1
|
Senn L, Costa AM, Avallone R, Socała K, Wlaź P, Biagini G. Is the peroxisome proliferator-activated receptor gamma a putative target for epilepsy treatment? Current evidence and future perspectives. Pharmacol Ther 2023; 241:108316. [PMID: 36436690 DOI: 10.1016/j.pharmthera.2022.108316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
The peroxisome proliferator-activated receptor gamma (PPARγ), which belongs to the family of nuclear receptors, has been mainly studied as an important factor in metabolic disorders. However, in recent years the potential role of PPARγ in different neurological diseases has been increasingly investigated. Especially, in the search of therapeutic targets for patients with epilepsy the question of the involvement of PPARγ in seizure control has been raised. Epilepsy is a chronic neurological disorder causing a major impact on the psychological, social, and economic conditions of patients and their families, besides the problems of the disease itself. Considering that the world prevalence of epilepsy ranges between 0.5% - 1.0%, this condition is the fourth for importance among the other neurological disorders, following migraine, stroke, and dementia. Among others, temporal lobe epilepsy (TLE) is the most common form of epilepsy in adult patients. About 65% of individuals who receive antiseizure medications (ASMs) experience seizure independence. For those in whom seizures still recur, investigating PPARγ could lead to the development of novel ASMs. This review focuses on the most important findings from recent investigations about the potential intracellular PPARγ-dependent processes behind different compounds that exhibited anti-seizure effects. Additionally, recent clinical investigations are discussed along with the promising results found for PPARγ agonists and the ketogenic diet (KD) in various rodent models of epilepsy.
Collapse
Affiliation(s)
- Lara Senn
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; PhD School of Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Anna-Maria Costa
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Rossella Avallone
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, PL 20-033 Lublin, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, PL 20-033 Lublin, Poland
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy.
| |
Collapse
|
2
|
A Double-Edged Sword: The Two Faces of PARylation. Int J Mol Sci 2022; 23:ijms23179826. [PMID: 36077221 PMCID: PMC9456079 DOI: 10.3390/ijms23179826] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Poly ADP-ribosylation (PARylation) is a post-translational modification process. Following the discovery of PARP-1, numerous studies have demonstrated the role of PARylation in the DNA damage and repair responses for cellular stress and DNA damage. Originally, studies on PARylation were confined to PARP-1 activation in the DNA repair pathway. However, the interplay between PARylation and DNA repair suggests that PARylation is important for the efficiency and accuracy of DNA repair. PARylation has contradicting roles; however, recent evidence implicates its importance in inflammation, metabolism, and cell death. These differences might be dependent on specific cellular conditions or experimental models used, and suggest that PARylation may play two opposing roles in cellular homeostasis. Understanding the role of PARylation in cellular function is not only important for identifying novel therapeutic approaches; it is also essential for gaining insight into the mechanisms of unexplored diseases. In this review, we discuss recent reports on the role of PARylation in mediating diverse cellular functions and homeostasis, such as DNA repair, inflammation, metabolism, and cell death.
Collapse
|
3
|
Jafari H, Hussain S, Campbell MJ. Nuclear Receptor Coregulators in Hormone-Dependent Cancers. Cancers (Basel) 2022; 14:2402. [PMID: 35626007 PMCID: PMC9139824 DOI: 10.3390/cancers14102402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/09/2022] [Indexed: 12/10/2022] Open
Abstract
Nuclear receptors (NRs) function collectively as a transcriptional signaling network that mediates gene regulatory actions to either maintain cellular homeostasis in response to hormonal, dietary and other environmental factors, or act as orphan receptors with no known ligand. NR complexes are large and interact with multiple protein partners, collectively termed coregulators. Coregulators are essential for regulating NR activity and can dictate whether a target gene is activated or repressed by a variety of mechanisms including the regulation of chromatin accessibility. Altered expression of coregulators contributes to a variety of hormone-dependent cancers including breast and prostate cancers. Therefore, understanding the mechanisms by which coregulators interact with and modulate the activity of NRs provides opportunities to develop better prognostic and diagnostic approaches, as well as novel therapeutic targets. This review aims to gather and summarize recent studies, techniques and bioinformatics methods used to identify distorted NR coregulator interactions that contribute as cancer drivers in hormone-dependent cancers.
Collapse
Affiliation(s)
- Hedieh Jafari
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA;
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
| | - Shahid Hussain
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
| | - Moray J. Campbell
- Department of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA;
| |
Collapse
|
4
|
Luo H, Chen L, Cui Z, Du J, Yang H, Qiu W, Zhai L, Liang H, Tang H. Poly(ADP-ribose)polymerase-1 affects hydroquinone-induced aberrant cell cycle and apoptosis through activation of p16/pRb signaling pathway in TK6 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113259. [PMID: 35121258 DOI: 10.1016/j.ecoenv.2022.113259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Hydroquinone (HQ), a key metabolite of benzene, affects cell cycle and apoptosis. Poly (ADP-ribose) polymerase-1 (PARP-1) plays an important role in DNA damage repair. To explore whether PARP-1 is involved in HQ-induced cell cycle and apoptosis, we assessed the effect of PARP-1 suppression and overexpression on induction of cell cycle and apoptosis analyzed by flow cytometry analysis. We observed that HQ induced aberrant cell cycle progression and apoptosis. We further confirmed that PARP-1 suppression accelerated the cell cycle progression and inhibited cell apoptosis via inhibiting p16/pRb signal pathway after acute HQ exposure, while overexpression of PARP-1 displayed the opposite results. Therefore, we concluded that HQ-induced cell cycle and apoptosis were regulated by PARP-1 through activation of p16/pRb signaling pathway.
Collapse
Affiliation(s)
- Hao Luo
- Institute of Environmental Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Lin Chen
- Institute of Environmental Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Zheming Cui
- Institute of Environmental Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jinlin Du
- Institute of Environmental Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Hui Yang
- Institute of Environmental Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Weifeng Qiu
- Institute of Environmental Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Lu Zhai
- Institute of Environmental Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Hairong Liang
- Institute of Environmental Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Huanwen Tang
- Institute of Environmental Health, Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China.
| |
Collapse
|
5
|
Sangphech N, Sillapachaiyaporn C, Nilkhet S, Chuchawankul S. Auricularia polytricha ethanol crude extract from sequential maceration induces lipid accumulation and inflammatory suppression in RAW264.7 macrophages. Food Funct 2021; 12:10563-10570. [PMID: 34571527 DOI: 10.1039/d0fo02574g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Auricularia polytricha (AP), an edible mushroom, is continuously being studied due to the medicinal properties. In this study, AP crude extracts from three sequential extraction, starting from hexane (APH), ethanol (APE) and water (APW), were examined for their anti-inflammatory activity and lipid accumulation property in macrophages. APE treatment was found to increase lipid droplet accumulation in both RAW264.7 and LPS-stimulated RAW264.7 cells in a dose dependent manner. Furthermore, nitric oxide production upon LPS stimulation was suppressed on APE pre-treatment. LC-MS analysis was performed to identify the potential bioactive compounds in APE. The PPARγ agonist, 15-Deoxy-Δ12,14-prostaglandin J2-2-glycerol ester (15d-PGJ2-G), was uniquely presented in APE, which was previously described to bind with PPARγ and induces lipid uptake via the upregulation of Cd36. We found that pre-treatment with APE also showed an increase in Cd36 mRNA in RAW264.7 cells, indicating that 15d-PGJ2-G is the potential active compound found in AP. In conclusion, APE exhibited the induction of lipid uptake via CD36, resulting in lipid accumulation.
Collapse
Affiliation(s)
- Naunpun Sangphech
- Medical Technology, School of Allied Health Sciences, Walailak University, 222 Thaiburi, Thasala, Nakorn Si Thammarat, 80160, Thailand
| | - Chanin Sillapachaiyaporn
- Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sunita Nilkhet
- Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Siriporn Chuchawankul
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand.,Immunomodulation of Natural Products Research Group, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
6
|
PARPs in lipid metabolism and related diseases. Prog Lipid Res 2021; 84:101117. [PMID: 34450194 DOI: 10.1016/j.plipres.2021.101117] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 12/28/2022]
Abstract
PARPs and tankyrases (TNKS) represent a family of 17 proteins. PARPs and tankyrases were originally identified as DNA repair factors, nevertheless, recent advances have shed light on their role in lipid metabolism. To date, PARP1, PARP2, PARP3, tankyrases, PARP9, PARP10, PARP14 were reported to have multi-pronged connections to lipid metabolism. The activity of PARP enzymes is fine-tuned by a set of cholesterol-based compounds as oxidized cholesterol derivatives, steroid hormones or bile acids. In turn, PARPs modulate several key processes of lipid homeostasis (lipotoxicity, fatty acid and steroid biosynthesis, lipoprotein homeostasis, fatty acid oxidation, etc.). PARPs are also cofactors of lipid-responsive nuclear receptors and transcription factors through which PARPs regulate lipid metabolism and lipid homeostasis. PARP activation often represents a disruptive signal to (lipid) metabolism, and PARP-dependent changes to lipid metabolism have pathophysiological role in the development of hyperlipidemia, obesity, alcoholic and non-alcoholic fatty liver disease, type II diabetes and its complications, atherosclerosis, cardiovascular aging and skin pathologies, just to name a few. In this synopsis we will review the evidence supporting the beneficial effects of pharmacological PARP inhibitors in these diseases/pathologies and propose repurposing PARP inhibitors already available for the treatment of various malignancies.
Collapse
|
7
|
Mekkawy MH, Fahmy HA, Nada AS, Ali OS. Study of the Radiosensitizing and Radioprotective Efficacy of Bromelain (a Pineapple Extract): In Vitro and In Vivo. Integr Cancer Ther 2021; 19:1534735420950468. [PMID: 32783540 PMCID: PMC7425266 DOI: 10.1177/1534735420950468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This study hypothesizes that, bromelain (BL) acts as radiosensitizer of tumor cells and that it protects normal cells from radiation effects. In vitro and in vivo studies have been carried out to prove that assumption. In vitro MTT cell proliferation assay has shown that the irradiated Ehrlich ascites carcinoma (EAC) cell line could be sensitized by BL pretreatment. In vivo: animals were randomly divided into 5 groups, Group 1: control (PBS i.p for 10 days), Group 2: Ehrlich solid tumor (EST) bearing mice, Group 3: EST + γ-radiation (fractionated dose, 1 Gy × 5), Group 4: EST + BL (6 mg/kg, i.p), daily for 10 days, Group 5: EST + BL for 10 days followed by γ-irradiation (1 Gy × 5). The size and weight of tumors in gamma-irradiated EST bearing mice treated with BL decreased significantly with a significant amelioration in the histopathological examination. Besides, BL mitigated the effect of γ-irradiation on the liver relative gene expression of poly ADP ribose polymerase-1 (PARP1), nuclear factor kappa activated B cells (NF-κB), and peroxisome proliferator-activated receptor α (PPAR-α), and it restored liver function via amelioration of paraoxonase1 (PON1) activity, reactive oxygen species (ROS) content, lipid peroxidation (LPO) and serum aspartate transaminase (AST), alanine transaminase (ALT), and albumin (ALB). It is concluded that BL can be considered as a radio-sensitizer and radio-protector, suggesting a possible role in reducing radiation exposure dose during radiotherapy.
