1
|
Wang Z, Song X, Cheng S, Jiang D, Zheng D, Lan X, Liu K, Fan C. Noninvasive Imaging of Immune Cell Activity in Myocardial Infarction Phases Using 99mTc-HYNIC-mAb Kv1.3 SPECT/CT. Mol Pharm 2025; 22:817-826. [PMID: 39797803 DOI: 10.1021/acs.molpharmaceut.4c00966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
Acute myocardial infarction (MI) remains a leading cause of mortality worldwide, with inflammatory and reparative phases playing critical roles in disease progression. Currently, there is a pressing need for in vivo imaging techniques to monitor immune cell infiltration and inflammation activity during these phases. We developed a novel probe, 99mTc-HYNIC-mAbKv1.3, utilizing a monoclonal antibody that targets the voltage-gated potassium channel 1.3 (Kv1.3). This probe enables in vivo visualization of immune cells that express high levels of Kv1.3 proteins. In a murine MI model, SPECT/CT imaging with 99mTc-HYNIC-mAbKv1.3 demonstrated specific uptake in an infarcted myocardium during the inflammatory phase, reflecting immune cell infiltration and activity. During the reparative phase, the probe exhibited prolonged retention in the infarcted area, suggestive of ongoing immune cell proliferation. Immunofluorescence staining confirmed the probe's specificity. Biodistribution analysis indicated preferential accumulation in the infarcted myocardium and liver, consistent with SPECT/CT findings. Combined with [18F]FDG PET/CT, these modalities provided comprehensive insights into myocardial viability and inflammation. This study highlights the potential of 99mTc-HYNIC-mAbKv1.3 SPECT/CT as a noninvasive tool to monitor immune cell activity in different phases of MI, guide therapeutic interventions, and predict disease progression. Further translational studies are warranted to explore its clinical applicability in cardiac pathologies.
Collapse
Affiliation(s)
- Zhengyan Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiangming Song
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Sixuan Cheng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Danzhan Zheng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Kun Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Immunological Diagnosis and Therapy of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cheng Fan
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
2
|
Wang H, Rouhi N, Slotabec LA, Seale BC, Wen C, Filho F, Adenawoola MI, Li J. Myeloid Cells in Myocardial Ischemic Injury: The Role of the Macrophage Migration Inhibitory Factor. Life (Basel) 2024; 14:981. [PMID: 39202723 PMCID: PMC11355293 DOI: 10.3390/life14080981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
Ischemic heart disease, manifesting as myocardial infarction (MI), remains the leading cause of death in the western world. Both ischemia and reperfusion (I/R) cause myocardial injury and result in cardiac inflammatory responses. This sterile inflammation in the myocardium consists of multiple phases, involving cell death, tissue remodeling, healing, and scar formation, modulated by various cytokines, including the macrophage migration inhibitory factor (MIF). Meanwhile, different immune cells participate in these phases, with myeloid cells acting as first responders. They migrate to the injured myocardium and regulate the initial phase of inflammation. The MIF modulates the acute inflammatory response by affecting the metabolic profile and activity of myeloid cells. This review summarizes the role of the MIF in regulating myeloid cell subsets in MI and I/R injury and discusses emerging evidence of metabolism-directed cellular inflammatory responses. Based on the multifaceted role of the MIF affecting myeloid cells in MI or I/R, the MIF can be a therapeutic target to achieve metabolic balance under pathology and alleviate inflammation in the heart.
Collapse
Affiliation(s)
- Hao Wang
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA; (H.W.); (N.R.); (L.A.S.); (B.C.S.); (C.W.); (F.F.); (M.I.A.)
| | - Nadiyeh Rouhi
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA; (H.W.); (N.R.); (L.A.S.); (B.C.S.); (C.W.); (F.F.); (M.I.A.)
| | - Lily A. Slotabec
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA; (H.W.); (N.R.); (L.A.S.); (B.C.S.); (C.W.); (F.F.); (M.I.A.)
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS 39216, USA
| | - Blaise C. Seale
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA; (H.W.); (N.R.); (L.A.S.); (B.C.S.); (C.W.); (F.F.); (M.I.A.)
| | - Changhong Wen
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA; (H.W.); (N.R.); (L.A.S.); (B.C.S.); (C.W.); (F.F.); (M.I.A.)
| | - Fernanda Filho
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA; (H.W.); (N.R.); (L.A.S.); (B.C.S.); (C.W.); (F.F.); (M.I.A.)
| | - Michael I. Adenawoola
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA; (H.W.); (N.R.); (L.A.S.); (B.C.S.); (C.W.); (F.F.); (M.I.A.)
| | - Ji Li
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, Jackson, MS 39216, USA; (H.W.); (N.R.); (L.A.S.); (B.C.S.); (C.W.); (F.F.); (M.I.A.)
- G.V. (Sonny) Montgomery VA Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
3
|
Kanuri B, Sreejit G, Biswas P, Murphy AJ, Nagareddy PR. Macrophage heterogeneity in myocardial infarction: Evolution and implications for diverse therapeutic approaches. iScience 2024; 27:110274. [PMID: 39040061 PMCID: PMC11261154 DOI: 10.1016/j.isci.2024.110274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024] Open
Abstract
Given the extensive participation of myeloid cells (especially monocytes and macrophages) in both inflammation and resolution phases post-myocardial infarction (MI) owing to their biphasic role, these cells are considered as crucial players in the disease pathogenesis. Multiple studies have agreed on the significant contribution of macrophage polarization theory (M2 vs. M1) while determining the underlying reasons behind the observed biphasic effects; nevertheless, this simplistic classification attracts severe drawbacks. The advent of multiple advanced technologies based on OMICS platforms facilitated a successful path to explore comprehensive cellular signatures that could expedite our understanding of macrophage heterogeneity and plasticity. While providing an overall basis behind the MI disease pathogenesis, this review delves into the literature to discuss the current knowledge on multiple macrophage clusters, including the future directions in this research arena. In the end, our focus will be on outlining the possible therapeutic implications based on the emerging observations.
