1
|
Li X, Liu L, Lou H, Dong X, Hao S, Sun Z, Dou Z, Li H, Zhao W, Sun X, Liu X, Zhang Y, Yang B. Cardiomyocyte-specific long noncoding RNA Trdn-as induces mitochondrial calcium overload by promoting the m 6A modification of calsequestrin 2 in diabetic cardiomyopathy. Front Med 2025:10.1007/s11684-024-1102-6. [PMID: 39821729 DOI: 10.1007/s11684-024-1102-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/26/2024] [Indexed: 01/19/2025]
Abstract
Diabetic cardiomyopathy (DCM) is a medical condition characterized by cardiac remodeling and dysfunction in individuals with diabetes mellitus. Sarcoplasmic reticulum (SR) and mitochondrial Ca2+ overload in cardiomyocytes have been recognized as biological hallmarks in DCM; however, the specific factors underlying these abnormalities remain largely unknown. In this study, we aimed to investigate the role of a cardiac-specific long noncoding RNA, D830005E20Rik (Trdn-as), in DCM. Our results revealed the remarkably upregulation of Trdn-as in the hearts of the DCM mice and cardiomyocytes treated with high glucose (HG). Knocking down Trdn-as in cardiac tissues significantly improved cardiac dysfunction and remodeling in the DCM mice. Conversely, Trdn-as overexpression resulted in cardiac damage resembling that observed in the DCM mice. At the cellular level, Trdn-as induced Ca2+ overload in the SR and mitochondria, leading to mitochondrial dysfunction. RNA-seq and bioinformatics analyses identified calsequestrin 2 (Casq2), a primary calcium-binding protein in the junctional SR, as a potential target of Trdn-as. Further investigations revealed that Trdn-as facilitated the recruitment of METTL14 to the Casq2 mRNA, thereby enhancing the m6A modification of Casq2. This modification increased the stability of Casq2 mRNA and subsequently led to increased protein expression. When Casq2 was knocked down, the promoting effects of Trdn-as on Ca2+ overload and mitochondrial damage were mitigated. These findings provide valuable insights into the pathogenesis of DCM and suggest Trdn-as as a potential therapeutic target for this condition.
Collapse
Affiliation(s)
- Xiaohan Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacology (SKLFZCD, State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin, 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Ling Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacology (SKLFZCD, State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin, 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Han Lou
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacology (SKLFZCD, State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin, 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Xinxin Dong
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacology (SKLFZCD, State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin, 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Shengxin Hao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacology (SKLFZCD, State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin, 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Zeqi Sun
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacology (SKLFZCD, State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin, 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Zijia Dou
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacology (SKLFZCD, State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin, 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Huimin Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacology (SKLFZCD, State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin, 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Wenjie Zhao
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacology (SKLFZCD, State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin, 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Xiuxiu Sun
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacology (SKLFZCD, State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin, 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Xin Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China
- Department of Pharmacology (SKLFZCD, State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin, 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China
| | - Yong Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), College of Pharmacy, and Department of Cardiology, the Second Affiliated Hospital, Harbin Medical University, Harbin, 150081, China.
- Department of Pharmacology (SKLFZCD, State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin, 150081, China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China.
| | - Baofeng Yang
- Department of Pharmacology (SKLFZCD, State Key Laboratory-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin, 150081, China.
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin, 150081, China.
| |
Collapse
|
2
|
Chen Z, Zhao X, Lin L, Cui Y, Cao D, Chen XL, Wang X. CaGA nanozymes with multienzyme activity realize multifunctional repair of acute wounds by alleviating oxidative stress and inhibiting cell apoptosis. Biomater Sci 2025; 13:422-433. [PMID: 39412895 DOI: 10.1039/d4bm01155d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Acute wounds result from damage to the skin barrier, exposing underlying tissues and increasing susceptibility to bacterial and other pathogen infections. Improper wound care increases the risk of exposure and infection, often leading to chronic nonhealing wounds, which cause significant patient suffering. Early wound repair can effectively prevent the development of chronic nonhealing wounds. In this study, Ca-Gallic Acid (CaGA) nanozymes with multienzyme catalytic activity were constructed for treating acute wounds by coordinating Ca ions with gallic acid. CaGA nanozymes exhibit high superoxide dismutase/catalase (SOD/CAT) catalytic activity and good antioxidant performance in vitro. In vitro experiments demonstrated that CaGA nanozymes can effectively promote cell migration, efficiently scavenge ROS, maintain mitochondrial homeostasis, reduce inflammation, and decrease cell apoptosis. In vivo, CaGA nanozymes promoted granulation tissue formation, accelerated collagen fiber deposition, and reconstructed skin appendages, thereby accelerating acute wound healing. CaGA nanozymes have potential clinical application value in wound healing treatment.
Collapse
Affiliation(s)
- Zenghong Chen
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, P. R. China.
| | - Xinyu Zhao
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China.
| | - Liting Lin
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
| | - Yuyu Cui
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, P. R. China.
| | - Dongsheng Cao
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, P. R. China.
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, P. R. China.
| | - Xianwen Wang
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, P. R. China.
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, 230032, P. R. China
| |
Collapse
|
3
|
Watson WD, Arvidsson PM, Miller JJJ, Lewis AJ, Rider OJ. A Mitochondrial Basis for Heart Failure Progression. Cardiovasc Drugs Ther 2024; 38:1161-1171. [PMID: 38878138 PMCID: PMC11680631 DOI: 10.1007/s10557-024-07582-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/20/2024] [Indexed: 12/29/2024]
Abstract
In health, the human heart is able to match ATP supply and demand perfectly. It requires 6 kg of ATP per day to satisfy demands of external work (mechanical force generation) and internal work (ion movements and basal metabolism). The heart is able to link supply with demand via direct responses to ADP and AMP concentrations but calcium concentrations within myocytes play a key role, signalling both inotropy, chronotropy and matched increases in ATP production. Calcium/calmodulin-dependent protein kinase (CaMKII) is a key adapter to increased workload, facilitating a greater and more rapid calcium concentration change. In the failing heart, this is dysfunctional and ATP supply is impaired. This review aims to examine the mechanisms and pathologies that link increased energy demand to this disrupted situation. We examine the roles of calcium loading, oxidative stress, mitochondrial structural abnormalities and damage-associated molecular patterns.
Collapse
Affiliation(s)
- William D Watson
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK.
- Oxford Centre for Magnetic Resonance Research, University of Oxford, Oxford, UK.
| | - Per M Arvidsson
- Oxford Centre for Magnetic Resonance Research, University of Oxford, Oxford, UK
- Clinical Physiology, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Clinical Physiology, Skåne University Hospital, Lund, Sweden
| | - Jack J J Miller
- Oxford Centre for Magnetic Resonance Research, University of Oxford, Oxford, UK
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Andrew J Lewis
- Oxford Centre for Magnetic Resonance Research, University of Oxford, Oxford, UK
| | - Oliver J Rider
- Oxford Centre for Magnetic Resonance Research, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Yuan S, Kuai Z, Zhao F, Xu D, Wu W. Improving effect of physical exercise on heart failure: Reducing oxidative stress-induced inflammation by restoring Ca 2+ homeostasis. Mol Cell Biochem 2024:10.1007/s11010-024-05124-8. [PMID: 39365389 DOI: 10.1007/s11010-024-05124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024]
Abstract
Heart failure (HF) is associated with the occurrence of mitochondrial dysfunction. ATP produced by mitochondria through the tricarboxylic acid cycle is the main source of energy for the heart. Excessive release of Ca2+ from myocardial sarcoplasmic reticulum (SR) in HF leads to excessive Ca2+ entering mitochondria, which leads to mitochondrial dysfunction and REDOX imbalance. Excessive accumulation of ROS leads to mitochondrial structure damage, which cannot produce and provide energy. In addition, the accumulation of a large number of ROS can activate NF-κB, leading to myocardial inflammation. Energy deficit in the myocardium has long been considered to be the main mechanism connecting mitochondrial dysfunction and systolic failure. However, exercise can improve the Ca2+ imbalance in HF and restore the Ca2+ disorder in mitochondria. Similarly, exercise activates mitochondrial dynamics to improve mitochondrial function and reshape intact mitochondrial structure, rebalance mitochondrial REDOX, reduce excessive release of ROS, and rescue cardiomyocyte energy failure in HF. In this review, we summarize recent evidence that exercise can improve Ca2+ homeostasis in the SR and activate mitochondrial dynamics, improve mitochondrial function, and reduce oxidative stress levels in HF patients, thereby reducing chronic inflammation in HF patients. The improvement of mitochondrial dynamics is beneficial for ameliorating metabolic flow bottlenecks, REDOX imbalance, ROS balance, impaired mitochondrial Ca2+ homeostasis, and inflammation. Interpretation of these findings will lead to new approaches to disease mechanisms and treatment.
Collapse
Affiliation(s)
- Shunling Yuan
- Provincial University Key Laboratory of Sport and Health Science, School of Physical Education and Sport Sciences, Fujian Normal University, Fuzhou, China
| | - Zhongkai Kuai
- Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha, China
| | - Fei Zhao
- Changsha Hospital of Traditional Chinese Medicine (Changsha Eighth Hospital), Changsha, China.
| | - Diqun Xu
- School of Physical Education, Minnan Normal University, Zhangzhou, China.
| | - Weijia Wu
- Hunan Provincial Key Laboratory of Physical Fitness and Sports Rehabilitation, Hunan Normal University, Changsha, China.
| |
Collapse
|
5
|
Kuroshima T, Kawaguchi S, Okada M. Current Perspectives of Mitochondria in Sepsis-Induced Cardiomyopathy. Int J Mol Sci 2024; 25:4710. [PMID: 38731929 PMCID: PMC11083471 DOI: 10.3390/ijms25094710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Sepsis-induced cardiomyopathy (SICM) is one of the leading indicators for poor prognosis associated with sepsis. Despite its reversibility, prognosis varies widely among patients. Mitochondria play a key role in cellular energy production by generating adenosine triphosphate (ATP), which is vital for myocardial energy metabolism. Over recent years, mounting evidence suggests that severe sepsis not only triggers mitochondrial structural abnormalities such as apoptosis, incomplete autophagy, and mitophagy in cardiomyocytes but also compromises their function, leading to ATP depletion. This metabolic disruption is recognized as a significant contributor to SICM, yet effective treatment options remain elusive. Sepsis cannot be effectively treated with inotropic drugs in failing myocardium due to excessive inflammatory factors that blunt β-adrenergic receptors. This review will share the recent knowledge on myocardial cell death in sepsis and its molecular mechanisms, focusing on the role of mitochondria as an important metabolic regulator of SICM, and discuss the potential for developing therapies for sepsis-induced myocardial injury.
Collapse
Affiliation(s)
| | | | - Motoi Okada
- Department of Emergency Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan; (T.K.); (S.K.)
| |
Collapse
|
6
|
Mousavi-Aghdas SA, Farashi E, Naderi N. Iron Dyshomeostasis and Mitochondrial Function in the Failing Heart: A Review of the Literature. Am J Cardiovasc Drugs 2024; 24:19-37. [PMID: 38157159 DOI: 10.1007/s40256-023-00619-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 01/03/2024]
Abstract
Cardiac contraction and relaxation require a substantial amount of energy provided by the mitochondria. The failing heart is adenosine triphosphate (ATP)- and creatine-depleted. Studies have found iron is involved in almost every aspect of mitochondrial function, and previous studies have shown myocardial iron deficiency in heart failure (HF). Many clinicians advocated intravenous iron repletion for HF patients meeting the conventional criteria for systemic iron deficiency. While clinical trials showed improved quality of life, iron repletion failed to significantly impact survival or significant cardiovascular adverse events. There is evidence that in HF, labile iron is trapped inside the mitochondria causing oxidative stress and lipid peroxidation. There is also compelling preclinical evidence demonstrating the detrimental effects of both iron overload and depletion on cardiomyocyte function. We reviewed the mechanisms governing myocardial and mitochondrial iron content. Mitochondrial dynamics (i.e., fusion, fission, mitophagy) and the role of iron were also investigated. Ferroptosis, as an important regulated cell death mechanism involved in cardiomyocyte loss, was reviewed along with agents used to manipulate it. The membrane stability and iron content of mitochondria can be altered by many agents. Some studies are showing promising improvement in the cardiomyocyte function after iron chelation by deferiprone; however, whether the in vitro and in vivo findings will be reflected on on clinical grounds is still unclear. Finally, we briefly reviewed the clinical trials on intravenous iron repletion. There is a need for more well-simulated animal studies to shed light on the safety and efficacy of chelation agents and pave the road for clinical studies.
