyck
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
24
|
Maurya SK, Carley AN, Maurya CK, Lewandowski ED. Western Diet Causes Heart Failure With Reduced Ejection Fraction and Metabolic Shifts After Diastolic Dysfunction and Novel Cardiac Lipid Derangements. JACC Basic Transl Sci 2023; 8:422-435. [PMID: 37138801 PMCID: PMC10149654 DOI: 10.1016/j.jacbts.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 01/27/2023]
Abstract
Western diet (WD) impairs glucose tolerance and cardiac lipid dynamics, preceding heart failure with reduced ejection fraction (HFrEF) in mice. Unlike diabetic db/db mice with high cardiac triglyceride (TG) and rapid TG turnover, WD mice had high TG but slowed turnover, reducing lipolytic PPAR⍺ activation. WD deranged cardiac TG dynamics by imbalancing synthesis and lipolysis, with low cardiac TG lipase (ATGL), low ATGL co-activator, and high ATGL inhibitory peptide. By 24 weeks of WD, hearts shifted from diastolic dysfunction to diastolic dysfunction with HFrEF with decreases in GLUT4 and exogenous glucose oxidation and elevated β-hydroxybutyrate dehydrogenase 1 without increasing ketone oxidation.
Collapse
Affiliation(s)
- Santosh K. Maurya
- Department of Internal Medicine, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Andrew N. Carley
- Department of Internal Medicine, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Chandan K. Maurya
- Department of Internal Medicine, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - E. Douglas Lewandowski
- Department of Internal Medicine, Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
25
|
Karwi QG, Lopaschuk GD. Branched-Chain Amino Acid Metabolism in the Failing Heart. Cardiovasc Drugs Ther 2023; 37:413-420. [PMID: 35150384 DOI: 10.1007/s10557-022-07320-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/27/2022] [Indexed: 01/11/2023]
Abstract
Branched-chain amino acids (BCAAs) are essential amino acids which have critical roles in protein synthesis and energy metabolism in the body. In the heart, there is a strong correlation between impaired BCAA oxidation and contractile dysfunction in heart failure. Plasma and myocardial levels of BCAA and their metabolites, namely branched-chain keto acids (BCKAs), are also linked to cardiac insulin resistance and worsening adverse remodelling in the failing heart. This review discusses the regulation of BCAA metabolism in the heart and the impact of depressed cardiac BCAA oxidation on cardiac energy metabolism, function, and structure in heart failure. While impaired BCAA oxidation in the failing heart causes the accumulation of BCAA and BCKA in the myocardium, recent evidence suggested that the BCAAs and BCKAs have divergent effects on the insulin signalling pathway and the mammalian target of the rapamycin (mTOR) signalling pathway. Dietary and pharmacological interventions that enhance cardiac BCAA oxidation and limit the accumulation of cardiac BCAAs and BCKAs have been shown to have cardioprotective effects in the setting of ischemic heart disease and heart failure. Thus, targeting cardiac BCAA oxidation may be a promising therapeutic approach for heart failure.
Collapse
Affiliation(s)
- Qutuba G Karwi
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, T6G 2S2, Canada.,Department of Pharmacology, College of Medicine, University of Diyala, Diyala, Iraq
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| |
Collapse
|
26
|
Abstract
The ketone bodies beta-hydroxybutyrate and acetoacetate are hepatically produced metabolites catabolized in extrahepatic organs. Ketone bodies are a critical cardiac fuel and have diverse roles in the regulation of cellular processes such as metabolism, inflammation, and cellular crosstalk in multiple organs that mediate disease. This review focuses on the role of cardiac ketone metabolism in health and disease with an emphasis on the therapeutic potential of ketosis as a treatment for heart failure (HF). Cardiac metabolic reprogramming, characterized by diminished mitochondrial oxidative metabolism, contributes to cardiac dysfunction and pathologic remodeling during the development of HF. Growing evidence supports an adaptive role for ketone metabolism in HF to promote normal cardiac function and attenuate disease progression. Enhanced cardiac ketone utilization during HF is mediated by increased availability due to systemic ketosis and a cardiac autonomous upregulation of ketolytic enzymes. Therapeutic strategies designed to restore high-capacity fuel metabolism in the heart show promise to address fuel metabolic deficits that underpin the progression of HF. However, the mechanisms involved in the beneficial effects of ketone bodies in HF have yet to be defined and represent important future lines of inquiry. In addition to use as an energy substrate for cardiac mitochondrial oxidation, ketone bodies modulate myocardial utilization of glucose and fatty acids, two vital energy substrates that regulate cardiac function and hypertrophy. The salutary effects of ketone bodies during HF may also include extra-cardiac roles in modulating immune responses, reducing fibrosis, and promoting angiogenesis and vasodilation. Additional pleotropic signaling properties of beta-hydroxybutyrate and AcAc are discussed including epigenetic regulation and protection against oxidative stress. Evidence for the benefit and feasibility of therapeutic ketosis is examined in preclinical and clinical studies. Finally, ongoing clinical trials are reviewed for perspective on translation of ketone therapeutics for the treatment of HF.
Collapse
Affiliation(s)
- Timothy R. Matsuura
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Patrycja Puchalska
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Peter A. Crawford
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Daniel P. Kelly
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
27
|
Falkenhain K, Islam H, Little JP. Exogenous ketone supplementation: an emerging tool for physiologists with potential as a metabolic therapy. Exp Physiol 2023; 108:177-187. [PMID: 36533967 PMCID: PMC10103874 DOI: 10.1113/ep090430] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022]
Abstract
NEW FINDINGS What is the topic of this review? The integrative physiological response to exogenous ketone supplementation. What advances does it highlight? The physiological effects and therapeutic potential of exogenous ketones on metabolic health, cardiovascular function, cognitive processing, and modulation of inflammatory pathways and immune function. Also highlighted are current challenges and future directions of the field. ABSTRACT Exogenous oral ketone supplements, primarily in form of ketone salts or esters, have emerged as a useful research tool for manipulating metabolism with potential therapeutic application targeting various aspects of several common chronic diseases. Recent literature has investigated the effects of exogenously induced ketosis on metabolic health, cardiovascular function, cognitive processing, and modulation of inflammatory pathways and immune function. This narrative review provides an overview of the integrative physiological effects of exogenous ketone supplementation and highlights current challenges and future research directions. Much of the existing research on therapeutic applications - particularly mechanistic studies - has involved pre-clinical rodent and/or cellular models, requiring further validation in human clinical studies. Existing human studies report that exogenous ketones can lower blood glucose and improve some aspects of cognitive function, highlighting the potential therapeutic application of exogenous ketones for type 2 diabetes and neurological diseases. There is also support for the ability of exogenous ketosis to improve cardiac metabolism in rodent models of heart failure with supporting human studies emerging; long-terms effects of exogenous ketone supplementation on the human cardiovascular system and lipid profiles are needed. An important avenue for future work is provided by research accelerating technologies that enable continuous ketone monitoring and/or the development of more palatable ketone mixtures that optimize plasma ketone kinetics to enable sustained ketosis. Lastly, research exploring the physiological interactions between exogenous ketones and varying metabolic states (e.g., exercise, fasting, metabolic disease) should yield important insights that can be used to maximize the health benefits of exogenous ketosis.
