1
|
Pizzo E, Cervantes DO, Ketkar H, Ripa V, Nassal DM, Buck B, Parambath SP, Di Stefano V, Singh K, Thompson CI, Mohler PJ, Hund TJ, Jacobson JT, Jain S, Rota M. Phosphorylation of cardiac sodium channel at Ser571 anticipates manifestations of the aging myopathy. Am J Physiol Heart Circ Physiol 2024; 326:H1424-H1445. [PMID: 38639742 DOI: 10.1152/ajpheart.00325.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/12/2024] [Accepted: 04/02/2024] [Indexed: 04/20/2024]
Abstract
Diastolic dysfunction and delayed ventricular repolarization are typically observed in the elderly, but whether these defects are intimately associated with the progressive manifestation of the aging myopathy remains to be determined. In this regard, aging in experimental animals is coupled with increased late Na+ current (INa,L) in cardiomyocytes, raising the possibility that INa,L conditions the modality of electrical recovery and myocardial relaxation of the aged heart. For this purpose, aging male and female wild-type (WT) C57Bl/6 mice were studied together with genetically engineered mice with phosphomimetic (gain of function, GoF) or ablated (loss of function, LoF) mutations of the sodium channel Nav1.5 at Ser571 associated with, respectively, increased and stabilized INa,L. At ∼18 mo of age, WT mice developed prolonged duration of the QT interval of the electrocardiogram and impaired diastolic left ventricular (LV) filling, defects that were reversed by INa,L inhibition. Prolonged repolarization and impaired LV filling occurred prematurely in adult (∼5 mo) GoF mutant mice, whereas these alterations were largely attenuated in aging LoF mutant animals. Ca2+ transient decay and kinetics of myocyte shortening/relengthening were delayed in aged (∼24 mo) WT myocytes, with respect to adult cells. In contrast, delayed Ca2+ transients and contractile dynamics occurred at adult stage in GoF myocytes and further deteriorated in old age. Conversely, myocyte mechanics were minimally affected in aging LoF cells. Collectively, these results document that Nav1.5 phosphorylation at Ser571 and the late Na+ current modulate the modality of myocyte relaxation, constituting the mechanism linking delayed ventricular repolarization and diastolic dysfunction.NEW & NOTEWORTHY We have investigated the impact of the late Na current (INa,L) on cardiac and myocyte function with aging by using genetically engineered animals with enhanced or stabilized INa,L, due to phosphomimetic or phosphoablated mutations of Nav1.5. Our findings support the notion that phosphorylation of Nav1.5 at Ser571 prolongs myocardial repolarization and impairs diastolic function, contributing to the manifestations of the aging myopathy.
Collapse
Affiliation(s)
- Emanuele Pizzo
- Department of Physiology, New York Medical College, Valhalla, New York, United States
| | - Daniel O Cervantes
- Department of Physiology, New York Medical College, Valhalla, New York, United States
| | - Harshada Ketkar
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, United States
| | - Valentina Ripa
- Department of Physiology, New York Medical College, Valhalla, New York, United States
| | - Drew M Nassal
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, United States
| | - Benjamin Buck
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Sreema P Parambath
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, United States
| | - Valeria Di Stefano
- Department of Physiology, New York Medical College, Valhalla, New York, United States
| | - Kanwardeep Singh
- Department of Physiology, New York Medical College, Valhalla, New York, United States
| | - Carl I Thompson
- Department of Physiology, New York Medical College, Valhalla, New York, United States
| | - Peter J Mohler
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Columbus, Ohio, United States
| | - Thomas J Hund
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, United States
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, United States
- Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States
| | - Jason T Jacobson
- Department of Physiology, New York Medical College, Valhalla, New York, United States
- Department of Cardiology, Westchester Medical Center, Valhalla, New York, United States
| | - Sudhir Jain
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, United States
| | - Marcello Rota
- Department of Physiology, New York Medical College, Valhalla, New York, United States
| |
Collapse
|
2
|
Zheng M, Erhardt S, Cao Y, Wang J. Emerging Signaling Regulation of Sinoatrial Node Dysfunction. Curr Cardiol Rep 2023; 25:621-630. [PMID: 37227579 PMCID: PMC11418806 DOI: 10.1007/s11886-023-01885-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/14/2023] [Indexed: 05/26/2023]
Abstract
PURPOSE OF REVIEW The sinoatrial node (SAN), the natural pacemaker of the heart, is responsible for generating electrical impulses and initiating each heartbeat. Sinoatrial node dysfunction (SND) causes various arrhythmias such as sinus arrest, SAN block, and tachycardia/bradycardia syndrome. Unraveling the underlying mechanisms of SND is of paramount importance in the pursuit of developing effective therapeutic strategies for patients with SND. This review provides a concise summary of the most recent progress in the signaling regulation of SND. RECENT FINDINGS Recent studies indicate that SND can be caused by abnormal intercellular and intracellular signaling, various forms of heart failure (HF), and diabetes. These discoveries provide novel insights into the underlying mechanisms SND, advancing our understanding of its pathogenesis. SND can cause severe cardiac arrhythmias associated with syncope and an increased risk of sudden death. In addition to ion channels, the SAN is susceptible to the influence of various signalings including Hippo, AMP-activated protein kinase (AMPK), mechanical force, and natriuretic peptide receptors. New cellular and molecular mechanisms related to SND are also deciphered in systemic diseases such as HF and diabetes. Progress in these studies contributes to the development of potential therapeutics for SND.
Collapse
Affiliation(s)
- Mingjie Zheng
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Shannon Erhardt
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas, Houston, TX, 77030, USA
| | - Yuhan Cao
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Jun Wang
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
- MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, The University of Texas, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Herrera-Pérez S, Lamas JA. TREK channels in Mechanotransduction: a Focus on the Cardiovascular System. Front Cardiovasc Med 2023; 10:1180242. [PMID: 37288256 PMCID: PMC10242076 DOI: 10.3389/fcvm.2023.1180242] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/26/2023] [Indexed: 06/09/2023] Open
Abstract
Mechano-electric feedback is one of the most important subsystems operating in the cardiovascular system, but the underlying molecular mechanism remains rather unknown. Several proteins have been proposed to explain the molecular mechanism of mechano-transduction. Transient receptor potential (TRP) and Piezo channels appear to be the most important candidates to constitute the molecular mechanism behind of the inward current in response to a mechanical stimulus. However, the inhibitory/regulatory processes involving potassium channels that operate on the cardiac system are less well known. TWIK-Related potassium (TREK) channels have emerged as strong candidates due to their capacity for the regulation of the flow of potassium in response to mechanical stimuli. Current data strongly suggest that TREK channels play a role as mechano-transducers in different components of the cardiovascular system, not only at central (heart) but also at peripheral (vascular) level. In this context, this review summarizes and highlights the main existing evidence connecting this important subfamily of potassium channels with the cardiac mechano-transduction process, discussing molecular and biophysical aspects of such a connection.
Collapse
Affiliation(s)
- Salvador Herrera-Pérez
- Laboratory of Neuroscience, CINBIO, University of Vigo, Vigo, Spain
- Laboratory of Neuroscience, Galicia Sur Health Research Institute (IISGS), Vigo, Spain
| | - José Antonio Lamas
- Laboratory of Neuroscience, CINBIO, University of Vigo, Vigo, Spain
- Laboratory of Neuroscience, Galicia Sur Health Research Institute (IISGS), Vigo, Spain
| |
Collapse
|
4
|
Nassal DM, Shaheen R, Patel NJ, Yu J, Leahy N, Bibidakis D, Parinandi NL, Hund TJ. Spectrin-Based Regulation of Cardiac Fibroblast Cell-Cell Communication. Cells 2023; 12:748. [PMID: 36899883 PMCID: PMC10001335 DOI: 10.3390/cells12050748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Cardiac fibroblasts (CFs) maintain the fibrous extracellular matrix (ECM) that supports proper cardiac function. Cardiac injury induces a transition in the activity of CFs to promote cardiac fibrosis. CFs play a critical role in sensing local injury signals and coordinating the organ level response through paracrine communication to distal cells. However, the mechanisms by which CFs engage cell-cell communication networks in response to stress remain unknown. We tested a role for the action-associated cytoskeletal protein βIV-spectrin in regulating CF paracrine signaling. Conditioned culture media (CCM) was collected from WT and βIV-spectrin deficient (qv4J) CFs. WT CFs treated with qv4J CCM showed increased proliferation and collagen gel compaction compared to control. Consistent with the functional measurements, qv4J CCM contained higher levels of pro-inflammatory and pro-fibrotic cytokines and increased concentration of small extracellular vesicles (30-150 nm diameter, exosomes). Treatment of WT CFs with exosomes isolated from qv4J CCM induced a similar phenotypic change as that observed with complete CCM. Treatment of qv4J CFs with an inhibitor of the βIV-spectrin-associated transcription factor, STAT3, decreased the levels of both cytokines and exosomes in conditioned media. This study expands the role of the βIV-spectrin/STAT3 complex in stress-induced regulation of CF paracrine signaling.
Collapse
Affiliation(s)
- Drew M. Nassal
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Rebecca Shaheen
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Nehal J. Patel
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jane Yu
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Nick Leahy
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Dimitra Bibidakis
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Narasimham L. Parinandi
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210, USA
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Thomas J. Hund
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, OH 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
- Department of Internal Medicine, Division of Cardiovascular Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Baldwin TA, Li Y, Marsden AN, Rinné S, Garza‐Carbajal A, Schindler RFR, Zhang M, Garcia MA, Venna VR, Decher N, Brand T, Dessauer CW. POPDC1 scaffolds a complex of adenylyl cyclase 9 and the potassium channel TREK-1 in heart. EMBO Rep 2022; 23:e55208. [PMID: 36254885 PMCID: PMC9724675 DOI: 10.15252/embr.202255208] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
The establishment of macromolecular complexes by scaffolding proteins is key to the local production of cAMP by anchored adenylyl cyclase (AC) and the subsequent cAMP signaling necessary for cardiac functions. We identify a novel AC scaffold, the Popeye domain-containing (POPDC) protein. The POPDC family of proteins is important for cardiac pacemaking and conduction, due in part to their cAMP-dependent binding and regulation of TREK-1 potassium channels. We show that TREK-1 binds the AC9:POPDC1 complex and copurifies in a POPDC1-dependent manner with AC9 activity in heart. Although the AC9:POPDC1 interaction is cAMP-independent, TREK-1 association with AC9 and POPDC1 is reduced upon stimulation of the β-adrenergic receptor (βAR). AC9 activity is required for βAR reduction of TREK-1 complex formation with AC9:POPDC1 and in reversing POPDC1 enhancement of TREK-1 currents. Finally, deletion of the gene-encoding AC9 (Adcy9) gives rise to bradycardia at rest and stress-induced heart rate variability, a milder phenotype than the loss of Popdc1 but similar to the loss of Kcnk2 (TREK-1). Thus, POPDC1 represents a novel adaptor for AC9 interactions with TREK-1 to regulate heart rate control.