Collapse
Affiliation(s)
- Seyed Ali Mousavi-Aghdas
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Rajaie Cardiovascular, Medical, and Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Farashi
- Department of Cardiothoracic Surgery, Imam Reza Medical Research & Training Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Rajaie Cardiovascular, Medical, and Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nasim Naderi
- Department of Cardiothoracic Surgery, Imam Reza Medical Research & Training Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
- Rajaie Cardiovascular, Medical, and Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Shi X, Jiang X, Chen C, Zhang Y, Sun X. The interconnections between the microtubules and mitochondrial networks in cardiocerebrovascular diseases: Implications for therapy. Pharmacol Res 2022; 184:106452. [PMID: 36116706 DOI: 10.1016/j.phrs.2022.106452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Abstract
Microtubules, a highly dynamic cytoskeleton, participate in many cellular activities including mechanical support, organelles interactions, and intracellular trafficking. Microtubule organization can be regulated by modification of tubulin subunits, microtubule-associated proteins (MAPs) or agents modulating microtubule assembly. Increasing studies demonstrate that microtubule disorganization correlates with various cardiocerebrovascular diseases including heart failure and ischemic stroke. Microtubules also mediate intracellular transport as well as intercellular transfer of mitochondria, a power house in cells which produce ATP for various physiological activities such as cardiac mechanical function. It is known to all that both microtubules and mitochondria participate in the progression of cancer and Parkinson's disease. However, the interconnections between the microtubules and mitochondrial networks in cardiocerebrovascular diseases remain unclear. In this paper, we will focus on the roles of microtubules in cardiocerebrovascular diseases, and discuss the interplay of mitochondria and microtubules in disease development and treatment. Elucidation of these issues might provide significant diagnostic value as well as potential targets for cardiocerebrovascular diseases.
Collapse
Affiliation(s)
- Xingjuan Shi
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.
| | - Xuan Jiang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Congwei Chen
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Yu Zhang
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Xiaoou Sun
- Institute of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| |
Collapse
|
8
|
Ben-Zichri S, Rajendran S, Bhunia SK, Jelinek R. Resveratrol Carbon Dots Disrupt Mitochondrial Function in Cancer Cells. Bioconjug Chem 2022; 33:1663-1671. [PMID: 36065131 DOI: 10.1021/acs.bioconjchem.2c00282] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Resveratrol, a natural polyphenol, exhibits beneficial health properties and has been touted as a potential anti-tumor agent. Here, we demonstrate potent anti-cancer effects of carbon dots (C-dots) synthesized from resveratrol. The mild synthesis conditions retained resveratrol functional moieties upon the carbon dots' (C-dots) surface, an important requisite for achieving specificity toward cancer cells and biological activities. Indeed, the disruptive effects of the resveratrol-C-dot were more pronounced in several cancer cell types compared to normal cells, underscoring targeting capabilities of the C-dots, a pertinent issue for the development of cancer therapeutics. In particular, we observed impairment of mitochondrial functionalities, including intracellular calcium release, inhibition of cytochrome-C oxidase enzyme activity, and mitochondrial membrane perturbation. Furthermore, the resveratrol C-dots were more potent than either resveratrol molecules alone, known anti-cancer polyphenolic agents such as curcumin and triphenylphosphonium, or C-dots prepared from different carbonaceous precursors. This study suggests that resveratrol-synthesized C-dots may have promising therapeutic potential as anti-cancer agents.
Collapse
Affiliation(s)
- Shani Ben-Zichri
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva84105, Israel
| | - Sathish Rajendran
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore632014, India
| | - Susanta Kumar Bhunia
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore632014, India
| | - Raz Jelinek
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva84105, Israel
| |
Collapse
|
9
|
Ren L, Gopireddy RR, Perkins G, Zhang H, Timofeyev V, Lyu Y, Diloretto DA, Trinh P, Sirish P, Overton JL, Xu W, Grainger N, Xiang YK, Dedkova EN, Zhang XD, Yamoah EN, Navedo MF, Thai PN, Chiamvimonvat N. Disruption of mitochondria-sarcoplasmic reticulum microdomain connectomics contributes to sinus node dysfunction in heart failure. Proc Natl Acad Sci U S A 2022; 119:e2206708119. [PMID: 36044551 PMCID: PMC9456763 DOI: 10.1073/pnas.2206708119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022] Open
Abstract
The sinoatrial node (SAN), the leading pacemaker region, generates electrical impulses that propagate throughout the heart. SAN dysfunction with bradyarrhythmia is well documented in heart failure (HF). However, the underlying mechanisms are not completely understood. Mitochondria are critical to cellular processes that determine the life or death of the cell. The release of Ca2+ from the ryanodine receptors 2 (RyR2) on the sarcoplasmic reticulum (SR) at mitochondria-SR microdomains serves as the critical communication to match energy production to meet metabolic demands. Therefore, we tested the hypothesis that alterations in the mitochondria-SR connectomics contribute to SAN dysfunction in HF. We took advantage of a mouse model of chronic pressure overload-induced HF by transverse aortic constriction (TAC) and a SAN-specific CRISPR-Cas9-mediated knockdown of mitofusin-2 (Mfn2), the mitochondria-SR tethering GTPase protein. TAC mice exhibited impaired cardiac function with HF, cardiac fibrosis, and profound SAN dysfunction. Ultrastructural imaging using electron microscope (EM) tomography revealed abnormal mitochondrial structure with increased mitochondria-SR distance. The expression of Mfn2 was significantly down-regulated and showed reduced colocalization with RyR2 in HF SAN cells. Indeed, SAN-specific Mfn2 knockdown led to alterations in the mitochondria-SR microdomains and SAN dysfunction. Finally, disruptions in the mitochondria-SR microdomains resulted in abnormal mitochondrial Ca2+ handling, alterations in localized protein kinase A (PKA) activity, and impaired mitochondrial function in HF SAN cells. The current study provides insights into the role of mitochondria-SR microdomains in SAN automaticity and possible therapeutic targets for SAN dysfunction in HF patients.
Collapse
Affiliation(s)
- Lu Ren
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA 95616
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | | | - Guy Perkins
- National Center for Microscopy and Imaging Research, University of California San Diego, La Jolla, CA 92093
| | - Hao Zhang
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA 94305
| | - Valeriy Timofeyev
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA 95616
| | - Yankun Lyu
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA 95616
| | - Daphne A. Diloretto
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA 95616
| | - Pauline Trinh
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA 95616
| | - Padmini Sirish
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA 95616
| | - James L. Overton
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA 95616
| | - Wilson Xu
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA 95616
| | - Nathan Grainger
- Department of Physiology and Membrane Biology, University of California, Davis, CA 95616
| | - Yang K. Xiang
- Department of Pharmacology, University of California, Davis, CA 95616
| | - Elena N. Dedkova
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616
| | - Xiao-Dong Zhang
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA 95616
| | - Ebenezer N. Yamoah
- Department of Physiology and Cell Biology, University of Nevada, Reno, NV 89557
| | - Manuel F. Navedo
- Department of Pharmacology, University of California, Davis, CA 95616
| | - Phung N. Thai
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA 95616
- Department of Physiology and Cell Biology, University of Nevada, Reno, NV 89557
| | - Nipavan Chiamvimonvat
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California, Davis, CA 95616
- Department of Pharmacology, University of California, Davis, CA 95616
- Department of Veterans Affairs, Northern California Health Care System, Mather, CA 95655
| |
Collapse
|
10
|
Dorn Ii GW. Neurohormonal Connections with Mitochondria in Cardiomyopathy and Other Diseases. Am J Physiol Cell Physiol 2022; 323:C461-C477. [PMID: 35759434 PMCID: PMC9363002 DOI: 10.1152/ajpcell.00167.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neurohormonal signaling and mitochondrial dynamism are seemingly distinct processes that are almost ubiquitous among multicellular organisms. Both of these processes are regulated by GTPases, and disturbances in either can provoke disease. Here, inconspicuous pathophysiological connectivity between neurohormonal signaling and mitochondrial dynamism is reviewed in the context of cardiac and neurological syndromes. For both processes, greater understanding of basic mechanisms has evoked a reversal of conventional pathophysiological concepts. Thus, neurohormonal systems induced in, and previously thought to be critical for, cardiac functioning in heart failure are now pharmaceutically interrupted as modern standard of care. And, mitochondrial abnormalities in neuropathies that were originally attributed to an imbalance between mitochondrial fusion and fission are increasingly recognized as an interruption of axonal mitochondrial transport. The data are presented in a historical context to provided insight into how scientific thought has evolved and to foster an appreciation for how seemingly different areas of investigation can converge. Finally, some theoretical notions are presented to explain how different molecular and functional defects can evoke tissue-specific disease.
Collapse
Affiliation(s)
- Gerald W Dorn Ii
- Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
11
|
Li Y, Liu H, Tian C, An N, Song K, Wei Y, Sun Y, Xing Y, Gao Y. Targeting the multifaceted roles of mitochondria in intracerebral hemorrhage and therapeutic prospects. Biomed Pharmacother 2022; 148:112749. [PMID: 35219118 DOI: 10.1016/j.biopha.2022.112749] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 11/19/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a severe, life-threatening subtype of stoke that constitutes a crucial health and socioeconomic problem worldwide. However, the current clinical treatment can only reduce the mortality of patients to a certain extent, but cannot ameliorate neurological dysfunction and has a high recurrence rate. Increasing evidence has demonstrated that mitochondrial dysfunction occurs in the early stages of brain injury and participates in all stages of secondary brain injury (SBI) after ICH. As the energy source of cells, various pathobiological processes that lead to SBI closely interact with the mitochondria, such as oxidative stress, calcium overload, and neuronal injury. In this review, we discussed the structure and function of mitochondria and the abnormal morphological changes after ICH. In addition, we discussed recent research on the involvement of mitochondrial dynamics in the pathological process of SBI after ICH and introduced the pathological variations and related molecular mechanisms of mitochondrial dysfunction in the occurrence of brain injury. Finally, we summarized the latest progress in mitochondrion-targeted agents for ICH, which provides a direction for the development of emerging therapeutic strategies targeting the mitochondria after ICH.
Collapse
Affiliation(s)
- Yuanyuan Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing 100700, China; Beijing University of Chinese Medicine, Beijing 100029, China
| | - Haoqi Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Chao Tian
- Beijing University of Chinese Medicine, Beijing 100029, China; China-Japan Friendship Hospital, Beijing 100029, China
| | - Na An
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Ke Song
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yufei Wei
- Department of Internal Neurology, First Affiliated Hospital, Guangxi University of Chinese Medicine, Guangxi 530000, China
| | - Yikun Sun
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yanwei Xing
- Guang'an men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing 100700, China.
| |
Collapse
|
12
|
Dudek J, Maack C. Mechano-energetic aspects of Barth syndrome. J Inherit Metab Dis 2022; 45:82-98. [PMID: 34423473 DOI: 10.1002/jimd.12427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/28/2021] [Accepted: 08/19/2021] [Indexed: 12/22/2022]
Abstract
Energy-demanding organs like the heart are strongly dependent on oxidative phosphorylation in mitochondria. Oxidative phosphorylation is governed by the respiratory chain located in the inner mitochondrial membrane. The inner mitochondrial membrane is the only cellular membrane with significant amounts of the phospholipid cardiolipin, and cardiolipin was found to directly interact with a number of essential protein complexes, including respiratory chain complexes I to V. An inherited defect in the biogenesis of cardiolipin causes Barth syndrome, which is associated with cardiomyopathy, skeletal myopathy, neutropenia and growth retardation. Energy conversion is dependent on reducing equivalents, which are replenished by oxidative metabolism in the Krebs cycle. Cardiolipin deficiency in Barth syndrome also affects Krebs cycle activity, metabolite transport and mitochondrial morphology. During excitation-contraction coupling, calcium (Ca2+ ) released from the sarcoplasmic reticulum drives sarcomeric contraction. At the same time, Ca2+ influx into mitochondria drives the activation of Krebs cycle dehydrogenases and the regeneration of reducing equivalents. Reducing equivalents are essential not only for energy conversion, but also for maintaining a redox buffer, which is required to detoxify reactive oxygen species (ROS). Defects in CL may also affect Ca2+ uptake into mitochondria and thereby hamper energy supply and demand matching, but also detoxification of ROS. Here, we review the impact of cardiolipin deficiency on mitochondrial function in Barth syndrome and discuss potential therapeutic strategies.