Collapse
Affiliation(s)
- Babunageswararao Kanuri
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| | - Gopalkrishna Sreejit
- Department of Pathology, New York University Grossman School of Medicine, New York City, NY, USA
| | - Priosmita Biswas
- Department of Molecular and Cell Biology, University of California Merced, Merced, CA, USA
| | - Andrew J. Murphy
- Baker Heart and Diabetes Institute, Division of Immunometabolism, Melbourne, VIC, Australia
| | - Prabhakara R. Nagareddy
- Department of Internal Medicine, Section of Cardiovascular Diseases, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK, USA
| |
Collapse
|
4
|
Guo J, Huang Y, Pang L, Zhou Y, Yuan J, Zhou B, Fu M. Association of systemic inflammatory response index with ST segment elevation myocardial infarction and degree of coronary stenosis: a cross-sectional study. BMC Cardiovasc Disord 2024; 24:98. [PMID: 38336634 PMCID: PMC10858502 DOI: 10.1186/s12872-024-03751-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Systemic Inflammatory Response Index (SIRI), a composite inflammatory marker encompassing neutrophils, monocytes, and lymphocytes, has been recognized as a reliable marker of systemic inflammation. This article undertakes an analysis of clinical data from ST-segment Elevation Myocardial Infarction (STEMI) patients, aiming to comprehensively assess the relationship between SIRI, STEMI, and the degree of coronary stenosis. METHODS The study involved 1809 patients diagnosed with STEMI between the years 2020 and 2023. Univariate and multivariate logistic regression analyses were conducted to evaluate the risk factors for STEMI. Receiver operating characteristic (ROC) curves were generated to determine the predictive power of SIRI and neutrophil-to-lymphocyte ratio (NLR). Spearman correlation analysis was performed to assess the correlation between SIRI, NLR, and the Gensini score (GS). RESULTS Multivariate logistic regression analysis showed that the SIRI was the independent risk factor for STEMI (adjusted odds ratio (OR) in the highest quartile = 24.96, 95% confidence interval (CI) = 15.32-40.66, P < 0.001). In addition, there is a high correlation between SIRI and GS (β:28.54, 95% CI: 24.63-32.46, P < 0.001). The ROC curve analysis was performed to evaluate the predictive ability of SIRI and NLR for STEMI patients. The area under the curve (AUC) for SIRI was 0.789. The AUC for NLR was 0.754. Regarding the prediction of STEMI in different gender groups, the AUC for SIRI in the male group was 0.771. The AUC for SIRI in the female group was 0.807. Spearman correlation analysis showed that SIRI exhibited a stronger correlation with GS, while NLR was lower (SIRI: r = 0.350, P < 0.001) (NLR: r = 0.313, P < 0.001). CONCLUSION The study reveals a strong correlation between the SIRI and STEMI as well as the degree of coronary artery stenosis. In comparison to NLR, SIRI shows potential in predicting acute myocardial infarction and the severity of coronary artery stenosis. Additionally, SIRI exhibits a stronger predictive capability for female STEMI patients compared to males.
Collapse
Affiliation(s)
- Jiongchao Guo
- Department of Cardiology, The Third Affiliated Hospital of Anhui Medical University (The First People's Hospital of Hefei), Hefei, 230000, Anhui, China
| | - Yating Huang
- Department of Endocrinology, The Third Affiliated Hospital of Anhui Medical University (The First People's Hospital of Hefei), Hefei, 230000, Anhui, China
| | - Lamei Pang
- Department of Endocrinology, Hefei BOE Hospital, Hefei, 230000, Anhui, China
| | - Yuan Zhou
- Department of Cardiology, The Third Affiliated Hospital of Anhui Medical University (The First People's Hospital of Hefei), Hefei, 230000, Anhui, China
| | - Jingjing Yuan
- Department of Cardiology, The Third Affiliated Hospital of Anhui Medical University (The First People's Hospital of Hefei), Hefei, 230000, Anhui, China
| | - Bingfeng Zhou
- Department of Cardiology, Hefei BOE Hospital, Hefei, 230000, Anhui, China.
| | - Minmin Fu
- Department of Cardiology, The Third Affiliated Hospital of Anhui Medical University (The First People's Hospital of Hefei), Hefei, 230000, Anhui, China.
| |
Collapse
|
5
|
Wei Y, Xing J, Su X, Li X, Yan X, Zhao J, Tao H. IL-38 attenuates myocardial ischemia-reperfusion injury by inhibiting macrophage inflammation. Immun Inflamm Dis 2023; 11:e898. [PMID: 37382260 PMCID: PMC10266135 DOI: 10.1002/iid3.898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/06/2023] [Accepted: 05/10/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Reperfusion therapy is the most effective approach to resolve coronary occlusion, but myocardial injury caused by excessive inflammation during myocardial ischemia-reperfusion will also pose a new threat to health. Our prior study revealed the expression pattern of interleukin-38 (IL-38) in the peripheral blood serum of patients with ischemic cardiomyopathy and the role of IL-38 in acute myocardial infarction in mice. However, its role and potential mechanisms in myocardial ischemia/reperfusion injury (MIRI) remain to be determined. METHODS AND RESULTS The left anterior descending artery of C57BL/6 mice was transiently ligated to induce the MIRI model. We found that MIRI induced the expression of endogenous IL-38, which was mainly produced by locally infiltrating macrophages. Overexpression of IL-38 in C57BL/6 mice attenuated inflammatory injury and decreased myocardial apoptosis after myocardial ischemia-reperfusion. Furthermore, IL-38 inhibited lipopolysaccharide-induced macrophage inflammation in vitro. Cardiomyocytes cocultured with the supernatant of IL-38- and troponin I-treated macrophages showed a lower rate of apoptosis than controls. CONCLUSIONS IL-38 attenuates MIRI by inhibiting macrophage inflammation. This inhibitory effect may be partially achieved by inhibiting the activation of NOD-like receptor pyrin domain-related protein 3 inflammasome, resulting in decreased expression of inflammatory factors and reduced cardiomyocyte apoptosis.