Collapse
Affiliation(s)
- Kaja Falkenhain
- School of Health and Exercise SciencesUniversity of British Columbia OkanaganKelownaBritish ColumbiaCanada
| | - Hashim Islam
- School of Health and Exercise SciencesUniversity of British Columbia OkanaganKelownaBritish ColumbiaCanada
| | - Jonathan P. Little
- School of Health and Exercise SciencesUniversity of British Columbia OkanaganKelownaBritish ColumbiaCanada
| |
Collapse
|
28
|
Mechanisms of SGLT2 Inhibitors in Heart Failure and Their Clinical Value. J Cardiovasc Pharmacol 2023; 81:4-14. [PMID: 36607775 DOI: 10.1097/fjc.0000000000001380] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 10/08/2022] [Indexed: 01/07/2023]
Abstract
ABSTRACT Sodium-glucose cotransporter 2 (SGLT2) inhibitors are widely used to treat diabetes mellitus. Abundant evidence has shown that SGLT2 inhibitors can reduce hospitalization for heart failure (HF) in patients with or without diabetes. An increasing number of studies are being conducted on the mechanisms of action of SGLT2 inhibitors in HF. Our review summarizes a series of clinical trials on the cardioprotective effects of SGLT2 inhibitors in the treatment of HF. We have summarized several classical SGLT2 inhibitors in cardioprotection research, including empagliflozin, dapagliflozin, canagliflozin, ertugliflozin, and sotagliflozin. In addition, we provided a brief overview of the safety and benefits of SGLT2 inhibitors. Finally, we focused on the mechanisms of SGLT2 inhibitors in the treatment of HF, including ion-exchange regulation, volume regulation, ventricular remodeling, and cardiac energy metabolism. Exploring the mechanisms of SGLT2 inhibitors has provided insight into repurposing these diabetic drugs for the treatment of HF.
Collapse
|
29
|
von Lewinski D, Kolesnik E, Tripolt NJ, Pferschy PN, Benedikt M, Wallner M, Alber H, Berger R, Lichtenauer M, Saely CH, Moertl D, Auersperg P, Reiter C, Rieder T, Siller-Matula JM, Gager GM, Hasun M, Weidinger F, Pieber TR, Zechner PM, Herrmann M, Zirlik A, Holman RR, Oulhaj A, Sourij H. Empagliflozin in acute myocardial infarction: the EMMY trial. Eur Heart J 2022; 43:4421-4432. [PMID: 36036746 PMCID: PMC9622301 DOI: 10.1093/eurheartj/ehac494] [Citation(s) in RCA: 151] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/14/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS Sodium-glucose co-transporter 2 inhibition reduces the risk of hospitalization for heart failure and for death in patients with symptomatic heart failure. However, trials investigating the effects of this drug class in patients following acute myocardial infarction are lacking. METHODS AND RESULTS In this academic, multicentre, double-blind trial, patients (n = 476) with acute myocardial infarction accompanied by a large creatine kinase elevation (>800 IU/L) were randomly assigned to empagliflozin 10 mg or matching placebo once daily within 72 h of percutaneous coronary intervention. The primary outcome was the N-terminal pro-hormone of brain natriuretic peptide (NT-proBNP) change over 26 weeks. Secondary outcomes included changes in echocardiographic parameters. Baseline median (interquartile range) NT-proBNP was 1294 (757-2246) pg/mL. NT-proBNP reduction was significantly greater in the empagliflozin group, compared with placebo, being 15% lower [95% confidence interval (CI) -4.4% to -23.6%] after adjusting for baseline NT-proBNP, sex, and diabetes status (P = 0.026). Absolute left-ventricular ejection fraction improvement was significantly greater (1.5%, 95% CI 0.2-2.9%, P = 0.029), mean E/e' reduction was 6.8% (95% CI 1.3-11.3%, P = 0.015) greater, and left-ventricular end-systolic and end-diastolic volumes were lower by 7.5 mL (95% CI 3.4-11.5 mL, P = 0.0003) and 9.7 mL (95% CI 3.7-15.7 mL, P = 0.0015), respectively, in the empagliflozin group, compared with placebo. Seven patients were hospitalized for heart failure (three in the empagliflozin group). Other predefined serious adverse events were rare and did not differ significantly between groups. CONCLUSION In patients with a recent myocardial infarction, empagliflozin was associated with a significantly greater NT-proBNP reduction over 26 weeks, accompanied by a significant improvement in echocardiographic functional and structural parameters. CLINICALTRIALS.GOV REGISTRATION NCT03087773.
