1
|
Graf S, Egle M, Sanz MN, Segiser A, Clavier A, Arnold M, Gsponer D, Bartkevics M, Kadner A, Siepe M, Vermathen P, Longnus S. Circulating factors, in both donor and ex-situ heart perfusion, correlate with heart recovery in a pig model of DCD. J Heart Lung Transplant 2025; 44:92-101. [PMID: 39251114 DOI: 10.1016/j.healun.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Heart transplantation with donation after circulatory death and ex-situ heart perfusion offers excellent outcomes and increased transplantation rates. However, improved graft evaluation techniques are required to ensure effective utilization of grafts. Therefore, we investigated circulating factors, both in-situ and ex-situ, as potential biomarkers for cardiac graft quality. METHODS Circulatory death was simulated in anesthetized male pigs with warm ischemic durations of 0, 10, 20, or 30 minutes. Hearts were explanted and underwent ex-situ perfusion for 3 hours in an unloaded mode, followed by left ventricular loading for 1 hour, to evaluate cardiac recovery (outcomes). Multiple donor blood and ex-situ perfusate samples were used for biomarker evaluation with either standard biochemical techniques or nuclear magnetic resonance spectroscopy. RESULTS Circulating adrenaline, both in the donor and at 10 minutes ex-situ heart perfusion, negatively correlated with cardiac recovery (p < 0.05 for all). We identified several new potential biomarkers for cardiac graft quality that can be measured rapidly and simultaneously with nuclear magnetic resonance spectroscopy. At multiple timepoints during unloaded ex-situ heart perfusion, perfusate levels of acetone, betaine, creatine, creatinine, fumarate, hypoxanthine, lactate, pyruvate and succinate (p < 0.05 for all) significantly correlated with outcomes; the optimal timepoint being 60 minutes. CONCLUSIONS In heart donation after circulatory death, circulating adrenaline levels are valuable for cardiac graft evaluation. Nuclear magnetic resonance spectroscopy is of particular interest, as it measures multiple metabolites in a short timeframe. Improved biomarkers may allow more precision and therefore better support clinical decisions about transplantation suitability.
Collapse
Affiliation(s)
- Selianne Graf
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Manuel Egle
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Maria-Nieves Sanz
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Adrian Segiser
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Alexia Clavier
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Maria Arnold
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Didier Gsponer
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Maris Bartkevics
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Alexander Kadner
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Matthias Siepe
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Peter Vermathen
- Magnetic Resonance Methodology Group, Institute of Diagnostic and Interventional Neuroradiology, Inselspital, University of Bern, Bern, Switzerland
| | - Sarah Longnus
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
2
|
Cai Y, Yu Y, Zhang T, Qian B, Wang B, Yan W, Zhao J. GATAD1 is involved in sphingosylphosphorylcholine-attenuated myocardial ischemia-reperfusion injury by modulating myocardial fatty acid oxidation and glucose oxidation. Free Radic Biol Med 2024; 227:166-178. [PMID: 39626862 DOI: 10.1016/j.freeradbiomed.2024.11.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/26/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Modulating the equilibrium between glucose metabolism and fatty acid metabolism represents highly promising novel strategies for therapy of myocardial ischemia/reperfusion (I/R) injury. Sphingosylphosphorylcholine (SPC), an intermediate metabolite of sphingolipids, has shown cardioprotective roles during myocardial infarction by regulating the activities of various transcript factors. Gene microarray revealed that SPC significantly upregulated the expression of GATA zinc finger domain protein 1 (GATAD1), which is a vital transcript factor affecting heart development and various heart diseases. However, it remains unclear whether SPC is involved in the regulation of cardiac fatty acid and glucose metabolism via GATAD1. In this study, we found that myocardium-specific Gatad1 knockout (Gatad1 CKO) significantly increased the myocardial infarct size, impaired cardiac function in I/R mice, and disrupted the protective effect of SPC on the hearts of I/R mice. Immunofluorescence experiment and Western blot evaluation of the nuclear-cytoplasmic fractionation sample showed that GATAD1 acted as a transcription factor and was regulated by SPC. Double fluorescence reporting experiment and quantitative polymerase chain reaction (qPCR) revealed that GATAD1 could inhibit the expression of genes involved in fatty acid oxidation (FAO), i.e., acetyl-coenzyme A acyltransferase 2 (Acaa2) and medium-chain acyl-CoA dehydrogenase (Acadm), and promoted the expression of genes involved in glucose oxidation, i.e., pyruvate dehydrogenase E1 α subunit (Pdha1). Small interfering RNA (SiRNA) or overexpression strategies confirmed the pro-apoptotic roles of Acaa2 and Acadm and anti-apoptotic role of Pdha1 in cardiac myocytes challenged with I/R treatment. In summary, our findings suggest that SPC can be used as a candidate to prevent I/R injury by reshaping fatty acid and glucose metabolism. Transcription factor GATAD1 plays a crucial role in regulating fatty acid oxidation and glucose oxidation homeostasis and is involved in SPC-mediated cardioprotection during I/R of the heart. Our study identifies GATAD1 as a new therapeutic target for clinical treatment of myocardial I/R injury.
Collapse
Affiliation(s)
- Yuqing Cai
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Yifan Yu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Tianliang Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Baoshuo Qian
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Benlong Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Wenxiu Yan
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Jing Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
3
|
Liu C, Zhang D, Long K, Qi W, Pang L, Li J, Cheng KKY, Cai Y. From exosomes to mitochondria and myocardial infarction: Molecular insight and therapeutic challenge. Pharmacol Res 2024; 209:107468. [PMID: 39426469 DOI: 10.1016/j.phrs.2024.107468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/21/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Myocardial infarction (MI) remains a leading cause of mortality worldwide. Despite patients with MI benefit from timely reperfusion therapies, the rates of mortality and morbidity remain substantial, suggesting an enduring need for the development of new approaches. Molecular mechanisms underlying myocardial ischemic injury are associated with both cardiomyocytes and non-cardiomyocytes. Exosomes are nano-sized extracellular vesicles released by almost all eukaryotic cells. They facilitate the communication between various cells by transferring information via their cargo and altering different biological activities in recipient cells. Studies have created great prospects for therapeutic applications of exosomes in MI, as demonstrated through their beneficial effect on heart function and reducing ventricular remodeling in association with fibrosis, angiogenesis, apoptosis, and inflammation. Of note, myocardial ischemic injury is primarily due to restricted blood flow, reducing oxygen availability, and causing inefficient utilization of energy substrates. However, the impact of exosomes on cardiac energy metabolism has not been adequately investigated. Although exosomes have been engineered for targeted delivery to enhance clinical efficacy, challenges must be overcome to utilize them reliably in the clinic. In this review, we summarize the research progress of exosomes for MI with a focus on the known and unknown regarding the role of exosomes in energy metabolism in cardiomyocytes and non-cardiomyocytes; as well as potential research avenues of exosome-mitochondrial energy regulation as well as therapeutic challenges. We aim to help identify more efficient molecular targets that may promote the clinical application of exosomes.
Collapse
Affiliation(s)
- Chang Liu
- Department of Anesthesiology, The First Hospital of Jilin University, Jilin, China; Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Dengwen Zhang
- Department of Anesthesiology, Heyuan People's Hospital, Guangdong, China; Department of Anesthesiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangdong, China
| | - Kekao Long
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Wensheng Qi
- Department of Anesthesiology, The First Hospital of Jilin University, Jilin, China; Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Lei Pang
- Department of Anesthesiology, The First Hospital of Jilin University, Jilin, China
| | - Jia Li
- Department of Neurology, Wuhan No.1 Hospital, Hubei, China
| | - Kenneth King-Yip Cheng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| | - Yin Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China; Research Center for Chinese Medicine Innovation, The Hong Kong Polytechnic University, Hong Kong SAR, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| |
Collapse
|
4
|
Guo B, Zhang F, Yin Y, Ning X, Zhang Z, Meng Q, Yang Z, Jiang W, Liu M, Wang Y, Sun L, Yu L, Mu N. Post-translational modifications of pyruvate dehydrogenase complex in cardiovascular disease. iScience 2024; 27:110633. [PMID: 39224515 PMCID: PMC11367490 DOI: 10.1016/j.isci.2024.110633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Pyruvate dehydrogenase complex (PDC) is a crucial enzyme that connects glycolysis and the tricarboxylic acid (TCA) cycle pathway. It plays an essential role in regulating glucose metabolism for energy production by catalyzing the oxidative decarboxylation of pyruvate to acetyl coenzyme A. Importantly, the activity of PDC is regulated through post-translational modifications (PTMs), phosphorylation, acetylation, and O-GlcNAcylation. These PTMs have significant effects on PDC activity under both physiological and pathophysiological conditions, making them potential targets for metabolism-related diseases. This review specifically focuses on the PTMs of PDC in cardiovascular diseases (CVDs) such as myocardial ischemia/reperfusion injury, diabetic cardiomyopathy, obesity-related cardiomyopathy, heart failure (HF), and vascular diseases. The findings from this review offer theoretical references for the diagnosis, treatment, and prognosis of CVD.
Collapse
Affiliation(s)
- Bo Guo
- Department of Pharmacy, Northwest Woman’s and Children’s Hospital, Xi’an, China
| | - Fujiao Zhang
- College of Life Sciences, Northwest University, Xi’an, China
| | - Yue Yin
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Xingmin Ning
- College of Life Sciences, Northwest University, Xi’an, China
| | - Zihui Zhang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Qinglei Meng
- College of Life Sciences, Yan’an University, Yan’an, China
| | - Ziqi Yang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Wenhua Jiang
- Institute of Medical Research, Northwestern Polytechnical University, Xi’an, China
| | - Manling Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Yishi Wang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Lijuan Sun
- Eye Institute of Chinese PLA and Department of Ophthalmology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Lu Yu
- Department of Pathology, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Nan Mu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
5
|
Zhao S, Liu J, Wu Q, Zhou X. Lactate regulates pathological cardiac hypertrophy via histone lactylation modification. J Cell Mol Med 2024; 28:e70022. [PMID: 39205384 PMCID: PMC11358213 DOI: 10.1111/jcmm.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Under the long-term pressure overload stimulation, the heart experiences embryonic gene activation, leading to myocardial hypertrophy and ventricular remodelling, which can ultimately result in the development of heart failure. Identifying effective therapeutic targets is crucial for the prevention and treatment of myocardial hypertrophy. Histone lysine lactylation (HKla) is a novel post-translational modification that connects cellular metabolism with epigenetic regulation. However, the specific role of HKla in pathological cardiac hypertrophy remains unclear. Our study aims to investigate whether HKla modification plays a pathogenic role in the development of cardiac hypertrophy. The results demonstrate significant expression of HKla in cardiomyocytes derived from an animal model of cardiac hypertrophy induced by transverse aortic constriction surgery, and in neonatal mouse cardiomyocytes stimulated by Ang II. Furthermore, research indicates that HKla is influenced by glucose metabolism and lactate generation, exhibiting significant phenotypic variability in response to various environmental stimuli. In vitro experiments reveal that exogenous lactate and glucose can upregulate the expression of HKla and promote cardiac hypertrophy. Conversely, inhibition of lactate production using glycolysis inhibitor (2-DG), LDH inhibitor (oxamate) and LDHA inhibitor (GNE-140) reduces HKla levels and inhibits the development of cardiac hypertrophy. Collectively, these findings establish a pivotal role for H3K18la in pathological cardiac hypertrophy, offering a novel target for the treatment of this condition.
Collapse
Affiliation(s)
- Shuai‐Shuai Zhao
- Department of Cardiac Surgery, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Jinlong Liu
- Institute of Translational MedicineShanghai UniversityShanghaiChina
| | - Qi‐Cai Wu
- Department of Cardiac Surgery, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Xue‐Liang Zhou
- Department of Cardiac Surgery, The First Affiliated Hospital, Jiangxi Medical CollegeNanchang UniversityNanchangChina
| |
Collapse
|
6
|
Arnold M, Do P, Davidson SM, Large SR, Helmer A, Beer G, Siepe M, Longnus SL. Metabolic Considerations in Direct Procurement and Perfusion Protocols with DCD Heart Transplantation. Int J Mol Sci 2024; 25:4153. [PMID: 38673737 PMCID: PMC11050041 DOI: 10.3390/ijms25084153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
Heart transplantation with donation after circulatory death (DCD) provides excellent patient outcomes and increases donor heart availability. However, unlike conventional grafts obtained through donation after brain death, DCD cardiac grafts are not only exposed to warm, unprotected ischemia, but also to a potentially damaging pre-ischemic phase after withdrawal of life-sustaining therapy (WLST). In this review, we aim to bring together knowledge about changes in cardiac energy metabolism and its regulation that occur in DCD donors during WLST, circulatory arrest, and following the onset of warm ischemia. Acute metabolic, hemodynamic, and biochemical changes in the DCD donor expose hearts to high circulating catecholamines, hypoxia, and warm ischemia, all of which can negatively impact the heart. Further metabolic changes and cellular damage occur with reperfusion. The altered energy substrate availability prior to organ procurement likely plays an important role in graft quality and post-ischemic cardiac recovery. These aspects should, therefore, be considered in clinical protocols, as well as in pre-clinical DCD models. Notably, interventions prior to graft procurement are limited for ethical reasons in DCD donors; thus, it is important to understand these mechanisms to optimize conditions during initial reperfusion in concert with graft evaluation and re-evaluation for the purpose of tailoring and adjusting therapies and ensuring optimal graft quality for transplantation.
