1
|
Yin Z, Fu L, Wang Y, Tai S. Impact of gut microbiota on cardiac aging. Arch Gerontol Geriatr 2025; 128:105639. [PMID: 39312851 DOI: 10.1016/j.archger.2024.105639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024]
Abstract
Recent research has suggested imbalances in gut microbiota composition as contributors to cardiac aging. An individual's physical condition, along with lifestyle-associated factors, including diet and medication, are significant determinants of gut microbiota composition. This review discusses evidence of bidirectional associations between aging and gut microbiota, identifying gut microbiota-derived metabolites as potential regulators of cardiac aging. It summarizes the effects of gut microbiota on cardiac aging diseases, including cardiac hypertrophy and fibrosis, heart failure, and atrial fibrillation. Furthermore, this review discusses the potential anti-aging effects of modifying gut microbiota composition through dietary and pharmacological interventions. Lastly, it underscores critical knowledge gaps and outlines future research directions. Given the current limited understanding of the direct relationship between gut microbiota and cardiac aging, there is an urgent need for preclinical and clinical investigations into the mechanistic interactions between gut microbiota and cardiac aging. Such endeavors hold promise for shedding light on the pathophysiology of cardiac aging and uncovering new therapeutic targets for cardiac aging diseases.
Collapse
Affiliation(s)
- Zhiyi Yin
- Department of Blood Transfusion, The Second Xiangya Hospital of Central South University, No. 139, Middle Renmin Road, Changsha, Hunan 410011, China
| | - Liyao Fu
- Hunan Key Laboratory of Cardiometabolic Medicine, Department of Cardiology, The Second Xiangya Hospital of Central South University, No. 139, Middle Renmin Road, Changsha, Hunan 410011, China
| | - Yongjun Wang
- Department of Blood Transfusion, The Second Xiangya Hospital of Central South University, No. 139, Middle Renmin Road, Changsha, Hunan 410011, China.
| | - Shi Tai
- Hunan Key Laboratory of Cardiometabolic Medicine, Department of Cardiology, The Second Xiangya Hospital of Central South University, No. 139, Middle Renmin Road, Changsha, Hunan 410011, China.
| |
Collapse
|
2
|
Jovanovic N, Zach V, Crocini C, Bahr LS, Forslund-Startceva SK, Franz K. A gender perspective on diet, microbiome, and sex hormone interplay in cardiovascular disease. Acta Physiol (Oxf) 2024; 240:e14228. [PMID: 39263901 DOI: 10.1111/apha.14228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/26/2024] [Accepted: 08/24/2024] [Indexed: 09/13/2024]
Abstract
A unique interplay between body and environment embeds and reflects host-microbiome interactions that contribute to sex-differential disease susceptibility, symptomatology, and treatment outcomes. These differences derive from individual biological factors, such as sex hormone action, sex-divergent immune processes, X-linked gene dosage effects, and epigenetics, as well as from their interaction across the lifespan. The gut microbiome is increasingly recognized as a moderator of several body systems that are thus impacted by its function and composition. In humans, biological sex components further interact with gender-specific exposures such as dietary preferences, stressors, and life experiences to form a complex whole, requiring innovative methodologies to disentangle. Here, we summarize current knowledge of the interactions among sex hormones, gut microbiota, immune system, and vascular health and their relevance for sex-differential epidemiology of cardiovascular diseases. We outline clinical implications, identify knowledge gaps, and place emphasis on required future studies to address these gaps. In addition, we provide an overview of the caveats associated with conducting cardiovascular research that require consideration of sex/gender differences. While previous work has inspected several of these components separately, here we call attention to further translational utility of a combined perspective from cardiovascular translational research, gender medicine, and microbiome systems biology.
Collapse
Affiliation(s)
- Nina Jovanovic
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Berlin, Berlin, Germany
| | - Veronika Zach
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Berlin, Berlin, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité - Medical Heart Center of Charité and German Heart Institute Berlin, Berlin, Germany
| | - Claudia Crocini
- German Centre for Cardiovascular Research (DZHK) Partner Site Berlin, Berlin, Germany
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Deutsches Herzzentrum der Charité (DHZC), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lina Samira Bahr
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Berlin, Berlin, Germany
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Deutsches Herzzentrum der Charité (DHZC), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sofia Kirke Forslund-Startceva
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Berlin, Berlin, Germany
| | - Kristina Franz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- German Centre for Cardiovascular Research (DZHK) Partner Site Berlin, Berlin, Germany
| |
Collapse
|
3
|
Błaż M, Natorska J, Bembenek JP, Członkowska A, Ząbczyk M, Polak M, Undas A. Elevated lipopolysaccharide level is largely driven by time since symptom onset in acute ischemic stroke: the impact on clinical outcomes. J Thromb Haemost 2024; 22:3161-3171. [PMID: 39122194 DOI: 10.1016/j.jtha.2024.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/06/2024] [Accepted: 06/24/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Gut dysbiosis leading to increased intestinal barrier permeability and translocation of lipopolysaccharide (LPS) in the circulation has been demonstrated in patients with acute myocardial infarction and pulmonary embolism. OBJECTIVES We investigated changes in circulating LPS concentrations in acute ischemic stroke (AIS) and their consequences, including prognosis. METHODS We studied 98 AIS patients, aged 74 ± 12 years, including 74 (75.5%) thrombolysed individuals. We determined serum LPS and zonulin, a marker of gut permeability, along with protein carbonyl (PC), fibrin clot properties, and thrombin generation on admission, at 24 hours and 3 months. Stroke severity was assessed using the National Institutes of Health Stroke Scale. Stroke functional outcome using modified Rankin scale and stroke-related mortality were evaluated at 3 months. RESULTS Serum LPS and zonulin levels on admission were associated with time since symptom onset (r = 0.57; P < .0001; and r = 0.40; P < .0001). Baseline LPS levels correlated with PC (r = 0.51; P < .0001) but not with coagulation and fibrinolysis markers. LPS levels increased at 24 hours in thrombolysed patients (P < .001) and correlated with the National Institutes of Health Stroke Scale score (r = 0.31; P = .002) and PC (r = 0.32; P = .0057). Both LPS and zonulin levels measured at 24 hours increased the odds of having unfavorable modified Rankin scale scores (odds ratio [OR], 1.22; 95% CI, 1.04-1.42; and OR, 2.36; 95% CI, 1.24-4.49 per unit). Elevated LPS level, but not zonulin, was associated with stroke-related mortality (OR, 1.26; 95% CI, 1.02-1.55 per unit). CONCLUSION In AIS patients intestinal permeability is mainly driven by increasing time since the symptom onset. Our findings suggest that LPS, with a trend toward its further rise following thrombolysis, adversely affects neurologic functional outcomes and 3-month mortality.
Collapse
Affiliation(s)
- Michał Błaż
- Department of Neurology, St. John Paul II Hospital, Krakow, Poland
| | - Joanna Natorska
- Krakow Centre for Medical Research and Technologies, St. John Paul II Hospital, Krakow, Poland; Department of Thromboembolic Diseases, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
| | - Jan P Bembenek
- Department of Clinical Neurophysiology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Anna Członkowska
- 2nd Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Michał Ząbczyk
- Krakow Centre for Medical Research and Technologies, St. John Paul II Hospital, Krakow, Poland; Department of Thromboembolic Diseases, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
| | - Maciej Polak
- Department of Epidemiology and Population Studies, Institute of Public Health, Jagiellonian University Medical College, Krakow, Poland
| | - Anetta Undas
- Krakow Centre for Medical Research and Technologies, St. John Paul II Hospital, Krakow, Poland; Department of Thromboembolic Diseases, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland.
| |
Collapse
|
4
|
Wang T, Wu H, Shi X, Dai M, Liu Y. Aminoadipic acid aggravates atherosclerotic vascular inflammation through ROS/TXNIP/NLRP3 pathway, a harmful microbial metabolite reduced by paeonol. Int J Biochem Cell Biol 2024; 177:106678. [PMID: 39490917 DOI: 10.1016/j.biocel.2024.106678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/26/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
AIM Our previous study has found a differential microbial metabolite in atherosclerosis (AS) mice, aminoadipic acid (AAA), which was considered as a potential harmful metabolite. However, whether it can promote AS vascular inflammation and its mechanisms remain unclear. Paeonol (Pae) plays an anti-AS role by regulating the metabolic profile, but whether Pae exerts its antiatherogenic effect by reducing serum AAA levels is unknown. RESULTS The clinical trial results showed that the AS patients' serum AAA levels were higher than those healthy people'. Besides, AAA supplementation could increase aortic plaque size, serum inflammatory cytokines levels and liver malondialdehyde, superoxide dismutase levels in AS mice. Moreover, after AAA stimulation, the ROS levels and ASC, TXNIP, NLRP3 and caspase-1 proteins levels were increased in HUVECs, which could be reversed by antioxidant NAC and NLRP3 inhibitor. Pae significantly reduced the plaque size in the aorta, improved blood lipid levels and decreased serum inflammation factor levels in AS mice. Simultaneously, Pae could reduce the serum AAA levels of AS mice through the gut microbiota transmission. Finally, Pae inhibited NLRP3 inflammasome activation in aortas of AS mice. Broad-spectrum antibiotics could weaken the inhibitory effect of Pae on NLRP3 inflammasome. CONCLUSION Our study clarified that AAA could promote AS vascular inflammation via activating the ROS/TXNIP/NLRP3 pathway. Pae could inhibit AS development by reducing serum AAA levels in a microbiota-dependent manner. Taken together, we proposed that AAA could be served as a potential biomarker for AS clinical diagnosis and provided a new treatment strategy for AS.
Collapse
Affiliation(s)
- Tian Wang
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei Anhui, 230012, China
| | - Hongfei Wu
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei Anhui, 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei Anhui, 230012, China
| | - Xiaoyan Shi
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei Anhui, 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei Anhui, 230012, China
| | - Min Dai
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei Anhui, 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei Anhui, 230012, China
| | - Yarong Liu
- Department of Pharmacy, Anhui University of Chinese Medicine, Hefei Anhui, 230012, China; Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei Anhui, 230012, China.
| |
Collapse
|
5
|
Zhou C, Peng B, Zhang M, Yang Y, Yi Z, Wu Y. Ganjiang Huangqin Huanglian Renshen Decoction protects against ulcerative colitis by modulating inflammation, oxidative stress, and gut microbiota. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156172. [PMID: 39471735 DOI: 10.1016/j.phymed.2024.156172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/22/2024] [Accepted: 10/20/2024] [Indexed: 11/01/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) is a disease that is difficult to treat and has been associated with high rates of recurrence. Moreover, the current medications for UC induce serious side effects following prolonged use. Ganjiang Huangqin Huanglian Renshen Decoction (GJHQHLRSD), has been traditionally used to treat UC. However, its protective mechanisms have not been fully studied. PURPOSE In this study the mechanisms by which GJHQHLRSD treats UC was investigated. METHODS The GJHQHLRSD and GJHQHLRSD drug-containing serum (GJHQHLRSD-DS) were characterized using LC-MS/MS. The therapeutic effect of GJHQHLRSD on dextran sodium sulfate (DSS)-induced UC was explored by assessing various parameters including intestinal flora 16S rRNA, intestinal barrier function, oxidative stress (OS) response, inflammatory cytokines, colonic histopathological injury, colon length, disease activity index (DAI) and body weight. RESULTS Treatment with GJHQHLRSD increased body weight, ameliorated colon length shortening and edema, reduced the DAI score, improved the pathological injury, down-regulated the levels of IL-1β, IL-6, IL-8, TNF-α, LPS, LDH, TLR4, and NLRP3, and up-regulated the ZO-1 and Occludin levels in UC mice. It also decreased intestinal oxidative stress in UC mice and improved mitogenic activity by modulating mitochondrial ultrastructure as well as the expression level of PINK1, LC3-II/Ⅰ, Beclin-1, p62, and Parkin proteins. In addition, we found that the effects of GJHQHLRSD on UC mice were inhibited by 3-MA.GJHQHLRSD treatment reduced the imbalance of intestinal flora in UC mice, by regulating the inflammation and oxidative stress. CONCLUSION These findings suggested that GJHQHLRSD effectively attenuated inflammatory responses, inhibited the TLR4/NF-κB/NLRP3 signalling, oxidative stress, and modulated the gut microbiota, and alleviated the DSS-induced UC symptoms, making it a promising and innovative therapeutic option for the treatment of UC.
Collapse
Affiliation(s)
- Ce Zhou
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China.
| | - Bo Peng
- Department of Radiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Mingxing Zhang
- Department of Radiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Yang Yang
- Department of Radiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China
| | - Zelin Yi
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Yinghua Wu
- Department of Radiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, PR China.
| |
Collapse
|
6
|
Fu ZP, Ying YG, Wang RY, Wang YQ. Aged gut microbiota promotes arrhythmia susceptibility via oxidative stress. iScience 2024; 27:110888. [PMID: 39381749 PMCID: PMC11460473 DOI: 10.1016/j.isci.2024.110888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/24/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024] Open
Abstract
Arrhythmias and sudden cardiac death (SCD) impose a significant burden. Their prevalence rises with age and is linked to gut dysbiosis. Our study aimed to determine whether aged gut microbiota affects arrhythmogenesis. Here, we demonstrated that arrhythmia susceptibility in aged mice could be transmitted to young mice using fecal microbiota transplantation (FMT). Mechanistically, increased intestinal reactive oxygen species (ROS) in aged mice reduced ion channel protein expression and promoted arrhythmias. Gut microbiota depletion by an antibiotic cocktail reduced ROS and arrhythmia in aged mice. Interestingly, oxidative stress in heart induced by hydrogen peroxide (H2O2) increased arrhythmia. Moreover, aged gut microbiota could induce oxidative stress in young mice colon by gut microbiota metabolites transplantation. Vitexin could reduce aging and arrhythmia through OLA1-Nrf2 signaling pathway. Overall, our study demonstrated that the gut microbiota of aged mice reduced cardiac ion channel protein expression through systemic oxidative stress, thereby increased the risk of arrhythmias.
Collapse
Affiliation(s)
- Zhi-ping Fu
- Collage of Pharmacology, North China University of Science and Technology, Tangshan 063200, China
| | - Yi-ge Ying
- Collage of Pharmacology, North China University of Science and Technology, Tangshan 063200, China
| | - Rui-yao Wang
- Collage of Pharmacology, North China University of Science and Technology, Tangshan 063200, China
| | - Yu-qing Wang
- Collage of Pharmacology, North China University of Science and Technology, Tangshan 063200, China
| |
Collapse
|
7
|
Sun N, Ogulur I, Mitamura Y, Yazici D, Pat Y, Bu X, Li M, Zhu X, Babayev H, Ardicli S, Ardicli O, D'Avino P, Kiykim A, Sokolowska M, van de Veen W, Weidmann L, Akdis D, Ozdemir BG, Brüggen MC, Biedermann L, Straumann A, Kreienbühl A, Guttman-Yassky E, Santos AF, Del Giacco S, Traidl-Hoffmann C, Jackson DJ, Wang DY, Lauerma A, Breiteneder H, Zhang L, O'Mahony L, Pfaar O, O'Hehir R, Eiwegger T, Fokkens WJ, Cabanillas B, Ozdemir C, Walter K, Bayik M, Nadeau KC, Torres MJ, Akdis M, Jutel M, Agache I, Akdis CA. The epithelial barrier theory and its associated diseases. Allergy 2024. [PMID: 39370939 DOI: 10.1111/all.16318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024]
Abstract
The prevalence of many chronic noncommunicable diseases has been steadily rising over the past six decades. During this time, over 350,000 new chemical substances have been introduced to the lives of humans. In recent years, the epithelial barrier theory came to light explaining the growing prevalence and exacerbations of these diseases worldwide. It attributes their onset to a functionally impaired epithelial barrier triggered by the toxicity of the exposed substances, associated with microbial dysbiosis, immune system activation, and inflammation. Diseases encompassed by the epithelial barrier theory share common features such as an increased prevalence after the 1960s or 2000s that cannot (solely) be accounted for by the emergence of improved diagnostic methods. Other common traits include epithelial barrier defects, microbial dysbiosis with loss of commensals and colonization of opportunistic pathogens, and circulating inflammatory cells and cytokines. In addition, practically unrelated diseases that fulfill these criteria have started to emerge as multimorbidities during the last decades. Here, we provide a comprehensive overview of diseases encompassed by the epithelial barrier theory and discuss evidence and similarities for their epidemiology, genetic susceptibility, epithelial barrier dysfunction, microbial dysbiosis, and tissue inflammation.
