1
|
Witmer NH, McLendon JM, Stein CS, Yoon JY, Berezhnaya E, Elrod JW, London BL, Boudreau RL. Upstream alternative polyadenylation in SCN5A produces a short transcript isoform encoding a mitochondria-localized NaV1.5 N-terminal fragment that influences cardiomyocyte respiration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.09.607406. [PMID: 39211120 PMCID: PMC11360925 DOI: 10.1101/2024.08.09.607406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
SCN5A encodes the cardiac voltage-gated Na+ channel, NaV1.5, that initiates action potentials. SCN5A gene variants cause arrhythmias and increased heart failure risk. Mechanisms controlling NaV1.5 expression and activity are not fully understood. We recently found a well-conserved alternative polyadenylation (APA) signal downstream of the first SCN5A coding exon. This yields a SCN5A-short transcript isoform expressed in several species (e.g. human, pig, and cat), though rodents lack this upstream APA. Reanalysis of transcriptome-wide cardiac APA-seq and mRNA-seq data shows reductions in both upstream APA usage and short/full-length SCN5A mRNA ratios in failing hearts. Knock-in of the human SCN5A APA sequence into mice is sufficient to enable expression of SCN5A -short transcript, while significantly decreasing expression of full-length SCN5A mRNA. Notably, SCN5A -short transcript encodes a novel protein (NaV1.5-NT), composed of an N-terminus identical to NaV1.5 and a unique C-terminus derived from intronic sequence. AAV9 constructs were able to achieve stable NaV1.5-NT expression in mouse hearts, and western blot of human heart tissues showed bands co-migrating with NaV1.5-NT transgene-derived bands. NaV1.5-NT is predicted to contain a mitochondrial targeting sequence and localizes to mitochondria in cultured cardiomyocytes and in mouse hearts. NaV1.5-NT expression in cardiomyocytes led to elevations in basal oxygen consumption rate, ATP production, and mitochondrial ROS, while depleting NADH supply. Native PAGE analyses of mitochondria lysates revealed that NaV1.5-NT expression resulted in increased levels of disassembled complex V subunits and accumulation of complex I-containing supercomplexes. Overall, we discovered that APA-mediated regulation of SCN5A produces a short transcript encoding NaV1.5-NT. Our data support that NaV1.5-NT plays a multifaceted role in influencing mitochondrial physiology: 1) by increasing basal respiration likely through promoting complex V conformations that enhance proton leak, and 2) by increasing overall respiratory efficiency and NADH consumption by enhancing formation and/or stability of complex I-containing respiratory supercomplexes, though the specific molecular mechanisms underlying each of these remain unresolved.
Collapse
|
2
|
Zaytseva AK, Kulichik OE, Kostareva AA, Zhorov BS. Biophysical mechanisms of myocardium sodium channelopathies. Pflugers Arch 2024; 476:735-753. [PMID: 38424322 DOI: 10.1007/s00424-024-02930-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Genetic variants of gene SCN5A encoding the alpha-subunit of cardiac voltage-gated sodium channel Nav1.5 are associated with various diseases, including long QT syndrome (LQT3), Brugada syndrome (BrS1), and progressive cardiac conduction disease (PCCD). In the last decades, the great progress in understanding molecular and biophysical mechanisms of these diseases has been achieved. The LQT3 syndrome is associated with gain-of-function of sodium channels Nav1.5 due to impaired inactivation, enhanced activation, accelerated recovery from inactivation or the late current appearance. In contrast, BrS1 and PCCD are associated with the Nav1.5 loss-of-function, which in electrophysiological experiments can be manifested as reduced current density, enhanced fast or slow inactivation, impaired activation, or decelerated recovery from inactivation. Genetic variants associated with congenital arrhythmias can also disturb interactions of the Nav1.5 channel with different proteins or drugs and cause unexpected reactions to drug administration. Furthermore, mutations can affect post-translational modifications of the channels and their sensitivity to pH and temperature. Here we briefly review the current knowledge on biophysical mechanisms of LQT3, BrS1 and PCCD. We focus on limitations of studies that use heterologous expression systems and induced pluripotent stem cells (iPSC) derived cardiac myocytes and summarize our understanding of genotype-phenotype relations of SCN5A mutations.
Collapse
Affiliation(s)
- Anastasia K Zaytseva
- Almazov National Medical Research Centre, St. Petersburg, Russia.
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia.
| | - Olga E Kulichik
- Almazov National Medical Research Centre, St. Petersburg, Russia
| | | | - Boris S Zhorov
- Almazov National Medical Research Centre, St. Petersburg, Russia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
- McMaster University, Hamilton, Canada
| |
Collapse
|
3
|
Gallego-Delgado M, Cámara-Checa A, Rubio-Alarcón M, Heredero-Jung D, de la Fuente-Blanco L, Rapún J, Plata-Izquierdo B, Pérez-Martín S, Cebrián J, Moreno de Redrojo L, García-Berrocal B, Delpón E, Sánchez PL, Villacorta E, Caballero R. Variable Penetrance and Expressivity of a Rare Pore Loss-of-Function Mutation (p.L889V) of Nav1.5 Channels in Three Spanish Families. Int J Mol Sci 2024; 25:4686. [PMID: 38731905 PMCID: PMC11083067 DOI: 10.3390/ijms25094686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 05/13/2024] Open
Abstract
A novel rare mutation in the pore region of Nav1.5 channels (p.L889V) has been found in three unrelated Spanish families that produces quite diverse phenotypic manifestations (Brugada syndrome, conduction disease, dilated cardiomyopathy, sinus node dysfunction, etc.) with variable penetrance among families. We clinically characterized the carriers and recorded the Na+ current (INa) generated by p.L889V and native (WT) Nav1.5 channels, alone or in combination, to obtain further insight into the genotypic-phenotypic relationships in patients carrying SCN5A mutations and in the molecular determinants of the Nav1.5 channel function. The variant produced a strong dominant negative effect (DNE) since the peak INa generated by p.L889V channels expressed in Chinese hamster ovary cells, either alone (-69.4 ± 9.0 pA/pF) or in combination with WT (-62.2 ± 14.6 pA/pF), was significantly (n ≥ 17, p < 0.05) reduced compared to that generated by WT channels alone (-199.1 ± 44.1 pA/pF). The mutation shifted the voltage dependence of channel activation and inactivation to depolarized potentials, did not modify the density of the late component of INa, slightly decreased the peak window current, accelerated the recovery from fast and slow inactivation, and slowed the induction kinetics of slow inactivation, decreasing the fraction of channels entering this inactivated state. The membrane expression of p.L889V channels was low, and in silico molecular experiments demonstrated profound alterations in the disposition of the pore region of the mutated channels. Despite the mutation producing a marked DNE and reduction in the INa and being located in a critical domain of the channel, its penetrance and expressivity are quite variable among the carriers. Our results reinforce the argument that the incomplete penetrance and phenotypic variability of SCN5A loss-of-function mutations are the result of a combination of multiple factors, making it difficult to predict their expressivity in the carriers despite the combination of clinical, genetic, and functional studies.
Collapse
Affiliation(s)
- María Gallego-Delgado
- Department of Cardiology, CSUR Cardiopatías Familiares, Institute of Biomedical Research of Salamanca (IBSAL), Complejo Asistencial Universitario de Salamanca, Gerencia Regional de Salud de Castilla y León (SACYL), 37007 Salamaca, Spain; (M.G.-D.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain (M.R.-A.); (J.R.); (J.C.); (R.C.)
| | - Anabel Cámara-Checa
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain (M.R.-A.); (J.R.); (J.C.); (R.C.)
- Department of Pharmacology, School of Medicine, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, 28040 Madrid, Spain
| | - Marcos Rubio-Alarcón
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain (M.R.-A.); (J.R.); (J.C.); (R.C.)
- Department of Pharmacology, School of Medicine, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, 28040 Madrid, Spain
| | - David Heredero-Jung
- Department of Biochemistry, CSUR Cardiopatías Familiares, Institute of Biomedical Research of Salamanca (IBSAL), Complejo Asistencial Universitario de Salamanca, Gerencia Regional de Salud de Castilla y León (SACYL), 37007 Salamaca, Spain
| | - Laura de la Fuente-Blanco
- Department of Cardiology, CSUR Cardiopatías Familiares, Institute of Biomedical Research of Salamanca (IBSAL), Complejo Asistencial Universitario de Salamanca, Gerencia Regional de Salud de Castilla y León (SACYL), 37007 Salamaca, Spain; (M.G.-D.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain (M.R.-A.); (J.R.); (J.C.); (R.C.)
| | - Josu Rapún
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain (M.R.-A.); (J.R.); (J.C.); (R.C.)
- Department of Pharmacology, School of Medicine, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, 28040 Madrid, Spain
| | - Beatriz Plata-Izquierdo
- Department of Pediatrics, Institute of Biomedical Research of Salamanca (IBSAL), Complejo Asistencial Universitario de Salamanca, Gerencia Regional de Salud de Castilla y Leon (SACYL), CIBERCV, 37007 Salamaca, Spain;
| | - Sara Pérez-Martín
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain (M.R.-A.); (J.R.); (J.C.); (R.C.)
- Department of Pharmacology, School of Medicine, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, 28040 Madrid, Spain
| | - Jorge Cebrián
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain (M.R.-A.); (J.R.); (J.C.); (R.C.)
- Department of Pharmacology, School of Medicine, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, 28040 Madrid, Spain
| | - Lucía Moreno de Redrojo
- Department of Cardiology, CSUR Cardiopatías Familiares, Institute of Biomedical Research of Salamanca (IBSAL), Complejo Asistencial Universitario de Salamanca, Gerencia Regional de Salud de Castilla y León (SACYL), 37007 Salamaca, Spain; (M.G.-D.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain (M.R.-A.); (J.R.); (J.C.); (R.C.)
| | - Belén García-Berrocal
- Department of Biochemistry, CSUR Cardiopatías Familiares, Institute of Biomedical Research of Salamanca (IBSAL), Complejo Asistencial Universitario de Salamanca, Gerencia Regional de Salud de Castilla y León (SACYL), 37007 Salamaca, Spain
| | - Eva Delpón
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain (M.R.-A.); (J.R.); (J.C.); (R.C.)
- Department of Pharmacology, School of Medicine, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, 28040 Madrid, Spain
| | - Pedro L. Sánchez
- Department of Cardiology, CSUR Cardiopatías Familiares, Institute of Biomedical Research of Salamanca (IBSAL), Complejo Asistencial Universitario de Salamanca, Gerencia Regional de Salud de Castilla y León (SACYL), 37007 Salamaca, Spain; (M.G.-D.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain (M.R.-A.); (J.R.); (J.C.); (R.C.)
| | - Eduardo Villacorta
- Department of Cardiology, CSUR Cardiopatías Familiares, Institute of Biomedical Research of Salamanca (IBSAL), Complejo Asistencial Universitario de Salamanca, Gerencia Regional de Salud de Castilla y León (SACYL), 37007 Salamaca, Spain; (M.G.-D.)
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain (M.R.-A.); (J.R.); (J.C.); (R.C.)
| | - Ricardo Caballero
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain (M.R.-A.); (J.R.); (J.C.); (R.C.)
- Department of Pharmacology, School of Medicine, Instituto de Investigación Sanitaria Gregorio Marañón, Universidad Complutense, 28040 Madrid, Spain
| |
Collapse
|
4
|
Pham HM, Nguyen DP, Ta TD, Le TP, Phan PH, Trinh HA, Tran TV, Luong TLA, Nguyen HM, Bui T, Tran TH, Ta TV, Tran V. In silico validation revealed the role of SCN5A mutations and their genotype-phenotype correlations in Brugada syndrome. Mol Genet Genomic Med 2023; 11:e2263. [PMID: 37547970 PMCID: PMC10724507 DOI: 10.1002/mgg3.2263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 07/03/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023] Open
Abstract
BACKGROUND Brugada syndrome (BrS) is a rare genetic disease that causes sudden cardiac death (SCD) and arrhythmia. SCN5A pathogenic variants (about 30% of diagnosed patients) are responsible for BrS. AIMS Lack of knowledge regarding molecular characteristics and the correlation between genotype and phenotype interfere with the risk stratification and finding the optimal treatment in Vietnam. Therefore, we identified SCN5A variants and evaluated the genotype-phenotype correlation of BrS on 117 Vietnamese probands. MATERIALS AND METHODS The clinical characteristics and blood samples of BrS patients were collected. To determine SCN5A variants, Sanger sequencing was conducted, and subsequently, these variants were analyzed by bioinformatic tools. RESULTS In this cohort, the overall rate of detected variants in SCN5A was 25.6%, which could include both pathogenic and benign variants. In genetic testing, 21 SCN5A variants were identified, including eight novels and 15 published variants. Multiple bioinformatic tools were used to predict variant effect with c.551A>G, c.1890+14G>A, c.3338C>T, c.3578G>A, and c.5484C>T as benign, while other variants were predicted as disease-causing. The family history of SCD (risk ratio [RR] = 4.324, 95% CI: 2.290-8.269, p < 0.001), syncope (RR = 3.147, 95% CI: 1.668-5.982, p = 0.0004), and ventricular tachycardia/ventricular fibrillation (RR = 3.406, 95% CI: 1.722-5.400, p = 0.0035) presented a significantly higher risk in the SCN5A (+) group, consisting of individuals carrying any variant in the SCN5A gene, compared to SCN5A (-) individuals. CONCLUSION The results contribute to clarifying the impact of SCN5A variants on these phenotypes. Further follow-up studies need to be carried out to understand the functional effects of these SCN5A variants on the severity of BrS.
Collapse
Affiliation(s)
- Hung Manh Pham
- Center for Gene and Protein ResearchHanoi Medical UniversityHanoiVietnam
- Vietnam National Heart InstituteBach Mai HospitalHanoiVietnam
| | - Duy Phuong Nguyen
- Center for Gene and Protein ResearchHanoi Medical UniversityHanoiVietnam
- Ho Chi Minh City Heart InstituteHo Chi MinhVietnam
| | - Thanh Dat Ta
- Center for Gene and Protein ResearchHanoi Medical UniversityHanoiVietnam
| | - Thi Phuong Le
- Center for Gene and Protein ResearchHanoi Medical UniversityHanoiVietnam
| | - Phong Hai Phan
- Center for Gene and Protein ResearchHanoi Medical UniversityHanoiVietnam
- Vietnam National Heart InstituteBach Mai HospitalHanoiVietnam
| | | | - Tuan Viet Tran
- Center for Gene and Protein ResearchHanoi Medical UniversityHanoiVietnam
- Vietnam National Heart InstituteBach Mai HospitalHanoiVietnam
| | - Thi Lan Anh Luong
- Center for Gene and Protein ResearchHanoi Medical UniversityHanoiVietnam
| | - Ha Minh Nguyen
- Hue Central HospitalHueVietnam
- Pham Ngoc Thanh UniversityHo Chi MinhVietnam
| | - The‐Hung Bui
- Center for Gene and Protein ResearchHanoi Medical UniversityHanoiVietnam
- Center for Molecular Medicine, Clinical Genetics UnitKarolinska Institutet, Karolinska University HospitalStockholmSweden
| | - Thinh Huy Tran
- Center for Gene and Protein ResearchHanoi Medical UniversityHanoiVietnam
| | - Thanh Van Ta
- Center for Gene and Protein ResearchHanoi Medical UniversityHanoiVietnam
| | - Van‐Khanh Tran
- Center for Gene and Protein ResearchHanoi Medical UniversityHanoiVietnam
| |
Collapse
|
5
|
Ma JG, Vandenberg JI, Ng CA. Development of automated patch clamp assays to overcome the burden of variants of uncertain significance in inheritable arrhythmia syndromes. Front Physiol 2023; 14:1294741. [PMID: 38089476 PMCID: PMC10712320 DOI: 10.3389/fphys.2023.1294741] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/13/2023] [Indexed: 10/16/2024] Open
Abstract
Advances in next-generation sequencing have been exceptionally valuable for identifying variants in medically actionable genes. However, for most missense variants there is insufficient evidence to permit definitive classification of variants as benign or pathogenic. To overcome the deluge of Variants of Uncertain Significance, there is an urgent need for high throughput functional assays to assist with the classification of variants. Advances in parallel planar patch clamp technologies has enabled the development of automated high throughput platforms capable of increasing throughput 10- to 100-fold compared to manual patch clamp methods. Automated patch clamp electrophysiology is poised to revolutionize the field of functional genomics for inheritable cardiac ion channelopathies. In this review, we outline i) the evolution of patch clamping, ii) the development of high-throughput automated patch clamp assays to assess cardiac ion channel variants, iii) clinical application of these assays and iv) where the field is heading.