Collapse
Affiliation(s)
- Jan Dudek
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| |
Collapse
|
13
|
Jaquenod De Giusti C, Palomeque J, Mattiazzi A. Ca 2+ mishandling and mitochondrial dysfunction: a converging road to prediabetic and diabetic cardiomyopathy. Pflugers Arch 2022; 474:33-61. [PMID: 34978597 PMCID: PMC8721633 DOI: 10.1007/s00424-021-02650-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/17/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022]
Abstract
Diabetic cardiomyopathy is defined as the myocardial dysfunction that suffers patients with diabetes mellitus (DM) in the absence of hypertension and structural heart diseases such as valvular or coronary artery dysfunctions. Since the impact of DM on cardiac function is rather silent and slow, early stages of diabetic cardiomyopathy, known as prediabetes, are poorly recognized, and, on many occasions, cardiac illness is diagnosed only after a severe degree of dysfunction was reached. Therefore, exploration and recognition of the initial pathophysiological mechanisms that lead to cardiac dysfunction in diabetic cardiomyopathy are of vital importance for an on-time diagnosis and treatment of the malady. Among the complex and intricate mechanisms involved in diabetic cardiomyopathy, Ca2+ mishandling and mitochondrial dysfunction have been described as pivotal early processes. In the present review, we will focus on these two processes and the molecular pathway that relates these two alterations to the earlier stages and the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Carolina Jaquenod De Giusti
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, La Plata, Argentina
| | - Julieta Palomeque
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, La Plata, Argentina
| | - Alicia Mattiazzi
- Centro de Investigaciones Cardiovasculares, CCT-La Plata-CONICET, Facultad de Cs. Médicas, UNLP, La Plata, Argentina.
| |
Collapse
|
14
|
Weissman D, Maack C. Redox signaling in heart failure and therapeutic implications. Free Radic Biol Med 2021; 171:345-364. [PMID: 34019933 DOI: 10.1016/j.freeradbiomed.2021.05.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/17/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022]
Abstract
Heart failure is a growing health burden worldwide characterized by alterations in excitation-contraction coupling, cardiac energetic deficit and oxidative stress. While current treatments are mostly limited to antagonization of neuroendocrine activation, more recent data suggest that also targeting metabolism may provide substantial prognostic benefit. However, although in a broad spectrum of preclinical models, oxidative stress plays a causal role for the development and progression of heart failure, no treatment that targets reactive oxygen species (ROS) directly has entered the clinical arena yet. In the heart, ROS derive from various sources, such as NADPH oxidases, xanthine oxidase, uncoupled nitric oxide synthase and mitochondria. While mitochondria are the primary source of ROS in the heart, communication between different ROS sources may be relevant for physiological signalling events as well as pathologically elevated ROS that deteriorate excitation-contraction coupling, induce hypertrophy and/or trigger cell death. Here, we review the sources of ROS in the heart, the modes of pathological activation of ROS formation as well as therapeutic approaches that may target ROS specifically in mitochondria.
Collapse
Affiliation(s)
- David Weissman
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany; Department of Internal Medicine 1, University Clinic Würzburg, Würzburg, Germany.
| |
Collapse
|
15
|
Kassab S, Albalawi Z, Daghistani H, Kitmitto A. Mitochondrial Arrest on the Microtubule Highway-A Feature of Heart Failure and Diabetic Cardiomyopathy? Front Cardiovasc Med 2021; 8:689101. [PMID: 34277734 PMCID: PMC8282893 DOI: 10.3389/fcvm.2021.689101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/08/2021] [Indexed: 01/16/2023] Open
Abstract
A pathophysiological consequence of both type 1 and 2 diabetes is remodelling of the myocardium leading to the loss of left ventricular pump function and ultimately heart failure (HF). Abnormal cardiac bioenergetics associated with mitochondrial dysfunction occurs in the early stages of HF. Key factors influencing mitochondrial function are the shape, size and organisation of mitochondria within cardiomyocytes, with reports identifying small, fragmented mitochondria in the myocardium of diabetic patients. Cardiac mitochondria are now known to be dynamic organelles (with various functions beyond energy production); however, the mechanisms that underpin their dynamism are complex and links to motility are yet to be fully understood, particularly within the context of HF. This review will consider how the outer mitochondrial membrane protein Miro1 (Rhot1) mediates mitochondrial movement along microtubules via crosstalk with kinesin motors and explore the evidence for molecular level changes in the setting of diabetic cardiomyopathy. As HF and diabetes are recognised inflammatory conditions, with reports of enhanced activation of the NLRP3 inflammasome, we will also consider evidence linking microtubule organisation, inflammation and the association to mitochondrial motility. Diabetes is a global pandemic but with limited treatment options for diabetic cardiomyopathy, therefore we also discuss potential therapeutic approaches to target the mitochondrial-microtubule-inflammatory axis.
Collapse
Affiliation(s)
- Sarah Kassab
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Zainab Albalawi
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Hussam Daghistani
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Ashraf Kitmitto
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, School of Medical Sciences, Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
16
|
Hamilton S, Terentyeva R, Clements RT, Belevych AE, Terentyev D. Sarcoplasmic reticulum-mitochondria communication; implications for cardiac arrhythmia. J Mol Cell Cardiol 2021; 156:105-113. [PMID: 33857485 DOI: 10.1016/j.yjmcc.2021.04.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/15/2021] [Accepted: 04/05/2021] [Indexed: 12/11/2022]
Abstract
Sudden cardiac death due to ventricular tachyarrhythmias remains the major cause of mortality in the world. Heart failure, diabetic cardiomyopathy, old age-related cardiac dysfunction and inherited disorders are associated with enhanced propensity to malignant cardiac arrhythmias. Both defective mitochondrial function and abnormal intracellular Ca2+ homeostasis have been established as the key contributing factors in the pathophysiology and arrhythmogenesis in these conditions. This article reviews current advances in understanding of bidirectional control of ryanodine receptor-mediated sarcoplasmic reticulum Ca2+ release and mitochondrial function, and how defects in crosstalk between these two organelles increase arrhythmic risk in cardiac disease.
Collapse
Affiliation(s)
- Shanna Hamilton
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, United States of America
| | - Radmila Terentyeva
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, United States of America
| | - Richard T Clements
- Biomedical & Pharmaceutical Sciences, University of Rhode Island, Kingston, RI, United States of America
| | - Andriy E Belevych
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, United States of America
| | - Dmitry Terentyev
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, United States of America.
| |
Collapse
|
17
|
Salazar-Ramírez F, Ramos-Mondragón R, García-Rivas G. Mitochondrial and Sarcoplasmic Reticulum Interconnection in Cardiac Arrhythmia. Front Cell Dev Biol 2021; 8:623381. [PMID: 33585462 PMCID: PMC7876262 DOI: 10.3389/fcell.2020.623381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/30/2020] [Indexed: 12/31/2022] Open
Abstract
Ca2+ plays a pivotal role in mitochondrial energy production, contraction, and apoptosis. Mitochondrial Ca2+-targeted fluorescent probes have demonstrated that mitochondria Ca2+ transients are synchronized with Ca2+ fluxes occurring in the sarcoplasmic reticulum (SR). The presence of specialized proteins tethering SR to mitochondria ensures the local Ca2+ flux between these organelles. Furthermore, communication between SR and mitochondria impacts their functionality in a bidirectional manner. Mitochondrial Ca2+ uptake through the mitochondrial Ca2+ uniplex is essential for ATP production and controlled reactive oxygen species levels for proper cellular signaling. Conversely, mitochondrial ATP ensures the proper functioning of SR Ca2+-handling proteins, which ensures that mitochondria receive an adequate supply of Ca2+. Recent evidence suggests that altered SR Ca2+ proteins, such as ryanodine receptors and the sarco/endoplasmic reticulum Ca2+ ATPase pump, play an important role in maintaining proper cardiac membrane excitability, which may be initiated and potentiated when mitochondria are dysfunctional. This recognized mitochondrial role offers the opportunity to develop new therapeutic approaches aimed at preventing cardiac arrhythmias in cardiac disease.
Collapse
Affiliation(s)
- Felipe Salazar-Ramírez
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Cardiovascular, Monterrey, Mexico
| | - Roberto Ramos-Mondragón
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, United States.,Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Gerardo García-Rivas
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Cátedra de Cardiología y Medicina Cardiovascular, Monterrey, Mexico.,TecSalud, Centro de Investigación Biomédica, Hospital Zambrano-Hellion, San Pedro Garza García, Mexico.,TecSalud, Centro de Medicina Funcional, Hospital Zambrano-Hellion, San Pedro Garza García, Mexico
| |
Collapse
|
18
|
Ganji R, Reddy PH. Impact of COVID-19 on Mitochondrial-Based Immunity in Aging and Age-Related Diseases. Front Aging Neurosci 2021; 12:614650. [PMID: 33510633 PMCID: PMC7835331 DOI: 10.3389/fnagi.2020.614650] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/16/2020] [Indexed: 12/12/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) has become a deadly pandemic with surging mortality rates and no cure. COVID-19 is caused by the severe acute respiratory syndrome corona virus 2 (SARS-CoV-2) with a range of clinical symptoms, including cough, fever, chills, headache, shortness of breath, difficulty breathing, muscle pain, and a loss of smell or taste. Aged individuals with compromised immunity are highly susceptible to COVID-19 and the likelihood of mortality increases with age and the presence of comorbidities such as hypertension, diabetes mellitus, cardiovascular disease, or chronic obstructive pulmonary disease. Emerging evidence suggests that COVID-19 highjacks mitochondria of immune cells, replicates within mitochondrial structures, and impairs mitochondrial dynamics leading to cell death. Mitochondria are the powerhouses of the cell and are largely involved in maintaining cell immunity, homeostasis, and cell survival/death. Increasing evidence suggests that mitochondria from COVID-19 infected cells are highly vulnerable, and vulnerability increases with age. The purpose of our article is to summarize the role of various age-related comorbidities such as diabetes, obesity, and neurological diseases in increasing mortality rates amongst the elderly with COVID-19. Our article also highlights the interaction between coronavirus and mitochondrial dynamics in immune cells. We also highlight the current treatments, lifestyles, and safety measures that can help protect against COVID-19. Further research is urgently needed to understand the molecular mechanisms between the mitochondrial virus and disease progression in COVID-19 patients.
Collapse
Affiliation(s)
- Riya Ganji
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Departments of Neuroscience and Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Neurology, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
19
|
O'Rourke B, Ashok D, Liu T. Mitochondrial Ca 2+ in heart failure: Not enough or too much? J Mol Cell Cardiol 2020; 151:126-134. [PMID: 33290770 DOI: 10.1016/j.yjmcc.2020.11.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/18/2020] [Accepted: 11/28/2020] [Indexed: 01/04/2023]
Abstract
Ca2+ serves as a ubiquitous second messenger mediating a variety of cellular processes including electrical excitation, contraction, gene expression, secretion, cell death and others. The identification of the molecular components of the mitochondrial Ca2+ influx and efflux pathways has created a resurgent interest in the regulation of mitochondrial Ca2+ balance and its physiological and pathophysiological roles. While the pace of discovery has quickened with the availability of new cellular and animal models, many fundamental questions remain to be answered regarding the regulation and functional impact of mitochondrial Ca2+ in health and disease. This review highlights several experimental observations pertaining to key aspects of mitochondrial Ca2+ homeostasis that remain enigmatic, particularly whether mitochondrial Ca2+ signaling is depressed or excessive in heart failure, which will determine the optimal approach to therapeutic intervention.
Collapse
Affiliation(s)
- Brian O'Rourke
- The Johns Hopkins University, Division of Cardiology, Department of Medicine, Baltimore, MD 21205, USA.
| | - Deepthi Ashok
- The Johns Hopkins University, Division of Cardiology, Department of Medicine, Baltimore, MD 21205, USA
| | - Ting Liu
- The Johns Hopkins University, Division of Cardiology, Department of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
20
|
Mason FE, Pronto JRD, Alhussini K, Maack C, Voigt N. Cellular and mitochondrial mechanisms of atrial fibrillation. Basic Res Cardiol 2020; 115:72. [PMID: 33258071 PMCID: PMC7704501 DOI: 10.1007/s00395-020-00827-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/26/2020] [Indexed: 11/06/2022]
Abstract
The molecular mechanisms underlying atrial fibrillation (AF), the most common form of arrhythmia, are poorly understood and therefore target-specific treatment options remain an unmet clinical need. Excitation–contraction coupling in cardiac myocytes requires high amounts of adenosine triphosphate (ATP), which is replenished by oxidative phosphorylation in mitochondria. Calcium (Ca2+) is a key regulator of mitochondrial function by stimulating the Krebs cycle, which produces nicotinamide adenine dinucleotide for ATP production at the electron transport chain and nicotinamide adenine dinucleotide phosphate for the elimination of reactive oxygen species (ROS). While it is now well established that mitochondrial dysfunction plays an important role in the pathophysiology of heart failure, this has been less investigated in atrial myocytes in AF. Considering the high prevalence of AF, investigating the role of mitochondria in this disease may guide the path towards new therapeutic targets. In this review, we discuss the importance of mitochondrial Ca2+ handling in regulating ATP production and mitochondrial ROS emission and how alterations, particularly in these aspects of mitochondrial activity, may play a role in AF. In addition to describing research advances, we highlight areas in which further studies are required to elucidate the role of mitochondria in AF.