Collapse
Affiliation(s)
- Tanya A Baldwin
- Department Integrative Biology and PharmacologyMcGovern Medical School, University of Texas Health Science CenterHoustonTXUSA
| | - Yong Li
- Department Integrative Biology and PharmacologyMcGovern Medical School, University of Texas Health Science CenterHoustonTXUSA
| | - Autumn N Marsden
- Department Integrative Biology and PharmacologyMcGovern Medical School, University of Texas Health Science CenterHoustonTXUSA
| | - Susanne Rinné
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior MCMBBPhilipps‐University of MarburgMarburgGermany
| | - Anibal Garza‐Carbajal
- Department Integrative Biology and PharmacologyMcGovern Medical School, University of Texas Health Science CenterHoustonTXUSA
| | | | - Musi Zhang
- Department Integrative Biology and PharmacologyMcGovern Medical School, University of Texas Health Science CenterHoustonTXUSA
| | - Mia A Garcia
- Department Integrative Biology and PharmacologyMcGovern Medical School, University of Texas Health Science CenterHoustonTXUSA
| | - Venugopal Reddy Venna
- Department NeurologyMcGovern Medical School, University of Texas Health Science CenterHoustonTXUSA
| | - Niels Decher
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior MCMBBPhilipps‐University of MarburgMarburgGermany
| | - Thomas Brand
- National Heart and Lung Institute, Imperial College LondonLondonUK
| | - Carmen W Dessauer
- Department Integrative Biology and PharmacologyMcGovern Medical School, University of Texas Health Science CenterHoustonTXUSA
| |
Collapse
|
6
|
Li S, Liu T, Li K, Bai X, Xi K, Chai X, Mi L, Li J. Spectrins and human diseases. Transl Res 2022; 243:78-88. [PMID: 34979321 DOI: 10.1016/j.trsl.2021.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 11/18/2022]
Abstract
Spectrin, as one of the major components of a plasma membrane-associated cytoskeleton, is a cytoskeletal protein composed of the modular structure of α and β subunits. The spectrin-based skeleton is essential for preserving the integrity and mechanical characteristics of the cell membrane. Moreover, spectrin regulates a variety of cell processes including cell apoptosis, cell adhesion, cell spreading, and cell cycle. Dysfunction of spectrins is implicated in various human diseases including hemolytic anemia, neurodegenerative diseases, ataxia, heart diseases, and cancers. Here, we briefly discuss spectrins function as well as the clinical manifestations and currently known molecular mechanisms of human diseases related to spectrins, highlighting that strategies for targeting regulation of spectrins function may provide new avenues for therapeutic intervention for these diseases.
Collapse
Affiliation(s)
- Shan Li
- The First School of Clinical Medicine, Lanzhou University, Gansu, China
| | - Ting Liu
- The First School of Clinical Medicine, Lanzhou University, Gansu, China
| | - Kejing Li
- The First School of Clinical Medicine, Lanzhou University, Gansu, China
| | - Xinyi Bai
- The First School of Clinical Medicine, Lanzhou University, Gansu, China
| | - Kewang Xi
- The First School of Clinical Medicine, Lanzhou University, Gansu, China
| | - Xiaojing Chai
- Central Laboratory, The First Hospital of Lanzhou University, Gansu, China
| | - Leyuan Mi
- The First School of Clinical Medicine, Lanzhou University, Gansu, China; Clinical Laboratory Center, Gansu Provincial Maternity and Child Care Hospital, Gansu, China
| | - Juan Li
- Gansu Key Laboratory of Genetic Study of Hematopathy, The First Hospital of Lanzhou University, Gansu, China; Central Laboratory, The First Hospital of Lanzhou University, Gansu, China.
| |
Collapse
|
7
|
Two-Pore-Domain Potassium (K 2P-) Channels: Cardiac Expression Patterns and Disease-Specific Remodelling Processes. Cells 2021; 10:cells10112914. [PMID: 34831137 PMCID: PMC8616229 DOI: 10.3390/cells10112914] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 12/23/2022] Open
Abstract
Two-pore-domain potassium (K2P-) channels conduct outward K+ currents that maintain the resting membrane potential and modulate action potential repolarization. Members of the K2P channel family are widely expressed among different human cell types and organs where they were shown to regulate important physiological processes. Their functional activity is controlled by a broad variety of different stimuli, like pH level, temperature, and mechanical stress but also by the presence of lipids or pharmacological agents. In patients suffering from cardiovascular diseases, alterations in K2P-channel expression and function have been observed, suggesting functional significance and a potential therapeutic role of these ion channels. For example, upregulation of atrial specific K2P3.1 (TASK-1) currents in atrial fibrillation (AF) patients was shown to contribute to atrial action potential duration shortening, a key feature of AF-associated atrial electrical remodelling. Therefore, targeting K2P3.1 (TASK-1) channels might constitute an intriguing strategy for AF treatment. Further, mechanoactive K2P2.1 (TREK-1) currents have been implicated in the development of cardiac hypertrophy, cardiac fibrosis and heart failure. Cardiovascular expression of other K2P channels has been described, functional evidence in cardiac tissue however remains sparse. In the present review, expression, function, and regulation of cardiovascular K2P channels are summarized and compared among different species. Remodelling patterns, observed in disease models are discussed and compared to findings from clinical patients to assess the therapeutic potential of K2P channels.
Collapse
|
8
|
Turner D, Kang C, Mesirca P, Hong J, Mangoni ME, Glukhov AV, Sah R. Electrophysiological and Molecular Mechanisms of Sinoatrial Node Mechanosensitivity. Front Cardiovasc Med 2021; 8:662410. [PMID: 34434970 PMCID: PMC8382116 DOI: 10.3389/fcvm.2021.662410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/24/2021] [Indexed: 01/01/2023] Open
Abstract
The understanding of the electrophysiological mechanisms that underlie mechanosensitivity of the sinoatrial node (SAN), the primary pacemaker of the heart, has been evolving over the past century. The heart is constantly exposed to a dynamic mechanical environment; as such, the SAN has numerous canonical and emerging mechanosensitive ion channels and signaling pathways that govern its ability to respond to both fast (within second or on beat-to-beat manner) and slow (minutes) timescales. This review summarizes the effects of mechanical loading on the SAN activity and reviews putative candidates, including fast mechanoactivated channels (Piezo, TREK, and BK) and slow mechanoresponsive ion channels [including volume-regulated chloride channels and transient receptor potential (TRP)], as well as the components of mechanochemical signal transduction, which may contribute to SAN mechanosensitivity. Furthermore, we examine the structural foundation for both mechano-electrical and mechanochemical signal transduction and discuss the role of specialized membrane nanodomains, namely, caveolae, in mechanical regulation of both membrane and calcium clock components of the so-called coupled-clock pacemaker system responsible for SAN automaticity. Finally, we emphasize how these mechanically activated changes contribute to the pathophysiology of SAN dysfunction and discuss controversial areas necessitating future investigations. Though the exact mechanisms of SAN mechanosensitivity are currently unknown, identification of such components, their impact into SAN pacemaking, and pathological remodeling may provide new therapeutic targets for the treatment of SAN dysfunction and associated rhythm abnormalities.
Collapse
Affiliation(s)
- Daniel Turner
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| | - Chen Kang
- Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Pietro Mesirca
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Juan Hong
- Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Matteo E Mangoni
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Alexey V Glukhov
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| | - Rajan Sah
- Cardiovascular Division, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
9
|
Lengyel M, Enyedi P, Czirják G. Negative Influence by the Force: Mechanically Induced Hyperpolarization via K 2P Background Potassium Channels. Int J Mol Sci 2021; 22:ijms22169062. [PMID: 34445768 PMCID: PMC8396510 DOI: 10.3390/ijms22169062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 02/08/2023] Open
Abstract
The two-pore domain K2P subunits form background (leak) potassium channels, which are characterized by constitutive, although not necessarily constant activity, at all membrane potential values. Among the fifteen pore-forming K2P subunits encoded by the KCNK genes, the three members of the TREK subfamily, TREK-1, TREK-2, and TRAAK are mechanosensitive ion channels. Mechanically induced opening of these channels generally results in outward K+ current under physiological conditions, with consequent hyperpolarization and inhibition of membrane potential-dependent cellular functions. In the past decade, great advances have been made in the investigation of the molecular determinants of mechanosensation, and members of the TREK subfamily have emerged among the best-understood examples of mammalian ion channels directly influenced by the tension of the phospholipid bilayer. In parallel, the crucial contribution of mechano-gated TREK channels to the regulation of membrane potential in several cell types has been reported. In this review, we summarize the general principles underlying the mechanical activation of K2P channels, and focus on the physiological roles of mechanically induced hyperpolarization.
Collapse
|
10
|
Ca 2+/calmodulin kinase II-dependent regulation of β IV-spectrin modulates cardiac fibroblast gene expression, proliferation, and contractility. J Biol Chem 2021; 297:100893. [PMID: 34153319 PMCID: PMC8294584 DOI: 10.1016/j.jbc.2021.100893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/10/2021] [Accepted: 06/17/2021] [Indexed: 01/26/2023] Open
Abstract
Fibrosis is a pronounced feature of heart disease and the result of dysregulated activation of resident cardiac fibroblasts (CFs). Recent work identified stress-induced degradation of the cytoskeletal protein βIV-spectrin as an important step in CF activation and cardiac fibrosis. Furthermore, loss of βIV-spectrin was found to depend on Ca2+/calmodulin-dependent kinase II (CaMKII). Therefore, we sought to determine the mechanism for CaMKII-dependent regulation of βIV-spectrin and CF activity. Computational screening and MS revealed a critical serine residue (S2250 in mouse and S2254 in human) in βIV-spectrin phosphorylated by CaMKII. Disruption of βIV-spectrin/CaMKII interaction or alanine substitution of βIV-spectrin Ser2250 (βIV-S2254A) prevented CaMKII-induced degradation, whereas a phosphomimetic construct (βIV-spectrin with glutamic acid substitution at serine 2254 [βIV-S2254E]) showed accelerated degradation in the absence of CaMKII. To assess the physiological significance of this phosphorylation event, we expressed exogenous βIV-S2254A and βIV-S2254E constructs in βIV-spectrin-deficient CFs, which have increased proliferation and fibrotic gene expression compared with WT CFs. βIV-S2254A but not βIV-S2254E normalized CF proliferation, gene expression, and contractility. Pathophysiological targeting of βIV-spectrin phosphorylation and subsequent degradation was identified in CFs activated with the profibrotic ligand angiotensin II, resulting in increased proliferation and signal transducer and activation of transcription 3 nuclear accumulation. While therapeutic delivery of exogenous WT βIV-spectrin partially reversed these trends, βIV-S2254A completely negated increased CF proliferation and signal transducer and activation of transcription 3 translocation. Moreover, we observed βIV-spectrin phosphorylation and associated loss in total protein within human heart tissue following heart failure. Together, these data illustrate a considerable role for the βIV-spectrin/CaMKII interaction in activating profibrotic signaling.
Collapse
|
11
|
Regulation of Cardiac Conduction and Arrhythmias by Ankyrin/Spectrin-Based Macromolecular Complexes. J Cardiovasc Dev Dis 2021; 8:jcdd8050048. [PMID: 33946725 PMCID: PMC8146975 DOI: 10.3390/jcdd8050048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/15/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
The cardiac conduction system is an extended network of excitable tissue tasked with generation and propagation of electrical impulses to signal coordinated contraction of the heart. The fidelity of this system depends on the proper spatio-temporal regulation of ion channels in myocytes throughout the conduction system. Importantly, inherited or acquired defects in a wide class of ion channels has been linked to dysfunction at various stages of the conduction system resulting in life-threatening cardiac arrhythmia. There is growing appreciation of the role that adapter and cytoskeletal proteins play in organizing ion channel macromolecular complexes critical for proper function of the cardiac conduction system. In particular, members of the ankyrin and spectrin families have emerged as important nodes for normal expression and regulation of ion channels in myocytes throughout the conduction system. Human variants impacting ankyrin/spectrin function give rise to a broad constellation of cardiac arrhythmias. Furthermore, chronic neurohumoral and biomechanical stress promotes ankyrin/spectrin loss of function that likely contributes to conduction disturbances in the setting of acquired cardiac disease. Collectively, this review seeks to bring attention to the significance of these cytoskeletal players and emphasize the potential therapeutic role they represent in a myriad of cardiac disease states.