Collapse
Affiliation(s)
- Na Sun
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Xiangting Bu
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Manru Li
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Xueyi Zhu
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Huseyn Babayev
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Sena Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Genetics, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Ozge Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Division of Food Processing, Milk and Dairy Products Technology Program, Karacabey Vocational School, Bursa Uludag University, Bursa, Turkey
| | - Paolo D'Avino
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ayca Kiykim
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Lukas Weidmann
- Department of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Deniz Akdis
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | | | - Marie Charlotte Brüggen
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Luc Biedermann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Alex Straumann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Andrea Kreienbühl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Emma Guttman-Yassky
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Children's Allergy Service, Evelina London Children's Hospital, Guy's and St. Thomas' Hospital, London, UK
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | | | - David J Jackson
- Guy's Severe Asthma Centre, Guy's Hospital, Guy's & St Thomas' NHS Trust, London, UK
- School of Immunology & Microbial Sciences, King's College London, London, UK
| | - De-Yun Wang
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore City, Singapore
| | - Antti Lauerma
- Department of Dermatology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Liam O'Mahony
- Department of Medicine and School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Robyn O'Hehir
- Allergy, Asthma & Clinical Immunology, The Alfred Hospital, Melbourne, Victoria, Australia
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Thomas Eiwegger
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- Department of Pediatric and Adolescent Medicine, University Hospital St. Pölten, St. Pölten, Austria
| | - Wytske J Fokkens
- Department of Otorhinolaryngology & Head and Neck Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Beatriz Cabanillas
- Department of Allergy, Instituto de Investigación Biosanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Cevdet Ozdemir
- Department of Pediatric Basic Sciences, Institute of Child Health, Istanbul University, Istanbul, Turkey
- Istanbul Faculty of Medicine, Department of Pediatrics, Division of Pediatric Allergy and Immunology, Istanbul University, Istanbul, Turkey
| | - Kistler Walter
- Department of Sports Medicine, Davos Hospital, Davos, Switzerland
- Swiss Research Institute for Sports Medicine (SRISM), Davos, Switzerland
- Medical Committee International Ice Hockey Federation (IIHF), Zurich, Switzerland
| | - Mahmut Bayik
- Department of Internal Medicine and Hematology, Marmara University, Istanbul, Turkey
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Maria J Torres
- Allergy Unit, IBIMA-Hospital Regional Universitario de Málaga-ARADyAL, UMA, Málaga, Spain
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Marek Jutel
- Department of Clinical Immunology, Wrocław Medical University, Wroclaw, Poland
| | - Ioana Agache
- Faculty of Medicine, Department of Allergy and Clinical Immunology, Transylvania University, Brasov, Romania
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
8
|
Bode D, Pronto JRD, Schiattarella GG, Voigt N. Metabolic remodelling in atrial fibrillation: manifestations, mechanisms and clinical implications. Nat Rev Cardiol 2024; 21:682-700. [PMID: 38816507 DOI: 10.1038/s41569-024-01038-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 06/01/2024]
Abstract
Atrial fibrillation (AF) is a continually growing health-care burden that often presents together with metabolic disorders, including diabetes mellitus and obesity. Current treatments often fall short of preventing AF and its adverse outcomes. Accumulating evidence suggests that metabolic disturbances can promote the development of AF through structural and electrophysiological remodelling, but the underlying mechanisms that predispose an individual to AF are aetiology-dependent, thus emphasizing the need for tailored therapeutic strategies to treat AF that target an individual's metabolic profile. AF itself can induce changes in glucose, lipid and ketone metabolism, mitochondrial function and myofibrillar energetics (as part of a process referred to as 'metabolic remodelling'), which can all contribute to atrial dysfunction. In this Review, we discuss our current understanding of AF in the setting of metabolic disorders, as well as changes in atrial metabolism that are relevant to the development of AF. We also describe the potential of available and emerging treatment strategies to target metabolic remodelling in the setting of AF and highlight key questions and challenges that need to be addressed to improve outcomes in these patients.
Collapse
Affiliation(s)
- David Bode
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Deutsches Herzzentrum der Charité (DHZC), Charité - Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Julius Ryan D Pronto
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Göttingen, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Gabriele G Schiattarella
- Max Rubner Center for Cardiovascular Metabolic Renal Research (MRC), Deutsches Herzzentrum der Charité (DHZC), Charité - Universitätsmedizin Berlin, Berlin, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy.
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Göttingen, Germany.
- DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
9
|
Xu H, Li O, Kim D, Xue M, Bao Z, Yang F. Aged microbiota exacerbates cardiac failure by PPARα/PGC1α pathway. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167271. [PMID: 38823462 DOI: 10.1016/j.bbadis.2024.167271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/22/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
The dysbiosis of gut microbiota with aging has been extensively studied, revealing its substantial contribution to variety of diseases. However, the impact of aged microbiota in heart failure (HF) remains unclear. In this study, we employed the method of fecal microbiota transplantation (FMT) from aged donors to investigate its role in the context of HF. Our results demonstrate that FMT from aged donors alters the recipient's gut microbiota composition and abundance. Furthermore, FMT impairs cardiac function and physical activity in HF mice. Aged FMT induces metabolic alterations, leading to body weight gain, impaired glucose tolerance, increased respiratory exchange ratio, and enhanced fat accumulation. The epicardium of aged FMT recipients shows fat accumulation, accompanied by cardiomyocyte hypertrophy, cardiac fibrosis and increased cellular apoptosis. Mechanistically, aged FMT suppresses the PPARα/PGC1α signaling pathway in HF. Notably, activation of PPARα effectively rescues the metabolic changes and myocardial injury caused by aged FMT. In conclusion, our study emphasizes the role of the PPARα/PGC1α signaling pathway in aged FMT-mediated HF.
Collapse
Affiliation(s)
- Han Xu
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
| | - Ouyang Li
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
| | - Dayoung Kim
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China
| | - Mengjuan Xue
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China; Department of Endocrinology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Zhijun Bao
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.
| | - Fan Yang
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Shanghai, China.
| |
Collapse
|
10
|
Satheesan A, Kumar J, Leela KV, Murugesan R, Chaithanya V, Angelin M. Review on the role of nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome pathway in diabetes: mechanistic insights and therapeutic implications. Inflammopharmacology 2024; 32:2753-2779. [PMID: 39160391 DOI: 10.1007/s10787-024-01556-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/10/2024] [Indexed: 08/21/2024]
Abstract
This review explores the pivotal role of the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome in the pathogenesis of diabetes and its complications, highlighting the therapeutic potential of various oral hypoglycemic drugs targeting this pathway. NLRP3 inflammasome activation, triggered by metabolic stressors like hyperglycemia, hyperlipidemia, and free fatty acids (FFAs), leads to the release of pro-inflammatory cytokines interleukin-1β and interleukin-18, driving insulin resistance, pancreatic β-cell dysfunction, and systemic inflammation. These processes contribute to diabetic complications such as nephropathy, neuropathy, retinopathy, and cardiovascular diseases (CVD). Here we discuss the various transcriptional, epigenetic, and gut microbiome mediated regulation of NLRP3 activation in diabetes. Different classes of oral hypoglycemic drugs modulate NLRP3 inflammasome activity through various mechanisms: sulfonylureas inhibit NLRP3 activation and reduce inflammatory cytokine levels; sodium-glucose co-transporter 2 inhibitors (SGLT2i) suppress inflammasome activity by reducing oxidative stress and modulating intracellular signaling pathways; dipeptidyl peptidase-4 inhibitors mitigate inflammasome activation, protecting against renal and vascular complications; glucagon-like peptide-1 receptor agonists attenuate NLRP3 activity, reducing inflammation and improving metabolic outcomes; alpha-glucosidase inhibitors and thiazolidinediones exhibit anti-inflammatory properties by directly inhibiting NLRP3 activation. Agents that specifically target NLRP3 and inhibit their activation have been identified recently such as MCC950, Anakinra, CY-09, and many more. Targeting the NLRP3 inflammasome, thus, presents a promising strategy for managing diabetes and its complications, with oral hypoglycemic drugs offering dual benefits of glycemic control and inflammation reduction. Further research into the specific mechanisms and long-term effects of these drugs on NLRP3 inflammasome activity is warranted.
Collapse
Affiliation(s)
- Abhishek Satheesan
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Janardanan Kumar
- Department of General Medicine, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India.
| | - Kakithakara Vajravelu Leela
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Ria Murugesan
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Venkata Chaithanya
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| | - Matcha Angelin
- Department of Microbiology, SRM Medical College Hospital and Research Centre, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu, 603203, India
| |
Collapse
|
11
|
Wang M, Hou C, Jia F, Zhong C, Xue C, Li J. Aging-associated atrial fibrillation: A comprehensive review focusing on the potential mechanisms. Aging Cell 2024; 23:e14309. [PMID: 39135295 PMCID: PMC11464128 DOI: 10.1111/acel.14309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 10/11/2024] Open
Abstract
Atrial fibrillation (AF) has been receiving a lot of attention from scientists and clinicians because it is an extremely common clinical condition. Due to its special hemodynamic changes, AF has a high rate of disability and mortality. So far, although AF has some therapeutic means, it is still an incurable disease because of its complex risk factors and pathophysiologic mechanisms, which is a difficult problem for global public health. Age is an important independent risk factor for AF, and the incidence of AF increases with age. To date, there is no comprehensive review on aging-associated AF. In this review, we systematically discuss the pathophysiologic evidence for aging-associated AF, and in particular explore the pathophysiologic mechanisms of mitochondrial dysfunction, telomere attrition, cellular senescence, disabled macroautophagy, and gut dysbiosis involved in recent studies with aging-associated AF. We hope that by exploring the various dimensions of aging-associated AF, we can better understand the specific relationship between age and AF, which may be crucial for innovative treatments of aging-associated AF.
Collapse
Affiliation(s)
- Meng‐Fei Wang
- The Third Affiliated Hospital of Soochow UniversityThe First People's Hospital of ChangzhouChangzhouChina
| | - Can Hou
- The Third Affiliated Hospital of Soochow UniversityThe First People's Hospital of ChangzhouChangzhouChina
| | - Fang Jia
- The Third Affiliated Hospital of Soochow UniversityThe First People's Hospital of ChangzhouChangzhouChina
| | - Cheng‐Hao Zhong
- The Third Affiliated Hospital of Soochow UniversityThe First People's Hospital of ChangzhouChangzhouChina
| | - Cong Xue
- The Third Affiliated Hospital of Soochow UniversityThe First People's Hospital of ChangzhouChangzhouChina
| | - Jian‐Jun Li
- State Key Laboratory of Cardiovascular Diseases, Fu Wai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
12
|
Fu ZP, Lee S, Wang RY, Wang YQ. Cronobacter sakazakii induced sepsis-associated arrhythmias through its outer membrane vesicles. iScience 2024; 27:110572. [PMID: 39228788 PMCID: PMC11369384 DOI: 10.1016/j.isci.2024.110572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/15/2024] [Accepted: 07/22/2024] [Indexed: 09/05/2024] Open
Abstract
Sepsis-induced arrhythmia, linked to sudden cardiac death, is associated with gut microbiota, though the exact relationship is unclear. This study aimed to elucidate the relationship between Cronobacter sakazakii (C. sakazakii) and arrhythmia. The relative abundance of C. sakazakii was increased in cecal ligation and puncture (CLP)-induced septic mice. Live C. sakazakii, supernatant, and outer membrane vesicles (OMVs) resulted in premature ventricular beat (PVB), sinus arrhythmia (SA), and increased arrhythmia and mortality in sepsis model through dysregulated ion channel proteins. Moreover, short-chain fatty acids (SCFAs) showed antibacterial effects in vitro. We confirmed sodium acetate (C2) and sodium butyrate (C4) protect from C. sakazakii-induced arrhythmia, and C2 and C4 protected from septic arrhythmia by activating free fatty acid receptor 2 and 3 (FFAR2 and FFAR3) in mice. These findings point to how C. sakazakii's OMVs trigger arrhythmia, and SCFAs may be a treatment for septic arrhythmia.
Collapse
Affiliation(s)
- Zhi-ping Fu
- Collage of Pharmacology, North China University of Science and Technology, Tangshan 063200, China
| | - Shuang Lee
- Collage of Pharmacology, North China University of Science and Technology, Tangshan 063200, China
| | - Rui-yao Wang
- Collage of Pharmacology, North China University of Science and Technology, Tangshan 063200, China
| | - Yu-qing Wang
- Collage of Pharmacology, North China University of Science and Technology, Tangshan 063200, China
| |
Collapse
|
13
|
Zou C, Cai R, Li Y, Xue Y, Zhang G, Alitongbieke G, Pan Y, Zhang S. β-chitosan attenuates hepatic macrophage-driven inflammation and reverses aging-related cognitive impairment. iScience 2024; 27:110766. [PMID: 39280626 PMCID: PMC11401205 DOI: 10.1016/j.isci.2024.110766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/13/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024] Open
Abstract
Recently, increasing evidence has shown the association between liver abnormal inflammation and cognition impairment, yet their age-related pathogenesis remains obscure. Here, our study provides a potential mechanistic link between liver macrophage excessive activation and neuroinflammation in aging progression. In aged and LPS-injected C57BL/6J mice, systemic administration of β-chitosan ameliorates hepatic macrophage-driven inflammation and reduces peripheral accumulations of TNF-α and IL-1β. Downregulation of circulatory pro-inflammatory cytokines then decreases vascular VCAM1 expression and neuroinflammation in the hippocampus, leading to cognitive improvement in aged/LPS-stimulated mice. Interestingly, β-chitosan treatment also exhibits the beneficial effects on the behavioral recovery of aged/LPS-stimulated zebrafish and Caenorhabditis elegans. In our cell culture and molecular docking experiments, we found that β-chitosan prefers shielding the MD-2 pocket, thus blocking the activation of TLR4-MD-2 complex to suppress NF-κB signaling pathway activation. Together, our findings highlight the extensive therapeutic potential of β-chitosan in reversing aged-related/LPS-induced cognitive impairment via the liver-brain axis.