Collapse
Affiliation(s)
- Fleur E Mason
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Julius Ryan D Pronto
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Khaled Alhussini
- Department of Thoracic and Cardiovascular Surgery, University Clinic Würzburg, Würzburg, Germany
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center Würzburg, University Clinic Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany. .,Department of Internal Medicine I, University Clinic Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany.
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Robert-Koch-Straße 40, 37075, Göttingen, Germany. .,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany. .,Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
21
|
Metabolic Alterations Caused by Defective Cardiolipin Remodeling in Inherited Cardiomyopathies. Life (Basel) 2020; 10:life10110277. [PMID: 33187128 PMCID: PMC7697959 DOI: 10.3390/life10110277] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/21/2022] Open
Abstract
The heart is the most energy-consuming organ in the human body. In heart failure, the homeostasis of energy supply and demand is endangered by an increase in cardiomyocyte workload, or by an insufficiency in energy-providing processes. Energy metabolism is directly associated with mitochondrial redox homeostasis. The production of toxic reactive oxygen species (ROS) may overwhelm mitochondrial and cellular ROS defense mechanisms in case of heart failure. Mitochondria are essential cell organelles and provide 95% of the required energy in the heart. Metabolic remodeling, changes in mitochondrial structure or function, and alterations in mitochondrial calcium signaling diminish mitochondrial energy provision in many forms of cardiomyopathy. The mitochondrial respiratory chain creates a proton gradient across the inner mitochondrial membrane, which couples respiration with oxidative phosphorylation and the preservation of energy in the chemical bonds of ATP. Akin to other mitochondrial enzymes, the respiratory chain is integrated into the inner mitochondrial membrane. The tight association with the mitochondrial phospholipid cardiolipin (CL) ensures its structural integrity and coordinates enzymatic activity. This review focuses on how changes in mitochondrial CL may be associated with heart failure. Dysfunctional CL has been found in diabetic cardiomyopathy, ischemia reperfusion injury and the aging heart. Barth syndrome (BTHS) is caused by an inherited defect in the biosynthesis of cardiolipin. Moreover, a dysfunctional CL pool causes other types of rare inherited cardiomyopathies, such as Sengers syndrome and Dilated Cardiomyopathy with Ataxia (DCMA). Here we review the impact of cardiolipin deficiency on mitochondrial functions in cellular and animal models. We describe the molecular mechanisms concerning mitochondrial dysfunction as an incitement of cardiomyopathy and discuss potential therapeutic strategies.
Collapse
|
22
|
Dissecting Cellular Mechanisms of Long-Chain Acylcarnitines-Driven Cardiotoxicity: Disturbance of Calcium Homeostasis, Activation of Ca 2+-Dependent Phospholipases, and Mitochondrial Energetics Collapse. Int J Mol Sci 2020; 21:ijms21207461. [PMID: 33050414 PMCID: PMC7589681 DOI: 10.3390/ijms21207461] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 01/16/2023] Open
Abstract
Long-chain acylcarnitines (LCAC) are implicated in ischemia-reperfusion (I/R)-induced myocardial injury and mitochondrial dysfunction. Yet, molecular mechanisms underlying involvement of LCAC in cardiac injury are not sufficiently studied. It is known that in cardiomyocytes, palmitoylcarnitine (PC) can induce cytosolic Ca2+ accumulation, implicating L-type calcium channels, Na+/Ca2+ exchanger, and Ca2+-release from sarcoplasmic reticulum (SR). Alternatively, PC can evoke dissipation of mitochondrial potential (ΔΨm) and mitochondrial permeability transition pore (mPTP). Here, to dissect the complex nature of PC action on Ca2+ homeostasis and oxidative phosphorylation (OXPHOS) in cardiomyocytes and mitochondria, the methods of fluorescent microscopy, perforated path-clamp, and mitochondrial assays were used. We found that LCAC in dose-dependent manner can evoke Ca2+-sparks and oscillations, long-living Ca2+ enriched microdomains, and, finally, Ca2+ overload leading to hypercontracture and cardiomyocyte death. Collectively, PC-driven cardiotoxicity involves: (I) redistribution of Ca2+ from SR to mitochondria with minimal contribution of external calcium influx; (II) irreversible inhibition of Krebs cycle and OXPHOS underlying limited mitochondrial Ca2+ buffering; (III) induction of mPTP reinforced by PC-calcium interplay; (IV) activation of Ca2+-dependent phospholipases cPLA2 and PLC. Based on the inhibitory analysis we may suggest that simultaneous inhibition of both phospholipases could be an effective strategy for protection against PC-mediated toxicity in cardiomyocytes.
Collapse
|
23
|
Mitochondrial Ca 2+ regulation in the etiology of heart failure: physiological and pathophysiological implications. Acta Pharmacol Sin 2020; 41:1301-1309. [PMID: 32694759 PMCID: PMC7608470 DOI: 10.1038/s41401-020-0476-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
Heart failure (HF) represents one of the leading causes of cardiovascular diseases with high rates of hospitalization, morbidity and mortality worldwide. Ample evidence has consolidated a crucial role for mitochondrial injury in the progression of HF. It is well established that mitochondrial Ca2+ participates in the regulation of a wide variety of biological processes, including oxidative phosphorylation, ATP synthesis, reactive oxygen species (ROS) generation, mitochondrial dynamics and mitophagy. Nonetheless, mitochondrial Ca2+ overload stimulates mitochondrial permeability transition pore (mPTP) opening and mitochondrial swelling, resulting in mitochondrial injury, apoptosis, cardiac remodeling, and ultimately development of HF. Moreover, mitochondria possess a series of Ca2+ transport influx and efflux channels, to buffer Ca2+ in the cytoplasm. Interaction at mitochondria-associated endoplasmic reticulum membranes (MAMs) may also participate in the regulation of mitochondrial Ca2+ homeostasis and plays an essential role in the progression of HF. Here, we provide an overview of regulation of mitochondrial Ca2+ homeostasis in maintenance of cardiac function, in an effort to identify novel therapeutic strategies for the management of HF.
Collapse
|
24
|
Wagner M, Bertero E, Nickel A, Kohlhaas M, Gibson GE, Heggermont W, Heymans S, Maack C. Selective NADH communication from α-ketoglutarate dehydrogenase to mitochondrial transhydrogenase prevents reactive oxygen species formation under reducing conditions in the heart. Basic Res Cardiol 2020; 115:53. [PMID: 32748289 PMCID: PMC7399685 DOI: 10.1007/s00395-020-0815-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/22/2020] [Indexed: 01/12/2023]
Abstract
In heart failure, a functional block of complex I of the respiratory chain provokes superoxide generation, which is transformed to H2O2 by dismutation. The Krebs cycle produces NADH, which delivers electrons to complex I, and NADPH for H2O2 elimination via isocitrate dehydrogenase and nicotinamide nucleotide transhydrogenase (NNT). At high NADH levels, α-ketoglutarate dehydrogenase (α-KGDH) is a major source of superoxide in skeletal muscle mitochondria with low NNT activity. Here, we analyzed how α-KGDH and NNT control H2O2 emission in cardiac mitochondria. In cardiac mitochondria from NNT-competent BL/6N mice, H2O2 emission is equally low with pyruvate/malate (P/M) or α-ketoglutarate (α-KG) as substrates. Complex I inhibition with rotenone increases H2O2 emission from P/M, but not α-KG respiring mitochondria, which is potentiated by depleting H2O2-eliminating capacity. Conversely, in NNT-deficient BL/6J mitochondria, H2O2 emission is higher with α-KG than with P/M as substrate, and further potentiated by complex I blockade. Prior depletion of H2O2-eliminating capacity increases H2O2 emission from P/M, but not α-KG respiring mitochondria. In cardiac myocytes, downregulation of α-KGDH activity impaired dynamic mitochondrial redox adaptation during workload transitions, without increasing H2O2 emission. In conclusion, NADH from α-KGDH selectively shuttles to NNT for NADPH formation rather than to complex I of the respiratory chain for ATP production. Therefore, α-KGDH plays a key role for H2O2 elimination, but is not a relevant source of superoxide in heart. In heart failure, α-KGDH/NNT-dependent NADPH formation ameliorates oxidative stress imposed by complex I blockade. Downregulation of α-KGDH may, therefore, predispose to oxidative stress in heart failure.
Collapse
Affiliation(s)
- Michael Wagner
- Clinic III for Internal Medicine, University Clinic Homburg, 66421, Homburg, Germany
| | - Edoardo Bertero
- Clinic III for Internal Medicine, University Clinic Homburg, 66421, Homburg, Germany
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany
| | - Alexander Nickel
- Clinic III for Internal Medicine, University Clinic Homburg, 66421, Homburg, Germany
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany
| | - Michael Kohlhaas
- Clinic III for Internal Medicine, University Clinic Homburg, 66421, Homburg, Germany
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany
| | - Gary E Gibson
- Brain and Mind Research Institute, Weill Cornell Medicine, Burke Neurological Institute, 785 Mamaroneck Avenue, White Plains, NY, 10605, USA
| | - Ward Heggermont
- Cardiovascular Research Center, OLV Hospital Aalst, Moorselbaan 164, 9300, Aalst, Belgium
- Department of Cardiology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Stephane Heymans
- Department of Cardiology, CARIM School for Cardiovascular Diseases Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Cardiovascular Sciences, Centre for Molecular and Vascular Biology, KU Leuven, Belgium
- The Netherlands Heart Institute, Nl-HI, Utrecht, The Netherlands
| | - Christoph Maack
- Clinic III for Internal Medicine, University Clinic Homburg, 66421, Homburg, Germany.
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Am Schwarzenberg 15, Haus A15, 97078, Würzburg, Germany.
| |
Collapse
|
25
|
Liu JC. Is MCU dispensable for normal heart function? J Mol Cell Cardiol 2020; 143:175-183. [PMID: 32389793 PMCID: PMC9477561 DOI: 10.1016/j.yjmcc.2020.04.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/07/2020] [Accepted: 04/24/2020] [Indexed: 12/14/2022]
Abstract
The uptake of Ca2+ into mitochondria is thought to be an important signal communicating the need for increased energy production. However, dysregulated uptake leading to mitochondrial Ca2+ overload can trigger opening of the mitochondrial permeability transition pore and potentially cell death. Thus mitochondrial Ca2+ entry is regulated via the activity of a Ca2+-selective channel known as the mitochondrial calcium uniporter. The last decade has seen enormous momentum in the discovery of the molecular identities of the multiple proteins comprising the uniporter. Increasing numbers of studies in cultured cells and animal models have provided insight into how disruption of uniporter proteins affects mitochondrial Ca2+ regulation and impacts tissue function and physiology. This review aims to summarize some of these recent findings, particularly in the context of the heart.
Collapse
Affiliation(s)
- Julia C Liu
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
26
|
Sánchez G, Chalmers S, Ahumada X, Montecinos L, Olmedo I, Eisner V, Riveros A, Kogan MJ, Lavandero S, Pedrozo Z, Donoso P. Inhibition of chymotrypsin-like activity of the proteasome by ixazomib prevents mitochondrial dysfunction during myocardial ischemia. PLoS One 2020; 15:e0233591. [PMID: 32453773 PMCID: PMC7250417 DOI: 10.1371/journal.pone.0233591] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 05/10/2020] [Indexed: 01/02/2023] Open
Abstract
The heart is critically dependent on mitochondrial respiration for energy supply. Ischemia decreases oxygen availability, with catastrophic consequences for cellular energy systems. After a few minutes of ischemia, the mitochondrial respiratory chain halts, ATP levels drop and ion gradients across cell membranes collapse. Activation of cellular proteases and generation of reactive oxygen species by mitochondria during ischemia alter mitochondrial membrane permeability, causing mitochondrial swelling and fragmentation and eventually cell death. The mitochondria, therefore, are important targets of cardioprotection against ischemic injury. We have previously shown that ixazomib (IXA), a proteasome inhibitor used for treating multiple myeloma, effectively reduced the size of the infarct produced by global ischemia in isolated rat hearts and prevented degradation of the sarcoplasmic reticulum calcium release channel RyR2. The aim of this work was to further characterize the protective effect of IXA by determining its effect on mitochondrial morphology and function after ischemia. We also quantified the effect of IXA on levels of mitofusin-2, a protein involved in maintaining mitochondrial morphology and mitochondria-SR communication. We found that mitochondria were significantly preserved and functional parameters such as oxygen consumption, the ability to generate a membrane potential, and glutathione content were improved in mitochondria isolated from hearts perfused with IXA prior to ischemia. IXA also blocked the release of cytochrome c observed in ischemia and significantly preserved mitofusin-2 integrity. These beneficial effects resulted in a significant decrease in the left ventricular end diastolic pressure upon reperfusion and a smaller infarct in isolated hearts.