Collapse
Affiliation(s)
- Mai H Mekkawy
- Drug Radiation Research Department, National Centre for Radiation Research and Technology, Egyptian, Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Hanan A Fahmy
- Drug Radiation Research Department, National Centre for Radiation Research and Technology, Egyptian, Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Ahmed S Nada
- Drug Radiation Research Department, National Centre for Radiation Research and Technology, Egyptian, Atomic Energy Authority, Nasr City, Cairo, Egypt
| | - Ola S Ali
- Biochemistry Department, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
8
|
Zhou Y, Liao J, Mei Z, Liu X, Ge J. Insight into Crosstalk between Ferroptosis and Necroptosis: Novel Therapeutics in Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9991001. [PMID: 34257829 PMCID: PMC8257382 DOI: 10.1155/2021/9991001] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/30/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022]
Abstract
Ferroptosis is a nonapoptotic form of cell death characterized by iron-dependent accumulation of lipid hydroperoxides to lethal levels. Necroptosis, an alternative form of programmed necrosis, is regulated by receptor-interacting protein (RIP) 1 activation and by RIP3 and mixed-lineage kinase domain-like (MLKL) phosphorylation. Ferroptosis and necroptosis both play important roles in the pathological progress in ischemic stroke, which is a complex brain disease regulated by several cell death pathways. In the past few years, increasing evidence has suggested that the crosstalk occurs between necroptosis and ferroptosis in ischemic stroke. However, the potential links between ferroptosis and necroptosis in ischemic stroke have not been elucidated yet. Hence, in this review, we overview and analyze the mechanism underlying the crosstalk between necroptosis and ferroptosis in ischemic stroke. And we find that iron overload, one mechanism of ferroptosis, leads to mitochondrial permeability transition pore (MPTP) opening, which aggravates RIP1 phosphorylation and contributes to necroptosis. In addition, heat shock protein 90 (HSP90) induces necroptosis and ferroptosis by promoting RIP1 phosphorylation and suppressing glutathione peroxidase 4 (GPX4) activation. In this work, we try to deliver a new perspective in the exploration of novel therapeutic targets for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yue Zhou
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jun Liao
- Medical School, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Zhigang Mei
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei 443002, China
| | - Xun Liu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jinwen Ge
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- School of Medicine, Shaoyang University, Shaoyang, Hunan 422000, China
| |
Collapse
|
9
|
Dittrich GM, Froese N, Wang X, Kroeger H, Wang H, Szaroszyk M, Malek-Mohammadi M, Cordero J, Keles M, Korf-Klingebiel M, Wollert KC, Geffers R, Mayr M, Conway SJ, Dobreva G, Bauersachs J, Heineke J. Fibroblast GATA-4 and GATA-6 promote myocardial adaptation to pressure overload by enhancing cardiac angiogenesis. Basic Res Cardiol 2021; 116:26. [PMID: 33876316 PMCID: PMC8055639 DOI: 10.1007/s00395-021-00862-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 03/15/2021] [Indexed: 12/14/2022]
Abstract
Heart failure due to high blood pressure or ischemic injury remains a major problem for millions of patients worldwide. Despite enormous advances in deciphering the molecular mechanisms underlying heart failure progression, the cell-type specific adaptations and especially intercellular signaling remain poorly understood. Cardiac fibroblasts express high levels of cardiogenic transcription factors such as GATA-4 and GATA-6, but their role in fibroblasts during stress is not known. Here, we show that fibroblast GATA-4 and GATA-6 promote adaptive remodeling in pressure overload induced cardiac hypertrophy. Using a mouse model with specific single or double deletion of Gata4 and Gata6 in stress activated fibroblasts, we found a reduced myocardial capillarization in mice with Gata4/6 double deletion following pressure overload, while single deletion of Gata4 or Gata6 had no effect. Importantly, we confirmed the reduced angiogenic response using an in vitro co-culture system with Gata4/6 deleted cardiac fibroblasts and endothelial cells. A comprehensive RNA-sequencing analysis revealed an upregulation of anti-angiogenic genes upon Gata4/6 deletion in fibroblasts, and siRNA mediated downregulation of these genes restored endothelial cell growth. In conclusion, we identified a novel role for the cardiogenic transcription factors GATA-4 and GATA-6 in heart fibroblasts, where both proteins act in concert to promote myocardial capillarization and heart function by directing intercellular crosstalk.
Collapse
Affiliation(s)
- Gesine M Dittrich
- Department of Cardiology and Angiology, Hannover Medical School, 30625, Hannover, Germany
- Department of Cardiovascular Physiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, 68167, Mannheim, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, Germany
| | - Natali Froese
- Department of Cardiology and Angiology, Hannover Medical School, 30625, Hannover, Germany
| | - Xue Wang
- Department of Cardiology and Angiology, Hannover Medical School, 30625, Hannover, Germany
- Shanghai Tianyou Hospital Affiliated To Tongji University, Shanghai, 200333, China
| | - Hannah Kroeger
- Department of Cardiology and Angiology, Hannover Medical School, 30625, Hannover, Germany
| | - Honghui Wang
- Department of Cardiology and Angiology, Hannover Medical School, 30625, Hannover, Germany
| | - Malgorzata Szaroszyk
- Department of Cardiology and Angiology, Hannover Medical School, 30625, Hannover, Germany
| | - Mona Malek-Mohammadi
- Department of Cardiovascular Physiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, 68167, Mannheim, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, Germany
| | - Julio Cordero
- Department of Anatomy and Developmental Biology, European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, 68167, Mannheim, Germany
| | - Merve Keles
- Department of Cardiovascular Physiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, 68167, Mannheim, Germany
| | | | - Kai C Wollert
- Department of Cardiology and Angiology, Hannover Medical School, 30625, Hannover, Germany
| | - Robert Geffers
- Genome Analytics, Helmholtz Center for Infection Research, 38124, Braunschweig, Germany
| | - Manuel Mayr
- King's British Heart Foundation Centre, King's College London, London, UK
| | - Simon J Conway
- HB Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Gergana Dobreva
- Department of Anatomy and Developmental Biology, European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, 68167, Mannheim, Germany
- German Center for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, Germany
| | - Johann Bauersachs
- Department of Cardiology and Angiology, Hannover Medical School, 30625, Hannover, Germany
| | - Joerg Heineke
- Department of Cardiology and Angiology, Hannover Medical School, 30625, Hannover, Germany.
- Department of Cardiovascular Physiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim of Heidelberg University, 68167, Mannheim, Germany.
- German Center for Cardiovascular Research (DZHK), Partner site Heidelberg/Mannheim, Germany.
- Cardiovascular Physiology, European Center for Angioscience (ECAS), Medizinische Fakultät Mannheim, Universität Heidelberg, Ludolf-Krehl-Str. 7-11, 68167, Mannheim, Germany.
| |
Collapse
|
10
|
Song D, He H, Sinha I, Hases L, Yan F, Archer A, Haldosen LA, Zhao C, Williams C. Blocking Fra-1 sensitizes triple-negative breast cancer to PARP inhibitor. Cancer Lett 2021; 506:23-34. [PMID: 33652085 DOI: 10.1016/j.canlet.2021.02.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/10/2021] [Accepted: 02/23/2021] [Indexed: 12/16/2022]
Abstract
The AP-1 member Fra-1 is overexpressed in TNBC and plays crucial roles in tumor progression and treatment resistance. In a previous large-scale screen, we identified PARP1 to be among 118 proteins that interact with endogenous chromatin-bound Fra-1 in TNBC cells. PARP1 inhibitor (olaparib) is currently in clinical use for treatment of BRCA-mutated TNBC breast cancer. Here, we demonstrate that the Fra-1-PARP1 interaction impacts the efficacy of olaparib treatment. We show that PARP1 interacts with and downregulates Fra-1, thereby reducing AP-1 transcriptional activity. Olaparib treatment, or silencing of PARP1, consequently, increases Fra-1 levels and enhances its transcriptional activity. Increased Fra-1 can have adverse effect, including treatment resistance. We also found that a large fraction of PARP1-regulated genes was dependent on Fra-1. We show that by inhibiting Fra-1/AP-1, non-BRCA-mutated TNBC cells can become sensitized to olaparib treatment. We identify that high PARP1 expression is indicative of a poor clinical outcome in breast cancer patients overall (P = 0.01), but not for HER-2 positive patients. In conclusion, by exploring the functionality of the Fra-1 and PARP1 interaction, we propose that targeting Fra-1 could serve as a combinatory therapeutic approach to improve olaparib treatment outcome for TNBC patients.
Collapse
Affiliation(s)
- Dandan Song
- Department of Biosciences and Nutrition, Karolinska Institutet, S-141 83 Huddinge, Sweden.
| | - Huan He
- School of Public Health, Jilin University, Changchun, 130021, China.
| | - Indranil Sinha
- Department of Women's and Children's Health, Karolinska Institutet, S-171 77 Stockholm, Sweden.
| | - Linnea Hases
- Department of Biosciences and Nutrition, Karolinska Institutet, S-141 83 Huddinge, Sweden; Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, Solna, Sweden.
| | - Feifei Yan
- Department of Biosciences and Nutrition, Karolinska Institutet, S-141 83 Huddinge, Sweden.
| | - Amena Archer
- Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, Solna, Sweden.
| | - Lars-Arne Haldosen
- Department of Biosciences and Nutrition, Karolinska Institutet, S-141 83 Huddinge, Sweden.
| | - Chunyan Zhao
- Department of Biosciences and Nutrition, Karolinska Institutet, S-141 83 Huddinge, Sweden.
| | - Cecilia Williams
- Department of Biosciences and Nutrition, Karolinska Institutet, S-141 83 Huddinge, Sweden; Science for Life Laboratory, Department of Protein Science, CBH, KTH Royal Institute of Technology, Solna, Sweden.
| |
Collapse
|
11
|
Circulating Adiponectin and Its Association with Metabolic Traits and Type 2 Diabetes: Gene-Diet Interactions Focusing on Selected Gene Variants and at the Genome-Wide Level in High-Cardiovascular Risk Mediterranean Subjects. Nutrients 2021; 13:nu13020541. [PMID: 33562295 PMCID: PMC7914877 DOI: 10.3390/nu13020541] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 12/27/2022] Open
Abstract
Adiponectin is gaining renewed interest since, in addition to its possible protective role against insulin resistance and arteriosclerosis, recent studies suggest other additional favorable effects. However, the influence of gene-diet interactions on plasma adiponectin levels is still little understood. We analyzed the association between plasma adiponectin levels and various metabolic traits in a high-cardiovascular risk Mediterranean population, as well as the genetic effect of four candidate single-nucleotide polymorphisms (SNPs) in the adiponectin gene (ADIPOQ) and their interactions with the Mediterranean dietary pattern. Additionally, we explored, at the genome-wide level, the SNPs most associated with plasma adiponectin levels, as well as gene-diet interactions with the Mediterranean diet. In the 954 participants studied (aged 55-80 years), plasma adiponectin levels were strongly associated with plasma HDL-C concentrations (p = 6.6 × 10-36) and inversely related to triglycerides (p = 4.7 × 10-18), fasting glucose (p = 3.5 × 10-16) and type 2 diabetes (p = 1.4 × 10-7). Of the four pre-selected ADIPOQ candidate SNPs, the one most associated with plasma adiponectin was the -11391G > A (rs17300539) promoter SNP (p = 7.2 × 10-5, in the multivariable adjusted model). No significant interactions with the Mediterranean diet pattern were observed for these SNPs. Additionally, in the exploratory genome-wide association study (GWAS), we found new SNPs associated with adiponectin concentrations at the suggestive genome-wide level (p < 1 × 10-5) for the whole population, including the lead SNP rs9738548 (intergenic) and rs11647294 in the VAT1L (Vesicle Amine Transport 1 Like) gene. We also found other promising SNPs on exploring different strata such as men, women, diabetics and non-diabetics (p = 3.5 × 10-8 for rs2850066). Similarly, we explored gene-Mediterranean diet interactions at the GWAS level and identified several SNPs with gene-diet interactions at p < 1 × 10-5. A remarkable gene-diet interaction was revealed for the rs2917570 SNP in the OPCML (Opioid Binding Protein/Cell Adhesion Molecule Like) gene, previously reported to be associated with adiponectin levels in some populations. Our results suggest that, in this high-cardiovascular risk Mediterranean population, and even though adiponectin is favorably associated with metabolic traits and lower type 2 diabetes, the gene variants more associated with adiponectin may be population-specific, and some suggestive gene-Mediterranean diet interactions were detected.