Collapse
Affiliation(s)
- Maria Arnold
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| | - Peter Do
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Sean M. Davidson
- The Hatter Cardiovascular Institute, University College London, London WC1E 6HX, UK
| | - Stephen R. Large
- Royal Papworth Hospital, Biomedical Campus, Cambridge CB2 0AY, UK
| | - Anja Helmer
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Georgia Beer
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Matthias Siepe
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Sarah L. Longnus
- Department of Cardiac Surgery, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department for BioMedical Research, University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
7
|
Graf S, Biemmi V, Arnold M, Segiser A, Müller A, Méndez‐Carmona N, Egle M, Siepe M, Barile L, Longnus S. Macrophage-derived extracellular vesicles alter cardiac recovery and metabolism in a rat heart model of donation after circulatory death. J Cell Mol Med 2024; 28:e18281. [PMID: 38652092 PMCID: PMC11037406 DOI: 10.1111/jcmm.18281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/11/2024] [Accepted: 03/14/2024] [Indexed: 04/25/2024] Open
Abstract
Conditions to which the cardiac graft is exposed during transplantation with donation after circulatory death (DCD) can trigger the recruitment of macrophages that are either unpolarized (M0) or pro-inflammatory (M1) as well as the release of extracellular vesicles (EV). We aimed to characterize the effects of M0 and M1 macrophage-derived EV administration on post-ischaemic functional recovery and glucose metabolism using an isolated rat heart model of DCD. Isolated rat hearts were subjected to 20 min aerobic perfusion, followed by 27 min global, warm ischaemia or continued aerobic perfusion and 60 min reperfusion with or without intravascular administration of EV. Four experimental groups were compared: (1) no ischaemia, no EV; (2) ischaemia, no EV; (3) ischaemia with M0-macrophage-dervied EV; (4) ischaemia with M1-macrophage-derived EV. Post-ischaemic ventricular and metabolic recovery were evaluated. During reperfusion, ventricular function was decreased in untreated ischaemic and M1-EV hearts, but not in M0-EV hearts, compared to non-ischaemic hearts (p < 0.05). In parallel with the reduced functional recovery in M1-EV versus M0-EV ischaemic hearts, rates of glycolysis from exogenous glucose and oxidative metabolism tended to be lower, while rates of glycogenolysis and lactate release tended to be higher. EV from M0- and M1-macrophages differentially affect post-ischaemic cardiac recovery, potentially by altering glucose metabolism in a rat model of DCD. Targeted EV therapy may be a useful approach for modulating cardiac energy metabolism and optimizing graft quality in the setting of DCD.
Collapse
Affiliation(s)
- Selianne Graf
- Department of Cardiac SurgeryInselspital Bern University Hospital, University of BernBernSwitzerland
- Department for BioMedical ResearchUniversity of BernBernSwitzerland
- Graduate School of Cellular and Biomedical SciencesUniversity of BernBernSwitzerland
| | - Vanessa Biemmi
- Laboratory for Cardiovascular TheranosticsCardiocentro Ticino Institute‐EOCLuganoSwitzerland
| | - Maria Arnold
- Department of Cardiac SurgeryInselspital Bern University Hospital, University of BernBernSwitzerland
- Department for BioMedical ResearchUniversity of BernBernSwitzerland
| | - Adrian Segiser
- Department of Cardiac SurgeryInselspital Bern University Hospital, University of BernBernSwitzerland
- Department for BioMedical ResearchUniversity of BernBernSwitzerland
| | - Anja Müller
- Department of Cardiac SurgeryInselspital Bern University Hospital, University of BernBernSwitzerland
- Department for BioMedical ResearchUniversity of BernBernSwitzerland
| | - Natalia Méndez‐Carmona
- Department of Cardiac SurgeryInselspital Bern University Hospital, University of BernBernSwitzerland
- Department for BioMedical ResearchUniversity of BernBernSwitzerland
| | - Manuel Egle
- Department of Cardiac SurgeryInselspital Bern University Hospital, University of BernBernSwitzerland
- Department for BioMedical ResearchUniversity of BernBernSwitzerland
- Graduate School of Cellular and Biomedical SciencesUniversity of BernBernSwitzerland
| | - Matthias Siepe
- Department of Cardiac SurgeryInselspital Bern University Hospital, University of BernBernSwitzerland
| | - Lucio Barile
- Laboratory for Cardiovascular TheranosticsCardiocentro Ticino Institute‐EOCLuganoSwitzerland
| | - Sarah Longnus
- Department of Cardiac SurgeryInselspital Bern University Hospital, University of BernBernSwitzerland
- Department for BioMedical ResearchUniversity of BernBernSwitzerland
| |
Collapse
|
8
|
Sun Q, Wagg CS, Güven B, Wei K, de Oliveira AA, Silver H, Zhang L, Vergara A, Chen B, Wong N, Wang F, Dyck JRB, Oudit GY, Lopaschuk GD. Stimulating cardiac glucose oxidation lessens the severity of heart failure in aged female mice. Basic Res Cardiol 2024; 119:133-150. [PMID: 38148348 DOI: 10.1007/s00395-023-01020-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/30/2023] [Accepted: 10/31/2023] [Indexed: 12/28/2023]
Abstract
Heart failure is a prevalent disease worldwide. While it is well accepted that heart failure involves changes in myocardial energetics, what alterations that occur in fatty acid oxidation and glucose oxidation in the failing heart remains controversial. The goal of the study are to define the energy metabolic profile in heart failure induced by obesity and hypertension in aged female mice, and to attempt to lessen the severity of heart failure by stimulating myocardial glucose oxidation. 13-Month-old C57BL/6 female mice were subjected to 10 weeks of a 60% high-fat diet (HFD) with 0.5 g/L of Nω-nitro-L-arginine methyl ester (L-NAME) administered via drinking water to induce obesity and hypertension. Isolated working hearts were perfused with radiolabeled energy substrates to directly measure rates of myocardial glucose oxidation and fatty acid oxidation. Additionally, a series of mice subjected to the obesity and hypertension protocol were treated with a pyruvate dehydrogenase kinase inhibitor (PDKi) to stimulate cardiac glucose oxidation. Aged female mice subjected to the obesity and hypertension protocol had increased body weight, glucose intolerance, elevated blood pressure, cardiac hypertrophy, systolic dysfunction, and decreased survival. While fatty acid oxidation rates were not altered in the failing hearts, insulin-stimulated glucose oxidation rates were markedly impaired. PDKi treatment increased cardiac glucose oxidation in heart failure mice, which was accompanied with improved systolic function and decreased cardiac hypertrophy. The primary energy metabolic change in heart failure induced by obesity and hypertension in aged female mice is a dramatic decrease in glucose oxidation. Stimulating glucose oxidation can lessen the severity of heart failure and exert overall functional benefits.
Collapse
Affiliation(s)
- Qiuyu Sun
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Cory S Wagg
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Berna Güven
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Kaleigh Wei
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Amanda A de Oliveira
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Heidi Silver
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Liyan Zhang
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Ander Vergara
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Brandon Chen
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Nathan Wong
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Faqi Wang
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Jason R B Dyck
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada
| | - Gavin Y Oudit
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada.
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada.
- Department of Pediatrics, University of Alberta, Edmonton, AB, T6G 2S2, Canada.
| |
Collapse
|
9
|
Peng X, Du J, Wang Y. Metabolic signatures in post-myocardial infarction heart failure, including insights into prediction, intervention, and prognosis. Biomed Pharmacother 2024; 170:116079. [PMID: 38150879 DOI: 10.1016/j.biopha.2023.116079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 12/09/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023] Open
Abstract
Heart failure (HF) is a prevalent long-term complication of myocardial infarction (MI). The incidence of post-MI HF is high, and patients with the condition have a poor prognosis. Accurate identification of individuals at high risk for post-MI HF is crucial for implementation of a protective and ideally personalized strategy to prevent fatal events. Post-MI HF is characterized by adverse cardiac remodeling, which results from metabolic changes in response to long-term ischemia. Moreover, various risk factors, including genetics, diet, and obesity, can influence metabolic pathways in patients. This review focuses on the metabolic signatures of post-MI HF that could serve as non-invasive biomarkers for early identification in high-risk populations. We also explore how metabolism participates in the pathophysiology of post-MI HF. Furthermore, we discuss the potential of metabolites as novel targets for treatment of post-MI HF and as biomarkers for prognostic evaluation. It is expected to provide valuable suggestions for the clinical prevention and treatment of post-MI HF from a metabolic perspective.
Collapse
Affiliation(s)
- Xueyan Peng
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China; Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China; Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; Beijing Institute of Heart, Lung and Blood Vessel Disease, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China
| | - Jie Du
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China; Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China; Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; Beijing Institute of Heart, Lung and Blood Vessel Disease, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China.
| | - Yuan Wang
- Beijing Collaborative Innovation Centre for Cardiovascular Disorders, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China; Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China; Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China; Beijing Institute of Heart, Lung and Blood Vessel Disease, No. 2 Anzhen Road, Chaoyang District, Beijing 100029, China.
| |
Collapse
|
10
|
Jiang M, Fan X, Wang Y, Sun X. Effects of hypoxia in cardiac metabolic remodeling and heart failure. Exp Cell Res 2023; 432:113763. [PMID: 37726046 DOI: 10.1016/j.yexcr.2023.113763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/21/2023]
Abstract
Aerobic cellular respiration requires oxygen, which is an essential part of cardiomyocyte metabolism. Thus, oxygen is required for the physiologic metabolic activities and development of adult hearts. However, the activities of metabolic pathways associated with hypoxia in cardiomyocytes (CMs) have not been conclusively described. In this review, we discuss the role of hypoxia in the development of the hearts metabolic system, and the metabolic remodeling associated with the hypoxic adult heart. Hypoxia-inducible factors (HIFs), the signature transcription factors in hypoxic environments, is also investigated for their potential to modulate hypoxia-induced metabolic changes. Metabolic remodeling existing in hypoxic hearts have also been shown to occur in chronic failing hearts, implying that novel therapeutic options for heart failure (HF) may exist from the hypoxic perspective. The pressure overload-induced HF and diabetes-induced HF are also discussed to demonstrate the effects of HIF factor-related pathways to control the metabolic remodeling of failing hearts.
Collapse
Affiliation(s)
- Mingzhou Jiang
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Xi Fan
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, Shanghai, China
| | - Yiqing Wang
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, Shanghai, China.
| | - Xiaotian Sun
- Department of Cardiothoracic Surgery, Huashan Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Sánchez-Pérez P, Mata A, Torp MK, López-Bernardo E, Heiestad CM, Aronsen JM, Molina-Iracheta A, Jiménez-Borreguero LJ, García-Roves P, Costa ASH, Frezza C, Murphy MP, Stenslokken KO, Cadenas S. Energy substrate metabolism, mitochondrial structure and oxidative stress after cardiac ischemia-reperfusion in mice lacking UCP3. Free Radic Biol Med 2023; 205:244-261. [PMID: 37295539 DOI: 10.1016/j.freeradbiomed.2023.05.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/22/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023]
Abstract
Myocardial ischemia-reperfusion (IR) injury may result in cardiomyocyte dysfunction. Mitochondria play a critical role in cardiomyocyte recovery after IR injury. The mitochondrial uncoupling protein 3 (UCP3) has been proposed to reduce mitochondrial reactive oxygen species (ROS) production and to facilitate fatty acid oxidation. As both mechanisms might be protective following IR injury, we investigated functional, mitochondrial structural, and metabolic cardiac remodeling in wild-type mice and in mice lacking UCP3 (UCP3-KO) after IR. Results showed that infarct size in isolated perfused hearts subjected to IR ex vivo was larger in adult and old UCP3-KO mice than in equivalent wild-type mice, and was accompanied by higher levels of creatine kinase in the effluent and by more pronounced mitochondrial structural changes. The greater myocardial damage in UCP3-KO hearts was confirmed in vivo after coronary artery occlusion followed by reperfusion. S1QEL, a suppressor of superoxide generation from site IQ in complex I, limited infarct size in UCP3-KO hearts, pointing to exacerbated superoxide production as a possible cause of the damage. Metabolomics analysis of isolated perfused hearts confirmed the reported accumulation of succinate, xanthine and hypoxanthine during ischemia, and a shift to anaerobic glucose utilization, which all recovered upon reoxygenation. The metabolic response to ischemia and IR was similar in UCP3-KO and wild-type hearts, being lipid and energy metabolism the most affected pathways. Fatty acid oxidation and complex I (but not complex II) activity were equally impaired after IR. Overall, our results indicate that UCP3 deficiency promotes enhanced superoxide generation and mitochondrial structural changes that increase the vulnerability of the myocardium to IR injury.
Collapse
Affiliation(s)
- Patricia Sánchez-Pérez
- Centro de Biología Molecular "Severo Ochoa" (CSIC/UAM), 28049, Madrid, Spain; Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006, Madrid, Spain
| | - Ana Mata
- Centro de Biología Molecular "Severo Ochoa" (CSIC/UAM), 28049, Madrid, Spain; Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006, Madrid, Spain
| | - May-Kristin Torp
- Centro de Biología Molecular "Severo Ochoa" (CSIC/UAM), 28049, Madrid, Spain; Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PB1110, N-0317, Oslo, Norway
| | - Elia López-Bernardo
- Centro de Biología Molecular "Severo Ochoa" (CSIC/UAM), 28049, Madrid, Spain; Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006, Madrid, Spain
| | - Christina M Heiestad
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PB1110, N-0317, Oslo, Norway
| | - Jan Magnus Aronsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PB1110, N-0317, Oslo, Norway; Bjørknes College, 0456, Oslo, Norway
| | | | - Luis J Jiménez-Borreguero
- Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006, Madrid, Spain; Servicio de Cardiología, Hospital Universitario de La Princesa, 28006, Madrid, Spain; Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Pablo García-Roves
- Department of Physiological Sciences, Universitat de Barcelona, 08907, Barcelona, Spain; Nutrition, Metabolism and Gene Therapy Group, Diabetes and Metabolism Program, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain; Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Ana S H Costa
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Center, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Christian Frezza
- MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Center, Cambridge Biomedical Campus, Cambridge, CB2 0XZ, UK
| | - Michael P Murphy
- MRC Mitochondrial Biology Unit, University of Cambridge, Wellcome Trust/MRC Building, Cambridge, CB2 0XY, UK
| | - Kåre-Olav Stenslokken
- Department of Molecular Medicine, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, PB1110, N-0317, Oslo, Norway
| | - Susana Cadenas
- Centro de Biología Molecular "Severo Ochoa" (CSIC/UAM), 28049, Madrid, Spain; Instituto de Investigación Sanitaria Princesa (IIS-IP), 28006, Madrid, Spain.
| |
Collapse
|
12
|
Mouton AJ, Aitken NM, Moak SP, do Carmo JM, da Silva AA, Omoto ACM, Li X, Wang Z, Schrimpe-Rutledge AC, Codreanu SG, Sherrod SD, McLean JA, Hall JE. Temporal changes in glucose metabolism reflect polarization in resident and monocyte-derived macrophages after myocardial infarction. Front Cardiovasc Med 2023; 10:1136252. [PMID: 37215542 PMCID: PMC10196495 DOI: 10.3389/fcvm.2023.1136252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/28/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Metabolic reprogramming from glycolysis to the mitochondrial tricarboxylic acid (TCA) cycle and oxidative phosphorylation may mediate macrophage polarization from the pro-inflammatory M1 to the anti-inflammatory M2 phenotype. We hypothesized that changes in cardiac macrophage glucose metabolism would reflect polarization status after myocardial infarction (MI), ranging from the early inflammatory phase to the later wound healing phase. Methods MI was induced by permanent ligation of the left coronary artery in adult male C57BL/6J mice for 1 (D1), 3 (D3), or 7 (D7) days. Infarct macrophages were subjected to metabolic flux analysis or gene expression analysis. Monocyte versus resident cardiac macrophage metabolism was assessed using mice lacking the Ccr2 gene (CCR2 KO). Results By flow cytometry and RT-PCR, D1 macrophages exhibited an M1 phenotype while D7 macrophages exhibited an M2 phenotype. Macrophage glycolysis (extracellular acidification rate) was increased at D1 and D3, returning to basal levels at D7. Glucose oxidation (oxygen consumption rate) was decreased at D3, returning to basal levels at D7. At D1, glycolytic genes were elevated (Gapdh, Ldha, Pkm2), while TCA cycle genes were elevated at D3 (Idh1 and Idh2) and D7 (Pdha1, Idh1/2, Sdha/b). Surprisingly, Slc2a1 and Hk1/2 were increased at D7, as well as pentose phosphate pathway (PPP) genes (G6pdx, G6pd2, Pgd, Rpia, Taldo1), indicating increased PPP activity. Macrophages from CCR2 KO mice showed decreased glycolysis and increased glucose oxidation at D3, and decreases in Ldha and Pkm2 expression. Administration of dichloroacetate, a pyruvate dehydrogenase kinase inhibitor, robustly decreased pyruvate dehydrogenase phosphorylation in the non-infarcted remote zone, but did not affect macrophage phenotype or metabolism in the infarct zone. Discussion Our results indicate that changes in glucose metabolism and the PPP underlie macrophage polarization following MI, and that metabolic reprogramming is a key feature of monocyte-derived but not resident macrophages.