Collapse
Affiliation(s)
- Yuzhen Wei
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Junhui Xing
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xin Su
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xiangrao Li
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xiaofei Yan
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jiangtao Zhao
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Hailong Tao
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
6
|
Martins-Marques T. Cardioprotective role of GABA-B receptor activation on ventricular arrhythmia following myocardial infarction. Rev Port Cardiol 2023; 42:137-138. [PMID: 36257497 DOI: 10.1016/j.repc.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Tânia Martins-Marques
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal.
| |
Collapse
|
7
|
An T, Guo M, Fan C, Huang S, Liu H, Liu K, Wang Z. sFgl2-Treg Positive Feedback Pathway Protects against Atherosclerosis. Int J Mol Sci 2023; 24:ijms24032338. [PMID: 36768661 PMCID: PMC9916961 DOI: 10.3390/ijms24032338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
Soluble fibrinogen-like protein 2 (sFgl2), a novel effector of regulatory T cells (Tregs), has been demonstrated to have potent immunosuppressive functions. Multiple studies indicate that Tregs could exert important atheroprotective effects, but their numbers gradually decrease during atherogenesis. The receptor of sFgl2 can be expressed on Treg precursor cells, while the role of sFgl2 on Treg differentiation and atherosclerosis progression remains unclear. Firstly, we detected that the sFgl2 was decreased in humans and mice with atherosclerotic diseases and was especially lower in their vulnerable plaques. Then, we used both Adeno-associated virus-sFgl2 (AAV-sFgl2)-injected ApoE-/- mice, which is systemic overexpression of sFgl2, and sFgl2TgApoE-/- bone marrow cells (BMC)-transplanted ApoE-/- mice, which is almost immune-system-specific overexpression of sFgl2, to explore the role of sFgl2 in atherosclerosis. Our experiment data showed that AAV-sFgl2 and BMT-sFgl2 could reduce atherosclerotic area and enhance plaque stability. Mechanistically, sFgl2 increases the abundance and immunosuppressive function of Tregs, which is partly mediated by binding to FcγRIIB receptors and phosphorylating Smad2/3. Collectively, sFgl2 has an atheroprotective effect that is mainly achieved by forming a positive feedback pathway with Treg. sFgl2 and Treg could synergistically protect against atherosclerosis.
Collapse
Affiliation(s)
- Tianhui An
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mengyuan Guo
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Cheng Fan
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Shiyuan Huang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hui Liu
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kun Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence: (K.L.); (Z.W.)
| | - Zhaohui Wang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence: (K.L.); (Z.W.)
| |
Collapse
|
8
|
Li T, Yan Z, Fan Y, Fan X, Li A, Qi Z, Zhang J. Cardiac repair after myocardial infarction: A two-sided role of inflammation-mediated. Front Cardiovasc Med 2023; 9:1077290. [PMID: 36698953 PMCID: PMC9868426 DOI: 10.3389/fcvm.2022.1077290] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Myocardial infarction is the leading cause of death and disability worldwide, and the development of new treatments can help reduce the size of myocardial infarction and prevent adverse cardiovascular events. Cardiac repair after myocardial infarction can effectively remove necrotic tissue, induce neovascularization, and ultimately replace granulation tissue. Cardiac inflammation is the primary determinant of whether beneficial cardiac repair occurs after myocardial infarction. Immune cells mediate inflammatory responses and play a dual role in injury and protection during cardiac repair. After myocardial infarction, genetic ablation or blocking of anti-inflammatory pathways is often harmful. However, enhancing endogenous anti-inflammatory pathways or blocking endogenous pro-inflammatory pathways may improve cardiac repair after myocardial infarction. A deficiency of neutrophils or monocytes does not improve overall cardiac function after myocardial infarction but worsens it and aggravates cardiac fibrosis. Several factors are critical in regulating inflammatory genes and immune cells' phenotypes, including DNA methylation, histone modifications, and non-coding RNAs. Therefore, strict control and timely suppression of the inflammatory response, finding a balance between inflammatory cells, preventing excessive tissue degradation, and avoiding infarct expansion can effectively reduce the occurrence of adverse cardiovascular events after myocardial infarction. This article reviews the involvement of neutrophils, monocytes, macrophages, and regulatory T cells in cardiac repair after myocardial infarction. After myocardial infarction, neutrophils are the first to be recruited to the damaged site to engulf necrotic cell debris and secrete chemokines that enhance monocyte recruitment. Monocytes then infiltrate the infarct site and differentiate into macrophages and they release proteases and cytokines that are harmful to surviving myocardial cells in the pre-infarct period. As time progresses, apoptotic neutrophils are cleared, the recruitment of anti-inflammatory monocyte subsets, the polarization of macrophages toward the repair phenotype, and infiltration of regulatory T cells, which secrete anti-inflammatory factors that stimulate angiogenesis and granulation tissue formation for cardiac repair. We also explored how epigenetic modifications regulate the phenotype of inflammatory genes and immune cells to promote cardiac repair after myocardial infarction. This paper also elucidates the roles of alarmin S100A8/A9, secreted frizzled-related protein 1, and podoplanin in the inflammatory response and cardiac repair after myocardial infarction.