Collapse
Affiliation(s)
- Joanne G. Ma
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Jamie I. Vandenberg
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Chai-Ann Ng
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
6
|
Structural basis for Na V1.7 inhibition by pore blockers. Nat Struct Mol Biol 2022; 29:1208-1216. [PMID: 36424527 DOI: 10.1038/s41594-022-00860-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 10/11/2022] [Indexed: 11/26/2022]
Abstract
Voltage-gated sodium channel NaV1.7 plays essential roles in pain and odor perception. NaV1.7 variants cause pain disorders. Accordingly, NaV1.7 has elicited extensive attention in developing new analgesics. Here we present cryo-EM structures of human NaV1.7/β1/β2 complexed with inhibitors XEN907, TC-N1752 and NaV1.7-IN2, explaining specific binding sites and modulation mechanism for the pore blockers. These inhibitors bind in the central cavity blocking ion permeation, but engage different parts of the cavity wall. XEN907 directly causes α- to π-helix transition of DIV-S6 helix, which tightens the fast inactivation gate. TC-N1752 induces π-helix transition of DII-S6 helix mediated by a conserved asparagine on DIII-S6, which closes the activation gate. NaV1.7-IN2 serves as a pore blocker without causing conformational change. Electrophysiological results demonstrate that XEN907 and TC-N1752 stabilize NaV1.7 in inactivated state and delay the recovery from inactivation. Our results provide structural framework for NaV1.7 modulation by pore blockers, and important implications for developing subtype-selective analgesics.
Collapse
|
7
|
Jiang D, Zhang J, Xia Z. Structural Advances in Voltage-Gated Sodium Channels. Front Pharmacol 2022; 13:908867. [PMID: 35721169 PMCID: PMC9204039 DOI: 10.3389/fphar.2022.908867] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Voltage-gated sodium (NaV) channels are responsible for the rapid rising-phase of action potentials in excitable cells. Over 1,000 mutations in NaV channels are associated with human diseases including epilepsy, periodic paralysis, arrhythmias and pain disorders. Natural toxins and clinically-used small-molecule drugs bind to NaV channels and modulate their functions. Recent advances from cryo-electron microscopy (cryo-EM) structures of NaV channels reveal invaluable insights into the architecture, activation, fast inactivation, electromechanical coupling, ligand modulation and pharmacology of eukaryotic NaV channels. These structural analyses not only demonstrate molecular mechanisms for NaV channel structure and function, but also provide atomic level templates for rational development of potential subtype-selective therapeutics. In this review, we summarize recent structural advances of eukaryotic NaV channels, highlighting the structural features of eukaryotic NaV channels as well as distinct modulation mechanisms by a wide range of modulators from natural toxins to synthetic small-molecules.
Collapse
Affiliation(s)
- Daohua Jiang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Daohua Jiang,
| | - Jiangtao Zhang
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Zhanyi Xia
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
O'Neill MJ, Muhammad A, Li B, Wada Y, Hall L, Solus JF, Short L, Roden DM, Glazer AM. Dominant negative effects of SCN5A missense variants. Genet Med 2022; 24:1238-1248. [PMID: 35305865 PMCID: PMC9262418 DOI: 10.1016/j.gim.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 10/18/2022] Open
Abstract
PURPOSE Up to 30% of patients with Brugada syndrome (BrS) carry loss-of-function (LoF) variants in the cardiac sodium channel gene SCN5A encoding for the protein NaV1.5. Recent studies suggested that NaV1.5 can dimerize, and some variants exert dominant negative effects. In this study, we sought to explore the generality of missense variant NaV1.5 dominant negative effects and their clinical severity. METHODS We identified 35 LoF variants (<10% of wild type [WT] peak current) and 15 partial LoF variants (10%-50% of WT peak current) that we assessed for dominant negative effects. SCN5A variants were studied in HEK293T cells, alone or in heterozygous coexpression with WT SCN5A using automated patch clamp. To assess the clinical risk, we compared the prevalence of dominant negative vs putative haploinsufficient (frameshift, splice, or nonsense) variants in a BrS consortium and the Genome Aggregation Database population database. RESULTS In heterozygous expression with WT, 32 of 35 LoF and 6 of 15 partial LoF variants showed reduction to <75% of WT-alone peak current, showing a dominant negative effect. Individuals with dominant negative LoF variants had an elevated disease burden compared with the individuals with putative haploinsufficient variants (2.7-fold enrichment in BrS cases, P = .019). CONCLUSION Most SCN5A missense LoF variants exert a dominant negative effect. This class of variant confers an especially high burden of BrS.
Collapse
Affiliation(s)
- Matthew J O'Neill
- Vanderbilt University School of Medicine, Medical Scientist Training Program, Vanderbilt University, Nashville, TN
| | - Ayesha Muhammad
- Vanderbilt University School of Medicine, Medical Scientist Training Program, Vanderbilt University, Nashville, TN
| | - Bian Li
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Vanderbilt University Medical Center, Nashville, TN
| | - Yuko Wada
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Vanderbilt University Medical Center, Nashville, TN
| | - Lynn Hall
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Vanderbilt University Medical Center, Nashville, TN
| | - Joseph F Solus
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Vanderbilt University Medical Center, Nashville, TN
| | - Laura Short
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Vanderbilt University Medical Center, Nashville, TN
| | - Dan M Roden
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Vanderbilt University Medical Center, Nashville, TN; Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN
| | - Andrew M Glazer
- Vanderbilt Center for Arrhythmia Research and Therapeutics (VanCART), Vanderbilt University Medical Center, Nashville, TN; Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN.
| |
Collapse
|
9
|
Research progress of Nedd4L in cardiovascular diseases. Cell Death Dis 2022; 8:206. [PMID: 35429991 PMCID: PMC9013375 DOI: 10.1038/s41420-022-01017-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/25/2022]
Abstract
Post-translational modifications (PTMs) are a covalent processing process of proteins after translation. Proteins are capable of playing their roles only after being modified, so as to maintain the normal physiological function of cells. As a key modification of protein post-translational modification, ubiquitination is an essential element, which forms an enzyme-linked reaction through ubiquitin-activating enzyme, ubiquitin binding enzyme, and ubiquitin ligase, aiming to regulate the expression level and function of cellular proteins. Nedd4 family is the largest group of ubiquitin ligases, including 9 members, such as Nedd4-1, Nedd4L (Nedd4-2), WWP1, WWP2, ITCH, etc. They could bind to substrate proteins through their WW domain and play a dominant role in the ubiquitination process, and then participate in various pathophysiological processes of cardiovascular diseases (such as hypertension, myocardial hypertrophy, heart failure, etc.). At present, the role of Nedd4L in the cardiovascular field is not fully understood. This review aims to summarize the progress and mechanism of Nedd4L in cardiovascular diseases, and provide potential perspective for the clinical treatment or prevention of related cardiovascular diseases by targeting Nedd4L.
Collapse
|
10
|
SCN5A Overlap Syndromes: an open-minded approach. Heart Rhythm 2022; 19:1363-1368. [DOI: 10.1016/j.hrthm.2022.03.1223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 03/07/2022] [Accepted: 03/22/2022] [Indexed: 12/19/2022]
|
11
|
Daimi H, Lozano-Velasco E, Aranega A, Franco D. Genomic and Non-Genomic Regulatory Mechanisms of the Cardiac Sodium Channel in Cardiac Arrhythmias. Int J Mol Sci 2022; 23:1381. [PMID: 35163304 PMCID: PMC8835759 DOI: 10.3390/ijms23031381] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 12/19/2022] Open
Abstract
Nav1.5 is the predominant cardiac sodium channel subtype, encoded by the SCN5A gene, which is involved in the initiation and conduction of action potentials throughout the heart. Along its biosynthesis process, Nav1.5 undergoes strict genomic and non-genomic regulatory and quality control steps that allow only newly synthesized channels to reach their final membrane destination and carry out their electrophysiological role. These regulatory pathways are ensured by distinct interacting proteins that accompany the nascent Nav1.5 protein along with different subcellular organelles. Defects on a large number of these pathways have a tremendous impact on Nav1.5 functionality and are thus intimately linked to cardiac arrhythmias. In the present review, we provide current state-of-the-art information on the molecular events that regulate SCN5A/Nav1.5 and the cardiac channelopathies associated with defects in these pathways.
Collapse
Affiliation(s)
- Houria Daimi
- Biochemistry and Molecular Biology Laboratory, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Estefanía Lozano-Velasco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| | - Amelia Aranega
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| |
Collapse
|
12
|
Rico Y, Ramis MF, Massot M, Torres-Juan L, Pons J, Fortuny E, Ripoll-Vera T, González R, Peral V, Rossello X, Heine Suñer D. Familial Dilated Cardiomyopathy and Sudden Cardiac Arrest: New Association with a SCN5A Mutation. Genes (Basel) 2021; 12:genes12121889. [PMID: 34946838 PMCID: PMC8701882 DOI: 10.3390/genes12121889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 12/19/2022] Open
Abstract
Dilated cardiomyopathy (DCM) has significant morbidity and mortality. Familial transmission is reported in 20–35% of cases, highlighting the role of genetics in this disorder. We present an interesting family in which the index case is a 64-year-old woman who survived a sudden cardiac arrest. She presented left ventricular dilatation and dysfunction, which indicated the presence of DCM, as well as a history of DCM and sudden arrest in her family (mother and sister). Genetic testing identified a heterozygous mutation c.74A > G missense change that causes an amino acid, p.Glu25Gly, change in the N-terminal domain of the SCN5A protein. After performing an exhaustive family medical history, we found that this previously not described mutation segregated within the family. All relatives with the DCM phenotype were carriers, whereas none of the noncarriers showed signs of heart disease, so this mutation is the most likely cause of the disease. This is the first time that a variant in the N-terminal domain of SCN5A has been associated with DCM.
Collapse
Affiliation(s)
- Yolanda Rico
- Cardiology Department, Hospital Universitari Son Espases, 07120 Palma, Spain; (M.F.R.); (J.P.); (E.F.); (R.G.); (V.P.); (X.R.)
- Correspondence:
| | - Maria Francisca Ramis
- Cardiology Department, Hospital Universitari Son Espases, 07120 Palma, Spain; (M.F.R.); (J.P.); (E.F.); (R.G.); (V.P.); (X.R.)
| | - Montse Massot
- Centre Hospitalier Universitaire de Toulouse, Hôpital de Rangueil, 31400 Toulouse, France;
| | - Laura Torres-Juan
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain; (L.T.-J.); (T.R.-V.); (D.H.S.)
- Unit of Molecular Diagnostics and Clinical Genetics, Hospital Universitari Son Espases, 07120 Palma, Spain
| | - Jaume Pons
- Cardiology Department, Hospital Universitari Son Espases, 07120 Palma, Spain; (M.F.R.); (J.P.); (E.F.); (R.G.); (V.P.); (X.R.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain; (L.T.-J.); (T.R.-V.); (D.H.S.)
| | - Elena Fortuny
- Cardiology Department, Hospital Universitari Son Espases, 07120 Palma, Spain; (M.F.R.); (J.P.); (E.F.); (R.G.); (V.P.); (X.R.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain; (L.T.-J.); (T.R.-V.); (D.H.S.)
| | - Tomas Ripoll-Vera
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain; (L.T.-J.); (T.R.-V.); (D.H.S.)
- Cardiology Department, Hospital Universitari Son Llatzer, 07198 Palma, Spain
| | - Rosa González
- Cardiology Department, Hospital Universitari Son Espases, 07120 Palma, Spain; (M.F.R.); (J.P.); (E.F.); (R.G.); (V.P.); (X.R.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain; (L.T.-J.); (T.R.-V.); (D.H.S.)
| | - Vicente Peral
- Cardiology Department, Hospital Universitari Son Espases, 07120 Palma, Spain; (M.F.R.); (J.P.); (E.F.); (R.G.); (V.P.); (X.R.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain; (L.T.-J.); (T.R.-V.); (D.H.S.)
| | - Xavier Rossello
- Cardiology Department, Hospital Universitari Son Espases, 07120 Palma, Spain; (M.F.R.); (J.P.); (E.F.); (R.G.); (V.P.); (X.R.)
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain; (L.T.-J.); (T.R.-V.); (D.H.S.)
| | - Damià Heine Suñer
- Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain; (L.T.-J.); (T.R.-V.); (D.H.S.)
- Unit of Molecular Diagnostics and Clinical Genetics, Hospital Universitari Son Espases, 07120 Palma, Spain
| |
Collapse
|
13
|
Iop L, Iliceto S, Civieri G, Tona F. Inherited and Acquired Rhythm Disturbances in Sick Sinus Syndrome, Brugada Syndrome, and Atrial Fibrillation: Lessons from Preclinical Modeling. Cells 2021; 10:3175. [PMID: 34831398 PMCID: PMC8623957 DOI: 10.3390/cells10113175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/12/2022] Open
Abstract
Rhythm disturbances are life-threatening cardiovascular diseases, accounting for many deaths annually worldwide. Abnormal electrical activity might arise in a structurally normal heart in response to specific triggers or as a consequence of cardiac tissue alterations, in both cases with catastrophic consequences on heart global functioning. Preclinical modeling by recapitulating human pathophysiology of rhythm disturbances is fundamental to increase the comprehension of these diseases and propose effective strategies for their prevention, diagnosis, and clinical management. In silico, in vivo, and in vitro models found variable application to dissect many congenital and acquired rhythm disturbances. In the copious list of rhythm disturbances, diseases of the conduction system, as sick sinus syndrome, Brugada syndrome, and atrial fibrillation, have found extensive preclinical modeling. In addition, the electrical remodeling as a result of other cardiovascular diseases has also been investigated in models of hypertrophic cardiomyopathy, cardiac fibrosis, as well as arrhythmias induced by other non-cardiac pathologies, stress, and drug cardiotoxicity. This review aims to offer a critical overview on the effective ability of in silico bioinformatic tools, in vivo animal studies, in vitro models to provide insights on human heart rhythm pathophysiology in case of sick sinus syndrome, Brugada syndrome, and atrial fibrillation and advance their safe and successful translation into the cardiology arena.