Collapse
Affiliation(s)
- Gina Sánchez
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Centro de Estudios en Ejercicio, Metabolismo y Cáncer, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- * E-mail: (GS); (PD)
| | - Stefanie Chalmers
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Xavier Ahumada
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Luis Montecinos
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Ivonne Olmedo
- Programa de Fisiopatología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Veronica Eisner
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ana Riveros
- Departamento de Química Farmacológica y Toxicológica, Facultad Ciencias Químicas y Farmacéuticas Universidad de Chile, Santiago, Chile
| | - Marcelo J. Kogan
- Departamento de Química Farmacológica y Toxicológica, Facultad Ciencias Químicas y Farmacéuticas Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Centro de Estudios en Ejercicio, Metabolismo y Cáncer, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Departamento de Bioquímica y Biología Molecular, Facultad Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Zully Pedrozo
- Centro de Estudios en Ejercicio, Metabolismo y Cáncer, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - Paulina Donoso
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- * E-mail: (GS); (PD)
| |
Collapse
|
27
|
Zhang Y, Wang J, Xing S, Li L, Zhao S, Zhu W, Liang K, Liu Y, Chen L. Mitochondria determine the sequential propagation of the calcium macrodomains revealed by the super-resolution calcium lantern imaging. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1543-1551. [PMID: 32279282 DOI: 10.1007/s11427-019-1659-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 02/27/2020] [Indexed: 01/02/2023]
Abstract
Despite the wide application of super-resolution (SR) microscopy in biological studies of cells, the technology is rarely used to monitor functional changes in live cells. By combining fast spinning disc-confocal structured illumination microscopy (SD-SIM) with loading of cytosolic fluorescent Ca2+ indicators, we have developed an SR method for visualization of regional Ca2+ dynamics and related cellular organelle morphology and dynamics, termed SR calcium lantern imaging. In COS-7 cells stimulated with ATP, we have identified various calcium macrodomains characterized by different types of Ca2+ release from endoplasmic reticulum (ER) stores. Finally, we demonstrated various roles of mitochondria in mediating calcium signals from different sources; while mitochondria can globally potentiate the Ca2+ entry associated with store release, mitochondria also locally control Ca2+ release from the neighboring ER stores and assist in their refilling processes.
Collapse
Affiliation(s)
- Yulin Zhang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Jianyong Wang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Shijia Xing
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Liuju Li
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Shiqun Zhao
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Wenzhen Zhu
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Kuo Liang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yanmei Liu
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, China.,Institute for Brain Research and Rehabilitation (IBRR), Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, 200062, China
| | - Liangyi Chen
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, China. .,PKU-IDG/McGovern Institute for Brain Research, Beijing, 100871, China.
| |
Collapse
|
28
|
Vagus Nerve Stimulation Attenuates Multiple Organ Dysfunction in Resuscitated Porcine Progressive Sepsis. Crit Care Med 2020; 47:e461-e469. [PMID: 30908312 DOI: 10.1097/ccm.0000000000003714] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVES To investigate the potential benefits of vagus nerve stimulation in a clinically-relevant large animal model of progressive sepsis. DESIGN Prospective, controlled, randomized trial. SETTING University animal research laboratory. SUBJECTS Twenty-five domestic pigs were divided into three groups: 1) sepsis group (eight pigs), 2) sepsis + vagus nerve stimulation group (nine pigs), and 3) control sham group (eight pigs). INTERVENTIONS Sepsis was induced by cultivated autologous feces inoculation in anesthetized, mechanically ventilated, and surgically instrumented pigs and followed for 24 hours. Electrical stimulation of the cervical vagus nerve was initiated 6 hours after the induction of peritonitis and maintained throughout the experiment. MEASUREMENTS AND MAIN RESULTS Measurements of hemodynamics, electrocardiography, biochemistry, blood gases, cytokines, and blood cells were collected at baseline (just before peritonitis induction) and at the end of the in vivo experiment (24 hr after peritonitis induction). Subsequent in vitro analyses addressed cardiac contractility and calcium handling in isolated tissues and myocytes and analyzed mitochondrial function by ultrasensitive oxygraphy. Vagus nerve stimulation partially or completely prevented the development of hyperlactatemia, hyperdynamic circulation, cellular myocardial depression, shift in sympathovagal balance toward sympathetic dominance, and cardiac mitochondrial dysfunction, and reduced the number of activated monocytes. Sequential Organ Failure Assessment scores and vasopressor requirements significantly decreased after vagus nerve stimulation. CONCLUSIONS In a clinically-relevant large animal model of progressive sepsis, vagus nerve stimulation was associated with a number of beneficial effects that resulted in significantly attenuated multiple organ dysfunction and reduced vasopressor and fluid resuscitation requirements. This suggests that vagus nerve stimulation might provide a significant therapeutic potential that warrants further thorough investigation.
Collapse
|
29
|
Hohendanner F, Bode D. Mitochondrial Calcium in heart failure with preserved ejection fraction-friend or foe? Acta Physiol (Oxf) 2020; 228:e13415. [PMID: 31729810 DOI: 10.1111/apha.13415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 12/24/2022]
Affiliation(s)
- Felix Hohendanner
- Department of Internal Medicine and Cardiology Charité‐Universitätsmedizin Berlin Berlin Germany
- DZHK (German Centre for Cardiovascular Research) Berlin Germany
- Berlin Institute of Health (BIH) Berlin Germany
| | - D. Bode
- Department of Internal Medicine and Cardiology Charité‐Universitätsmedizin Berlin Berlin Germany
- DZHK (German Centre for Cardiovascular Research) Berlin Germany
| |
Collapse
|
30
|
Mehta A, Ramachandra CJA, Singh P, Chitre A, Lua CH, Mura M, Crotti L, Wong P, Schwartz PJ, Gnecchi M, Shim W. Identification of a targeted and testable antiarrhythmic therapy for long-QT syndrome type 2 using a patient-specific cellular model. Eur Heart J 2019; 39:1446-1455. [PMID: 29020304 DOI: 10.1093/eurheartj/ehx394] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/26/2017] [Indexed: 12/27/2022] Open
Abstract
Aims Loss-of-function mutations in the hERG gene causes long-QT syndrome type 2 (LQT2), a condition associated with reduced IKr current. Four different mutation classes define the molecular mechanisms impairing hERG. Among them, Class 2 mutations determine hERG trafficking defects. Lumacaftor (LUM) is a drug acting on channel trafficking already successfully tested for cystic fibrosis and its safety profile is well known. We hypothesize that LUM might rescue also hERG trafficking defects in LQT2 and exert anti-arrhythmic effects. Methods and results From five LQT2 patients, we generated lines of induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) harbouring Class 1 and 2 mutations. The effects of LUM on corrected field potential durations (cFPD) and calcium-handling irregularities were verified by multi electrode array and by calcium transients imaging, respectively. Molecular analysis was performed to clarify the mechanism of action of LUM on hERG trafficking and calcium handling. Long-QT syndrome type 2 induced pluripotent stem cell-derived cardiomyocytes mimicked the clinical phenotypes and showed both prolonged cFPD (grossly equivalent to the QT interval) and increased arrhythmias. Lumacaftor significantly shortened cFPD in Class 2 iPSC-CMs by correcting the hERG trafficking defect. Furthermore, LUM seemed to act also on calcium handling by reducing RyR2S2808 phosphorylation in both Class 1 and 2 iPSC-CMs. Conclusion Lumacaftor, a drug already in clinical use, can rescue the pathological phenotype of LQT2 iPSC-CMs, particularly those derived from Class 2 mutated patients. Our results suggest that the use of LUM in LQT2 patients not protected by β-blockers is feasible and may represent a novel therapeutic option.
Collapse
Affiliation(s)
- Ashish Mehta
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore.,Cardiovascular Academic Clinical Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Chrishan J A Ramachandra
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore
| | - Pritpal Singh
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore
| | - Anuja Chitre
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore
| | - Chong Hui Lua
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore
| | - Manuela Mura
- Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Fondazione IRCCS, Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy.,Department of Cardiothoracic and Vascular Sciences-Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy.,Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Viale Golgi, 19, 27100, Pavia, Italy
| | - Lia Crotti
- Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Viale Golgi, 19, 27100, Pavia, Italy.,IRCCS Istituto Auxologico Italiano, San Luca Hospital, Piazzale Brescia 20, 20149 Milan, Italy.,IRCCS Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, via Pier Lombardo 22, 20135 Milan, Italy
| | - Philip Wong
- Department of Cardiology, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore
| | - Peter J Schwartz
- IRCCS Istituto Auxologico Italiano, Center for Cardiac Arrhythmias of Genetic Origin and Laboratory of Cardiovascular Genetics, via Pier Lombardo 22, 20135 Milan, Italy
| | - Massimiliano Gnecchi
- Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Fondazione IRCCS, Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy.,Department of Cardiothoracic and Vascular Sciences-Coronary Care Unit and Laboratory of Clinical and Experimental Cardiology, Fondazione IRCCS Policlinico San Matteo, Viale Golgi 19, 27100 Pavia, Italy.,Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Viale Golgi, 19, 27100, Pavia, Italy.,Department of Medicine, University of Cape Town, Old main Building, J-Floor Groote Schuur Hospital Observatory Cape Town 7925, South Africa
| | - Winston Shim
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore 169609, Singapore.,Cardiovascular & Metabolic Disorders Program, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
31
|
Abstract
In heart failure, alterations of Na+ and Ca2+ handling, energetic deficit, and oxidative stress in cardiac myocytes are important pathophysiological hallmarks. Mitochondria are central to these processes because they are the main source for ATP, but also reactive oxygen species (ROS), and their function is critically controlled by Ca2+ During physiological variations of workload, mitochondrial Ca2+ uptake is required to match energy supply to demand but also to keep the antioxidative capacity in a reduced state to prevent excessive emission of ROS. Mitochondria take up Ca2+ via the mitochondrial Ca2+ uniporter, which exists in a multiprotein complex whose molecular components were identified only recently. In heart failure, deterioration of cytosolic Ca2+ and Na+ handling hampers mitochondrial Ca2+ uptake and the ensuing Krebs cycle-induced regeneration of the reduced forms of NADH (nicotinamide adenine dinucleotide) and NADPH (nicotinamide adenine dinucleotide phosphate), giving rise to energetic deficit and oxidative stress. ROS emission from mitochondria can trigger further ROS release from neighboring mitochondria termed ROS-induced ROS release, and cross talk between different ROS sources provides a spatially confined cellular network of redox signaling. Although low levels of ROS may serve physiological roles, higher levels interfere with excitation-contraction coupling, induce maladaptive cardiac remodeling through redox-sensitive kinases, and cell death through mitochondrial permeability transition. Targeting the dysregulated interplay between excitation-contraction coupling and mitochondrial energetics may ameliorate the progression of heart failure.
Collapse
Affiliation(s)
- Edoardo Bertero
- From the Comprehensive Heart Failure Center, University Clinic Würzburg, Germany
| | - Christoph Maack
- From the Comprehensive Heart Failure Center, University Clinic Würzburg, Germany.
| |
Collapse
|
32
|
Harisseh R, Abrial M, Chiari P, Al-Mawla R, Villedieu C, Tessier N, Bidaux G, Ovize M, Gharib A. A modified calcium retention capacity assay clarifies the roles of extra- and intracellular calcium pools in mitochondrial permeability transition pore opening. J Biol Chem 2019; 294:15282-15292. [PMID: 31434742 DOI: 10.1074/jbc.ra119.009477] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/20/2019] [Indexed: 11/06/2022] Open
Abstract
Calcium homeostasis is essential for cell survival and is precisely controlled by several cellular actors such as the sarco/endoplasmic reticulum and mitochondria. Upon stress induction, Ca2+ released from sarco/endoplasmic reticulum stores and from extracellular Ca2+ pools accumulates in the cytosol and in the mitochondria. This induces Ca2+ overload and ultimately the opening of the mitochondrial permeability transition pore (mPTP), promoting cell death. Currently, it is unclear whether intracellular Ca2+ stores are sufficient to promote the mPTP opening. Ca2+ retention capacity (CRC) corresponds to the maximal Ca2+ uptake by the mitochondria before mPTP opening. In this study, using permeabilized cardiomyocytes isolated from adult mice, we modified the standard CRC assay by specifically inducing reticular Ca2+ release to investigate the respective contributions of reticular Ca2+ and extracellular Ca2+ to mPTP opening in normoxic conditions or after anoxia-reoxygenation. Our experiments revealed that Ca2+ released from the sarco/endoplasmic reticulum is not sufficient to trigger mPTP opening and corresponds to ∼50% of the total Ca2+ levels required to open the mPTP. We also studied mPTP opening after anoxia-reoxygenation in the presence or absence of extracellular Ca2+ In both conditions, Ca2+ leakage from internal stores could not trigger mPTP opening by itself but significantly decreased the CRC. Our findings highlight how a modified CRC assay enables the investigation of the role of reticular and extracellular Ca2+ pools in the regulation of the mPTP. We propose that this method may be useful for screening molecules of interest implicated in mPTP regulation.