Collapse
Affiliation(s)
- Chenming Zou
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Ruihua Cai
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Yunbing Li
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Yu Xue
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Guoguang Zhang
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, China
| | - Gulimiran Alitongbieke
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Yutian Pan
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| | - Sanguo Zhang
- The Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou 363000, China
- Fujian Fungal Active Substance Engineering Technology Center, Zhangzhou 363000, China
| |
Collapse
|
14
|
Hutschalik T, Özgül O, Casini M, Szabó B, Peyronnet R, Bártulos Ó, Argenziano M, Schotten U, Matsa E. Immune response caused by M1 macrophages elicits atrial fibrillation-like phenotypes in coculture model with isogenic hiPSC-derived cardiomyocytes. Stem Cell Res Ther 2024; 15:280. [PMID: 39227896 PMCID: PMC11373469 DOI: 10.1186/s13287-024-03814-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/24/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND Atrial fibrillation has an estimated prevalence of 1.5-2%, making it the most common cardiac arrhythmia. The processes that cause and sustain the disease are still not completely understood. An association between atrial fibrillation and systemic, as well as local, inflammatory processes has been reported. However, the exact mechanisms underlying this association have not been established. While it is understood that inflammatory macrophages can influence cardiac electrophysiology, a direct, causative relationship to atrial fibrillation has not been described. This study investigated the pro-arrhythmic effects of activated M1 macrophages on human induced pluripotent stem cell (hiPSC)-derived atrial cardiomyocytes, to propose a mechanistic link between inflammation and atrial fibrillation. METHODS Two hiPSC lines from healthy individuals were differentiated to atrial cardiomyocytes and M1 macrophages and integrated in an isogenic, pacing-free, atrial fibrillation-like coculture model. Electrophysiology characteristics of cocultures were analysed for beat rate irregularity, electrogram amplitude and conduction velocity using multi electrode arrays. Cocultures were additionally treated using glucocorticoids to suppress M1 inflammation. Bulk RNA sequencing was performed on coculture-isolated atrial cardiomyocytes and compared to meta-analyses of atrial fibrillation patient transcriptomes. RESULTS Multi electrode array recordings revealed M1 to cause irregular beating and reduced electrogram amplitude. Conduction analysis further showed significantly lowered conduction homogeneity in M1 cocultures. Transcriptome sequencing revealed reduced expression of key cardiac genes such as SCN5A, KCNA5, ATP1A1, and GJA5 in the atrial cardiomyocytes. Meta-analysis of atrial fibrillation patient transcriptomes showed high correlation to the in vitro model. Treatment of the coculture with glucocorticoids showed reversal of phenotypes, including reduced beat irregularity, improved conduction, and reversed RNA expression profiles. CONCLUSIONS This study establishes a causal relationship between M1 activation and the development of subsequent atrial arrhythmia, documented as irregularity in spontaneous electrical activation in atrial cardiomyocytes cocultured with activated macrophages. Further, beat rate irregularity could be alleviated using glucocorticoids. Overall, these results point at macrophage-mediated inflammation as a potential AF induction mechanism and offer new targets for therapeutic development. The findings strongly support the relevance of the proposed hiPSC-derived coculture model and present it as a first of its kind disease model.
Collapse
Affiliation(s)
- Thomas Hutschalik
- Ncardia Services B.V, J.H. Oortweg 21, 2333 CH, Leiden, The Netherlands
- Dept. of Physiology, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | - Ozan Özgül
- Dept. of Physiology, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | - Marilù Casini
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, 46026, Valencia, Spain
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen and Faculty of Medicine, Freiburg im Breisgau, 79110, Germany
| | - Brigitta Szabó
- Ncardia Services B.V, J.H. Oortweg 21, 2333 CH, Leiden, The Netherlands
| | - Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg Bad Krozingen and Faculty of Medicine, Freiburg im Breisgau, 79110, Germany
| | - Óscar Bártulos
- Ncardia Services B.V, J.H. Oortweg 21, 2333 CH, Leiden, The Netherlands
| | | | - Ulrich Schotten
- Dept. of Physiology, Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
- Dept. of Cardiology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Elena Matsa
- Ncardia Services B.V, J.H. Oortweg 21, 2333 CH, Leiden, The Netherlands.
- , Rue Edouard Belin 2, 1435, CellisticMont-Saint-Guibert, Belgium.
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland.
- National Institute for Bioprocessing Research and Training, Dublin, Ireland.
| |
Collapse
|
15
|
Zou Y, Tang X, Yang S, Chen Z, Liu B, Zhou Z, Peng X, Tang C. New insights into the function of the NLRP3 inflammasome in sarcopenia: mechanism and therapeutic strategies. Metabolism 2024; 158:155972. [PMID: 38972476 DOI: 10.1016/j.metabol.2024.155972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Sarcopenia is one of the most common skeletal muscle disorders and is characterized by infirmity and disability. While extensive research has focused on elucidating the mechanisms underlying the progression of sarcopenia, further comprehensive insights into its pathogenesis are necessary to identify new preventive and therapeutic approaches. The involvement of inflammasomes in sarcopenia is widely recognized, with particular emphasis on the NLRP3 (NLR family pyrin domain containing 3) inflammasome. In this review, we aim to elucidate the underlying mechanisms of the NLRP3 inflammasome and its relevance in sarcopenia of various etiologies. Furthermore, we highlight interventions targeting the NLRP3 inflammasome in the context of sarcopenia and discuss the current limitations of our knowledge in this area.
Collapse
Affiliation(s)
- Yunyi Zou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Xiangbin Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Siyuan Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Zhanglin Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Bin Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Zuoqiong Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China
| | - Xiyang Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China.
| | - Changfa Tang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, China.
| |
Collapse
|
16
|
Goette A, Corradi D, Dobrev D, Aguinaga L, Cabrera JA, Chugh SS, de Groot JR, Soulat-Dufour L, Fenelon G, Hatem SN, Jalife J, Lin YJ, Lip GYH, Marcus GM, Murray KT, Pak HN, Schotten U, Takahashi N, Yamaguchi T, Zoghbi WA, Nattel S. Atrial cardiomyopathy revisited-evolution of a concept: a clinical consensus statement of the European Heart Rhythm Association (EHRA) of the ESC, the Heart Rhythm Society (HRS), the Asian Pacific Heart Rhythm Society (APHRS), and the Latin American Heart Rhythm Society (LAHRS). Europace 2024; 26:euae204. [PMID: 39077825 PMCID: PMC11431804 DOI: 10.1093/europace/euae204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024] Open
Abstract
AIMS The concept of "atrial cardiomyopathy" (AtCM) had been percolating through the literature since its first mention in 1972. Since then, publications using the term were sporadic until the decision was made to convene an expert working group with representation from four multinational arrhythmia organizations to prepare a consensus document on atrial cardiomyopathy in 2016 (EHRA/HRS/APHRS/SOLAECE expert consensus on atrial cardiomyopathies: definition, characterization, and clinical implication). Subsequently, publications on AtCM have increased progressively. METHODS AND RESULTS The present consensus document elaborates the 2016 AtCM document further to implement a simple AtCM staging system (AtCM stages 1-3) by integrating biomarkers, atrial geometry, and electrophysiological changes. However, the proposed AtCM staging needs clinical validation. Importantly, it is clearly stated that the presence of AtCM might serve as a substrate for the development of atrial fibrillation (AF) and AF may accelerates AtCM substantially, but AtCM per se needs to be viewed as a separate entity. CONCLUSION Thus, the present document serves as a clinical consensus statement of the European Heart Rhythm Association (EHRA) of the ESC, the Heart Rhythm Society (HRS), the Asian Pacific Heart Rhythm Society (APHRS), and the Latin American Heart Rhythm Society (LAHRS) to contribute to the evolution of the AtCM concept.
Collapse
Affiliation(s)
- Andreas Goette
- Department of Cardiology and Intensive Care Medicine, St. Vincenz-Hospital Paderborn, Am Busdorf 2, 33098 Paderborn, Germany
- MAESTRIA Consortium at AFNET, Münster, Germany
- Otto-von-Guericke University, Medical Faculty, Magdeburg, Germany
| | - Domenico Corradi
- Department of Medicine and Surgery, Unit of Pathology; Center of Excellence for Toxicological Research (CERT), University of Parma, Parma, Italy
| | - Dobromir Dobrev
- Institute of Pharmacology, University Duisburg-Essen, Essen, Germany
- Montréal Heart Institute, Université de Montréal, 5000 Belanger St. E., Montréal, Québec H1T1C8, Canada
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Luis Aguinaga
- Director Centro Integral de Arritmias Tucumán, Presidente Sociedad de Cardiología de Tucumàn, Ex-PRESIDENTE DE SOLAECE (LAHRS), Sociedad Latinoamericana de EstimulaciónCardíaca y Electrofisiología, Argentina
| | - Jose-Angel Cabrera
- Hospital Universitario QuirónSalud, Madrid, Spain
- European University of Madrid, Madrid, Spain
| | - Sumeet S Chugh
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Health System, Los Angeles, CA, USA
| | - Joris R de Groot
- Department of Cardiology; Cardiovascular Sciences, Heart Failure and Arrhythmias, University of Amsterdam, Amsterdam, The Netherlands
| | - Laurie Soulat-Dufour
- Department of Cardiology, Saint Antoine and Tenon Hospital, AP-HP, Unité INSERM UMRS 1166 Unité de recherche sur les maladies cardiovasculaires et métaboliques, Institut Hospitalo-Universitaire, Institut de Cardiométabolisme et Nutrition (ICAN), Sorbonne Université, Paris, France
| | | | - Stephane N Hatem
- Department of Cardiology, Assistance Publique—Hôpitaux de Paris, Pitié-Salpêtrière Hospital; Sorbonne University; INSERM UMR_S1166; Institute of Cardiometabolism and Nutrition-ICAN, Paris, France
| | - Jose Jalife
- Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, 28029 Madrid, Spain
| | - Yenn-Jiang Lin
- Cardiovascular Center, Taipei Veterans General Hospital, and Faculty of Medicine National Yang-Ming University Taipei, Taiwan
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, UK
- Danish Center for Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Gregory M Marcus
- Electrophysiology Section, Division of Cardiology, University of California, San Francisco, USA
| | - Katherine T Murray
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pharmacology, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Korea
| | - Ulrich Schotten
- MAESTRIA Consortium at AFNET, Münster, Germany
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University and Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of Cardiology, Cardiovascular Research Institute Maastricht, Maastricht University and Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Naohiko Takahashi
- Department of Cardiology and Clinical Examination, Faculty of Medicine, Oita University, Japan
| | - Takanori Yamaguchi
- Department of Cardiovascular Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501, Japan
| | - William A Zoghbi
- Department of Cardiology, Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, TX, USA
| | - Stanley Nattel
- McGill University, 3655 Promenade Sir-William-Osler, Montréal, Québec H3G1Y6, Canada
- West German Heart and Vascular Center, Institute of Pharmacology, University Duisburg, Essen, Germany
| |
Collapse
|
17
|
Nabil MA, Rychlik L, Nicholson A, Cheung P, Olsovsky GD, Molden J, Tripuraneni A, Hajivandi SS, Banchs JE. Dietary interventions in the management of atrial fibrillation. Front Cardiovasc Med 2024; 11:1418059. [PMID: 39149585 PMCID: PMC11324562 DOI: 10.3389/fcvm.2024.1418059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024] Open
Abstract
Atrial fibrillation (AF) represents the most common cardiac arrhythmia with significant morbidity and mortality implications. It is a common cause of hospital admissions, significantly impacts quality of life, increases morbidity and decreases life expectancy. Despite advancements in treatment options, prevalence of AF remains exceptionally high. AF is a challenging disease to manage, not just clinically but also financially. Evidence suggests lifestyle modification, including dietary changes, plays a significant role in the treatment of AF. This review aims to analyze the existing literature on the effects of dietary modifications on the incidence, progression, and outcomes of atrial fibrillation. It examines various dietary components, including alcohol, caffeine, omega-3 polyunsaturated fatty acids and minerals, and their impact on AF incidence, progression, and outcomes. The evidence surrounding the effects of dietary patterns, such as the Mediterranean and low carbohydrate diets, on AF is also evaluated. Overall, this review underscores the importance of dietary interventions as part of a comprehensive approach to AF management and highlights the need for further research in this emerging field.
Collapse
Affiliation(s)
- Muhammad Ahad Nabil
- Department of Medicine, Division of Cardiology, Baylor Scott & White Health, Round Rock, TX, United States
| | - Leanne Rychlik
- Department of Medicine, Division of Cardiology, Baylor Scott & White Health, Temple, TX, United States
| | - Audrey Nicholson
- Department of Medicine, Division of Cardiology, Baylor Scott & White Health, Round Rock, TX, United States
| | - Peter Cheung
- Department of Medicine, Division of Cardiology, Baylor Scott & White Health, Round Rock, TX, United States
| | - Gregory D Olsovsky
- Department of Medicine, Division of Cardiology, Baylor Scott & White Health, Temple, TX, United States
| | - Jaime Molden
- Department of Medicine, Division of Cardiology, Baylor Scott & White Health, Temple, TX, United States
| | - Ajay Tripuraneni
- Department of Medicine, Division of Cardiology, Baylor Scott & White Health, Temple, TX, United States
| | - Shayan-Salehi Hajivandi
- Department of Medicine, Division of Cardiology, Baylor Scott & White Health, Round Rock, TX, United States
| | - Javier E Banchs
- Department of Medicine, Division of Cardiology, Baylor Scott & White Health, Temple, TX, United States
| |
Collapse
|
18
|
Brunetta E, Del Monaco G, Rodolfi S, Zachariah D, Vlachos K, Latini AC, De Santis M, Ceriotti C, Galimberti P, Taormina A, Battaglia V, Falasconi G, Maceda DP, Efremidis M, Letsas KP, Selmi C, Stefanini GG, Condorelli G, Frontera A. Incidence and predictors of post-surgery atrial fibrillation occurrence: A cohort study in 53,387 patients. J Arrhythm 2024; 40:815-821. [PMID: 39139903 PMCID: PMC11317654 DOI: 10.1002/joa3.13058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/19/2024] [Accepted: 05/02/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction Atrial fibrillation (AF) represents the most common arrhythmia in the postoperative setting. We aimed to investigate the incidence of postoperative AF (POAF) and determine its predictors, with a specific focus on inflammation markers. Methods We performed a retrospective single tertiary center cohort study including consecutive adult patients who underwent a major surgical procedure between January 2016 and January 2020. Patients were divided into four subgroups according to the type of surgery. Results Among 53,387 included patients (79.4% male, age 64.5 ± 9.5 years), POAF occurred in 570 (1.1%) with a mean latency after surgery of 3.4 ± 2.6 days. Ninety patients died (0.17%) after a mean of 13.7 ± 8.4 days. The 28-day arrhythmia-free survival was lower in patients undergoing lung and cardiovascular surgery (p < .001). Patients who developed POAF had higher levels of C-reactive protein (CRP) (0.70 ± 0.03 vs. 0.40 ± 0.01 log10 mg/dl; p < .001). In the multivariable Cox regression analysis, adjusting for confounding factors, CRP was an independent predictor of POAF [HR per 1 mg/dL increase in log-scale = 1.81 (95% CI 1.18-2.79); p = .007]. Moreover, independent predictors of POAF were also age (HR/1 year increase = 1.06 (95% CI 1.04-1.08); I < .001), lung and cardiovascular surgery (HR 23.62; (95% CI 5.65-98.73); p < .001), and abdominal and esophageal surgery (HR 6.26; 95% CI 1.48-26.49; p = .013). Conclusions Lung and cardiovascular surgery had the highest risk of POAF in the presented cohort. CRP was an independent predictor of POAF and postsurgery inflammation may represent a major driver in the pathophysiology of the arrhythmia.