Collapse
Affiliation(s)
- Tingting Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhipeng Yan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yajie Fan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinbiao Fan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Aolin Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhongwen Qi
- Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, China,*Correspondence: Zhongwen Qi,
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China,Junping Zhang,
| |
Collapse
|
9
|
Jin X, Wang X, Sun J, Tan W, Zhang G, Han J, Xie M, Zhou L, Yu Z, Xu T, Wang C, Wang Y, Zhou X, Jiang H. Subthreshold splenic nerve stimulation prevents myocardial Ischemia-Reperfusion injury via neuroimmunomodulation of proinflammatory factor levels. Int Immunopharmacol 2023; 114:109522. [PMID: 36502595 DOI: 10.1016/j.intimp.2022.109522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Clinical outcomes following myocardial ischemia-reperfusion (I/R) injury are strongly related to the intensity and duration of inflammation. The splenic nerve (SpN) is indispensable for the anti-inflammatory reflex. This study aimed to investigate whether splenic nerve stimulation (SpNS) plays a cardioprotective role in myocardial I/R injury and the potential underlying mechanism. METHODS Sprague-Dawley rats were randomly divided into four groups: sham group, I/R group, SpNS group, and I/R plus SpNS group. The highest SpNS intensity that did not influence heart rate was identified, and SpNS at this intensity was used as the subthreshold stimulus. Continuous subthreshold SpNS was applied for 1 h before ligation of the left coronary artery for 45 min. After 72 h of reperfusion, samples were collected for analysis. RESULTS SpN activity and splenic concentrations of cholinergic anti-inflammatory pathway (CAP)-related neurotransmitters were significantly increased by SpNS. The infarct size, oxidative stress, sympathetic tone, and the levels of proinflammatory cytokines, including TNF-α, IL-1β, and IL-6, were significantly reduced in rats subjected to subthreshold SpNS after myocardial I/R injury compared with those subjected to I/R injury alone. CONCLUSIONS Subthreshold SpNS ameliorates myocardial damage, the inflammatory response, and cardiac remodelling induced by myocardial I/R injury via neuroimmunomodulation of proinflammatory factor levels. SpNS is a potential therapeutic strategy for the treatment of myocardial I/R injury.
Collapse
Affiliation(s)
- Xiaoxing Jin
- Department of Cardiology, Renmin Hospital of Wuhan University Hubei Key Laboratory of Autonomic Nervous System Modulation Cardiac Autonomic Nervous System Research Center of Wuhan University Taikang Center for Life and Medical Sciences, Wuhan University Institute of Molecular Medicine, Renmin Hospital of Wuhan University Cardiovascular Research Institute, Wuhan University Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Xiaofei Wang
- Department of Cardiology, Renmin Hospital of Wuhan University Hubei Key Laboratory of Autonomic Nervous System Modulation Cardiac Autonomic Nervous System Research Center of Wuhan University Taikang Center for Life and Medical Sciences, Wuhan University Institute of Molecular Medicine, Renmin Hospital of Wuhan University Cardiovascular Research Institute, Wuhan University Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Ji Sun
- Department of Cardiology, Renmin Hospital of Wuhan University Hubei Key Laboratory of Autonomic Nervous System Modulation Cardiac Autonomic Nervous System Research Center of Wuhan University Taikang Center for Life and Medical Sciences, Wuhan University Institute of Molecular Medicine, Renmin Hospital of Wuhan University Cardiovascular Research Institute, Wuhan University Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Wuping Tan
- Department of Cardiology, Renmin Hospital of Wuhan University Hubei Key Laboratory of Autonomic Nervous System Modulation Cardiac Autonomic Nervous System Research Center of Wuhan University Taikang Center for Life and Medical Sciences, Wuhan University Institute of Molecular Medicine, Renmin Hospital of Wuhan University Cardiovascular Research Institute, Wuhan University Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Guocheng Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University Hubei Key Laboratory of Autonomic Nervous System Modulation Cardiac Autonomic Nervous System Research Center of Wuhan University Taikang Center for Life and Medical Sciences, Wuhan University Institute of Molecular Medicine, Renmin Hospital of Wuhan University Cardiovascular Research Institute, Wuhan University Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Jiapeng Han
- Department of Cardiology, Renmin Hospital of Wuhan University Hubei Key Laboratory of Autonomic Nervous System Modulation Cardiac Autonomic Nervous System Research Center of Wuhan University Taikang Center for Life and Medical Sciences, Wuhan University Institute of Molecular Medicine, Renmin Hospital of Wuhan University Cardiovascular Research Institute, Wuhan University Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Mengjie Xie
- Department of Cardiology, Renmin Hospital of Wuhan University Hubei Key Laboratory of Autonomic Nervous System Modulation Cardiac Autonomic Nervous System Research Center of Wuhan University Taikang Center for Life and Medical Sciences, Wuhan University Institute of Molecular Medicine, Renmin Hospital of Wuhan University Cardiovascular Research Institute, Wuhan University Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Liping Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University Hubei Key Laboratory of Autonomic Nervous System Modulation Cardiac Autonomic Nervous System Research Center of Wuhan University Taikang Center for Life and Medical Sciences, Wuhan University Institute of Molecular Medicine, Renmin Hospital of Wuhan University Cardiovascular Research Institute, Wuhan University Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Zhiyao Yu
- Department of Cardiology, Renmin Hospital of Wuhan University Hubei Key Laboratory of Autonomic Nervous System Modulation Cardiac Autonomic Nervous System Research Center of Wuhan University Taikang Center for Life and Medical Sciences, Wuhan University Institute of Molecular Medicine, Renmin Hospital of Wuhan University Cardiovascular Research Institute, Wuhan University Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Tianyou Xu
- Department of Cardiology, Renmin Hospital of Wuhan University Hubei Key Laboratory of Autonomic Nervous System Modulation Cardiac Autonomic Nervous System Research Center of Wuhan University Taikang Center for Life and Medical Sciences, Wuhan University Institute of Molecular Medicine, Renmin Hospital of Wuhan University Cardiovascular Research Institute, Wuhan University Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Changyi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University Hubei Key Laboratory of Autonomic Nervous System Modulation Cardiac Autonomic Nervous System Research Center of Wuhan University Taikang Center for Life and Medical Sciences, Wuhan University Institute of Molecular Medicine, Renmin Hospital of Wuhan University Cardiovascular Research Institute, Wuhan University Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China
| | - Yueyi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University Hubei Key Laboratory of Autonomic Nervous System Modulation Cardiac Autonomic Nervous System Research Center of Wuhan University Taikang Center for Life and Medical Sciences, Wuhan University Institute of Molecular Medicine, Renmin Hospital of Wuhan University Cardiovascular Research Institute, Wuhan University Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China.