Collapse
Affiliation(s)
- Rania Harisseh
- INSERM UMR 1060, CarMeN laboratory, Université Lyon 1, IHU OPERA, Hôpital Louis Pradel, Hospices Civils de Lyon, F-69677 Lyon, France
| | - Maryline Abrial
- INSERM UMR 1060, CarMeN laboratory, Université Lyon 1, IHU OPERA, Hôpital Louis Pradel, Hospices Civils de Lyon, F-69677 Lyon, France
| | - Pascal Chiari
- INSERM UMR 1060, CarMeN laboratory, Université Lyon 1, IHU OPERA, Hôpital Louis Pradel, Hospices Civils de Lyon, F-69677 Lyon, France .,Service d'Anesthésie Réanimation, Hôpital Louis Pradel, Hospices Civils de Lyon, F-69677 Lyon, France
| | - Ribal Al-Mawla
- INSERM UMR 1060, CarMeN laboratory, Université Lyon 1, IHU OPERA, Hôpital Louis Pradel, Hospices Civils de Lyon, F-69677 Lyon, France
| | - Camille Villedieu
- INSERM UMR 1060, CarMeN laboratory, Université Lyon 1, IHU OPERA, Hôpital Louis Pradel, Hospices Civils de Lyon, F-69677 Lyon, France
| | - Nolwenn Tessier
- INSERM UMR 1060, CarMeN laboratory, Université Lyon 1, IHU OPERA, Hôpital Louis Pradel, Hospices Civils de Lyon, F-69677 Lyon, France
| | - Gabriel Bidaux
- INSERM UMR 1060, CarMeN laboratory, Université Lyon 1, IHU OPERA, Hôpital Louis Pradel, Hospices Civils de Lyon, F-69677 Lyon, France
| | - Michel Ovize
- INSERM UMR 1060, CarMeN laboratory, Université Lyon 1, IHU OPERA, Hôpital Louis Pradel, Hospices Civils de Lyon, F-69677 Lyon, France.,Service d'Explorations Fonctionnelles Cardiovasculaires and Centre d'Investigation Clinique de Lyon, Hôpital Louis Pradel, Hospices Civils de Lyon, F-69677 Lyon, France
| | - Abdallah Gharib
- INSERM UMR 1060, CarMeN laboratory, Université Lyon 1, IHU OPERA, Hôpital Louis Pradel, Hospices Civils de Lyon, F-69677 Lyon, France
| |
Collapse
|
33
|
Lautz AJ, Zingarelli B. Age-Dependent Myocardial Dysfunction in Critically Ill Patients: Role of Mitochondrial Dysfunction. Int J Mol Sci 2019; 20:ijms20143523. [PMID: 31323783 PMCID: PMC6679204 DOI: 10.3390/ijms20143523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/11/2019] [Accepted: 07/16/2019] [Indexed: 02/06/2023] Open
Abstract
Myocardial dysfunction is common in septic shock and post-cardiac arrest but manifests differently in pediatric and adult patients. By conventional echocardiographic parameters, biventricular systolic dysfunction is more prevalent in children with septic shock, though strain imaging reveals that myocardial injury may be more common in adults than previously thought. In contrast, diastolic dysfunction in general and post-arrest myocardial systolic dysfunction appear to be more widespread in the adult population. A growing body of evidence suggests that mitochondrial dysfunction mediates myocardial depression in critical illness; alterations in mitochondrial electron transport system function, bioenergetic production, oxidative and nitrosative stress, uncoupling, mitochondrial permeability transition, fusion, fission, biogenesis, and autophagy all may play key pathophysiologic roles. In this review we summarize the epidemiologic and clinical phenotypes of myocardial dysfunction in septic shock and post-cardiac arrest and the multifaceted manifestations of mitochondrial injury in these disease processes. Since neonatal and pediatric-specific data for mitochondrial dysfunction remain sparse, conclusive age-dependent differences are not clear; instead, we highlight what evidence exists and identify gaps in knowledge to guide future research. Finally, since focal ischemic injury (with or without reperfusion) leading to myocardial infarction is predominantly an atherosclerotic disease of the elderly, this review focuses specifically on septic shock and global ischemia-reperfusion injury occurring after resuscitation from cardiac arrest.
Collapse
Affiliation(s)
- Andrew J Lautz
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Basilia Zingarelli
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, and Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA.
| |
Collapse
|
34
|
Nickel AG, Kohlhaas M, Bertero E, Wilhelm D, Wagner M, Sequeira V, Kreusser MM, Dewenter M, Kappl R, Hoth M, Dudek J, Backs J, Maack C. CaMKII does not control mitochondrial Ca 2+ uptake in cardiac myocytes. J Physiol 2019; 598:1361-1376. [PMID: 30770570 DOI: 10.1113/jp276766] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 02/13/2019] [Indexed: 01/26/2023] Open
Abstract
KEY POINTS Mitochondrial Ca2+ uptake stimulates the Krebs cycle to regenerate the reduced forms of pyridine nucleotides (NADH, NADPH and FADH2 ) required for ATP production and reactive oxygen species (ROS) elimination. Ca2+ /calmodulin-dependent protein kinase II (CaMKII) has been proposed to regulate mitochondrial Ca2+ uptake via mitochondrial Ca2+ uniporter phosphorylation. We used two mouse models with either global deletion of CaMKIIδ (CaMKIIδ knockout) or cardiomyocyte-specific deletion of CaMKIIδ and γ (CaMKIIδ/γ double knockout) to interrogate whether CaMKII controls mitochondrial Ca2+ uptake in isolated mitochondria and during β-adrenergic stimulation in cardiac myocytes. CaMKIIδ/γ did not control Ca2+ uptake, respiration or ROS emission in isolated cardiac mitochondria, nor in isolated cardiac myocytes, during β-adrenergic stimulation and pacing. The results of the present study do not support a relevant role of CaMKII for mitochondrial Ca2+ uptake in cardiac myocytes under physiological conditions. ABSTRACT Mitochondria are the main source of ATP and reactive oxygen species (ROS) in cardiac myocytes. Furthermore, activation of the mitochondrial permeability transition pore (mPTP) induces programmed cell death. These processes are essentially controlled by Ca2+ , which is taken up into mitochondria via the mitochondrial Ca2+ uniporter (MCU). It was recently proposed that Ca2+ /calmodulin-dependent protein kinase II (CaMKII) regulates Ca2+ uptake by interacting with the MCU, thereby affecting mPTP activation and programmed cell death. In the present study, we investigated the role of CaMKII under physiological conditions in which mitochondrial Ca2+ uptake matches energy supply to the demand of cardiac myocytes. Accordingly, we measured mitochondrial Ca2+ uptake in isolated mitochondria and cardiac myocytes harvested from cardiomyocyte-specific CaMKII δ and γ double knockout (KO) (CaMKIIδ/γ DKO) and global CaMKIIδ KO mice. To simulate a physiological workload increase, cardiac myocytes were subjected to β-adrenergic stimulation (by isoproterenol superfusion) and an increase in stimulation frequency (from 0.5 to 5 Hz). No differences in mitochondrial Ca2+ accumulation were detected in isolated mitochondria or cardiac myocytes from both CaMKII KO models compared to wild-type littermates. Mitochondrial redox state and ROS production were unchanged in CaMKIIδ/γ DKO, whereas we observed a mild oxidation of mitochondrial redox state and an increase in H2 O2 emission from CaMKIIδ KO cardiac myocytes exposed to an increase in workload. In conclusion, the results obtained in the present study do not support the regulation of mitochondrial Ca2+ uptake via the MCU or mPTP activation by CaMKII in cardiac myocytes under physiological conditions.
Collapse
Affiliation(s)
- Alexander G Nickel
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany.,Affiliation when/at which experiments were performed: Clinic III for Internal Medicine, University Clinic Homburg, Homburg, Germany
| | - Michael Kohlhaas
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany.,Affiliation when/at which experiments were performed: Clinic III for Internal Medicine, University Clinic Homburg, Homburg, Germany
| | - Edoardo Bertero
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Daniel Wilhelm
- Affiliation when/at which experiments were performed: Clinic III for Internal Medicine, University Clinic Homburg, Homburg, Germany
| | - Michael Wagner
- Affiliation when/at which experiments were performed: Clinic III for Internal Medicine, University Clinic Homburg, Homburg, Germany.,Institute for Molecular Cell Biology, Saarland University, Homburg, Germany
| | - Vasco Sequeira
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Michael M Kreusser
- Institute of Experimental Cardiology, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, Germany.,Department of Cardiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Matthias Dewenter
- Institute of Experimental Cardiology, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, Germany
| | - Reinhard Kappl
- Department of Biophysics, CIPMM, School of Medicine, Saarland University, Homburg, Germany
| | - Markus Hoth
- Department of Biophysics, CIPMM, School of Medicine, Saarland University, Homburg, Germany
| | - Jan Dudek
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Johannes Backs
- Institute of Experimental Cardiology, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| |
Collapse
|
35
|
De la Fuente S, Sheu SS. SR-mitochondria communication in adult cardiomyocytes: A close relationship where the Ca 2+ has a lot to say. Arch Biochem Biophys 2019; 663:259-268. [PMID: 30685253 PMCID: PMC6377816 DOI: 10.1016/j.abb.2019.01.026] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 01/14/2019] [Accepted: 01/22/2019] [Indexed: 02/07/2023]
Abstract
In adult cardiomyocytes, T-tubules, junctional sarcoplasmic reticulum (jSR), and mitochondria juxtapose each other and form a unique and highly repetitive functional structure along the cell. The close apposition between jSR and mitochondria creates high Ca2+ microdomains at the contact sites, increasing the efficiency of the excitation-contraction-bioenergetics coupling, where the Ca2+ transfer from SR to mitochondria plays a critical role. The SR-mitochondria contacts are established through protein tethers, with mitofusin 2 the most studied SR-mitochondrial "bridge", albeit controversial. Mitochondrial Ca2+ uptake is further optimized with the mitochondrial Ca2+ uniporter preferentially localized in the jSR-mitochondria contact sites and the mitochondrial Na+/Ca2+ exchanger localized away from these sites. Despite all these unique features facilitating the privileged transport of Ca2+ from SR to mitochondria in adult cardiomyocytes, the question remains whether mitochondrial Ca2+ concentrations oscillate in synchronicity with cytosolic Ca2+ transients during heartbeats. Proper Ca2+ transfer controls not only the process of mitochondrial bioenergetics, but also of mitochondria-mediated cell death, autophagy/mitophagy, mitochondrial fusion/fission dynamics, reactive oxygen species generation, and redox signaling, among others. Our review focuses specifically on Ca2+ signaling between SR and mitochondria in adult cardiomyocytes. We discuss the physiological and pathological implications of this SR-mitochondrial Ca2+ signaling, research gaps, and future trends.