Collapse
|
12
|
Zhang F, Wang C, Jiang Y, Huang K, Liu F, Du M, Luo X, Huang D, Huang K. Yin and Yang Regulation of Liver X Receptor α Signaling Control of Cholesterol Metabolism by Poly(ADP-ribose) polymerase 1. Int J Biol Sci 2020; 16:2868-2882. [PMID: 33061802 PMCID: PMC7545717 DOI: 10.7150/ijbs.50042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 08/22/2020] [Indexed: 01/14/2023] Open
Abstract
Liver X receptor α (LXRα) controls a set of key genes involved in cholesterol metabolism. However, the molecular mechanism of this regulation remains unknown. The regulatory role of poly(ADP-ribose) polymerase 1 (PARP1) in cholesterol metabolism in the liver was examined. Activation of PARP1 in the liver suppressed LXRα sensing and prevented upregulation of genes involved in HCD-induced cholesterol disposal. Mechanistically, LXRα was poly(ADP-ribosyl)ated by activated PARP1, which decreased DNA binding capacity of LXRα, thus preventing its recruitment to the target promoter. Intriguingly, we found that unactivated PARP1 was indispensable for LXRα transactivation and target expression. Further exploration identified unactivated PARP1 as an essential component of the LXRα-promoter complex. Taken together, the results indicate that activated PARP1 suppresses LXRα activation through poly(ADP-ribosyl)ation, while unactivated PARP1 promotes LXRα activation through physical interaction. PARP1 is a pivotal regulator of LXRα signaling and cholesterol metabolism in the liver.
Collapse
Affiliation(s)
- Fengxiao Zhang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology.,Clinical Center for Human Genomic Research, Union Hospital, Huazhong University of Science and Technology
| | - Cheng Wang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Yuhan Jiang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology.,Clinical Center for Human Genomic Research, Union Hospital, Huazhong University of Science and Technology
| | - Kun Huang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology.,Clinical Center for Human Genomic Research, Union Hospital, Huazhong University of Science and Technology
| | - Fangmei Liu
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Meng Du
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Xi Luo
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Dan Huang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology.,Clinical Center for Human Genomic Research, Union Hospital, Huazhong University of Science and Technology
| | - Kai Huang
- Clinical Center for Human Genomic Research, Union Hospital, Huazhong University of Science and Technology
| |
Collapse
|
13
|
The Role of PARP1 in Monocyte and Macrophage Commitment and Specification: Future Perspectives and Limitations for the Treatment of Monocyte and Macrophage Relevant Diseases with PARP Inhibitors. Cells 2020; 9:cells9092040. [PMID: 32900001 PMCID: PMC7565932 DOI: 10.3390/cells9092040] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/04/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Modulation of PARP1 expression, changes in its enzymatic activity, post-translational modifications, and inflammasome-dependent cleavage play an important role in the development of monocytes and numerous subtypes of highly specialized macrophages. Transcription of PARP1 is governed by the proliferation status of cells at each step of their development. Higher abundance of PARP1 in embryonic stem cells and in hematopoietic precursors supports their self-renewal and pluri-/multipotency, whereas a low level of the enzyme in monocytes determines the pattern of surface receptors and signal transducers that are functionally linked to the NFκB pathway. In macrophages, the involvement of PARP1 in regulation of transcription, signaling, inflammasome activity, metabolism, and redox balance supports macrophage polarization towards the pro-inflammatory phenotype (M1), which drives host defense against pathogens. On the other hand, it seems to limit the development of a variety of subsets of anti-inflammatory myeloid effectors (M2), which help to remove tissue debris and achieve healing. PARP inhibitors, which prevent protein ADP-ribosylation, and PARP1‒DNA traps, which capture the enzyme on chromatin, may allow us to modulate immune responses and the development of particular cell types. They can be also effective in the treatment of monocytic leukemia and other cancers by reverting the anti- to the proinflammatory phenotype in tumor-associated macrophages.
Collapse
|
14
|
‘PARP’ing fibrosis: repurposing poly (ADP ribose) polymerase (PARP) inhibitors. Drug Discov Today 2020; 25:1253-1261. [DOI: 10.1016/j.drudis.2020.04.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/14/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022]
|
15
|
The role of ADP-ribose metabolism in metabolic regulation, adipose tissue differentiation, and metabolism. Genes Dev 2020; 34:321-340. [PMID: 32029456 PMCID: PMC7050491 DOI: 10.1101/gad.334284.119] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In this review, Szanto et al. summarize the metabolic regulatory roles of PARP enzymes and their associated pathologies. Poly(ADP-ribose) polymerases (PARPs or ARTDs), originally described as DNA repair factors, have metabolic regulatory roles. PARP1, PARP2, PARP7, PARP10, and PARP14 regulate central and peripheral carbohydrate and lipid metabolism and often channel pathological disruptive metabolic signals. PARP1 and PARP2 are crucial for adipocyte differentiation, including the commitment toward white, brown, or beige adipose tissue lineages, as well as the regulation of lipid accumulation. Through regulating adipocyte function and organismal energy balance, PARPs play a role in obesity and the consequences of obesity. These findings can be translated into humans, as evidenced by studies on identical twins and SNPs affecting PARP activity.
Collapse
|
16
|
Olaparib induces browning of in vitro cultures of human primary white adipocytes. Biochem Pharmacol 2019; 167:76-85. [PMID: 31251940 DOI: 10.1016/j.bcp.2019.06.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
Abstract
Mitochondrial biogenesis is a key feature of energy expenditure and organismal energy balance. Genetic deletion of PARP1 or PARP2 was shown to induce mitochondrial biogenesis and energy expenditure. In line with that, PARP inhibitors were shown to induce energy expenditure in skeletal muscle. We aimed to investigate whether pharmacological inhibition of PARPs induces brown or beige adipocyte differentiation. SVF fraction of human pericardial adipose tissue was isolated and human adipose-derived mesenchymal stem cells (hADMSCs) were differentiated to white and beige adipocytes. A subset of hADMSCs were differentiated to white adipocytes in the presence of Olaparib, a potent PARP inhibitor currently in clinical use, to induce browning. Olaparib induced morphological changes (smaller lipid droplets) in white adipocytes that is a feature of brown/beige adipocytes. Furthermore, Olaparib induced mitochondrial biogenesis in white adipocytes and enhanced UCP1 expression. We showed that Olaparib treatment inhibited nuclear and cytosolic PAR formation, induced NAD+/NADH ratio and consequently boosted SIRT1 and AMPK activity and the downstream transcriptional program leading to increases in OXPHOS. Olaparib treatment did not induce the expression of beige adipocyte markers in white adipocytes, suggesting the formation of brown or brown-like adipocytes. PARP1, PARP2 and tankyrases are key players in the formation of white adipose tissue. Hereby, we show that PARP inhibition induces the transdifferentiation of white adipocytes to brown-like adipocytes suggesting that PARP activity could be a determinant of the differentiation of these adipocyte lineages.
Collapse
|
17
|
Wang C, Du M, Huang D, Huang K, Huang K. Inhibition of PARP1 Increases IRF-dependent Gene Transcription in Jurkat Cells. Curr Med Sci 2019; 39:356-362. [PMID: 31209803 DOI: 10.1007/s11596-019-2043-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/18/2019] [Indexed: 12/13/2022]
Abstract
Poly(ADP-ribose) polymerase 1 (PARP1) plays important roles in the regulation of transcription factors. Mounting evidence has shown that inhibition of PARP1 influences the expression of genes associated with inflammatory response. Interferon regulatory factor 1 (IRF1) is a critical transcription factor for the development of both the innate and adaptive immune responses against infections. However, the molecular mechanism through which PARP1 mediates the effects has not been clearly demonstrated. Jurkat cells were exposed to dexamethasone (Dex) or PARP1 inhibitor PJ34. The expression levels of IL-12, LMP2, OAS1 and PKR were detected using real-time RT-PCR. The interactions between PARP1 and IRF1 were examined by co-immunoprecipitation (co-IP) assays. We further explored the mechanism of PARP1 suppressing IRF1 by assessing the activities of interferon stimulated response element (ISRE). The mRNA expression of IL-12, LMP2, OAS1 and PKR was obviously suppressed by Dex in Jurkat cells, which could be rescued by PJ34 treatment. Luciferase study revealed that poly(ADP-ribosyl)- ation suppressed IRF1-mediated transcription through preventing the binding of IRF1 to ISREs. PARP1 inhibited IRF1-mediated transcription in Jurkat cells by preventing IRF1 binding to ISREs in the promoters of target genes. It is suggested that PARP1 is a crucial regulator of IRF1-mediated immune response. This study provides experimental evidence for the possible application of PARP1 inhibitors in the treatment of IRF1-related immune anergy.
Collapse
Affiliation(s)
- Cheng Wang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430022, China.,Institution of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Meng Du
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430022, China.,Institution of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dan Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430022, China.,Institution of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Kun Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430022, China. .,Institution of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong, University of Science and Technology, Wuhan, 430022, China. .,Institution of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
18
|
Vio V, Riveros AL, Tapia-Bustos A, Lespay-Rebolledo C, Perez-Lobos R, Muñoz L, Pismante P, Morales P, Araya E, Hassan N, Herrera-Marschitz M, Kogan MJ. Gold nanorods/siRNA complex administration for knockdown of PARP-1: a potential treatment for perinatal asphyxia. Int J Nanomedicine 2018; 13:6839-6854. [PMID: 30498346 PMCID: PMC6207385 DOI: 10.2147/ijn.s175076] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Perinatal asphyxia interferes with neonatal development, resulting in long-term deficits associated with systemic and neurological diseases. Despite the important role of poly (ADP-ribose) polymerase 1 (PARP-1) in the regulation of gene expression and DNA repair, overactivation of PARP-1 in asphyxia-exposed animals worsens the ATP-dependent energetic crisis. Inhibition of PARP-1 offers a therapeutic strategy for diminishing the effects of perinatal asphyxia. Methods We designed a nanosystem that incorporates a specific siRNA for PARP-1 knockdown. The siRNA was complexed with gold nanorods (AuNR) conjugated to the peptide CLPFFD for brain targeting. Results The siRNA was efficiently delivered into PC12 cells, resulting in gene silencing. The complex was administered intraperitoneally in vivo to asphyxia-exposed rat pups, and the ability of the AuNR-CLPFFD/siRNA complex to reach the brain was demonstrated. Conclusion The combination of a nanosystem for delivery and a specific siRNA for gene silencing resulted in effective inhibition of PARP-1 in vivo.
Collapse
Affiliation(s)
- Valentina Vio
- Department of Pharmacological and Toxicology Chemistry, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile, .,Program of Molecular and Clinical Pharmacology, Medical Faculty, Universidad de Chile, Santiago, Chile,
| | - Ana L Riveros
- Department of Pharmacological and Toxicology Chemistry, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile,
| | - Andrea Tapia-Bustos
- Program of Molecular and Clinical Pharmacology, Medical Faculty, Universidad de Chile, Santiago, Chile,
| | - Carolyne Lespay-Rebolledo
- Program of Molecular and Clinical Pharmacology, Medical Faculty, Universidad de Chile, Santiago, Chile,
| | - Ronald Perez-Lobos
- Program of Molecular and Clinical Pharmacology, Medical Faculty, Universidad de Chile, Santiago, Chile,
| | - Luis Muñoz
- Chemical Meteorology Section, Comisión Chilena de Energía Nuclear, Santiago, Chile
| | - Paola Pismante
- Chemical Meteorology Section, Comisión Chilena de Energía Nuclear, Santiago, Chile
| | - Paola Morales
- Program of Molecular and Clinical Pharmacology, Medical Faculty, Universidad de Chile, Santiago, Chile, .,Department of Neuroscience, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Eyleen Araya
- Departamento de Ciencias Quimicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Santiago, Chile
| | - Natalia Hassan
- Department of Pharmacological and Toxicology Chemistry, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile, .,Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago, Chile
| | - Mario Herrera-Marschitz
- Program of Molecular and Clinical Pharmacology, Medical Faculty, Universidad de Chile, Santiago, Chile,
| | - Marcelo J Kogan
- Department of Pharmacological and Toxicology Chemistry, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile, .,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile,
| |
Collapse
|
19
|
PARP1 promote autophagy in cardiomyocytes via modulating FoxO3a transcription. Cell Death Dis 2018; 9:1047. [PMID: 30323296 PMCID: PMC6189197 DOI: 10.1038/s41419-018-1108-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 02/06/2023]
Abstract
Autophagy is a key regulatory process in maintaining cellular homoeostasis via lysosome degradation. Growing evidence reveals that poly(ADP-ribose) polymerase-1 (PARP1) is involved in the progression of many cardiovascular diseases. This study was undertaken to discuss the role of PARP1 in cardiomyocyte autophagy. Our results demonstrated that PARP1 was activated in response to starvation-induced myocardial autophagy. We identified Forkhead box O (FoxO)3a as a substrate of PARP1. Upon PARP1 activation, poly(ADP-ribosyl)ation dissociated histone H1 from FoxO3a target gene promoter and promoted FoxO3a nuclear accumulation and binding activity to the target promoters, resulting in increased expression of autophagy related genes. Activated autophagy by PARP1 impaired mitochondrial metabolism and promoted cardiomyocyte death. And PARP1 silencing or specific inhibitors alleviated the promotion of FoxO3 activity upon starvation or myocardial ischemia, thus suppressing cardiac apoptosis and fibrosis. Together, these data indicate that PARP1-mediated poly(ADP-ribosyl)ation of FoxO3a plays a key role in cardiomyocyte autophagy. The utilization of PARP1 as a therapeutic target for related cardiovascular diseases would be desirable.