| | - Xiaoya Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University Hubei Key Laboratory of Autonomic Nervous System Modulation Cardiac Autonomic Nervous System Research Center of Wuhan University Taikang Center for Life and Medical Sciences, Wuhan University Institute of Molecular Medicine, Renmin Hospital of Wuhan University Cardiovascular Research Institute, Wuhan University Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China.
| | - Hong Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University Hubei Key Laboratory of Autonomic Nervous System Modulation Cardiac Autonomic Nervous System Research Center of Wuhan University Taikang Center for Life and Medical Sciences, Wuhan University Institute of Molecular Medicine, Renmin Hospital of Wuhan University Cardiovascular Research Institute, Wuhan University Hubei Key Laboratory of Cardiology, Wuhan 430060, P.R. China.
| |
Collapse
|
10
|
Elmorsi RM, Kabel AM, El Saadany AA, Abou El-Seoud SH. The protective effects of topiramate and spirulina against doxorubicin-induced cardiotoxicity in rats. Hum Exp Toxicol 2023; 42:9603271231198624. [PMID: 37644674 DOI: 10.1177/09603271231198624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Doxorubicin (DOX) is a widely used chemotherapy drug that can cause significant cardiotoxicity, limiting its clinical application. This study aimed to investigate the potential protective effects of topiramate (TPM) and spirulina (SP), either alone or in combination, in preventing DOX-induced cardiotoxicity. Adult Sprague Dawley rats were divided into five groups, including a normal control group and groups receiving DOX alone, DOX with TPM, DOX with SP, or DOX with a combination of TPM and SP. Cardiotoxicity was induced by administering DOX intraperitoneally at a cumulative dose of 16 mg/kg over 4 weeks. TPM and/or SP administration started 1 week before DOX treatment and continued for 35 days. Body weight, serum markers of cardiac damage, oxidative stress and inflammatory parameters were assessed. Histopathological and immunohistochemical examinations were performed on cardiac tissues. Results showed that TPM and SP monotherapy led to significant improvements in serum levels of cardiac markers, decreased oxidative stress, reduced fibrosis-related growth factor levels, increased antioxidant levels, and improved histopathological features. SP demonstrated more prominent effects in comparison to TPM, and the combination of TPM and SP exhibited even more pronounced effects. In conclusion, TPM and SP, either alone or in combination, hold promise as therapeutic interventions for mitigating DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Radwa M Elmorsi
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ahmed M Kabel
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amira A El Saadany
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | |
Collapse
|
11
|
Martins-Marques T. Cardioprotective role of GABA-B receptor activation on ventricular arrhythmia following myocardial infarction. Rev Port Cardiol 2022:S0870-2551(22)00522-4. [PMID: 36526130 DOI: 10.1016/j.repc.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Tânia Martins-Marques
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Coimbra, Portugal; Univ Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Centre of Coimbra (CACC), Coimbra, Portugal.
| |
Collapse
|
12
|
Arab HH, Abd El Aal HA, Alsufyani SE, El-Sheikh AAK, Arafa ESA, Ashour AM, Kabel AM, Eid AH. Topiramate Reprofiling for the Attenuation of Cadmium-Induced Testicular Impairment in Rats: Role of NLRP3 Inflammasome and AMPK/mTOR-Linked Autophagy. Pharmaceuticals (Basel) 2022; 15:1402. [PMID: 36422532 PMCID: PMC9697422 DOI: 10.3390/ph15111402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 08/27/2023] Open
Abstract
Topiramate, a promising drug classically used for the management of neurological disorders including epilepsy and migraine, has demonstrated marked anti-inflammatory and anti-apoptotic actions in murine models of cardiac post-infarction inflammation, wound healing, and gastric/intestinal injury. However, its potential impact on cadmium-induced testicular injury remains to be elucidated. Herein, the present study aimed to explore the effect of topiramate against cadmium-invoked testicular impairment with emphasis on the molecular mechanisms linked to inflammation, apoptosis, and autophagy. Herein, administration of topiramate (50 mg/kg/day, by gavage) continued for 60 days and the testes were examined by histology, immunohistochemistry, and biochemical assays. The present data demonstrated that serum testosterone, sperm count/abnormalities, relative testicular weight, and histopathological aberrations were improved by topiramate administration to cadmium-intoxicated rats. The rescue of testicular dysfunction was driven by multi-pronged mechanisms including suppression of NLRP3/caspase-1/IL-1β cascade, which was evidenced by dampened caspase-1 activity, lowered IL-1β/IL-18 production, and decreased nuclear levels of activated NF-κBp65. Moreover, curbing testicular apoptosis was seen by lowered Bax expression, decreased caspase-3 activity, and upregulation of Bcl-2. In tandem, testicular autophagy was activated as seen by diminished p62 SQSTM1 accumulation alongside Beclin-1 upregulation. Autophagy activation was associated with AMPK/mTOR pathway stimulation demonstrated by decreased mTOR (Ser2448) phosphorylation and increased AMPK (Ser487) phosphorylation. In conclusion, combating inflammation/apoptosis and enhancing autophagic events by topiramate were engaged in ameliorating cadmium-induced testicular impairment.