Collapse
|
12
|
Belkheir AM, Reunert J, Elpers C, van den Heuvel L, Rodenburg R, Seelhöfer A, Rust S, Jeibmann A, Frosch M, Marquardt T. Severe Form of ßIV-Spectrin Deficiency With Mitochondrial Dysfunction and Cardiomyopathy-A Case Report. Front Neurol 2021; 12:643805. [PMID: 33986717 PMCID: PMC8110827 DOI: 10.3389/fneur.2021.643805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
ßIV-spectrin is a protein of the spectrin family which is involved in the organization of the cytoskeleton structure and is found in high quantity in the axon initial segment and the nodes of Ranvier. Together with ankyrin G, ßIV-spectrin is responsible for the clustering of KCNQ2/3-potassium channels and NaV-sodium channels. Loss or reduction of ßIV-spectrin causes a destabilization of the cytoskeleton and an impairment in the generation of the action potential, which leads to neuronal degeneration. Furthermore, ßIV-spectrin has been described to play an important role in the maintenance of the neuronal polarity and of the diffusion barrier. ßIV-spectrin is also located in the heart where it takes an important part in the structural organization of ion channels and has also been described to participate in cell signaling pathways through binding of transcription factors. We describe two patients with a severe form of ßIV-spectrin deficiency. Whole-exome sequencing revealed the homozygous stop mutation c.6016C>T (p.R2006*) in the SPTBN4 gene. The phenotype of these patients is characterized by profound psychomotor developmental arrest, respiratory insufficiency and deafness. Additionally one of the patients presents with cardiomyopathy, optical nerve atrophy, and mitochondrial dysfunction. This is the first report of a severe form of ßIV-spectrin deficiency with hypertrophic cardiomyopathy and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Aziza Miriam Belkheir
- Department of General Paediatrics, Metabolic Diseases, University Children's Hospital Muenster, Münster, Germany
| | - Janine Reunert
- Department of General Paediatrics, Metabolic Diseases, University Children's Hospital Muenster, Münster, Germany
| | - Christiane Elpers
- Department of General Paediatrics, Metabolic Diseases, University Children's Hospital Muenster, Münster, Germany
| | - Lambert van den Heuvel
- Translational Metabolic Laboratory, Department of Paediatrics, Radboud Center for Mitochondrial Medicine, Radboud UMC, Nijmegen, Netherlands
| | - Richard Rodenburg
- Translational Metabolic Laboratory, Department of Paediatrics, Radboud Center for Mitochondrial Medicine, Radboud UMC, Nijmegen, Netherlands
| | - Anja Seelhöfer
- Department of General Paediatrics, Metabolic Diseases, University Children's Hospital Muenster, Münster, Germany
| | - Stephan Rust
- Department of General Paediatrics, Metabolic Diseases, University Children's Hospital Muenster, Münster, Germany
| | - Astrid Jeibmann
- Institute of Neuropathology, University Hospital Muenster, Münster, Germany
| | - Michael Frosch
- Department of Children's Pain Therapy and Paediatric Palliative Care, Faculty of Health-School of Medicine, Witten/Herdecke University, Witten, Germany
| | - Thorsten Marquardt
- Department of General Paediatrics, Metabolic Diseases, University Children's Hospital Muenster, Münster, Germany
| |
Collapse
|
13
|
Mesirca P, Fedorov VV, Hund TJ, Torrente AG, Bidaud I, Mohler PJ, Mangoni ME. Pharmacologic Approach to Sinoatrial Node Dysfunction. Annu Rev Pharmacol Toxicol 2021; 61:757-778. [PMID: 33017571 PMCID: PMC7790915 DOI: 10.1146/annurev-pharmtox-031120-115815] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The spontaneous activity of the sinoatrial node initiates the heartbeat. Sino-atrial node dysfunction (SND) and sick sinoatrial (sick sinus) syndrome are caused by the heart's inability to generate a normal sinoatrial node action potential. In clinical practice, SND is generally considered an age-related pathology, secondary to degenerative fibrosis of the heart pacemaker tissue. However, other forms of SND exist, including idiopathic primary SND, which is genetic, and forms that are secondary to cardiovascular or systemic disease. The incidence of SND in the general population is expected to increase over the next half century, boosting the need to implant electronic pacemakers. During the last two decades, our knowledge of sino-atrial node physiology and of the pathophysiological mechanisms underlying SND has advanced considerably. This review summarizes the current knowledge about SND mechanisms and discusses the possibility of introducing new pharmacologic therapies for treating SND.
Collapse
Affiliation(s)
- Pietro Mesirca
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34096 Montpellier, France;
- LabEx Ion Channels Science and Therapeutics (ICST), 06560 Nice, France
| | - Vadim V Fedorov
- Frick Center for Heart Failure and Arrhythmia at the Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Wexner Medical Center, Columbus, Ohio 43210, USA
| | - Thomas J Hund
- Frick Center for Heart Failure and Arrhythmia at the Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio 43210, USA
| | - Angelo G Torrente
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34096 Montpellier, France;
- LabEx Ion Channels Science and Therapeutics (ICST), 06560 Nice, France
| | - Isabelle Bidaud
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34096 Montpellier, France;
- LabEx Ion Channels Science and Therapeutics (ICST), 06560 Nice, France
| | - Peter J Mohler
- Frick Center for Heart Failure and Arrhythmia at the Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210, USA
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine, Wexner Medical Center, Columbus, Ohio 43210, USA
- Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | - Matteo E Mangoni
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34096 Montpellier, France;
- LabEx Ion Channels Science and Therapeutics (ICST), 06560 Nice, France
| |
Collapse
|
14
|
Wiedmann F, Rinné S, Donner B, Decher N, Katus HA, Schmidt C. Mechanosensitive TREK-1 two-pore-domain potassium (K 2P) channels in the cardiovascular system. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 159:126-135. [PMID: 32553901 DOI: 10.1016/j.pbiomolbio.2020.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/01/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022]
Abstract
TWIK-related K+ channel (TREK-1) two-pore-domain potassium (K2P) channels mediate background potassium currents and regulate cellular excitability in many different types of cells. Their functional activity is controlled by a broad variety of different physiological stimuli, such as temperature, extracellular or intracellular pH, lipids and mechanical stress. By linking cellular excitability to mechanical stress, TREK-1 currents might be important to mediate parts of the mechanoelectrical feedback described in the heart. Furthermore, TREK-1 currents might contribute to the dysregulation of excitability in the heart in pathophysiological situations, such as those caused by abnormal stretch or ischaemia-associated cell swelling, thereby contributing to arrhythmogenesis. In this review, we focus on the functional role of TREK-1 in the heart and its putative contribution to cardiac mechanoelectrical coupling. Its cardiac expression among different species is discussed, alongside with functional evidence for TREK-1 currents in cardiomyocytes. In addition, evidence for the involvement of TREK-1 currents in different cardiac arrhythmias, such as atrial fibrillation or ventricular tachycardia, is summarized. Furthermore, the role of TREK-1 and its interaction partners in the regulation of the cardiac heart rate is reviewed. Finally, we focus on the significance of TREK-1 in the development of cardiac hypertrophy, cardiac fibrosis and heart failure.
Collapse
Affiliation(s)
- Felix Wiedmann
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany; HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany
| | - Susanne Rinné
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior - Philipps-University Marburg, Marburg, Germany
| | - Birgit Donner
- Pediatric Cardiology, University Children's Hospital Basel (UKBB), University of Basel, Basel, Switzerland
| | - Niels Decher
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior - Philipps-University Marburg, Marburg, Germany
| | - Hugo A Katus
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany; HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany
| | - Constanze Schmidt
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Heidelberg, Germany; HCR, Heidelberg Center for Heart Rhythm Disorders, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
15
|
Patel NJ, Nassal DM, Greer-Short AD, Unudurthi SD, Scandling BW, Gratz D, Xu X, Kalyanasundaram A, Fedorov VV, Accornero F, Mohler PJ, Gooch KJ, Hund TJ. βIV-Spectrin/STAT3 complex regulates fibroblast phenotype, fibrosis, and cardiac function. JCI Insight 2019; 4:131046. [PMID: 31550236 DOI: 10.1172/jci.insight.131046] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 09/18/2019] [Indexed: 01/30/2023] Open
Abstract
Increased fibrosis is a characteristic remodeling response to biomechanical and neurohumoral stress and a determinant of cardiac mechanical and electrical dysfunction in disease. Stress-induced activation of cardiac fibroblasts (CFs) is a critical step in the fibrotic response, although the precise sequence of events underlying activation of these critical cells in vivo remain unclear. Here, we tested the hypothesis that a βIV-spectrin/STAT3 complex is essential for maintenance of a quiescent phenotype (basal nonactivated state) in CFs. We reported increased fibrosis, decreased cardiac function, and electrical impulse conduction defects in genetic and acquired mouse models of βIV-spectrin deficiency. Loss of βIV-spectrin function promoted STAT3 nuclear accumulation and transcriptional activity, and it altered gene expression and CF activation. Furthermore, we demonstrate that a quiescent phenotype may be restored in βIV-spectrin-deficient fibroblasts by expressing a βIV-spectrin fragment including the STAT3-binding domain or through pharmacological STAT3 inhibition. We found that in vivo STAT3 inhibition abrogates fibrosis and cardiac dysfunction in the setting of global βIV-spectrin deficiency. Finally, we demonstrate that fibroblast-specific deletion of βIV-spectrin is sufficient to induce fibrosis and decreased cardiac function. We propose that the βIV-spectrin/STAT3 complex is a determinant of fibroblast phenotype and fibrosis, with implications for remodeling response in cardiovascular disease (CVD).
Collapse
Affiliation(s)
- Nehal J Patel
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Drew M Nassal
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Amara D Greer-Short
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Sathya D Unudurthi
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Benjamin W Scandling
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Daniel Gratz
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Xianyao Xu
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Anuradha Kalyanasundaram
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Physiology and Cell Biology, and
| | - Vadim V Fedorov
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Physiology and Cell Biology, and
| | - Federica Accornero
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Physiology and Cell Biology, and
| | - Peter J Mohler
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Physiology and Cell Biology, and.,Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Keith J Gooch
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Thomas J Hund
- The Frick Center for Heart Failure and Arrhythmia, Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA.,Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| |
Collapse
|
16
|
Grimes KM, Prasad V, McNamara JW. Supporting the heart: Functions of the cardiomyocyte's non-sarcomeric cytoskeleton. J Mol Cell Cardiol 2019; 131:187-196. [PMID: 30978342 DOI: 10.1016/j.yjmcc.2019.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 04/02/2019] [Accepted: 04/05/2019] [Indexed: 02/06/2023]
Abstract
The non-contractile cytoskeleton in cardiomyocytes is comprised of cytoplasmic actin, microtubules, and intermediate filaments. In addition to providing mechanical support to these cells, these structures are important effectors of tension-sensing and signal transduction and also provide networks for the transport of proteins and organelles. The majority of our knowledge on the function and structure of these cytoskeletal networks comes from research on proliferative cell types. However, in recent years, researchers have begun to show that there are important cardiomyocyte-specific functions of the cytoskeleton. Here we will discuss the current state of cytoskeletal biology in cardiomyocytes, as well as research from other cell types, that together suggest there is a wealth of knowledge on cardiac health and disease waiting to be uncovered through exploration of the complex signaling networks of cardiomyocyte non-sarcomeric cytoskeletal proteins.
Collapse
Affiliation(s)
- Kelly M Grimes
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Vikram Prasad
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - James W McNamara
- Heart, Lung and Vascular Institute, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
17
|
Hulsurkar M, Quick AP, Wehrens XH. STAT3: a link between CaMKII-βIV-spectrin and maladaptive remodeling? J Clin Invest 2018; 128:5219-5221. [PMID: 30418170 PMCID: PMC6264720 DOI: 10.1172/jci124778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
βIV-Spectrin, along with ankyrin and Ca2+/calmodulin-dependent kinase II (CaMKII), has been shown to form local signaling domains at the intercalated disc, while playing a key role in the regulation of Na+ and K+ channels in cardiomyocytes. In this issue of the JCI, Unudurthi et al. show that under chronic pressure overload conditions, CaMKII activation leads to βIV-spectrin degradation, resulting in the release of sequestered STAT3 from the intercalated discs. This in turn leads to dysregulation of STAT3-mediated gene transcription, maladaptive remodeling, fibrosis, and decreased cardiac function. Overall, this study presents interesting findings regarding the role of CaMKII and βIV-spectrin under physiological as well as pathological conditions.