Collapse
|
20
|
Wang H, Yang X, Yang Q, Gong L, Xu H, Wu Z. PARP-1 inhibition attenuates cardiac fibrosis induced by myocardial infarction through regulating autophagy. Biochem Biophys Res Commun 2018; 503:1625-1632. [DOI: 10.1016/j.bbrc.2018.07.091] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 07/19/2018] [Indexed: 12/13/2022]
|
21
|
Feng GS, Zhu CG, Li ZM, Wang PX, Huang Y, Liu M, He P, Lou LL, Chen SR, Liu PQ. Synthesis of the novel PARP-1 inhibitor AG-690/11026014 and its protective effects on angiotensin II-induced mouse cardiac remodeling. Acta Pharmacol Sin 2017; 38:638-650. [PMID: 28239158 DOI: 10.1038/aps.2016.159] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 11/24/2016] [Indexed: 12/12/2022] Open
Abstract
We previously identified AG-690/11026014 (6014) as a novel poly(ADP-ribose) polymerase-1 (PARP-1) inhibitor that effectively prevented angiotensin II (Ang II)-induced cardiomyocyte hypertrophy. In the present study, we reported a new synthesis route for 6014, and investigated its protective effects on Ang II-induced cardiac remodeling and cardiac dysfunction and the underlying mechanisms in mice. We designed a new synthesis route to obtain a sufficient quantity of 6014 for this in vivo study. C57BL/6J mice were infused with Ang II and treated with 6014 (10, 30, 90 mg·kg-1·d-1, ig) for 4 weeks. Then two-dimensional echocardiography was performed to assess the cardiac function and structure. Histological changes of the hearts were examined with HE staining and Masson's trichrome staining. The protein expression was evaluated by Western blot, immunohistochemistry and immunofluorescence assays. The activities of sirtuin-1 (SIRT-1) and the content of NAD+ were detected with the corresponding test kits. Treatment with 6014 dose-dependently improved cardiac function, including LVEF, CO and SV and reversed the changes of cardiac structure in Ang II-infused mice: it significantly ameliorated Ang II-induced cardiac hypertrophy evidenced by attenuating the enlargement of cardiomyocytes, decreased HW/BW and LVW/BW, and decreased expression of hypertrophic markers ANF, BNP and β-MHC; it also prevented Ang II-induced cardiac fibrosis, as implied by the decrease in excess accumulation of extracellular matrix (ECM) components collagen I, collagen III and FN. Further studies revealed that treatment with 6014 did not affect the expression levels of PARP-1, but dose-dependently inhibited the activity of PARP-1 and subsequently restored the activity of SIRT-1 in heart tissues due to the decreased consumption of NAD+ and attenuated Poly-ADP-ribosylation (PARylation) of SIRT-1. In conclusion, the novel PARP-1 inhibitor 6014 effectively protects mice against AngII-induced cardiac remodeling and improves cardiac function. Thus, 6014 might be a potential therapeutic agent for heart diseases..
Collapse
|
22
|
Huang K, Du M, Tan X, Yang L, Li X, Jiang Y, Wang C, Zhang F, Zhu F, Cheng M, Yang Q, Yu L, Wang L, Huang D, Huang K. PARP1-mediated PPARα poly(ADP-ribosyl)ation suppresses fatty acid oxidation in non-alcoholic fatty liver disease. J Hepatol 2017; 66:962-977. [PMID: 27979751 PMCID: PMC9289820 DOI: 10.1016/j.jhep.2016.11.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 11/09/2016] [Accepted: 11/16/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS PARP1 is a key mediator of cellular stress responses and critical in multiple physiological and pathophysiological processes of cells. However, whether it is involved in the pathogenesis of non-alcoholic fatty liver disease (NAFLD) remains elusive. METHODS We analysed PARP1 activity in the liver of mice on a high fat diet (HFD), and samples from NAFLD patients. Gain- or loss-of-function approaches were used to investigate the roles and mechanisms of hepatic PARP1 in the pathogenesis of NAFLD. RESULTS PARP1 is activated in fatty liver of HFD-fed mice. Pharmacological or genetic manipulations of PARP1 are sufficient to alter the HFD-induced hepatic steatosis and inflammation. Mechanistically we identified peroxisome proliferator-activated receptor α (PPARα) as a substrate of PARP1-mediated poly(ADP-ribosyl)ation. This poly(ADP-ribosyl)ation of PPARα inhibits its recruitment to target gene promoters and its interaction with SIRT1, a key regulator of PPARα signaling, resulting in suppression of fatty acid oxidation upregulation induced by fatty acids. Moreover, we show that PARP1 is a transcriptional repressor of PPARα gene in human hepatocytes, and its activation suppresses the ligand (fenofibrate)-induced PPARα transactivation and target gene expression. Importantly we demonstrate that liver biopsies of NAFLD patients display robust increases in PARP activity and PPARα poly(ADP-ribosyl)ation levels. CONCLUSIONS Our data indicate that PARP1 is activated in fatty liver, which prevents maximal activation of fatty acid oxidation by suppressing PPARα signaling. Pharmacological inhibition of PARP1 may alleviate PPARα suppression and therefore have therapeutic potential for NAFLD. LAY SUMMARY PARP1 is activated in the non-alcoholic fatty liver of mice and patients. Inhibition of PARP1 activation alleviates lipid accumulation and inflammation in fatty liver of mice.
Collapse
Affiliation(s)
- Kun Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China,Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Meng Du
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China,Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Xin Tan
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China,Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Ling Yang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China,Division of Gastroenterology, Department of Internal Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Xiangrao Li
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China,Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Yuhan Jiang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China,Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Cheng Wang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China,Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Fengxiao Zhang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China,Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Feng Zhu
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China,Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Min Cheng
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China,Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Qinglin Yang
- Department of Nutrition Sciences, University of Alabama at Birmingham, AL, USA
| | - Liqing Yu
- Department of Animal and Avian Sciences, University of Maryland, MD, USA
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Dan Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China,Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China; Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, China.
| |
Collapse
|
23
|
Sirtuin 6 prevents matrix degradation through inhibition of the NF-κB pathway in intervertebral disc degeneration. Exp Cell Res 2017; 352:322-332. [PMID: 28215636 DOI: 10.1016/j.yexcr.2017.02.023] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/11/2017] [Accepted: 02/15/2017] [Indexed: 12/12/2022]
Abstract
Intervertebral disc degeneration (IDD) is marked by imbalanced metabolism of the extracellular matrix (ECM) in the nucleus pulposus (NP) of intervertebral discs. This study aimed to determine whether sirtuin 6 (SIRT6), a member of the sirtuin family of nicotinamide adenine dinucleotide-dependent deacetylases, protects the NP from ECM degradation in IDD. Our study showed that expression of SIRT6 markedly decreased during IDD progression. Overexpression of wild-type SIRT6, but not a catalytically inactive mutant, prevented IL-1β-induced NP ECM degradation. SIRT6 depletion by RNA interference in NP cells caused ECM degradation. Moreover, SIRT6 physically interacted with nuclear factor-κB (NF-κB) catalytic subunit p65, transcriptional activity of which was significantly suppressed by SIRT6 overexpression. These results suggest that SIRT6 prevented NP ECM degradation in vitro via inhibiting NF-κB-dependent transcriptional activity and that this effect depended on its deacetylase activity.
Collapse
|
24
|
Vida A, Márton J, Mikó E, Bai P. Metabolic roles of poly(ADP-ribose) polymerases. Semin Cell Dev Biol 2016; 63:135-143. [PMID: 28013023 DOI: 10.1016/j.semcdb.2016.12.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 12/20/2016] [Indexed: 12/19/2022]
Abstract
Poly(ADP-ribosyl)ation (PARylation) is an evolutionarily conserved reaction that had been associated with numerous cellular processes such as DNA repair, protein turnover, inflammatory regulation, aging or metabolic regulation. The metabolic regulatory tasks of poly(ADP-ribose) polymerases (PARPs) are complex, it is based on the regulation of metabolic transcription factors (e.g. SIRT1, nuclear receptors, SREBPs) and certain cellular energy sensors. PARP over-activation can cause damage to mitochondrial terminal oxidation, while the inhibition of PARP-1 or PARP-2 can induce mitochondrial oxidation by enhancing the mitotropic tone of gene transcription and signal transduction. These PARP-mediated processes impact on higher order metabolic regulation that modulates lipid metabolism, circadian oscillations and insulin secretion and signaling. PARP-1, PARP-2 and PARP-7 are related to metabolic diseases such as diabetes, alcoholic and non-alcoholic fatty liver disease (AFLD, NAFLD), or on a broader perspective to Warburg metabolism in cancer or the metabolic diseases accompanying aging.
Collapse
Affiliation(s)
- András Vida
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032, Hungary; MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, H-4032, Hungary
| | - Judit Márton
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032, Hungary
| | - Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032, Hungary; MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, H-4032, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032, Hungary; MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, H-4032, Hungary; Research Center for Molecular Medicine, Faculty of Medicine University of Debrecen, 4032, Hungary.
| |
Collapse
|
25
|
Gavin DP, Kusumo H, Sharma RP, Guizzetti M. Ethanol-induced changes in poly (ADP ribose) polymerase and neuronal developmental gene expression. Neuropharmacology 2016; 110:287-296. [PMID: 27497606 DOI: 10.1016/j.neuropharm.2016.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 01/20/2023]
Abstract
Prenatal alcohol exposure has profound effects on neuronal growth and development. Poly-ADP Ribose Polymerase (PARP) enzymes are perhaps unique in the field of epigenetics in that they directly participate in histone modifications, transcription factor modifications, DNA methylation/demethylation and are highly inducible by ethanol. It was our hypothesis that ethanol would induce PARP enzymatic activity leading to alterations in neurodevelopmental gene expression. Mouse E18 cortical neurons were treated with ethanol, PARP inhibitors, and nuclear hormone receptor transcription factor PPARγ agonists and antagonists. Subsequently, we measured PARP activity and changes in Bdnf, OKSM (Oct4, Klf4, Sox2, c-Myc), DNA methylating/demethylating factors, and Pparγ mRNA expression, promoter 5-methylcytosine (5MC) and 5-hydroxymethylcytosine (5HMC), and PPARγ promoter binding. We found that ethanol reduced Bdnf4, 9a, and Klf4 mRNA expression, and increased c-Myc expression. These changes were reversed with a PARP inhibitor. In agreement with its role in DNA demethylation PARP inhibition increased 5MC levels at the c-Myc promoter. In addition, we found that inhibition of PARP enzymatic activity increased PPARγ promoter binding, and this corresponded to increased Bdnf and Klf4 mRNA expression. Our results suggest that PARP participates in DNA demethylation and reduces PPARγ promoter binding. The current study underscores the importance of PARP in ethanol-induced changes to neurodevelopmental gene expression.