Collapse
Affiliation(s)
- Hany H. Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Hayat A. Abd El Aal
- Department of Pharmacology, Egyptian Drug Authority (EDA), Formerly NODCAR, Giza 12654, Egypt
| | - Shuruq E. Alsufyani
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Azza A. K. El-Sheikh
- Basic Health Sciences Department, College of Medicine, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - El-Shaimaa A. Arafa
- College of Pharmacy and Health Sciences, Ajman University, Ajman 346, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
| | - Ahmed M. Ashour
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al Qura University, P.O. Box 13578, Makkah 21955, Saudi Arabia
| | - Ahmed M. Kabel
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Ahmed H. Eid
- Department of Pharmacology, Egyptian Drug Authority (EDA), Formerly NODCAR, Giza 12654, Egypt
| |
Collapse
|
13
|
Elrakaybi A, Laubner K, Zhou Q, Hug MJ, Seufert J. Cardiovascular protection by SGLT2 inhibitors - Do anti-inflammatory mechanisms play a role? Mol Metab 2022; 64:101549. [PMID: 35863639 PMCID: PMC9352970 DOI: 10.1016/j.molmet.2022.101549] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/04/2022] [Accepted: 07/12/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Metabolic syndrome and related metabolic disturbances represent a state of low-grade inflammation, which accelerates insulin resistance, type 2 diabetes (T2D) and cardiovascular disease (CVD) progression. Among antidiabetic medications, sodium glucose co-transporter (SGLT) 2 inhibitors are the only agents which showed remarkable reductions in heart failure (HF) hospitalizations and major cardiovascular endpoints (MACE) as well as renal endpoints regardless of diabetes status in large randomized clinical outcome trials (RCTs). Although the exact mechanisms underlying these benefits are yet to be established, growing evidence suggests that modulating inflammation by SGLT2 inhibitors may play a key role. SCOPE OF REVIEW In this manuscript, we summarize the current knowledge on anti-inflammatory effects of SGLT2 inhibitors as one of the mechanisms potentially mediating their cardiovascular (CV) benefits. We introduce the different metabolic and systemic actions mediated by these agents which could mitigate inflammation, and further present the signalling pathways potentially responsible for their proposed direct anti-inflammatory effects. We also discuss controversies surrounding some of these mechanisms. MAJOR CONCLUSIONS SGLT2 inhibitors are promising anti-inflammatory agents by acting either indirectly via improving metabolism and reducing stress conditions or via direct modulation of inflammatory signalling pathways. These effects were achieved, to a great extent, in a glucose-independent manner which established their clinical use in HF patients with and without diabetes.
Collapse
Affiliation(s)
- Asmaa Elrakaybi
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Department of Clinical Pharmacy, Ain Shams University, 11566 Cairo, Egypt
| | - Katharina Laubner
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Qian Zhou
- Department of Cardiology and Angiology I, Heart Centre, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Department of Cardiology, University Hospital Basel, 4031 Basel, Switzerland
| | - Martin J Hug
- Pharmacy, Medical Centre - University of Freiburg, 79106 Freiburg, Germany
| | - Jochen Seufert
- Division of Endocrinology and Diabetology, Department of Medicine II, Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.
| |
Collapse
|
14
|
Ghovvati M, Kharaziha M, Ardehali R, Annabi N. Recent Advances in Designing Electroconductive Biomaterials for Cardiac Tissue Engineering. Adv Healthc Mater 2022; 11:e2200055. [PMID: 35368150 PMCID: PMC9262872 DOI: 10.1002/adhm.202200055] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/12/2022] [Indexed: 12/19/2022]
Abstract
Implantable cardiac patches and injectable hydrogels are among the most promising therapies for cardiac tissue regeneration following myocardial infarction. Incorporating electrical conductivity into these patches and hydrogels is found to be an efficient method to improve cardiac tissue function. Conductive nanomaterials such as carbon nanotube, graphene oxide, gold nanorod, as well as conductive polymers such as polyaniline, polypyrrole, and poly(3,4-ethylenedioxythiophene):polystyrene sulfonate are appealing because they possess the electroconductive properties of semiconductors with ease of processing and have potential to restore electrical signaling propagation through the infarct area. Numerous studies have utilized these materials for regeneration of biological tissues that possess electrical activities, such as cardiac tissue. In this review, recent studies on the use of electroconductive materials for cardiac tissue engineering and their fabrication methods are summarized. Moreover, recent advances in developing electroconductive materials for delivering therapeutic agents as one of emerging approaches for treating heart diseases and regenerating damaged cardiac tissues are highlighted.
Collapse
Affiliation(s)
- Mahsa Ghovvati
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Mahshid Kharaziha
- Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Reza Ardehali
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California – Los Angeles, Los Angeles, CA 90095, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California - Los Angeles, Los Angeles, CA 90095, USA
- Department of Bioengineering, University of California - Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
15
|
Ma S, Bai L, Liu P, She G, Deng XL, Song AQ, Du XJ, Lu Q. Pathogenetic Link of Cardiac Rupture and Left Ventricular Thrombus Following Acute Myocardial Infarction: A Joint Preclinical and Clinical Study. Front Cardiovasc Med 2022; 9:858720. [PMID: 35757352 PMCID: PMC9218188 DOI: 10.3389/fcvm.2022.858720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/25/2022] [Indexed: 12/01/2022] Open
Abstract
Background Cardiac rupture (CR) and left ventricular thrombus (LVT) remain important complications of acute myocardial infarction (MI), and they are currently regarded as independent events. We explored the pathogenetic link between CR and LVT by investigating a murine model of MI with a high frequency of CR and in patients with acute MI. Methods MI was induced in mice, the onset of CR was monitored, and the hearts of mice with or without fatal CR were histologically examined. Between 2015 and 2022, from patients admitted due to acute MI, the data of patients with CR or LVT were retrospectively collected and compared to uncomplicated patients (control). Results A total of 75% of mice (n = 65) with MI developed CR 2–4 days after MI. A histological examination of CR hearts revealed the existence of platelet-rich intramural thrombi in the rupture tunnel, which was connected at the endocardial site to platelet-fibrin thrombi within an LVT. In CR or non-CR mouse hearts, LV blood clots often contained a portion of platelet-fibrin thrombi that adhered to the infarct wall. In non-CR hearts, sites of incomplete CR or erosion of the infarct wall were typically coated with platelet thrombi and dense inflammatory cells. Of 8,936 patients with acute MI, CR and LVT occurred in 102 (1.14%) and 130 (1.45%) patients, respectively, with three cases having both complications. CR accounted for 32.8% of in-hospital deaths. The majority of CR (95%) or LVT (63%, early LVT) occurred within 7 days. In comparison to the control or LVT-late groups, patients with CR or early LVT reported increased levels of cellular and biochemical markers for inflammation or cardiac injury. Conclusion CR and LVT after MI are potentially linked in their pathogenesis. LVT occurring early after MI may be triggered by a thrombo-inflammatory response following wall rupture or endocardial erosion.