Collapse
Affiliation(s)
- Alan J. Mouton
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, United States
| | - Nikaela M. Aitken
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, United States
| | - Sydney P. Moak
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, United States
| | - Jussara M. do Carmo
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, United States
| | - Alexandre A. da Silva
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, United States
| | - Ana C. M. Omoto
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, United States
| | - Xuan Li
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, United States
| | - Zhen Wang
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, United States
| | | | - Simona G. Codreanu
- Department of Chemistry and Center for Innovative Technology, Vanderbilt University, Nashville, TN, United States
| | - Stacy D. Sherrod
- Department of Chemistry and Center for Innovative Technology, Vanderbilt University, Nashville, TN, United States
| | - John A. McLean
- Department of Chemistry and Center for Innovative Technology, Vanderbilt University, Nashville, TN, United States
| | - John E. Hall
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, United States
- Mississippi Center for Obesity Research, University of Mississippi Medical Center, Jackson, United States
| |
Collapse
|
13
|
Gopal K, Karwi QG, Tabatabaei Dakhili SA, Wagg CS, Zhang L, Sun Q, Saed CT, Panidarapu S, Perfetti R, Ramasamy R, Ussher JR, Lopaschuk GD. Aldose reductase inhibition alleviates diabetic cardiomyopathy and is associated with a decrease in myocardial fatty acid oxidation. Cardiovasc Diabetol 2023; 22:73. [PMID: 36978133 PMCID: PMC10053619 DOI: 10.1186/s12933-023-01811-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Cardiovascular diseases, including diabetic cardiomyopathy, are major causes of death in people with type 2 diabetes. Aldose reductase activity is enhanced in hyperglycemic conditions, leading to altered cardiac energy metabolism and deterioration of cardiac function with adverse remodeling. Because disturbances in cardiac energy metabolism can promote cardiac inefficiency, we hypothesized that aldose reductase inhibition may mitigate diabetic cardiomyopathy via normalization of cardiac energy metabolism. METHODS Male C57BL/6J mice (8-week-old) were subjected to experimental type 2 diabetes/diabetic cardiomyopathy (high-fat diet [60% kcal from lard] for 10 weeks with a single intraperitoneal injection of streptozotocin (75 mg/kg) at 4 weeks), following which animals were randomized to treatment with either vehicle or AT-001, a next-generation aldose reductase inhibitor (40 mg/kg/day) for 3 weeks. At study completion, hearts were perfused in the isolated working mode to assess energy metabolism. RESULTS Aldose reductase inhibition by AT-001 treatment improved diastolic function and cardiac efficiency in mice subjected to experimental type 2 diabetes. This attenuation of diabetic cardiomyopathy was associated with decreased myocardial fatty acid oxidation rates (1.15 ± 0.19 vs 0.5 ± 0.1 µmol min-1 g dry wt-1 in the presence of insulin) but no change in glucose oxidation rates compared to the control group. In addition, cardiac fibrosis and hypertrophy were also mitigated via AT-001 treatment in mice with diabetic cardiomyopathy. CONCLUSIONS Inhibiting aldose reductase activity ameliorates diastolic dysfunction in mice with experimental type 2 diabetes, which may be due to the decline in myocardial fatty acid oxidation, indicating that treatment with AT-001 may be a novel approach to alleviate diabetic cardiomyopathy in patients with diabetes.
Collapse
Affiliation(s)
- Keshav Gopal
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Qutuba G Karwi
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Seyed Amirhossein Tabatabaei Dakhili
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Cory S Wagg
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Liyan Zhang
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Qiuyu Sun
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Christina T Saed
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Sai Panidarapu
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Ravichandran Ramasamy
- Diabetes Research Program, New York University Grossman Medical Center, New York, NY, USA
| | - John R Ussher
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Institute, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
14
|
Perez DM. α 1-Adrenergic Receptors: Insights into Potential Therapeutic Opportunities for COVID-19, Heart Failure, and Alzheimer's Disease. Int J Mol Sci 2023; 24:4188. [PMID: 36835598 PMCID: PMC9963459 DOI: 10.3390/ijms24044188] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
α1-Adrenergic receptors (ARs) are members of the G-Protein Coupled Receptor superfamily and with other related receptors (β and α2), they are involved in regulating the sympathetic nervous system through binding and activation by norepinephrine and epinephrine. Traditionally, α1-AR antagonists were first used as anti-hypertensives, as α1-AR activation increases vasoconstriction, but they are not a first-line use at present. The current usage of α1-AR antagonists increases urinary flow in benign prostatic hyperplasia. α1-AR agonists are used in septic shock, but the increased blood pressure response limits use for other conditions. However, with the advent of genetic-based animal models of the subtypes, drug design of highly selective ligands, scientists have discovered potentially newer uses for both agonists and antagonists of the α1-AR. In this review, we highlight newer treatment potential for α1A-AR agonists (heart failure, ischemia, and Alzheimer's disease) and non-selective α1-AR antagonists (COVID-19/SARS, Parkinson's disease, and posttraumatic stress disorder). While the studies reviewed here are still preclinical in cell lines and rodent disease models or have undergone initial clinical trials, potential therapeutics discussed here should not be used for non-approved conditions.
Collapse
Affiliation(s)
- Dianne M Perez
- The Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH 44195, USA
| |
Collapse
|
15
|
Zou L, Yang Y, Wang Z, Fu X, He X, Song J, Li T, Ma H, Yu T. Lysine Malonylation and Its Links to Metabolism and Diseases. Aging Dis 2023; 14:84-98. [PMID: 36818560 PMCID: PMC9937698 DOI: 10.14336/ad.2022.0711] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/11/2022] [Indexed: 11/18/2022] Open
Abstract
Malonylation is a recently identified post-translational modification with malonyl-coenzyme A as the donor. It conserved both in prokaryotes and eukaryotes. Recent advances in the identification and quantification of lysine malonylation by bioinformatic analysis have improved our understanding of its role in the regulation of protein activity, interaction, and localization and have elucidated its involvement in many biological processes. Malonylation has been linked to diverse physiological processes, including metabolic disorders, inflammation, and immune regulation. This review discusses malonylation in theory, describes the underlying mechanism, and summarizes the recent progress in malonylation research. The latest findings point to novel functions of malonylation and highlight the mechanisms by which malonylation regulates a variety of cellular processes. Our review also marks the association between lysine malonylation, the enzymes involved, and various diseases, and discusses promising diagnostic and therapeutic biomolecular targets for future clinical applications.
Collapse
Affiliation(s)
- Lu Zou
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Yanyan Yang
- Department of Immunology, Basic Medicine School, Qingdao University, Qingdao, China.
| | - Zhibin Wang
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xiuxiu Fu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Xiangqin He
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Jiayi Song
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Tianxiang Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Huibo Ma
- Department of Vascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China.
| | - Tao Yu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China.,Correspondence should be addressed to: Dr. Tao Yu, Center for Regenerative Medicine, Institute for Translational Medicine, the Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
16
|
Pan J, Yin J, Gan L, Xue J. Two-sided roles of adipose tissue: Rethinking the obesity paradox in various human diseases from a new perspective. Obes Rev 2023; 24:e13521. [PMID: 36349390 DOI: 10.1111/obr.13521] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/05/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022]
Abstract
Overweight and obesity, as a result of excess fat accumulation, have become a worldwide public health issue. Recent studies have shown that obesity is closely related to many human diseases, such as cancer, cardiovascular diseases, and type 2 diabetes mellitus, in which adipose tissue plays a dual role. In addition to thermal and mechanical insulation and a critical role in energy storage and heat production, adipose tissue is also a highly plastic endocrine and signaling organ that secretes multiple bioactive molecules for inter-organ crosstalk. The phenotypic and biological changes of adipose tissue under pathological conditions, especially in obesity, increase the challenge of deciphering the positive or negative effects of adipose tissue in disease. Despite numerous studies on obesity and adipose tissue, the ambiguous role of adipose tissue on specific organs or tissues in different diseases is not fully understood, and the definite mechanisms remain obscure. In this review, we first summarize the basic biological characteristics of adipose tissue in the physiological state and the abnormal remodeling of adipose tissue during obesity. We then discuss the complex and disparate effects of obesity on various human diseases, with a particular focus on the dual roles and underlying mechanisms of adipose tissue, a quintessential player in obesity, in this process. More importantly, rethinking the causes of the "obesity paradox" phenomenon in diseases from the perspective of adipose homeostasis and dysfunction provides a novel strategy for disease treatment by intervening in fat function.
Collapse
Affiliation(s)
- Jing Pan
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jianqiong Yin
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Gan
- Research Laboratory of Emergency Medicine, Department of Emergency Medicine, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jianxin Xue
- Thoracic Oncology Ward, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China.,Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Tabatabaei Dakhili SA, Greenwell AA, Ussher JR. Pyruvate Dehydrogenase Complex and Glucose Oxidation as a Therapeutic Target in Diabetic Heart Disease. J Lipid Atheroscler 2023; 12:47-57. [PMID: 36761067 PMCID: PMC9884548 DOI: 10.12997/jla.2023.12.1.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/01/2022] [Accepted: 09/07/2022] [Indexed: 01/26/2023] Open
Abstract
Diabetic cardiomyopathy was originally described as the presence of ventricular dysfunction in the absence of coronary artery disease and/or hypertension. It is characterized by diastolic dysfunction and is more prevalent in people with diabetes than originally realized, leading to the suggestion in the field that it simply be referred to as diabetic heart disease. While there are currently no approved therapies for diabetic heart disease, a multitude of studies clearly demonstrate that it is characterized by several disturbances in myocardial energy metabolism. One of the most prominent changes in myocardial energy metabolism in diabetes is a robust impairment in glucose oxidation. Herein we will describe the mechanisms responsible for the diabetes-induced decline in myocardial glucose oxidation, and the pharmacological approaches that have been pursued to correct this metabolic disorder. With surmounting evidence that stimulating myocardial glucose oxidation can alleviate diastolic dysfunction and other pathologies associated with diabetic heart disease, this may also represent a novel strategy for decreasing the prevalence of heart failure with preserved ejection fraction in the diabetic population.
Collapse
Affiliation(s)
- Seyed Amirhossein Tabatabaei Dakhili
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Amanda A. Greenwell
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - John R. Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada.,Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
18
|
Greenwell AA, Tabatabaei Dakhili SA, Gopal K, Saed CT, Chan JSF, Kazungu Mugabo N, Zhabyeyev P, Eaton F, Kruger J, Oudit GY, Ussher JR. Stimulating myocardial pyruvate dehydrogenase activity fails to alleviate cardiac abnormalities in a mouse model of human Barth syndrome. Front Cardiovasc Med 2022; 9:997352. [PMID: 36211560 PMCID: PMC9537754 DOI: 10.3389/fcvm.2022.997352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022] Open
Abstract
Barth syndrome (BTHS) is a rare genetic disorder due to mutations in the TAFAZZIN gene, leading to impaired maturation of cardiolipin and thereby adversely affecting mitochondrial function and energy metabolism, often resulting in cardiomyopathy. In a murine model of BTHS involving short-hairpin RNA mediated knockdown of Tafazzin (TazKD mice), myocardial glucose oxidation rates were markedly reduced, likely secondary to an impairment in the activity of pyruvate dehydrogenase (PDH), the rate-limiting enzyme of glucose oxidation. Furthermore, TazKD mice exhibited cardiac hypertrophy with minimal cardiac dysfunction. Because the stimulation of myocardial glucose oxidation has been shown to alleviate diabetic cardiomyopathy and heart failure, we hypothesized that stimulating PDH activity would alleviate the cardiac hypertrophy present in TazKD mice. In order to address our hypothesis, 6-week-old male TazKD mice and their wild-type (WT) littermates were treated with dichloroacetate (DCA; 70 mM in the drinking water), which stimulates PDH activity via inhibiting PDH kinase to prevent inhibitory phosphorylation of PDH. We utilized ultrasound echocardiography to assess cardiac function and left ventricular wall structure in all mice prior to and following 6-weeks of treatment. Consistent with systemic activation of PDH and glucose oxidation, DCA treatment improved glycemia in both TazKD mice and their WT littermates, and decreased PDH phosphorylation equivalently at all 3 of its inhibitory sites (serine 293/300/232). However, DCA treatment had no impact on left ventricular structure, or systolic and diastolic function in TazKD mice. Therefore, it is unlikely that stimulating glucose oxidation is a viable target to improve BTHS-related cardiomyopathy.