Collapse
Affiliation(s)
- Laura Iop
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padua, Via Giustiniani, 2, I-35124 Padua, Italy; (S.I.); (G.C.)
| | | | | | - Francesco Tona
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padua, Via Giustiniani, 2, I-35124 Padua, Italy; (S.I.); (G.C.)
| |
Collapse
|
14
|
Chen L, He Y, Wang X, Ge J, Li H. Ventricular voltage-gated ion channels: Detection, characteristics, mechanisms, and drug safety evaluation. Clin Transl Med 2021; 11:e530. [PMID: 34709746 PMCID: PMC8516344 DOI: 10.1002/ctm2.530] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac voltage-gated ion channels (VGICs) play critical roles in mediating cardiac electrophysiological signals, such as action potentials, to maintain normal heart excitability and contraction. Inherited or acquired alterations in the structure, expression, or function of VGICs, as well as VGIC-related side effects of pharmaceutical drug delivery can result in abnormal cellular electrophysiological processes that induce life-threatening cardiac arrhythmias or even sudden cardiac death. Hence, to reduce possible heart-related risks, VGICs must be acknowledged as important targets in drug discovery and safety studies related to cardiac disease. In this review, we first summarize the development and application of electrophysiological techniques that are employed in cardiac VGIC studies alone or in combination with other techniques such as cryoelectron microscopy, optical imaging and optogenetics. Subsequently, we describe the characteristics, structure, mechanisms, and functions of various well-studied VGICs in ventricular myocytes and analyze their roles in and contributions to both physiological cardiac excitability and inherited cardiac diseases. Finally, we address the implications of the structure and function of ventricular VGICs for drug safety evaluation. In summary, multidisciplinary studies on VGICs help researchers discover potential targets of VGICs and novel VGICs in heart, enrich their knowledge of the properties and functions, determine the operation mechanisms of pathological VGICs, and introduce groundbreaking trends in drug therapy strategies, and drug safety evaluation.
Collapse
Affiliation(s)
- Lulan Chen
- Department of Cardiology, Shanghai Institute of Cardiovascular DiseasesShanghai Xuhui District Central Hospital & Zhongshan‐xuhui Hospital, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Yue He
- Department of CardiologyShanghai Xuhui District Central Hospital & Zhongshan‐xuhui HospitalShanghaiChina
| | - Xiangdong Wang
- Institute of Clinical Science, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular DiseasesShanghai Xuhui District Central Hospital & Zhongshan‐xuhui Hospital, Zhongshan Hospital, Fudan UniversityShanghaiChina
| | - Hua Li
- Department of Cardiology, Shanghai Institute of Cardiovascular DiseasesShanghai Xuhui District Central Hospital & Zhongshan‐xuhui Hospital, Zhongshan Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
15
|
Arana-Rueda E, Pezzotti MR, Pedrote A, Acosta J, Frutos-López M, Varela LM, García-Fernández N, Castellano A. Brugada syndrome masked by complete left bundle branch block: A clinical and functional study of its association with the p.1449Y>H SCN5A variant. J Cardiovasc Electrophysiol 2021; 32:2785-2790. [PMID: 34411358 DOI: 10.1111/jce.15215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/24/2021] [Accepted: 07/22/2021] [Indexed: 11/27/2022]
Abstract
SCN5A gene variants are associated with both Brugada syndrome and conduction disturbances, sometimes expressing an overlapping phenotype. Functional consequences of SCN5A variants assessed by patch-clamp electrophysiology are particularly beneficial for correct pathogenic classification and are related to disease penetrance and severity. Here, we identify a novel SCN5A loss of function variant, p.1449Y>H, which presented with high penetrance and complete left bundle branch block, totally masking the typical findings on the electrocardiogram. We highlight the possibility of this overlap combination that makes impossible an electrocardiographic diagnosis and, through a functional analysis, associate the p.1449Y>H variant to SCN5A pathogenicity.
Collapse
Affiliation(s)
- Eduardo Arana-Rueda
- Department of Cardiology, Arrhythmia Unit, Virgen del Rocío University Hospital, Sevilla, Spain.,Departamento de Fisiología Médica y Biofísica, Instituto de Biomedicina de Sevilla (IBiS)/Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Sevilla, Spain
| | - María R Pezzotti
- Departamento de Fisiología Médica y Biofísica, Instituto de Biomedicina de Sevilla (IBiS)/Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Sevilla, Spain
| | - Alonso Pedrote
- Department of Cardiology, Arrhythmia Unit, Virgen del Rocío University Hospital, Sevilla, Spain
| | - Juan Acosta
- Department of Cardiology, Arrhythmia Unit, Virgen del Rocío University Hospital, Sevilla, Spain
| | - Manuel Frutos-López
- Department of Cardiology, Arrhythmia Unit, Virgen del Rocío University Hospital, Sevilla, Spain
| | - Lourdes-María Varela
- Departamento de Fisiología Médica y Biofísica, Instituto de Biomedicina de Sevilla (IBiS)/Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Sevilla, Spain
| | - Noelia García-Fernández
- Departamento de Fisiología Médica y Biofísica, Instituto de Biomedicina de Sevilla (IBiS)/Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Sevilla, Spain
| | - Antonio Castellano
- Departamento de Fisiología Médica y Biofísica, Instituto de Biomedicina de Sevilla (IBiS)/Hospital Universitario Virgen del Rocío/CSIC, Universidad de Sevilla, Sevilla, Spain.,CIBERCV, ISCIII, Madrid, Spain
| |
Collapse
|
16
|
Sun J, Li L, Yang L, Duan G, Ma T, Li N, Liu Y, Yao J, Liu JY, Zhang X. Novel SCN9A missense mutations contribute to congenital insensitivity to pain: Unexpected correlation between electrophysiological characterization and clinical phenotype. Mol Pain 2021; 16:1744806920923881. [PMID: 32420800 PMCID: PMC7235659 DOI: 10.1177/1744806920923881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Congenital insensitivity to pain (OMIM 243000) is an extremely rare disorder caused by loss-of-function mutations in SCN9A encoding Nav1.7. Although the SCN9A mutations and phenotypes of painlessness and anosmia/hyposmia in patients are previously well documented, the complex relationship between genotype and phenotype of congenital insensitivity to pain remains unclear. Here, we report a congenital insensitivity to pain patient with novel SCN9A mutations. Functional significance of novel SCN9A mutations was assessed in HEK293 cells expressing Nav1.7, the results showed that p.Arg99His significantly decreased current density and reduced total Nav1.7 protein levels, whereas p.Trp917Gly almost abolished Nav1.7 sodium current without affecting its protein expression. These revealed that mutations in Nav1.7 in this congenital insensitivity to pain patient still retained partial channel function, but the patient showed completely painlessness, the unexpected genotypic-phenotypic relationship of SCN9A mutations in our patient may challenge the previous findings “Nav1.7 total loss-of-function leads to painlessness.” Additionally, these findings are helpful for understanding the critical amino acid for maintaining function of Nav1.7, thus contributing to the development of Nav1.7-targeted analgesics.
Collapse
Affiliation(s)
- Jiaoli Sun
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Lulu Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Luyao Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Guangyou Duan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China.,Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People's Republic of China
| | - Tingbin Ma
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ningbo Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Yi Liu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jing Yao
- College of Life Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Jing Yu Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xianwei Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| |
Collapse
|
17
|
Doisne N, Grauso M, Mougenot N, Clergue M, Souil C, Coulombe A, Guicheney P, Neyroud N. In vivo Dominant-Negative Effect of an SCN5A Brugada Syndrome Variant. Front Physiol 2021; 12:661413. [PMID: 34122134 PMCID: PMC8195286 DOI: 10.3389/fphys.2021.661413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/21/2021] [Indexed: 12/23/2022] Open
Abstract
Loss-of-function mutations in the cardiac Na+ channel α-subunit Nav1.5, encoded by SCN5A, cause Brugada syndrome (BrS), a hereditary disease characterized by sudden cardiac death due to ventricular fibrillation. We previously evidenced in vitro the dominant-negative effect of the BrS Nav1.5-R104W variant, inducing retention of wild-type (WT) channels and leading to a drastic reduction of the resulting Na+ current (INa). To explore this dominant-negative effect in vivo, we created a murine model using adeno-associated viruses (AAVs).
Collapse
Affiliation(s)
- Nicolas Doisne
- INSERM, UMR_S 1166 ICAN, Paris, France.,UMR_S 1166, Faculté de Médecine Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Marta Grauso
- INSERM, UMR_S 1166 ICAN, Paris, France.,UMR_S 1166, Faculté de Médecine Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Nathalie Mougenot
- INSERM, UMR_S 1166 ICAN, Paris, France.,UMR_S 1166, Faculté de Médecine Pitié-Salpêtrière, Sorbonne Université, Paris, France.,UMS_28, Sorbonne Université, Paris, France
| | - Michel Clergue
- INSERM, UMR_S 1166 ICAN, Paris, France.,UMR_S 1166, Faculté de Médecine Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Charlotte Souil
- INSERM, UMR_S 1166 ICAN, Paris, France.,UMR_S 1166, Faculté de Médecine Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Alain Coulombe
- INSERM, UMR_S 1166 ICAN, Paris, France.,UMR_S 1166, Faculté de Médecine Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Pascale Guicheney
- INSERM, UMR_S 1166 ICAN, Paris, France.,UMR_S 1166, Faculté de Médecine Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Nathalie Neyroud
- INSERM, UMR_S 1166 ICAN, Paris, France.,UMR_S 1166, Faculté de Médecine Pitié-Salpêtrière, Sorbonne Université, Paris, France
| |
Collapse
|
18
|
Zheng Y, Wan X, Yang D, Ramirez-Navarro A, Liu H, Fu JD, Deschênes I. A Heart Failure-Associated SCN5A Splice Variant Leads to a Reduction in Sodium Current Through Coupled-Gating With the Wild-Type Channel. Front Physiol 2021; 12:661429. [PMID: 33828490 PMCID: PMC8019726 DOI: 10.3389/fphys.2021.661429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022] Open
Abstract
Nav1.5, encoded by the gene SCN5A, is the predominant voltage-gated sodium channel expressed in the heart. It initiates the cardiac action potential and thus is crucial for normal heart rhythm and function. Dysfunctions in Nav1.5 have been involved in multiple congenital or acquired cardiac pathological conditions such as Brugada syndrome (BrS), Long QT Syndrome Type 3, and heart failure (HF), all of which can lead to sudden cardiac death (SCD) - one of the leading causes of death worldwide. Our lab has previously reported that Nav1.5 forms dimer channels with coupled gating. We also found that Nav1.5 BrS mutants can exert a dominant-negative (DN) effect and impair the function of wildtype (WT) channels through coupled-gating with the WT. It was previously reported that reduction in cardiac sodium currents (INa), observed in HF, could be due to the increased expression of an SCN5A splice variant - E28D, which results in a truncated sodium channel (Nav1.5-G1642X). In this study, we hypothesized that this SCN5A splice variant leads to INa reduction in HF through biophysical coupling with the WT. We showed that Nav1.5-G1642X is a non-functional channel but can interact with the WT, resulting in a DN effect on the WT channel. We found that both WT and the truncated channel Nav1.5-G1642X traffic at the cell surface, suggesting biophysical coupling. Indeed, we found that the DN effect can be abolished by difopein, an inhibitor of the biophysical coupling. Interestingly, the sodium channel polymorphism H558R, which has beneficial effect in HF patients, could also block the DN effect. In summary, the HF-associated splice variant Nav1.5-G1642X suppresses sodium currents in heart failure patients through a mechanism involving coupled-gating with the wildtype sodium channel.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Physiology and Cell Biology, Frick Center for Heart Failure and Arrhythmias, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Xiaoping Wan
- Department of Physiology and Cell Biology, Frick Center for Heart Failure and Arrhythmias, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Dandan Yang
- Department of Physiology and Cell Biology, Frick Center for Heart Failure and Arrhythmias, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Angelina Ramirez-Navarro
- Department of Physiology and Cell Biology, Frick Center for Heart Failure and Arrhythmias, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Haiyan Liu
- Department of Physiology and Cell Biology, Frick Center for Heart Failure and Arrhythmias, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Ji-Dong Fu
- Department of Physiology and Cell Biology, Frick Center for Heart Failure and Arrhythmias, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Isabelle Deschênes
- Department of Physiology and Cell Biology, Frick Center for Heart Failure and Arrhythmias, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
19
|
Wang Z, Vermij SH, Sottas V, Shestak A, Ross-Kaschitza D, Zaklyazminskaya EV, Hudmon A, Pitt GS, Rougier JS, Abriel H. Calmodulin binds to the N-terminal domain of the cardiac sodium channel Na v1.5. Channels (Austin) 2020; 14:268-286. [PMID: 32815768 PMCID: PMC7515574 DOI: 10.1080/19336950.2020.1805999] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The cardiac voltage-gated sodium channel Nav1.5 conducts the rapid inward sodium current crucial for cardiomyocyte excitability. Loss-of-function mutations in its gene SCN5A are linked to cardiac arrhythmias such as Brugada Syndrome (BrS). Several BrS-associated mutations in the Nav1.5 N-terminal domain (NTD) exert a dominant-negative effect (DNE) on wild-type channel function, for which mechanisms remain poorly understood. We aim to contribute to the understanding of BrS pathophysiology by characterizing three mutations in the Nav1.5 NTD: Y87C-here newly identified-, R104W, and R121W. In addition, we hypothesize that the calcium sensor protein calmodulin is a new NTD binding partner. Recordings of whole-cell sodium currents in TsA-201 cells expressing WT and variant Nav1.5 showed that Y87C and R104W but not R121W exert a DNE on WT channels. Biotinylation assays revealed reduction in fully glycosylated Nav1.5 at the cell surface and in whole-cell lysates. Localization of Nav1.5 WT channel with the ER did not change in the presence of variants, as shown by transfected and stained rat neonatal cardiomyocytes. We demonstrated that calmodulin binds the Nav1.5 NTD using in silico modeling, SPOTS, pull-down, and proximity ligation assays. Calmodulin binding to the R121W variant and to a Nav1.5 construct missing residues 80-105, a predicted calmodulin-binding site, is impaired. In conclusion, we describe the new natural BrS Nav1.5 variant Y87C and present first evidence that calmodulin binds to the Nav1.5 NTD, which seems to be a determinant for the DNE.
Collapse
Affiliation(s)
- Zizun Wang
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Sarah H. Vermij
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| | - Valentin Sottas
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
- Department of Molecular and Cellular Genetics, Lonza BioPharma Ltd, Visp, Switzerland
| | - Anna Shestak
- Ibex, Petrovskiy Russian Scientific Center of Surgery, Moscow, Russia
| | | | | | - Andy Hudmon
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana, USA
| | - Geoffrey S. Pitt
- Cardiovascular Research Institute, Weill Cornell Medical College, New York, USA
| | | | - Hugues Abriel
- Institute of Biochemistry and Molecular Medicine, University of Bern, Bern, Switzerland
| |
Collapse
|
20
|
Scheiper-Welling S, Zuccolini P, Rauh O, Beckmann BM, Geisen C, Moroni A, Thiel G, Kauferstein S. Characterization of an N-terminal Na v1.5 channel variant - a potential risk factor for arrhythmias and sudden death? BMC MEDICAL GENETICS 2020; 21:227. [PMID: 33213388 PMCID: PMC7678220 DOI: 10.1186/s12881-020-01170-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/10/2020] [Indexed: 12/19/2022]
Abstract
Background Alterations in the SCN5A gene encoding the cardiac sodium channel Nav1.5 have been linked to a number of arrhythmia syndromes and diseases including long-QT syndrome (LQTS), Brugada syndrome (BrS) and dilative cardiomyopathy (DCM), which may predispose to fatal arrhythmias and sudden death. We identified the heterozygous variant c.316A > G, p.(Ser106Gly) in a 35-year-old patient with survived cardiac arrest. In the present study, we aimed to investigate the functional impact of the variant to clarify the medical relevance. Methods Mutant as well as wild type GFP tagged Nav1.5 channels were expressed in HEK293 cells. We performed functional characterization experiments using patch-clamp technique. Results Electrophysiological measurements indicated, that the detected missense variant alters Nav1.5 channel functionality leading to a gain-of-function effect. Cells expressing S106G channels show an increase in Nav1.5 current over the entire voltage window. Conclusion The results support the assumption that the detected sequence aberration alters Nav1.5 channel function and may predispose to cardiac arrhythmias and sudden cardiac death. Supplementary Information The online version contains supplementary material available at 10.1186/s12881-020-01170-3.