Collapse
Affiliation(s)
- Dirk von Lewinski
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Ewald Kolesnik
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Norbert J Tripolt
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
- Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Peter N Pferschy
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
- Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Martin Benedikt
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Markus Wallner
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Hannes Alber
- Department of Cardiology, Public Hospital Klagenfurt am Woerthersee, Klagenfurt am Woerthersee, Austria
| | - Rudolf Berger
- Department of Internal Medicine, Brothers of Saint John of God Eisenstadt, Eisenstadt, Austria
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology and Internal Intensive Care Medicine, Paracelsus Medical Private University Salzburg, Salzburg, Austria
| | - Christoph H Saely
- Vorarlberg Institute for Vascular Investigation and Treatment (VIVIT), Feldkirch, Austria
| | - Deddo Moertl
- Karl Landsteiner University of Health Sciences, 3050 Krems, Austria
- Department of Internal Medicine 3, University Hospital St. Poelten, 3100 St. Poelten, Austria
| | - Pia Auersperg
- Karl Landsteiner University of Health Sciences, 3050 Krems, Austria
- Department of Internal Medicine 3, University Hospital St. Poelten, 3100 St. Poelten, Austria
| | - Christian Reiter
- Department of Cardiology and Intensive Care Medicine, Kepler University Hospital Linz, Linz, Austria
| | - Thomas Rieder
- Department of Medicine, Kardinal Schwarzenberg Hospital Schwarzach, Schwarzach, Austria
| | | | - Gloria M Gager
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Matthias Hasun
- 2nd Medical Department with Cardiology and Intensive Care Medicine, Hospital Landstrasse, Vienna, Austria
| | - Franz Weidinger
- 2nd Medical Department with Cardiology and Intensive Care Medicine, Hospital Landstrasse, Vienna, Austria
| | - Thomas R Pieber
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Peter M Zechner
- Department of Cardiology and Intensive Care Medicine, Hospital Graz South West, West Location, Graz, Austria
| | - Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Andreas Zirlik
- Department of Internal Medicine, Division of Cardiology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Rury R Holman
- Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Abderrahim Oulhaj
- Department of Epidemiology and Population Health, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, UAE
- Research and Data Intelligence Support Center, Khalifa University, Abu Dhabi, UAE
| | - Harald Sourij
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
- Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| |
Collapse
|
30
|
Li J, Qi X, Ramos KS, Lanters E, Keijer J, de Groot N, Brundel B, Zhang D. Disruption of Sarcoplasmic Reticulum-Mitochondrial Contacts Underlies Contractile Dysfunction in Experimental and Human Atrial Fibrillation: A Key Role of Mitofusin 2. J Am Heart Assoc 2022; 11:e024478. [PMID: 36172949 DOI: 10.1161/jaha.121.024478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Atrial fibrillation (AF) is the most common and progressive tachyarrhythmia. Diabetes is a common risk factor for AF. Recent research findings revealed that microtubule network disruption underlies AF. The microtubule network mediates the contact between sarcoplasmic reticulum and mitochondria, 2 essential organelles for normal cardiomyocyte function. Therefore, disruption of the microtubule network may impair sarcoplasmic reticulum and mitochondrial contacts (SRMCs) and subsequently cardiomyocyte function. The current study aims to determine whether microtubule-mediated SRMCs disruption underlies diabetes-associated AF. Methods and Results Tachypacing (mimicking AF) and high glucose (mimicking diabetes) significantly impaired contractile function in HL-1 cardiomyocytes (loss of calcium transient) and Drosophila (reduced heart rate and increased arrhythmia), both of which were prevented by microtubule stabilizers. Furthermore, both tachypacing and high glucose significantly reduced SRMCs and the key SRMC tether protein mitofusin 2 (MFN2) and resulted in consequent mitochondrial dysfunction, all of which were prevented by microtubule stabilizers. In line with pharmacological interventions with microtubule stabilizers, cardiac-specific knockdown of MFN2 induced arrhythmia in Drosophila and overexpression of MFN2 prevented tachypacing- and high glucose-induced contractile dysfunction in HL-1 cardiomyocytes and/or Drosophila. Consistently, SRMCs/MFN2 levels were significantly reduced in right atrial appendages of patients with persistent AF compared with control patients, which was aggravated in patients with diabetes. Conclusions SRMCs may play a critical role in clinical AF, especially diabetes-related AF. Furthermore, SRMCs can be regulated by microtubules and MFN2, which represent novel potential therapeutic targets for AF.
Collapse
Affiliation(s)
- Jin Li
- Department of Physiology Amsterdam UMC location Vrije Universiteit Amsterdam Amsterdam The Netherlands.,Amsterdam Cardiovascular Sciences Heart Failure and Arrhythmias Amsterdam The Netherlands.,Division of Metabolism, Endocrinology and Diabetes and Department of Internal Medicine University of Michigan Medical School Ann Arbor MI
| | - Xi Qi
- Human and Animal Physiology Wageningen University Wageningen The Netherlands
| | - Kennedy S Ramos
- Department of Physiology Amsterdam UMC location Vrije Universiteit Amsterdam Amsterdam The Netherlands.,Amsterdam Cardiovascular Sciences Heart Failure and Arrhythmias Amsterdam The Netherlands
| | - Eva Lanters
- Department of Cardiology Erasmus Medical Center Rotterdam The Netherlands
| | - Jaap Keijer
- Human and Animal Physiology Wageningen University Wageningen The Netherlands
| | - Natasja de Groot
- Department of Cardiology Erasmus Medical Center Rotterdam The Netherlands
| | - Bianca Brundel
- Department of Physiology Amsterdam UMC location Vrije Universiteit Amsterdam Amsterdam The Netherlands.,Amsterdam Cardiovascular Sciences Heart Failure and Arrhythmias Amsterdam The Netherlands
| | - Deli Zhang
- Department of Physiology Amsterdam UMC location Vrije Universiteit Amsterdam Amsterdam The Netherlands.,Human and Animal Physiology Wageningen University Wageningen The Netherlands
| |
Collapse
|
31
|
The Role of Mitochondrial Quality Control in Anthracycline-Induced Cardiotoxicity: From Bench to Bedside. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:3659278. [PMID: 36187332 PMCID: PMC9519345 DOI: 10.1155/2022/3659278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022]
Abstract
Cardiotoxicity is the major side effect of anthracyclines (doxorubicin, daunorubicin, epirubicin, and idarubicin), though being the most commonly used chemotherapy drugs and the mainstay of therapy in solid and hematological neoplasms. Advances in the field of cardio-oncology have expanded our understanding of the molecular mechanisms underlying anthracycline-induced cardiotoxicity (AIC). AIC has a complex pathogenesis that includes a variety of aspects such as oxidative stress, autophagy, and inflammation. Emerging evidence has strongly suggested that the loss of mitochondrial quality control (MQC) plays an important role in the progression of AIC. Mitochondria are vital organelles in the cardiomyocytes that serve as the key regulators of reactive oxygen species (ROS) production, energy metabolism, cell death, and calcium buffering. However, as mitochondria are susceptible to damage, the MQC system, including mitochondrial dynamics (fusion/fission), mitophagy, mitochondrial biogenesis, and mitochondrial protein quality control, appears to be crucial in maintaining mitochondrial homeostasis. In this review, we summarize current evidence on the role of MQC in the pathogenesis of AIC and highlight the therapeutic potential of restoring the cardiomyocyte MQC system in the prevention and intervention of AIC.