Collapse
Affiliation(s)
- Amanda A. Greenwell
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Seyed Amirhossein Tabatabaei Dakhili
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Christina T. Saed
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Jordan S. F. Chan
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Nick Kazungu Mugabo
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Pavel Zhabyeyev
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Farah Eaton
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Jennifer Kruger
- Health Sciences Laboratory Animal Services, University of Alberta, Edmonton, AB, Canada
| | - Gavin Y. Oudit
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - John R. Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
- *Correspondence: John R. Ussher
| |
Collapse
|
19
|
Greenwell AA, Tabatabaei Dakhili SA, Ussher JR. Myocardial disturbances of intermediary metabolism in Barth syndrome. Front Cardiovasc Med 2022; 9:981972. [PMID: 36035919 PMCID: PMC9399503 DOI: 10.3389/fcvm.2022.981972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Barth Syndrome (BTHS) is a rare X-linked mitochondrial disorder due to mutations in the gene TAFAZZIN, which leads to immature cardiolipin (CL) remodeling and is characterized by the development of cardiomyopathy. The immature CL remodeling in BTHS results in electron transport chain respiratory defects and destabilization of supercomplexes, thereby impairing ATP production. Thus, BTHS-related cardiomyopathy appears to share metabolic characteristics of the failing heart being an "engine out of fuel." As CL associates with numerous mitochondrial enzymes involved in ATP production, BTHS is also characterized by several defects in intermediary energy metabolism. Herein we will describe the primary disturbances in intermediary energy metabolism relating to the heart's major fuel sources, fatty acids, carbohydrates, ketones, and amino acids. In addition, we will interrogate whether these disturbances represent potential metabolic targets for alleviating BTHS-related cardiomyopathy.
Collapse
Affiliation(s)
- Amanda A. Greenwell
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - Seyed Amirhossein Tabatabaei Dakhili
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | - John R. Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
20
|
Mendoza A, Karch J. Keeping the beat against time: Mitochondrial fitness in the aging heart. FRONTIERS IN AGING 2022; 3:951417. [PMID: 35958271 PMCID: PMC9360554 DOI: 10.3389/fragi.2022.951417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/30/2022] [Indexed: 11/21/2022]
Abstract
The process of aging strongly correlates with maladaptive architectural, mechanical, and biochemical alterations that contribute to the decline in cardiac function. Consequently, aging is a major risk factor for the development of heart disease, the leading cause of death in the developed world. In this review, we will summarize the classic and recently uncovered pathological changes within the aged heart with an emphasis on the mitochondria. Specifically, we describe the metabolic changes that occur in the aging heart as well as the loss of mitochondrial fitness and function and how these factors contribute to the decline in cardiomyocyte number. In addition, we highlight recent pharmacological, genetic, or behavioral therapeutic intervention advancements that may alleviate age-related cardiac decline.
Collapse
Affiliation(s)
- Arielys Mendoza
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, United States
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States
| | - Jason Karch
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, United States
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
21
|
Almutairi M, Chan JSF, Ussher JR. New Therapeutic Options for Type 2 Diabetes Mellitus and Their Impact Against Ischemic Heart Disease. Front Physiol 2022; 13:904626. [PMID: 35832485 PMCID: PMC9271769 DOI: 10.3389/fphys.2022.904626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/08/2022] [Indexed: 11/15/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) greatly increases risk for cardiovascular disease, including ischemic heart disease and myocardial infarction. With the completion of several cardiovascular outcomes trials (CVOTs) for new glucose-lowering therapies, including the sodium-glucose cotransporter-2 (SGLT2) inhibitors and glucagon-like peptide-1 receptor (GLP-1R) agonists, we now have strong evidence alluding to the cardioprotective nature of these agents in people with T2DM. These agents have frequently been observed to reduce rates for 3-point major adverse cardiovascular events, which encompass death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke. Herein we will provide an overview on whether reductions in nonfatal myocardial infarction and ischemic heart disease status are a key component of the improved cardiovascular outcomes in people with T2DM treated with either SGLT2 inhibitors or GLP-1R agonists. Observations from preclinical studies will be compared to their clinical counterparts, while being further interrogated to define potential mechanisms that may account for SGLT2 inhibitor or GLP-1R agonist-induced cardioprotection against ischemic heart disease. A better understanding of the role these agents have in impacting the progression of ischemic heart disease in individuals with T2DM will have a substantial impact in our management of this patient population.
Collapse
Affiliation(s)
| | - Jordan S. F. Chan
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - John R. Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
- Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
- *Correspondence: John R. Ussher,
| |
Collapse
|
22
|
Goetzman E, Gong Z, Rajasundaram D, Muzumdar I, Goodchild T, Lefer D, Muzumdar R. Serum Metabolomics Reveals Distinct Profiles during Ischemia and Reperfusion in a Porcine Model of Myocardial Ischemia-Reperfusion. Int J Mol Sci 2022; 23:ijms23126711. [PMID: 35743153 PMCID: PMC9223436 DOI: 10.3390/ijms23126711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 12/16/2022] Open
Abstract
Acute myocardial infarction (MI) is one of the leading causes of death worldwide. Early identification of ischemia and establishing reperfusion remain cornerstones in the treatment of MI, as mortality and morbidity can be significantly reduced by establishing reperfusion to the affected areas. The aim of the current study was to investigate the metabolomic changes in the serum in a swine model of MI induced by ischemia and reperfusion (I/R) injury, and to identify circulating metabolomic biomarkers for myocardial injury at different phases. Female Yucatan minipigs were subjected to 60 min of ischemia followed by reperfusion, and serum samples were collected at baseline, 60 min of ischemia, 4 h of reperfusion, and 24 h of reperfusion. Circulating metabolites were analyzed using an untargeted metabolomic approach. A bioinformatic approach revealed that serum metabolites show distinct profiles during ischemia and during early and late reperfusion. Some notable changes during ischemia include accumulation of metabolites that indicate impaired mitochondrial function and N-terminally modified amino acids. Changes in branched-chain amino-acid metabolites were noted during early reperfusion, while bile acid pathway derivatives and intermediates predominated in the late reperfusion phases. This indicates a potential for such an approach toward identification of the distinct phases of ischemia and reperfusion in clinical situations.
Collapse
Affiliation(s)
- Eric Goetzman
- Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15260, USA; (E.G.); (Z.G.); (D.R.)
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Zhenwei Gong
- Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15260, USA; (E.G.); (Z.G.); (D.R.)
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Dhivyaa Rajasundaram
- Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15260, USA; (E.G.); (Z.G.); (D.R.)
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Ishan Muzumdar
- School of Undergraduate Study, Penn State University, State College, PA 16802, USA;
| | - Traci Goodchild
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (T.G.); (D.L.)
| | - David Lefer
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (T.G.); (D.L.)
| | - Radhika Muzumdar
- Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15260, USA; (E.G.); (Z.G.); (D.R.)
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Correspondence:
| |
Collapse
|
23
|
Ma X, Dong Z, Liu J, Ma L, Sun X, Gao R, Pan L, Zhang J, A D, An J, Hu K, Sun A, Ge J. β-Hydroxybutyrate Exacerbates Hypoxic Injury by Inhibiting HIF-1α-Dependent Glycolysis in Cardiomyocytes-Adding Fuel to the Fire? Cardiovasc Drugs Ther 2022; 36:383-397. [PMID: 34652582 PMCID: PMC9090701 DOI: 10.1007/s10557-021-07267-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/16/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE Ketone body oxidation yields more ATP per mole of consumed oxygen than glucose. However, whether an increased ketone body supply in hypoxic cardiomyocytes and ischemic hearts is protective or not remains elusive. The goal of this study is to determine the effect of β-hydroxybutyrate (β-OHB), the main constituent of ketone bodies, on cardiomyocytes under hypoxic conditions and the effects of ketogenic diet (KD) on cardiac function in a myocardial infarction (MI) mouse model. METHODS Human peripheral blood collected from patients with acute myocardial infarction and healthy volunteers was used to detect the level of β-OHB. N-terminal proB-type natriuretic peptide (NT-proBNP) levels and left ventricular ejection fractions (LVEFs) were measured to study the relationship between plasma β-OHB and cardiac function. Adult mouse cardiomyocytes and MI mouse models fed a KD were used to research the effect of β-OHB on cardiac damage. qPCR, western blot analysis, and immunofluorescence were used to detect the interaction between β-OHB and glycolysis. Live/dead cell staining and imaging, lactate dehydrogenase, Cell Counting Kit-8 assays, echocardiography, and 2,3,5-triphenyltetrazolium chloride staining were performed to evaluate the cardiomyocyte death, cardiac function, and infarct sizes. RESULTS β-OHB level was significantly higher in acute MI patients and MI mice. Treatment with β-OHB exacerbated cardiomyocyte death and decreased glucose absorption and glycolysis under hypoxic conditions. These effects were partially ameliorated by inhibiting hypoxia-inducible factor 1α (HIF-1α) degradation via roxadustat administration in hypoxia-stimulated cardiomyocytes. Furthermore, β-OHB metabolisms were obscured in cardiomyocytes under hypoxic conditions. Additionally, MI mice fed a KD exhibited exacerbated cardiac dysfunction compared with control chow diet (CD)-fed MI mice. CONCLUSION Elevated β-OHB levels may be maladaptive to the heart under hypoxic/ischemic conditions. Administration of roxadustat can partially reverse these harmful effects by stabilizing HIF-1α and inducing a metabolic shift toward glycolysis for energy production.
Collapse
Affiliation(s)
- Xiurui Ma
- Department of Cardiology, Zhongshan Hospital, Human Phenome Institute, Fudan University, Shanghai, 201203, China
- Department of Cardiology, Shan Xi Cardiovascular Hospital, Taiyuan, 030024, China
| | - Zhen Dong
- Department of Cardiology, Zhongshan Hospital, Human Phenome Institute, Fudan University, Shanghai, 201203, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- NHC Key Laboratory of Viral Heart Diseases and Key Laboratory of Viral Heart Diseases, Shanghai, China
- Academy of Medical Sciences Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Jingyi Liu
- Department of Cardiology, Shan Xi Cardiovascular Hospital, Taiyuan, 030024, China
| | - Leilei Ma
- Department of Cardiology, Zhongshan Hospital, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Xiaolei Sun
- Department of Cardiology, Zhongshan Hospital, Human Phenome Institute, Fudan University, Shanghai, 201203, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- NHC Key Laboratory of Viral Heart Diseases and Key Laboratory of Viral Heart Diseases, Shanghai, China
| | - Rifeng Gao
- Shanghai Fifth People's Hospital, Fudan University, Shanghai, 200032, China
| | - Lihong Pan
- Academy of Medical Sciences Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Jinyan Zhang
- Department of Cardiology, Zhongshan Hospital, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Dilan A
- Department of Cardiology, Zhongshan Hospital, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Jian An
- Department of Cardiology, Shan Xi Cardiovascular Hospital, Taiyuan, 030024, China
| | - Kai Hu
- Department of Cardiology, Zhongshan Hospital, Human Phenome Institute, Fudan University, Shanghai, 201203, China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Human Phenome Institute, Fudan University, Shanghai, 201203, China.
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China.
- NHC Key Laboratory of Viral Heart Diseases and Key Laboratory of Viral Heart Diseases, Shanghai, China.
- Academy of Medical Sciences Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Human Phenome Institute, Fudan University, Shanghai, 201203, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
- NHC Key Laboratory of Viral Heart Diseases and Key Laboratory of Viral Heart Diseases, Shanghai, China
- Academy of Medical Sciences Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| |
Collapse
|
24
|
Scheffer DDL, Garcia AA, Lee L, Mochly-Rosen D, Ferreira JCB. Mitochondrial Fusion, Fission, and Mitophagy in Cardiac Diseases: Challenges and Therapeutic Opportunities. Antioxid Redox Signal 2022; 36:844-863. [PMID: 35044229 PMCID: PMC9125524 DOI: 10.1089/ars.2021.0145] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/13/2021] [Accepted: 12/31/2021] [Indexed: 12/18/2022]
Abstract
Significance: Mitochondria play a critical role in the physiology of the heart by controlling cardiac metabolism, function, and remodeling. Accumulation of fragmented and damaged mitochondria is a hallmark of cardiac diseases. Recent Advances: Disruption of quality control systems that maintain mitochondrial number, size, and shape through fission/fusion balance and mitophagy results in dysfunctional mitochondria, defective mitochondrial segregation, impaired cardiac bioenergetics, and excessive oxidative stress. Critical Issues: Pharmacological tools that improve the cardiac pool of healthy mitochondria through inhibition of excessive mitochondrial fission, boosting mitochondrial fusion, or increasing the clearance of damaged mitochondria have emerged as promising approaches to improve the prognosis of heart diseases. Future Directions: There is a reasonable amount of preclinical evidence supporting the effectiveness of molecules targeting mitochondrial fission and fusion to treat cardiac diseases. The current and future challenges are turning these lead molecules into treatments. Clinical studies focusing on acute (i.e., myocardial infarction) and chronic (i.e., heart failure) cardiac diseases are needed to validate the effectiveness of such strategies in improving mitochondrial morphology, metabolism, and cardiac function. Antioxid. Redox Signal. 36, 844-863.
Collapse
Affiliation(s)
- Débora da Luz Scheffer
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Adriana Ann Garcia
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford University, Stanford, California, USA
| | - Lucia Lee
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford University, Stanford, California, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford University, Stanford, California, USA
| | - Julio Cesar Batista Ferreira
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
25
|
An Overview of the Molecular Mechanisms Associated with Myocardial Ischemic Injury: State of the Art and Translational Perspectives. Cells 2022; 11:cells11071165. [PMID: 35406729 PMCID: PMC8998015 DOI: 10.3390/cells11071165] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease is the leading cause of death in western countries. Among cardiovascular diseases, myocardial infarction represents a life-threatening condition predisposing to the development of heart failure. In recent decades, much effort has been invested in studying the molecular mechanisms underlying the development and progression of ischemia/reperfusion (I/R) injury and post-ischemic cardiac remodeling. These mechanisms include metabolic alterations, ROS overproduction, inflammation, autophagy deregulation and mitochondrial dysfunction. This review article discusses the most recent evidence regarding the molecular basis of myocardial ischemic injury and the new potential therapeutic interventions for boosting cardioprotection and attenuating cardiac remodeling.