Collapse
Affiliation(s)
- Mohit Hulsurkar
- Cardiovascular Research Institute
- Department of Molecular Physiology and Biophysics
| | - Ann P. Quick
- Cardiovascular Research Institute
- Department of Molecular Physiology and Biophysics
| | - Xander H.T. Wehrens
- Cardiovascular Research Institute
- Department of Molecular Physiology and Biophysics
- Department of Medicine
- Department of Pediatrics
- Department of Neuroscience, and
- Center for Space Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
18
|
Unudurthi SD, Nassal D, Greer-Short A, Patel N, Howard T, Xu X, Onal B, Satroplus T, Hong D, Lane C, Dalic A, Koenig SN, Lehnig AC, Baer LA, Musa H, Stanford KI, Smith S, Mohler PJ, Hund TJ. βIV-Spectrin regulates STAT3 targeting to tune cardiac response to pressure overload. J Clin Invest 2018; 128:5561-5572. [PMID: 30226828 DOI: 10.1172/jci99245] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 09/13/2018] [Indexed: 01/19/2023] Open
Abstract
Heart failure (HF) remains a major source of morbidity and mortality in the US. The multifunctional Ca2+/calmodulin-dependent kinase II (CaMKII) has emerged as a critical regulator of cardiac hypertrophy and failure, although the mechanisms remain unclear. Previous studies have established that the cytoskeletal protein βIV-spectrin coordinates local CaMKII signaling. Here, we sought to determine the role of a spectrin-CaMKII complex in maladaptive remodeling in HF. Chronic pressure overload (6 weeks of transaortic constriction [TAC]) induced a decrease in cardiac function in WT mice but not in animals expressing truncated βIV-spectrin lacking spectrin-CaMKII interaction (qv3J mice). Underlying the observed differences in function was an unexpected differential regulation of STAT3-related genes in qv3J TAC hearts. In vitro experiments demonstrated that βIV-spectrin serves as a target for CaMKII phosphorylation, which regulates its stability. Cardiac-specific βIV-spectrin-KO (βIV-cKO) mice showed STAT3 dysregulation, fibrosis, and decreased cardiac function at baseline, similar to what was observed with TAC in WT mice. STAT3 inhibition restored normal cardiac structure and function in βIV-cKO and WT TAC hearts. Our studies identify a spectrin-based complex essential for regulation of the cardiac response to chronic pressure overload. We anticipate that strategies targeting the new spectrin-based "statosome" will be effective at suppressing maladaptive remodeling in response to chronic stress.
Collapse
Affiliation(s)
- Sathya D Unudurthi
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Drew Nassal
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Amara Greer-Short
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Nehal Patel
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Taylor Howard
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Xianyao Xu
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Birce Onal
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Tony Satroplus
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Deborah Hong
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Cemantha Lane
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Alyssa Dalic
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Sara N Koenig
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Physiology and Cell Biology, and
| | - Adam C Lehnig
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Physiology and Cell Biology, and
| | - Lisa A Baer
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Physiology and Cell Biology, and
| | - Hassan Musa
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Kristin I Stanford
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Physiology and Cell Biology, and
| | - Sakima Smith
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Peter J Mohler
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Physiology and Cell Biology, and.,Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Thomas J Hund
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.,Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA.,Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, Ohio, USA
| |
Collapse
|
19
|
Abraham DM, Lee TE, Watson LJ, Mao L, Chandok G, Wang HG, Frangakis S, Pitt GS, Shah SH, Wolf MJ, Rockman HA. The two-pore domain potassium channel TREK-1 mediates cardiac fibrosis and diastolic dysfunction. J Clin Invest 2018; 128:4843-4855. [PMID: 30153110 PMCID: PMC6205385 DOI: 10.1172/jci95945] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/23/2018] [Indexed: 01/08/2023] Open
Abstract
Cardiac two-pore domain potassium channels (K2P) exist in organisms from Drosophila to humans; however, their role in cardiac function is not known. We identified a K2P gene, CG8713 (sandman), in a Drosophila genetic screen and show that sandman is critical to cardiac function. Mice lacking an ortholog of sandman, TWIK-related potassium channel (TREK-1, also known Kcnk2), exhibit exaggerated pressure overload-induced concentric hypertrophy and alterations in fetal gene expression, yet retain preserved systolic and diastolic cardiac function. While cardiomyocyte-specific deletion of TREK-1 in response to in vivo pressure overload resulted in cardiac dysfunction, TREK-1 deletion in fibroblasts prevented deterioration in cardiac function. The absence of pressure overload-induced dysfunction in TREK-1-KO mice was associated with diminished cardiac fibrosis and reduced activation of JNK in cardiomyocytes and fibroblasts. These findings indicate a central role for cardiac fibroblast TREK-1 in the pathogenesis of pressure overload-induced cardiac dysfunction and serve as a conceptual basis for its inhibition as a potential therapy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Howard A Rockman
- Department of Medicine
- Department of Cell Biology, and
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
20
|
Vairamani K, Prasad V, Wang Y, Huang W, Chen Y, Medvedovic M, Lorenz JN, Shull GE. NBCe1 Na +-HCO3 - cotransporter ablation causes reduced apoptosis following cardiac ischemia-reperfusion injury in vivo. World J Cardiol 2018; 10:97-109. [PMID: 30344957 PMCID: PMC6189072 DOI: 10.4330/wjc.v10.i9.97] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/05/2018] [Accepted: 07/16/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the hypothesis that cardiomyocyte-specific loss of the electrogenic NBCe1 Na+-HCO3- cotransporter is cardioprotective during in vivo ischemia-reperfusion (IR) injury.
METHODS An NBCe1 (Slc4a4 gene) conditional knockout mouse (KO) model was prepared by gene targeting. Cardiovascular performance of wildtype (WT) and cardiac-specific NBCe1 KO mice was analyzed by intraventricular pressure measurements, and changes in cardiac gene expression were determined by RNA Seq analysis. Response to in vivo IR injury was analyzed after 30 min occlusion of the left anterior descending artery followed by 3 h of reperfusion.
RESULTS Loss of NBCe1 in cardiac myocytes did not impair cardiac contractility or relaxation under basal conditions or in response to β-adrenergic stimulation, and caused only limited changes in gene expression patterns, such as those for electrical excitability. However, following ischemia and reperfusion, KO heart sections exhibited significantly fewer apoptotic nuclei than WT sections.
CONCLUSION These studies indicate that cardiac-specific loss of NBCe1 does not impair cardiovascular performance, causes only minimal changes in gene expression patterns, and protects against IR injury in vivo .
Collapse
Affiliation(s)
- Kanimozhi Vairamani
- Division of Oncology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3026, United States
| | - Vikram Prasad
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229-3039, United States
| | - Yigang Wang
- Department of Pathology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0529, United States
| | - Wei Huang
- Department of Pathology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0529, United States
| | - Yinhua Chen
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229-3039, United States
| | - Mario Medvedovic
- Department of Environmental Health, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0056, United States
| | - John N Lorenz
- Department of Pharmacology and Systems Physiology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0575, United States
| | - Gary E Shull
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0524, United States
| |
Collapse
|
21
|
Howard T, Greer-Short A, Satroplus T, Patel N, Nassal D, Mohler PJ, Hund TJ. CaMKII-dependent late Na + current increases electrical dispersion and arrhythmia in ischemia-reperfusion. Am J Physiol Heart Circ Physiol 2018; 315:H794-H801. [PMID: 29932771 DOI: 10.1152/ajpheart.00197.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The mechanisms underlying Ca2+/calmodulin-dependent protein kinase II (CaMKII)-induced arrhythmias in ischemia-reperfusion (I/R) are not fully understood. We tested the hypothesis that CaMKII increases late Na+ current ( INa,L) via phosphorylation of Nav1.5 at Ser571 during I/R, thereby increasing arrhythmia susceptibility. To test our hypothesis, we studied isolated, Langendorff-perfused hearts from wild-type (WT) mice and mice expressing Nav channel variants Nav1.5-Ser571E (S571E) and Nav1.5-Ser571A (S571A). WT hearts showed a significant increase in the levels of phosphorylated CaMKII and Nav1.5 at Ser571 [p-Nav1.5(S571)] after 15 min of global ischemia (just before the onset of reperfusion). Optical mapping experiments revealed an increase in action potential duration (APD) and APD dispersion without changes in conduction velocity during I/R in WT and S571E compared with S571A hearts. At the same time, WT and S571E hearts showed an increase in spontaneous arrhythmia events (e.g., premature ventricular contractions) and an increase in the inducibility of reentrant arrhythmias during reperfusion. Pretreatment of WT hearts with the Na+ channel blocker mexiletine (10 μM) normalized APD dispersion and reduced arrhythmia susceptibility during I/R. We conclude that CaMKII-dependent phosphorylation of Nav1.5 is a crucial driver for increased INa,L, arrhythmia triggers, and substrate during I/R. Selective targeting of this CaMKII-dependent pathway may have therapeutic potential for reducing arrhythmias in the setting of I/R. NEW & NOTEWORTHY Ca2+/calmodulin-dependent protein kinase II (CaMKII) phosphorylation of Nav1.5 at Ser571 leads to a prolongation of action potential duration (APD), increased APD dispersion, and increased arrhythmia susceptibility after ischemia-reperfusion in isolated mouse hearts. Genetic ablation of the CaMKII-dependent phosphorylation site Ser571 on Nav1.5 or low-dose mexiletine (to inhibit late Na+ current) reduced APD dispersion, arrhythmia triggers, and ventricular tachycardia inducibility.
Collapse
Affiliation(s)
- Taylor Howard
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, Ohio.,Department of Biomedical Engineering, College of Engineering, The Ohio State University , Columbus, Ohio
| | - Amara Greer-Short
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, Ohio.,Department of Biomedical Engineering, College of Engineering, The Ohio State University , Columbus, Ohio
| | - Tony Satroplus
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, Ohio.,Department of Biomedical Engineering, College of Engineering, The Ohio State University , Columbus, Ohio
| | - Nehal Patel
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, Ohio.,Department of Biomedical Engineering, College of Engineering, The Ohio State University , Columbus, Ohio
| | - Drew Nassal
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, Ohio.,Department of Biomedical Engineering, College of Engineering, The Ohio State University , Columbus, Ohio
| | - Peter J Mohler
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, Ohio.,Department of Internal Medicine, The Ohio State University Wexner Medical Center , Columbus, Ohio.,Department of Physiology and Cell Biology, The Ohio State University Wexner Medical Center , Columbus, Ohio
| | - Thomas J Hund
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center , Columbus, Ohio.,Department of Biomedical Engineering, College of Engineering, The Ohio State University , Columbus, Ohio.,Department of Internal Medicine, The Ohio State University Wexner Medical Center , Columbus, Ohio
| |
Collapse
|
22
|
Garcia-Caballero A, Zhang FX, Hodgkinson V, Huang J, Chen L, Souza IA, Cain S, Kass J, Alles S, Snutch TP, Zamponi GW. T-type calcium channels functionally interact with spectrin (α/β) and ankyrin B. Mol Brain 2018; 11:24. [PMID: 29720258 PMCID: PMC5930937 DOI: 10.1186/s13041-018-0368-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 04/23/2018] [Indexed: 12/17/2022] Open
Abstract
This study describes the functional interaction between the Cav3.1 and Cav3.2 T-type calcium channels and cytoskeletal spectrin (α/β) and ankyrin B proteins. The interactions were identified utilizing a proteomic approach to identify proteins that interact with a conserved negatively charged cytosolic region present in the carboxy-terminus of T-type calcium channels. Deletion of this stretch of amino acids decreased binding of Cav3.1 and Cav3.2 calcium channels to spectrin (α/β) and ankyrin B and notably also reduced T-type whole cell current densities in expression systems. Furthermore, fluorescence recovery after photobleaching analysis of mutant channels lacking the proximal C-terminus region revealed reduced recovery of both Cav3.1 and Cav3.2 mutant channels in hippocampal neurons. Knockdown of spectrin α and ankyrin B decreased the density of endogenous Cav3.2 in hippocampal neurons. These findings reveal spectrin (α/β) / ankyrin B cytoskeletal and signaling proteins as key regulators of T-type calcium channels expressed in the nervous system.