Collapse
Affiliation(s)
- Enrico Brunetta
- Unit of Rheumatology and Clinical Immunology, IRCCS Humanitas Research HospitalRozzanoItaly
| | - Guido Del Monaco
- Arrhythmology Department, IRCCS Humanitas Research HospitalRozzanoItaly
- Department of Biomedical SciencesHumanitas University, Pieve EmanueleMilanItaly
- Cardio Center, Humanitas Clinical and Research Hospital IRCCSMilanItaly
| | - Stefano Rodolfi
- Unit of Rheumatology and Clinical Immunology, IRCCS Humanitas Research HospitalRozzanoItaly
| | - Donah Zachariah
- Department of Cardiac ElectrophysiologyRoyal Papworth HospitalCambridgeUK
| | | | - Alessia Chiara Latini
- Arrhythmology Department, IRCCS Humanitas Research HospitalRozzanoItaly
- Department of Biomedical SciencesHumanitas University, Pieve EmanueleMilanItaly
- Cardio Center, Humanitas Clinical and Research Hospital IRCCSMilanItaly
| | - Maria De Santis
- Unit of Rheumatology and Clinical Immunology, IRCCS Humanitas Research HospitalRozzanoItaly
| | - Carlo Ceriotti
- Arrhythmology Department, IRCCS Humanitas Research HospitalRozzanoItaly
| | - Paola Galimberti
- Arrhythmology Department, IRCCS Humanitas Research HospitalRozzanoItaly
| | - Antonio Taormina
- Arrhythmology Department, IRCCS Humanitas Research HospitalRozzanoItaly
| | - Vincenzo Battaglia
- Arrhythmology Department, IRCCS Humanitas Research HospitalRozzanoItaly
- Department of Biomedical SciencesHumanitas University, Pieve EmanueleMilanItaly
- Cardio Center, Humanitas Clinical and Research Hospital IRCCSMilanItaly
| | - Giulio Falasconi
- Arrhythmology Department, IRCCS Humanitas Research HospitalRozzanoItaly
| | | | | | | | - Carlo Selmi
- Unit of Rheumatology and Clinical Immunology, IRCCS Humanitas Research HospitalRozzanoItaly
| | - Giulio Giuseppe Stefanini
- Department of Biomedical SciencesHumanitas University, Pieve EmanueleMilanItaly
- Cardio Center, Humanitas Clinical and Research Hospital IRCCSMilanItaly
| | - Gianluigi Condorelli
- Department of Biomedical SciencesHumanitas University, Pieve EmanueleMilanItaly
- Cardio Center, Humanitas Clinical and Research Hospital IRCCSMilanItaly
| | - Antonio Frontera
- Arrhythmology Department, IRCCS Humanitas Research HospitalRozzanoItaly
| |
Collapse
|
19
|
Tan W, Cheng S, Qiu Q, Huang J, Xie M, Song L, Zhou Z, Wang Y, Guo F, Jin X, Li Z, Xu X, Jiang H, Zhou X. Celastrol exerts antiarrhythmic effects in chronic heart failure via NLRP3/Caspase-1/IL-1β signaling pathway. Biomed Pharmacother 2024; 177:117121. [PMID: 39002443 DOI: 10.1016/j.biopha.2024.117121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024] Open
Abstract
OBJECTIVES Celastrol has widespread therapeutic applications in various pathological conditions, including chronic inflammation. Previous studies have demonstrated the potent cardioprotective effects of celastrol. Nevertheless, limited attention has been given to its potential in reducing ventricular arrhythmias (VAs) following myocardial infarction (MI). Hence, this study aimed to elucidate the potential mechanisms underlying the regulatory effects of celastrol on VAs and cardiac electrophysiological parameters in rats after MI. METHODS Sprague-Dawley rats were divided at random: the sham, MI, and MI + celastrol groups. The left coronary artery was occluded in the MI and MI + Cel groups. Electrocardiogram, heart rate variability (HRV), ventricular electrophysiological parameters analysis, histology staining of ventricles, Enzyme-linked immunosorbent assay (ELISA), western blotting and Quantitative real-time polymerase chain reaction (qRT-PCR) were performed to elucidate the underlying mechanism of celastrol. Besides, H9c2 cells were subjected to hypoxic conditions to create an in vitro model of MI and then treated with celastrol for 24 hours. Nigericin was used to activate the NLRP3 inflammasome. RESULTS Compared with that MI group, cardiac electrophysiology instability was significantly alleviated in the MI + celastrol group. Additionally, celastrol improved HRV, upregulated the levels of Cx43, Kv.4.2, Kv4.3 and Cav1.2, mitigated myocardial fibrosis, and inhibited the NLRP3 inflammasome pathway. In vitro conditions also supported the regulatory effects of celastrol on the NLRP3 inflammasome pathway. CONCLUSIONS Celastrol could alleviate the adverse effects of VAs after MI partially by promoting autonomic nerve remodeling, ventricular electrical reconstruction and ion channel remodeling, and alleviating ventricular fibrosis and inflammatory responses partly by through inhibiting the NLRP3/Caspase-1/IL-1β pathway.
Collapse
Affiliation(s)
- Wuping Tan
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, PR China; Cardiac Autonomic Nervous System Research Center of Wuhan University, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, PR China; Hubei Key Laboratory of Autonomic Nervous System Modulation, PR China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, PR China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China
| | - Siyi Cheng
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, PR China; Cardiac Autonomic Nervous System Research Center of Wuhan University, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, PR China; Hubei Key Laboratory of Autonomic Nervous System Modulation, PR China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, PR China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China
| | - Qinfang Qiu
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, PR China; Cardiac Autonomic Nervous System Research Center of Wuhan University, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, PR China; Hubei Key Laboratory of Autonomic Nervous System Modulation, PR China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, PR China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China
| | - Jiaxing Huang
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, PR China; Cardiac Autonomic Nervous System Research Center of Wuhan University, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, PR China; Hubei Key Laboratory of Autonomic Nervous System Modulation, PR China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, PR China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China
| | - Mengjie Xie
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, PR China; Cardiac Autonomic Nervous System Research Center of Wuhan University, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, PR China; Hubei Key Laboratory of Autonomic Nervous System Modulation, PR China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, PR China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China
| | - Lingpeng Song
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, PR China; Cardiac Autonomic Nervous System Research Center of Wuhan University, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, PR China; Hubei Key Laboratory of Autonomic Nervous System Modulation, PR China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, PR China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China
| | - Zhen Zhou
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, PR China; Cardiac Autonomic Nervous System Research Center of Wuhan University, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, PR China; Hubei Key Laboratory of Autonomic Nervous System Modulation, PR China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, PR China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China
| | - Yijun Wang
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, PR China; Cardiac Autonomic Nervous System Research Center of Wuhan University, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, PR China; Hubei Key Laboratory of Autonomic Nervous System Modulation, PR China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, PR China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China
| | - Fuding Guo
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, PR China; Cardiac Autonomic Nervous System Research Center of Wuhan University, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, PR China; Hubei Key Laboratory of Autonomic Nervous System Modulation, PR China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, PR China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China
| | - Xiaoxing Jin
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, PR China; Cardiac Autonomic Nervous System Research Center of Wuhan University, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, PR China; Hubei Key Laboratory of Autonomic Nervous System Modulation, PR China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, PR China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China
| | - Zeyan Li
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, PR China; Cardiac Autonomic Nervous System Research Center of Wuhan University, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, PR China; Hubei Key Laboratory of Autonomic Nervous System Modulation, PR China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, PR China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China
| | - Xiao Xu
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, PR China; Cardiac Autonomic Nervous System Research Center of Wuhan University, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, PR China; Hubei Key Laboratory of Autonomic Nervous System Modulation, PR China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, PR China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China
| | - Hong Jiang
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, PR China; Cardiac Autonomic Nervous System Research Center of Wuhan University, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, PR China; Hubei Key Laboratory of Autonomic Nervous System Modulation, PR China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, PR China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China.
| | - Xiaoya Zhou
- Cardiovascular Research Institute, Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Cardiology, PR China; Cardiac Autonomic Nervous System Research Center of Wuhan University, PR China; Taikang Center for Life and Medical Sciences, Wuhan University, PR China; Hubei Key Laboratory of Autonomic Nervous System Modulation, PR China; Institute of Molecular Medicine, Renmin Hospital of Wuhan University, PR China; Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, PR China.
| |
Collapse
|
20
|
Jin X, Zhang Y, Zhou Y, Luo Y, Han X, Gao Y, Yu H, Duan Y, Shi L, Wu Y, Li Y. Sirt1 Deficiency Promotes Age-Related AF Through Enhancing Atrial Necroptosis by Activation of RIPK1 Acetylation. Circ Arrhythm Electrophysiol 2024; 17:e012452. [PMID: 39012929 DOI: 10.1161/circep.123.012452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 05/16/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Aging is one of the most potent risk determinants for the onset of atrial fibrillation (AF). Sirts (sirtuins) have been implicated in the pathogenesis of cardiovascular disease, and their expression declines with aging. However, whether Sirts involved in age-related AF and its underlying mechanisms remain unknown. The present study aims to explore the role of Sirts in age-related AF and delineate the underlying molecular mechanisms. METHODS Sirt1 levels in the atria of both elderly individuals and aging rats were evaluated using quantitative real-time polymerase chain reaction and Western blot analysis. Mice were engineered to specifically knockout Sirt1 in the atria and right ventricle (Sirt1mef2c/mef2c). Various techniques, such as echocardiography, atrial electrophysiology, and protein acetylation modification omics were employed. Additionally, coimmunoprecipitation was utilized to substantiate the interaction between Sirt1 and RIPK1 (receptor-interacting protein kinase 1). RESULTS We discerned that among the diverse subtypes of sirtuin proteins, only Sirt1 expression was significantly diminished in the atria of elderly people and aged rats. The Sirt1mef2c/mef2c mice exhibited an enlarged atrial diameter and heightened vulnerability to AF. Acetylated proteomics and cell experiments identified that Sirt1 deficiency activated atrial necroptosis through increasing RIPK1 acetylation and subsequent pseudokinase MLKL (mixed lineage kinase domain-like protein) phosphorylation. Consistently, necroptotic inhibitor necrosulfonamide mitigated atrial necroptosis and diminished both the atrial diameter and AF susceptibility of Sirt1mef2c/mef2c mice. Resveratrol prevented age-related AF in rats by activating atrial Sirt1 and inhibiting necroptosis. CONCLUSIONS Our findings first demonstrated that Sirt1 exerts significant efficacy in countering age-related AF by impeding atrial necroptosis through regulation of RIPK1 acetylation, highlighting that the activation of Sirt1 or the inhibition of necroptosis could potentially serve as a therapeutic strategy for age-related AF.
Collapse
Affiliation(s)
- Xuexin Jin
- Department of Cardiology the First Affiliated Hospital of Harbin Medical University (X.J., Y. Zhang, Y. Zhou, Y. Li)
| | - Yun Zhang
- Department of Cardiology the First Affiliated Hospital of Harbin Medical University (X.J., Y. Zhang, Y. Zhou, Y. Li)
| | - Yun Zhou
- Department of Cardiology the First Affiliated Hospital of Harbin Medical University (X.J., Y. Zhang, Y. Zhou, Y. Li)
| | - Yingchun Luo
- NHC Key Laboratory of Cell Transplantation, the First Affiliated Hospital of Harbin Medical University (Y. Luo, X.H., Y.G.)
| | - Xuejie Han
- NHC Key Laboratory of Cell Transplantation, the First Affiliated Hospital of Harbin Medical University (Y. Luo, X.H., Y.G.)
| | - Yunlong Gao
- NHC Key Laboratory of Cell Transplantation, the First Affiliated Hospital of Harbin Medical University (Y. Luo, X.H., Y.G.)
| | - Hui Yu
- Key Laboratory of Cardiac Diseases & Heart Failure (H.Y., Y.D., L.S.)
| | - Yu Duan
- Key Laboratory of Cardiac Diseases & Heart Failure (H.Y., Y.D., L.S.)
| | - Ling Shi
- Key Laboratory of Cardiac Diseases & Heart Failure (H.Y., Y.D., L.S.)
| | - Yue Wu
- Department of Cardiology, the First Hospital of Xi'an Jiaotong University, Xi'an, China (Y.W.)
| | - Yue Li
- Department of Cardiology the First Affiliated Hospital of Harbin Medical University (X.J., Y. Zhang, Y. Zhou, Y. Li)
- State Key Laboratory of Frigid Zone Cardiovascular Disease (Y. Li), Harbin Medical University
- Heilongjiang Key Laboratory for Metabolic Disorder & Cancer Related Cardiovascular Diseases (Y. Li)
- Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin (Y. Li)
| |
Collapse
|
21
|
Linna-Kuosmanen S, Vuori M, Kiviniemi T, Palmu J, Niiranen T. Genetics, transcriptomics, metagenomics, and metabolomics in the pathogenesis and prediction of atrial fibrillation. Eur Heart J Suppl 2024; 26:iv33-iv40. [PMID: 39099578 PMCID: PMC11292413 DOI: 10.1093/eurheartjsupp/suae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The primary cellular substrates of atrial fibrillation (AF) and the mechanisms underlying AF onset remain poorly characterized and therefore, its risk assessment lacks precision. While the use of omics may enable discovery of novel AF risk factors and narrow down the cellular pathways involved in AF pathogenesis, the work is far from complete. Large-scale genome-wide association studies and transcriptomic analyses that allow an unbiased, non-candidate-gene-based delineation of molecular changes associated with AF in humans have identified at least 150 genetic loci associated with AF. However, only few of these loci have been thoroughly mechanistically dissected, indicating that much remains to be discovered for targeted diagnostics and therapeutics. Metabolomics and metagenomics, on the other hand, add to the understanding of AF downstream of the primary substrate and integrate the signalling of environmental and host factors, respectively. These two rapidly developing fields have already provided several correlates of prevalent and incident AF that require additional validation in external cohorts and experimental studies. In this review, we take a look at the recent developments in genetics, transcriptomics, metagenomics, and metabolomics and how they may aid in improving the discovery of AF risk factors and shed light into the molecular mechanisms leading to AF onset.