Collapse
|
32
|
Lkhagva B, Lee TW, Lin YK, Chen YC, Chung CC, Higa S, Chen YJ. Disturbed Cardiac Metabolism Triggers Atrial Arrhythmogenesis in Diabetes Mellitus: Energy Substrate Alternate as a Potential Therapeutic Intervention. Cells 2022; 11:cells11182915. [PMID: 36139490 PMCID: PMC9497243 DOI: 10.3390/cells11182915] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/10/2022] [Accepted: 09/16/2022] [Indexed: 11/20/2022] Open
Abstract
Atrial fibrillation (AF) is the most common type of sustained arrhythmia in diabetes mellitus (DM). Its morbidity and mortality rates are high, and its prevalence will increase as the population ages. Despite expanding knowledge on the pathophysiological mechanisms of AF, current pharmacological interventions remain unsatisfactory; therefore, novel findings on the underlying mechanism are required. A growing body of evidence suggests that an altered energy metabolism is closely related to atrial arrhythmogenesis, and this finding engenders novel insights into the pathogenesis of the pathophysiology of AF. In this review, we provide comprehensive information on the mechanistic insights into the cardiac energy metabolic changes, altered substrate oxidation rates, and mitochondrial dysfunctions involved in atrial arrhythmogenesis, and suggest a promising advanced new therapeutic approach to treat patients with AF.
Collapse
Affiliation(s)
- Baigalmaa Lkhagva
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Ting-Wei Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
| | - Yung-Kuo Lin
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yao-Chang Chen
- Department of Biomedical Engineering, National Defense Medical Center, Taipei 11490, Taiwan
| | - Cheng-Chih Chung
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Satoshi Higa
- Cardiac Electrophysiology and Pacing Laboratory, Division of Cardiovascular Medicine, Makiminato Central Hospital, Okinawa 901-2131, Japan
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Cardiovascular Research Center, Wan-Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Correspondence:
| |
Collapse
|
33
|
Mohammadifard N, Haghighatdoost F, Rahimlou M, Rodrigues APS, Gaskarei MK, Okhovat P, de Oliveira C, Silveira EA, Sarrafzadegan N. The Effect of Ketogenic Diet on Shared Risk Factors of Cardiovascular Disease and Cancer. Nutrients 2022; 14:nu14173499. [PMID: 36079756 PMCID: PMC9459811 DOI: 10.3390/nu14173499] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/20/2022] [Accepted: 08/23/2022] [Indexed: 11/29/2022] Open
Abstract
Cardiovascular disease (CVD) and cancer are the first and second leading causes of death worldwide, respectively. Epidemiological evidence has demonstrated that the incidence of cancer is elevated in patients with CVD and vice versa. However, these conditions are usually regarded as separate events despite the presence of shared risk factors between both conditions, such as metabolic abnormalities and lifestyle. Cohort studies suggested that controlling for CVD risk factors may have an impact on cancer incidence. Therefore, it could be concluded that interventions that improve CVD and cancer shared risk factors may potentially be effective in preventing and treating both diseases. The ketogenic diet (KD), a low-carbohydrate and high-fat diet, has been widely prescribed in weight loss programs for metabolic abnormalities. Furthermore, recent research has investigated the effects of KD on the treatment of numerous diseases, including CVD and cancer, due to its role in promoting ketolysis, ketogenesis, and modifying many other metabolic pathways with potential favorable health effects. However, there is still great debate regarding prescribing KD in patients either with CVD or cancer. Considering the number of studies on this topic, there is a clear need to summarize potential mechanisms through which KD can improve cardiovascular health and control cell proliferation. In this review, we explained the history of KD, its types, and physiological effects and discussed how it could play a role in CVD and cancer treatment and prevention.
Collapse
Affiliation(s)
- Noushin Mohammadifard
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
| | - Fahimeh Haghighatdoost
- Interventional Cardiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
- Correspondence: ; Tel.: +98-31-36115318
| | - Mehran Rahimlou
- Department of Nutrition, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan 4515863994, Iran
| | | | - Mohammadamin Khajavi Gaskarei
- Heart Failure Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
| | - Paria Okhovat
- Pediatric Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
| | - Cesar de Oliveira
- Department of Epidemiology & Public Health, Institute of Epidemiology & Health Care, University College, London WC1E 6BT, UK
| | - Erika Aparecida Silveira
- Department of Epidemiology & Public Health, Institute of Epidemiology & Health Care, University College, London WC1E 6BT, UK
- Postgraduate Program in Health Sciences, Faculty of Medicine, Federal University of Goiás, Goiânia 74690-900, Brazil
| | - Nizal Sarrafzadegan
- Isfahan Cardiovascular Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 8158388994, Iran
- Faculty of Medicine, School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
34
|
Greenwell AA, Tabatabaei Dakhili SA, Ussher JR. Myocardial disturbances of intermediary metabolism in Barth syndrome. Front Cardiovasc Med 2022; 9:981972. [PMID: 36035919 PMCID: PMC9399503 DOI: 10.3389/fcvm.2022.981972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Barth Syndrome (BTHS) is a rare X-linked mitochondrial disorder due to mutations in the gene TAFAZZIN, which leads to immature cardiolipin (CL) remodeling and is characterized by the development of cardiomyopathy. The immature CL remodeling in BTHS results in electron transport chain respiratory defects and destabilization of supercomplexes, thereby impairing ATP production. Thus, BTHS-related cardiomyopathy appears to share metabolic characteristics of the failing heart being an "engine out of fuel." As CL associates with numerous mitochondrial enzymes involved in ATP production, BTHS is also characterized by several defects in intermediary energy metabolism. Herein we will describe the primary disturbances in intermediary energy metabolism relating to the heart's major fuel sources, fatty acids, carbohydrates, ketones, and amino acids. In addition, we will interrogate whether these disturbances represent potential metabolic targets for alleviating BTHS-related cardiomyopathy.
Collapse
Affiliation(s)
- Amanda A. Greenwell
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Seyed Amirhossein Tabatabaei Dakhili
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - John R. Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
35
|
Yurista SR, Chen S, Welsh A, Tang WHW, Nguyen CT. Targeting Myocardial Substrate Metabolism in the Failing Heart: Ready for Prime Time? Curr Heart Fail Rep 2022; 19:180-190. [PMID: 35567658 PMCID: PMC10950325 DOI: 10.1007/s11897-022-00554-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/26/2022] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW We review the clinical benefits of altering myocardial substrate metabolism in heart failure. RECENT FINDINGS Modulation of cardiac substrates (fatty acid, glucose, or ketone metabolism) offers a wide range of therapeutic possibilities which may be applicable to heart failure. Augmenting ketone oxidation seems to offer great promise as a new therapeutic modality in heart failure. The heart has long been recognized as metabolic omnivore, meaning it can utilize a variety of energy substrates to maintain adequate ATP production. The adult heart uses fatty acid as a major fuel source, but it can also derive energy from other substrates including glucose and ketone, and to some extent pyruvate, lactate, and amino acids. However, cardiomyocytes of the failing heart endure remarkable metabolic remodeling including a shift in substrate utilization and reduced ATP production, which account for cardiac remodeling and dysfunction. Research to understand the implication of myocardial metabolic perturbation in heart failure has grown in recent years, and this has raised interest in targeting myocardial substrate metabolism for heart failure therapy. Due to the interdependency between different pathways, the main therapeutic metabolic approaches include inhibiting fatty acid uptake/fatty acid oxidation, reducing circulating fatty acid levels, increasing glucose oxidation, and augmenting ketone oxidation.