Collapse
Affiliation(s)
- Agustin Garcia-Caballero
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Fang-Xiong Zhang
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Victoria Hodgkinson
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Junting Huang
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Lina Chen
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Ivana A Souza
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada
| | - Stuart Cain
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Colombia, Vancouver, BC, Canada
| | - Jennifer Kass
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Colombia, Vancouver, BC, Canada
| | - Sascha Alles
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Colombia, Vancouver, BC, Canada
| | - Terrance P Snutch
- Michael Smith Laboratories and Djavad Mowafaghian Centre for Brain Health, University of British Colombia, Vancouver, BC, Canada
| | - Gerald W Zamponi
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, 3330 Hospital Dr. NW, Calgary, T2N 4N1, Canada.
| |
Collapse
|
23
|
Hund TJ, Unudurthi SD, Greer-Short A, Patel N, Nassal D. Spectrin-based pathways underlying electrical and mechanical dysfunction in cardiac disease. Expert Rev Cardiovasc Ther 2018; 16:59-65. [PMID: 29257730 PMCID: PMC6064643 DOI: 10.1080/14779072.2018.1418664] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
INTRODUCTION In the heart, pathways that transduce extracellular environmental cues (e.g. mechanical force, inflammatory stress) into electrical and/or chemical signals at the cellular level are critical for the organ-level response to chronic biomechanical/neurohumoral stress. Specifically, a diverse array of membrane-bound receptors and stretch-activated proteins converge on a network of intracellular signaling cascades that control gene expression, protein translation, degradation and/or regulation. These cellular reprogramming events ultimately lead to changes in cell excitability, growth, proliferation, and/or survival. Areas covered: The actin/spectrin cytoskeleton has emerged as having important roles in not only providing structural support for organelle function but also in serving as a signaling 'superhighway,' linking signaling events at/near the membrane to distal cellular domains (e.g. nucleus, mitochondria). Furthermore, recent work suggests that the integrity of the actin/spectrin cytoskeleton is critical for canonical signaling of pathways involved in cellular response to stress. This review discusses these emerging roles for spectrin and consider implications for heart function and disease. Expert commentary: Despite growth in our understanding of the broader roles for spectrins in cardiac myocytes and other metazoan cells, there remain important unanswered questions, the answers to which may point the way to new therapies for human cardiac disease patients.
Collapse
Affiliation(s)
- Thomas J. Hund
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus OH 43210
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus OH 43210
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus OH 43210
| | - Sathya D. Unudurthi
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus OH 43210
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus OH 43210
| | - Amara Greer-Short
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus OH 43210
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus OH 43210
| | - Nehal Patel
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus OH 43210
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus OH 43210
| | - Drew Nassal
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus OH 43210
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus OH 43210
| |
Collapse
|
24
|
Greer-Short A, Hund TJ. Editorial commentary: Mathematical modeling as a tool to elucidate fundamental principles in cardiac electrophysiology. Trends Cardiovasc Med 2017; 28:243-245. [PMID: 29269287 DOI: 10.1016/j.tcm.2017.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 12/01/2017] [Indexed: 11/18/2022]
Affiliation(s)
- Amara Greer-Short
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH 43210; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH
| | - Thomas J Hund
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH 43210; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH; Department of Internal Medicine, The Ohio State University Wexner Medical Center, The Ohio State University, Columbus, OH.
| |
Collapse
|
25
|
El Refaey MM, Mohler PJ. Ankyrins and Spectrins in Cardiovascular Biology and Disease. Front Physiol 2017; 8:852. [PMID: 29163198 PMCID: PMC5664424 DOI: 10.3389/fphys.2017.00852] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 10/12/2017] [Indexed: 12/31/2022] Open
Abstract
Ankyrins are adaptor proteins critical for the expression and targeting of cardiac membrane proteins, signaling molecules, and cytoskeletal elements. Findings in humans and animal models have highlighted the in vivo roles for ankyrins in normal physiology and in cardiovascular disease, most notably in cardiac arrhythmia. For example, human ANK2 loss-of-function variants are associated with a complex array of electrical and structural phenotypes now termed “ankyrin-B syndrome,” whereas alterations in the ankyrin-G pathway for Nav channel targeting are associated with human Brugada syndrome. Further, both ankyrin-G and -B are now linked with acquired forms of cardiovascular disease including myocardial infarction and atrial fibrillation. Spectrins are ankyrin-associated proteins and recent studies support the critical role of ankyrin-spectrin interactions in normal cardiac physiology as well as regulation of key ion channel and signaling complexes. This review will highlight the roles of ankyrins and spectrins in cardiovascular physiology as well as illustrate the link between the dysfunction in ankyrin- and spectrin-based pathways and disease.
Collapse
Affiliation(s)
- Mona M El Refaey
- Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,Department of Physiology & Cell Biology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Peter J Mohler
- Dorothy M. Davis Heart and Lung Research Institute, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,Department of Physiology & Cell Biology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States.,Department of Internal Medicine, Division of Cardiovascular Medicine, College of Medicine, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
26
|
Decher N, Kiper AK, Rinné S. Stretch-activated potassium currents in the heart: Focus on TREK-1 and arrhythmias. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 130:223-232. [PMID: 28526352 DOI: 10.1016/j.pbiomolbio.2017.05.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/09/2017] [Accepted: 05/15/2017] [Indexed: 12/26/2022]
Abstract
This review focuses on the role and the molecular candidates of the cardiac stretch-activated potassium current (SAK). The functional properties of the two-pore domain potassium (K2P) channel TREK-1, a major candidate for the cardiac SAK, are analyzed and the molecular mechanism of stretch-activation in K2P potassium channels is discussed. Furthermore, the functional modulation of TREK-1 by different cardiac interaction partners, as well as evidence for the functional role of the stretch-dependent TREK-1 and its putative subunits in the heart is reviewed. In addition, we summarize the recent evidence that TREK-1 is involved in the pathogenesis of human cardiac arrhythmias.
Collapse
Affiliation(s)
- Niels Decher
- Institute for Physiology and Pathophysiology, AG Vegetative Physiology, Deutschhausstrasse 1-2, 35037 Marburg, Germany.
| | - Aytug K Kiper
- Institute for Physiology and Pathophysiology, AG Vegetative Physiology, Deutschhausstrasse 1-2, 35037 Marburg, Germany
| | - Susanne Rinné
- Institute for Physiology and Pathophysiology, AG Vegetative Physiology, Deutschhausstrasse 1-2, 35037 Marburg, Germany
| |
Collapse
|
27
|
Schindler RF, Scotton C, French V, Ferlini A, Brand T. The Popeye Domain Containing Genes and their Function in Striated Muscle. J Cardiovasc Dev Dis 2016; 3. [PMID: 27347491 PMCID: PMC4918794 DOI: 10.3390/jcdd3020022] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 05/31/2016] [Accepted: 06/13/2016] [Indexed: 01/06/2023] Open
Abstract
The Popeye domain containing (POPDC) genes encode a novel class of cAMP effector proteins, which are abundantly expressed in heart and skeletal muscle. Here, we will review their role in striated muscle as deduced from work in cell and animal models and the recent analysis of patients carrying a missense mutation in POPDC1. Evidence suggests that POPDC proteins control membrane trafficking of interacting proteins. Furthermore, we will discuss the current catalogue of established protein-protein interactions. In recent years, the number of POPDC-interacting proteins has been rising and currently includes ion channels (TREK-1), sarcolemma-associated proteins serving functions in mechanical stability (dystrophin), compartmentalization (caveolin 3), scaffolding (ZO-1), trafficking (NDRG4, VAMP2/3) and repair (dysferlin) or acting as a guanine nucleotide exchange factor for Rho-family GTPases (GEFT). Recent evidence suggests that POPDC proteins might also control the cellular level of the nuclear proto-oncoprotein c-Myc. These data suggest that this family of cAMP-binding proteins probably serves multiple roles in striated muscle.
Collapse
Affiliation(s)
- Roland Fr Schindler
- Developmental Dynamics, Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College London, Hill End Road, Harefield, UB9 6JH, United Kingdom
| | - Chiara Scotton
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Vanessa French
- Developmental Dynamics, Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College London, Hill End Road, Harefield, UB9 6JH, United Kingdom
| | - Alessandra Ferlini
- Medical Genetics Unit, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Thomas Brand
- Developmental Dynamics, Harefield Heart Science Centre, National Heart and Lung Institute, Imperial College London, Hill End Road, Harefield, UB9 6JH, United Kingdom
| |
Collapse
|
28
|
Smith SA, Hughes LD, Kline CF, Kempton AN, Dorn LE, Curran J, Makara M, Webb TR, Wright P, Voigt N, Binkley PF, Janssen PML, Kilic A, Carnes CA, Dobrev D, Rasband MN, Hund TJ, Mohler PJ. Dysfunction of the β2-spectrin-based pathway in human heart failure. Am J Physiol Heart Circ Physiol 2016; 310:H1583-91. [PMID: 27106045 DOI: 10.1152/ajpheart.00875.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/11/2016] [Indexed: 11/22/2022]
Abstract
β2-Spectrin is critical for integrating membrane and cytoskeletal domains in excitable and nonexcitable cells. The role of β2-spectrin for vertebrate function is illustrated by dysfunction of β2-spectrin-based pathways in disease. Recently, defects in β2-spectrin association with protein partner ankyrin-B were identified in congenital forms of human arrhythmia. However, the role of β2-spectrin in common forms of acquired heart failure and arrhythmia is unknown. We report that β2-spectrin protein levels are significantly altered in human cardiovascular disease as well as in large and small animal cardiovascular disease models. Specifically, β2-spectrin levels were decreased in atrial samples of patients with atrial fibrillation compared with tissue from patients in sinus rhythm. Furthermore, compared with left ventricular samples from nonfailing hearts, β2-spectrin levels were significantly decreased in left ventricle of ischemic- and nonischemic heart failure patients. Left ventricle samples of canine and murine heart failure models confirm reduced β2-spectrin protein levels. Mechanistically, we identify that β2-spectrin levels are tightly regulated by posttranslational mechanisms, namely Ca(2+)- and calpain-dependent proteases. Furthermore, consistent with this data, we observed Ca(2+)- and calpain-dependent loss of β2-spectrin downstream effector proteins, including ankyrin-B in heart. In summary, our findings illustrate that β2-spectrin and downstream molecules are regulated in multiple forms of cardiovascular disease via Ca(2+)- and calpain-dependent proteolysis.
Collapse
Affiliation(s)
- Sakima A Smith
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio;
| | - Langston D Hughes
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio
| | - Crystal F Kline
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; Department of Physiology and Cell Biology, Columbus, Ohio
| | - Amber N Kempton
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio; Department of Physiology and Cell Biology, Columbus, Ohio
| | - Lisa E Dorn
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; Department of Physiology and Cell Biology, Columbus, Ohio
| | - Jerry Curran
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; Department of Physiology and Cell Biology, Columbus, Ohio
| | - Michael Makara
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; Department of Physiology and Cell Biology, Columbus, Ohio
| | - Tyler R Webb
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; Department of Physiology and Cell Biology, Columbus, Ohio
| | - Patrick Wright
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; Department of Physiology and Cell Biology, Columbus, Ohio
| | - Niels Voigt
- Faculty of Medicine, Institute of Pharmacology, University Duisburg-Essen, Essen, Germany; and
| | - Philip F Binkley
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio
| | - Paul M L Janssen
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio; Department of Physiology and Cell Biology, Columbus, Ohio
| | - Ahmet Kilic
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Cynthia A Carnes
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Dobromir Dobrev
- Faculty of Medicine, Institute of Pharmacology, University Duisburg-Essen, Essen, Germany; and
| | - Matthew N Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas
| | - Thomas J Hund
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, Ohio
| | - Peter J Mohler
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio; Division of Cardiovascular Medicine, Department of Internal Medicine, The Ohio State University, Columbus, Ohio; Department of Physiology and Cell Biology, Columbus, Ohio
| |
Collapse
|
29
|
Unudurthi SD, Wu X, Qian L, Amari F, Onal B, Li N, Makara MA, Smith SA, Snyder J, Fedorov VV, Coppola V, Anderson ME, Mohler PJ, Hund TJ. Two-Pore K+ Channel TREK-1 Regulates Sinoatrial Node Membrane Excitability. J Am Heart Assoc 2016; 5:e002865. [PMID: 27098968 PMCID: PMC4859279 DOI: 10.1161/jaha.115.002865] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Two‐pore K+ channels have emerged as potential targets to selectively regulate cardiac cell membrane excitability; however, lack of specific inhibitors and relevant animal models has impeded the effort to understand the role of 2‐pore K+ channels in the heart and their potential as a therapeutic target. The objective of this study was to determine the role of mechanosensitive 2‐pore K+ channel family member TREK‐1 in control of cardiac excitability. Methods and Results Cardiac‐specific TREK‐1–deficient mice (αMHC‐Kcnkf/f) were generated and found to have a prevalent sinoatrial phenotype characterized by bradycardia with frequent episodes of sinus pause following stress. Action potential measurements from isolated αMHC‐Kcnk2f/f sinoatrial node cells demonstrated decreased background K+ current and abnormal sinoatrial cell membrane excitability. To identify novel pathways for regulating TREK‐1 activity and sinoatrial node excitability, mice expressing a truncated allele of the TREK‐1–associated cytoskeletal protein βIV‐spectrin (qv4J mice) were analyzed and found to display defects in cell electrophysiology as well as loss of normal TREK‐1 membrane localization. Finally, the βIV‐spectrin/TREK‐1 complex was found to be downregulated in the right atrium from a canine model of sinoatrial node dysfunction and in human cardiac disease. Conclusions These findings identify a TREK‐1–dependent pathway essential for normal sinoatrial node cell excitability that serves as a potential target for selectively regulating sinoatrial node cell function.