Collapse
Affiliation(s)
- Suvi Linna-Kuosmanen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland
| | - Matti Vuori
- Division of Medicine, Turku University Hospital, Turku, Finland
- Department of Internal Medicine, University of Turku, Turku, Finland
| | - Tuomas Kiviniemi
- Department of Internal Medicine, University of Turku, Turku, Finland
- Heart Center, Turku University Hospital, Turku, Finland
| | - Joonatan Palmu
- Department of Internal Medicine, University of Turku, Turku, Finland
| | - Teemu Niiranen
- Division of Medicine, Turku University Hospital, Turku, Finland
- Department of Internal Medicine, University of Turku, Turku, Finland
- Department of Public Health Solutions, Finnish Institute for Health and Welfare, Turku, Finland
| |
Collapse
|
22
|
Liu L, Yi Y, Yan R, Hu R, Sun W, Zhou W, Zhou H, Si X, Ye Y, Li W, Chen J. Impact of age-related gut microbiota dysbiosis and reduced short-chain fatty acids on the autonomic nervous system and atrial fibrillation in rats. Front Cardiovasc Med 2024; 11:1394929. [PMID: 38932988 PMCID: PMC11199889 DOI: 10.3389/fcvm.2024.1394929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Objective Aging is the most significant contributor to the increasing prevalence of atrial fibrillation (AF). Dysbiosis of gut microbiota has been implicated in age-related diseases, but its role in AF development remains unclear. This study aimed to investigate the correlations between changes in the autonomic nervous system, short-chain fatty acids (SCFAs), and alterations in gut microbiota in aged rats with AF. Methods Electrophysiological experiments were conducted to assess AF induction rates and heart rate variability in rats. 16S rRNA gene sequences extracted from fecal samples were used to assess the gut microbial composition. Gas and liquid chromatography-mass spectroscopy was used to identify SCFAs in fecal samples. Results The study found that aged rats exhibited a higher incidence of AF and reduced heart rate variability compared to young rats. Omics research revealed disrupted gut microbiota in aged rats, specifically a decreased Firmicutes to Bacteroidetes ratio. Additionally, fecal SCFA levels were significantly lower in aged rats. Importantly, correlation analysis indicated a significant association between decreased SCFAs and declining heart rate variability in aged rats. Conclusions These findings suggest that SCFAs, as metabolites of gut microbiota, may play a regulatory role in autonomic nervous function and potentially influence the onset and progression of AF in aged rats. These results provide novel insights into the involvement of SCFAs and autonomic nervous system function in the pathogenesis of AF. These results provide novel insights into the involvement of SCFAs and autonomic nervous system function in the pathogenesis of AF.
Collapse
Affiliation(s)
- Li Liu
- Department of Cardiovascular Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yingqi Yi
- Department of Cardiovascular Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Rong Yan
- Department of Cardiovascular Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Rong Hu
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
| | - Weihong Sun
- Department of Cardiovascular Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Wei Zhou
- Department of Cardiovascular Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Haiyan Zhou
- Department of Cardiovascular Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaoyun Si
- Department of Cardiovascular Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yun Ye
- Department of Cardiovascular Medicine, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Wei Li
- Department of Cardiovascular Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jingjing Chen
- Department of Cardiovascular Medicine, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
23
|
Valiauga R, Talley S, Khemmani M, Fontes Noronha M, Gogliotti R, Wolfe AJ, Campbell E. Sex-dependent effects of carbohydrate source and quantity on caspase-1 activity in the mouse central nervous system. J Neuroinflammation 2024; 21:151. [PMID: 38840215 PMCID: PMC11155082 DOI: 10.1186/s12974-024-03140-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Mounting evidence links glucose intolerance and diabetes as aspects of metabolic dysregulation that are associated with an increased risk of developing dementia. Inflammation and inflammasome activation have emerged as a potential link between these disparate pathologies. As diet is a key factor in both the development of metabolic disorders and inflammation, we hypothesize that long term changes in dietary factors can influence nervous system function by regulating inflammasome activity and that this phenotype would be sex-dependent, as sex hormones are known to regulate metabolism and immune processes. METHODS 5-week-old male and female transgenic mice expressing a caspase-1 bioluminescent reporter underwent cranial window surgeries and were fed control (65% complex carbohydrates, 15% fat), high glycemic index (65% carbohydrates from sucrose, 15% fat), or ketogenic (1% complex carbohydrates, 79% fat) diet from 6 to 26 weeks of age. Glucose regulation was assessed with a glucose tolerance test following a 4-h morning fast. Bioluminescence in the brain was quantified using IVIS in vivo imaging. Blood cytokine levels were measured using cytokine bead array. 16S ribosomal RNA gene amplicon sequencing of mouse feces was performed to assess alterations in the gut microbiome. Behavior associated with these dietary changes was also evaluated. RESULTS The ketogenic diet caused weight gain and glucose intolerance in both male and female mice. In male mice, the high glycemic diet led to increased caspase-1 biosensor activation over the course of the study, while in females the ketogenic diet drove an increase in biosensor activation compared to their respective controls. These changes correlated with an increase in inflammatory cytokines present in the serum of test mice and the emergence of anxiety-like behavior. The microbiome composition differed significantly between diets; however no significant link between diet, glucose tolerance, or caspase-1 signal was established. CONCLUSIONS Our findings suggest that diet composition, specifically the source and quantity of carbohydrates, has sex-specific effects on inflammasome activation in the central nervous system and behavior. This phenotype manifested as increased anxiety in male mice, and future studies are needed to determine if this phenotype is linked to alterations in microbiome composition.
Collapse
Affiliation(s)
- Rasa Valiauga
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Sarah Talley
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Mark Khemmani
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | | | - Rocco Gogliotti
- Department of Molecular Pharmacology and Neuroscience, Loyola University Chicago, Maywood, IL, 60153, USA
- Edward Hines Jr. VA Hospital, Hines, IL, 60141, USA
| | - Alan J Wolfe
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Edward Campbell
- Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA.
| |
Collapse
|
24
|
Sadowski M, Ząbczyk M, Undas A. Impaired fibrinolysis in patients with atrial fibrillation and elevated circulating lipopolysaccharide. J Thromb Thrombolysis 2024; 57:842-851. [PMID: 38643439 PMCID: PMC11233339 DOI: 10.1007/s11239-024-02980-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/07/2024] [Indexed: 04/22/2024]
Abstract
It is unknown whether elevated gut-derived serum lipopolysaccharide (LPS) can affect thrombin generation, fibrinolysis, and fibrin clot properties in atrial fibrillation (AF). We aimed to evaluate associations of circulating LPS with prothrombotic markers in AF patients. A total of 157 (women, 57.3%) ambulatory anticoagulant-naïve AF patients aged from 42 to 86 years were recruited. Clinical data together with serum LPS, inflammation, endothelial injury, coagulation and fibrinolysis markers, including fibrin clot permeability (Ks) and clot lysis time (CLT), were analyzed. A median LPS concentration was 73.0 (58.0-100.0) pg/mL and it showed association with CLT (r = 0.31, p < 0.001) and plasminogen activator inhibitor-1 (PAI-1, r = 0.57, p < 0.001), but not other fibrinolysis proteins, thrombin generation, inflammatory markers, or Ks. There were weak associations of LPS with von Willebrand factor (vWF, r = 0.2, p = 0.013), cardiac troponin I (r = 0.16, p = 0.045), and growth differentiation factor-15 (r = 0.27, p < 0.001). No associations of LPS and CHA2DS2-VASc or other clinical variables were observed. Multivariable regression adjusted for potential confounders showed that serum LPS ≥ 100 pg/mL was an independent predictor of prolonged CLT. This study is the first to demonstrate antifibrinolytic effects of elevated LPS in AF patients largely driven by enhanced PAI-1 release.
Collapse
Affiliation(s)
- Marcin Sadowski
- Collegium Medicum, Jan Kochanowski University, Kielce, Poland
| | - Michał Ząbczyk
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland
- Krakow Centre for Medical Research and Technologies, John Paul II Hospital, Krakow, Poland
| | - Anetta Undas
- Department of Thromboembolic Disorders, Institute of Cardiology, Jagiellonian University Medical College, Krakow, Poland.
- Krakow Centre for Medical Research and Technologies, John Paul II Hospital, Krakow, Poland.
| |
Collapse
|
25
|
Fu H, Li D, Shuai W, Kong B, Wang X, Tang Y, Huang H, Huang C. Effects of Phenylacetylglutamine on the Susceptibility of Atrial Fibrillation in Overpressure-Induced HF Mice. Mol Cell Biol 2024; 44:149-163. [PMID: 38725392 PMCID: PMC11110696 DOI: 10.1080/10985549.2024.2345363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
Phenylacetylglutamine (PAGln), a gut metabolite is substantially elevated in heart failure (HF). The increase of PAGln in plasma is associated with atrial fibrillation (AF), and contributes to AF pathogenesis. However, the role of PAGln in AF with HF remains uncertain. Therefore, this study aimed to determine the effect of PAGln on AF after HF. Thoracic aortic coarctation (TAC) created overpressure-induced HF mice for 4 weeks. Histopathology, biochemical, echocardiographic for assessment of cardiac function, and electrophysiological examination of several electrophysiological indexes (ERP, SNRT, and the occurrence rate of AF) were performed at the end of the HF mice model. We found that plasma PAGln levels were significantly elevated in PAGln-treated HF mice and that PAGln aggravated maladaptive structural remodeling and electrical remodeling, which aggravated the vulnerability of AF, shortened the ERP duration, prolonged the SNRT, increased the occurrence rate of AF in HF mice. Mechanistically, PAGln exacerbated ROS accumulation and increased the levels of phosphorylated PLB and CAMK II. Overall, PAGln played a vital role in promoting the occurrence of AF in HF mice by activating the CAMK II signaling pathway.
Collapse
Affiliation(s)
- Hui Fu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Dengke Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Wei Shuai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| |
Collapse
|
26
|
Xu H, Zhou J, Ye F, Gao Y. Serum lipopolysaccharide associated with new-onset atrial fibrillation in patients with non-small-cell lung cancer a retrospective observational study. Front Surg 2024; 11:1404450. [PMID: 38783859 PMCID: PMC11112106 DOI: 10.3389/fsurg.2024.1404450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Lipopolysaccharide (LPS) is related to atrial fibrillation (AF). But so far, the relationship between LPS and new-onset AF (NOAF) in patients with lung cancer is unrevealed. This study was to investigate the association between LPS and NOAF in patients after lung cancer surgery. This was a single-center retrospective clinical observational study. Patients diagnosed with non-small-cell lung cancer (NSCLC) were enrolled. All patients receiving lung cancer surgery and at least 24 h electrocardiogram (ECG) examination was recorded during the hospitalization. The incidence of NOAF in this study was 34/406 (8.4%). The univariate analysis showed that NOAF was associated with age, intraoperative blood transfusion (IBT), chronic obstructive pulmonary disorder (COPD), and LPS. After adjusting risk factors, it was found that age, IBT and LPS (OR, 1.031; 95% CI: 1.001-1.042; P = 0.002) were still risk factors for NOAF. The area under curve (AUC) value was 0.709 for the LPS. When the LPS was added to the conventional model, the Net reclassification index (NRI) and integrated discrimination index (IDI) were improved significantly. Elevated LPS is associated with an increased risk of NOAF in patients after lung cancer surgery. LPS contributed to the discrimination of the NOAF risk model and improved it markedly.
Collapse
Affiliation(s)
| | - Jie Zhou
- Department of Thoracic Surgery, Xuzhou Medical University Affiliated Hospital Sihong Branch, The First People's Hospital of Sihong County, Suqian, Jiangsu, China
| | | | | |
Collapse
|
27
|
Mehdizadeh M, Naud P, Abu-Taha IH, Hiram R, Xiong F, Xiao J, Saljic A, Kamler M, Vuong-Robillard N, Thorin E, Ferbeyre G, Tardif JC, Sirois MG, Tanguay JF, Dobrev D, Nattel S. The role of cellular senescence in profibrillatory atrial remodelling associated with cardiac pathology. Cardiovasc Res 2024; 120:506-518. [PMID: 38181429 PMCID: PMC11060482 DOI: 10.1093/cvr/cvae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/21/2023] [Accepted: 12/12/2023] [Indexed: 01/07/2024] Open
Abstract
AIMS Cellular senescence is a stress-related or aging response believed to contribute to many cardiac conditions; however, its role in atrial fibrillation (AF) is unknown. Age is the single most important determinant of the risk of AF. The present study was designed to (i) evaluate AF susceptibility and senescence marker expression in rat models of aging and myocardial infarction (MI), (ii) study the effect of reducing senescent-cell burden with senolytic therapy on the atrial substrate in MI rats, and (iii) assess senescence markers in human atrial tissue as a function of age and the presence of AF. METHODS AND RESULTS AF susceptibility was studied with programmed electrical stimulation. Gene and protein expression was evaluated by immunoblot or immunofluorescence (protein) and digital polymerase chain reaction (PCR) or reverse transcriptase quantitative PCR (messenger RNA). A previously validated senolytic combination, dasatinib and quercetin, (D+Q; or corresponding vehicle) was administered from the time of sham or MI surgery through 28 days later. Experiments were performed blinded to treatment assignment. Burst pacing-induced AF was seen in 100% of aged (18-month old) rats, 87.5% of young MI rats, and 10% of young control (3-month old) rats (P ≤ 0.001 vs. each). Conduction velocity was slower in aged [both left atrium (LA) and right atrium (RA)] and young MI (LA) rats vs. young control rats (P ≤ 0.001 vs. each). Atrial fibrosis was greater in aged (LA and RA) and young MI (LA) vs. young control rats (P < 0.05 for each). Senolytic therapy reduced AF inducibility in MI rats (from 8/9 rats, 89% in MI vehicle, to 0/9 rats, 0% in MI D + Q, P < 0.001) and attenuated LA fibrosis. Double staining suggested that D + Q acts by clearing senescent myofibroblasts and endothelial cells. In human atria, senescence markers were upregulated in older (≥70 years) and long-standing AF patients vs. individuals ≤60 and sinus rhythm controls, respectively. CONCLUSION Our results point to a potentially significant role of cellular senescence in AF pathophysiology. Modulating cell senescence might provide a basis for novel therapeutic approaches to AF.
Collapse
Affiliation(s)
- Mozhdeh Mehdizadeh
- Research Center, Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, Quebec H1T 1C8, Canada
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y6, Canada
| | - Patrice Naud
- Research Center, Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, Quebec H1T 1C8, Canada
- Department of Medicine, Université de Montréal, Pavillon Roger-Gaudry, 2900 Edouard Montpetit Blvd, Montreal, Quebec H3T 1J4, Canada
| | - Issam H Abu-Taha
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstrasse 55, Essen 45122, Germany
| | - Roddy Hiram
- Research Center, Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, Quebec H1T 1C8, Canada
- Department of Medicine, Université de Montréal, Pavillon Roger-Gaudry, 2900 Edouard Montpetit Blvd, Montreal, Quebec H3T 1J4, Canada
| | - Feng Xiong
- Research Center, Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, Quebec H1T 1C8, Canada
| | - Jiening Xiao
- Research Center, Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, Quebec H1T 1C8, Canada
| | - Arnela Saljic
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstrasse 55, Essen 45122, Germany
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Norregade 10, P.O. Box 2177, Copenhagen, Denmark
| | - Markus Kamler
- Department of Thoracic and Cardiovascular Surgery, West German Heart and Vascular Center Essen, University Hospital Essen, Hufelandstrasse 55, Essen 45122, Germany
| | - Nhung Vuong-Robillard
- Department of Biochemistry, Université de Montréal, CRCHUM, 900 Saint Denis St, Montreal, Quebec H2X 0A9, Canada
| | - Eric Thorin
- Research Center, Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, Quebec H1T 1C8, Canada
- Department of Surgery, Université de Montréal, Pavillon Roger-Gaudry, Montreal, Quebec H3C 3J7, Canada
| | - Gerardo Ferbeyre
- Department of Biochemistry, Université de Montréal, CRCHUM, 900 Saint Denis St, Montreal, Quebec H2X 0A9, Canada
| | - Jean-Claude Tardif
- Research Center, Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, Quebec H1T 1C8, Canada
| | - Martin G Sirois
- Research Center, Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, Quebec H1T 1C8, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Pavillon Roger-GaudryOffice S-436, 2900 boulevard Édouard-Montpetit, Montreal, Quebec H3T 1J4, Canada
| | - Jean Francois Tanguay
- Research Center, Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, Quebec H1T 1C8, Canada
| | - Dobromir Dobrev
- Research Center, Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, Quebec H1T 1C8, Canada
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstrasse 55, Essen 45122, Germany
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA
| | - Stanley Nattel
- Research Center, Montreal Heart Institute, Université de Montréal, 5000 Belanger Street, Montreal, Quebec H1T 1C8, Canada
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec H3G 1Y6, Canada
- Department of Medicine, Université de Montréal, Pavillon Roger-Gaudry, 2900 Edouard Montpetit Blvd, Montreal, Quebec H3T 1J4, Canada
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Hufelandstrasse 55, Essen 45122, Germany
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Pavillon Roger-GaudryOffice S-436, 2900 boulevard Édouard-Montpetit, Montreal, Quebec H3T 1J4, Canada
- IHU Liryc and Fondation Bordeaux Université, 166 cours de l’Argonne, Bordeaux 33000, France
| |
Collapse
|
28
|
Manshouri S, Seif F, Kamali M, Bahar MA, Mashayekh A, Molatefi R. The interaction of inflammasomes and gut microbiota: novel therapeutic insights. Cell Commun Signal 2024; 22:209. [PMID: 38566180 PMCID: PMC10986108 DOI: 10.1186/s12964-024-01504-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/28/2024] [Indexed: 04/04/2024] Open
Abstract
Inflammasomes are complex platforms for the cleavage and release of inactivated IL-1β and IL-18 cytokines that trigger inflammatory responses against damage-associated molecular patterns (DAMPs) or pathogen-associated molecular patterns (PAMPs). Gut microbiota plays a pivotal role in maintaining gut homeostasis. Inflammasome activation needs to be tightly regulated to limit aberrant activation and bystander damage to the host cells. Several types of inflammasomes, including Node-like receptor protein family (e.g., NLRP1, NLRP3, NLRP6, NLRP12, NLRC4), PYHIN family, and pyrin inflammasomes, interact with gut microbiota to maintain gut homeostasis. This review discusses the current understanding of how inflammasomes and microbiota interact, and how this interaction impacts human health. Additionally, we introduce novel biologics and antagonists, such as inhibitors of IL-1β and inflammasomes, as therapeutic strategies for treating gastrointestinal disorders when inflammasomes are dysregulated or the composition of gut microbiota changes.