Collapse
Affiliation(s)
- Sergio De la Fuente
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Shey-Shing Sheu
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
36
|
No MH, Heo JW, Yoo SZ, Jo HS, Park DH, Kang JH, Seo DY, Han J, Kwak HB. Effects of aging on mitochondrial hydrogen peroxide emission and calcium retention capacity in rat heart. J Exerc Rehabil 2018; 14:920-926. [PMID: 30656149 PMCID: PMC6323348 DOI: 10.12965/jer.1836550.275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/03/2018] [Indexed: 01/04/2023] Open
Abstract
Aging is a risk factor for heart disease and heart failure, which result from a progressive impairment of cardiac functions, including stroke volume, cardiac output, blood flow, and oxygen consumption. Age-related cardiac dysfunction is associated with impaired cardiac structures, such as the loss of myocytes, structural remodeling, altered calcium (Ca2+) handling, and contractile dysfunction. However, the mechanism by which aging affects mitochondrial function in the heart is poorly understood. The purpose of this study was to determine the effects of aging on mitochondrial function in the rat heart. Male Fischer 344 rats were randomly assigned to very young sedentary (VYS, 1 month), young sedentary (YS, 4 months), middle-aged sedentary (MS, 10 months), and old sedentary (OS, 20 months) groups. mitochondrial complex protein levels and mitochondrial function (e.g., mitochondrial hydrogen peroxide (H2O2) emission and Ca2+ retention capacity) were analyzed in the left ventricle. Aging was associated with decreased levels of OXPHOS (oxidative phosphorylation) protein expression of complex I to IV in the function of the electron transport chain. Aging increased the mitochondrial H2O2 emitting potential in the heart. In contrast, mitochondrial Ca2+ retention capacity gradually decreased with age. These data demonstrate that aging impairs mitochondrial function in cardiac muscle, suggesting that mitochondrial dysfunction with aging may be a primary factor for aging-induced cardiac dysfunction in the heart.
Collapse
Affiliation(s)
- Mi-Hyun No
- Department of Kinesiology, Inha University, Incheon, Korea
| | - Jun-Won Heo
- Department of Kinesiology, Inha University, Incheon, Korea
| | - Su-Zi Yoo
- Department of Kinesiology, Inha University, Incheon, Korea
| | - Han-Sam Jo
- Department of Kinesiology, Inha University, Incheon, Korea
| | - Dong-Ho Park
- Department of Kinesiology, Inha University, Incheon, Korea
| | - Ju-Hee Kang
- Department of Pharmacology and Medicinal Toxicology Research Center, Inha University School of Medicine, Incheon, Korea
| | - Dae-Yun Seo
- Department of Physiology and Cardiovascular and Metabolic Disease Center, Inje University School of Medicine, Busan, Korea
| | - Jin Han
- Department of Physiology and Cardiovascular and Metabolic Disease Center, Inje University School of Medicine, Busan, Korea
| | - Hyo-Bum Kwak
- Department of Kinesiology, Inha University, Incheon, Korea
| |
Collapse
|
37
|
The role of mitochondria in sepsis-induced cardiomyopathy. Biochim Biophys Acta Mol Basis Dis 2018; 1865:759-773. [PMID: 30342158 DOI: 10.1016/j.bbadis.2018.10.011] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/02/2018] [Accepted: 10/05/2018] [Indexed: 02/08/2023]
Abstract
Sepsis is defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection. Myocardial dysfunction, often termed sepsis-induced cardiomyopathy, is a frequent complication and is associated with worse outcomes. Numerous mechanisms contribute to sepsis-induced cardiomyopathy and a growing body of evidence suggests that bioenergetic and metabolic derangements play a central role in its development; however, there are significant discrepancies in the literature, perhaps reflecting variability in the experimental models employed or in the host response to sepsis. The condition is characterised by lack of significant cell death, normal tissue oxygen levels and, in survivors, reversibility of organ dysfunction. The functional changes observed in cardiac tissue may represent an adaptive response to prolonged stress that limits cell death, improving the potential for recovery. In this review, we describe our current understanding of the pathophysiology underlying myocardial dysfunction in sepsis, with a focus on disrupted mitochondrial processes.
Collapse
|
38
|
Filadi R, Basso E, Lefkimmiatis K, Pozzan T. Beyond Intracellular Signaling: The Ins and Outs of Second Messengers Microdomains. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 981:279-322. [PMID: 29594866 DOI: 10.1007/978-3-319-55858-5_12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A typical characteristic of eukaryotic cells compared to prokaryotes is represented by the spatial heterogeneity of the different structural and functional components: for example, most of the genetic material is surrounded by a highly specific membrane structure (the nuclear membrane), continuous with, yet largely different from, the endoplasmic reticulum (ER); oxidative phosphorylation is carried out by organelles enclosed by a double membrane, the mitochondria; in addition, distinct domains, enriched in specific proteins, are present in the plasma membrane (PM) of most cells. Less obvious, but now generally accepted, is the notion that even the concentration of small molecules such as second messengers (Ca2+ and cAMP in particular) can be highly heterogeneous within cells. In the case of most organelles, the differences in the luminal levels of second messengers depend either on the existence on their membrane of proteins that allow the accumulation/release of the second messenger (e.g., in the case of Ca2+, pumps, exchangers or channels), or on the synthesis and degradation of the specific molecule within the lumen (the autonomous intramitochondrial cAMP system). It needs stressing that the existence of a surrounding membrane does not necessarily imply the existence of a gradient between the cytosol and the organelle lumen. For example, the nuclear membrane is highly permeable to both Ca2+ and cAMP (nuclear pores are permeable to solutes up to 50 kDa) and differences in [Ca2+] or [cAMP] between cytoplasm and nucleoplasm are not seen in steady state and only very transiently during cell activation. A similar situation has been observed, as far as Ca2+ is concerned, in peroxisomes.
Collapse
Affiliation(s)
- Riccardo Filadi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Emy Basso
- Institute of Neuroscience, Padova Section, National Research Council, Padova, Italy
| | - Konstantinos Lefkimmiatis
- Institute of Neuroscience, Padova Section, National Research Council, Padova, Italy
- Venetian Institute of Molecular Medicine, Padova, Italy
| | - Tullio Pozzan
- Department of Biomedical Sciences, University of Padova, Padova, Italy.
- Institute of Neuroscience, Padova Section, National Research Council, Padova, Italy.
- Venetian Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
39
|
Panel M, Ghaleh B, Morin D. Mitochondria and aging: A role for the mitochondrial transition pore? Aging Cell 2018; 17:e12793. [PMID: 29888494 PMCID: PMC6052406 DOI: 10.1111/acel.12793] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2018] [Indexed: 12/15/2022] Open
Abstract
The cellular mechanisms responsible for aging are poorly understood. Aging is considered as a degenerative process induced by the accumulation of cellular lesions leading progressively to organ dysfunction and death. The free radical theory of aging has long been considered the most relevant to explain the mechanisms of aging. As the mitochondrion is an important source of reactive oxygen species (ROS), this organelle is regarded as a key intracellular player in this process and a large amount of data supports the role of mitochondrial ROS production during aging. Thus, mitochondrial ROS, oxidative damage, aging, and aging-dependent diseases are strongly connected. However, other features of mitochondrial physiology and dysfunction have been recently implicated in the development of the aging process. Here, we examine the potential role of the mitochondrial permeability transition pore (mPTP) in normal aging and in aging-associated diseases.
Collapse
Affiliation(s)
- Mathieu Panel
- INSERM U955, équipe 3; Créteil France
- Université Paris-Est, UMR_S955, DHU A-TVB, UPEC; Créteil France
| | - Bijan Ghaleh
- INSERM U955, équipe 3; Créteil France
- Université Paris-Est, UMR_S955, DHU A-TVB, UPEC; Créteil France
| | - Didier Morin
- INSERM U955, équipe 3; Créteil France
- Université Paris-Est, UMR_S955, DHU A-TVB, UPEC; Créteil France
| |
Collapse
|
40
|
The Free Radical Diseases of Prematurity: From Cellular Mechanisms to Bedside. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:7483062. [PMID: 30140369 PMCID: PMC6081521 DOI: 10.1155/2018/7483062] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/28/2018] [Accepted: 06/25/2018] [Indexed: 12/13/2022]
Abstract
During the perinatal period, free radicals (FRs) are involved in several physiological roles such as the cellular responses to noxia, the defense against infectious agents, the regulation of cellular signaling function, and the induction of a mitogenic response. However, the overproduction of FRs and the insufficiency of an antioxidant mechanism result in oxidative stress (OS) which represents a deleterious process and an important mediator of damage to the placenta and the developing fetus. After birth, OS can be magnified by other predisposing conditions such as hypoxia, hyperoxia, ischemia, hypoxia ischemia-reperfusion, inflammation, and high levels of nonprotein-bound iron. Newborns are particularly susceptible to OS and oxidative damage due to the increased generation of FRs and the lack of adequate antioxidant protection. This impairment of the oxidative balance has been thought to be the common factor of the so-called “free radical related diseases of prematurity,” including retinopathy of prematurity, bronchopulmonary dysplasia, intraventricular hemorrhage, periventricular leukomalacia, necrotizing enterocolitis, kidney damage, and oxidative hemolysis. In this review, we provide an update focused on the factors influencing these diseases refining the knowledge about the role of OS in their pathogenesis and the current evidences of such relationship. Mechanisms governing FR formation and subsequent OS may represent targets for counteracting tissue damage.
Collapse
|
41
|
Jarkovska D, Markova M, Horak J, Nalos L, Benes J, Al-Obeidallah M, Tuma Z, Sviglerova J, Kuncova J, Matejovic M, Stengl M. Cellular Mechanisms of Myocardial Depression in Porcine Septic Shock. Front Physiol 2018; 9:726. [PMID: 29946267 PMCID: PMC6005898 DOI: 10.3389/fphys.2018.00726] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 05/25/2018] [Indexed: 12/29/2022] Open
Abstract
The complex pathogenesis of sepsis and septic shock involves myocardial depression, the pathophysiology of which, however, remains unclear. In this study, cellular mechanisms of myocardial depression were addressed in a clinically relevant, large animal (porcine) model of sepsis and septic shock. Sepsis was induced by fecal peritonitis in eight anesthetized, mechanically ventilated, and instrumented pigs of both sexes and continued for 24 h. In eight control pigs, an identical experiment but without sepsis induction was performed. In vitro analysis of cardiac function included measurements of action potentials and contractions in the right ventricle trabeculae, measurements of sarcomeric contractions, calcium transients and calcium current in isolated cardiac myocytes, and analysis of mitochondrial respiration by ultrasensitive oxygraphy. Increased values of modified sequential organ failure assessment score and serum lactate levels documented the development of sepsis/septic shock, accompanied by hyperdynamic circulation with high heart rate, increased cardiac output, peripheral vasodilation, and decreased stroke volume. In septic trabeculae, action potential duration was shortened and contraction force reduced. In septic cardiac myocytes, sarcomeric contractions, calcium transients, and L-type calcium current were all suppressed. Similar relaxation trajectory of the intracellular calcium-cell length phase-plane diagram indicated unchanged calcium responsiveness of myofilaments. Mitochondrial respiration was diminished through inhibition of Complex II and Complex IV. Defective calcium handling with reduced calcium current and transients, together with inhibition of mitochondrial respiration, appears to represent the dominant cellular mechanisms of myocardial depression in porcine septic shock.
Collapse
Affiliation(s)
- Dagmar Jarkovska
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Michaela Markova
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Jan Horak
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Department of Internal Medicine I, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Lukas Nalos
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Jan Benes
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Mahmoud Al-Obeidallah
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Zdenek Tuma
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Jitka Sviglerova
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Jitka Kuncova
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Martin Matejovic
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Department of Internal Medicine I, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Milan Stengl
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| |
Collapse
|
42
|
Acin-Perez R, Lechuga-Vieco AV, del Mar Muñoz M, Nieto-Arellano R, Torroja C, Sánchez-Cabo F, Jiménez C, González-Guerra A, Carrascoso I, Benincá C, Quiros PM, López-Otín C, Castellano JM, Ruíz-Cabello J, Jiménez-Borreguero LJ, Enríquez JA. Ablation of the stress protease OMA1 protects against heart failure in mice. Sci Transl Med 2018; 10:10/434/eaan4935. [DOI: 10.1126/scitranslmed.aan4935] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/14/2017] [Accepted: 02/13/2018] [Indexed: 12/14/2022]
|
43
|
Ljubojevic-Holzer S. The Secret of the Kissing Cousins: an ER-mitochondrial tethering protein regulates Ca2+ crosstalk in mammalian neurons. Cardiovasc Res 2018; 114:e17-e18. [PMID: 29481649 DOI: 10.1093/cvr/cvy020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Senka Ljubojevic-Holzer
- Department of Cardiology, Medical University of Graz, Auenbruggerplatz 15, A-8036, Graz, Austria
| |
Collapse
|
44
|
Dietl A, Maack C. Targeting Mitochondrial Calcium Handling and Reactive Oxygen Species in Heart Failure. Curr Heart Fail Rep 2017; 14:338-349. [PMID: 28656516 DOI: 10.1007/s11897-017-0347-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW In highly prevalent cardiac diseases, new therapeutic approaches are needed. Since the first description of oxidative stress in heart failure, reactive oxygen species (ROS) have been considered as attractive drug targets. Though clinical trials evaluating antioxidant vitamins as ROS-scavenging agents yielded neutral results in patients at cardiovascular risk, the knowledge of ROS as pathophysiological factors has considerably advanced in the past few years and led to novel treatment approaches. Here, we review recent new insights and current strategies in targeting mitochondrial calcium handling and ROS in heart failure. RECENT FINDINGS Mitochondria are an important ROS source, and more recently, drug development focused on targeting mitochondria (e.g. by SS-31 or MitoQ). Important advancement has also been made to decipher how the matching of energy supply and demand through calcium (Ca2+) handling impacts on mitochondrial ROS production and elimination. This opens novel opportunities to ameliorate mitochondrial dysfunction in heart failure by targeting cytosolic and mitochondrial ion transporters to improve this matching process. According to this approach, highly specific substances as the preclinical CGP-37157, as well as the clinically used ranolazine and empagliflozin, provide promising results on different levels of evidence. Furthermore, the understanding of redox signalling relays, resembled by catalyst-mediated protein oxidation, is about to change former paradigms of ROS signalling. Novel methods, as redox proteomics, allow to precisely analyse key regulatory thiol switches, which may induce adaptive or maladaptive signalling. Additionally, the generation of genetically encoded probes increased the spatial and temporal resolution of ROS imaging and opened a new methodological window to subtle, formerly obscured processes. These novel insights may broaden our understanding of why previous attempts to target oxidative stress have failed, and at the same time provide us with new targets for drug development.