Collapse
Affiliation(s)
- Sathya D Unudurthi
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH
| | - Xiangqiong Wu
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH
| | - Lan Qian
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH
| | - Foued Amari
- Department of Molecular Virology, Immunology & Medical Genetics, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Birce Onal
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH
| | - Ning Li
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH Department of Physiology & Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Michael A Makara
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH Department of Physiology & Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Sakima A Smith
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Jedidiah Snyder
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH
| | - Vadim V Fedorov
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH Department of Physiology & Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Vincenzo Coppola
- Department of Molecular Virology, Immunology & Medical Genetics, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Mark E Anderson
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Peter J Mohler
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH Department of Physiology & Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH
| | - Thomas J Hund
- The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, OH Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH
| |
Collapse
|
30
|
Du Y, Kiyoshi CM, Wang Q, Wang W, Ma B, Alford CC, Zhong S, Wan Q, Chen H, Lloyd EE, Bryan RM, Zhou M. Genetic Deletion of TREK-1 or TWIK-1/TREK-1 Potassium Channels does not Alter the Basic Electrophysiological Properties of Mature Hippocampal Astrocytes In Situ. Front Cell Neurosci 2016; 10:13. [PMID: 26869883 PMCID: PMC4738265 DOI: 10.3389/fncel.2016.00013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 01/14/2016] [Indexed: 01/03/2023] Open
Abstract
We have recently shown that a linear current-to-voltage (I-V) relationship of membrane conductance (passive conductance) reflects the intrinsic property of K+ channels in mature astrocytes. While passive conductance is known to underpin a highly negative and stable membrane potential (VM) essential for the basic homeostatic function of astrocytes, a complete repertoire of the involved K+ channels remains elusive. TREK-1 two-pore domain K+ channel (K2P) is highly expressed in astrocytes, and covalent association of TREK-1 with TWIK-1, another highly expressed astrocytic K2P, has been reported as a mechanism underlying the trafficking of heterodimer TWIK-1/TREK-1 channel to the membrane and contributing to astrocyte passive conductance. To decipher the individual contribution of TREK-1 and address whether the appearance of passive conductance is conditional to the co-expression of TWIK-1/TREK-1 in astrocytes, TREK-1 single and TWIK-1/TREK-1 double gene knockout mice were used in the present study. The relative quantity of mRNA encoding other astrocyte K+ channels, such as Kir4.1, Kir5.1, and TREK-2, was not altered in these gene knockout mice. Whole-cell recording from hippocampal astrocytes in situ revealed no detectable changes in astrocyte passive conductance, VM, or membrane input resistance (Rin) in either kind of gene knockout mouse. Additionally, TREK-1 proteins were mainly located in the intracellular compartments of the hippocampus. Altogether, genetic deletion of TREK-1 alone or together with TWIK-1 produced no obvious alteration in the basic electrophysiological properties of hippocampal astrocytes. Thus, future research focusing on other K+ channels may shed light on this long-standing and important question in astrocyte physiology.
Collapse
Affiliation(s)
- Yixing Du
- Department of Neuroscience, The Ohio State University Wexner Medical CenterColumbus, OH, USA; Department of Neurology, The First Affiliated Hospital of Nanjing Medical UniversityNanjing, China
| | - Conrad M Kiyoshi
- Department of Neuroscience, The Ohio State University Wexner Medical Center Columbus, OH, USA
| | - Qi Wang
- Department of Neuroscience, The Ohio State University Wexner Medical CenterColumbus, OH, USA; Department of Neurology, Meitan General HospitalXibahe Nanli, Beijing, China
| | - Wei Wang
- Department of Physiology, Institute of Brain Research, School of Basic Medicine, Huazhong University of Science and Technology Wuhan, China
| | - Baofeng Ma
- Department of Neuroscience, The Ohio State University Wexner Medical Center Columbus, OH, USA
| | - Catherine C Alford
- Department of Neuroscience, The Ohio State University Wexner Medical Center Columbus, OH, USA
| | - Shiying Zhong
- Department of Neuroscience, The Ohio State University Wexner Medical Center Columbus, OH, USA
| | - Qi Wan
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University Nanjing, China
| | - Haijun Chen
- Department of Biological Science, University at Albany, State University of New York Albany, NY, USA
| | - Eric E Lloyd
- Department of Anesthesiology, Baylor College of Medicine Houston, TX, USA
| | - Robert M Bryan
- Department of Anesthesiology, Baylor College of Medicine Houston, TX, USA
| | - Min Zhou
- Department of Neuroscience, The Ohio State University Wexner Medical Center Columbus, OH, USA
| |
Collapse
|
31
|
Schindler RFR, Brand T. The Popeye domain containing protein family--A novel class of cAMP effectors with important functions in multiple tissues. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 120:28-36. [PMID: 26772438 PMCID: PMC4821176 DOI: 10.1016/j.pbiomolbio.2016.01.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/03/2015] [Accepted: 01/04/2016] [Indexed: 12/12/2022]
Abstract
Popeye domain containing (Popdc) proteins are a unique family, which combine several different properties and functions in a surprisingly complex fashion. They are expressed in multiple tissues and cell types, present in several subcellular compartments, interact with different classes of proteins, and are associated with a variety of physiological and pathophysiological processes. Moreover, Popdc proteins bind the second messenger cAMP with high affinity and it is thought that they act as a novel class of cAMP effector proteins. Here, we will review the most important findings about the Popdc family, which accumulated since its discovery about 15 years ago. We will be focussing on Popdc protein interaction and function in striated muscle tissue. However, as a full picture only emerges if all aspects are taken into account, we will also describe what is currently known about the role of Popdc proteins in epithelial cells and in various types of cancer, and discuss these findings with regard to their relevance for cardiac and skeletal muscle.
Collapse
Affiliation(s)
- Roland F R Schindler
- Heart Science Centre, National Heart and Lung Institute (NHLI), Imperial College London, United Kingdom
| | - Thomas Brand
- Heart Science Centre, National Heart and Lung Institute (NHLI), Imperial College London, United Kingdom.
| |
Collapse
|
32
|
An Adaptable Spectrin/Ankyrin-Based Mechanism for Long-Range Organization of Plasma Membranes in Vertebrate Tissues. CURRENT TOPICS IN MEMBRANES 2015; 77:143-84. [PMID: 26781832 DOI: 10.1016/bs.ctm.2015.10.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Ankyrins are membrane-associated proteins that together with their spectrin partners are responsible for micron-scale organization of vertebrate plasma membranes, including those of erythrocytes, excitable membranes of neurons and heart, lateral membrane domains of columnar epithelial cells, and striated muscle. Ankyrins coordinate functionally related membrane transporters and cell adhesion proteins (15 protein families identified so far) within plasma membrane compartments through independently evolved interactions of intrinsically disordered sequences with a highly conserved peptide-binding groove formed by the ANK repeat solenoid. Ankyrins are coupled to spectrins, which are elongated organelle-sized proteins that form mechanically resilient arrays through cross-linking by specialized actin filaments. In addition to protein interactions, cellular targeting and assembly of spectrin/ankyrin domains also critically depend on palmitoylation of ankyrin-G by aspartate-histidine-histidine-cysteine 5/8 palmitoyltransferases, as well as interaction of beta-2 spectrin with phosphoinositide lipids. These lipid-dependent spectrin/ankyrin domains are not static but are locally dynamic and determine membrane identity through opposing endocytosis of bulk lipids as well as specific proteins. A partnership between spectrin, ankyrin, and cell adhesion molecules first emerged in bilaterians over 500 million years ago. Ankyrin and spectrin may have been recruited to plasma membranes from more ancient roles in organelle transport. The basic bilaterian spectrin-ankyrin toolkit markedly expanded in vertebrates through gene duplications combined with variation in unstructured intramolecular regulatory sequences as well as independent evolution of ankyrin-binding activity by ion transporters involved in action potentials and calcium homeostasis. In addition, giant vertebrate ankyrins with specialized roles in axons acquired new coding sequences by exon shuffling. We speculate that early axon initial segments and epithelial lateral membranes initially were based on spectrin-ankyrin-cell adhesion molecule assemblies and subsequently served as "incubators," where ion transporters independently acquired ankyrin-binding activity through positive selection.
Collapse
|
33
|
Glynn P, Musa H, Wu X, Unudurthi SD, Little S, Qian L, Wright PJ, Radwanski PB, Gyorke S, Mohler PJ, Hund TJ. Voltage-Gated Sodium Channel Phosphorylation at Ser571 Regulates Late Current, Arrhythmia, and Cardiac Function In Vivo. Circulation 2015; 132:567-77. [PMID: 26187182 DOI: 10.1161/circulationaha.114.015218] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 06/12/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Voltage-gated Na(+) channels (Nav) are essential for myocyte membrane excitability and cardiac function. Nav current (INa) is a large-amplitude, short-duration spike generated by rapid channel activation followed immediately by inactivation. However, even under normal conditions, a small late component of INa (INa,L) persists because of incomplete/failed inactivation of a subpopulation of channels. Notably, INa,L is directly linked with both congenital and acquired disease states. The multifunctional Ca(2+)/calmodulin-dependent kinase II (CaMKII) has been identified as an important activator of INa,L in disease. Several potential CaMKII phosphorylation sites have been discovered, including Ser571 in the Nav1.5 DI-DII linker, but the molecular mechanism underlying CaMKII-dependent regulation of INa,L in vivo remains unknown. METHODS AND RESULTS To determine the in vivo role of Ser571, 2 Scn5a knock-in mouse models were generated expressing either: (1) Nav1.5 with a phosphomimetic mutation at Ser571 (S571E), or (2) Nav1.5 with the phosphorylation site ablated (S571A). Electrophysiology studies revealed that Ser571 regulates INa,L but not other channel properties previously linked to CaMKII. Ser571-mediated increases in INa,L promote abnormal repolarization and intracellular Ca(2+) handling and increase susceptibility to arrhythmia at the cellular and animal level. Importantly, Ser571 is required for maladaptive remodeling and arrhythmias in response to pressure overload. CONCLUSIONS Our data provide the first in vivo evidence for the molecular mechanism underlying CaMKII activation of the pathogenic INa,L. Relevant for improved rational design of potential therapies, our findings demonstrate that Ser571-dependent regulation of Nav1.5 specifically tunes INa,L without altering critical physiological components of the current.