Collapse
Affiliation(s)
- Stefanie Scheiper-Welling
- Institute of Legal Medicine, Goethe University of Frankfurt, Kennedyallee 104, 60596, Frankfurt am Main, Germany
| | - Paolo Zuccolini
- Department of Biology, Membrane Biophysics, Technische Universität Darmstadt, Schnittspahnstrasse 3, 64287, Darmstadt, Germany
| | - Oliver Rauh
- Department of Biology, Membrane Biophysics, Technische Universität Darmstadt, Schnittspahnstrasse 3, 64287, Darmstadt, Germany
| | - Britt-Maria Beckmann
- 1 Institute of Legal Medicine, Goethe University of Frankfurt, Kennedyallee104, 60596, Frankfurt am Main, Germany
| | - Christof Geisen
- German Red Cross Blood Center, Institute of Transfusion Medicine and Immunohaematology, University Hospital Frankfurt, Frankfurt, Germany
| | - Anna Moroni
- Department of Biosciences and CNR IBF-Mi, University of Milano, Via Celoria 26, 20133, Milan, Italy
| | - Gerhard Thiel
- Department of Biology, Membrane Biophysics, Technische Universität Darmstadt, Schnittspahnstrasse 3, 64287, Darmstadt, Germany
| | - Silke Kauferstein
- Institute of Legal Medicine, Goethe University of Frankfurt, Kennedyallee 104, 60596, Frankfurt am Main, Germany.
| |
Collapse
|
21
|
Hichri E, Selimi Z, Kucera JP. Modeling the Interactions Between Sodium Channels Provides Insight Into the Negative Dominance of Certain Channel Mutations. Front Physiol 2020; 11:589386. [PMID: 33250780 PMCID: PMC7674773 DOI: 10.3389/fphys.2020.589386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/12/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Nav1.5 cardiac Na+ channel mutations can cause arrhythmogenic syndromes. Some of these mutations exert a dominant negative effect on wild-type channels. Recent studies showed that Na+ channels can dimerize, allowing coupled gating. This leads to the hypothesis that allosteric interactions between Na+ channels modulate their function and that these interactions may contribute to the negative dominance of certain mutations. METHODS To investigate how allosteric interactions affect microscopic and macroscopic channel function, we developed a modeling paradigm in which Markovian models of two channels are combined. Allosteric interactions are incorporated by modifying the free energies of the composite states and/or barriers between states. RESULTS Simulations using two generic 2-state models (C-O, closed-open) revealed that increasing the free energy of the composite states CO/OC leads to coupled gating. Simulations using two 3-state models (closed-open-inactivated) revealed that coupled closings must also involve interactions between further composite states. Using two 6-state cardiac Na+ channel models, we replicated previous experimental results mainly by increasing the energies of the CO/OC states and lowering the energy barriers between the CO/OC and the CO/OO states. The channel model was then modified to simulate a negative dominant mutation (Nav1.5 p.L325R). Simulations of homodimers and heterodimers in the presence and absence of interactions showed that the interactions with the variant channel impair the opening of the wild-type channel and thus contribute to negative dominance. CONCLUSION Our new modeling framework recapitulates qualitatively previous experimental observations and helps identifying possible interaction mechanisms between ion channels.
Collapse
Affiliation(s)
| | | | - Jan P. Kucera
- Department of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
22
|
Inter-Regulation of K v4.3 and Voltage-Gated Sodium Channels Underlies Predisposition to Cardiac and Neuronal Channelopathies. Int J Mol Sci 2020; 21:ijms21145057. [PMID: 32709127 PMCID: PMC7404392 DOI: 10.3390/ijms21145057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/04/2020] [Accepted: 07/10/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Genetic variants in voltage-gated sodium channels (Nav) encoded by SCNXA genes, responsible for INa, and Kv4.3 channels encoded by KCND3, responsible for the transient outward current (Ito), contribute to the manifestation of both Brugada syndrome (BrS) and spinocerebellar ataxia (SCA19/22). We examined the hypothesis that Kv4.3 and Nav variants regulate each other’s function, thus modulating INa/Ito balance in cardiomyocytes and INa/I(A) balance in neurons. Methods: Bicistronic and other constructs were used to express WT or variant Nav1.5 and Kv4.3 channels in HEK293 cells. INa and Ito were recorded. Results: SCN5A variants associated with BrS reduced INa, but increased Ito. Moreover, BrS and SCA19/22 KCND3 variants associated with a gain of function of Ito, significantly reduced INa, whereas the SCA19/22 KCND3 variants associated with a loss of function (LOF) of Ito significantly increased INa. Auxiliary subunits Navβ1, MiRP3 and KChIP2 also modulated INa/Ito balance. Co-immunoprecipitation and Duolink studies suggested that the two channels interact within the intracellular compartments and biotinylation showed that LOF SCN5A variants can increase Kv4.3 cell-surface expression. Conclusion: Nav and Kv4.3 channels modulate each other’s function via trafficking and gating mechanisms, which have important implications for improved understanding of these allelic cardiac and neuronal syndromes.
Collapse
|
23
|
Glazer AM, Wada Y, Li B, Muhammad A, Kalash OR, O'Neill MJ, Shields T, Hall L, Short L, Blair MA, Kroncke BM, Capra JA, Roden DM. High-Throughput Reclassification of SCN5A Variants. Am J Hum Genet 2020; 107:111-123. [PMID: 32533946 PMCID: PMC7332654 DOI: 10.1016/j.ajhg.2020.05.015] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 05/19/2020] [Indexed: 12/19/2022] Open
Abstract
Partial or complete loss-of-function variants in SCN5A are the most common genetic cause of the arrhythmia disorder Brugada syndrome (BrS1). However, the pathogenicity of SCN5A variants is often unknown or disputed; 80% of the 1,390 SCN5A missense variants observed in at least one individual to date are variants of uncertain significance (VUSs). The designation of VUS is a barrier to the use of sequence data in clinical care. We selected 83 variants: 10 previously studied control variants, 10 suspected benign variants, and 63 suspected Brugada syndrome-associated variants, selected on the basis of their frequency in the general population and in individuals with Brugada syndrome. We used high-throughput automated patch clamping to study the function of the 83 variants, with the goal of reclassifying variants with functional data. The ten previously studied controls had functional properties concordant with published manual patch clamp data. All 10 suspected benign variants had wild-type-like function. 22 suspected BrS variants had loss of channel function (<10% normalized peak current) and 22 variants had partial loss of function (10%-50% normalized peak current). The previously unstudied variants were initially classified as likely benign (n = 2), likely pathogenic (n = 10), or VUSs (n = 61). After the patch clamp studies, 16 variants were benign/likely benign, 45 were pathogenic/likely pathogenic, and only 12 were still VUSs. Structural modeling identified likely mechanisms for loss of function including altered thermostability and disruptions to alpha helices, disulfide bonds, or the permeation pore. High-throughput patch clamping enabled reclassification of the majority of tested VUSs in SCN5A.
Collapse
Affiliation(s)
- Andrew M Glazer
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yuko Wada
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Bian Li
- Department of Biological Sciences, Center for Structural Biology, and Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN 37235, USA
| | - Ayesha Muhammad
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Olivia R Kalash
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Matthew J O'Neill
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Tiffany Shields
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lynn Hall
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Laura Short
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Marcia A Blair
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Brett M Kroncke
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - John A Capra
- Department of Biological Sciences, Center for Structural Biology, and Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN 37235, USA
| | - Dan M Roden
- Vanderbilt Center for Arrhythmia Research and Therapeutics, Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
24
|
Wang Y, Du Y, Luo L, Hu P, Yang G, Li T, Han X, Ma A, Wang T. Alterations of Nedd4-2-binding capacity in PY-motif of Na V 1.5 channel underlie long QT syndrome and Brugada syndrome. Acta Physiol (Oxf) 2020; 229:e13438. [PMID: 31900993 DOI: 10.1111/apha.13438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/19/2019] [Accepted: 12/29/2019] [Indexed: 12/13/2022]
Abstract
AIMS Pathogenic variants of the SCN5A gene can cause Brugada syndrome (BrS) and long QT syndrome (LQTS), which predispose individuals to potentially fatal ventricular arrhythmias and sudden cardiac death. SCN5A encodes the NaV 1.5 protein, the pore forming α-subunit of the voltage-dependent cardiac Na+ channel. Using a WW domain, the E3 ubiquitin ligase Nedd4-2 binds to the PY-motif ([L/P]PxY) within the C-terminus of NaV 1.5, which results in decreased protein expression and current through NaV 1.5 ubiquitination. Here, we investigate the role of E3 ubiquitin ligase Nedd4-2-mediated NaV 1.5 degradation in the pathological mechanisms of the BrS-associated variant SCN5A-p.L1239P and LQTS-associated variant SCN5A-p.Y1977N. METHODS AND RESULTS Using a combination of molecular biology, biochemical and electrophysiological approaches, we examined the expression, function and Nedd4-2 interactions of SCN5A-p.L1239P and SCN5A-p.Y1977N. SCN5A-p.L1239P is characterized as a loss-of-function, whereas SCN5A-p.Y1977N is a gain-of-function variant of the NaV 1.5 channel. Sequence alignment shows that BrS-associated SCN5A-p.L1239P has a new Nedd4-2-binding site (from LLxY to LPxY). This new Nedd4-2-binding site increases the interaction between NaV 1.5 and Nedd4-2, enhancing ubiquitination and degradation of the NaV 1.5 channel. Disruption of the new Nedd4-2-binding site of SCN5A-p.L1239P restores NaV 1.5 expression and function. However, the LQTS-associated SCN5A-p.Y1977N disrupts the usual Nedd4-2-binding site (from PPxY to PPxN). This decreases NaV 1.5-Nedd4-2 interaction, preventing ubiquitination and degradation of NaV 1.5 channels. CONCLUSIONS Our data suggest that the PY-motif plays an essential role in modifying the expression/function of NaV 1.5 channels through Nedd4-2-mediated ubiquitination. Alterations of NaV 1.5-Nedd4-2 interaction represent a novel pathological mechanism for NaV 1.5 channel diseases caused by SCN5A variants.
Collapse
Affiliation(s)
- Ya Wang
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi P. R. China
| | - Yuan Du
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi P. R. China
| | - Ling Luo
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi P. R. China
| | - Peijing Hu
- Department of Cardiovascular Medicine Second Affiliated Hospital of Xi'an Medical College Xi'an Shaanxi P. R. China
| | - Guodong Yang
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi P. R. China
| | - Tao Li
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi P. R. China
| | - Xiu Han
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi P. R. China
| | - Aiqun Ma
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi P. R. China
- Key Laboratory of Molecular Cardiology Xi'an Shaanxi P. R. China
- Key Laboratory of Environment and Genes Related to Diseases Xi'an Jiaotong University Ministry of Education Xi'an Shaanxi P. R. China
| | - Tingzhong Wang
- Department of Cardiovascular Medicine First Affiliated Hospital of Xi'an Jiaotong University Xi'an Shaanxi P. R. China
- Key Laboratory of Molecular Cardiology Xi'an Shaanxi P. R. China
- Key Laboratory of Environment and Genes Related to Diseases Xi'an Jiaotong University Ministry of Education Xi'an Shaanxi P. R. China
| |
Collapse
|
25
|
Salvage SC, Rees JS, McStea A, Hirsch M, Wang L, Tynan CJ, Reed MW, Irons JR, Butler R, Thompson AJ, Martin-Fernandez ML, Huang CL, Jackson AP. Supramolecular clustering of the cardiac sodium channel Nav1.5 in HEK293F cells, with and without the auxiliary β3-subunit. FASEB J 2020; 34:3537-3553. [PMID: 31950564 PMCID: PMC7079131 DOI: 10.1096/fj.201701473rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 01/24/2023]
Abstract
Voltage-gated sodium channels comprise an ion-selective α-subunit and one or more associated β-subunits. The β3-subunit (encoded by the SCN3B gene) is an important physiological regulator of the heart-specific sodium channel, Nav1.5. We have previously shown that when expressed alone in HEK293F cells, the full-length β3-subunit forms trimers in the plasma membrane. We extend this result with biochemical assays and use the proximity ligation assay (PLA) to identify oligomeric β3-subunits, not just at the plasma membrane, but throughout the secretory pathway. We then investigate the corresponding clustering properties of the α-subunit and the effects upon these of the β3-subunits. The oligomeric status of the Nav1.5 α-subunit in vivo, with or without the β3-subunit, has not been previously investigated. Using super-resolution fluorescence imaging, we show that under conditions typically used in electrophysiological studies, the Nav1.5 α-subunit assembles on the plasma membrane of HEK293F cells into spatially localized clusters rather than individual and randomly dispersed molecules. Quantitative analysis indicates that the β3-subunit is not required for this clustering but β3 does significantly change the distribution of cluster sizes and nearest-neighbor distances between Nav1.5 α-subunits. However, when assayed by PLA, the β3-subunit increases the number of PLA-positive signals generated by anti-(Nav1.5 α-subunit) antibodies, mainly at the plasma membrane. Since PLA can be sensitive to the orientation of proteins within a cluster, we suggest that the β3-subunit introduces a significant change in the relative alignment of individual Nav1.5 α-subunits, but the clustering itself depends on other factors. We also show that these structural and higher-order changes induced by the β3-subunit do not alter the degree of electrophysiological gating cooperativity between Nav1.5 α-subunits. Our data provide new insights into the role of the β3-subunit and the supramolecular organization of sodium channels, in an important model cell system that is widely used to study Nav channel behavior.