Collapse
Affiliation(s)
- Salva R Yurista
- Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Boston, MA, 02129, USA.
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
| | - Shi Chen
- Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Boston, MA, 02129, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Aidan Welsh
- Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Boston, MA, 02129, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - W H Wilson Tang
- Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
- Cardiovascular Innovation Research Center, Cleveland Clinic, Cleveland, OH, USA
| | - Christopher T Nguyen
- Cardiovascular Research Center, Corrigan Minehan Heart Center, Massachusetts General Hospital, Harvard Medical School, 149 13th Street, Boston, MA, 02129, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Heart, Vascular, and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
- Division of Health Science Technology, Harvard-Massachusetts Institute of Technology, Cambridge, MA, USA
- Cardiovascular Innovation Research Center, Cleveland Clinic, Cleveland, OH, USA
- Imaging Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
36
|
Zhao C, Jin C, Shen Y, Lin X, Yu Y, Xiang M. The Prevalence and Characteristics of Mitral Regurgitation in Heart Failure: A Chart Review Study. Rev Cardiovasc Med 2022; 23:235. [PMID: 39076926 PMCID: PMC11266808 DOI: 10.31083/j.rcm2307235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 07/31/2024] Open
Abstract
Background Mitral regurgitation (MR) is one of the common complications of heart failure (HF). The prevalence and characteristics of MR are rarely investigated, especially in the Chinese population. Objectives The purpose of this study was to determine the prevalence and characteristics of non-organic MR in HF patients and subgroups defined by ejection fraction. Methods A single-center, hospital-based, and retrospective chart review study included patients with heart failure admitted to the cardiovascular department from January 2017 to April 2020. Demographic characteristics, laboratory results, and echocardiogram results before discharge were analyzed in different groups defined by left ventricular ejection fraction (EF) using logistic regression and adjusted for confounders. Results Finally, 2418 validated HF patients (age 67.2 ± 13.5 years; 68.03% men) were included. The prevalence of MR was 32.7% in HF, 16.7% in HF with preserve EF patients, 28.4% in HF with mid-range EF patients and 49.7% in HF with reduced EF (HFrEF) patients. In the HF with preserved EF group, multivariable logistic regression showed that 4 factors associated with MR including EF (odds ratio (OR) 0.954 (0.928-0.981), p = 0.001), left ventricular posterior wall thickness in diastolic phase (LVPWd) (OR 0.274 (0.081-0.932), p = 0.038), left atrium (LA) dimension (OR 2.049 (1.631-2.576), p < 0.001) and age (OR 1.024 (1.007-1.041), p = 0.007). In the HF with midrange EF group, multivariable logistic regression showed that 3 factors associated with MR including LA dimension (OR 2.009 (1.427-2.829), p < 0.001), triglycerides (TG) (OR 0.552 (0.359-0.849), p = 0.007) and digoxin (OR 2.836 (1.624-4.951), p < 0.001). In the HFrEF group, multivariable logistic regression showed that 7 factors associated with MR including EF (OR 0.969 (0.949-0.990), p = 0.004), (OR 0.161 (0.067-0.387), p < 0.001), LA dimension (OR 2.289 (1.821-2.878), p < 0.001), age (OR 1.016 (1.004-1.027)), p = 0.009), TG (OR 0.746 (0.595-0.936), p = 0.011), diuretics (OR 0.559 (0.334-0.934), p = 0.026) and ICD (OR 1.898 (1.074-3.354), p = 0.027). Conclusions HF patients had a high burden of MR, particularly in the HFrEF group. Worsen cardiac structure (LA dimension and LVPWd) and function (EF), age, and medical treatment strategy played essential roles in MR.
Collapse
Affiliation(s)
- Chengchen Zhao
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Key Lab of Cardiovascular Disease of Zhejiang Province, 310009 Hangzhou, Zhejiang, China
| | - Chunna Jin
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Key Lab of Cardiovascular Disease of Zhejiang Province, 310009 Hangzhou, Zhejiang, China
| | - Yimin Shen
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Key Lab of Cardiovascular Disease of Zhejiang Province, 310009 Hangzhou, Zhejiang, China
| | - Xiaoping Lin
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Key Lab of Cardiovascular Disease of Zhejiang Province, 310009 Hangzhou, Zhejiang, China
| | - Yi Yu
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Key Lab of Cardiovascular Disease of Zhejiang Province, 310009 Hangzhou, Zhejiang, China
| | - Meixiang Xiang
- Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Key Lab of Cardiovascular Disease of Zhejiang Province, 310009 Hangzhou, Zhejiang, China
| |
Collapse
|
37
|
Metabolic Determinants in Cardiomyocyte Function and Heart Regenerative Strategies. Metabolites 2022; 12:metabo12060500. [PMID: 35736435 PMCID: PMC9227827 DOI: 10.3390/metabo12060500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Heart disease is the leading cause of mortality in developed countries. The associated pathology is characterized by a loss of cardiomyocytes that leads, eventually, to heart failure. In this context, several cardiac regenerative strategies have been developed, but they still lack clinical effectiveness. The mammalian neonatal heart is capable of substantial regeneration following injury, but this capacity is lost at postnatal stages when cardiomyocytes become terminally differentiated and transit to the fetal metabolic switch. Cardiomyocytes are metabolically versatile cells capable of using an array of fuel sources, and the metabolism of cardiomyocytes suffers extended reprogramming after injury. Apart from energetic sources, metabolites are emerging regulators of epigenetic programs driving cell pluripotency and differentiation. Thus, understanding the metabolic determinants that regulate cardiomyocyte maturation and function is key for unlocking future metabolic interventions for cardiac regeneration. In this review, we will discuss the emerging role of metabolism and nutrient signaling in cardiomyocyte function and repair, as well as whether exploiting this axis could potentiate current cellular regenerative strategies for the mammalian heart.