Collapse
Affiliation(s)
- Shan Ma
- Department of Internal Medicine-Cardiovascular, Cardiovascular Hospital, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ling Bai
- Department of Internal Medicine-Cardiovascular, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Ping Liu
- Department of Internal Medicine-Cardiovascular, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Gang She
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - Xiu-Ling Deng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
| | - An-Qi Song
- Department of Internal Medicine-Cardiovascular, Cardiovascular Hospital, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiao-Jun Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi’an Jiaotong University, Xi’an, China
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- *Correspondence: Xiao-Jun Du,
| | - Qun Lu
- Department of Internal Medicine-Cardiovascular, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Qun Lu,
| |
Collapse
|
16
|
Li Z, Ding Y, Peng Y, Yu J, Pan C, Cai Y, Dong Q, Zhong Y, Zhu R, Yu K, Zeng Q. Effects of IL-38 on Macrophages and Myocardial Ischemic Injury. Front Immunol 2022; 13:894002. [PMID: 35634320 PMCID: PMC9136064 DOI: 10.3389/fimmu.2022.894002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Macrophages play an important role in clearing necrotic myocardial tissues, myocardial ischemia-reperfusion injury, and ventricular remodeling after myocardial infarction. M1 macrophages not only participate in the inflammatory response in myocardial tissues after infarction, which causes heart damage, but also exert a protective effect on the heart during ischemia. In contrast, M2 macrophages exhibit anti-inflammatory and tissue repair properties by inducing the production of high levels of anti-inflammatory cytokines and fibro-progenitor cells. Interleukin (IL)-38, a new member of the IL-1 family, has been reported to modulate the IL-36 signaling pathway by playing a role similar to that of the IL-36 receptor antagonist, which also affects the production and secretion of macrophage-related inflammatory factors that play an anti-inflammatory role. IL-38 can relieve myocardial ischemia-reperfusion injury by promoting the differentiation of M1 macrophages into M2 macrophages, inhibit the activation of NOD-like receptor thermal protein domain-associated protein 3 (NLRP3) inflammasome, and increase the secretion of anti-inflammatory cytokines, such as IL-10 and transforming growth factor-β. The intact recombinant IL-38 can also bind to interleukin 1 receptor accessory protein-like 1 (IL-1RAPL1) to activate the c-jun N-terminal kinase/activator protein 1 (JNK/AP1) pathway and increase the production of IL-6. In addition, IL-38 regulates dendritic cell-induced cardiac regulatory T cells, thereby regulating macrophage polarization and improving ventricular remodeling after myocardial infarction. Accordingly, we speculated that IL-38 and macrophage regulation may be therapeutic targets for ameliorating myocardial ischemic injury and ventricular remodeling after myocardial infarction. However, the specific mechanism of the IL-38 action warrants further investigation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Kunwu Yu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiutang Zeng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Varasteh Z, Braeuer M, Mohanta S, Steinsiek AL, Habenicht A, Omidvari N, Topping GJ, Rischpler C, Weber WA, Sager HB, Raes G, Hernot S, Schwaiger M. In vivo Visualization of M2 Macrophages in the Myocardium After Myocardial Infarction (MI) Using 68Ga-NOTA-Anti-MMR Nb: Targeting Mannose Receptor (MR, CD206) on M2 Macrophages. Front Cardiovasc Med 2022; 9:889963. [PMID: 35548425 PMCID: PMC9081970 DOI: 10.3389/fcvm.2022.889963] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/29/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction and Objectives Wound healing after myocardial infarction (MI) is a dynamic and complex multiple phase process, and a coordinated cellular response is required for proper scar formation. The current paradigm suggests that pro-inflammatory monocytes infiltrate the MI zone during the initial pro-inflammatory phase and differentiate into inflammatory macrophages, and then switch their phenotypes to anti-inflammatory during the reparative phase. Visualization of the reparative phase post-MI is of great interest because it may reveal delayed resolution of inflammation, which in turn predicts adverse cardiac remodeling. Imaging of anti-inflammatory macrophages may also be used to assess therapy approaches aiming to modulate the inflammatory response in order to limit MI size. Reparative macrophages can be distinguished from inflammatory macrophages by the surface marker mannose receptor (MR, CD206). In this study we evaluated the feasibility of 68Ga-NOTA-anti-MMR Nb for imaging of MR on alternatively activated macrophages in murine MI models. Methods Wildtype and MR-knockout mice and Wistar rats were subjected to MI via permanent ligation of the left coronary artery. Non-operated or sham-operated animals were used as controls. MR expression kinetics on cardiac macrophages was measured in mice using flow cytometry. PET/CT scans were performed 1 h after intravenous injection of 68Ga-NOTA-anti-MMR Nb. Mice and rats were euthanized and hearts harvested for ex vivo PET/MRI, autoradiography, and staining. As a non-targeting negative control, 68Ga-NOTA-BCII10 was used. Results In vivo-PET/CT scans showed focal radioactivity signals in the infarcted myocardium for 68Ga-NOTA-anti-MMR Nb which were confirmed by ex vivo-PET/MRI scans. In autoradiography images, augmented uptake of the tracer was observed in infarcts, as verified by the histochemistry analysis. Immunofluorescence staining demonstrated the presence and co-localization of CD206- and CD68-positive cells, in accordance to infarct zone. No in vivo or ex vivo signal was observed in the animals injected with control Nb or in the sham-operated animals. 68Ga-NOTA-anti-MMR Nb uptake in the infarcts of MR-knockout mice was negligibly low, confirming the specificity of 68Ga-NOTA-anti-MMR Nb to MR. Conclusion This exploratory study highlights the potential of 68Ga-NOTA-anti-MMR Nb to image MR-positive macrophages that are known to play a pivotal role in wound healing that follows acute MI.