Collapse
Affiliation(s)
| | | | - Alexandra McStea
- Central Laser FacilityResearch Complex at HarwellScience and Technology Facilities CouncilRutherford Appleton LaboratoryOxfordUK
| | - Michael Hirsch
- Central Laser FacilityResearch Complex at HarwellScience and Technology Facilities CouncilRutherford Appleton LaboratoryOxfordUK
| | - Lin Wang
- Central Laser FacilityResearch Complex at HarwellScience and Technology Facilities CouncilRutherford Appleton LaboratoryOxfordUK
| | - Christopher J. Tynan
- Central Laser FacilityResearch Complex at HarwellScience and Technology Facilities CouncilRutherford Appleton LaboratoryOxfordUK
| | - Matthew W. Reed
- Department of Nuclear PhysicsResearch School of Physics and EngineeringAustralian National UniversityCanberrraACTAustralia
| | | | - Richard Butler
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeUK
| | | | - Marisa L. Martin-Fernandez
- Central Laser FacilityResearch Complex at HarwellScience and Technology Facilities CouncilRutherford Appleton LaboratoryOxfordUK
| | - Christopher L.‐H. Huang
- Deparment of BiochemistryUniversity of CambridgeCambridgeUK
- Department of Physiology, Development and NeuroscienceUniversity of CambridgeCambridgeUK
| | | |
Collapse
|
26
|
Doisne N, Waldmann V, Redheuil A, Waintraub X, Fressart V, Ader F, Fossé L, Hidden-Lucet F, Gandjbakhch E, Neyroud N. A novel gain-of-function mutation in SCN5A responsible for multifocal ectopic Purkinje-related premature contractions. Hum Mutat 2020; 41:850-859. [PMID: 31930659 DOI: 10.1002/humu.23981] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/13/2019] [Accepted: 01/02/2020] [Indexed: 12/19/2022]
Abstract
Recently, four SCN5A mutations have been associated with Multifocal Ectopic Purkinje-related Premature Contractions (MEPPC), a rare cardiac syndrome combining polymorphic ventricular arrhythmia with dilated cardiomyopathy (DCM). Here, we identified a novel heterozygous mutation in SCN5A (c.611C>A, pAla204Glu) in a young woman presenting with polymorphic premature ventricular contractions (PVCs) and DCM. After failure of antiarrhythmic drugs and an attempt of radiofrequency catheter ablation showing three exit-sites of PVCs, all with presystolic Purkinje potentials, a treatment by hydroquinidine was tried, leading to an immediate and spectacular disappearance of all PVCs and normalization of cardiac function. Electrophysiological studies showed that Nav 1.5-A204E mutant channels exhibited a significant leftward shift of 8 mV of the activation curve, leading to a larger hyperpolarized window current when compared to wild-type. Action potential modeling using Purkinje fiber and ventricular cell models predicted an arrhythmogenic effect predominant in Purkinje fibers for the A204E mutation. Comparison with other MEPPC-associated Nav 1.5 mutations revealed a common electrophysiological pattern of abnormal voltage-dependence of activation leading to a larger hyperpolarized window current as a shared biophysical mechanism of this syndrome. These features of the mutant sodium channels are likely to be responsible for the hyperexcitability of the fascicular-Purkinje system observed in patients with MEPPC.
Collapse
Affiliation(s)
- Nicolas Doisne
- Faculté de Médecine, Sorbonne Université, Paris, France.,INSERM, UMR_S1166, Hôpital Pitié-Salpêtrière, Paris, France.,ICAN, Institute of Cardiometabolism and Nutrition, Paris, France
| | - Victor Waldmann
- Département de Cardiologie, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alban Redheuil
- Faculté de Médecine, Sorbonne Université, Paris, France.,ICAN, Institute of Cardiometabolism and Nutrition, Paris, France.,Département d'Imagerie Cardiovasculaire, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Xavier Waintraub
- ICAN, Institute of Cardiometabolism and Nutrition, Paris, France.,Département de Cardiologie, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Véronique Fressart
- Faculté de Médecine, Sorbonne Université, Paris, France.,INSERM, UMR_S1166, Hôpital Pitié-Salpêtrière, Paris, France.,ICAN, Institute of Cardiometabolism and Nutrition, Paris, France.,Département de Biochimie métabolique, Cardiogénétique, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Flavie Ader
- Faculté de Médecine, Sorbonne Université, Paris, France.,INSERM, UMR_S1166, Hôpital Pitié-Salpêtrière, Paris, France.,ICAN, Institute of Cardiometabolism and Nutrition, Paris, France.,Département de Biochimie métabolique, Cardiogénétique, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Lucie Fossé
- Faculté de Médecine, Sorbonne Université, Paris, France.,INSERM, UMR_S1166, Hôpital Pitié-Salpêtrière, Paris, France
| | - Françoise Hidden-Lucet
- ICAN, Institute of Cardiometabolism and Nutrition, Paris, France.,Département de Cardiologie, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Estelle Gandjbakhch
- Faculté de Médecine, Sorbonne Université, Paris, France.,INSERM, UMR_S1166, Hôpital Pitié-Salpêtrière, Paris, France.,ICAN, Institute of Cardiometabolism and Nutrition, Paris, France.,Département de Cardiologie, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Nathalie Neyroud
- Faculté de Médecine, Sorbonne Université, Paris, France.,INSERM, UMR_S1166, Hôpital Pitié-Salpêtrière, Paris, France.,ICAN, Institute of Cardiometabolism and Nutrition, Paris, France
| |
Collapse
|
27
|
Needham PG, Guerriero CJ, Brodsky JL. Chaperoning Endoplasmic Reticulum-Associated Degradation (ERAD) and Protein Conformational Diseases. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a033928. [PMID: 30670468 DOI: 10.1101/cshperspect.a033928] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Misfolded proteins compromise cellular homeostasis. This is especially problematic in the endoplasmic reticulum (ER), which is a high-capacity protein-folding compartment and whose function requires stringent protein quality-control systems. Multiprotein complexes in the ER are able to identify, remove, ubiquitinate, and deliver misfolded proteins to the 26S proteasome for degradation in the cytosol, and these events are collectively termed ER-associated degradation, or ERAD. Several steps in the ERAD pathway are facilitated by molecular chaperone networks, and the importance of ERAD is highlighted by the fact that this pathway is linked to numerous protein conformational diseases. In this review, we discuss the factors that constitute the ERAD machinery and detail how each step in the pathway occurs. We then highlight the underlying pathophysiology of protein conformational diseases associated with ERAD.
Collapse
Affiliation(s)
- Patrick G Needham
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | | | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| |
Collapse
|
28
|
Nof E, Vysochek L, Meisel E, Burashnikov E, Antzelevitch C, Clatot J, Beinart R, Luria D, Glikson M, Oz S. Mutations in Na V1.5 Reveal Calcium-Calmodulin Regulation of Sodium Channel. Front Physiol 2019; 10:700. [PMID: 31231243 PMCID: PMC6560087 DOI: 10.3389/fphys.2019.00700] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/20/2019] [Indexed: 12/02/2022] Open
Abstract
Mutations in the SCN5A gene, encoding the cardiac voltage-gated sodium channel NaV1.5, are associated with inherited cardiac arrhythmia and conduction disease. Ca2+-dependent mechanisms and the involvement of β-subunit (NaVβ) in NaV1.5 regulation are not fully understood. A patient with severe sinus-bradycardia and cardiac conduction-disease was genetically evaluated and compound heterozygosity in the SCN5A gene was found. Mutations were identified in the cytoplasmic DIII-IV linker (K1493del) and the C-terminus (A1924T) of NaV1.5, both are putative CaM-binding domains. These mutants were functionally studied in human embryonic kidney (HEK) cells and HL-1 cells using whole-cell patch clamp technique. Calmodulin (CaM) interaction and cell-surface expression of heterologously expressed NaV1.5 mutants were studied by pull-down and biotinylation assays. The mutation K1493del rendered NaV1.5 non-conductive. NaV1.5K1493del altered the gating properties of co-expressed functional NaV1.5, in a Ca2+ and NaVβ1-dependent manner. NaV1.5A1924T impaired NaVβ1-dependent gating regulation. Ca2+-dependent CaM-interaction with NaV1.5 was blunted in NaV1.5K1493del. Electrical charge substitution at position 1493 did not affect CaM-interaction and channel functionality. Arrhythmia and conduction-disease -associated mutations revealed Ca2+-dependent gating regulation of NaV1.5 channels. Our results highlight the role of NaV1.5 DIII-IV linker in the CaM-binding complex and channel function, and suggest that the Ca2+-sensing machinery of NaV1.5 involves NaVβ1.
Collapse
Affiliation(s)
- Eyal Nof
- Heart Center, Sheba Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Eshcar Meisel
- Heart Center, Sheba Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elena Burashnikov
- Lankenau Institute for Medical Research, Wynnewood, PA, United States
| | - Charles Antzelevitch
- Lankenau Institute for Medical Research, Wynnewood, PA, United States.,Lankenau Heart Institute, Wynnewood, PA, United States.,Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| | - Jerome Clatot
- Lankenau Institute for Medical Research, Wynnewood, PA, United States
| | - Roy Beinart
- Heart Center, Sheba Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - David Luria
- Heart Center, Sheba Medical Center, Ramat Gan, Israel
| | - Michael Glikson
- Heart Center, Sheba Medical Center, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shimrit Oz
- Heart Center, Sheba Medical Center, Ramat Gan, Israel
| |
Collapse
|
29
|
Nieto-Marín P, Jiménez-Jáimez J, Tinaquero D, Alfayate S, Utrilla RG, Rodríguez Vázquez del Rey MDM, Perin F, Sarquella-Brugada G, Monserrat L, Brugada J, Tercedor L, Tamargo J, Delpón E, Caballero R. La expresividad variable del síndrome de QT largo de una familia española se explica por la heterocigosis digénica en SCN5A y CACNA1C. Rev Esp Cardiol (Engl Ed) 2019. [DOI: 10.1016/j.recesp.2018.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
30
|
Iqbal SM, Lemmens‐Gruber R. Phosphorylation of cardiac voltage-gated sodium channel: Potential players with multiple dimensions. Acta Physiol (Oxf) 2019; 225:e13210. [PMID: 30362642 PMCID: PMC6590314 DOI: 10.1111/apha.13210] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 10/14/2018] [Accepted: 10/14/2018] [Indexed: 12/11/2022]
Abstract
Cardiomyocytes are highly coordinated cells with multiple proteins organized in micro domains. Minor changes or interference in subcellular proteins can cause major disturbances in physiology. The cardiac sodium channel (NaV1.5) is an important determinant of correct electrical activity in cardiomyocytes which are localized at intercalated discs, T‐tubules and lateral membranes in the form of a macromolecular complex with multiple interacting protein partners. The channel is tightly regulated by post‐translational modifications for smooth conduction and propagation of action potentials. Among regulatory mechanisms, phosphorylation is an enzymatic and reversible process which modulates NaV1.5 channel function by attaching phosphate groups to serine, threonine or tyrosine residues. Phosphorylation of NaV1.5 is implicated in both normal physiological and pathological processes and is carried out by multiple kinases. In this review, we discuss and summarize recent literature about the (a) structure of NaV1.5 channel, (b) formation and subcellular localization of NaV1.5 channel macromolecular complex, (c) post‐translational phosphorylation and regulation of NaV1.5 channel, and (d) how these phosphorylation events of NaV1.5 channel alter the biophysical properties and affect the channel during disease status. We expect, by reviewing these aspects will greatly improve our understanding of NaV1.5 channel biology, physiology and pathology, which will also provide an insight into the mechanism of arrythmogenesis at molecular level.
Collapse
Affiliation(s)
- Shahid M. Iqbal
- Department of Pharmacology and Toxicology University of Vienna Vienna Austria
- Drugs Regulatory Authority of Pakistan Telecom Foundation (TF) Complex Islamabad Pakistan
| | - Rosa Lemmens‐Gruber
- Department of Pharmacology and Toxicology University of Vienna Vienna Austria
| |
Collapse
|
31
|
Begemann A, Acuña MA, Zweier M, Vincent M, Steindl K, Bachmann-Gagescu R, Hackenberg A, Abela L, Plecko B, Kroell-Seger J, Baumer A, Yamakawa K, Inoue Y, Asadollahi R, Sticht H, Zeilhofer HU, Rauch A. Further corroboration of distinct functional features in SCN2A variants causing intellectual disability or epileptic phenotypes. Mol Med 2019; 25:6. [PMID: 30813884 PMCID: PMC6391808 DOI: 10.1186/s10020-019-0073-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 02/05/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Deleterious variants in the voltage-gated sodium channel type 2 (Nav1.2) lead to a broad spectrum of phenotypes ranging from benign familial neonatal-infantile epilepsy (BFNIE), severe developmental and epileptic encephalopathy (DEE) and intellectual disability (ID) to autism spectrum disorders (ASD). Yet, the underlying mechanisms are still incompletely understood. METHODS To further elucidate the genotype-phenotype correlation of SCN2A variants we investigated the functional effects of six variants representing the phenotypic spectrum by whole-cell patch-clamp studies in transfected HEK293T cells and in-silico structural modeling. RESULTS The two variants p.L1342P and p.E1803G detected in patients with early onset epileptic encephalopathy (EE) showed profound and complex changes in channel gating, whereas the BFNIE variant p.L1563V exhibited only a small gain of channel function. The three variants identified in ID patients without seizures, p.R937C, p.L611Vfs*35 and p.W1716*, did not produce measurable currents. Homology modeling of the missense variants predicted structural impairments consistent with the electrophysiological findings. CONCLUSIONS Our findings support the hypothesis that complete loss-of-function variants lead to ID without seizures, small gain-of-function variants cause BFNIE and EE variants exhibit variable but profound Nav1.2 gating changes. Moreover, structural modeling was able to predict the severity of the variant impact, supporting a potential role of structural modeling as a prognostic tool. Our study on the functional consequences of SCN2A variants causing the distinct phenotypes of EE, BFNIE and ID contributes to the elucidation of mechanisms underlying the broad phenotypic variability reported for SCN2A variants.