Collapse
|
38
|
Short-Chain Carbon Sources. JACC Basic Transl Sci 2022; 7:730-742. [PMID: 35958686 PMCID: PMC9357564 DOI: 10.1016/j.jacbts.2021.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 11/24/2022]
Abstract
Heart failure (HF) remains the leading cause of morbidity and mortality in the developed world, highlighting the urgent need for novel, effective therapeutics. Recent studies support the proposition that improved myocardial energetics as a result of ketone body (KB) oxidation may account for the intriguing beneficial effects of sodium-glucose cotransporter-2 inhibitors in patients with HF. Similar small molecules, short-chain fatty acids (SCFAs) are now realized to be preferentially oxidized over KBs in failing hearts, contradicting the notion of KBs as a rescue "superfuel." In addition to KBs and SCFAs being alternative fuels, both exert a wide array of nonmetabolic functions, including molecular signaling and epigenetics and as effectors of inflammation and immunity, blood pressure regulation, and oxidative stress. In this review, the authors present a perspective supported by new evidence that the metabolic and unique nonmetabolic activities of KBs and SCFAs hold promise for treatment of patients with HF with reduced ejection fraction and those with HF with preserved ejection fraction.
Collapse
|
39
|
Shi X, Qiu H. New Insights Into Energy Substrate Utilization and Metabolic Remodeling in Cardiac Physiological Adaption. Front Physiol 2022; 13:831829. [PMID: 35283773 PMCID: PMC8914108 DOI: 10.3389/fphys.2022.831829] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/10/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiac function highly relies on sufficient energy supply. Perturbations in myocardial energy metabolism play a causative role in cardiac pathogenesis. Accumulating evidence has suggested that modifications of cardiac metabolism are also an essential part of the adaptive responses to various physiological conditions in the heart to meet specific energy needs. The review highlighted some new studies on basic myocardial energy substrate metabolism and updated recent findings regarding cardiac metabolic remodeling and their associated mechanisms under physiological conditions, including exercise and cardiac development. Studying basic metabolic profiles in the heart in these conditions can contribute to understanding the significance of metabolic regulation in the heart during physiological adaption and gaining further insights into the maladaptive metabolic changes associated with cardiac pathogenesis, thus opening up new avenues to exploring novel therapeutic strategies in cardiac diseases.
Collapse
|
40
|
Li Q. Metabolic Reprogramming, Gut Dysbiosis, and Nutrition Intervention in Canine Heart Disease. Front Vet Sci 2022; 9:791754. [PMID: 35242837 PMCID: PMC8886228 DOI: 10.3389/fvets.2022.791754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022] Open
Abstract
This review provides a state-of-the-art overview on recent advances in systems biology in canine cardiac disease, with a focus on our current understanding of bioenergetics and amino acid metabolism in myxomatous mitral valve disease (MMVD). Cross-species comparison is drawn to highlight the similarities between human and canine heart diseases. The adult mammalian heart exhibits a remarkable metabolic flexibility and shifts its energy substrate preference according to different physiological and pathological conditions. The failing heart suffers up to 40% ATP deficit and is compared to an engine running out of fuel. Bioenergetics and metabolic readaptations are among the major research topics in cardiac research today. Myocardial energy metabolism consists of three interconnected components: substrate utilization, oxidative phosphorylation, and ATP transport and utilization. Any disruption or uncoupling of these processes can result in deranged energy metabolism leading to heart failure (HF). The review describes the changes occurring in each of the three components of energy metabolism in MMVD and HF. It also provides an overview on the changes in circulating and myocardial glutathione, taurine, carnitines, branched-chain amino acid catabolism and tryptophan metabolic pathways. In addition, the review summarizes the potential role of the gut microbiome in MMVD and HF. As our knowledge and understanding in these molecular and metabolic processes increase, it becomes possible to use nutrition to address these changes and to slow the progression of the common heart diseases in dogs.
Collapse
|
41
|
Saucedo-Orozco H, Voorrips SN, Yurista SR, de Boer RA, Westenbrink BD. SGLT2 Inhibitors and Ketone Metabolism in Heart Failure. J Lipid Atheroscler 2022; 11:1-19. [PMID: 35118019 PMCID: PMC8792821 DOI: 10.12997/jla.2022.11.1.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 11/09/2022] Open
Abstract
Sodium-glucose cotransporter-2 (SGLT2) inhibitors have emerged as powerful drugs that can be used to treat heart failure (HF) patients, both with preserved and reduced ejection fraction and in the presence or absence of type 2 diabetes. While the mechanisms underlying the salutary effects of SGLT2 inhibitors have not been fully elucidated, there is clear evidence for a beneficial metabolic effect of these drugs. In this review, we discuss the effects of SGLT2 inhibitors on cardiac energy provision secondary to ketone bodies, pathological ventricular remodeling, and inflammation in patients with HF. While the specific contribution of ketone bodies to the pleiotropic cardiovascular benefits of SGLT2 inhibitors requires further clarification, ketone bodies themselves may also be used as a therapy for HF.
Collapse
Affiliation(s)
- Huitzilihuitl Saucedo-Orozco
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Suzanne N. Voorrips
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Salva R. Yurista
- Cardiology Division, Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rudolf A. de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - B. Daan Westenbrink
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
42
|
Ekanayake P, Mudaliar S. A novel hypothesis linking low-grade ketonaemia to cardio-renal benefits with sodium-glucose cotransporter-2 inhibitors. Diabetes Obes Metab 2022; 24:3-11. [PMID: 34605129 DOI: 10.1111/dom.14562] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/18/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022]
Abstract
The cardio-renal benefits of sodium-glucose cotransporter-2 (SGLT2) inhibitors are well established. In 2016, we postulated that these benefits are attributable, in part, to the occurrence of chronic low-grade ketonaemia and a shift in myocardial and renal fuel metabolism away from fat oxidation, which is energy inefficient, towards ketone oxidation, which is more energy efficient. This shift improves myocardial and renal function and can potentially translate into lower rates of progression to heart failure and end-stage kidney disease in patients with and without diabetes. There is now evidence that, in addition to being an efficient fuel substrate, ketones also have antiinflammatory and antioxidative benefits on the heart and the kidney. In addition, ketones have positive effects on mitochondrial biogenesis and function, and on erythropoiesis, and thereby are potentially able to further ameliorate the proinflammatory and hypoxic milieu in those with heart and kidney failure, independent of hyperglycaemia. In the present review, we propose a novel hypothesis to link the pleiotropic effects of low-grade ketonaemia to the cardio-renal benefits seen with SGLT2 inhibitors.