Collapse
Affiliation(s)
- David P Gavin
- Jesse Brown Veterans Affairs Medical Center, 820 South Damen Avenue (M/C 151), Chicago, IL 60612, USA; Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA.
| | - Handojo Kusumo
- Jesse Brown Veterans Affairs Medical Center, 820 South Damen Avenue (M/C 151), Chicago, IL 60612, USA; Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA
| | - Rajiv P Sharma
- Jesse Brown Veterans Affairs Medical Center, 820 South Damen Avenue (M/C 151), Chicago, IL 60612, USA; Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, OR 97239, USA; VA Portland Health Care System, 3710 SW US Veterans Hospital Rd, Portland, OR 97239, USA
| |
Collapse
|
26
|
Wang S, Shi XL, Feng M, Wang X, Zhang ZH, Zhao X, Han B, Ma HC, Dai B, Ding YT. Puerarin protects against CCl4-induced liver fibrosis in mice: possible role of PARP-1 inhibition. Int Immunopharmacol 2016; 38:238-45. [PMID: 27318789 DOI: 10.1016/j.intimp.2016.06.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 06/09/2016] [Accepted: 06/12/2016] [Indexed: 12/14/2022]
Abstract
Liver fibrosis, which is the pathophysiologic process of the liver due to sustained wound healing in response to chronic liver injury, will eventually progress to cirrhosis. Puerarin, a bioactive isoflavone glucoside derived from the traditional Chinese medicine pueraria, has been reported to have many anti-inflammatory and anti-fibrosis properties. However, the detailed mechanisms are not well studied yet. This study aimed to investigate the effects of puerarin on liver function and fibrosis process in mice induced by CCl4. C57BL/6J mice were intraperitoneally injected with 10% CCl4 in olive oil(2mL/kg) with or without puerarin co-administration (100 and 200mg/kg intraperitoneally once daily) for four consecutive weeks. As indicated by the ameliorative serum hepatic enzymes and the reduced histopathologic abnormalities, the data collected showed that puerarin can protect against CCl4-induced chronic liver injury. Moreover, CCl4-induced development of fibrosis, as evidenced by increasing expression of alpha smooth muscle actin(α-SMA), collagen-1, transforming growth factor (TGF)-β and connective tissue growth factor(CTGF) in liver, were suppressed by puerarin. Possible mechanisms related to these suppressive effects were realized by inhibition on NF-κB signaling pathway, reactive oxygen species(ROS) production and mitochondrial dysfunction in vivo. In addition, these protective inhibition mentioned above were driven by down-regulation of PARP-1 due to puerarin because puerarin can attenuate the PARP-1 expression in CCl4-damaged liver and PJ34, a kind of PARP-1 inhibitor, mimicked puerarin's protection. In conclusion, puerarin played a protective role in CCl4-induced liver fibrosis probably through inhibition of PARP-1 and subsequent attenuation of NF-κB, ROS production and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Shuai Wang
- Department of Hepatobiliary Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Xiao-Lei Shi
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Min Feng
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Xun Wang
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhi-Heng Zhang
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China; Medical School of Southeast University, Nanjing, 210008, Nanjing, China
| | - Xin Zhao
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Bing Han
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Hu-Cheng Ma
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Bo Dai
- Department of Hepatobiliary Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China
| | - Yi-Tao Ding
- Department of Hepatobiliary Surgery, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, China; Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
27
|
Said RS, El-Demerdash E, Nada AS, Kamal MM. Resveratrol inhibits inflammatory signaling implicated in ionizing radiation-induced premature ovarian failure through antagonistic crosstalk between silencing information regulator 1 (SIRT1) and poly(ADP-ribose) polymerase 1 (PARP-1). Biochem Pharmacol 2016; 103:140-150. [PMID: 26827941 DOI: 10.1016/j.bcp.2016.01.019] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 01/25/2016] [Indexed: 01/28/2023]
Abstract
This study hypothesized that resveratrol, a silencing information regulator 1 (SIRT1) activator, would counteract the inflammatory signaling associated with radiotherapy-induced premature ovarian failure (POF). Immature female Sprague-Dawley rats were subjected to a single dose of γ-radiation to induce POF and treated with resveratrol (25mg/kg) once daily for two weeks before and three days post irradiation. Resveratrol preserves the entire ovarian follicle pool manifested by increasing serum anti-Müllerian hormone (AMH) levels. Radiation triggered inflammatory process in the ovary through enhanced NF-κB and poly(ADP-ribose) polymerase (PARP)-1 expression which convinced the expression of inflammatory markers including IL-6, IL-8, and visfatin mRNA levels, as well as inducible nitric oxide synthase and cyclooxygenase-2 protein expression with a concomitant reduction in IL-10 mRNA levels. Resveratrol significantly counteracted the effect of radiation and upregulated the gene expression of peroxisome proliferator-activated receptor γ (PPAR-γ) and SIRT1. Resveratrol-activated SIRT1 expression was associated with inhibition of PARP-1 and NF-κB expression-mediated inflammatory cytokines. Our findings suggest that resveratrol restored ovarian function through increasing AMH levels, and diminishing ovarian inflammation, predominantly via upregulation of PPAR-γ and SIRT1 expression leading to inhibition of NF-κB provoked inflammatory cytokines.
Collapse
Affiliation(s)
- Riham Soliman Said
- National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| | - Ahmed Shafik Nada
- National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Mohamed M Kamal
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
28
|
White UA, Maier J, Zhao P, Richard AJ, Stephens JM. The modulation of adiponectin by STAT5-activating hormones. Am J Physiol Endocrinol Metab 2016; 310:E129-36. [PMID: 26601851 PMCID: PMC4719028 DOI: 10.1152/ajpendo.00068.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 11/23/2015] [Indexed: 11/22/2022]
Abstract
Adiponectin is a hormone secreted from adipocytes that plays an important role in insulin sensitivity and protects against metabolic syndrome. Growth hormone (GH) and prolactin (PRL) are potent STAT5 activators that regulate the expression of several genes in adipocytes. Studies have shown that the secretion of adiponectin from adipose tissue is decreased by treatment with PRL and GH. In this study, we demonstrate that 3T3-L1 adipocytes treated with GH or PRL exhibit a reduction in adiponectin protein levels. Furthermore, we identified three putative STAT5 binding sites in the murine adiponectin promoter and show that only one of these, located at -3,809, binds nuclear protein in a GH- or PRL-dependent manner. Mutation of the STAT5 binding site reduced PRL-dependent protein binding, and supershift analysis revealed that STAT5A and -5B, but not STAT1 and -3, bind to this site in response to PRL. Chromatin immunoprecipitation (IP) analysis demonstrated that only STAT5A, and not STAT1 and -3, bind to the murine adiponectin promoter in a GH-dependent manner in vivo. Adiponectin promoter/reporter constructs were responsive to GH, and chromatin IP analysis reveals that STAT5 binds the adiponectin promoter in vivo following GH stimulation. Overall, these data strongly suggest that STAT5 activators regulate adiponectin transcription through the binding of STAT5 to the -3,809 site that leads to decreased adiponectin expression and secretion. These mechanistic observations are highly consistent with studies in mice and humans that have high GH or PRL levels that are accompanied by lower circulating levels of adiponectin.
Collapse
Affiliation(s)
- Ursula A White
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana; and
| | - Joel Maier
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana
| | - Peng Zhao
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana; and Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana
| | - Allison J Richard
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana; and
| | - Jacqueline M Stephens
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana; and Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana
| |
Collapse
|
29
|
Freitas Lima LC, Braga VDA, do Socorro de França Silva M, Cruz JDC, Sousa Santos SH, de Oliveira Monteiro MM, Balarini CDM. Adipokines, diabetes and atherosclerosis: an inflammatory association. Front Physiol 2015; 6:304. [PMID: 26578976 PMCID: PMC4630286 DOI: 10.3389/fphys.2015.00304] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/12/2015] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases can be considered the most important cause of death in diabetic population and diabetes can in turn increase the risk of cardiovascular events. Inflammation process is currently recognized as responsible for the development and maintenance of diverse chronic diseases, including diabetes and atherosclerosis. Considering that adipose tissue is an important source of adipokines, which may present anti and proinflammatory effects, the aim of this review is to explore the role of the main adipokines in the pathophysiology of diabetes and atherosclerosis, highlighting the therapeutic options that could arise from the manipulation of these signaling pathways both in humans and in translational models.
Collapse
Affiliation(s)
| | - Valdir de Andrade Braga
- Biotechnology Center, Federal University of Paraiba (Universidade Federal da Paraíba)Joao Pessoa, Brazil
| | | | - Josiane de Campos Cruz
- Biotechnology Center, Federal University of Paraiba (Universidade Federal da Paraíba)Joao Pessoa, Brazil
| | - Sérgio H. Sousa Santos
- Biological Sciences Institute, Federal University of Minas GeraisBelo Horizonte, Brazil
- Health Science Post-Graduate Program, State University of Montes ClarosMontes Claros, Brazil
| | | | - Camille de Moura Balarini
- Biotechnology Center, Federal University of Paraiba (Universidade Federal da Paraíba)Joao Pessoa, Brazil
- Health Sciences Center, Federal University of Paraiba (Universidade Federal da Paraíba)Joao Pessoa, Brazil
| |
Collapse
|
30
|
Maluchenko NV, Kulaeva OI, Kotova EY, Chupyrkina AA, Nikitin DV, Kirpichnikov MP, Studitsky VM. Molecular mechanisms of transcriptional regulation by Poly(ADP-ribose) polymerase 1. Mol Biol 2015. [DOI: 10.1134/s0026893315010094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Lehmann M, Pirinen E, Mirsaidi A, Kunze FA, Richards PJ, Auwerx J, Hottiger MO. ARTD1-induced poly-ADP-ribose formation enhances PPARγ ligand binding and co-factor exchange. Nucleic Acids Res 2014; 43:129-42. [PMID: 25452336 PMCID: PMC4288160 DOI: 10.1093/nar/gku1260] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PPARγ-dependent gene expression during adipogenesis is facilitated by ADP-ribosyltransferase D-type 1 (ARTD1; PARP1)-catalyzed poly-ADP-ribose (PAR) formation. Adipogenesis is accompanied by a dynamic modulation of the chromatin landscape at PPARγ target genes by ligand-dependent co-factor exchange. However, how endogenous PPARγ ligands, which have a low affinity for the receptor and are present at low levels in the cell, can induce sufficient co-factor exchange is unknown. Moreover, the significance of PAR formation in PPARγ-regulated adipose tissue function is also unknown. Here, we show that inhibition of PAR formation in mice on a high-fat diet reduces weight gain and cell size of adipocytes, as well as PPARγ target gene expression in white adipose tissue. Mechanistically, topoisomerase II activity induces ARTD1 recruitment to PPARγ target genes, and ARTD1 automodification enhances ligand binding to PPARγ, thus promoting sufficient transcriptional co-factor exchange in adipocytes. Thus, ARTD1-mediated PAR formation during adipogenesis is necessary to adequately convey the low signal of endogenous PPARγ ligand to effective gene expression. These results uncover a new regulatory mechanism of ARTD1-induced ADP-ribosylation and highlight its importance for nuclear factor-regulated gene expression.
Collapse
Affiliation(s)
- Mareike Lehmann
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, 8057 Zurich, Switzerland Life Science Zurich Graduate School, Molecular Life Science Program, University of Zurich, 8057 Zurich, Switzerland
| | - Eija Pirinen
- Laboratory of Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland Biotechnology and Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
| | - Ali Mirsaidi
- Competence Centre for Applied Biotechnology and Molecular Medicine, University of Zurich, 8057 Zurich, Switzerland Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Friedrich A Kunze
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, 8057 Zurich, Switzerland Life Science Zurich Graduate School, Molecular Life Science Program, University of Zurich, 8057 Zurich, Switzerland
| | - Peter J Richards
- Competence Centre for Applied Biotechnology and Molecular Medicine, University of Zurich, 8057 Zurich, Switzerland Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative and Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Michael O Hottiger
- Institute of Veterinary Biochemistry and Molecular Biology, University of Zurich, 8057 Zurich, Switzerland Competence Centre for Applied Biotechnology and Molecular Medicine, University of Zurich, 8057 Zurich, Switzerland Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
32
|
Wang J, Liu L, Xia Y, Wu D. Silencing of poly(ADP-ribose) polymerase-1 suppresses hyperstretch-induced expression of inflammatory cytokines in vitro. Acta Biochim Biophys Sin (Shanghai) 2014; 46:556-64. [PMID: 24829399 DOI: 10.1093/abbs/gmu035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In addition to biochemical stimuli, physical forces also play a critical role in regulating the structure, function, and metabolism of the lung. Hyperstretch can induce the inflammatory responses in asthma, but the mechanism remains unclear. Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear enzyme that can regulate a variety of inflammatory cytokines expression. In the present study, we aimed to investigate the role and mechanism of PARP-1 in mechanical stretch-induced inflammation in human bronchial epithelial cells (HBEpiCs). HBEpiCs were simulated by mechanical stretch and cells under static were used as the control. PARP-1 expression was interfered by small interfering RNA. Oxidative stress was evaluated by DHE staining. DNA damage was assessed by comet assay. The results showed that interleukin-8 (IL-8) and vascular cell adhesion molecule-1 (VCAM-1) expression were regulated by hyperstretch in a time-dependent manner. Hyperstretch could increase PARP-1 expression and activity by inducing superoxide production and DNA damage. Silencing of PARP-1 attenuated hyperstretch-induced IL-8 and VCAM-1 up-regulation as well as monocytes adhesion, which were related to the inhibition of nuclear factor-kappa B (NF-κB) translocation. Our study showed that hyperstretch could induce inflammatory response and superoxide production as well as DNA damage in HBEpiCs. PARP-1 silencing decreased IL-8 and VCAM-1 expression, partly through inhibition of NF-κB translocation. PARP-1 played a fundamental role in hyperstretch-induced inflammation. PARP-1 silencing could be used as a potential therapeutic approach to reverse bronchial epithelial inflammation in asthma.