Collapse
Affiliation(s)
- Anaïs Begemann
- Institute of Medical Genetics, University of Zurich, 8952, Schlieren, Zurich, Switzerland.,radiz-Rare Disease Initiative Zürich, Clinical Research Priority Program for Rare Diseases, University of Zurich, 8006, Zurich, Switzerland
| | - Mario A Acuña
- radiz-Rare Disease Initiative Zürich, Clinical Research Priority Program for Rare Diseases, University of Zurich, 8006, Zurich, Switzerland.,Institute of Pharmacology and Toxicology, University of Zurich, 8057, Zurich, Switzerland
| | - Markus Zweier
- Institute of Medical Genetics, University of Zurich, 8952, Schlieren, Zurich, Switzerland.,radiz-Rare Disease Initiative Zürich, Clinical Research Priority Program for Rare Diseases, University of Zurich, 8006, Zurich, Switzerland
| | - Marie Vincent
- Service de génétique médicale, CHU Nantes, 44093, Nantes, France
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, 8952, Schlieren, Zurich, Switzerland.,radiz-Rare Disease Initiative Zürich, Clinical Research Priority Program for Rare Diseases, University of Zurich, 8006, Zurich, Switzerland
| | | | - Annette Hackenberg
- Division of Child Neurology, University Children's Hospital Zurich, 8032, Zurich, Switzerland
| | - Lucia Abela
- radiz-Rare Disease Initiative Zürich, Clinical Research Priority Program for Rare Diseases, University of Zurich, 8006, Zurich, Switzerland.,Division of Child Neurology, University Children's Hospital Zurich, 8032, Zurich, Switzerland
| | - Barbara Plecko
- radiz-Rare Disease Initiative Zürich, Clinical Research Priority Program for Rare Diseases, University of Zurich, 8006, Zurich, Switzerland.,Division of Child Neurology, University Children's Hospital Zurich, 8032, Zurich, Switzerland.,Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, 8036, Graz, Austria
| | - Judith Kroell-Seger
- Children's department, Swiss Epilepsy Centre, Clinic Lengg, 8008, Zurich, Switzerland
| | - Alessandra Baumer
- Institute of Medical Genetics, University of Zurich, 8952, Schlieren, Zurich, Switzerland
| | - Kazuhiro Yamakawa
- Laboratory for Neurogenetics, RIKEN Center for Brain Science, Wako-shi, Saitama, 351-0198, Japan
| | - Yushi Inoue
- National Epilepsy Center, NHO Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, 420-8688, Japan
| | - Reza Asadollahi
- Institute of Medical Genetics, University of Zurich, 8952, Schlieren, Zurich, Switzerland.,radiz-Rare Disease Initiative Zürich, Clinical Research Priority Program for Rare Diseases, University of Zurich, 8006, Zurich, Switzerland
| | - Heinrich Sticht
- Institute of Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Hanns Ulrich Zeilhofer
- radiz-Rare Disease Initiative Zürich, Clinical Research Priority Program for Rare Diseases, University of Zurich, 8006, Zurich, Switzerland.,Institute of Pharmacology and Toxicology, University of Zurich, 8057, Zurich, Switzerland.,Institute of Pharmaceutical Sciences, ETH Zurich, 8093, Zürich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057, Zurich, Switzerland
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, 8952, Schlieren, Zurich, Switzerland. .,radiz-Rare Disease Initiative Zürich, Clinical Research Priority Program for Rare Diseases, University of Zurich, 8006, Zurich, Switzerland. .,Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057, Zurich, Switzerland. .,Zurich Center for Integrative Human Physiology, University of Zurich, 8057, Zurich, Switzerland.
| |
Collapse
|
32
|
Yang G, Liu J, Wang Y, Du Y, Ma A, Wang T. Lack of influence of sex hormones on Brugada syndrome-associated mutant Nav1.5 sodium channel. J Electrocardiol 2018; 52:82-87. [PMID: 30476647 DOI: 10.1016/j.jelectrocard.2018.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/24/2018] [Accepted: 11/14/2018] [Indexed: 10/27/2022]
Abstract
Brugada syndrome (BS) is an autosomal dominant disease. The most common causes of BS are loss-of-function mutations occur in the SCN5A gene which encodes the sodium channel protein Nav1.5. BS has a higher incidence rate in males and the underlying mechanisms of the gender inequality are not yet fully understood. Considering sex hormones are among the most important factors behind gender differences and have previously been shown to regulate the activity of multiple cardiac ion channels, we hypothesized that sex hormones also affect Nav1.5 function which lead to BS predominantly affecting males. In this study, we investigate the protein expression level and current of Nav1.5 in the HEK293 cells cotransfected with SCN5A and sex hormone receptor plasmids using both wild-type SCN5A and BS-associated SCN5A channel mutants R878C and R104W. Our findings showed that sex hormones have no effects on the protein expression level and current of the wild-type Nav1.5, neither does it affect the protein expression level and current of BS-associated Nav1.5 mutants R878C and R104W, regardless of homozygous or heterozygous state. Our results suggest that the male preponderance of BS does not arise from the effects of the sex hormones on Nav1.5. Further studies are needed to explain the male preponderance of this disease.
Collapse
Affiliation(s)
- Guodong Yang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, PR China
| | - Jing Liu
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, PR China
| | - Ya Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, PR China
| | - Yuan Du
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, PR China
| | - Aiqun Ma
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, PR China; Key Laboratory of Molecular Cardiology, Xi'an Jiaotong University, Shaanxi Province, PR China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, PR China.
| | - Tingzhong Wang
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, PR China; Key Laboratory of Molecular Cardiology, Xi'an Jiaotong University, Shaanxi Province, PR China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, PR China.
| |
Collapse
|
33
|
Clatot J, Zheng Y, Girardeau A, Liu H, Laurita KR, Marionneau C, Deschênes I. Mutant voltage-gated Na + channels can exert a dominant negative effect through coupled gating. Am J Physiol Heart Circ Physiol 2018; 315:H1250-H1257. [PMID: 30118344 PMCID: PMC6297814 DOI: 10.1152/ajpheart.00721.2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 07/13/2018] [Accepted: 08/08/2018] [Indexed: 11/22/2022]
Abstract
Mutations in voltage-gated Na+ channels have been linked to several channelopathies leading to a wide variety of diseases including cardiac arrhythmias, epilepsy, and myotonia. We have previously demonstrated that voltage-gated Na+ channel (Nav)1.5 trafficking-deficient mutant channels could lead to a dominant negative effect by impairing trafficking of the wild-type (WT) channel. We also reported that voltage-gated Na+ channels associate as dimers with coupled gating properties. Here, we hypothesized that the dominant negative effect of mutant Na+ channels could also occur through coupled gating. This was tested using cell surface biotinylation and single channel recordings to measure the gating probability and coupled gating of the dimers. As previously reported, coexpression of Nav1.5-L325R with WT channels led to a dominant negative effect, as reflected by a 75% reduction in current density. Surprisingly, cell surface biotinylation showed that Nav1.5-L325R mutant is capable of trafficking, with 40% of Nav1.5-L325R reaching the cell surface when expressed alone. Importantly, even though a dominant negative effect on the Na+ current is observed when WT and Nav1.5-L325R are expressed together, the total Nav channel cell surface expression was not significantly altered compared with WT channels alone. Thus, the trafficking deficiency could not explain the 75% decrease in inward Na+ current. Interestingly, single channel recordings showed that Nav1.5-L325R exerted a dominant negative effect on the WT channel at the gating level. Both coupled gating and gating probability of WT:L325R dimers were drastically impaired. We conclude that dominant negative suppression exerted by Nav1.5 mutants can also be caused by impairing the WT gating probability, a mechanism resulting from the dimerization and coupled gating of voltage-gated Na+ channel α-subunits. NEW & NOTEWORTHY The presence of dominant negative mutations in the Na+ channel gene leading to Brugada syndrome was supported by our recent findings that Na+ channel α-subunits form dimers. Up until now, the dominant negative effect was thought to be caused by the interaction of the wild-type Na+ channel with trafficking-deficient mutant channels. However, the present study demonstrates that coupled gating of voltage-gated Na+ channels can also be responsible for the dominant negative effect leading to arrhythmias.
Collapse
Affiliation(s)
- Jérôme Clatot
- Heart and Vascular Research Center, Department of Medicine, MetroHealth Campus, Case Western Reserve University , Cleveland, Ohio
| | - Yang Zheng
- Heart and Vascular Research Center, Department of Medicine, MetroHealth Campus, Case Western Reserve University , Cleveland, Ohio
| | - Aurore Girardeau
- L'Institut du Thorax, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de Nantes, Nantes , France
| | - Haiyan Liu
- Heart and Vascular Research Center, Department of Medicine, MetroHealth Campus, Case Western Reserve University , Cleveland, Ohio
| | - Kenneth R Laurita
- Heart and Vascular Research Center, Department of Medicine, MetroHealth Campus, Case Western Reserve University , Cleveland, Ohio
| | - Céline Marionneau
- L'Institut du Thorax, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Université de Nantes, Nantes , France
| | - Isabelle Deschênes
- Heart and Vascular Research Center, Department of Medicine, MetroHealth Campus, Case Western Reserve University , Cleveland, Ohio
| |
Collapse
|
34
|
Pérez-Hernández M, Matamoros M, Alfayate S, Nieto-Marín P, Utrilla RG, Tinaquero D, de Andrés R, Crespo T, Ponce-Balbuena D, Willis BC, Jiménez-Vazquez EN, Guerrero-Serna G, da Rocha AM, Campbell K, Herron TJ, Díez-Guerra FJ, Tamargo J, Jalife J, Caballero R, Delpón E. Brugada syndrome trafficking-defective Nav1.5 channels can trap cardiac Kir2.1/2.2 channels. JCI Insight 2018; 3:96291. [PMID: 30232268 DOI: 10.1172/jci.insight.96291] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/03/2018] [Indexed: 12/28/2022] Open
Abstract
Cardiac Nav1.5 and Kir2.1-2.3 channels generate Na (INa) and inward rectifier K (IK1) currents, respectively. The functional INa and IK1 interplay is reinforced by the positive and reciprocal modulation between Nav15 and Kir2.1/2.2 channels to strengthen the control of ventricular excitability. Loss-of-function mutations in the SCN5A gene, which encodes Nav1.5 channels, underlie several inherited arrhythmogenic syndromes, including Brugada syndrome (BrS). We investigated whether the presence of BrS-associated mutations alters IK1 density concomitantly with INa density. Results obtained using mouse models of SCN5A haploinsufficiency, and the overexpression of native and mutated Nav1.5 channels in expression systems - rat ventricular cardiomyocytes and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) - demonstrated that endoplasmic reticulum (ER) trafficking-defective Nav1.5 channels significantly decreased IK1, since they did not positively modulate Kir2.1/2.2 channels. Moreover, Golgi trafficking-defective Nav1.5 mutants produced a dominant negative effect on Kir2.1/2.2 and thus an additional IK1 reduction. Moreover, ER trafficking-defective Nav1.5 channels can be partially rescued by Kir2.1/2.2 channels through an unconventional secretory route that involves Golgi reassembly stacking proteins (GRASPs). Therefore, cardiac excitability would be greatly affected in subjects harboring Nav1.5 mutations with Golgi trafficking defects, since these mutants can concomitantly trap Kir2.1/2.2 channels, thus unexpectedly decreasing IK1 in addition to INa.
Collapse
Affiliation(s)
- Marta Pérez-Hernández
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBER of Cardiovascular Diseases, Madrid, Spain
| | - Marcos Matamoros
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBER of Cardiovascular Diseases, Madrid, Spain
| | - Silvia Alfayate
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBER of Cardiovascular Diseases, Madrid, Spain
| | - Paloma Nieto-Marín
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBER of Cardiovascular Diseases, Madrid, Spain
| | - Raquel G Utrilla
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBER of Cardiovascular Diseases, Madrid, Spain
| | - David Tinaquero
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBER of Cardiovascular Diseases, Madrid, Spain
| | - Raquel de Andrés
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Teresa Crespo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBER of Cardiovascular Diseases, Madrid, Spain
| | - Daniela Ponce-Balbuena
- Departments of Internal Medicine and Molecular and Integrative Physiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA
| | - B Cicero Willis
- Departments of Internal Medicine and Molecular and Integrative Physiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Eric N Jiménez-Vazquez
- Departments of Internal Medicine and Molecular and Integrative Physiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Guadalupe Guerrero-Serna
- Departments of Internal Medicine and Molecular and Integrative Physiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Andre M da Rocha
- Departments of Internal Medicine and Molecular and Integrative Physiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Katherine Campbell
- Departments of Internal Medicine and Molecular and Integrative Physiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Todd J Herron
- Departments of Internal Medicine and Molecular and Integrative Physiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA
| | - F Javier Díez-Guerra
- Departamento de Biología Molecular and Centro de Biología Molecular "Severo Ochoa" (UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Tamargo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBER of Cardiovascular Diseases, Madrid, Spain
| | - José Jalife
- Departments of Internal Medicine and Molecular and Integrative Physiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, Michigan, USA.,Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Ricardo Caballero
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBER of Cardiovascular Diseases, Madrid, Spain
| | - Eva Delpón
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón, and CIBER of Cardiovascular Diseases, Madrid, Spain
| |
Collapse
|
35
|
Predicting changes to I Na from missense mutations in human SCN5A. Sci Rep 2018; 8:12797. [PMID: 30143662 PMCID: PMC6109095 DOI: 10.1038/s41598-018-30577-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 07/23/2018] [Indexed: 11/08/2022] Open
Abstract
Mutations in SCN5A can alter the cardiac sodium current INa and increase the risk of potentially lethal conditions such as Brugada and long-QT syndromes. The relation between mutations and their clinical phenotypes is complex, and systems to predict clinical severity of unclassified SCN5A variants perform poorly. We investigated if instead we could predict changes to INa, leaving the link from INa to clinical phenotype for mechanistic simulation studies. An exhaustive list of nonsynonymous missense mutations and resulting changes to INa was compiled. We then applied machine-learning methods to this dataset, and found that changes to INa could be predicted with higher sensitivity and specificity than most existing predictors of clinical significance. The substituted residues’ location on the protein correlated with channel function and strongly contributed to predictions, while conservedness and physico-chemical properties did not. However, predictions were not sufficiently accurate to form a basis for mechanistic studies. These results show that changes to INa, the mechanism through which SCN5A mutations create cardiac risk, are already difficult to predict using purely in-silico methods. This partly explains the limited success of systems to predict clinical significance of SCN5A variants, and underscores the need for functional studies of INa in risk assessment.
Collapse
|
36
|
van Deventer BS, du Toit-Prinsloo L, van Niekerk C. Feasibility of analysis of the SCN5A gene in paraffin embedded samples in sudden infant death cases at the Pretoria Medico-Legal Laboratory, South Africa. Forensic Sci Med Pathol 2018; 14:276-284. [PMID: 29907895 DOI: 10.1007/s12024-018-9995-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2018] [Indexed: 12/19/2022]
Abstract
To determine variations in the SCN5A gene linked to inherited cardiac arrhythmogenic disorders in sudden, unexplained infant death (SUID) cases examined at the Pretoria Medico-Legal Laboratory, South Africa. A retrospective study was conducted on SUID cases and controls, analyzing DNA extracted from archived formalin-fixed, paraffin-embedded (FFPE) myocardial tissue samples as well as blood samples. A total of 48 FFPE tissue samples (cases), 10 control FFPE tissue samples and nine control blood samples were included. DNA extracted from all samples was used to test for variations in the SCN5A gene by using high resolution melt (HRM) real-time PCR and sequencing. Genetic analysis showed 31 different single nucleotide variants in the entire study population (n = 67). Five previously reported variants of known pathogenic significance, and 14 variants of benign clinical significance, were identified. The study found 12 different variants in the cases that were not published in any database or literature and were considered novel. Of these novel variants, two were predicted as "probably damaging" with a high level of certainty (found in four case samples), one (identified in another case sample) was predicted to be "possibly damaging" with a 50% chance of being disease-causing, and nine were predicted to be benign. This study shows the significant added value of using genetic testing in determining the cause of death in South African SUID cases. Considering the high heritability of these arrhythmic disorders, post mortem genetic testing could play an important role in the understanding of the pathogenesis thereof and could also aid in the diagnosis and treatment of family members at risk, ultimately preventing similar future cases.
Collapse
Affiliation(s)
| | - Lorraine du Toit-Prinsloo
- Department of Forensic Medicine, University of Pretoria, Pretoria, South Africa.,Department of Forensic Medicine, Sydney, Forensic & Analytical Science Services (FASS), NSW Health Pathology, Sydney, New South Wales, Australia
| | - Chantal van Niekerk
- Department of Chemical Pathology, University of Pretoria, R3-43 Pathology Building, Prinshof Campus, Pretoria, 0002, Republic of South Africa. .,Department of Chemical Pathology, National Health Laboratory Services (NHLS), Tshwane Academic Division, Pretoria, South Africa.
| |
Collapse
|
37
|
Digenic Heterozigosity in SCN5A and CACNA1C Explains the Variable Expressivity of the Long QT Phenotype in a Spanish Family. ACTA ACUST UNITED AC 2018; 72:324-332. [PMID: 29691127 DOI: 10.1016/j.rec.2018.03.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/06/2018] [Indexed: 11/20/2022]
Abstract
INTRODUCTION AND OBJECTIVES A known long QT syndrome-related mutation in Nav1.5 cardiac channels (p.R1644H) was found in 4 members of a Spanish family but only 1 of them showed prolongation of the QT interval. In the other 3 relatives, a novel missense mutation in Cav1.2 cardiac channels was found (p.S1961N). Here, we functionally analyzed p.S1961N Cav1.2 channels to elucidate whether this mutation regulates the expressivity of the long QT syndrome phenotype in this family. METHODS L-type calcium current (ICaL) recordings were performed by using the whole-cell patch-clamp technique in Chinese hamster ovary cells transiently transfected with native and/or p.S1961N Cav1.2 channels. RESULTS Expression of p.S1961N channels significantly decreased ICaL density. Using Ba as a charge carrier to suppress the Ca-dependent inactivation of Cav1.2 channels, we demonstrated that the mutation significantly accelerates the voltage-dependent inactivation of Cav1.2 channels decreasing the inactivation time constant. As a consequence, the total charge flowing through p.S1961N Cav1.2 channels significantly decreased. The effects of the p.S1961N Cav1.2 and p.R1644H Nav1.5 mutations alone or their combination on the action potential (AP) morphology were simulated using a validated model of the human ventricular AP. The p.S1961N Cav1.2 mutation shortens the AP duration and abrogates the prolongation induced by p.R1644H Nav1.5 channels. CONCLUSIONS The p.S1961N mutation in Cav1.2 channels decreased the ICaL, an effect which might shorten ventricular AP. The presence of the loss-of-function Cav1.2 mutation could functionally compensate the prolonging effects produced by the Nav1.5 gain-of-function mutation.