Collapse
Affiliation(s)
- Preethika Ekanayake
- Veterans Affairs Medical Center, San Diego, California, USA
- Department of Medicine, University of California, San Diego School of Medicine, San Diego, California, USA
| | - Sunder Mudaliar
- Veterans Affairs Medical Center, San Diego, California, USA
- Department of Medicine, University of California, San Diego School of Medicine, San Diego, California, USA
| |
Collapse
|
43
|
Exogenous Ketone Supplements in Athletic Contexts: Past, Present, and Future. Sports Med 2022; 52:25-67. [PMID: 36214993 PMCID: PMC9734240 DOI: 10.1007/s40279-022-01756-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2022] [Indexed: 12/15/2022]
Abstract
The ketone bodies acetoacetate (AcAc) and β-hydroxybutyrate (βHB) have pleiotropic effects in multiple organs including brain, heart, and skeletal muscle by serving as an alternative substrate for energy provision, and by modulating inflammation, oxidative stress, catabolic processes, and gene expression. Of particular relevance to athletes are the metabolic actions of ketone bodies to alter substrate utilisation through attenuating glucose utilisation in peripheral tissues, anti-lipolytic effects on adipose tissue, and attenuation of proteolysis in skeletal muscle. There has been long-standing interest in the development of ingestible forms of ketone bodies that has recently resulted in the commercial availability of exogenous ketone supplements (EKS). These supplements in the form of ketone salts and ketone esters, in addition to ketogenic compounds such as 1,3-butanediol and medium chain triglycerides, facilitate an acute transient increase in circulating AcAc and βHB concentrations, which has been termed 'acute nutritional ketosis' or 'intermittent exogenous ketosis'. Some studies have suggested beneficial effects of EKS to endurance performance, recovery, and overreaching, although many studies have failed to observe benefits of acute nutritional ketosis on performance or recovery. The present review explores the rationale and historical development of EKS, the mechanistic basis for their proposed effects, both positive and negative, and evidence to date for their effects on exercise performance and recovery outcomes before concluding with a discussion of methodological considerations and future directions in this field.
Collapse
|
44
|
Abstract
Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in the general population. Energy metabolism disturbance is one of the early abnormalities in CVDs, such as coronary heart disease, diabetic cardiomyopathy, and heart failure. To explore the role of myocardial energy homeostasis disturbance in CVDs, it is important to understand myocardial metabolism in the normal heart and their function in the complex pathophysiology of CVDs. In this article, we summarized lipid metabolism/lipotoxicity and glucose metabolism/insulin resistance in the heart, focused on the metabolic regulation during neonatal and ageing heart, proposed potential metabolic mechanisms for cardiac regeneration and degeneration. We provided an overview of emerging molecular network among cardiac proliferation, regeneration, and metabolic disturbance. These novel targets promise a new era for the treatment of CVDs.
Collapse
Affiliation(s)
- Lu-Yun WANG
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| | - Chen CHEN
- Division of Cardiology, Tongji Hospital, Tongji Medical College and Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiologic Disorders, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
45
|
Kolb H, Kempf K, Röhling M, Lenzen-Schulte M, Schloot NC, Martin S. Ketone bodies: from enemy to friend and guardian angel. BMC Med 2021; 19:313. [PMID: 34879839 PMCID: PMC8656040 DOI: 10.1186/s12916-021-02185-0] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023] Open
Abstract
During starvation, fasting, or a diet containing little digestible carbohydrates, the circulating insulin levels are decreased. This promotes lipolysis, and the breakdown of fat becomes the major source of energy. The hepatic energy metabolism is regulated so that under these circumstances, ketone bodies are generated from β-oxidation of fatty acids and secreted as ancillary fuel, in addition to gluconeogenesis. Increased plasma levels of ketone bodies thus indicate a dietary shortage of carbohydrates. Ketone bodies not only serve as fuel but also promote resistance to oxidative and inflammatory stress, and there is a decrease in anabolic insulin-dependent energy expenditure. It has been suggested that the beneficial non-metabolic actions of ketone bodies on organ functions are mediated by them acting as a ligand to specific cellular targets. We propose here a major role of a different pathway initiated by the induction of oxidative stress in the mitochondria during increased ketolysis. Oxidative stress induced by ketone body metabolism is beneficial in the long term because it initiates an adaptive (hormetic) response characterized by the activation of the master regulators of cell-protective mechanism, nuclear factor erythroid 2-related factor 2 (Nrf2), sirtuins, and AMP-activated kinase. This results in resolving oxidative stress, by the upregulation of anti-oxidative and anti-inflammatory activities, improved mitochondrial function and growth, DNA repair, and autophagy. In the heart, the adaptive response to enhanced ketolysis improves resistance to damage after ischemic insults or to cardiotoxic actions of doxorubicin. Sodium-dependent glucose co-transporter 2 (SGLT2) inhibitors may also exert their cardioprotective action via increasing ketone body levels and ketolysis. We conclude that the increased synthesis and use of ketone bodies as ancillary fuel during periods of deficient food supply and low insulin levels causes oxidative stress in the mitochondria and that the latter initiates a protective (hormetic) response which allows cells to cope with increased oxidative stress and lower energy availability. KEYWORDS: Ketogenic diet, Ketone bodies, Beta hydroxybutyrate, Insulin, Obesity, Type 2 diabetes, Inflammation, Oxidative stress, Cardiovascular disease, SGLT2, Hormesis.
Collapse
Affiliation(s)
- Hubert Kolb
- Faculty of Medicine, University of Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany.,West-German Centre of Diabetes and Health, Duesseldorf Catholic Hospital Group, Hohensandweg 37, 40591, Duesseldorf, Germany
| | - Kerstin Kempf
- West-German Centre of Diabetes and Health, Duesseldorf Catholic Hospital Group, Hohensandweg 37, 40591, Duesseldorf, Germany.