Collapse
|
26
|
Ramli FF, Ali A, Ibrahim N'I. Molecular-Signaling Pathways of Ginsenosides Rb in Myocardial Ischemia-Reperfusion Injury: A Mini Review. Int J Med Sci 2022; 19:65-73. [PMID: 34975299 PMCID: PMC8692112 DOI: 10.7150/ijms.64984] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/04/2021] [Indexed: 12/28/2022] Open
Abstract
Reperfusion injury following myocardial ischemia remained a challenge for optimal treatment of myocardial infarction. Ginsenosides Rb (G-Rb), the primary components of ginsenoside, have been reported to exert cardioprotective effects via numerous mechanisms. G-Rb1 mediate cardioprotective effects via various signaling pathways, including mitochondrial apoptotic pathway, PI3K/Akt/mTOR, HIF-1α and GRF91, RhoA, p38α MAPK, and eNOS. G-Rb2 activates the SIRT-1 pathway, while G-Rb3 promotes both JNK-mediated NF-κB and PERK/Nrf2/HMOX1. Generally, ginsenosides Rb1, 2, and 3 modulates oxidative stress, inflammation, and apoptosis, contributing to the improvement of structural, functional and biochemical parameters. In conclusion, G-Rb, particularly G-Rb1, have vast potential as a supplement in attenuating reperfusion injury. Translation into a clinical trial is warranted to confirm the beneficial effects of G-Rb.
Collapse
Affiliation(s)
- Fitri Fareez Ramli
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia.,Cardiovascular Health Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Adli Ali
- Department of Pediatrics, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia.,Infection and Immunology Health and Advanced Medicine Cluster, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Nurul 'Izzah Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia.,Cardiovascular Health Research Group, Faculty of Medicine, Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
27
|
Jiang M, Xie X, Cao F, Wang Y. Mitochondrial Metabolism in Myocardial Remodeling and Mechanical Unloading: Implications for Ischemic Heart Disease. Front Cardiovasc Med 2021; 8:789267. [PMID: 34957264 PMCID: PMC8695728 DOI: 10.3389/fcvm.2021.789267] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
Ischemic heart disease refers to myocardial degeneration, necrosis, and fibrosis caused by coronary artery disease. It can lead to severe left ventricular dysfunction (LVEF ≤ 35–40%) and is a major cause of heart failure (HF). In each contraction, myocardium is subjected to a variety of mechanical forces, such as stretch, afterload, and shear stress, and these mechanical stresses are clinically associated with myocardial remodeling and, eventually, cardiac outcomes. Mitochondria produce 90% of ATP in the heart and participate in metabolic pathways that regulate the balance of glucose and fatty acid oxidative phosphorylation. However, altered energetics and metabolic reprogramming are proved to aggravate HF development and progression by disturbing substrate utilization. This review briefly summarizes the current insights into the adaptations of cardiomyocytes to mechanical stimuli and underlying mechanisms in ischemic heart disease, with focusing on mitochondrial metabolism. We also discuss how mechanical circulatory support (MCS) alters myocardial energy metabolism and affects the detrimental metabolic adaptations of the dysfunctional myocardium.
Collapse
Affiliation(s)
- Min Jiang
- Department of Cardiology, National Clinical Research Center for Geriatric Disease, The Second Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.,College of Pulmonary and Critical Care Medicine, Chinese People's Liberation Army General Hospital, Beijing, China.,Medical School of Chinese People's Liberation Army, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Xiaoye Xie
- Department of Cardiology, National Clinical Research Center for Geriatric Disease, The Second Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.,Medical School of Chinese People's Liberation Army, Chinese People's Liberation Army General Hospital, Beijing, China.,Department of Cadre Ward, The 960 Hospital of Chinese People's Liberation Army, Jinan, China
| | - Feng Cao
- Department of Cardiology, National Clinical Research Center for Geriatric Disease, The Second Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.,Medical School of Chinese People's Liberation Army, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yabin Wang
- Department of Cardiology, National Clinical Research Center for Geriatric Disease, The Second Medical Center, Chinese People's Liberation Army General Hospital, Beijing, China.,Medical School of Chinese People's Liberation Army, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
28
|
Kolwicz SC. Ketone Body Metabolism in the Ischemic Heart. Front Cardiovasc Med 2021; 8:789458. [PMID: 34950719 PMCID: PMC8688810 DOI: 10.3389/fcvm.2021.789458] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/16/2021] [Indexed: 01/12/2023] Open
Abstract
Ketone bodies have been identified as an important, alternative fuel source in heart failure. In addition, the use of ketone bodies as a fuel source has been suggested to be a potential ergogenic aid for endurance exercise performance. These findings have certainly renewed interest in the use of ketogenic diets and exogenous supplementation in an effort to improve overall health and disease. However, given the prevalence of ischemic heart disease and myocardial infarctions, these strategies may not be ideal for individuals with coronary artery disease. Although research studies have clearly defined changes in fatty acid and glucose metabolism during ischemia and reperfusion, the role of ketone body metabolism in the ischemic and reperfused myocardium is less clear. This review will provide an overview of ketone body metabolism, including the induction of ketosis via physiological or nutritional strategies. In addition, the contribution of ketone body metabolism in healthy and diseased states, with a particular emphasis on ischemia-reperfusion (I-R) injury will be discussed.
Collapse
|
29
|
Mi S, Jiang H, Zhang L, Xie Z, Zhou J, Sun A, Jin H, Ge J. Regulation of Cardiac-Specific Proteins Expression by Moderate-Intensity Aerobic Exercise Training in Mice With Myocardial Infarction Induced Heart Failure Using MS-Based Proteomics. Front Cardiovasc Med 2021; 8:732076. [PMID: 34692783 PMCID: PMC8531249 DOI: 10.3389/fcvm.2021.732076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/18/2021] [Indexed: 01/14/2023] Open
Abstract
This study aims to systematically reveal the changes in protein levels induced by regular exercise in mice with ischemic-induced heart failure (HF). Aerobic exercise training for the ischemic-induced HF mice lasted for 4 weeks and then we used the liquid chromatography-mass spectrometry method to identify and quantify the protein profile in the myocardium of mice. As a whole, 1,304 proteins (597 proteins up-regulated; 707 proteins down-regulated) were differentially expressed between the exercise group and the sedentary group, including numerous proteins related to energy metabolism. The significant alteration of the component (E1 component subunit alpha and subunit beta) and the activity-regulating enzyme (pyruvate dehydrogenase kinase 2 and pyruvate dehydrogenase kinase 4) of pyruvate dehydrogenase complex and poly [ADP-ribose] polymerase 3, a nicotinamide adenine dinucleotide(+)-consuming enzymes, was further verified in targeted analysis. Generally, this proteomics profiling furnishes a systematic insight of the influence of aerobic exercise on HF.
Collapse
Affiliation(s)
- Shouling Mi
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Hao Jiang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Lei Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Zhonglei Xie
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Jingmin Zhou
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Hong Jin
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China.,Stomatological Hospital, Fudan University, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Cardiovascular Diseases, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
30
|
Zhao X, Li S, Mo Y, Li R, Huang S, Zhang A, Ni X, Dai Q, Wang J. DCA Protects against Oxidation Injury Attributed to Cerebral Ischemia-Reperfusion by Regulating Glycolysis through PDK2-PDH-Nrf2 Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5173035. [PMID: 34712383 PMCID: PMC8548159 DOI: 10.1155/2021/5173035] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/06/2021] [Accepted: 10/04/2021] [Indexed: 12/19/2022]
Abstract
Cerebral ischemic stroke (IS) is still a difficult problem to be solved; energy metabolism failure is one of the main factors causing mitochondrion dysfunction and oxidation stress damage within the pathogenesis of cerebral ischemia, which produces considerable reactive oxygen species (ROS) and opens the blood-brain barrier. Dichloroacetic acid (DCA) can inhibit pyruvate dehydrogenase kinase (PDK). Moreover, DCA has been indicated with the capability of increasing mitochondrial pyruvate uptake and promoting oxidation of glucose in the course of glycolysis, thereby improving the activity of pyruvate dehydrogenase (PDH). As a result, pyruvate flow is promoted into the tricarboxylic acid cycle to expedite ATP production. DCA has a protective effect on IS and brain ischemia/reperfusion (I/R) injury, but the specific mechanism remains unclear. This study adopted a transient middle cerebral artery occlusion (MCAO) mouse model for simulating IS and I/R injury in mice. We investigated the mechanism by which DCA regulates glycolysis and protects the oxidative damage induced by I/R injury through the PDK2-PDH-Nrf2 axis. As indicated from the results of this study, DCA may improve glycolysis, reduce oxidative stress and neuronal death, damage the blood-brain barrier, and promote the recovery of oxidative metabolism through inhibiting PDK2 and activating PDH. Additionally, DCA noticeably elevated the neurological score and reduced the infarct volume, brain water content, and necrotic neurons. Moreover, as suggested from the results, DCA elevated the content of Nrf2 as well as HO-1, i.e., the downstream antioxidant proteins pertaining to Nrf2, while decreasing the damage of BBB and the degradation of tight junction proteins. To simulate the condition of hypoxia and ischemia in vitro, HBMEC cells received exposure to transient oxygen and glucose deprivation (OGD). The DCA treatment is capable of reducing the oxidative stress and blood-brain barrier of HBMEC cells after in vitro hypoxia and reperfusion (H/R). Furthermore, this study evidenced that HBMEC cells could exhibit higher susceptibility to H/R-induced oxidative stress after ML385 application, the specific inhibitor of Nrf2. Besides, the protection mediated by DCA disappeared after ML385 application. To sum up, as revealed from the mentioned results, DCA could exert the neuroprotective effect on oxidative stress and blood-brain barrier after brain I/R injury via PDK2-PDH-Nrf2 pathway activation. Accordingly, the PDK2-PDH-Nrf2 pathway may play a key role and provide a new pharmacology target in cerebral IS and I/R protection by DCA.
Collapse
Affiliation(s)
- Xiaoyong Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
- Shandong Provincial Medicine and Health Key Laboratory of Clinical Anesthesia, School of Anesthesiology, Weifang Medical University, Weifang 261021, China
| | - Shan Li
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Yunchang Mo
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Ruru Li
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Shaoyi Huang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Anqi Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Xuqing Ni
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Qinxue Dai
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Junlu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| |
Collapse
|
31
|
Crewe C, Funcke JB, Li S, Joffin N, Gliniak CM, Ghaben AL, An YA, Sadek HA, Gordillo R, Akgul Y, Chen S, Samovski D, Fischer-Posovszky P, Kusminski CM, Klein S, Scherer PE. Extracellular vesicle-based interorgan transport of mitochondria from energetically stressed adipocytes. Cell Metab 2021; 33:1853-1868.e11. [PMID: 34418352 PMCID: PMC8429176 DOI: 10.1016/j.cmet.2021.08.002] [Citation(s) in RCA: 205] [Impact Index Per Article: 51.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/25/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022]
Abstract
Adipocytes undergo intense energetic stress in obesity resulting in loss of mitochondrial mass and function. We have found that adipocytes respond to mitochondrial stress by rapidly and robustly releasing small extracellular vesicles (sEVs). These sEVs contain respiration-competent, but oxidatively damaged mitochondrial particles, which enter circulation and are taken up by cardiomyocytes, where they trigger a burst of ROS. The result is compensatory antioxidant signaling in the heart that protects cardiomyocytes from acute oxidative stress, consistent with a preconditioning paradigm. As such, a single injection of sEVs from energetically stressed adipocytes limits cardiac ischemia/reperfusion injury in mice. This study provides the first description of functional mitochondrial transfer between tissues and the first vertebrate example of "inter-organ mitohormesis." Thus, these seemingly toxic adipocyte sEVs may provide a physiological avenue of potent cardio-protection against the inevitable lipotoxic or ischemic stresses elicited by obesity.
Collapse
Affiliation(s)
- Clair Crewe
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jan-Bernd Funcke
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shujuan Li
- Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Pediatric Cardiology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Nolwenn Joffin
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Christy M Gliniak
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alexandra L Ghaben
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yu A An
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hesham A Sadek
- Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine, Division of Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ruth Gordillo
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yucel Akgul
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shiuhwei Chen
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dmitri Samovski
- Center for Human Nutrition and the Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Pamela Fischer-Posovszky
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, 89075 Ulm, Germany
| | - Christine M Kusminski
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Samuel Klein
- Center for Human Nutrition and the Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
32
|
Gene Therapy: Targeting Cardiomyocyte Proliferation to Repopulate the Ischemic Heart. J Cardiovasc Pharmacol 2021; 78:346-360. [PMID: 34516452 DOI: 10.1097/fjc.0000000000001072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/16/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Adult mammalian cardiomyocytes show scarce division ability, which makes the heart ineffective in replacing lost contractile cells after ischemic cardiomyopathy. In the past decades, there have been increasing efforts in the search for novel strategies to regenerate the injured myocardium. Among them, gene therapy is one of the most promising ones, based on recent and emerging studies that support the fact that functional cardiomyocyte regeneration can be accomplished by the stimulation and enhancement of the endogenous ability of these cells to achieve cell division. This capacity can be targeted by stimulating several molecules, such as cell cycle regulators, noncoding RNAs, transcription, and metabolic factors. Therefore, the proposed target, together with the selection of the vector used, administration route, and the experimental animal model used in the development of the therapy would determine the success in the clinical field.
Collapse
|
33
|
Yapa Abeywardana M, Samarasinghe KTG, Munkanatta Godage D, Ahn YH. Identification and Quantification of Glutathionylated Cysteines under Ischemic Stress. J Proteome Res 2021; 20:4529-4542. [PMID: 34382403 DOI: 10.1021/acs.jproteome.1c00473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ischemia reperfusion injury contributes to adverse cardiovascular diseases in part by producing a burst of reactive oxygen species that induce oxidations of many muscular proteins. Glutathionylation is one of the major protein cysteine oxidations that often serve as molecular mechanisms behind the pathophysiology associated with ischemic stress. Despite the biological significance of glutathionylation in ischemia reperfusion, identification of specific glutathionylated cysteines under ischemic stress has been limited. In this report, we have analyzed glutathionylation under oxygen-glucose deprivation (OGD) or repletion of nutrients after OGD (OGD/R) by using a clickable glutathione approach that specifically detects glutathionylated proteins. Our data find that palmitate availability induces a global level of glutathionylation and decreases cell viability during OGD/R. We have then applied a clickable glutathione-based proteomic quantification strategy, which enabled the identification and quantification of 249 glutathionylated cysteines in response to palmitate during OGD/R in the HL-1 cardiomyocyte cell line. The subsequent bioinformatic analysis found 18 glutathionylated cysteines whose genetic variants are associated with muscular disorders. Overall, our data report glutathionylated cysteines under ischemic stress that may contribute to adverse outcomes or muscular disorders.