Collapse
|
38
|
Ponce-Balbuena D, Guerrero-Serna G, Valdivia CR, Caballero R, Diez-Guerra FJ, Jiménez-Vázquez EN, Ramírez RJ, Monteiro da Rocha A, Herron TJ, Campbell KF, Willis BC, Alvarado FJ, Zarzoso M, Kaur K, Pérez-Hernández M, Matamoros M, Valdivia HH, Delpón E, Jalife J. Cardiac Kir2.1 and Na V1.5 Channels Traffic Together to the Sarcolemma to Control Excitability. Circ Res 2018. [PMID: 29514831 DOI: 10.1161/circresaha.117.311872] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RATIONALE In cardiomyocytes, NaV1.5 and Kir2.1 channels interact dynamically as part of membrane bound macromolecular complexes. OBJECTIVE The objective of this study was to test whether NaV1.5 and Kir2.1 preassemble during early forward trafficking and travel together to common membrane microdomains. METHODS AND RESULTS In patch-clamp experiments, coexpression of trafficking-deficient mutants Kir2.1Δ314-315 or Kir2.1R44A/R46A with wild-type (WT) NaV1.5WT in heterologous cells reduced inward sodium current compared with NaV1.5WT alone or coexpressed with Kir2.1WT. In cell surface biotinylation experiments, expression of Kir2.1Δ314-315 reduced NaV1.5 channel surface expression. Glycosylation analysis suggested that NaV1.5WT and Kir2.1WT channels associate early in their biosynthetic pathway, and fluorescence recovery after photobleaching experiments demonstrated that coexpression with Kir2.1 increased cytoplasmic mobility of NaV1.5WT, and vice versa, whereas coexpression with Kir2.1Δ314-315 reduced mobility of both channels. Viral gene transfer of Kir2.1Δ314-315 in adult rat ventricular myocytes and human induced pluripotent stem cell-derived cardiomyocytes reduced inward rectifier potassium current and inward sodium current, maximum diastolic potential and action potential depolarization rate, and increased action potential duration. On immunostaining, the AP1 (adaptor protein complex 1) colocalized with NaV1.5WT and Kir2.1WT within areas corresponding to t-tubules and intercalated discs. Like Kir2.1WT, NaV1.5WT coimmunoprecipitated with AP1. Site-directed mutagenesis revealed that NaV1.5WT channels interact with AP1 through the NaV1.5Y1810 residue, suggesting that, like for Kir2.1WT, AP1 can mark NaV1.5 channels for incorporation into clathrin-coated vesicles at the trans-Golgi. Silencing the AP1 ϒ-adaptin subunit in human induced pluripotent stem cell-derived cardiomyocytes reduced inward rectifier potassium current, inward sodium current, and maximum diastolic potential and impaired rate-dependent action potential duration adaptation. CONCLUSIONS The NaV1.5-Kir2.1 macromolecular complex pre-assembles early in the forward trafficking pathway. Therefore, disruption of Kir2.1 trafficking in cardiomyocytes affects trafficking of NaV1.5, which may have important implications in the mechanisms of arrhythmias in inheritable cardiac diseases.
Collapse
Affiliation(s)
- Daniela Ponce-Balbuena
- From the Department of Internal Medicine and Center for Arrhythmia Research (D.P.-B., G.G.-S., C.R.V., E.N.J.-V., R.J.R., A.M.d.R., T.J.H., K.F.C., B.C.W., M.Z., K.K., H.H.V., J.J.)
| | - Guadalupe Guerrero-Serna
- From the Department of Internal Medicine and Center for Arrhythmia Research (D.P.-B., G.G.-S., C.R.V., E.N.J.-V., R.J.R., A.M.d.R., T.J.H., K.F.C., B.C.W., M.Z., K.K., H.H.V., J.J.)
| | - Carmen R Valdivia
- From the Department of Internal Medicine and Center for Arrhythmia Research (D.P.-B., G.G.-S., C.R.V., E.N.J.-V., R.J.R., A.M.d.R., T.J.H., K.F.C., B.C.W., M.Z., K.K., H.H.V., J.J.)
| | - Ricardo Caballero
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid, Spain (R.C., M.P.-H., M.M., E.D.).,Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid, Spain (R.C., M.P.-H., M.M., E.D.)
| | - F Javier Diez-Guerra
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Universidad Autónoma de Madrid, Spain (F.J.D.-G.)
| | - Eric N Jiménez-Vázquez
- From the Department of Internal Medicine and Center for Arrhythmia Research (D.P.-B., G.G.-S., C.R.V., E.N.J.-V., R.J.R., A.M.d.R., T.J.H., K.F.C., B.C.W., M.Z., K.K., H.H.V., J.J.)
| | - Rafael J Ramírez
- From the Department of Internal Medicine and Center for Arrhythmia Research (D.P.-B., G.G.-S., C.R.V., E.N.J.-V., R.J.R., A.M.d.R., T.J.H., K.F.C., B.C.W., M.Z., K.K., H.H.V., J.J.)
| | - André Monteiro da Rocha
- From the Department of Internal Medicine and Center for Arrhythmia Research (D.P.-B., G.G.-S., C.R.V., E.N.J.-V., R.J.R., A.M.d.R., T.J.H., K.F.C., B.C.W., M.Z., K.K., H.H.V., J.J.)
| | - Todd J Herron
- From the Department of Internal Medicine and Center for Arrhythmia Research (D.P.-B., G.G.-S., C.R.V., E.N.J.-V., R.J.R., A.M.d.R., T.J.H., K.F.C., B.C.W., M.Z., K.K., H.H.V., J.J.)
| | - Katherine F Campbell
- From the Department of Internal Medicine and Center for Arrhythmia Research (D.P.-B., G.G.-S., C.R.V., E.N.J.-V., R.J.R., A.M.d.R., T.J.H., K.F.C., B.C.W., M.Z., K.K., H.H.V., J.J.)
| | - B Cicero Willis
- From the Department of Internal Medicine and Center for Arrhythmia Research (D.P.-B., G.G.-S., C.R.V., E.N.J.-V., R.J.R., A.M.d.R., T.J.H., K.F.C., B.C.W., M.Z., K.K., H.H.V., J.J.)
| | | | - Manuel Zarzoso
- From the Department of Internal Medicine and Center for Arrhythmia Research (D.P.-B., G.G.-S., C.R.V., E.N.J.-V., R.J.R., A.M.d.R., T.J.H., K.F.C., B.C.W., M.Z., K.K., H.H.V., J.J.)
| | - Kuljeet Kaur
- From the Department of Internal Medicine and Center for Arrhythmia Research (D.P.-B., G.G.-S., C.R.V., E.N.J.-V., R.J.R., A.M.d.R., T.J.H., K.F.C., B.C.W., M.Z., K.K., H.H.V., J.J.)
| | - Marta Pérez-Hernández
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid, Spain (R.C., M.P.-H., M.M., E.D.).,Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid, Spain (R.C., M.P.-H., M.M., E.D.)
| | - Marcos Matamoros
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid, Spain (R.C., M.P.-H., M.M., E.D.).,Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid, Spain (R.C., M.P.-H., M.M., E.D.)
| | - Héctor H Valdivia
- From the Department of Internal Medicine and Center for Arrhythmia Research (D.P.-B., G.G.-S., C.R.V., E.N.J.-V., R.J.R., A.M.d.R., T.J.H., K.F.C., B.C.W., M.Z., K.K., H.H.V., J.J.).,Department of Molecular and Integrative Physiology (F.J.A., H.H.V.)
| | - Eva Delpón
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid, Spain (R.C., M.P.-H., M.M., E.D.).,Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid, Spain (R.C., M.P.-H., M.M., E.D.)
| | - José Jalife
- From the Department of Internal Medicine and Center for Arrhythmia Research (D.P.-B., G.G.-S., C.R.V., E.N.J.-V., R.J.R., A.M.d.R., T.J.H., K.F.C., B.C.W., M.Z., K.K., H.H.V., J.J.) .,University of Michigan, Ann Arbor; Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (J.J.).,CIBERV, Madrid, Spain (J.J.)
| |
Collapse
|
39
|
Selga E, Sendfeld F, Martinez-Moreno R, Medine CN, Tura-Ceide O, Wilmut SI, Pérez GJ, Scornik FS, Brugada R, Mills NL. Sodium channel current loss of function in induced pluripotent stem cell-derived cardiomyocytes from a Brugada syndrome patient. J Mol Cell Cardiol 2018; 114:10-19. [PMID: 29024690 PMCID: PMC5807028 DOI: 10.1016/j.yjmcc.2017.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 09/15/2017] [Accepted: 10/04/2017] [Indexed: 12/24/2022]
Abstract
Brugada syndrome predisposes to sudden death due to disruption of normal cardiac ion channel function, yet our understanding of the underlying cellular mechanisms is incomplete. Commonly used heterologous expression models lack many characteristics of native cardiomyocytes and, in particular, the individual genetic background of a patient. Patient-specific induced pluripotent stem (iPS) cell-derived cardiomyocytes (iPS-CM) may uncover cellular phenotypical characteristics not observed in heterologous models. Our objective was to determine the properties of the sodium current in iPS-CM with a mutation in SCN5A associated with Brugada syndrome. Dermal fibroblasts from a Brugada syndrome patient with a mutation in SCN5A (c.1100G>A, leading to Nav1.5_p.R367H) were reprogrammed to iPS cells. Clones were characterized and differentiated to form beating clusters and sheets. Patient and control iPS-CM were structurally indistinguishable. Sodium current properties of patient and control iPS-CM were compared. These results were contrasted with those obtained in tsA201 cells heterologously expressing sodium channels with the same mutation. Patient-derived iPS-CM showed a 33.1-45.5% reduction in INa density, a shift in both activation and inactivation voltage-dependence curves, and faster recovery from inactivation. Co-expression of wild-type and mutant channels in tsA201 cells did not compromise channel trafficking to the membrane, but resulted in a reduction of 49.8% in sodium current density without affecting any other parameters. Cardiomyocytes derived from iPS cells from a Brugada syndrome patient with a mutation in SCN5A recapitulate the loss of function of sodium channel current associated with this syndrome; including pro-arrhythmic changes in channel function not detected using conventional heterologous expression systems.
Collapse
Affiliation(s)
- Elisabet Selga
- Cardiovascular Genetics Centre, Department of Medical Sciences, University of Girona, Girona, Spain; Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Franziska Sendfeld
- Scottish Centre for Regenerative Medicine, University of Edinburgh, United Kingdom; BHF/University Centre for Cardiovascular Sciences, University of Edinburgh, United Kingdom
| | - Rebecca Martinez-Moreno
- Cardiovascular Genetics Centre, Department of Medical Sciences, University of Girona, Girona, Spain; Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Claire N Medine
- Scottish Centre for Regenerative Medicine, University of Edinburgh, United Kingdom; BHF/University Centre for Cardiovascular Sciences, University of Edinburgh, United Kingdom
| | - Olga Tura-Ceide
- Department of Pulmonary Medicine, Hospital Clinic-Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, University of Barcelona, Spain
| | - Sir Ian Wilmut
- Scottish Centre for Regenerative Medicine, University of Edinburgh, United Kingdom
| | - Guillermo J Pérez
- Cardiovascular Genetics Centre, Department of Medical Sciences, University of Girona, Girona, Spain; Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Fabiana S Scornik
- Cardiovascular Genetics Centre, Department of Medical Sciences, University of Girona, Girona, Spain; Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain
| | - Ramon Brugada
- Cardiovascular Genetics Centre, Department of Medical Sciences, University of Girona, Girona, Spain; Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Spain; Hospital Josep Trueta, Girona, Spain
| | - Nicholas L Mills
- BHF/University Centre for Cardiovascular Sciences, University of Edinburgh, United Kingdom.
| |
Collapse
|
40
|
Abstract
Fast opening and closing of voltage-gated sodium channels are crucial for proper propagation of the action potential through excitable tissues. Unlike potassium channels, sodium channel α-subunits are believed to form functional monomers. Yet, an increasing body of literature shows inconsistency with the traditional idea of a single α-subunit functioning as a monomer. Here we demonstrate that sodium channel α-subunits not only physically interact with each other but they actually assemble, function and gate as a dimer. We identify the region involved in the dimerization and demonstrate that 14-3-3 protein mediates the coupled gating. Importantly we show conservation of this mechanism among mammalian sodium channels. Our study not only shifts conventional paradigms in regard to sodium channel assembly, structure, and function but importantly this discovery of the mechanism involved in channel dimerization and biophysical coupling could open the door to new approaches and targets to treat and/or prevent sodium channelopathies. Voltage-gated sodium channels are expressed in excitable tissues and mutations have been linked to cardiac arrhythmias and channelopathies. Here the authors show that the sodium channel α-subunits interact to form a dimer and gate as dimer and that this functional dimerisation is conserved.
Collapse
|
41
|
Gando I, Morganstein J, Jana K, McDonald TV, Tang Y, Coetzee WA. Infant sudden death: Mutations responsible for impaired Nav1.5 channel trafficking and function. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2017; 40:703-712. [PMID: 28370132 DOI: 10.1111/pace.13087] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND Two genetic variants in SCN5A, encoding the Nav1.5 Na+ channel α-subunit, were found in a 5-month-old girl who died suddenly in her sleep. The first variant is a missense mutation, resulting in an amino acid change (Q1832E), which has been described (but not characterized) in a patient with Brugada syndrome. The second is a nonsense mutation that produces a premature stop codon and a C-terminal truncation (R1944Δ). METHODS AND RESULTS To investigate their functional relevance with patch clamp experiments in transfected HEK-293 cells. The Q1832E mutation drastically reduced Nav1.5 current density. The R1944Δ C-terminal truncation had negligible effects on Nav1.5 current density. Neither of the mutations affected the voltage dependence of steady activation and inactivation or influenced the late Na+ current or the recovery from inactivation. Biochemical and immunofluorescent approaches demonstrated that the Q1832E mutation caused severe trafficking defects. Polymerase chain reaction cloning and sequencing the victim's genomic DNA allowed us to determine that the two variants were in trans. We investigated the functional consequences by coexpressing Nav1.5(Q1832E) and Nav1.5(R1944Δ), which led to a significantly reduced current amplitude relative to wild-type. CONCLUSIONS These sudden infant death syndrome (SIDS)-related variants caused a severely dysfunctional Nav1.5 channel, which was mainly due to trafficking defects caused by the Q1832E mutation. The decreased current density is likely to be a major contributing factor to arrhythmogenesis in Brugada syndrome and the sudden death of this SIDS victim.