Collapse
Affiliation(s)
- Patric Glynn
- From Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus (P.G., H.M., X.W., S.D.U., S.L., L.Q., P.J.W., P.B.R., S.G., P.J.M., T.J.H.); Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus (P.G., X.W., S.D.U., L.Q., T.J.H.); Departments of Physiology & Cell Biology (H.M., S.L., P.J.W., P.B.R., S.G., P.J.M.) and Internal Medicine (P.J.M., T.J.H.), The Ohio State University Wexner Medical Center, Columbus; and Division of Pharmacy Practice and Administration, College of Pharmacy, The Ohio State University, Columbus (P.B.R.)
| | - Hassan Musa
- From Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus (P.G., H.M., X.W., S.D.U., S.L., L.Q., P.J.W., P.B.R., S.G., P.J.M., T.J.H.); Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus (P.G., X.W., S.D.U., L.Q., T.J.H.); Departments of Physiology & Cell Biology (H.M., S.L., P.J.W., P.B.R., S.G., P.J.M.) and Internal Medicine (P.J.M., T.J.H.), The Ohio State University Wexner Medical Center, Columbus; and Division of Pharmacy Practice and Administration, College of Pharmacy, The Ohio State University, Columbus (P.B.R.)
| | - Xiangqiong Wu
- From Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus (P.G., H.M., X.W., S.D.U., S.L., L.Q., P.J.W., P.B.R., S.G., P.J.M., T.J.H.); Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus (P.G., X.W., S.D.U., L.Q., T.J.H.); Departments of Physiology & Cell Biology (H.M., S.L., P.J.W., P.B.R., S.G., P.J.M.) and Internal Medicine (P.J.M., T.J.H.), The Ohio State University Wexner Medical Center, Columbus; and Division of Pharmacy Practice and Administration, College of Pharmacy, The Ohio State University, Columbus (P.B.R.)
| | - Sathya D Unudurthi
- From Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus (P.G., H.M., X.W., S.D.U., S.L., L.Q., P.J.W., P.B.R., S.G., P.J.M., T.J.H.); Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus (P.G., X.W., S.D.U., L.Q., T.J.H.); Departments of Physiology & Cell Biology (H.M., S.L., P.J.W., P.B.R., S.G., P.J.M.) and Internal Medicine (P.J.M., T.J.H.), The Ohio State University Wexner Medical Center, Columbus; and Division of Pharmacy Practice and Administration, College of Pharmacy, The Ohio State University, Columbus (P.B.R.)
| | - Sean Little
- From Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus (P.G., H.M., X.W., S.D.U., S.L., L.Q., P.J.W., P.B.R., S.G., P.J.M., T.J.H.); Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus (P.G., X.W., S.D.U., L.Q., T.J.H.); Departments of Physiology & Cell Biology (H.M., S.L., P.J.W., P.B.R., S.G., P.J.M.) and Internal Medicine (P.J.M., T.J.H.), The Ohio State University Wexner Medical Center, Columbus; and Division of Pharmacy Practice and Administration, College of Pharmacy, The Ohio State University, Columbus (P.B.R.)
| | - Lan Qian
- From Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus (P.G., H.M., X.W., S.D.U., S.L., L.Q., P.J.W., P.B.R., S.G., P.J.M., T.J.H.); Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus (P.G., X.W., S.D.U., L.Q., T.J.H.); Departments of Physiology & Cell Biology (H.M., S.L., P.J.W., P.B.R., S.G., P.J.M.) and Internal Medicine (P.J.M., T.J.H.), The Ohio State University Wexner Medical Center, Columbus; and Division of Pharmacy Practice and Administration, College of Pharmacy, The Ohio State University, Columbus (P.B.R.)
| | - Patrick J Wright
- From Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus (P.G., H.M., X.W., S.D.U., S.L., L.Q., P.J.W., P.B.R., S.G., P.J.M., T.J.H.); Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus (P.G., X.W., S.D.U., L.Q., T.J.H.); Departments of Physiology & Cell Biology (H.M., S.L., P.J.W., P.B.R., S.G., P.J.M.) and Internal Medicine (P.J.M., T.J.H.), The Ohio State University Wexner Medical Center, Columbus; and Division of Pharmacy Practice and Administration, College of Pharmacy, The Ohio State University, Columbus (P.B.R.)
| | - Przemyslaw B Radwanski
- From Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus (P.G., H.M., X.W., S.D.U., S.L., L.Q., P.J.W., P.B.R., S.G., P.J.M., T.J.H.); Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus (P.G., X.W., S.D.U., L.Q., T.J.H.); Departments of Physiology & Cell Biology (H.M., S.L., P.J.W., P.B.R., S.G., P.J.M.) and Internal Medicine (P.J.M., T.J.H.), The Ohio State University Wexner Medical Center, Columbus; and Division of Pharmacy Practice and Administration, College of Pharmacy, The Ohio State University, Columbus (P.B.R.)
| | - Sandor Gyorke
- From Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus (P.G., H.M., X.W., S.D.U., S.L., L.Q., P.J.W., P.B.R., S.G., P.J.M., T.J.H.); Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus (P.G., X.W., S.D.U., L.Q., T.J.H.); Departments of Physiology & Cell Biology (H.M., S.L., P.J.W., P.B.R., S.G., P.J.M.) and Internal Medicine (P.J.M., T.J.H.), The Ohio State University Wexner Medical Center, Columbus; and Division of Pharmacy Practice and Administration, College of Pharmacy, The Ohio State University, Columbus (P.B.R.)
| | - Peter J Mohler
- From Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus (P.G., H.M., X.W., S.D.U., S.L., L.Q., P.J.W., P.B.R., S.G., P.J.M., T.J.H.); Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus (P.G., X.W., S.D.U., L.Q., T.J.H.); Departments of Physiology & Cell Biology (H.M., S.L., P.J.W., P.B.R., S.G., P.J.M.) and Internal Medicine (P.J.M., T.J.H.), The Ohio State University Wexner Medical Center, Columbus; and Division of Pharmacy Practice and Administration, College of Pharmacy, The Ohio State University, Columbus (P.B.R.)
| | - Thomas J Hund
- From Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus (P.G., H.M., X.W., S.D.U., S.L., L.Q., P.J.W., P.B.R., S.G., P.J.M., T.J.H.); Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus (P.G., X.W., S.D.U., L.Q., T.J.H.); Departments of Physiology & Cell Biology (H.M., S.L., P.J.W., P.B.R., S.G., P.J.M.) and Internal Medicine (P.J.M., T.J.H.), The Ohio State University Wexner Medical Center, Columbus; and Division of Pharmacy Practice and Administration, College of Pharmacy, The Ohio State University, Columbus (P.B.R.).
| |
Collapse
|
34
|
Regulation of TWIK-related potassium channel-1 (Trek1) restitutes intestinal epithelial barrier function. Cell Mol Immunol 2015; 13:110-8. [PMID: 25683610 DOI: 10.1038/cmi.2014.137] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/26/2014] [Accepted: 12/27/2014] [Indexed: 12/19/2022] Open
Abstract
The disruption of epithelial barrier integrity is an important factor in the pathogenesis of various immune disorders. However, the restitution of the compromised barrier functions is difficult. This study investigates the regulation of TWIK-related potassium channel-1 (Trek1) in the restitution of intestinal epithelial barrier functions. The human colon epithelial cell line T84 was cultured in monolayers and used to observe epithelial barrier functions in vitro. An intestinal allergy mouse model was created. Cytokine levels were determined by enzyme-linked immunosorbent assay and western blotting. The results showed that Trek1 deficiency induced T84 monolayer barrier disruption. Allergic responses markedly suppressed the expression of Trek1 in the intestinal epithelia via activating the mitogen-activated protein kinase pathways and increasing the expression of histone deacetylase-1. The inhibition of histone deacetylase-1 by sodium butyrate or the administration of a butyrate-producing probiotic (Clostridium butyricum) restored the intestinal epithelial barrier functions and markedly enhanced the effect of antigen-specific immunotherapy. The data suggest that Trek1 is required for the maintenance of intestinal epithelial barrier integrity. Allergic responses induce an insufficiency of Trek1 expression in the intestinal epithelia. Trek1 expression facilitates the restoration of intestinal epithelial barrier functions in an allergic environment.
Collapse
|
35
|
The potassium current carried by TREK-1 channels in rat cardiac ventricular muscle. Pflugers Arch 2014; 467:1069-79. [PMID: 25539776 DOI: 10.1007/s00424-014-1678-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 01/13/2023]
Abstract
We studied the potassium current flowing through TREK-1 channels in rat cardiac ventricular myocytes. We separated the TREK-1 current from other current components by blocking most other channels with a blocker cocktail. We tried to inhibit the TREK-1 current by activating protein kinase A (PKA) with a mixture of forskolin and isobutyl-methylxanthine (IBMX). Activation of PKA blocked an outwardly rectifying current component at membrane potentials positive to -40 mV. At 37 °C, application of forskolin plus IBMX reduced the steady-state outward current measured at positive voltages by about 52 %. Application of the potassium channel blockers quinidine or tetrahexylammonium also reduced the steady-state outward current by about 50 %. Taken together, our results suggest that the increase in temperature from 22 to 37 °C increased the TREK-1 current by a factor of at least 5 and that the average density of the TREK-1 current in rat cardiomyocytes at 37 °C is about 1.5 pA/pF at +30 mV. The contribution of TREK-1 to the action potential was assessed by using a dynamic patch clamp technique. After subtraction of simulated TREK-1 currents, action potential duration at 50 or 90 % repolarisation was increased by about 12 %, indicating that TREK-1 may be functionally important in rat ventricular muscle. During sympathetic stimulation, inhibition of TREK-1 channels via PKA is expected to prolong the action potential primarily in subendocardial myocytes; this may decrease the transmural dispersion of repolarisation and thus may serve to prevent the occurrence of arrhythmias.
Collapse
|
36
|
Makara MA, Curran J, Little SC, Musa H, Polina I, Smith SA, Wright PJ, Unudurthi SD, Snyder J, Bennett V, Hund TJ, Mohler PJ. Ankyrin-G coordinates intercalated disc signaling platform to regulate cardiac excitability in vivo. Circ Res 2014; 115:929-38. [PMID: 25239140 DOI: 10.1161/circresaha.115.305154] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
RATIONALE Nav1.5 (SCN5A) is the primary cardiac voltage-gated Nav channel. Nav1.5 is critical for cardiac excitability and conduction, and human SCN5A mutations cause sinus node dysfunction, atrial fibrillation, conductional abnormalities, and ventricular arrhythmias. Further, defects in Nav1.5 regulation are linked with malignant arrhythmias associated with human heart failure. Consequently, therapies to target select Nav1.5 properties have remained at the forefront of cardiovascular medicine. However, despite years of investigation, the fundamental pathways governing Nav1.5 membrane targeting, assembly, and regulation are still largely undefined. OBJECTIVE Define the in vivo mechanisms underlying Nav1.5 membrane regulation. METHODS AND RESULTS Here, we define the molecular basis of an Nav channel regulatory platform in heart. Using new cardiac-selective ankyrin-G(-/-) mice (conditional knock-out mouse), we report that ankyrin-G targets Nav1.5 and its regulatory protein calcium/calmodulin-dependent kinase II to the intercalated disc. Mechanistically, βIV-spectrin is requisite for ankyrin-dependent targeting of calcium/calmodulin-dependent kinase II-δ; however, βIV-spectrin is not essential for ankyrin-G expression. Ankyrin-G conditional knock-out mouse myocytes display decreased Nav1.5 expression/membrane localization and reduced INa associated with pronounced bradycardia, conduction abnormalities, and ventricular arrhythmia in response to Nav channel antagonists. Moreover, we report that ankyrin-G links Nav channels with broader intercalated disc signaling/structural nodes, as ankyrin-G loss results in reorganization of plakophilin-2 and lethal arrhythmias in response to β-adrenergic stimulation. CONCLUSIONS Our findings provide the first in vivo data for the molecular pathway required for intercalated disc Nav1.5 targeting/regulation in heart. Further, these new data identify the basis of an in vivo cellular platform critical for membrane recruitment and regulation of Nav1.5.