| | - Martin Röhling
- West-German Centre of Diabetes and Health, Duesseldorf Catholic Hospital Group, Hohensandweg 37, 40591, Duesseldorf, Germany
| | | | - Nanette C Schloot
- Faculty of Medicine, University of Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany
| | - Stephan Martin
- Faculty of Medicine, University of Duesseldorf, Moorenstr. 5, 40225, Duesseldorf, Germany.,West-German Centre of Diabetes and Health, Duesseldorf Catholic Hospital Group, Hohensandweg 37, 40591, Duesseldorf, Germany
| |
Collapse
|
46
|
Karwi QG, Sun Q, Lopaschuk GD. The Contribution of Cardiac Fatty Acid Oxidation to Diabetic Cardiomyopathy Severity. Cells 2021; 10:cells10113259. [PMID: 34831481 PMCID: PMC8621814 DOI: 10.3390/cells10113259] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetes is a major risk factor for the development of cardiovascular disease via contributing and/or triggering significant cellular signaling and metabolic and structural alterations at the level of the heart and the whole body. The main cause of mortality and morbidity in diabetic patients is cardiovascular disease including diabetic cardiomyopathy. Therefore, understanding how diabetes increases the incidence of diabetic cardiomyopathy and how it mediates the major perturbations in cell signaling and energy metabolism should help in the development of therapeutics to prevent these perturbations. One of the significant metabolic alterations in diabetes is a marked increase in cardiac fatty acid oxidation rates and the domination of fatty acids as the major energy source in the heart. This increased reliance of the heart on fatty acids in the diabetic has a negative impact on cardiac function and structure through a number of mechanisms. It also has a detrimental effect on cardiac efficiency and worsens the energy status in diabetes, mainly through inhibiting cardiac glucose oxidation. Furthermore, accelerated cardiac fatty acid oxidation rates in diabetes also make the heart more vulnerable to ischemic injury. In this review, we discuss how cardiac energy metabolism is altered in diabetic cardiomyopathy and the impact of cardiac insulin resistance on the contribution of glucose and fatty acid to overall cardiac ATP production and cardiac efficiency. Furthermore, how diabetes influences the susceptibility of the myocardium to ischemia/reperfusion injury and the role of the changes in glucose and fatty acid oxidation in mediating these effects are also discussed.
Collapse
Affiliation(s)
- Qutuba G. Karwi
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2S2, Canada; (Q.G.K.); (Q.S.)
| | - Qiuyu Sun
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2S2, Canada; (Q.G.K.); (Q.S.)
| | - Gary D. Lopaschuk
- 423 Heritage Medical Research Centre, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Correspondence: ; Tel.: +1-780-492-2170; Fax: +1-780-492-9753
| |
Collapse
|
47
|
Abstract
Ketone bodies play significant roles in organismal energy homeostasis, serving as oxidative fuels, modulators of redox potential, lipogenic precursors, and signals, primarily during states of low carbohydrate availability. Efforts to enhance wellness and ameliorate disease via nutritional, chronobiological, and pharmacological interventions have markedly intensified interest in ketone body metabolism. The two ketone body redox partners, acetoacetate and D-β-hydroxybutyrate, serve distinct metabolic and signaling roles in biological systems. We discuss the pleiotropic roles played by both of these ketones in health and disease. While enthusiasm is warranted, prudent procession through therapeutic applications of ketogenic and ketone therapies is also advised, as a range of metabolic and signaling consequences continue to emerge. Organ-specific and cell-type-specific effects of ketone bodies are important to consider as prospective therapeutic and wellness applications increase.
Collapse
Affiliation(s)
- Patrycja Puchalska
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA; ,
| | - Peter A Crawford
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA; , .,Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
48
|
Yurista SR, Nguyen CT, Rosenzweig A, de Boer RA, Westenbrink BD. Ketone bodies for the failing heart: fuels that can fix the engine? Trends Endocrinol Metab 2021; 32:814-826. [PMID: 34456121 DOI: 10.1016/j.tem.2021.07.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 01/08/2023]
Abstract
Accumulating evidence suggests that the failing heart reverts energy metabolism toward increased utilization of ketone bodies. Despite many discrepancies in the literature, evidence from both bench and clinical research demonstrates beneficial effects of ketone bodies in heart failure. Ketone bodies are readily oxidized by cardiomyocytes and can provide ancillary fuel for the energy-starved failing heart. In addition, ketone bodies may help to restore cardiac function by mitigating inflammation, oxidative stress, and cardiac remodeling. In this review, we hypothesize that a therapeutic approach intended to restore cardiac metabolism through ketone bodies could both refuel and 'repair' the failing heart.
Collapse
Affiliation(s)
- Salva R Yurista
- Cardiovascular Research Center, Cardiology Division, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Christopher T Nguyen
- Cardiovascular Research Center, Cardiology Division, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Anthony Rosenzweig
- Cardiovascular Research Center, Cardiology Division, Corrigan Minehan Heart Center, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rudolf A de Boer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - B Daan Westenbrink
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
49
|
Selvaraj S, Margulies KB. Exogenous ketones in the healthy heart: the plot thickens. Cardiovasc Res 2021; 117:995-996. [PMID: 33070197 DOI: 10.1093/cvr/cvaa283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Senthil Selvaraj
- Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Kenneth B Margulies
- Division of Cardiovascular Medicine, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.,Cardiovascular Institute and Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Heart Failure and Transplant Program, Perelman School of Medicine, University of Pennsylvania, Translational Research Center, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| |
Collapse
|
50
|
Abstract
Alterations in cardiac energy metabolism contribute to the severity of heart failure. However, the energy metabolic changes that occur in heart failure are complex and are dependent not only on the severity and type of heart failure present but also on the co-existence of common comorbidities such as obesity and type 2 diabetes. The failing heart faces an energy deficit, primarily because of a decrease in mitochondrial oxidative capacity. This is partly compensated for by an increase in ATP production from glycolysis. The relative contribution of the different fuels for mitochondrial ATP production also changes, including a decrease in glucose and amino acid oxidation, and an increase in ketone oxidation. The oxidation of fatty acids by the heart increases or decreases, depending on the type of heart failure. For instance, in heart failure associated with diabetes and obesity, myocardial fatty acid oxidation increases, while in heart failure associated with hypertension or ischemia, myocardial fatty acid oxidation decreases. Combined, these energy metabolic changes result in the failing heart becoming less efficient (ie, a decrease in cardiac work/O2 consumed). The alterations in both glycolysis and mitochondrial oxidative metabolism in the failing heart are due to both transcriptional changes in key enzymes involved in these metabolic pathways, as well as alterations in NAD redox state (NAD+ and nicotinamide adenine dinucleotide levels) and metabolite signaling that contribute to posttranslational epigenetic changes in the control of expression of genes encoding energy metabolic enzymes. Alterations in the fate of glucose, beyond flux through glycolysis or glucose oxidation, also contribute to the pathology of heart failure. Of importance, pharmacological targeting of the energy metabolic pathways has emerged as a novel therapeutic approach to improving cardiac efficiency, decreasing the energy deficit and improving cardiac function in the failing heart.
Collapse
Affiliation(s)
- Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada (G.D.L., Q.G.K.)
| | - Qutuba G Karwi
- Cardiovascular Research Centre, University of Alberta, Edmonton, Canada (G.D.L., Q.G.K.)
| | - Rong Tian
- Mitochondria and Metabolism Center, University of Washington, Seattle (R.T.)
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham (A.R.W.)
| | - E Dale Abel
- Division of Endocrinology and Metabolism, University of Iowa Carver College of Medicine, Iowa City (E.D.A.).,Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City (E.D.A.)
| |
Collapse
|