Collapse
Affiliation(s)
- Shirin Manshouri
- Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Valiasr St, Niayesh Intersection, Tehran, 1995614331, Iran
| | - Farhad Seif
- Department of Photodynamic Therapy, Medical Laser Research Center, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
- Department of Immunology and Allergy, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
| | - Monireh Kamali
- Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Valiasr St, Niayesh Intersection, Tehran, 1995614331, Iran
| | - Mohammad Ali Bahar
- Department of Immunology, Medical School, Iran University of Medical Sciences, Tehran, Iran
| | - Arshideh Mashayekh
- Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Valiasr St, Niayesh Intersection, Tehran, 1995614331, Iran.
| | - Rasol Molatefi
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
- Pediatric Department of Bou Ali Hospital, Ardabil University of Medical Sciences, Ardabil, 56189-85991, Iran.
| |
Collapse
|
29
|
Dosh L, Ghazi M, Haddad K, El Masri J, Hawi J, Leone A, Basset C, Geagea AG, Jurjus R, Jurjus A. Probiotics, gut microbiome, and cardiovascular diseases: An update. Transpl Immunol 2024; 83:102000. [PMID: 38262540 DOI: 10.1016/j.trim.2024.102000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/25/2024]
Abstract
Cardiovascular diseases (CVD) are one of the most challenging diseases and many factors have been demonstrated to affect their pathogenesis. One of the major factors that affect CVDs, especially atherosclerosis, is the gut microbiota (GM). Genetics play a key role in linking CVDs with GM, in addition to some environmental factors which can be either beneficial or harmful. The interplay between GM and CVDs is complex due to the numerous mechanisms through which microbial components and their metabolites can influence CVDs. Within this interplay, the immune system plays a major role, mainly based on the immunomodulatory effects of microbial dysbiosis and its resulting metabolites. The resulting modulation of chronic inflammatory processes was found to reduce the severity of CVDs and to maintain cardiovascular health. To better understand the specific roles of GM-related metabolites in this interplay, this review presents an updated perspective on gut metabolites related effects on the cardiovascular system, highlighting the possible benefits of probiotics in therapeutic strategies.
Collapse
Affiliation(s)
- Laura Dosh
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Maya Ghazi
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Karim Haddad
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Jad El Masri
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.
| | - Jihad Hawi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon; Faculty of Medicine and Medical Sciences, University of Balamand, Al Kurah, Lebanon.
| | - Angelo Leone
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy.
| | - Charbel Basset
- Department of Biomedicine, Neuroscience and Advanced Diagnostic, University of Palermo, Palermo, Italy.
| | - Alice Gerges Geagea
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rosalyn Jurjus
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Abdo Jurjus
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
30
|
Zhang X, Zhang H, Li S, Fang F, Yin Y, Wang Q. Recent progresses in gut microbiome mediates obstructive sleep apnea-induced cardiovascular diseases. FASEB Bioadv 2024; 6:118-130. [PMID: 38585431 PMCID: PMC10995711 DOI: 10.1096/fba.2023-00153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 04/09/2024] Open
Abstract
Obstructive sleep apnea (OSA) is a multifactorial sleep disorder with a high prevalence in the general population. OSA is associated with an increased risk of developing cardiovascular diseases (CVDs), particularly hypertension, and is linked to worse outcomes. Although the correlation between OSA and CVDs is firmly established, the mechanisms are poorly understood. Continuous positive airway pressure is primary treatment for OSA reducing cardiovascular risk effectively, while is limited by inadequate compliance. Moreover, alternative treatments for cardiovascular complications in OSA are currently not available. Recently, there has been considerable attention on the significant correlation between gut microbiome and pathophysiological changes in OSA. Furthermore, gut microbiome has a significant impact on the cardiovascular complications that arise from OSA. Nevertheless, a detailed understanding of this association is lacking. This review examines recent advancements to clarify the link between the gut microbiome, OSA, and OSA-related CVDs, with a specific focus on hypertension, and also explores potential health advantages of adjuvant therapy that targets the gut microbiome in OSA.
Collapse
Affiliation(s)
- Xiaotong Zhang
- Shanxi Provincial People’s HospitalThe Fifth Clinical Medical College of Shanxi Medical UniversityTaiyuanChina
| | - Haifen Zhang
- Shanxi Provincial People’s HospitalThe Fifth Clinical Medical College of Shanxi Medical UniversityTaiyuanChina
| | - Shuai Li
- Shanxi Provincial People’s HospitalThe Fifth Clinical Medical College of Shanxi Medical UniversityTaiyuanChina
| | - Fan Fang
- Shanxi Provincial People’s HospitalThe Fifth Clinical Medical College of Shanxi Medical UniversityTaiyuanChina
| | - Yanran Yin
- Shanxi Provincial People’s HospitalThe Fifth Clinical Medical College of Shanxi Medical UniversityTaiyuanChina
| | - Qiang Wang
- Department of Infectious Disease, Shanxi Provincial People's HospitalThe Fifth Clinical Medical College of Shanxi Medical UniversityTaiyuanChina
| |
Collapse
|
31
|
Xu H, Li O, Kim D, Yang F, Bao Z. Age-Related Gut Microbiota Transplantation Disrupts Myocardial Energy Homeostasis and Induces Oxidative Damage. J Nutr 2024; 154:1189-1199. [PMID: 38367807 DOI: 10.1016/j.tjnut.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/26/2024] [Accepted: 02/12/2024] [Indexed: 02/19/2024] Open
Abstract
BACKGROUND Aging-related energy homeostasis significantly affects normal heart function and disease development. The relationship between the gut microbiota and host energy metabolism has been well established. However, the influence of an aged microbiota on energy metabolism in the heart remains unclear. OBJECTIVE The objective of this was to explore the effects of age-related microbiota composition on energy metabolism in the heart. METHODS In this study, we used the fecal microbiota transplantation (FMT) method. The fecal microbiota from young (2-3 mo) and aged (18-22 mo) donor mice were transplanted into separate groups of young (2-3 mo) recipient mice. The analysis utilized whole 16S rRNA sequencing and plasma metabolomics to assess changes in the gut microbiota composition and metabolic potential. Energy changes were monitored by performing an oral glucose tolerance test, biochemical testing, body composition analysis, and metabolic cage measurements. Metabolic markers and markers of DNA damage were assessed in heart samples. RESULTS FMT of an aged microbiota changed the composition of the recipient's gut microbiota, leading to an elevated Firmicutes-to-Bacteroidetes ratio. It also affected overall energy metabolism, resulting in elevated plasma glucose concentrations, impaired glucose tolerance, and epididymal fat accumulation. Notably, FMT of an aged microbiota increased the heart weight and promoted cardiac hypertrophy. Furthermore, there were significant associations between heart weight and cardiac hypertrophy indicators, epididymal fat weight, and fasting glucose concentrations. Mechanistically, FMT of an aged microbiota modulated the glucose metabolic pathway and induced myocardial oxidative damage. CONCLUSIONS Our findings suggested that an aged microbiota can modulate metabolism and induce cardiac injury. This highlights the possible role of the gut microbiota in age-related metabolic disorders and cardiac dysfunction.
Collapse
Affiliation(s)
- Han Xu
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Ouyang Li
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Dayoung Kim
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Fan Yang
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China.
| | - Zhijun Bao
- Department of Gerontology, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Shanghai Key Laboratory of Clinical Geriatric Medicine, Huadong Hospital Affiliated to Fudan University, Shanghai, China; Department of Gastroenterology, Huadong Hospital Affiliated to Fudan University, Shanghai, China.
| |
Collapse
|
32
|
Gonçalves M, Lopes C, Silva P. Comparative histological description of the intestine in platyfish (Xiphophorus maculatus) and swordtail fish (Xiphophorus helleri). Tissue Cell 2024; 87:102306. [PMID: 38237385 DOI: 10.1016/j.tice.2024.102306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 03/19/2024]
Abstract
This study aimed to provide a comprehensive analysis of the histological structure of intestinal tissues of platyfish (Xiphophorus maculatus) and swordtail fish (Xiphophorus helleri). Specifically, the objectives were: (1) to compare the structural adaptations of their intestines related to their distinct feeding habits, diet, and digestive strategies; and (2) to explore their potential as animal models for intestinal disease research. Through detailed examination of tissue morphology, cell types, and structural features, this study found that both species lack a stomach, with the intestine directly connected to the esophagus. Additionally, this study proposes a new division of the intestine into anterior and posterior segments based on distinct histological characteristics. The anterior segment may be adapted for temporary food storage and digestion and was characterized by elongated epithelial cells and thin intestinal folds. In contrast, the posterior segment displayed shorter villi and higher concentrations of goblet cells. This study is the first to describe in detail the intestinal morphology of platyfish and swordtail fish. These findings contribute significantly to the understanding of the comparative anatomy and physiology of these fish species, highlighting their potential as valuable models for intestinal biology research.
Collapse
Affiliation(s)
- Marta Gonçalves
- Laboratory of Histology and Embryology, Department of Microscopy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (U.Porto), Rua Jorge Viterbo Ferreira 228, Porto 4050-313, Portugal
| | - Célia Lopes
- Laboratory of Histology and Embryology, Department of Microscopy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (U.Porto), Rua Jorge Viterbo Ferreira 228, Porto 4050-313, Portugal; Histomorphology, Physiopathology and Applied Toxicology Team, Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), University of Porto (U.Porto), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, Matosinhos 4450-208, Portugal
| | - Paula Silva
- Laboratory of Histology and Embryology, Department of Microscopy, School of Medicine and Biomedical Sciences (ICBAS), University of Porto (U.Porto), Rua Jorge Viterbo Ferreira 228, Porto 4050-313, Portugal; NOVA Institute of Communication (ICNOVA), NOVA School of Social Sciences and Humanities, Universidade NOVA de Lisboa, 1069-061 Lisbon, Portugal.
| |
Collapse
|
33
|
Longtine AG, Greenberg NT, Bernaldo de Quirós Y, Brunt VE. The gut microbiome as a modulator of arterial function and age-related arterial dysfunction. Am J Physiol Heart Circ Physiol 2024; 326:H986-H1005. [PMID: 38363212 PMCID: PMC11279790 DOI: 10.1152/ajpheart.00764.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
The arterial system is integral to the proper function of all other organs and tissues. Arterial function is impaired with aging, and arterial dysfunction contributes to the development of numerous age-related diseases, including cardiovascular diseases. The gut microbiome has emerged as an important regulator of both normal host physiological function and impairments in function with aging. The purpose of this review is to summarize more recently published literature demonstrating the role of the gut microbiome in supporting normal arterial development and function and in modulating arterial dysfunction with aging in the absence of overt disease. The gut microbiome can be altered due to a variety of exposures, including physiological aging processes. We explore mechanisms by which the gut microbiome may contribute to age-related arterial dysfunction, with a focus on changes in various gut microbiome-related compounds in circulation. In addition, we discuss how modulating circulating levels of these compounds may be a viable therapeutic approach for improving artery function with aging. Finally, we identify and discuss various experimental considerations and research gaps/areas of future research.
Collapse
Affiliation(s)
- Abigail G Longtine
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Nathan T Greenberg
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
| | - Yara Bernaldo de Quirós
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
- Instituto Universitario de Sanidad Animal y Seguridad Alimentaria, Universidad de las Palmas de Gran Canaria, Las Palmas, Spain
| | - Vienna E Brunt
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, Colorado, United States
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States
| |
Collapse
|
34
|
Zhang Y, Huang K, Duan J, Zhao R, Yang L. Gut microbiota connects the brain and the heart: potential mechanisms and clinical implications. Psychopharmacology (Berl) 2024; 241:637-651. [PMID: 38407637 DOI: 10.1007/s00213-024-06552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/04/2024] [Indexed: 02/27/2024]
Abstract
Nowadays, high morbidity and mortality of cardiovascular diseases (CVDs) and high comorbidity rate of neuropsychiatric disorders contribute to global burden of health and economics. Consequently, a discipline concerning abnormal connections between the brain and the heart and the resulting disease states, known as psychocardiology, has garnered interest among researchers. However, identifying a common pathway that physicians can modulate remains a challenge. Gut microbiota, a constituent part of the human intestinal ecosystem, is likely involved in mutual mechanism CVDs and neuropsychiatric disorder share, which could be a potential target of interventions in psychocardiology. This review aimed to discuss complex interactions from the perspectives of microbial and intestinal dysfunction, behavioral factors, and pathophysiological changes and to present possible approaches to regulating gut microbiota, both of which are future directions in psychocardiology.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Kai Huang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Jiahao Duan
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China
| | - Rong Zhao
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, 213003, China.
| |
Collapse
|
35
|
Ren H, Wang Z, Li Y, Liu J. Association of lipopolysaccharide with new-onset atrial fibrillation in ST-segment elevation myocardial infarction. Heliyon 2024; 10:e27552. [PMID: 38496897 PMCID: PMC10944234 DOI: 10.1016/j.heliyon.2024.e27552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/19/2024] Open
Abstract
Background Lipopolysaccharide (LPS) is related to various cardiovascular diseases. However, the relationship between LPS and new-onset atrial fibrillation (NOAF) after ST-segment elevation myocardial infarction (STEMI) has yet to be elucidated. This study aimed to evaluate the impact of LPS on NOAF in STEMI patients. Methods This was a single-center retrospective observational study including 806 patients diagnosed with STEMI. LPS levels were determined using a commercial ELISA kit. NOAF was characterized by postadmission AF with the absence of any prior history of AF. Results A total of 806 participants were enrolled, with 752 individuals in the non-AF group (93.3%) and 54 individuals in the AF group (6.7%). Multivariable analysis showed that LPS (OR = 1.047; 95% CI: 1.029-1.065, P < 0.001) was an independent risk marker for NOAF. The analysis of the ROC demonstrated that LPS had an AUC of 0.717 in predicting NOAF. When LPS was added to the conventional model, the ability of the risk model to discriminate and reclassify NOAF was improved significantly (IDI 0.053, P = 0.001; NRI 0.510, P < 0.001). Conclusion Elevated LPS is associated with an increased risk of NOAF in STEMI patients. The integration of LPS can improve the ability to predict NOAF in STEMI patients.