Collapse
Affiliation(s)
- Michael A Makara
- From The Dorothy M. Davis Heart & Lung Research Institute (M.A.M., J.C., S.C.L., H.M., I.P., S.A.S., P.J.W., S.D.U., J.S., T.J.H., P.J.M. ), Departments of Internal Medicine (S.A.S., P.J.M.), and Physiology and Cell Biology (M.A.M., J.C., S.C.L., H.M., I.P., S.A.S., P.J.W., P.J.M.), The Ohio State University Wexner Medical Center, Columbus; Department of Biomedical Engineering, The Ohio State University College of Engineering, Columbus (S.D.U., J.S., T.J.H.); and Howard Hughes Medical Institute, Department of Biochemistry, Duke University Medical Center, Durham, NC (V.B.)
| | - Jerry Curran
- From The Dorothy M. Davis Heart & Lung Research Institute (M.A.M., J.C., S.C.L., H.M., I.P., S.A.S., P.J.W., S.D.U., J.S., T.J.H., P.J.M. ), Departments of Internal Medicine (S.A.S., P.J.M.), and Physiology and Cell Biology (M.A.M., J.C., S.C.L., H.M., I.P., S.A.S., P.J.W., P.J.M.), The Ohio State University Wexner Medical Center, Columbus; Department of Biomedical Engineering, The Ohio State University College of Engineering, Columbus (S.D.U., J.S., T.J.H.); and Howard Hughes Medical Institute, Department of Biochemistry, Duke University Medical Center, Durham, NC (V.B.)
| | - Sean C Little
- From The Dorothy M. Davis Heart & Lung Research Institute (M.A.M., J.C., S.C.L., H.M., I.P., S.A.S., P.J.W., S.D.U., J.S., T.J.H., P.J.M. ), Departments of Internal Medicine (S.A.S., P.J.M.), and Physiology and Cell Biology (M.A.M., J.C., S.C.L., H.M., I.P., S.A.S., P.J.W., P.J.M.), The Ohio State University Wexner Medical Center, Columbus; Department of Biomedical Engineering, The Ohio State University College of Engineering, Columbus (S.D.U., J.S., T.J.H.); and Howard Hughes Medical Institute, Department of Biochemistry, Duke University Medical Center, Durham, NC (V.B.)
| | - Hassan Musa
- From The Dorothy M. Davis Heart & Lung Research Institute (M.A.M., J.C., S.C.L., H.M., I.P., S.A.S., P.J.W., S.D.U., J.S., T.J.H., P.J.M. ), Departments of Internal Medicine (S.A.S., P.J.M.), and Physiology and Cell Biology (M.A.M., J.C., S.C.L., H.M., I.P., S.A.S., P.J.W., P.J.M.), The Ohio State University Wexner Medical Center, Columbus; Department of Biomedical Engineering, The Ohio State University College of Engineering, Columbus (S.D.U., J.S., T.J.H.); and Howard Hughes Medical Institute, Department of Biochemistry, Duke University Medical Center, Durham, NC (V.B.)
| | - Iuliia Polina
- From The Dorothy M. Davis Heart & Lung Research Institute (M.A.M., J.C., S.C.L., H.M., I.P., S.A.S., P.J.W., S.D.U., J.S., T.J.H., P.J.M. ), Departments of Internal Medicine (S.A.S., P.J.M.), and Physiology and Cell Biology (M.A.M., J.C., S.C.L., H.M., I.P., S.A.S., P.J.W., P.J.M.), The Ohio State University Wexner Medical Center, Columbus; Department of Biomedical Engineering, The Ohio State University College of Engineering, Columbus (S.D.U., J.S., T.J.H.); and Howard Hughes Medical Institute, Department of Biochemistry, Duke University Medical Center, Durham, NC (V.B.)
| | - Sakima A Smith
- From The Dorothy M. Davis Heart & Lung Research Institute (M.A.M., J.C., S.C.L., H.M., I.P., S.A.S., P.J.W., S.D.U., J.S., T.J.H., P.J.M. ), Departments of Internal Medicine (S.A.S., P.J.M.), and Physiology and Cell Biology (M.A.M., J.C., S.C.L., H.M., I.P., S.A.S., P.J.W., P.J.M.), The Ohio State University Wexner Medical Center, Columbus; Department of Biomedical Engineering, The Ohio State University College of Engineering, Columbus (S.D.U., J.S., T.J.H.); and Howard Hughes Medical Institute, Department of Biochemistry, Duke University Medical Center, Durham, NC (V.B.)
| | - Patrick J Wright
- From The Dorothy M. Davis Heart & Lung Research Institute (M.A.M., J.C., S.C.L., H.M., I.P., S.A.S., P.J.W., S.D.U., J.S., T.J.H., P.J.M. ), Departments of Internal Medicine (S.A.S., P.J.M.), and Physiology and Cell Biology (M.A.M., J.C., S.C.L., H.M., I.P., S.A.S., P.J.W., P.J.M.), The Ohio State University Wexner Medical Center, Columbus; Department of Biomedical Engineering, The Ohio State University College of Engineering, Columbus (S.D.U., J.S., T.J.H.); and Howard Hughes Medical Institute, Department of Biochemistry, Duke University Medical Center, Durham, NC (V.B.)
| | - Sathya D Unudurthi
- From The Dorothy M. Davis Heart & Lung Research Institute (M.A.M., J.C., S.C.L., H.M., I.P., S.A.S., P.J.W., S.D.U., J.S., T.J.H., P.J.M. ), Departments of Internal Medicine (S.A.S., P.J.M.), and Physiology and Cell Biology (M.A.M., J.C., S.C.L., H.M., I.P., S.A.S., P.J.W., P.J.M.), The Ohio State University Wexner Medical Center, Columbus; Department of Biomedical Engineering, The Ohio State University College of Engineering, Columbus (S.D.U., J.S., T.J.H.); and Howard Hughes Medical Institute, Department of Biochemistry, Duke University Medical Center, Durham, NC (V.B.)
| | - Jed Snyder
- From The Dorothy M. Davis Heart & Lung Research Institute (M.A.M., J.C., S.C.L., H.M., I.P., S.A.S., P.J.W., S.D.U., J.S., T.J.H., P.J.M. ), Departments of Internal Medicine (S.A.S., P.J.M.), and Physiology and Cell Biology (M.A.M., J.C., S.C.L., H.M., I.P., S.A.S., P.J.W., P.J.M.), The Ohio State University Wexner Medical Center, Columbus; Department of Biomedical Engineering, The Ohio State University College of Engineering, Columbus (S.D.U., J.S., T.J.H.); and Howard Hughes Medical Institute, Department of Biochemistry, Duke University Medical Center, Durham, NC (V.B.)
| | - Vann Bennett
- From The Dorothy M. Davis Heart & Lung Research Institute (M.A.M., J.C., S.C.L., H.M., I.P., S.A.S., P.J.W., S.D.U., J.S., T.J.H., P.J.M. ), Departments of Internal Medicine (S.A.S., P.J.M.), and Physiology and Cell Biology (M.A.M., J.C., S.C.L., H.M., I.P., S.A.S., P.J.W., P.J.M.), The Ohio State University Wexner Medical Center, Columbus; Department of Biomedical Engineering, The Ohio State University College of Engineering, Columbus (S.D.U., J.S., T.J.H.); and Howard Hughes Medical Institute, Department of Biochemistry, Duke University Medical Center, Durham, NC (V.B.)
| | - Thomas J Hund
- From The Dorothy M. Davis Heart & Lung Research Institute (M.A.M., J.C., S.C.L., H.M., I.P., S.A.S., P.J.W., S.D.U., J.S., T.J.H., P.J.M. ), Departments of Internal Medicine (S.A.S., P.J.M.), and Physiology and Cell Biology (M.A.M., J.C., S.C.L., H.M., I.P., S.A.S., P.J.W., P.J.M.), The Ohio State University Wexner Medical Center, Columbus; Department of Biomedical Engineering, The Ohio State University College of Engineering, Columbus (S.D.U., J.S., T.J.H.); and Howard Hughes Medical Institute, Department of Biochemistry, Duke University Medical Center, Durham, NC (V.B.)
| | - Peter J Mohler
- From The Dorothy M. Davis Heart & Lung Research Institute (M.A.M., J.C., S.C.L., H.M., I.P., S.A.S., P.J.W., S.D.U., J.S., T.J.H., P.J.M. ), Departments of Internal Medicine (S.A.S., P.J.M.), and Physiology and Cell Biology (M.A.M., J.C., S.C.L., H.M., I.P., S.A.S., P.J.W., P.J.M.), The Ohio State University Wexner Medical Center, Columbus; Department of Biomedical Engineering, The Ohio State University College of Engineering, Columbus (S.D.U., J.S., T.J.H.); and Howard Hughes Medical Institute, Department of Biochemistry, Duke University Medical Center, Durham, NC (V.B.).
| |
Collapse
|
37
|
Bond RC, Choisy SCM, Bryant SM, Hancox JC, James AF. Inhibition of a TREK-like K+ channel current by noradrenaline requires both β1- and β2-adrenoceptors in rat atrial myocytes. Cardiovasc Res 2014; 104:206-15. [PMID: 25205295 PMCID: PMC4174890 DOI: 10.1093/cvr/cvu192] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
AIMS Noradrenaline plays an important role in the modulation of atrial electrophysiology. However, the identity of the modulated channels, their mechanisms of modulation, and their role in the action potential remain unclear. This study aimed to investigate the noradrenergic modulation of an atrial steady-state outward current (IKss). METHODS AND RESULTS Rat atrial myocyte whole-cell currents were recorded at 36°C. Noradrenaline potently inhibited IKss (IC50 = 0.90 nM, 42.1 ± 4.3% at 1 µM, n = 7) and potentiated the L-type Ca(2+) current (ICaL, EC50 = 136 nM, 205 ± 40% at 1 µM, n = 6). Noradrenaline-sensitive IKss was weakly voltage-dependent, time-independent, and potentiated by the arachidonic acid analogue, 5,8,11,14-eicosatetraynoic acid (EYTA; 10 µM), or by osmotically induced membrane stretch. Noise analysis revealed a unitary conductance of 8.4 ± 0.42 pS (n = 8). The biophysical/pharmacological properties of IKss indicate a TREK-like K(+) channel. The effect of noradrenaline on IKss was abolished by combined β1-/β2-adrenoceptor antagonism (1 µM propranolol or 10 µM β1-selective atenolol and 100 nM β2-selective ICI-118,551 in combination), but not by β1- or β2-antagonist alone. The action of noradrenaline could be mimicked by β2-agonists (zinterol and fenoterol) in the presence of β1-antagonist. The action of noradrenaline on IKss, but not on ICaL, was abolished by pertussis toxin (PTX) treatment. The action of noradrenaline on ICaL was mediated by β1-adrenoceptors via a PTX-insensitive pathway. Noradrenaline prolonged APD30 by 52 ± 19% (n = 5; P < 0.05), and this effect was abolished by combined β1-/β2-antagonism, but not by atenolol alone. CONCLUSION Noradrenaline inhibits a rat atrial TREK-like K(+) channel current via a PTX-sensitive mechanism involving co-operativity of β1-/β2-adrenoceptors that contributes to atrial APD prolongation.
Collapse
Affiliation(s)
- Richard C Bond
- Bristol Cardiovascular Research Laboratories, School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Stéphanie C M Choisy
- Bristol Cardiovascular Research Laboratories, School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Simon M Bryant
- Bristol Cardiovascular Research Laboratories, School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Jules C Hancox
- Bristol Cardiovascular Research Laboratories, School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Andrew F James
- Bristol Cardiovascular Research Laboratories, School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| |
Collapse
|
38
|
Affiliation(s)
- Elise Balse
- Sorbonne Universités, UPMC, UMR_S 1166-ICAN, INSERM UMR_S 1166-ICAN, Institute of Cardiometabolism and Nutrition, ICAN, Pitié-Salpêtrière Hospital, Paris F-75013, France
| | - Stéphane N Hatem
- Sorbonne Universités, UPMC, UMR_S 1166-ICAN, INSERM UMR_S 1166-ICAN, Institute of Cardiometabolism and Nutrition, ICAN, Pitié-Salpêtrière Hospital, Paris F-75013, France Assistance Publique Hôpitaux de Paris, Heart and Metabolism Department, Pitié-Salpêtrière Hospital, Paris F-75013, France
| |
Collapse
|