Collapse
Affiliation(s)
| | | | | | - Young-Hoon Ahn
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
34
|
Perez DM. Targeting Adrenergic Receptors in Metabolic Therapies for Heart Failure. Int J Mol Sci 2021; 22:5783. [PMID: 34071350 PMCID: PMC8198887 DOI: 10.3390/ijms22115783] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022] Open
Abstract
The heart has a reduced capacity to generate sufficient energy when failing, resulting in an energy-starved condition with diminished functions. Studies have identified numerous changes in metabolic pathways in the failing heart that result in reduced oxidation of both glucose and fatty acid substrates, defects in mitochondrial functions and oxidative phosphorylation, and inefficient substrate utilization for the ATP that is produced. Recent early-phase clinical studies indicate that inhibitors of fatty acid oxidation and antioxidants that target the mitochondria may improve heart function during failure by increasing compensatory glucose oxidation. Adrenergic receptors (α1 and β) are a key sympathetic nervous system regulator that controls cardiac function. β-AR blockers are an established treatment for heart failure and α1A-AR agonists have potential therapeutic benefit. Besides regulating inotropy and chronotropy, α1- and β-adrenergic receptors also regulate metabolic functions in the heart that underlie many cardiac benefits. This review will highlight recent studies that describe how adrenergic receptor-mediated metabolic pathways may be able to restore cardiac energetics to non-failing levels that may offer promising therapeutic strategies.
Collapse
Affiliation(s)
- Dianne M Perez
- The Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH 44195, USA
| |
Collapse
|
35
|
Perez DM. Current Developments on the Role of α 1-Adrenergic Receptors in Cognition, Cardioprotection, and Metabolism. Front Cell Dev Biol 2021; 9:652152. [PMID: 34113612 PMCID: PMC8185284 DOI: 10.3389/fcell.2021.652152] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
The α1-adrenergic receptors (ARs) are G-protein coupled receptors that bind the endogenous catecholamines, norepinephrine, and epinephrine. They play a key role in the regulation of the sympathetic nervous system along with β and α2-AR family members. While all of the adrenergic receptors bind with similar affinity to the catecholamines, they can regulate different physiologies and pathophysiologies in the body because they couple to different G-proteins and signal transduction pathways, commonly in opposition to one another. While α1-AR subtypes (α1A, α1B, α1C) have long been known to be primary regulators of vascular smooth muscle contraction, blood pressure, and cardiac hypertrophy, their role in neurotransmission, improving cognition, protecting the heart during ischemia and failure, and regulating whole body and organ metabolism are not well known and are more recent developments. These advancements have been made possible through the development of transgenic and knockout mouse models and more selective ligands to advance their research. Here, we will review the recent literature to provide new insights into these physiological functions and possible use as a therapeutic target.
Collapse
Affiliation(s)
- Dianne M Perez
- The Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, United States
| |
Collapse
|
36
|
Zhu X, Li J, Wang H, Gasior FM, Lee C, Lin S, Zhu Z, Wang Y, Justice CN, O'Donnell JM, Vanden Hoek TL. TAT delivery of a PTEN peptide inhibitor has direct cardioprotective effects and improves outcomes in rodent models of cardiac arrest. Am J Physiol Heart Circ Physiol 2021; 320:H2034-H2043. [PMID: 33834871 DOI: 10.1152/ajpheart.00513.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have recently shown that pharmacologic inhibition of PTEN significantly increases cardiac arrest survival in a mouse model, however, this protection required pretreatment 30 min before the arrest. To improve the onset of PTEN inhibition during cardiac arrest treatment, we have designed a TAT fused cell-permeable peptide (TAT-PTEN9c) based on the C-terminal PDZ binding motif of PTEN for rapid tissue delivery and protection. Western blot analysis demonstrated that TAT-PTEN9c peptide significantly enhanced Akt activation in mouse cardiomyocytes in a concentration- and time-dependent manner. Mice were subjected to 8 min asystolic arrest followed by CPR, and 30 mice with successful CPR were then randomly assigned to receive either saline or TAT-PTEN9c treatment. Survival was significantly increased in TAT-PTEN9c-treated mice compared with that of saline control at 4 h after CPR. The treated mice had increased Akt phosphorylation at 30 min resuscitation with significantly decreased sorbitol content in heart or brain tissues and reduced release of taurine and glutamate in blood, suggesting improved glucose metabolism. In an isolated rat heart Langendorff model, direct effects of TAT-PTEN9c on cardiac function were measured for 20 min following 20 min global ischemia. Rate pressure product was reduced by >20% for both TAT vehicle and nontreatment groups following arrest. Cardiac contractile function was completely recovered with TAT-PTEN9c treatment given at the start of reperfusion. We conclude that TAT-PTEN9c enhances Akt activation and decreases glucose shunting to the polyol pathway in critical organs, thereby preventing osmotic injury and early cardiovascular collapse and death.NEW & NOTEWORTHY We have designed a cell-permeable peptide, TAT-PTEN9c, to improve cardiac arrest survival. It blocked endogenous PTEN binding to its adaptor and enhanced Akt signaling in mouse cardiomyocytes. It improved mouse survival after cardiac arrest, which is related to improved glucose metabolism and reduced glucose shunting to sorbitol in critical organs.
Collapse
Affiliation(s)
- Xiangdong Zhu
- Program in Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - Jing Li
- Program in Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - Huashan Wang
- Program in Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | | | - Chunpei Lee
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - Shaoxia Lin
- Program in Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - Zhiyi Zhu
- Program in Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - Youhua Wang
- Program in Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - Cody N Justice
- Program in Advanced Resuscitation Medicine, Department of Emergency Medicine, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois.,Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | - J Michael O'Donnell
- Department of Physiology and Biophysics, Center for Cardiovascular Research, University of Illinois Hospital & Health Sciences System, Chicago, Illinois
| | | |
Collapse
|
37
|
Esenboğa K, Kurtul A, Nazman H, Tekin CG, Özyüncü N, Tan TS, Tutar E, Turhan ST. Evaluation of the Impact of Ranolazine Treatment on Liver Function Tests in Patients With Coronary Heart Disease and Nonalcoholic Fatty Liver Disease. Angiology 2021; 73:73-78. [PMID: 33823622 DOI: 10.1177/00033197211005590] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver pathology in the developed world. Nonalcoholic fatty liver disease is associated with a higher risk of cardiovascular disease. We investigated the impact of ranolazine on liver tests in patients with NAFLD and coronary artery disease (CAD). Patients who had established CAD and NAFLD (as assessed by raised serum transaminase activity, sonographic criteria, and the absence of any other obvious liver disease) were allocated to "on ranolazine" (n = 40) or "not on ranolazine" (n = 35) groups. Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured in all patients at baseline and at the end of the study. After 6 months of ranolazine treatment, both ALT and AST activities were significantly lower in patients in the "on ranolazine" group compared with "not on ranolazine" patients (change from baseline: ALT, -11.0 ± 1.7 IU/L, P < .001; AST, -5.2 ± 1.9 IU/L, P =.009). In conclusion, the present study showed that treatment with ranolazine for 6 months led to a significant reduction in the activities of both serum aminotransferases in patients with stable CAD and NAFLD.
Collapse
Affiliation(s)
- Kerim Esenboğa
- 324508Ankara University Faculty of Medicine, Department of Cardiology, Ankara, Turkey
| | - Alparslan Kurtul
- 111335Hatay Mustafa Kemal University Faculty of Medicine, Department of Cardiology, Hatay, Turkey
| | - Hüseyin Nazman
- Department of Cardiology, Sivas Numune State Hospital, Sivas, Turkey
| | - Cemre Gül Tekin
- 324508Ankara University Faculty of Medicine, Department of Cardiology, Ankara, Turkey
| | - Nil Özyüncü
- 324508Ankara University Faculty of Medicine, Department of Cardiology, Ankara, Turkey
| | - Türkan Seda Tan
- 324508Ankara University Faculty of Medicine, Department of Cardiology, Ankara, Turkey
| | - Eralp Tutar
- 324508Ankara University Faculty of Medicine, Department of Cardiology, Ankara, Turkey
| | - Sibel Tekin Turhan
- 324508Ankara University Faculty of Medicine, Department of Cardiology, Ankara, Turkey
| |
Collapse
|
38
|
Kuspriyanti NP, Ariyanto EF, Syamsunarno MRAA. Role of Warburg Effect in Cardiovascular Diseases: A Potential Treatment Option. Open Cardiovasc Med J 2021. [DOI: 10.2174/1874192402115010006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background:
Under normal conditions, the heart obtains ATP through the oxidation of fatty acids, glucose, and ketones. While fatty acids are the main source of energy in the heart, under certain conditions, the main source of energy shifts to glucose where pyruvate converts into lactate, to meet the energy demand. The Warburg effect is the energy shift from oxidative phosphorylation to glycolysis in the presence of oxygen. This effect is observed in tumors as well as in diseases, including cardiovascular diseases. If glycolysis is more dominant than glucose oxidation, the two pathways uncouple, contributing to the severity of the heart condition. Recently, several studies have documented changes in metabolism in several cardiovascular diseases; however, the specific mechanisms remain unclear.
Methods:
This literature review was conducted by an electronic database of Pub Med, Google Scholar, and Scopus published until 2020. Relevant papers are selected based on inclusion and exclusion criteria.
Results:
A total of 162 potentially relevant articles after the title and abstract screening were screened for full-text. Finally, 135 papers were included for the review article.
Discussion:
This review discusses the effects of alterations in glucose metabolism, particularly the Warburg effect, on cardiovascular diseases, including heart failure, atrial fibrillation, and cardiac hypertrophy.
Conclusion:
Reversing the Warburg effect could become a potential treatment option for cardiovascular diseases.
Collapse
|
39
|
Pasqua T, Rocca C, Giglio A, Angelone T. Cardiometabolism as an Interlocking Puzzle between the Healthy and Diseased Heart: New Frontiers in Therapeutic Applications. J Clin Med 2021; 10:721. [PMID: 33673114 PMCID: PMC7918460 DOI: 10.3390/jcm10040721] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiac metabolism represents a crucial and essential connecting bridge between the healthy and diseased heart. The cardiac muscle, which may be considered an omnivore organ with regard to the energy substrate utilization, under physiological conditions mainly draws energy by fatty acids oxidation. Within cardiomyocytes and their mitochondria, through well-concerted enzymatic reactions, substrates converge on the production of ATP, the basic chemical energy that cardiac muscle converts into mechanical energy, i.e., contraction. When a perturbation of homeostasis occurs, such as an ischemic event, the heart is forced to switch its fatty acid-based metabolism to the carbohydrate utilization as a protective mechanism that allows the maintenance of its key role within the whole organism. Consequently, the flexibility of the cardiac metabolic networks deeply influences the ability of the heart to respond, by adapting to pathophysiological changes. The aim of the present review is to summarize the main metabolic changes detectable in the heart under acute and chronic cardiac pathologies, analyzing possible therapeutic targets to be used. On this basis, cardiometabolism can be described as a crucial mechanism in keeping the physiological structure and function of the heart; furthermore, it can be considered a promising goal for future pharmacological agents able to appropriately modulate the rate-limiting steps of heart metabolic pathways.
Collapse
Affiliation(s)
- Teresa Pasqua
- Department of Health Science, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy;
| | - Carmine Rocca
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, E. and E.S. (Di.B.E.S.T.), University of Calabria, 87036 Rende (CS), Italy
| | - Anita Giglio
- Department of Biology, E. and E.S. (Di.B.E.S.T.), University of Calabria, 87036 Rende (CS), Italy;
| | - Tommaso Angelone
- Laboratory of Cellular and Molecular Cardiovascular Pathophysiology, Department of Biology, E. and E.S. (Di.B.E.S.T.), University of Calabria, 87036 Rende (CS), Italy
- National Institute of Cardiovascular Research (I.N.R.C.), 40126 Bologna, Italy
| |
Collapse
|
40
|
Oeing CU, Jun S, Mishra S, Dunkerly-Eyring BL, Chen A, Grajeda MI, Tahir UA, Gerszten RE, Paolocci N, Ranek MJ, Kass DA. MTORC1-Regulated Metabolism Controlled by TSC2 Limits Cardiac Reperfusion Injury. Circ Res 2021; 128:639-651. [PMID: 33401933 DOI: 10.1161/circresaha.120.317710] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
RATIONALE The mTORC1 (mechanistic target of rapamycin complex-1) controls metabolism and protein homeostasis and is activated following ischemia reperfusion (IR) injury and by ischemic preconditioning (IPC). However, studies vary as to whether this activation is beneficial or detrimental, and its influence on metabolism after IR is little reported. A limitation of prior investigations is their use of broad gain/loss of mTORC1 function, mostly applied before ischemic stress. This can be circumvented by regulating one serine (S1365) on TSC2 (tuberous sclerosis complex) to achieve bidirectional mTORC1 modulation but only with TCS2-regulated costimulation. OBJECTIVE We tested the hypothesis that reduced TSC2 S1365 phosphorylation protects the myocardium against IR and is required for IPC by amplifying mTORC1 activity to favor glycolytic metabolism. METHODS AND RESULTS Mice with either S1365A (TSC2SA; phospho-null) or S1365E (TSC2SE; phosphomimetic) knockin mutations were studied ex vivo and in vivo. In response to IR, hearts from TSC2SA mice had amplified mTORC1 activation and improved heart function compared with wild-type and TSC2SE hearts. The magnitude of protection matched IPC. IPC requited less S1365 phosphorylation, as TSC2SE hearts gained no benefit and failed to activate mTORC1 with IPC. IR metabolism was altered in TSC2SA, with increased mitochondrial oxygen consumption rate and glycolytic capacity (stressed/maximal extracellular acidification) after myocyte hypoxia-reperfusion. In whole heart, lactate increased and long-chain acylcarnitine levels declined during ischemia. The relative IR protection in TSC2SA was lost by lowering glucose in the perfusate by 36%. Adding fatty acid (palmitate) compensated for reduced glucose in wild type and TSC2SE but not TSC2SA which had the worst post-IR function under these conditions. CONCLUSIONS TSC2-S1365 phosphorylation status regulates myocardial substrate utilization, and its decline activates mTORC1 biasing metabolism away from fatty acid oxidation to glycolysis to confer protection against IR. This pathway is also engaged and reduced TSC2 S1365 phosphorylation required for effective IPC. Graphic Abstract: A graphic abstract is available for this article.