Collapse
Affiliation(s)
- Honglong Ren
- Department of Gastroenterology, The First People's Hospital of Yuhang District, Hangzhou, 311100, Zhejiang, China
| | - Zhonghua Wang
- Department of Gastroenterology, The First People's Hospital of Yuhang District, Hangzhou, 311100, Zhejiang, China
| | - Yong Li
- Department of Cardiology, The First People's Hospital of Yuhang District, Hangzhou, 311100, Zhejiang, China
| | - Jinqi Liu
- Department of Cardiology, Huai'an Second People's Hospital, 223001, Jiangsu, China
| |
Collapse
|
36
|
Liu J, Wei X, Wang T, Zhang M, Gao Y, Cheng Y, Chi L. Intestinal mucosal barrier: a potential target for traditional Chinese medicine in the treatment of cardiovascular diseases. Front Pharmacol 2024; 15:1372766. [PMID: 38469405 PMCID: PMC10925767 DOI: 10.3389/fphar.2024.1372766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/12/2024] [Indexed: 03/13/2024] Open
Abstract
Cardiovascular disease (CVD) is a serious public health problem, and among non-communicable diseases, CVD is now the leading cause of mortality and morbidity worldwide. CVD involves multiple organs throughout the body, especially the intestinal tract is the first to be involved. The impairment of the intestinal mucosal barrier is considered a significant pathological alteration in CVD and also contributes to the accelerated progression of the disease, thereby offering novel insights for CVD prevention and treatment. The treatment of Chinese medicine is characterized by multi-metabolites, multi-pathways, and multi-targets. In recent years, the studies of Traditional Chinese Medicine (TCM) in treating CVD by repairing the intestinal mucosal barrier have gradually increased, showing great therapeutic potential. This review summarizes the studies related to the treatment of CVD by TCM (metabolites of Chinese botanical drugs, TCM formulas, and Chinese patent medicine) targeting the repair of the intestinal mucosal barrier, as well as the potential mechanisms. We have observed that TCM exerts regulatory effects on the structure and metabolites of gut microbiota, enhances intestinal tight junctions, improves intestinal dyskinesia, repairs intestinal tissue morphology, and preserves the integrity of the intestinal vascular barrier through its anti-inflammatory, antioxidant, and anti-apoptotic properties. These multifaceted attributes position TCM as a pivotal modulator of inhibiting myocardial fibrosis, and hypertrophy, and promoting vascular repairment. Moreover, there exists a close association between cardiovascular risk factors such as hyperlipidemia, obesity, and diabetes mellitus with CVD. We also explore the mechanisms through which Chinese botanical drugs impact the intestinal mucosal barrier and regulate glucose and lipid metabolism. Consequently, these findings present novel insights and methodologies for treating CVD.
Collapse
Affiliation(s)
- Jiahui Liu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiunan Wei
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tong Wang
- College of Nursing, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Miaomiao Zhang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Gao
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Cheng
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lili Chi
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
37
|
González A, Fullaondo A, Odriozola A. Techniques, procedures, and applications in microbiome analysis. ADVANCES IN GENETICS 2024; 111:81-115. [PMID: 38908906 DOI: 10.1016/bs.adgen.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Microbiota is a complex community of microorganisms living in a defined environment. Until the 20th century, knowledge of microbiota was partial, as the techniques available for their characterization were primarily based on bacteriological culture. In the last twenty years, the development of DNA sequencing technologies, multi-omics, and bioinformatics has expanded our understanding of microorganisms. We have moved from mainly considering them isolated disease-causing agents to recognizing the microbiota as an essential component of host biology. These techniques have shown that the microbiome plays essential roles in various host phenotypes, influencing development, physiology, reproduction, and evolution. This chapter provides researchers with a summary of the primary concepts, sample collection, experimental techniques, and bioinformatics analysis commonly used in microbiome research. The main features, applications in microbiome studies, and their advantages and limitations are included in each section.
Collapse
Affiliation(s)
- Adriana González
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Asier Fullaondo
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Adrián Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
38
|
Chen S, Cai X, Lao L, Wang Y, Su H, Sun H. Brain-Gut-Microbiota Axis in Amyotrophic Lateral Sclerosis: A Historical Overview and Future Directions. Aging Dis 2024; 15:74-95. [PMID: 37307822 PMCID: PMC10796086 DOI: 10.14336/ad.2023.0524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disease which is strongly associated with age. The incidence of ALS increases from the age of 40 and peaks between the ages of 65 and 70. Most patients die of respiratory muscle paralysis or lung infections within three to five years of the appearance of symptoms, dealing a huge blow to patients and their families. With aging populations, improved diagnostic methods and changes in reporting criteria, the incidence of ALS is likely to show an upward trend in the coming decades. Despite extensive researches have been done, the cause and pathogenesis of ALS remains unclear. In recent decades, large quantities of studies focusing on gut microbiota have shown that gut microbiota and its metabolites seem to change the evolvement of ALS through the brain-gut-microbiota axis, and in turn, the progression of ALS will exacerbate the imbalance of gut microbiota, thereby forming a vicious cycle. This suggests that further exploration and identification of the function of gut microbiota in ALS may be crucial to break the bottleneck in the diagnosis and treatment of this disease. Hence, the current review summarizes and discusses the latest research advancement and future directions of ALS and brain-gut-microbiota axis, so as to help relevant researchers gain correlative information instantly.
Collapse
Affiliation(s)
- Shilan Chen
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Xinhong Cai
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Lin Lao
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Yuxuan Wang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Huanxing Su
- Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau.
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China.
| |
Collapse
|
39
|
Liu J, Liu X, Luo Y, Huang F, Xie Y, Zheng S, Jia B, Xiao Z. Sphingolipids: drivers of cardiac fibrosis and atrial fibrillation. J Mol Med (Berl) 2024; 102:149-165. [PMID: 38015241 PMCID: PMC10858135 DOI: 10.1007/s00109-023-02391-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 11/29/2023]
Abstract
Sphingolipids (SLs) are vital constituents of the plasma membrane of animal cells and concurrently regulate numerous cellular processes. An escalating number of research have evinced that SLs assume a crucial part in the progression of tissue fibrosis, a condition for which no efficacious cure exists as of now. Cardiac fibrosis, and in particular, atrial fibrosis, is a key factor in the emergence of atrial fibrillation (AF). AF has become one of the most widespread cardiac arrhythmias globally, with its incidence continuing to mount, thereby propelling it to the status of a major public health concern. This review expounds on the structure and biosynthesis pathways of several pivotal SLs, the pathophysiological mechanisms of AF, and the function of SLs in cardiac fibrosis. Delving into the influence of sphingolipid levels in the alleviation of cardiac fibrosis offers innovative therapeutic strategies to address cardiac fibrosis and AF.
Collapse
Affiliation(s)
- Junjie Liu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ximao Liu
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yucheng Luo
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fangze Huang
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Xie
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shaoyi Zheng
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, China.
| | - Zezhou Xiao
- Department of Cardiovascular Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
40
|
Yarahmadi A, Afkhami H. The role of microbiomes in gastrointestinal cancers: new insights. Front Oncol 2024; 13:1344328. [PMID: 38361500 PMCID: PMC10867565 DOI: 10.3389/fonc.2023.1344328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/20/2023] [Indexed: 02/17/2024] Open
Abstract
Gastrointestinal (GI) cancers constitute more than 33% of new cancer cases worldwide and pose a considerable burden on public health. There exists a growing body of evidence that has systematically recorded an upward trajectory in GI malignancies within the last 5 to 10 years, thus presenting a formidable menace to the health of the human population. The perturbations in GI microbiota may have a noteworthy influence on the advancement of GI cancers; however, the precise mechanisms behind this association are still not comprehensively understood. Some bacteria have been observed to support cancer development, while others seem to provide a safeguard against it. Recent studies have indicated that alterations in the composition and abundance of microbiomes could be associated with the progression of various GI cancers, such as colorectal, gastric, hepatic, and esophageal cancers. Within this comprehensive analysis, we examine the significance of microbiomes, particularly those located in the intestines, in GI cancers. Furthermore, we explore the impact of microbiomes on various treatment modalities for GI cancer, including chemotherapy, immunotherapy, and radiotherapy. Additionally, we delve into the intricate mechanisms through which intestinal microbes influence the efficacy of GI cancer treatments.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
41
|
Gao P, Gao X, Xie B, Tse G, Liu T. Aging and atrial fibrillation: A vicious circle. Int J Cardiol 2024; 395:131445. [PMID: 37848123 DOI: 10.1016/j.ijcard.2023.131445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/17/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023]
Abstract
Atrial fibrillation (AF) is the commonest sustained cardiac arrhythmia observed in clinical practice. Its prevalence increases dramatically with advancing age. This review article discusses the recent advances in studies investigating the relationship between aging and AF and the possible underlying mechanisms.
Collapse
Affiliation(s)
- Pan Gao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xinyi Gao
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Bingxin Xie
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China; School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China.
| |
Collapse
|
42
|
Li K, Liu P, Liu M, Ye J, Zhu L. Putative causal relations among gut flora, serums metabolites and arrhythmia: a Mendelian randomization study. BMC Cardiovasc Disord 2024; 24:38. [PMID: 38212687 PMCID: PMC10782588 DOI: 10.1186/s12872-023-03703-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 12/31/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND The pathogenesis of cardiac arrhythmias is multifaceted, encompassing genetic, environmental, hemodynamic, and various causative factors. Emerging evidence underscores a plausible connection between gut flora, serum metabolites, and specific types of arrhythmias. Recognizing the role of host genetics in shaping the microbiota, we employed two-sample Mendelian randomization analyses to investigate potential causal associations between gut flora, serum metabolites, and distinct arrhythmias. METHODS Mendelian randomization methods were deployed to ascertain causal relationships between 211 gut flora, 575 serum metabolites, and various types of arrhythmias. To ensure the reliability of the findings, five complementary Mendelian randomization methods, including inverse variance weighting methods, were employed. The robustness of the results was scrutinized through a battery of sensitivity analyses, incorporating the Cochran Q test, leave-one-out test, and MR-Egger intercept analysis. RESULTS Eighteen gut flora and twenty-six serum metabolites demonstrated associations with the risk of developing atrial fibrillation. Moreover, ten gut flora and fifty-two serum metabolites were linked to the risk of developing supraventricular tachycardia, while eight gut flora and twenty-five serum metabolites were associated with the risk of developing tachycardia. Additionally, six gut flora and twenty-one serum metabolites exhibited associations with the risk of developing bradycardia. CONCLUSION This study revealed the potential causal relationship that may exist between gut flora, serum metabolites and different cardiac arrhythmias and highlights the need for further exploration. This study provides new perspectives to enhance diagnostic and therapeutic strategies in the field of cardiac arrhythmias.
Collapse
Affiliation(s)
- Kaiyuan Li
- Graduate School of Dalian Medical University, Dalian Medical University, Dalian, China
- Department of Cardiovascular Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, No. 399 Hailing South Road, Taizhou, Jiangsu Province, China
| | - Peng Liu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Miao Liu
- Department of Cardiovascular Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jun Ye
- Department of Cardiovascular Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, No. 399 Hailing South Road, Taizhou, Jiangsu Province, China
| | - Li Zhu
- Graduate School of Dalian Medical University, Dalian Medical University, Dalian, China.
- Department of Cardiovascular Medicine, The Affiliated Taizhou People's Hospital of Nanjing Medical University, No. 399 Hailing South Road, Taizhou, Jiangsu Province, China.
| |
Collapse
|
43
|
Zhang S, Li M, Chang L, Mao X, Jiang Y, Shen X, Niu K, Lu X, Zhang R, Song Y, Ma K, Li H, Wei C, Hou Y, Wu Y. Bazi Bushen capsule improves the deterioration of the intestinal barrier function by inhibiting NLRP3 inflammasome-mediated pyroptosis through microbiota-gut-brain axis. Front Microbiol 2024; 14:1320202. [PMID: 38260869 PMCID: PMC10801200 DOI: 10.3389/fmicb.2023.1320202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Purpose The senescence-accelerated prone mouse 8 (SAMP8) is a widely used model for accelerating aging, especially in central aging. Mounting evidence indicates that the microbiota-gut-brain axis may be involved in the pathogenesis and progression of central aging-related diseases. This study aims to investigate whether Bazi Bushen capsule (BZBS) attenuates the deterioration of the intestinal function in the central aging animal model. Methods In our study, the SAMP8 mice were randomly divided into the model group, the BZ-low group (0.5 g/kg/d BZBS), the BZ-high group (1 g/kg/d BZBS) and the RAPA group (2 mg/kg/d rapamycin). Age-matched SAMR1 mice were used as the control group. Next, cognitive function was detected through Nissl staining and two-photon microscopy. The gut microbiota composition of fecal samples was analyzed by 16S rRNA gene sequencing. The Ileum tissue morphology was observed by hematoxylin and eosin staining, and the intestinal barrier function was observed by immunofluorescence. The expression of senescence-associated secretory phenotype (SASP) factors, including P53, TNF-α, NF-κB, IL-4, IL-6, and IL-10 was measured by real-time quantitative PCR. Macrophage infiltration and the proliferation and differentiation of intestinal cells were assessed by immunohistochemistry. We also detected the inflammasome and pyroptosis levels in ileum tissue by western blotting. Results BZBS improved the cognitive function and neuronal density of SAMP8 mice. BZBS also restored the intestinal villus structure and barrier function, which were damaged in SAMP8 mice. BZBS reduced the expression of SASP factors and the infiltration of macrophages in the ileum tissues, indicating a lower level of inflammation. BZBS enhanced the proliferation and differentiation of intestinal cells, which are essential for maintaining intestinal homeostasis. BZBS modulated the gut microbiota composition, by which BZBS inhibited the activation of inflammasomes and pyroptosis in the intestine. Conclusion BZBS could restore the dysbiosis of the gut microbiota and prevent the deterioration of intestinal barrier function by inhibiting NLRP3 inflammasome-mediated pyroptosis. These results suggested that BZBS attenuated the cognitive aging of SAMP8 mice, at least partially, by targeting the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Shixiong Zhang
- College of Traditional Chinese Medicine, College of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
| | - Mengnan Li
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, China
| | - Liping Chang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, China
| | - Xinjing Mao
- College of Traditional Chinese Medicine, College of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
| | - Yuning Jiang
- College of Traditional Chinese Medicine, College of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
| | - Xiaogang Shen
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine—Luobing Theory, Shijiazhuang, China
| | - Kunxu Niu
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine—Luobing Theory, Shijiazhuang, China
| | - Xuan Lu
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine—Luobing Theory, Shijiazhuang, China
| | - Runtao Zhang
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine—Luobing Theory, Shijiazhuang, China
| | - Yahui Song
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine—Luobing Theory, Shijiazhuang, China
| | - Kun Ma
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, China
- High-level TCM Key Disciplines of National Administration of Traditional Chinese Medicine—Luobing Theory, Shijiazhuang, China
| | - Hongrong Li
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, China
| | - Cong Wei
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
- Key Laboratory of State Administration of TCM (Cardio-Cerebral Vessel Collateral Disease), Shijiazhuang, China
| | - Yunlong Hou
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
| | - Yiling Wu
- College of Traditional Chinese Medicine, College of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- National Key Laboratory for Innovation and Transformation of Luobing Theory, Shijiazhuang, China
| |
Collapse
|
44
|
Yao J, Sterling K, Wang Z, Zhang Y, Song W. The role of inflammasomes in human diseases and their potential as therapeutic targets. Signal Transduct Target Ther 2024; 9:10. [PMID: 38177104 PMCID: PMC10766654 DOI: 10.1038/s41392-023-01687-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 09/18/2023] [Accepted: 10/13/2023] [Indexed: 01/06/2024] Open
Abstract
Inflammasomes are large protein complexes that play a major role in sensing inflammatory signals and triggering the innate immune response. Each inflammasome complex has three major components: an upstream sensor molecule that is connected to a downstream effector protein such as caspase-1 through the adapter protein ASC. Inflammasome formation typically occurs in response to infectious agents or cellular damage. The active inflammasome then triggers caspase-1 activation, followed by the secretion of pro-inflammatory cytokines and pyroptotic cell death. Aberrant inflammasome activation and activity contribute to the development of diabetes, cancer, and several cardiovascular and neurodegenerative disorders. As a result, recent research has increasingly focused on investigating the mechanisms that regulate inflammasome assembly and activation, as well as the potential of targeting inflammasomes to treat various diseases. Multiple clinical trials are currently underway to evaluate the therapeutic potential of several distinct inflammasome-targeting therapies. Therefore, understanding how different inflammasomes contribute to disease pathology may have significant implications for developing novel therapeutic strategies. In this article, we provide a summary of the biological and pathological roles of inflammasomes in health and disease. We also highlight key evidence that suggests targeting inflammasomes could be a novel strategy for developing new disease-modifying therapies that may be effective in several conditions.