Collapse
Affiliation(s)
- Jing Wang
- Department of Intensive Care Unit, Qilu Hospital of Shandong University, Jinan 250012, China Department of Intensive Care Unit, Yu Huang Ding Hospital, Yantai 264000, China
| | - Luyi Liu
- Department of Intensive Care Unit, Yu Huang Ding Hospital, Yantai 264000, China
| | - Yonghong Xia
- Department of Intensive Care Unit, Yu Huang Ding Hospital, Yantai 264000, China
| | - Dawei Wu
- Department of Intensive Care Unit, Qilu Hospital of Shandong University, Jinan 250012, China
| |
Collapse
|
33
|
Caselli C, D'Amico A, Cabiati M, Prescimone T, Del Ry S, Giannessi D. Back to the heart: the protective role of adiponectin. Pharmacol Res 2014; 82:9-20. [PMID: 24657240 DOI: 10.1016/j.phrs.2014.03.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 02/25/2014] [Accepted: 03/06/2014] [Indexed: 12/15/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide and the prevalence of obesity and diabetes are increasing. In obesity, adipose tissue increases the secretion of bioactive mediators (adipokines) that may represent a key mechanism linking obesity to CVD. Adiponectin, extensively studied in metabolic diseases, exerts anti-diabetic, anti-atherogenic and anti-inflammatory activities. Due to these positive actions, the role of adiponectin in cardiovascular protection has been evaluated in recent years. In particular, for its potential therapeutic benefits in humans, adiponectin has become the subject of intense preclinical research. In the cardiovascular context, understanding of the cellular and molecular mechanisms underlying the adiponectin system, throughout its secretion, regulation and signaling, is critical for designing new drugs that target adiponectin system molecules. This review focused on recent advances regarding molecular mechanisms related to protective effects of the adiponectin system on both cardiac and vascular compartments and its potential use as a target for therapeutic intervention of CVD.
Collapse
Affiliation(s)
- C Caselli
- Consiglio Nazionale delle Ricerche (CNR), Institute of Clinical Physiology, Laboratory of Cardiovascular Biochemistry, Pisa 56100, Italy.
| | - A D'Amico
- Scuola Superiore S. Anna, Pisa, Italy
| | - M Cabiati
- Consiglio Nazionale delle Ricerche (CNR), Institute of Clinical Physiology, Laboratory of Cardiovascular Biochemistry, Pisa 56100, Italy
| | - T Prescimone
- Consiglio Nazionale delle Ricerche (CNR), Institute of Clinical Physiology, Laboratory of Cardiovascular Biochemistry, Pisa 56100, Italy
| | - S Del Ry
- Consiglio Nazionale delle Ricerche (CNR), Institute of Clinical Physiology, Laboratory of Cardiovascular Biochemistry, Pisa 56100, Italy
| | - D Giannessi
- Consiglio Nazionale delle Ricerche (CNR), Institute of Clinical Physiology, Laboratory of Cardiovascular Biochemistry, Pisa 56100, Italy
| |
Collapse
|
34
|
Fujiki K, Shinoda A, Kano F, Sato R, Shirahige K, Murata M. PPARγ-induced PARylation promotes local DNA demethylation by production of 5-hydroxymethylcytosine. Nat Commun 2014; 4:2262. [PMID: 23912449 DOI: 10.1038/ncomms3262] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 07/08/2013] [Indexed: 01/23/2023] Open
Abstract
Recent studies have shown that DNA demethylation goes through the conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) by Tet proteins. However, it is still unclear how the target regions for demethylation are distinguished within their genomic context. Here we show that the nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ) has the ability to direct local demethylation around its binding sites, the PPAR response elements (PPREs), during adipocyte differentiation. PPARγ is a key regulator of the differentiation process that forms a PPARγ co-activator complex on PPREs and activates the expression of adipocyte-specific genes. The complex is poly(ADP-ribosyl)ated (PARylated) on PPREs, and Tet proteins catalyse the conversion of 5mC to 5hmC locally by their ability to bind to the PAR polymer, thereby inducing region-specific demethylation. Our study demonstrates that a sequence-dependent transcription factor complex can, through its post-translational modification, serve for Tet proteins as a landmark to identify sites of DNA demethylation.
Collapse
Affiliation(s)
- Katsunori Fujiki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo 153-8902, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Khoo HE, Azlan A, Ismail A, Abas F, Hamid M. Inhibition of oxidative stress and lipid peroxidation by anthocyanins from defatted Canarium odontophyllum pericarp and peel using in vitro bioassays. PLoS One 2014; 9:e81447. [PMID: 24416130 PMCID: PMC3886967 DOI: 10.1371/journal.pone.0081447] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/22/2013] [Indexed: 11/23/2022] Open
Abstract
Canarium odontophyllum, also known as CO, is a highly nutritious fruit. Defatted parts of CO fruit are potent sources of nutraceutical. This study aimed to determine oxidative stress and lipid peroxidation effects of defatted CO pericarp and peel extracts using in vitro bioassays. Cell cytotoxic effect of the CO pericarp and peel extracts were also evaluated using HUVEC and Chang liver cell lines. The crude extracts of defatted CO peel and pericarp showed cytoprotective effects in t-BHP and 40% methanol-induced cell death. The crude extracts also showed no toxic effect to Chang liver cell line. Using CD36 ELISA, NAD+ and LDL inhibition assays, inhibition of oxidative stress were found higher in the crude extract of defatted CO peel compared to the pericarp extract. Hemoglobin and LDL oxidation assays revealed both crude extracts had significantly reduced lipid peroxidation as compared to control. TBARS values among defatted CO pericarp, peel, and cyanidin-3-glucoside showed no significant differences for hemoglobin and LDL oxidation assays. The protective effects of defatted CO parts, especially its peel is related to the presence of high anthocyanin that potentially offers as a pharmaceutical ingredient for cardioprotection.
Collapse
Affiliation(s)
- Hock Eng Khoo
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - Azrina Azlan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Laboratory of Halal Science Research, Halal Product Research Institute, Universiti Putra Malaysia, Selangor, Malaysia
- * E-mail:
| | - Amin Ismail
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
- Laboratory of Halal Science Research, Halal Product Research Institute, Universiti Putra Malaysia, Selangor, Malaysia
| | - Faridah Abas
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Selangor, Malaysia
| | - Muhajir Hamid
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
36
|
Yang L, Huang K, Li X, Du M, Kang X, Luo X, Gao L, Wang C, Zhang Y, Zhang C, Tong Q, Huang K, Zhang F, Huang D. Identification of poly(ADP-ribose) polymerase-1 as a cell cycle regulator through modulating Sp1 mediated transcription in human hepatoma cells. PLoS One 2013; 8:e82872. [PMID: 24367566 PMCID: PMC3868549 DOI: 10.1371/journal.pone.0082872] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 11/06/2013] [Indexed: 11/25/2022] Open
Abstract
The transcription factor Sp1 is implicated in the activation of G0/G1 phase genes. Modulation of Sp1 transcription activities may affect G1-S checkpoint, resulting in changes in cell proliferation. In this study, our results demonstrated that activated poly(ADP-ribose) polymerase 1 (PARP-1) promoted cell proliferation by inhibiting Sp1 signaling pathway. Cell proliferation and cell cycle assays demonstrated that PARP inhibitors or PARP-1 siRNA treatment significantly inhibited proliferation of hepatoma cells and induced G0/G1 cell cycle arrest in hepatoma cells, while overexpression of PARP-1 or PARP-1 activator treatment promoted cell cycle progression. Simultaneously, inhibition of PARP-1 enhanced the expression of Sp1-mediated checkpoint proteins, such as p21 and p27. In this study, we also showed that Sp1 was poly(ADP-ribosyl)ated by PARP-1 in hepatoma cells. Poly(ADP-ribosyl)ation suppressed Sp1 mediated transcription through preventing Sp1 binding to the Sp1 response element present in the promoters of target genes. Taken together, these data indicated that PARP-1 inhibition attenuated the poly(ADP-ribosyl)ation of Sp1 and significantly increased the expression of Sp1 target genes, resulting in G0/G1 cell cycle arrest and the decreased proliferative ability of the hepatoma cells.
Collapse
Affiliation(s)
- Liu Yang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Huang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China ; Clinical Center for Human Genomic Research, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangrao Li
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng Du
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Kang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Luo
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lu Gao
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Wang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqing Zhang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun Zhang
- Clinical Center for Human Genomic Research, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Qiangsong Tong
- Clinical Center for Human Genomic Research, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Huang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China ; Clinical Center for Human Genomic Research, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Fengxiao Zhang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China ; Clinical Center for Human Genomic Research, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Huang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China ; Clinical Center for Human Genomic Research, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
37
|
Poly(ADP-ribose) polymerase 1 promotes oxidative-stress-induced liver cell death via suppressing farnesoid X receptor α. Mol Cell Biol 2013; 33:4492-503. [PMID: 24043304 DOI: 10.1128/mcb.00160-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Farnesoid X receptor α (FXR) is highly expressed in the liver and regulates the expression of various genes involved in liver repair. In this study, we demonstrated that activated poly(ADP-ribose) polymerase 1 (PARP1) promoted hepatic cell death by inhibiting the expression of FXR-dependent hepatoprotective genes. PARP1 could bind to and poly(ADP-ribosyl)ate FXR. Poly(ADP-ribosyl)ation dissociated FXR from the FXR response element (FXRE), present in the promoters of target genes, and suppressed FXR-mediated gene transcription. Moreover, treatment with a FXR agonist attenuated poly(ADP-ribosyl)ation of FXR and promoted FXR-dependent gene expression. We further established the CCl4-induced acute liver injury model in wild-type and FXR-knockout mice and identified an essential role of FXR poly(ADP-ribosyl)ation in CCl4-induced liver injury. Thus, our results identified poly(ADP-ribosyl)ation of FXR by PARP1 as a key step in oxidative-stress-induced hepatic cell death. The molecular association between PARP1 and FXR provides new insight into the mechanism, suggesting that inhibition of PARP1 could prevent liver injury.
Collapse
|
38
|
Hu B, Wu Z, Hergert P, Henke CA, Bitterman PB, Phan SH. Regulation of myofibroblast differentiation by poly(ADP-ribose) polymerase 1. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 182:71-83. [PMID: 23260200 DOI: 10.1016/j.ajpath.2012.09.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 08/21/2012] [Accepted: 09/13/2012] [Indexed: 02/08/2023]
Abstract
Poly(ADP-ribosyl)ation (PARylation) is a post-translational protein modification effected by enzymes belonging to the poly(ADP-ribose) polymerase (PARP) superfamily, mainly by PARP-1. The key acceptors of poly(ADP-ribose) include PARP-1 itself, histones, DNA repair proteins, and transcription factors. Because many of these factors are involved in the regulation of myofibroblast differentiation, we examined the role of PARylation on myofibroblast differentiation. Overexpression of PARP-1 with an expression plasmid activated expression of the α-SMA gene (Acta2), a marker of myofibroblast differentiation in lung fibroblasts. Suppression of PARP-1 activity or gene expression with PARP-1 inhibitors or siRNA, respectively, had the opposite effect on these cells. PARP-1-deficient cells also had reduced α-SMA gene expression. DNA pyrosequencing identified hypermethylated regions of the α-SMA gene in PARP-1-deficient cells, relative to wild-type cells. Interestingly, and of potential relevance to human idiopathic pulmonary fibrosis, PARP activity in lung fibroblasts isolated from idiopathic pulmonary fibrosis patients was significantly higher than that in cells isolated from control subjects. Furthermore, PARP-1-deficient mice exhibited reduced pulmonary fibrosis in response to bleomycin-induced lung injury, relative to wild-type controls. These results suggest that PARylation is important for myofibroblast differentiation and the pathogenesis of pulmonary fibrosis.