Collapse
Affiliation(s)
- Ivan Gando
- Pediatrics, NYU School of Medicine, New York, NY
| | | | - Kundan Jana
- Pediatrics, NYU School of Medicine, New York, NY
| | - Thomas V McDonald
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY
| | - Yingying Tang
- Molecular Genetics Laboratory, Office of Chief Medical Examiner, New York, NY
| | - William A Coetzee
- Pediatrics, NYU School of Medicine, New York, NY.,Physiology & Neuroscience, NYU School of Medicine, New York, NY.,Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY
| |
Collapse
|
42
|
Yang Z, Lu D, Zhang L, Hu J, Nie Z, Xie C, Qiu F, Cheng H, Yan Y. p.N1380del mutation in the pore-forming region of SCN5A gene is associated with cardiac conduction disturbance and ventricular tachycardia. Acta Biochim Biophys Sin (Shanghai) 2017; 49:270-276. [PMID: 28159958 DOI: 10.1093/abbs/gmx003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Indexed: 12/11/2022] Open
Abstract
Cardiac sodium channel plays a key role in the fast depolarization and maintenance of impulse conduction in cardiomyocytes. Mutations of SCN5A gene can lead to many types of arrhythmias. A 14-year-old boy with familial paternal history of sudden unexpected nocturnal death was admitted to hospital with recurrent syncope. A cardiac channelopathy was suspected and a pathogenic ion channel was searched for mutation identification. The proband manifested sinus node dysfunction, ventricular tachycardia, cardiac conduction disturbance involving atrioventricular node and His bundle. The proband and his mother received whole exome sequencing. A heterozygous in-frame deletion N1380del on exon 23 of SCN5A gene locating in a highly conserved pore residue in domain III (S5-S6) was revealed in the proband. The mutation was assessed in other family members by Sanger sequencing. The proband's living uncle and two sisters were asymptomatic mutation carriers with different degrees of cardiac conduction disturbance. Functional analysis was conducted using whole-cell patch clamping in HEK293T cells transfected with wild-type or mutant channels. The HEK293T cells transfected with plasmid pcDNA3.1-N1380del-SCN5A had no detectable sodium current. Overall, N1380del mutation of SCN5A gene leads to loss of function of sodium channel. N1380del is a pathogenetic mutation which can cause cardiac conduction defect and ventricular tachycardia.
Collapse
Affiliation(s)
- Zhen Yang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Danbo Lu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lei Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jialu Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhenning Nie
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chang Xie
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, China
| | - Fang Qiu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, China
| | - Hua Cheng
- WuXi NextCODE Genomics, Shanghai 200131, China
| | - Yan Yan
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
43
|
Yan H, Wang C, Marx SO, Pitt GS. Calmodulin limits pathogenic Na+ channel persistent current. J Gen Physiol 2017; 149:277-293. [PMID: 28087622 PMCID: PMC5299624 DOI: 10.1085/jgp.201611721] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/13/2016] [Accepted: 12/19/2016] [Indexed: 01/29/2023] Open
Abstract
The molecular mechanisms controlling “persistent” current through voltage-gated Na+ channels are poorly understood. Yan et al. show that apocalmodulin binding to the intracellular C-terminal domain limits persistent Na+ flux and accelerates inactivation across the voltage-gated Na+ channel family. Increased “persistent” current, caused by delayed inactivation, through voltage-gated Na+ (NaV) channels leads to cardiac arrhythmias or epilepsy. The underlying molecular contributors to these inactivation defects are poorly understood. Here, we show that calmodulin (CaM) binding to multiple sites within NaV channel intracellular C-terminal domains (CTDs) limits persistent Na+ current and accelerates inactivation across the NaV family. Arrhythmia or epilepsy mutations located in NaV1.5 or NaV1.2 channel CTDs, respectively, reduce CaM binding either directly or by interfering with CTD–CTD interchannel interactions. Boosting the availability of CaM, thus shifting its binding equilibrium, restores wild-type (WT)–like inactivation in mutant NaV1.5 and NaV1.2 channels and likewise diminishes the comparatively large persistent Na+ current through WT NaV1.6, whose CTD displays relatively low CaM affinity. In cerebellar Purkinje neurons, in which NaV1.6 promotes a large physiological persistent Na+ current, increased CaM diminishes the persistent Na+ current, suggesting that the endogenous, comparatively weak affinity of NaV1.6 for apoCaM is important for physiological persistent current.
Collapse
Affiliation(s)
- Haidun Yan
- Ion Channel Research Unit, Duke University Medical Center, Durham, NC 27710
| | - Chaojian Wang
- Ion Channel Research Unit, Duke University Medical Center, Durham, NC 27710
| | - Steven O Marx
- Division of Cardiology, Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032.,Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Geoffrey S Pitt
- Ion Channel Research Unit, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
44
|
Abstract
Voltage-gated sodium channels (VGSC) are critical determinants of cellular electrical activity through the control of initiation and propagation of action potential. To ensure this role, these proteins are not consistently delivered to the plasma membrane but undergo drastic quality controls throughout various adaptive processes such as biosynthesis, anterograde and retrograde trafficking, and membrane targeting. In pathological conditions, this quality control could lead to the retention of functional VGSC and is therefore the target of different pharmacological approaches. The present chapter gives an overview of the current understanding of the facets of VGSC life cycle in the context of both cardiac and neuronal cell types.
Collapse
Affiliation(s)
- A Mercier
- Laboratoire de Signalisation et Transports Ioniques Membranaires, Pôle Biologie Santé, Université de Poitiers, CNRS, 1 rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - P Bois
- Laboratoire de Signalisation et Transports Ioniques Membranaires, Pôle Biologie Santé, Université de Poitiers, CNRS, 1 rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France
| | - A Chatelier
- Laboratoire de Signalisation et Transports Ioniques Membranaires, Pôle Biologie Santé, Université de Poitiers, CNRS, 1 rue Georges Bonnet, TSA 51106, 86073, Poitiers Cedex 9, France.
| |
Collapse
|
45
|
Affiliation(s)
- Peter J Mohler
- Departments of Physiology & Cell Biology and Internal Medicine, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Hugues Abriel
- Department of Clinical Research, Ion Channel Research Group, University of Bern, Bern, Switzerland
| |
Collapse
|
46
|
Zaklyazminskaya E, Dzemeshkevich S. The role of mutations in the SCN5A gene in cardiomyopathies. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1799-805. [PMID: 26916278 DOI: 10.1016/j.bbamcr.2016.02.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 02/17/2016] [Accepted: 02/19/2016] [Indexed: 12/18/2022]
Abstract
The SCN5A gene encodes the alpha-subunit of the Nav1.5 ion channel protein, which is responsible for the sodium inward current (INa). Since 1995 several hundred mutations in this gene have been found to be causative for inherited arrhythmias including Long QT syndrome, Brugada syndrome, cardiac conduction disease, sudden infant death syndrome, etc. As expected these syndromes are primarily electrical heart diseases leading to life-threatening arrhythmias with an "apparently normal heart". In 2003 a new form of dilated cardiomyopathy was identified associated with mutations in the SCN5A gene. Recently mutations have been also found in patients with arrhythmogenic right ventricular cardiomyopathy and atrial standstill. The purpose of this review is to outline and analyze the following four topics: 1) SCN5A genetic variants linked to different cardiomyopathies; 2) clinical manifestations of the known mutations; 3) possible molecular mechanisms of myocardial remodeling; and 4) the potential implications of gene-specific treatment for those disorders. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Elena Zaklyazminskaya
- Petrovsky Russian Research Centre of Surgery, Abricosovsky pereulok, 119991 Moscow, Russia; Department of Molecular and Cellular Genetics, Pirogov Russian National Research Medical University, Ostrovityanova str. 1, Moscow 117997, Russia.
| | - Sergei Dzemeshkevich
- Petrovsky Russian Research Centre of Surgery, Abricosovsky pereulok, 119991 Moscow, Russia.
| |
Collapse
|
47
|
Sottas V, Abriel H. Negative-dominance phenomenon with genetic variants of the cardiac sodium channel Nav1.5. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1791-8. [PMID: 26907222 DOI: 10.1016/j.bbamcr.2016.02.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/15/2016] [Accepted: 02/19/2016] [Indexed: 02/07/2023]
Abstract
During the past two decades, many pathological genetic variants in SCN5A, the gene encoding the pore-forming subunit of the cardiac (monomeric) sodium channel Na(v)1.5, have been described. Negative dominance is a classical genetic concept involving a "poison" mutant peptide that negatively interferes with the co-expressed wild-type protein, thus reducing its cellular function. This phenomenon has been described for genetic variants of multimeric K(+) channels, which mechanisms are well understood. Unexpectedly, several pathologic SCN5A variants that are linked to Brugada syndrome also demonstrate such a dominant-negative (DN) effect. The molecular determinants of these observations, however, are not yet elucidated. This review article summarizes recent findings that describe the mechanisms underlying the DN phenomenon of genetic variants of K(+), Ca(2+), Cl(-) and Na(+) channels, and in particular Brugada syndrome variants of Na(v)1.5. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.
Collapse
Affiliation(s)
- Valentin Sottas
- Department of Clinical Research, Ion Channel Research Group, University of Bern, Switzerland
| | - Hugues Abriel
- Department of Clinical Research, Ion Channel Research Group, University of Bern, Switzerland.
| |
Collapse
|
48
|
Matamoros M, Pérez-Hernández M, Guerrero-Serna G, Amorós I, Barana A, Núñez M, Ponce-Balbuena D, Sacristán S, Gómez R, Tamargo J, Caballero R, Jalife J, Delpón E. Nav1.5 N-terminal domain binding to α1-syntrophin increases membrane density of human Kir2.1, Kir2.2 and Nav1.5 channels. Cardiovasc Res 2016; 110:279-90. [PMID: 26786162 DOI: 10.1093/cvr/cvw009] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/13/2016] [Indexed: 01/11/2023] Open
Abstract
AIMS Cardiac excitability and refractoriness are largely determined by the function and number of inward rectifier K⁺ channels (Kir2.1-2.3), which are differentially expressed in the atria and ventricles, and Nav1.5 channels. We have focused on how Nav1.5 and Kir2.x function within a macromolecular complex by elucidating the molecular determinants that govern Nav1.5/Kir2.x reciprocal modulation. METHODS AND RESULTS The results demonstrate that there is an unexpected 'internal' PDZ-like binding domain located at the N-terminus of the Nav1.5 channel that mediates its binding to α1-syntrophin. Nav1.5 N-terminal domain, by itself (the 132 aa peptide) (Nter), exerts a 'chaperone-like' effect that increases sodium (I(Na)) and inward rectifier potassium (I(K1)) currents by enhancing the expression of Nav1.5, Kir2.1, and Kir2.2 channels as demonstrated in Chinese hamster ovary (CHO) cells and in rat cardiomyocytes. Site-directed mutagenesis analysis demonstrates that the Nter chaperone-like effect is determined by Serine 20. Nav1.5-Kir2.x reciprocal positive interactions depend on a specific C-terminal PDZ-binding domain sequence (SEI), which is present in Kir2.1 and Kir2.2 channels but not in Kir2.3. Therefore, in human atrial myocytes, the presence of Kir2.3 isoforms precludes reciprocal I(K1)-INa density modulation. Moreover, results in rat and human atrial myocytes demonstrate that binding to α1-syntrophin is necessary for the Nav1.5-Kir2.x-positive reciprocal modulation. CONCLUSIONS The results demonstrate the critical role of the N-terminal domain of Nav1.5 channels in Nav1.5-Kir2.x-reciprocal interactions and suggest that the molecular mechanisms controlling atrial and ventricular cellular excitability may be different.
Collapse
Affiliation(s)
- Marcos Matamoros
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid 28040, Spain
| | - Marta Pérez-Hernández
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid 28040, Spain
| | - Guadalupe Guerrero-Serna
- Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109, USA Department of Molecular and Integrative Physiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109, USA
| | - Irene Amorós
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid 28040, Spain
| | - Adriana Barana
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid 28040, Spain
| | - Mercedes Núñez
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid 28040, Spain
| | - Daniela Ponce-Balbuena
- Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109, USA Department of Molecular and Integrative Physiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sandra Sacristán
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid 28040, Spain
| | - Ricardo Gómez
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid 28040, Spain
| | - Juan Tamargo
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid 28040, Spain
| | - Ricardo Caballero
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid 28040, Spain
| | - José Jalife
- Department of Internal Medicine, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109, USA Department of Molecular and Integrative Physiology, Center for Arrhythmia Research, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eva Delpón
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid 28040, Spain Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid 28040, Spain
| |
Collapse
|
49
|
Namadurai S, Yereddi NR, Cusdin FS, Huang CLH, Chirgadze DY, Jackson AP. A new look at sodium channel β subunits. Open Biol 2015; 5:140192. [PMID: 25567098 PMCID: PMC4313373 DOI: 10.1098/rsob.140192] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Voltage-gated sodium (Nav) channels are intrinsic plasma membrane proteins that initiate the action potential in electrically excitable cells. They are a major focus of research in neurobiology, structural biology, membrane biology and pharmacology. Mutations in Nav channels are implicated in a wide variety of inherited pathologies, including cardiac conduction diseases, myotonic conditions, epilepsy and chronic pain syndromes. Drugs active against Nav channels are used as local anaesthetics, anti-arrhythmics, analgesics and anti-convulsants. The Nav channels are composed of a pore-forming α subunit and associated β subunits. The β subunits are members of the immunoglobulin (Ig) domain family of cell-adhesion molecules. They modulate multiple aspects of Nav channel behaviour and play critical roles in controlling neuronal excitability. The recently published atomic resolution structures of the human β3 and β4 subunit Ig domains open a new chapter in the study of these molecules. In particular, the discovery that β3 subunits form trimers suggests that Nav channel oligomerization may contribute to the functional properties of some β subunits.
Collapse
Affiliation(s)
- Sivakumar Namadurai
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Nikitha R Yereddi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Fiona S Cusdin
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | | | - Dimitri Y Chirgadze
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| | - Antony P Jackson
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, UK
| |
Collapse
|
50
|
Abstract
The Brugada syndrome is characterized by unique 'coved-type' ST-segment elevation in the right precordial leads of electrocardiogram and ventricular fibrillation, and is responsible for 4 to 12% of sudden cardiac death in the general population. The frequency is higher in Southeast Asia including Japan compared with Western countries. Brugada syndrome is an inherited disease usually transmitted in an autosomal-dominant manner, and incomplete penetrance is frequently seen within affected families. To date, 20 genes have been associated with Brugada syndrome, but pathogenic mutations in the genes are identified in only about 30% of patients. The genetic background includes mutations in genes encoding sodium channel, calcium channels and potassium channels, as well as proteins affecting ion channels. Mutations in SCN5A, encoding the cardiac predominant sodium channel α-subunit, account for 20 to 30% of patients with Brugada syndrome and mutations in other genes only account for about 5% of patients. Furthermore, a recent genome-wide association study has identified new loci associated with the susceptibility of Brugada syndrome.
Collapse
Affiliation(s)
- Hiroshi Watanabe
- Department of Cardiovascular Biology and Medicine, Division of Cardiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Division of Cardiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|