Collapse
Affiliation(s)
- Alexander Dietl
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421, Homburg, Germany
| | - Christoph Maack
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421, Homburg, Germany.
| |
Collapse
|
45
|
Oxidative stress in ageing and disease development studied by FT-IR spectroscopy. Mech Ageing Dev 2017; 172:107-114. [PMID: 29113732 DOI: 10.1016/j.mad.2017.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/31/2017] [Accepted: 11/01/2017] [Indexed: 11/21/2022]
Abstract
FT-IR spectroscopy was used to investigate the effect of oxidative stress and to approach the mechanism on cancer bone demineralization, aortic valve mineralization and heterotopic ossification on disease development. The FT-IR spectra obtained from paediatric, adult bone and ex vivo irradiated adult healthy bone with a dose of 20Gy were compared with those of healthy bone. The increase of band intensity changes of vasCH2,vsCH2 in the region 3000-2850cm-1 depended on aging, the disease progression and the dose of irradiation. The bands at 3080cm-1 and 1744cm-1, which originate from olefinic terminal bond (v=CH) and ester carbonyl group (vROCO), respectively, indicate the influence of oxidative stress on lipid degradation and peroxidation, respectively. The new bands at about 1690cm-1 and 1516cm-1 denote the presence of β-sheet conformation of the proteins due to the diseases, confirming the increasing amount of lipophilic environment and fibril formation. Comparison of the FT-IR spectra of calcified aortic valve and hip heterotopic ossification with that of normal bones showed that in the bone-like formation the peroxide anion free radicals play an important role in the disease.
Collapse
|
46
|
Vela-Guajardo JE, Pérez-Treviño P, Rivera-Álvarez I, González-Mondellini FA, Altamirano J, García N. The 8-oxo-deoxyguanosine glycosylase increases its migration to mitochondria in compensated cardiac hypertrophy. ACTA ACUST UNITED AC 2017; 11:660-672. [PMID: 28882450 DOI: 10.1016/j.jash.2017.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/30/2017] [Accepted: 08/15/2017] [Indexed: 11/19/2022]
Abstract
Cardiac hypertrophy is a compensatory mechanism maladapted because it presents an increase in the oxidative stress which could be associated with the development of the heart failure. A mechanism proposed is by mitochondrial DNA (mtDNA) oxidation, which evolved to a vicious cycle because of the synthesis of proteins encoded in the genome is committed. Therefore, the aim of the present work was to evaluate the mtDNA damage and enzyme repairing the 8-oxo-deoxyguanosine glycosylase mitochondrial isoform 1-2a (OGG1-2a) in the early stage of compensated cardiac hypertrophy induced by abdominal aortic constriction (AAC). Results showed that after 6 weeks of AAC, hearts presented a compensated hypertrophy (22%), with an increase in the cell volume (35%), mitochondrial mass (12%), and mitochondrial membrane potential (94%). However, the increase of oxidative stress did not affect mtDNA most probably because OGG1-2a was found to increase 3.2 times in the mitochondrial fraction. Besides, mitochondrial function was not altered by the cardiac hypertrophy condition but in vitro mitochondria from AAC heart showed an increased sensibility to stress induced by the high Ca2+ concentration. The increase in the oxidative stress in compensated cardiac hypertrophy induced the OGG1-2a migration to mitochondria to repair mtDNA oxidation, as a mechanism that allows maintaining the cardiac function in the compensatory stage.
Collapse
Affiliation(s)
- Jorge E Vela-Guajardo
- Medicina Cardiovascular y Metabolómica, Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, San Pedro Garza García, Nuevo León, México
| | - Perla Pérez-Treviño
- Medicina Cardiovascular y Metabolómica, Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, San Pedro Garza García, Nuevo León, México
| | - Irais Rivera-Álvarez
- Medicina Cardiovascular y Metabolómica, Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, San Pedro Garza García, Nuevo León, México
| | - Fabio A González-Mondellini
- Medicina Cardiovascular y Metabolómica, Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, San Pedro Garza García, Nuevo León, México
| | - Julio Altamirano
- Medicina Cardiovascular y Metabolómica, Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, San Pedro Garza García, Nuevo León, México
| | - Noemí García
- Medicina Cardiovascular y Metabolómica, Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, San Pedro Garza García, Nuevo León, México.
| |
Collapse
|
47
|
Altered Mitochondrial Metabolism and Mechanosensation in the Failing Heart: Focus on Intracellular Calcium Signaling. Int J Mol Sci 2017; 18:ijms18071487. [PMID: 28698526 PMCID: PMC5535977 DOI: 10.3390/ijms18071487] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 06/28/2017] [Accepted: 07/04/2017] [Indexed: 12/26/2022] Open
Abstract
The heart consists of millions of cells, namely cardiomyocytes, which are highly organized in terms of structure and function, at both macroscale and microscale levels. Such meticulous organization is imperative for assuring the physiological pump-function of the heart. One of the key players for the electrical and mechanical synchronization and contraction is the calcium ion via the well-known calcium-induced calcium release process. In cardiovascular diseases, the structural organization is lost, resulting in morphological, electrical, and metabolic remodeling owing the imbalance of the calcium handling and promoting heart failure and arrhythmias. Recently, attention has been focused on the role of mitochondria, which seem to jeopardize these events by misbalancing the calcium processes. In this review, we highlight our recent findings, especially the role of mitochondria (dys)function in failing cardiomyocytes with respect to the calcium machinery.
Collapse
|
48
|
Peterzan MA, Lygate CA, Neubauer S, Rider OJ. Metabolic remodeling in hypertrophied and failing myocardium: a review. Am J Physiol Heart Circ Physiol 2017. [PMID: 28646030 DOI: 10.1152/ajpheart.00731.2016] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The energy starvation hypothesis proposes that maladaptive metabolic remodeling antedates, initiates, and maintains adverse contractile dysfunction in heart failure (HF). Better understanding of the cardiac metabolic phenotype and metabolic signaling could help identify the role metabolic remodeling plays within HF and the conditions known to transition toward HF, including "pathological" hypertrophy. In this review, we discuss metabolic phenotype and metabolic signaling in the contexts of pathological hypertrophy and HF. We discuss the significance of alterations in energy supply (substrate utilization, oxidative capacity, and phosphotransfer) and energy sensing using observations from human and animal disease models and models of manipulated energy supply/sensing. We aim to provide ways of thinking about metabolic remodeling that center around metabolic flexibility, capacity (reserve), and efficiency rather than around particular substrate preferences or transcriptomic profiles. We show that maladaptive metabolic remodeling takes multiple forms across multiple energy-handling domains. We suggest that lack of metabolic flexibility and reserve (substrate, oxidative, and phosphotransfer) represents a final common denominator ultimately compromising efficiency and contractile reserve in stressful contexts.
Collapse
Affiliation(s)
- Mark A Peterzan
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Craig A Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Stefan Neubauer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Oliver J Rider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| |
Collapse
|
49
|
The Peroxisome-Mitochondria Connection: How and Why? Int J Mol Sci 2017; 18:ijms18061126. [PMID: 28538669 PMCID: PMC5485950 DOI: 10.3390/ijms18061126] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/15/2017] [Accepted: 05/20/2017] [Indexed: 12/14/2022] Open
Abstract
Over the past decades, peroxisomes have emerged as key regulators in overall cellular lipid and reactive oxygen species metabolism. In mammals, these organelles have also been recognized as important hubs in redox-, lipid-, inflammatory-, and innate immune-signaling networks. To exert these activities, peroxisomes must interact both functionally and physically with other cell organelles. This review provides a comprehensive look of what is currently known about the interconnectivity between peroxisomes and mitochondria within mammalian cells. We first outline how peroxisomal and mitochondrial abundance are controlled by common sets of cis- and trans-acting factors. Next, we discuss how peroxisomes and mitochondria may communicate with each other at the molecular level. In addition, we reflect on how these organelles cooperate in various metabolic and signaling pathways. Finally, we address why peroxisomes and mitochondria have to maintain a healthy relationship and why defects in one organelle may cause dysfunction in the other. Gaining a better insight into these issues is pivotal to understanding how these organelles function in their environment, both in health and disease.
Collapse
|
50
|
Kohlhaas M, Nickel AG, Bergem S, Casadei B, Laufs U, Maack C. Endogenous nitric oxide formation in cardiac myocytes does not control respiration during β-adrenergic stimulation. J Physiol 2017; 595:3781-3798. [PMID: 28229450 DOI: 10.1113/jp273750] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/16/2017] [Indexed: 01/05/2023] Open
Abstract
KEY POINTS In the heart, endothelial nitric oxide (NO) controls oxygen consumption in the working heart through paracrine mechanisms. While cardiac myocytes contain several isoforms of NO synthases, it is unclear whether these can control respiration in an intracrine fashion. A long-standing controversy is whether a NOS exists within mitochondria. By combining fluorescence technologies with electrical field stimulation or the patch-clamp technique in beating cardiac myocytes, we identified a neuronal NO synthase (nNOS) as the most relevant source of intracellular NO during β-adrenergic stimulation, while no evidence for a mitochondria-located NOS was obtained. The amounts of NO produced by non-mitochondrial nNOS were insufficient to regulate respiration during β-adrenergic stimulation, arguing against intracrine control of respiration by NO within cardiac myocytes. ABSTRACT Endothelial nitric oxide (NO) controls cardiac oxygen (O2 ) consumption in a paracrine way by slowing respiration at the mitochondrial electron transport chain. While NO synthases (NOSs) are also expressed in cardiac myocytes, it is unclear whether they control respiration in an intracrine way. Furthermore, the existence of a mitochondrial NOS is controversial. Here, by combining fluorescence imaging with electrical field stimulation, the patch-clamp method and knock-out technology, we determined the sources and consequences of intracellular NO formation during workload transitions in isolated murine and guinea pig cardiac myocytes and mitochondria. Using 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate (DAF) as a fluorescent NO-sensor that locates to the cytosol and mitochondria, we observed that NO increased by ∼12% within 3 min of β-adrenergic stimulation in beating cardiac myocytes. This NO stems from neuronal NOS (nNOS), but not endothelial (eNOS). After patch clamp-mediated dialysis of cytosolic DAF, the remaining NO signals (mostly mitochondrial) were blocked by nNOS deletion, but not by inhibiting the mitochondrial Ca2+ uniporter with Ru360. While in isolated mitochondria exogenous NO inhibited respiration and reduced the NAD(P)H redox state, pyridine nucleotide redox states were unaffected by pharmacological or genetic disruption of endogenous nNOS or eNOS during workload transitions in cardiac myoctyes. We conclude that under physiological conditions, nNOS is the most relevant source for NO in cardiac myocytes, but this nNOS is not located in mitochondria and does not control respiration. Therefore, cardiac O2 consumption is controlled by endothelial NO in a paracrine, but not intracrine, fashion.
Collapse
Affiliation(s)
- Michael Kohlhaas
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421, Homburg, Germany
| | - Alexander G Nickel
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421, Homburg, Germany
| | - Stefanie Bergem
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421, Homburg, Germany
| | - Barbara Casadei
- Department of Cardiovascular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Ulrich Laufs
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421, Homburg, Germany
| | - Christoph Maack
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, 66421, Homburg, Germany
| |
Collapse
|