Collapse
Affiliation(s)
- Biao Hu
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan 48109-2200, USA
| | | | | | | | | | | |
Collapse
|
39
|
Zhang F, Wang Y, Wang L, Luo X, Huang K, Wang C, Du M, Liu F, Luo T, Huang D, Huang K. Poly(ADP-ribose) polymerase 1 is a key regulator of estrogen receptor α-dependent gene transcription. J Biol Chem 2013; 288:11348-57. [PMID: 23493398 DOI: 10.1074/jbc.m112.429134] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Activation of nuclear receptor estrogen receptor α (ERα) exerts cardiovascular protective effects by modulating the expression of ERα target genes. However, the underlying mechanism remains unclear. PARP1 is a ubiquitous multifunctional nuclear enzyme. In this study, we examined the interplay between PARP1 and ERα, and identified PARP1 as an important regulator of ERα-dependent transcription. We showed that PARP1 could directly bind to ERα, and ERα could be poly(ADP-ribosyl)ated by PARP1. Poly(ADP-ribosyl)ation increased ERα binding to estrogen response element (ERE) present in the promoter of target genes and promoted ERα-mediated gene transcription. Estradiol, the ligand of ERα, increased PARP enzymatic activity and enhanced poly(ADP-ribosyl)ation of ERα. Upon treatment with estradiol, ERα binding to ERE- and ERα-dependent gene expression was dramatically increased in cultured vascular smooth muscle cells (VSMCs). Inhibition of PARP1 by PARP inhibitor or PARP1 siRNA decreased ERα binding to ERE and prevented ERα-dependent gene transcription in VSMCs. Further studies revealed that PARP1 served as an indispensible component for the formation of the ERα-ERE complex by directly interacting with ERα. Thus, our results identify PARP1 as a key regulator of ERα in controlling ERα transactivation.
Collapse
Affiliation(s)
- Fengxiao Zhang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Wuhan, China 430022
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Adiponectin receptors in energy homeostasis and obesity pathogenesis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 114:317-42. [PMID: 23317789 DOI: 10.1016/b978-0-12-386933-3.00009-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adipokines, that is factors secreted by adipose tissue, act through a network of autocrine, paracrine, and endocrine pathways to regulate several aspects of physiology, including glucose and lipid metabolism, neuroendocrine function, reproduction, and cardiovascular function. In particular, adiponectin, a 30-kDa protein, is associated with the regulation of insulin sensitivity, and its levels in serum are affected by altered metabolic homeostasis. Adiponectin effects are mediated by adiponectin receptors, which occur as two isoforms (AdipoR1 and AdipoR2). Transcriptional regulation of adiponectin is by the peroxisome proliferator-activated receptor-gamma (PPAR-γ). However, acting through AdipoR1 and AdipoR2, adiponectin enhances 5' adenosine monophosphate-activated protein kinase (AMPK) and the PPARα-mediated pathways in the liver and skeletal muscles. Adiponectin receptors mediate a wide spectrum of metabolic reactions, including gluconeogenesis and fatty-acid oxidation. Altogether, adiponectin deficiency and/or decreased adiponectin receptor-mediated activity possibly contribute to insulin resistance in metabolic syndromes, coronary heart disease, and liver disease.
Collapse
|
41
|
Ko HL, Ren EC. Functional Aspects of PARP1 in DNA Repair and Transcription. Biomolecules 2012; 2:524-48. [PMID: 24970148 PMCID: PMC4030864 DOI: 10.3390/biom2040524] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/24/2012] [Accepted: 10/31/2012] [Indexed: 01/08/2023] Open
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) is an ADP-ribosylating enzyme essential for initiating various forms of DNA repair. Inhibiting its enzyme activity with small molecules thus achieves synthetic lethality by preventing unwanted DNA repair in the treatment of cancers. Through enzyme-dependent chromatin remodeling and enzyme-independent motif recognition, PARP1 also plays important roles in regulating gene expression. Besides presenting current findings on how each process is individually controlled by PARP1, we shall discuss how transcription and DNA repair are so intricately linked that disturbance by PARP1 enzymatic inhibition, enzyme hyperactivation in diseases, and viral replication can favor one function while suppressing the other.
Collapse
Affiliation(s)
- Hui Ling Ko
- Singapore Immunology Network, A*STAR, 8A Biomedical Grove, #03-06 Immunos, Singapore 138648, Singapore.
| | - Ee Chee Ren
- Singapore Immunology Network, A*STAR, 8A Biomedical Grove, #03-06 Immunos, Singapore 138648, Singapore.
| |
Collapse
|
42
|
Wang Y, Wang L, Zhang F, Zhang C, Deng S, Wang R, Zhang Y, Huang D, Huang K. Inhibition of PARP prevents angiotensin II-induced aortic fibrosis in rats. Int J Cardiol 2012; 167:2285-93. [PMID: 22846599 DOI: 10.1016/j.ijcard.2012.06.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/12/2012] [Accepted: 06/08/2012] [Indexed: 01/07/2023]
Abstract
BACKGROUND Fibrosis is one of the major pathological features of hypertensive vascular disease. In this study, we aim to explore the possible protective effects of poly(ADP-ribose) polymerase (PARP) inhibitor on angiotensin II (AngII)-induced aortic fibrosis. METHODS Sprague-Dawley rats were infused subcutaneously with AngII. PARP inhibitor was intraperitoneally injected once a day. Collagen deposition in thoracic aorta was assayed by Masson tricrome staining. The mRNA and protein expression of TGF-β target genes involved in extracellular matrix (ECM) remodeling in aorta was measured. Plasma level and aortic expression of TGF-β1 was assayed. Correlation of systolic blood pressure (SBP) with plasma level of TGF-β1 was analyzed. In cultured rat vascular smooth muscle cells (VSMCs), effects of PARP inhibition on TGF-β1 expression, Smad3 transactivity, and TGF-β/Smad3 target gene expression were investigated. RESULTS Infusion of AngII promoted aortic PARP activation. Treatment with PARP inhibitor alleviated AngII-induced collagen deposition and expression of TGF-β target genes involved in ECM remodeling in aorta of rat. AngII increased plasma level and aortic expression of TGF-β1. A positive correlation between SBP and plasma level of TGF-β1 was revealed. Treatment with PARP inhibitor prevented AngII-induced elevation of SBP. Further experiments uncovered that AngII treatment increased TGF-β dependent gene expression through Smad3 pathway in cultured VSMCs. Inhibition of PARP prevented AngII-induced increases in TGF-β1 expression, Smad3 transactivity and its target gene expression. CONCLUSIONS These data indicate that inhibition of PARP prevents aortic fibrosis in AngII-induced hypertension in rats. This beneficial effect is mediated by inhibiting TGF-β/Smad3 pathway.
Collapse
Affiliation(s)
- Yan Wang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Jiang G, Zheng L, Pu J, Mei H, Zhao J, Huang K, Zeng F, Tong Q. Small RNAs targeting transcription start site induce heparanase silencing through interference with transcription initiation in human cancer cells. PLoS One 2012; 7:e31379. [PMID: 22363633 PMCID: PMC3282686 DOI: 10.1371/journal.pone.0031379] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 01/06/2012] [Indexed: 12/20/2022] Open
Abstract
Heparanase (HPA), an endo-h-D-glucuronidase that cleaves the heparan sulfate chain of heparan sulfate proteoglycans, is overexpressed in majority of human cancers. Recent evidence suggests that small interfering RNA (siRNA) induces transcriptional gene silencing (TGS) in human cells. In this study, transfection of siRNA against −9/+10 bp (siH3), but not −174/−155 bp (siH1) or −134/−115 bp (siH2) region relative to transcription start site (TSS) locating at 101 bp upstream of the translation start site, resulted in TGS of heparanase in human prostate cancer, bladder cancer, and gastric cancer cells in a sequence-specific manner. Methylation-specific PCR and bisulfite sequencing revealed no DNA methylation of CpG islands within heparanase promoter in siH3-transfected cells. The TGS of heparanase did not involve changes of epigenetic markers histone H3 lysine 9 dimethylation (H3K9me2), histone H3 lysine 27 trimethylation (H3K27me3) or active chromatin marker acetylated histone H3 (AcH3). The regulation of alternative splicing was not involved in siH3-mediated TGS. Instead, siH3 interfered with transcription initiation via decreasing the binding of both RNA polymerase II and transcription factor II B (TFIIB), but not the binding of transcription factors Sp1 or early growth response 1, on the heparanase promoter. Moreover, Argonaute 1 and Argonaute 2 facilitated the decreased binding of RNA polymerase II and TFIIB on heparanase promoter, and were necessary in siH3-induced TGS of heparanase. Stable transfection of the short hairpin RNA construct targeting heparanase TSS (−9/+10 bp) into cancer cells, resulted in decreased proliferation, invasion, metastasis and angiogenesis of cancer cells in vitro and in athymic mice models. These results suggest that small RNAs targeting TSS can induce TGS of heparanase via interference with transcription initiation, and significantly suppress the tumor growth, invasion, metastasis and angiogenesis of cancer cells.
Collapse
Affiliation(s)
- Guosong Jiang
- Department of Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Liduan Zheng
- Department of Pathology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Human Disease Related Gene Research Group, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jiarui Pu
- Department of Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hong Mei
- Department of Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jun Zhao
- Department of Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Kai Huang
- Human Disease Related Gene Research Group, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Department of Cardiology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Fuqing Zeng
- Department of Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- * E-mail: (FQZ) (FZ); (QST) (QT)
| | - Qiangsong Tong
- Department of Surgery, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- Human Disease Related Gene Research Group, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- * E-mail: (FQZ) (FZ); (QST) (QT)
| |
Collapse
|
44
|
Peroxisome proliferator-activated receptor γ agonist troglitazone inhibits high mobility group box 1 expression in endothelial cells via suppressing transcriptional activity of nuclear factor κB and activator protein 1. Shock 2012; 36:228-34. [PMID: 21617575 DOI: 10.1097/shk.0b013e318225b29a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
High mobility group box 1 (HMGB1), a delayed mediator of proinflammatory cytokines, could initiate and amplify inflammatory responses to infection, injury, and other inflammatory stimuli, and it has emerged as a potential therapeutic target for inflammatory diseases. The overexpression of HMGB1 in endothelial cells has been proved to contribute to the development of these diseases. Because many proinflammatory cytokines expression were suppressed by thiazolidinediones (TZDs), agonists for nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ), whether TZDs can inhibit HMGB1 expression and function is of great interest, however, it remains unknown. Herein, we provide evidence that PPARγ agonist troglitazone, a member of the TZD class, modulates HMGB1 expression in the endothelial cell line EA.hy926 and propose a potential mechanism for that. Results from polymerase chain reaction experiments revealed that PPARγ is expressed in EA.hy926 cells, and it can be activated by troglitazone. Troglitazone inhibited the basal and LPS-stimulated HMGB1 expression at the mRNA level and protein level. A luciferase reporter assay showed that troglitazone inhibited not only the transcriptional activation of the HMGB1 promoter but also activities of heterologous promoters driven by nuclear factor κB (NF-κB) or activator protein 1 (AP-1) response elements. Altogether, these data suggest that NF-κB and AP-1 may participate in the inhibitory effect on HMGB1 transcription induced by troglitazone. Activation of PPARγ by troglitazone is effective for HMGB1 inhibition via suppressing NF-κB and AP-1 transcriptional activity in endothelial cells, which provides a new potential strategy to suppress excessive HMGB1 in inflammatory diseases.