Collapse
Affiliation(s)
- Christian U Oeing
- Department of Internal Medicine and Cardiology, Charité University Medicine, Campus Virchow-Klinikum, Berlin, Germany, and German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany (C.U.O.).,Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD (C.U.O., S.J., S.M., B.L.D.-E., A.C., M.I.G., N.P., M.J.R., D.A.K.)
| | - Seungho Jun
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD (C.U.O., S.J., S.M., B.L.D.-E., A.C., M.I.G., N.P., M.J.R., D.A.K.)
| | - Sumita Mishra
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD (C.U.O., S.J., S.M., B.L.D.-E., A.C., M.I.G., N.P., M.J.R., D.A.K.)
| | - Brittany L Dunkerly-Eyring
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD (C.U.O., S.J., S.M., B.L.D.-E., A.C., M.I.G., N.P., M.J.R., D.A.K.).,Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD (B.L.D.-E., D.A.K.)
| | - Anna Chen
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD (C.U.O., S.J., S.M., B.L.D.-E., A.C., M.I.G., N.P., M.J.R., D.A.K.)
| | - Maria I Grajeda
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD (C.U.O., S.J., S.M., B.L.D.-E., A.C., M.I.G., N.P., M.J.R., D.A.K.)
| | - Usman A Tahir
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (U.A.T., R.E.G.)
| | - Robert E Gerszten
- Division of Cardiovascular Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA (U.A.T., R.E.G.)
| | - Nazareno Paolocci
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD (C.U.O., S.J., S.M., B.L.D.-E., A.C., M.I.G., N.P., M.J.R., D.A.K.).,Department of Biomedical Sciences, University of Padova, Italy (N.P.)
| | - Mark J Ranek
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD (C.U.O., S.J., S.M., B.L.D.-E., A.C., M.I.G., N.P., M.J.R., D.A.K.)
| | - David A Kass
- Division of Cardiology, Department of Medicine, The Johns Hopkins Medical Institutions, Baltimore, MD (C.U.O., S.J., S.M., B.L.D.-E., A.C., M.I.G., N.P., M.J.R., D.A.K.).,Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD (B.L.D.-E., D.A.K.)
| |
Collapse
|
41
|
Ryan TE, Schmidt CA, Tarpey MD, Amorese AJ, Yamaguchi DJ, Goldberg EJ, Iñigo MM, Karnekar R, O'Rourke A, Ervasti JM, Brophy P, Green TD, Neufer PD, Fisher-Wellman K, Spangenburg EE, McClung JM. PFKFB3-mediated glycolysis rescues myopathic outcomes in the ischemic limb. JCI Insight 2020; 5:139628. [PMID: 32841216 PMCID: PMC7526546 DOI: 10.1172/jci.insight.139628] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022] Open
Abstract
Compromised muscle mitochondrial metabolism is a hallmark of peripheral arterial disease, especially in patients with the most severe clinical manifestation - critical limb ischemia (CLI). We asked whether inflexibility in metabolism is critical for the development of myopathy in ischemic limb muscles. Using Polg mtDNA mutator (D257A) mice, we reveal remarkable protection from hind limb ischemia (HLI) due to a unique and beneficial adaptive enhancement of glycolytic metabolism and elevated ischemic muscle PFKFB3. Similar to the relationship between mitochondria from CLI and claudicating patient muscles, BALB/c muscle mitochondria are uniquely dysfunctional after HLI onset as compared with the C57BL/6 (BL6) parental strain. AAV-mediated overexpression of PFKFB3 in BALB/c limb muscles improved muscle contractile function and limb blood flow following HLI. Enrichment analysis of RNA sequencing data on muscle from CLI patients revealed a unique deficit in the glucose metabolism Reactome. Muscles from these patients express lower PFKFB3 protein, and their muscle progenitor cells possess decreased glycolytic flux capacity in vitro. Here, we show supplementary glycolytic flux as sufficient to protect against ischemic myopathy in instances where reduced blood flow-related mitochondrial function is compromised preclinically. Additionally, our data reveal reduced glycolytic flux as a common characteristic of the failing CLI patient limb skeletal muscle.
Collapse
Affiliation(s)
- Terence E Ryan
- East Carolina Diabetes and Obesity Institute.,Department of Physiology
| | - Cameron A Schmidt
- East Carolina Diabetes and Obesity Institute.,Department of Physiology
| | - Michael D Tarpey
- East Carolina Diabetes and Obesity Institute.,Department of Physiology
| | - Adam J Amorese
- East Carolina Diabetes and Obesity Institute.,Department of Physiology
| | - Dean J Yamaguchi
- Department of Cardiovascular Science, and.,Division of Surgery, East Carolina University, Brody School of Medicine, Greenville, North Carolina, USA
| | - Emma J Goldberg
- East Carolina Diabetes and Obesity Institute.,Department of Physiology
| | - Melissa Mr Iñigo
- East Carolina Diabetes and Obesity Institute.,Department of Physiology
| | - Reema Karnekar
- East Carolina Diabetes and Obesity Institute.,Department of Physiology
| | - Allison O'Rourke
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Saint Paul, Minnesota, USA
| | - James M Ervasti
- Department of Biochemistry, Molecular Biology and Biophysics, College of Biological Sciences, University of Minnesota, Saint Paul, Minnesota, USA
| | | | - Thomas D Green
- East Carolina Diabetes and Obesity Institute.,Department of Physiology
| | - P Darrell Neufer
- East Carolina Diabetes and Obesity Institute.,Department of Physiology
| | | | | | - Joseph M McClung
- East Carolina Diabetes and Obesity Institute.,Department of Physiology.,Department of Cardiovascular Science, and
| |
Collapse
|
42
|
Dittrich A, Hansen K, Simonsen MIT, Busk M, Alstrup AKO, Lauridsen H. Intrinsic Heart Regeneration in Adult Vertebrates May be Strictly Limited to Low-Metabolic Ectotherms. Bioessays 2020; 42:e2000054. [PMID: 32914411 DOI: 10.1002/bies.202000054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/12/2020] [Indexed: 01/24/2023]
Abstract
The heart has a high-metabolic rate, and its "around-the-clock" vital role to sustain life sets it apart in a regenerative setting from other organs and appendages. The landscape of vertebrate species known to perform intrinsic heart regeneration is strongly biased toward ectotherms-for example, fish, salamanders, and embryonic/neonatal ectothermic mammals. It is hypothesized that intrinsic heart regeneration is exclusively limited to the low-metabolic hearts of ectotherms. The biomedical field of regenerative medicine seeks to devise biologically inspired regenerative therapies to diseased human hearts. Falsification of the ectothermy dependency for heart regeneration hypothesis may be a crucial prerequisite to meaningfully seek inspiration in established ectothermic regenerative animal models. Otherwise, engineering approaches to construct artificial heart components may constitute a more viable path toward regenerative therapies. A more strict definition of regenerative phenomena is generated and several testable sub-hypotheses and experimental avenues are put forward to elucidate the link between heart regeneration and metabolism. Also see the video abstract here https://youtu.be/fZcanaOT5z8.
Collapse
Affiliation(s)
- Anita Dittrich
- Department of Clinical Medicine (Comparative Medicine Lab), Aarhus University, Aarhus N, 8200, Denmark
| | - Kasper Hansen
- Department of Clinical Medicine (Comparative Medicine Lab), Aarhus University, Aarhus N, 8200, Denmark.,Department of Forensic Medicine, Aarhus University, Aarhus N, 8200, Denmark.,Department of Biology (Zoophysiology), Aarhus University, Aarhus C, 8000, Denmark.,Leicester Royal Infirmary (East Midlands Forensic Pathology Unit), University of Leicester, Leicester, LE2 7LX, UK
| | | | - Morten Busk
- Department of Oncology (Experimental Clinical Oncology), Aarhus University Hospital, Aarhus N, 8200, Denmark.,Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus N, 8200, Denmark
| | | | - Henrik Lauridsen
- Department of Clinical Medicine (Comparative Medicine Lab), Aarhus University, Aarhus N, 8200, Denmark
| |
Collapse
|
43
|
Papay RS, Perez DM. α 1-Adrenergic receptors increase glucose oxidation under normal and ischemic conditions in adult mouse cardiomyocytes. J Recept Signal Transduct Res 2020; 41:138-144. [PMID: 32757689 DOI: 10.1080/10799893.2020.1799291] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The role of catecholamine receptors in cardiac energy metabolism is unknown. α1-adrenergic receptors (α1-ARs) have been identified to play a role in whole body metabolism but its role in cardiac energy metabolism has not been explored. We used freshly prepared primary adult mouse cardiomyocytes and incubated with either 14C-palmitate or 14C-glucose tracers to measure oxidation rates in the presence or absence of phenylephrine, an α1-AR agonist (with β and α2-AR blockers) under normal cell culture conditions. 14CO2 released was collected over a 10 min period in covered tissue culture plates using a 1 M hyamine hydroxide solution placed in well cups, counted by scintillation and converted into nmoles/hr. We found that phenylephrine stimulated glucose oxidation but not fatty acid oxidation in adult primary cardiomyocytes. α1-AR stimulated glucose oxidation was blocked by the AMPK inhibitor, dorsomorphin dihydrochloride, and the PKC inhibitor, rottlerin. Ischemic conditions were induced by lowering the glucose concentration from 22.5 mM to 1.375 mM. Under ischemic conditions, we found that phenylephrine also increased glucose oxidation. We report a direct role of α1-ARs in regulating glucose oxidation under normal and ischemic conditions that may lead to new therapeutic approaches in treating ischemia.
Collapse
Affiliation(s)
- Robert S Papay
- The Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Dianne M Perez
- The Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
44
|
Bianchi VE. Caloric restriction in heart failure: A systematic review. Clin Nutr ESPEN 2020; 38:50-60. [PMID: 32690177 DOI: 10.1016/j.clnesp.2020.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 04/17/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND AND AIMS Nutrition exerts a determinant role in maintaining cardiac function, regulating insulin and mitochondrial efficiency, that are essential to support energy production for contractility. In patients with heart failure (HF), myocardial tissue efficiency is reduced because of decreased mitochondrial oxidative capacity. In HF conditions, cardiomyocytes shift toward glucose and a reduction in fatty acid utilization. Calorie restriction induces weight loss in obese patients and can be beneficial in some HF patients, although this has generated some controversy. This study aims to evaluate the impact of the CR diet on myocardial efficiency in HF patients. METHODS On Pubmed and Embase, articles related to the keywords: "chronic heart failure" with "diet," "nutrition," "insulin resistance," and "caloric restriction" have been searched, Studies, including exercise or food supplementation, were excluded. RESULTS The retrieved articles showed that weight loss, through the activation of insulin and various kinase pathways, regulates the efficiency of myocardial tissue. In contrast, insulin resistance represents a strong cardiovascular risk factor that reduces myocardial function. CONCLUSION CR diet represents the first therapy in overweight HF patients, both with preserved ejection fraction (HFpEF) and with reduced ejection fraction (HFrHF) because reducing body fat, the myocardial function increased. Insulin activity is the critical hormone that regulates mitochondrial function and cardiac efficiency. However, a severely restricted diet may represent a severe risk factor correlated with all-cause mortality, particularly in underweight HF patients. Long-term studies conducted on large populations are necessary to evaluate the effects of CR on myocardial function in HF patients.
Collapse
|
45
|
Zuurbier CJ, Bertrand L, Beauloye CR, Andreadou I, Ruiz‐Meana M, Jespersen NR, Kula‐Alwar D, Prag HA, Eric Botker H, Dambrova M, Montessuit C, Kaambre T, Liepinsh E, Brookes PS, Krieg T. Cardiac metabolism as a driver and therapeutic target of myocardial infarction. J Cell Mol Med 2020; 24:5937-5954. [PMID: 32384583 PMCID: PMC7294140 DOI: 10.1111/jcmm.15180] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/13/2020] [Accepted: 03/08/2020] [Indexed: 12/11/2022] Open
Abstract
Reducing infarct size during a cardiac ischaemic-reperfusion episode is still of paramount importance, because the extension of myocardial necrosis is an important risk factor for developing heart failure. Cardiac ischaemia-reperfusion injury (IRI) is in principle a metabolic pathology as it is caused by abruptly halted metabolism during the ischaemic episode and exacerbated by sudden restart of specific metabolic pathways at reperfusion. It should therefore not come as a surprise that therapy directed at metabolic pathways can modulate IRI. Here, we summarize the current knowledge of important metabolic pathways as therapeutic targets to combat cardiac IRI. Activating metabolic pathways such as glycolysis (eg AMPK activators), glucose oxidation (activating pyruvate dehydrogenase complex), ketone oxidation (increasing ketone plasma levels), hexosamine biosynthesis pathway (O-GlcNAcylation; administration of glucosamine/glutamine) and deacetylation (activating sirtuins 1 or 3; administration of NAD+ -boosting compounds) all seem to hold promise to reduce acute IRI. In contrast, some metabolic pathways may offer protection through diminished activity. These pathways comprise the malate-aspartate shuttle (in need of novel specific reversible inhibitors), mitochondrial oxygen consumption, fatty acid oxidation (CD36 inhibitors, malonyl-CoA decarboxylase inhibitors) and mitochondrial succinate metabolism (malonate). Additionally, protecting the cristae structure of the mitochondria during IR, by maintaining the association of hexokinase II or creatine kinase with mitochondria, or inhibiting destabilization of FO F1 -ATPase dimers, prevents mitochondrial damage and thereby reduces cardiac IRI. Currently, the most promising and druggable metabolic therapy against cardiac IRI seems to be the singular or combined targeting of glycolysis, O-GlcNAcylation and metabolism of ketones, fatty acids and succinate.