Collapse
Affiliation(s)
- Jing Yao
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Keenan Sterling
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Zhe Wang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yun Zhang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, P.R. China.
| | - Weihong Song
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, The University of British Columbia, 2255 Wesbrook Mall, Vancouver, BC, V6T 1Z3, Canada.
- Zhejiang Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and The Affiliated Kangning Hospital, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325000, China.
| |
Collapse
|
45
|
Shi B, Li H, He X. Advancing lifelong precision medicine for cardiovascular diseases through gut microbiota modulation. Gut Microbes 2024; 16:2323237. [PMID: 38411391 PMCID: PMC10900281 DOI: 10.1080/19490976.2024.2323237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024] Open
Abstract
The gut microbiome is known as the tenth system of the human body that plays a vital role in the intersection between health and disease. The considerable inter-individual variability in gut microbiota poses both challenges and great prospects in promoting precision medicine in cardiovascular diseases (CVDs). In this review, based on the development, evolution, and influencing factors of gut microbiota in a full life circle, we summarized the recent advances on the characteristic alteration in gut microbiota in CVDs throughout different life stages, and depicted their pathological links in mechanism, as well as the highlight achievements of targeting gut microbiota in CVDs prevention, diagnosis and treatment. Personalized strategies could be tailored according to gut microbiota characteristics in different life stages, including gut microbiota-blood metabolites combined prediction and diagnosis, dietary interventions, lifestyle improvements, probiotic or prebiotic supplements. However, to fulfill the promise of a lifelong cardiovascular health, more mechanism studies should progress from correlation to causality and decipher novel mechanisms linking specific microbes and CVDs. It is also promising to use the burgeoning artificial intelligence and machine learning to target gut microbiota for developing diagnosis system and screening for new therapeutic interventions.
Collapse
Affiliation(s)
- Bozhong Shi
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Li
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaomin He
- Department of Cardiothoracic Surgery, Shanghai Children’s Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Heart Center and Shanghai Institute of Pediatric Congenital Heart Disease, Shanghai Children’s Medical Center, National Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
46
|
Usman I, Anwar A, Shukla S, Pathak P. Mechanistic Review on the Role of Gut Microbiota in the Pathology of Cardiovascular Diseases. Cardiovasc Hematol Disord Drug Targets 2024; 24:13-39. [PMID: 38879769 DOI: 10.2174/011871529x310857240607103028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/30/2024] [Accepted: 05/17/2024] [Indexed: 07/31/2024]
Abstract
Cardiovascular diseases (CVDs), which stand as the primary contributors to illness and death on a global scale, include vital risk factors like hyperlipidemia, hypertension, diabetes, and smoking, to name a few. However, conventional cardiovascular risk factors offer only partial insight into the complexity of CVDs. Lately, a growing body of research has illuminated that the gut microbiome and its by-products are also of paramount importance in the initiation and progression of CVDs. The gastrointestinal tract houses trillions of microorganisms, commonly known as gut microbiota, that metabolize nutrients, yielding substances like trimethylamine-N-oxide (TMAO), bile acids (BAs), short-chain fatty acids (SCFAs), indoxyl sulfate (IS), and so on. Strategies aimed at addressing these microbes and their correlated biological pathways have shown promise in the management and diagnosis of CVDs. This review offers a comprehensive examination of how the gut microbiota contributes to the pathogenesis of CVDs, particularly atherosclerosis, hypertension, heart failure (HF), and atrial fibrillation (AF), explores potential underlying mechanisms, and highlights emerging therapeutic prospects in this dynamic domain.
Collapse
Affiliation(s)
- Iqra Usman
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| | - Aamir Anwar
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| | - Shivang Shukla
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| | - Priya Pathak
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| |
Collapse
|
47
|
Xue W, Luo Y, He W, Yan M, Zhao H, Qing L. Network Pharmacology and Bioinformatics Analyses Identify the Core Genes and Pyroptosis-Related Mechanisms of Nardostachys Chinensis for Atrial Fibrillation. Curr Comput Aided Drug Des 2024; 20:1070-1086. [PMID: 38178669 PMCID: PMC11475257 DOI: 10.2174/0115734099259071231115072421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Nardostachys chinensis is an herbal medicine widely used in the treatment of atrial fibrillation (AF), but the mechanism is unclear. OBJECTIVE To explore the molecular mechanism of N. chinensis against AF. METHODS The TCMSP was used to screen the active N. chinensis compounds and their targets. Differentially expressed genes (DEGs) for AF were identified using open-access databases. Using Venn diagrams, the cross-targets of N. chinensis, pyroptosis, and AF were obtained. The genes underwent molecular docking as well as gene set enrichment analysis (GSEA). A nomogram based on candidate genes was constructed and evaluated with the clinical impact curve. After that, the immune infiltration of the dataset was analyzed by single sample GSEA (ssGSEA). Finally, microRNAs (miRNAs) and transcription factors (TFs) were predicted based on candidate genes. RESULTS Tumor necrosis factor (TNF) and caspase-8 (CASP8) were obtained as candidate genes by taking the intersection of DEGs, targets of N. chinensis, and pyroptosis-related genes. Tolllike receptor (TLR) and peroxisome proliferator-activated receptor (PPAR) signaling pathways were linked to candidate genes. Additionally, immune cell infiltration analysis revealed that CASP8 was associated with natural killer T cells, natural killer cells, regulatory T cells (Tregs), myeloid-derived suppressor cells (MDSC), macrophages, CD8 T cells, and CD4 T cells. Finally, miR-34a-5p and several TFs were found to regulate the expression of CASP8 and TNF. CONCLUSION CASP8 and TNF are potential targets of N. chinensis intervention in pyroptosisrelated AF, and the TLR/NLRP3 signaling pathway may be associated with this process.
Collapse
Affiliation(s)
- Weiqi Xue
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuan Luo
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weifeng He
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mengyuan Yan
- First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huanyi Zhao
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lijin Qing
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
48
|
Zhao S, Cang H, Liu Y, Huang Y, Zhang S. Integrated analysis of bulk RNA-seq and single-cell RNA-seq reveals the function of pyrocytosis in the pathogenesis of abdominal aortic aneurysm. Aging (Albany NY) 2023; 15:15287-15323. [PMID: 38112597 PMCID: PMC10781497 DOI: 10.18632/aging.205350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023]
Abstract
Pyrocytosis is involved in the development of abdominal aortic aneurysm (AAA), we explored the pyrocytosis-related hub genes in AAA and conducted a diagnostic model based on the pyrocytosis-related genes score (PRGs). A total of 2 bulk RNA-seq (GSE57691 and GSE47472) datasets and pyrocytosis-related genes were integrated to obtain 24 pyrocytosis-related different expression genes (DEGs). The LASSO Cox regression analysis was conducted to filter out 7 genes and further establish the nomogram signature based on the PRGs that exhibited a good diagnosis value. Weighted gene co-expression network analysis (WGCNA) established 14 gene modules and further identified 6 hub genes which were involved in the regulatory process of pyrocytosis in AAA. At the single cell level, we further identified 3 immune cells were highly associated with the pyrocytosis process in AAA. Finally, the cell-cell communication demonstrated that fibroblasts and endothelial cells and myeloid cells maintained close communications. Here, we identified the dysfunctional expressed pyrocytosis-related genes and immune cells in AAA, which provide a comprehensive understanding of the pathogenesis of AAA.
Collapse
Affiliation(s)
- Shiqi Zhao
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang, China
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Hai Cang
- Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Ying Liu
- Department of Anesthesiology, Heilongjiang Provincial Hospital, Harbin 150036, Heilongjiang, China
| | - Yanjie Huang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| | - Song Zhang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang, China
| |
Collapse
|
49
|
Ząbczyk M, Kruk A, Natorska J, Undas A. Low-grade endotoxemia in acute pulmonary embolism: Links with prothrombotic plasma fibrin clot phenotype. Thromb Res 2023; 232:70-76. [PMID: 37949000 DOI: 10.1016/j.thromres.2023.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Lipopolysaccharide (LPS) can traverse the intestinal barrier and enter bloodstream, causing endotoxemia and triggering inflammation. Increased circulating LPS was reported in arterial thromboembolism. We investigated whether increased LPS levels occur in acute pulmonary embolism (PE) and if it is associated with a prothrombotic state. METHODS We studied 120 normotensive PE patients (aged 59 [48-68] years) on admission, after 5-7 days, and after a 3-month anticoagulation. Serum LPS levels, along with zonulin, a marker of gut permeability, endogenous thrombin potential (ETP), fibrin clot permeability (Ks), clot lysis time (CLT), fibrinolysis proteins, and platelet markers were assessed. RESULTS Median LPS concentration on admission was 70.5 (61.5-82) pg/mL (min-max, 34-134 pg/mL), in association with C-reactive protein (r = 0.22, p = 0.018), but not with fibrinogen, D-dimer or platelet markers. Patients with more severe PE had higher LPS levels compared with the remainder. Median zonulin level was 3.26 (2.74-4.08) ng/mL and correlated with LPS (r = 0.66, p < 0.0001). Patients with baseline LPS levels in the top quartile (≥82 pg/mL; n = 29) compared to lower quartiles had 18.6 % increased ETP, 14.5 % reduced Ks, and 25.3 % prolonged CLT, related to higher plasminogen activator inhibitor type 1 (PAI-1) levels. LPS decreased by 23.4 % after 5-7 days and by 40.4 % after 3-month anticoagulation together with reduced zonulin by 18.4 % and 22.3 %, respectively, compared to baseline (all p < 0.001). LPS levels were not related with fibrin characteristics and other variables assessed at 3 months. CONCLUSIONS Low-grade endotoxemia is detectable in patients with acute PE and may contribute to increased thrombin generation and PAI-1-mediated hypofibrinolysis.
Collapse
Affiliation(s)
- Michał Ząbczyk
- St. John Paul II Hospital, Kraków, Poland; Institute of Cardiology, Jagiellonian University Medical College, Kraków, Poland
| | | | - Joanna Natorska
- St. John Paul II Hospital, Kraków, Poland; Institute of Cardiology, Jagiellonian University Medical College, Kraków, Poland
| | - Anetta Undas
- St. John Paul II Hospital, Kraków, Poland; Institute of Cardiology, Jagiellonian University Medical College, Kraków, Poland.
| |
Collapse
|
50
|
Li Z, Zhang X, Wu H, Ma Z, Liu X, Ma J, Zhang D, Sheng L, Chen X, Zhang S. Hydrangea paniculata coumarins attenuate experimental membranous nephritis by bidirectional interactions with the gut microbiota. Commun Biol 2023; 6:1189. [PMID: 37993541 PMCID: PMC10665342 DOI: 10.1038/s42003-023-05581-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023] Open
Abstract
Coumarins isolated from Hydrangea paniculata (HP) had a renal protective effect in experimental membranous nephritis (MN), but the mechanisms are not clear. Currently, we investigate whether the modulation of gut dysbiosis by HP contributes to its renal protection. Experimental MN rats were treated with HP for six weeks. Fecal 16S rDNA sequencing and metabolomics were performed. Fecal microbiota transplantation (FMT) was used for the evaluation study. The results demonstrate that deteriorated renal function and gut dysbiosis are found in MN rats, as manifested by a higher Firmicutes/Bacteroidetes ratio and reduced diversity and richness, but both changes were reversed by HP treatment. Reduced gut dysbiosis is correlated with improved colonic integrity and lower endotoxemia in HP-treated rats. HP normalized the abnormal level of fecal metabolites by increasing short-chain fatty acid production and hindering the production of uremic toxin precursors. FMT of HP-treated feces to MN animals moderately reduced endotoxemia and albuminuria. Moreover, major coumarins in HP were only biotransformed into more bioactive 7-hydroxycoumarin by gut microbiota, which strengthened the effect of HP in vivo. Depletion of the gut microbiota partially abolished its renal protective effect. In conclusion, the bidirectional interaction between HP and the gut microbiota contributes to its beneficial effect.
Collapse
Affiliation(s)
- Zhaojun Li
- State key laboratory of bioactive substances and functions of natural medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union medical college, Beijing, 100050, China
- Department of Medicine Solna, Center for Molecular Medicine, Karolinska University Hospital and Karolinska Institutet, Stockholm, Sweden
| | - Xingguang Zhang
- Department of Endocrinology, The seventh medical center of Chinese PLA General Hospital, Beijing, 100070, China
| | - Haijie Wu
- State key laboratory of bioactive substances and functions of natural medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union medical college, Beijing, 100050, China
| | - Zhiling Ma
- State key laboratory of bioactive substances and functions of natural medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union medical college, Beijing, 100050, China
| | - Xikun Liu
- State key laboratory of bioactive substances and functions of natural medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union medical college, Beijing, 100050, China
| | - Jie Ma
- State key laboratory of bioactive substances and functions of natural medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union medical college, Beijing, 100050, China
| | - Dongming Zhang
- State key laboratory of bioactive substances and functions of natural medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union medical college, Beijing, 100050, China
| | - Li Sheng
- State key laboratory of bioactive substances and functions of natural medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union medical college, Beijing, 100050, China.
| | - Xiaoguang Chen
- State key laboratory of bioactive substances and functions of natural medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union medical college, Beijing, 100050, China.
| | - Sen Zhang
- State key laboratory of bioactive substances and functions of natural medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union medical college, Beijing, 100050, China.
| |
Collapse
|