Collapse
|
45
|
Peroxisome proliferator-activated receptor-γ cross-regulation of signaling events implicated in liver fibrogenesis. Cell Signal 2011; 24:596-605. [PMID: 22108088 DOI: 10.1016/j.cellsig.2011.11.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Accepted: 11/02/2011] [Indexed: 12/20/2022]
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) is a nuclear receptor with transcriptional activity controlling multiple physical and pathological processes. Recently, PPARγ has been implicated in the pathogenesis of liver fibrosis. Its depleted expression has strong associations with the activation and transdifferentiation of hepatic stellate cells, the central event in liver fibrogenesis. Studies over the past decade demonstrate that PPARγ cross-regulates a number of signaling pathways mediated by growth factors and adipokines, and cellular events including apoptosis and senescence. These signaling and cellular events and their molecular interactions with PPARγ system are profoundly involved in liver fibrogenesis. We critically summarize these mechanistic insights into the PPARγ regulation in liver fibrogenesis based on the updated findings in this area. We conclude with a discussion of the impacts of these discoveries on the interpretation of liver fibrogenesis and their potential therapeutic implications. PPARγ activation could be a promising strategy for antifibrotic therapy.
Collapse
|
46
|
Dadson K, Liu Y, Sweeney G. Adiponectin action: a combination of endocrine and autocrine/paracrine effects. Front Endocrinol (Lausanne) 2011; 2:62. [PMID: 22649379 PMCID: PMC3355882 DOI: 10.3389/fendo.2011.00062] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/10/2011] [Indexed: 12/15/2022] Open
Abstract
The widespread physiological actions of adiponectin have now been well characterized as clinical studies and works in animal models have established strong correlations between circulating adiponectin level and various disease-related outcomes. Thus, conventional thinking attributes many of adiponectin's beneficial effects to endocrine actions of adipose-derived adiponectin. However, it is now clear that several tissues can themselves produce adiponectin and there is growing evidence that locally produced adiponectin can mediate functionally important autocrine or paracrine effects. In this review article we discuss regulation of adiponectin production, its mechanism of action via receptor isoforms and signaling pathways, and its principal physiological effects (i.e., metabolic and cardiovascular). The role of endocrine actions of adiponectin and changes in local production of adiponectin or its receptors in whole body physiology is discussed.
Collapse
Affiliation(s)
- Keith Dadson
- Department of Biology, York UniversityToronto, ON, Canada
| | - Ying Liu
- Department of Biology, York UniversityToronto, ON, Canada
| | - Gary Sweeney
- Department of Biology, York UniversityToronto, ON, Canada
- Institut Pasteur KoreaSeoul, South Korea
| |
Collapse
|
47
|
Huang D, Wang Y, Wang L, Zhang F, Deng S, Wang R, Zhang Y, Huang K. Poly(ADP-ribose) polymerase 1 is indispensable for transforming growth factor-β Induced Smad3 activation in vascular smooth muscle cell. PLoS One 2011; 6:e27123. [PMID: 22073128 PMCID: PMC3205050 DOI: 10.1371/journal.pone.0027123] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 10/11/2011] [Indexed: 12/31/2022] Open
Abstract
Background Transforming growth factor type-β (TGF-β)/Smad pathway plays an essential role in vascular fibrosis. Reactive oxygen species (ROS) generation also mediates TGF-β signaling-induced vascular fibrosis, suggesting that some sort of interaction exists between Smad and redox pathways. However, the underlying molecular mechanism is largely unknown. This study aims to investigate the influence of poly(ADP-ribose) polymerase 1 (PARP1), a downstream effector of ROS, on TGF-β signaling transduction through Smad3 pathway in rat vascular smooth muscle cells (VSMCs). Methods and Results TGF-β1 treatment promoted PARP1 activation through induction of ROS generation in rat VSMCs. TGF-β1-induced phosphorylation and nuclear accumulation of Smad3 was prevented by treatment of cells with PARP inhibitor, 3-aminobenzamide (3AB) or N-(6-oxo-5,6-dihydrophenanthridin-2-yl)-2-(N,N-dimethylamino)acetami (PJ34), or PARP1 siRNA. TGF-β1 treatment promoted poly(ADP-ribosy)lation of Smad3 via activation of PARP1 in the nucleus. Poly(ADP-ribosy)lation enhanced Smad-Smad binding element (SBE) complex formation in nuclear extracts and increased DNA binding activity of Smad3. Pretreatment with 3AB, PJ34, or PARP1 siRNA prevented TGF-β1-induced Smad3 transactivation and expression of Smad3 target genes, including collagen Iα1, collagen IIIα1 and tissue inhibitor of metalloproteinase 1, in rat VSMCs. Conclusions PARP1 is indispensable for TGF-β1 induced Smad3 activation in rat VSMCs. Targeting PARP1 may be a promising therapeutic approach against vascular diseases induced by dysregulation of TGF-β/Smad3 pathway.
Collapse
MESH Headings
- Animals
- Benzamides/pharmacology
- Blotting, Southwestern
- Blotting, Western
- Cell Nucleus/drug effects
- Cell Nucleus/metabolism
- Cells, Cultured
- Electrophoretic Mobility Shift Assay
- Enzyme Inhibitors/pharmacology
- Enzyme-Linked Immunosorbent Assay
- Fluorescent Antibody Technique
- Immunoenzyme Techniques
- Immunoprecipitation
- Luciferases/metabolism
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Phenanthrenes/pharmacology
- Phosphorylation/drug effects
- Poly(ADP-ribose) Polymerase Inhibitors
- Poly(ADP-ribose) Polymerases/genetics
- Poly(ADP-ribose) Polymerases/metabolism
- Promoter Regions, Genetic
- Protein Binding
- RNA, Messenger/genetics
- RNA, Small Interfering/pharmacology
- Rats
- Rats, Sprague-Dawley
- Reactive Oxygen Species/metabolism
- Real-Time Polymerase Chain Reaction
- Signal Transduction/drug effects
- Smad3 Protein/genetics
- Smad3 Protein/metabolism
- Trans-Activators
- Transcription, Genetic
- Transfection
- Transforming Growth Factor beta/genetics
- Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Dan Huang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Wang
- Central Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fengxiao Zhang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Deng
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Wang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Zhang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
- * E-mail: (KH); (YZ)
| | - Kai Huang
- Department of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
- * E-mail: (KH); (YZ)
| |
Collapse
|
48
|
Park HG, Bak EJ, Kim JH, Lee YS, Choi SH, Cha JH, Yoo YJ. Effect of globular adiponectin on interleukin-6 and interleukin-8 expression in periodontal ligament and gingival fibroblasts. J Periodontal Implant Sci 2011; 41:149-56. [PMID: 21811691 PMCID: PMC3139049 DOI: 10.5051/jpis.2011.41.3.149] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 05/21/2011] [Indexed: 11/25/2022] Open
Abstract
Purpose Globular adiponectin (gAd) is a type of adipocytokine, which is mainly produced by adipose tissue. It has been reported that gAd acts as a pro- as well as an anti-inflammatory factor. Interleukin (IL)-6 and IL-8 are pro-inflammatory cytokines. To investigate the role of gAd on periodontal tissues, the expression of adiponectin receptor 1 (AdipoR1) and the effect of gAd on the expression of IL-6 and IL-8 were investigated in periodontal ligament (PDL) and gingival fibroblasts. Methods PDL and gingival fibroblasts were cultured from human periodontal tissues. gAd derived from Escherichia coli and murine myeloma cells were used. The expression of AdipoR1 was estimated by reverse transcription-polymerase chain reaction and western blot. The expression of cytokines was measured by enzyme-linked immunosorbent assay. Results PDL and gingival fibroblasts expressed both mRNA and protein of AdipoR1. gAd derived from E. coli increased the production of IL-6 and IL-8, but polymyxin B, an inhibitor of lipopolysaccharide (LPS), inhibited IL-6 and IL-8 production induced by gAd in both types of cells. gAd derived from murine myeloma cells did not induce IL-6 and IL-8 production in those cells. gAd derived from E. coli contained higher levels of LPS than gAd derived from murine myeloma cells. LPS increased production of IL-6 and IL-8 in PDL and gingival fibroblasts, but pretreatment of cells with gAd derived from murine myeloma cells did not inhibit LPS-induced IL-6 and IL-8 expression. Conclusions Our results suggest that PDL and gingival fibroblasts express AdipoR1 and that gAd does not act as a modulator of IL-6 and IL-8 expression in PDL and gingival fibroblasts.
Collapse
Affiliation(s)
- Hong Gyu Park
- Department of Oral Biology, BK21 Project, Oral Science Research Center, Yonsei University College of Dentistry, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
49
|
Simbulan-Rosenthal CM, Rosenthal DS, Smulson ME. Purification and characterization of poly(ADP-ribosyl)ated DNA replication/repair complexes. Methods Mol Biol 2011; 780:165-90. [PMID: 21870261 DOI: 10.1007/978-1-61779-270-0_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PARP-1, the best studied isoform and most abundantly expressed member of the PARP family of 18 proteins, catalyzes the poly(ADP-ribosyl)ation (PARylation) of various nuclear proteins and play key roles in DNA repair, genome maintenance, DNA replication, recombination, apoptosis, gene expression, and regulation of chromatin function. PARylation modulates the functions of target proteins, mainly PARP-1 itself. A multifunctional enzyme, PARP-1 has been localized within DNA replication, repair, recombination, and transcription complexes, and modifies and regulates the functions of specific components of these complexes. PARylation can regulate the activities of replicative enzymes, such as DNA polymerases α, δ, and ε, topo I and II, primase, RPA, and PCNA in isolated enzymes or within DNA replication complexes (DNA synthesome). PARP-1 and PARylation may (1) play dual roles in nuclear processes, depending on the levels of the substrate NAD and the presence of PARP-activating DNA breaks, (2) recruit acceptor proteins to certain sites or complexes through direct association or through binding to PAR and PAR-binding proteins, and (3) alters the nucleosomal structure of DNA by PARylation of nucleosomal proteins, such as histone H1 to destabilize higher order chromatin structures and promote access of DNA repair and replication enzymes as well as transcription factors to these sites. Here, we describe biochemical approaches that have been utilized in our laboratory for the purification and characterization of PARylated DNA replicative complexes. These methods can be modified for the purification of complexes involved in other nuclear processes. This chapter also briefly discusses current methods by which new PARylated complexes are being identified and studied. Identification, evaluation, and characterization of new complexes could aid in the elucidation of the molecular mechanisms by which PARylation and PARP mediates its pleiotropic roles in various nuclear processes.
Collapse
Affiliation(s)
- Cynthia M Simbulan-Rosenthal
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC, USA
| | | | | |
Collapse
|
50
|
PolyADP-ribosylation is required for pronuclear fusion during postfertilization in mice. PLoS One 2010; 5. [PMID: 20824066 PMCID: PMC2932744 DOI: 10.1371/journal.pone.0012526] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 07/27/2010] [Indexed: 01/30/2023] Open
Abstract
Background During fertilization, pronuclear envelope breakdown (PNEB) is followed by the mingling of male and female genomes. Dynamic chromatin and protein rearrangements require posttranslational modification (PTM) for the postfertilization development. Methodology/Principal Findings Inhibition of poly(ADP-ribose) polymerase activity (PARylation) by either PJ-34 or 5-AIQ resulted in developmental arrest of fertilized embryos at the PNEB. PARylation inhibition affects spindle bundle formation and phosphorylation of Erk molecules of metaphase II (MII) unfertilized oocytes. We found a frequent appearance of multiple pronuclei (PN) in the PARylation-inhibited embryos, suggesting defective polymerization of tubulins. Attenuated phosphorylation of lamin A/C by PARylation was detected in the PARylation-inhibited embryos at PNEB. This was associated with sustained localization of heterodomain protein 1 (HP1) at the PN of the one-cell embryos arrested by PARylation inhibition. Conclusions/Significance Our findings indicate that PARylation is required for pronuclear fusion during postfertilization processes. These data further suggest that PARylation regulates protein dynamics essential for the beginning of mouse zygotic development. PARylation and its involving signal-pathways may represent potential targets as contraceptives.
Collapse
|