Collapse
Affiliation(s)
- Coert J. Zuurbier
- Department of AnesthesiologyLaboratory of Experimental Intensive Care and AnesthesiologyAmsterdam Infection & ImmunityAmsterdam Cardiovascular SciencesAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Luc Bertrand
- Institut de Recherche Expérimentale et CliniquePole of Cardiovascular ResearchUniversité catholique de LouvainBrusselsBelgium
| | - Christoph R. Beauloye
- Institut de Recherche Expérimentale et CliniquePole of Cardiovascular ResearchUniversité catholique de LouvainBrusselsBelgium
- Cliniques Universitaires Saint‐LucBrusselsBelgium
| | - Ioanna Andreadou
- Laboratory of PharmacologyFaculty of PharmacyNational and Kapodistrian University of AthensAthensGreece
| | - Marisol Ruiz‐Meana
- Department of CardiologyHospital Universitari Vall d’HebronVall d’Hebron Institut de Recerca (VHIR)CIBER‐CVUniversitat Autonoma de Barcelona and Centro de Investigación Biomédica en Red‐CVMadridSpain
| | | | | | - Hiran A. Prag
- Department of MedicineUniversity of CambridgeCambridgeUK
| | - Hans Eric Botker
- Department of CardiologyAarhus University HospitalAarhus NDenmark
| | - Maija Dambrova
- Pharmaceutical PharmacologyLatvian Institute of Organic SynthesisRigaLatvia
| | - Christophe Montessuit
- Department of Pathology and ImmunologyUniversity of Geneva School of MedicineGenevaSwitzerland
| | - Tuuli Kaambre
- Laboratory of Chemical BiologyNational Institute of Chemical Physics and BiophysicsTallinnEstonia
| | - Edgars Liepinsh
- Pharmaceutical PharmacologyLatvian Institute of Organic SynthesisRigaLatvia
| | - Paul S. Brookes
- Department of AnesthesiologyUniversity of Rochester Medical CenterRochesterNYUSA
| | - Thomas Krieg
- Department of MedicineUniversity of CambridgeCambridgeUK
| |
Collapse
|
46
|
Al Batran R, Gopal K, Capozzi ME, Chahade JJ, Saleme B, Tabatabaei-Dakhili SA, Greenwell AA, Niu J, Almutairi M, Byrne NJ, Masson G, Kim R, Eaton F, Mulvihill EE, Garneau L, Masters AR, Desta Z, Velázquez-Martínez CA, Aguer C, Crawford PA, Sutendra G, Campbell JE, Dyck JRB, Ussher JR. Pimozide Alleviates Hyperglycemia in Diet-Induced Obesity by Inhibiting Skeletal Muscle Ketone Oxidation. Cell Metab 2020; 31:909-919.e8. [PMID: 32275862 DOI: 10.1016/j.cmet.2020.03.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/31/2020] [Accepted: 03/24/2020] [Indexed: 02/08/2023]
Abstract
Perturbations in carbohydrate, lipid, and protein metabolism contribute to obesity-induced type 2 diabetes (T2D), though whether alterations in ketone body metabolism influence T2D pathology is unknown. We report here that activity of the rate-limiting enzyme for ketone body oxidation, succinyl-CoA:3-ketoacid-CoA transferase (SCOT/Oxct1), is increased in muscles of obese mice. We also found that the diphenylbutylpiperidine pimozide, which is approved to suppress tics in individuals with Tourette syndrome, is a SCOT antagonist. Pimozide treatment reversed obesity-induced hyperglycemia in mice, which was phenocopied in mice with muscle-specific Oxct1/SCOT deficiency. These actions were dependent on pyruvate dehydrogenase (PDH/Pdha1) activity, the rate-limiting enzyme of glucose oxidation, as pimozide failed to alleviate hyperglycemia in obese mice with a muscle-specific Pdha1/PDH deficiency. This work defines a fundamental contribution of enhanced ketone body oxidation to the pathology of obesity-induced T2D, while suggesting pharmacological SCOT inhibition as a new class of anti-diabetes therapy.
Collapse
Affiliation(s)
- Rami Al Batran
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Keshav Gopal
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Megan E Capozzi
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Jadin J Chahade
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Bruno Saleme
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | | | - Amanda A Greenwell
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Jingjing Niu
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Malak Almutairi
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Nikole J Byrne
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada; Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Grant Masson
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada; Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Ryekjang Kim
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Farah Eaton
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada
| | - Erin E Mulvihill
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON, Canada; University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Léa Garneau
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON, Canada; Institut du Savoir Montfort, Ottawa, ON, Canada
| | - Andrea R Masters
- Indiana University School of Medicine, Indiana University Melvin and Bren Simon Cancer Center, Indianapolis, IN, USA
| | - Zeruesenay Desta
- Department of Medicine, Division of Clinical Pharmacology, Indianapolis, IN, USA
| | | | - Céline Aguer
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, ON, Canada; Institut du Savoir Montfort, Ottawa, ON, Canada; School of Human Kinetics, University of Ottawa, Ottawa, ON, Canada
| | - Peter A Crawford
- Division of Molecular Medicine, Department of Medicine, Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | | | | | - Jason R B Dyck
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada; Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada; Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada; Cardiovascular Research Centre, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
47
|
Li Y, Xiong Z, Yan W, Gao E, Cheng H, Wu G, Liu Y, Zhang L, Li C, Wang S, Fan M, Zhao H, Zhang F, Tao L. Branched chain amino acids exacerbate myocardial ischemia/reperfusion vulnerability via enhancing GCN2/ATF6/PPAR-α pathway-dependent fatty acid oxidation. Theranostics 2020; 10:5623-5640. [PMID: 32373236 PMCID: PMC7196282 DOI: 10.7150/thno.44836] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
Rationale: Myocardial vulnerability to ischemia/reperfusion (I/R) injury is strictly regulated by energy substrate metabolism. Branched chain amino acids (BCAA), consisting of valine, leucine and isoleucine, are a group of essential amino acids that are highly oxidized in the heart. Elevated levels of BCAA have been implicated in the development of cardiovascular diseases; however, the role of BCAA in I/R process is not fully understood. The present study aims to determine how BCAA influence myocardial energy substrate metabolism and to further clarify the pathophysiological significance during cardiac I/R injury. Methods: Parameters of glucose and fatty acid metabolism were measured by seahorse metabolic flux analyzer in adult mouse cardiac myocytes with or without BCAA incubation. Chronic accumulation of BCAA was induced in mice receiving oral BCAA administration. A genetic mouse model with defective BCAA catabolism was also utilized. Mice were subjected to MI/R and the injury was assessed extensively at the whole-heart, cardiomyocyte, and molecular levels. Results: We confirmed that chronic accumulation of BCAA enhanced glycolysis and fatty acid oxidation (FAO) but suppressed glucose oxidation in adult mouse ventricular cardiomyocytes. Oral gavage of BCAA enhanced FAO in cardiac tissues, exacerbated lipid peroxidation toxicity and worsened myocardial vulnerability to I/R injury. Etomoxir, a specific inhibitor of FAO, rescued the deleterious effects of BCAA on I/R injury. Mechanistically, valine, leucine and their corresponding branched chain α-keto acid (BCKA) derivatives, but not isoleucine and its BCKA derivative, transcriptionally upregulated peroxisome proliferation-activated receptor alpha (PPAR-α). BCAA/BCKA induced PPAR-α upregulation through the general control nonderepresible-2 (GCN2)/ activating transcription factor-6 (ATF6) pathway. Finally, in a genetic mouse model with BCAA catabolic defects, chronic accumulation of BCAA increased FAO in myocardial tissues and sensitized the heart to I/R injury, which could be reversed by adenovirus-mediated PPAR-α silencing. Conclusions: We identify BCAA as an important nutrition regulator of myocardial fatty acid metabolism through transcriptional upregulation of PPAR-α. Chronic accumulation of BCAA, caused by either dietary or genetic factors, renders the heart vulnerable to I/R injury via exacerbating lipid peroxidation toxicity. These data support the notion that BCAA lowering methods might be potentially effective cardioprotective strategies, especially among patients with diseases characterized by elevated levels of BCAA, such as obesity and diabetes.
Collapse
|
48
|
|
49
|
Li X, Liu J, Hu H, Lu S, Lu Q, Quan N, Rousselle T, Patel MS, Li J. Dichloroacetate Ameliorates Cardiac Dysfunction Caused by Ischemic Insults Through AMPK Signal Pathway-Not Only Shifts Metabolism. Toxicol Sci 2020; 167:604-617. [PMID: 30371859 DOI: 10.1093/toxsci/kfy272] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dichloroacetate (DCA), an inhibitor of pyruvate dehydrogenase kinase (PDK), regulates substrate metabolism in the heart. AMP-activated protein kinase (AMPK) is an age-related energy sensor that protects the heart from ischemic injury. This study aims to investigate whether DCA can protect the heart from ischemic injury through the AMPK signaling pathway. Young (3-4 months) and aged (20-24 months) male C57BL/6J mice were subjected to ligation of the left anterior descending coronary artery (LAD) for an in vivo ischemic model. The systolic function of the hearts was significantly decreased in both young and aged mice after 45 min of ischemia and 24 h of reperfusion. DCA treatment significantly improved cardiac function in both young and aged mice. The myocardial infarction analysis demonstrated that DCA treatment significantly reduced the infarction size caused by ischemia/reperfusion (I/R) in both young and aged mice. The isolated-cardiomyocyte experiments showed that DCA treatment ameliorated contractile dysfunction and improved the intracellular calcium signal of cardiomyocytes under hypoxia/reoxygenation (H/R) conditions. These cardioprotective functions of DCA can be attenuated by inhibiting AMPK activation. Furthermore, the metabolic measurements with an ex vivo working heart system demonstrated that the effects of DCA treatment on modulating the metabolic shift response to ischemia and reperfusion stress can be attenuated by inhibiting AMPK activity. The immunoblotting results showed that DCA treatment triggered cardiac AMPK signaling pathway by increasing the phosphorylation of AMPK's upstream kinase liver kinase B1 (LKB1) under both sham operations and I/R conditions. Thus, except from modulating metabolism in hearts, the cardioprotective function of DCA during I/R was mediated by the LKB1-AMPK pathway.
Collapse
Affiliation(s)
- Xuan Li
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Jia Liu
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi 39216.,Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, China
| | - Haiyan Hu
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Shaoxin Lu
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Qingguo Lu
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Nanhu Quan
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi 39216.,Department of Geriatrics, The First Hospital of Jilin University, Changchun 130021, China
| | - Thomas Rousselle
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi 39216
| | - Mulchand S Patel
- Department of Biochemistry, University at Buffalo, The State University of New York, Buffalo New York 14203
| | - Ji Li
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, Mississippi 39216
| |
Collapse
|
50
|
Ruiz-Velasco A, Zi M, Hille SS, Azam T, Kaur N, Jiang J, Nguyen B, Sekeres K, Binder P, Collins L, Pu F, Xiao H, Guan K, Frey N, Cartwright EJ, Müller OJ, Wang X, Liu W. Targeting mir128-3p alleviates myocardial insulin resistance and prevents ischemia-induced heart failure. eLife 2020; 9:54298. [PMID: 32223896 PMCID: PMC7124275 DOI: 10.7554/elife.54298] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/27/2020] [Indexed: 01/02/2023] Open
Abstract
Myocardial insulin resistance contributes to heart failure in response to pathological stresses, therefore, a therapeutic strategy to maintain cardiac insulin pathways requires further investigation. We demonstrated that insulin receptor substrate 1 (IRS1) was reduced in failing mouse hearts post-myocardial infarction (MI) and failing human hearts. The mice manifesting severe cardiac dysfunction post-MI displayed elevated mir128-3p in the myocardium. Ischemia-upregulated mir128-3p promoted Irs1 degradation. Using rat cardiomyocytes and human-induced pluripotent stem cell-derived cardiomyocytes, we elucidated that mitogen-activated protein kinase 7 (MAPK7, also known as ERK5)-mediated CCAAT/enhancer-binding protein beta (CEBPβ) transcriptionally represses mir128-3p under hypoxia. Therapeutically, functional studies demonstrated gene therapy-delivered cardiac-specific MAPK7 restoration or overexpression of CEBPβ impeded cardiac injury after MI, at least partly due to normalization of mir128-3p. Furthermore, inhibition of mir128-3p preserved Irs1 and ameliorated cardiac dysfunction post-MI. In conclusion, we reveal that targeting mir128-3p mitigates myocardial insulin resistance, thereafter slowing down the progression of heart failure post-ischemia.
Collapse
Affiliation(s)
- Andrea Ruiz-Velasco
- Faculty of Biology, Medicine, and Health, the University of ManchesterManchesterUnited Kingdom
| | - Min Zi
- Faculty of Biology, Medicine, and Health, the University of ManchesterManchesterUnited Kingdom
| | - Susanne S Hille
- Department of Internal Medicine III, University of KielKielGermany,DZHK, German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/LübeckKielGermany
| | - Tayyiba Azam
- Faculty of Biology, Medicine, and Health, the University of ManchesterManchesterUnited Kingdom
| | - Namrita Kaur
- Faculty of Biology, Medicine, and Health, the University of ManchesterManchesterUnited Kingdom
| | - Juwei Jiang
- Faculty of Biology, Medicine, and Health, the University of ManchesterManchesterUnited Kingdom
| | - Binh Nguyen
- Faculty of Biology, Medicine, and Health, the University of ManchesterManchesterUnited Kingdom
| | - Karolina Sekeres
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universitaet DresdenDresdenGermany
| | - Pablo Binder
- Faculty of Biology, Medicine, and Health, the University of ManchesterManchesterUnited Kingdom
| | - Lucy Collins
- Faculty of Biology, Medicine, and Health, the University of ManchesterManchesterUnited Kingdom
| | - Fay Pu
- Edinburgh University Medical SchoolEdinburghUnited Kingdom
| | - Han Xiao
- Institute of Vascular Medicine, Peking UniversityBeijingChina
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universitaet DresdenDresdenGermany
| | - Norbert Frey
- Department of Internal Medicine III, University of KielKielGermany,DZHK, German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/LübeckKielGermany
| | - Elizabeth J Cartwright
- Faculty of Biology, Medicine, and Health, the University of ManchesterManchesterUnited Kingdom
| | - Oliver J Müller
- Department of Internal Medicine III, University of KielKielGermany,DZHK, German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/LübeckKielGermany
| | - Xin Wang
- Faculty of Biology, Medicine, and Health, the University of ManchesterManchesterUnited Kingdom
| | - Wei Liu
- Faculty of Biology, Medicine, and Health, the University of ManchesterManchesterUnited Kingdom
| |
Collapse
|