Collapse
Affiliation(s)
- Zohreh Varasteh
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
- *Correspondence: Zohreh Varasteh,
| | - Miriam Braeuer
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Sarajo Mohanta
- Institute for Cardiovascular Prevention, University Hospital of Ludwig-Maximilians-University, Munich, Germany
| | - Anna-Lena Steinsiek
- Department of Cardiology, German Heart Centre Munich, Technical of University Munich, Munich, Germany
| | - Andreas Habenicht
- Institute for Cardiovascular Prevention, University Hospital of Ludwig-Maximilians-University, Munich, Germany
| | - Negar Omidvari
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Geoffrey J. Topping
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christoph Rischpler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Wolfgang A. Weber
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Hendrik B. Sager
- Department of Cardiology, German Heart Centre Munich, Technical of University Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Geert Raes
- Laboratory of Cellular and Molecular Immunology (CMIM), Vrije Universiteit Brussel, Brussels, Belgium
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
| | - Sophie Hernot
- Laboratory for in vivo Cellular and Molecular Imaging, ICMI-BEFY/MIMA, Vrije Universiteit Brussel, Brussels, Belgium
| | - Markus Schwaiger
- Department of Nuclear Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
18
|
Yerra VG, Advani A. Role of CCR2-Positive Macrophages in Pathological Ventricular Remodelling. Biomedicines 2022; 10:661. [PMID: 35327464 PMCID: PMC8945438 DOI: 10.3390/biomedicines10030661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 12/10/2022] Open
Abstract
Even with recent advances in care, heart failure remains a major cause of morbidity and mortality, which urgently needs new treatments. One of the major antecedents of heart failure is pathological ventricular remodelling, the abnormal change in the size, shape, function or composition of the cardiac ventricles in response to load or injury. Accumulating immune cell subpopulations contribute to the change in cardiac cellular composition that occurs during ventricular remodelling, and these immune cells can facilitate heart failure development. Among cardiac immune cell subpopulations, macrophages that are recognized by their transcriptional or cell-surface expression of the chemokine receptor C-C chemokine receptor type 2 (CCR2), have emerged as playing an especially important role in adverse remodelling. Here, we assimilate the literature that has been generated over the past two decades describing the pathological roles that CCR2+ macrophages play in ventricular remodelling. The goal is to facilitate research and innovation efforts in heart failure therapeutics by drawing attention to the importance of studying the manner by which CCR2+ macrophages mediate their deleterious effects.
Collapse
Affiliation(s)
| | - Andrew Advani
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5B 1T8, Canada;
| |
Collapse
|
19
|
You Y, Huang S, Liu H, Fan C, Liu K, Wang Z. Soluble fibrinogen‑like protein 2 levels are decreased in patients with ischemic heart failure and associated with cardiac function. Mol Med Rep 2021; 24:559. [PMID: 34109427 PMCID: PMC8188637 DOI: 10.3892/mmr.2021.12198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/26/2021] [Indexed: 12/16/2022] Open
Abstract
Soluble fibrinogen‑like protein 2 (sFGL2), as a novel effector of regulatory T cells (Tregs), exhibits immune regulatory activity in several inflammatory diseases. Immune activation and persistent inflammation participate in the progression of ischemic heart failure (IHF). The present study aimed to determine serum sFGL2 levels in patients with IHF and explore the relationship between sFGL2 levels and cardiac function. A total of 104 patients with IHF and 32 healthy controls were enrolled. patients with IHF were further split into subgroups according to the New York Heart Association functional classification or left ventricular ejection fraction (LVEF). Serum sFGL2 levels and peripheral Tregs frequencies were analyzed by ELISA and flow cytometry, respectively. The suppressive function of Tregs was measured by proliferation and functional suppression assays. Serum levels of sFGL2 and circulating Tregs frequencies were significantly decreased in patients with IHF compared with healthy controls. In patients with IHF, sFGL2 levels and Tregs frequencies were decreased with the deterioration of cardiac function. Tregs from patients with IHF exhibited compromised ability to suppress CD4+CD25‑ T cells proliferation and inflammatory cytokines secretion. Specifically, sFGL2 levels and Tregs frequencies positively correlated with LVEF, whereas negatively correlated with left ventricular end‑diastolic dimension and N‑terminal pro‑brain natriuretic peptide. sFGL2 levels were positively correlated with Tregs frequencies. In conclusion, the reduction of serum sFGL2 levels are associated with the progression of IHF and sFGL2 could be used as a potential indicator for predicting disease severity.
Collapse
Affiliation(s)
- Ya You
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Shiyuan Huang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Hui Liu
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Cheng Fan
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Kun Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zhaohui Wang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
20
|
Kabel AM, Ashour AM, Ali DA, Arab HH. The immunomodulatory effects of topiramate on azoxymethane-induced colon carcinogenesis in rats: The role of the inflammatory cascade, vascular endothelial growth factor, AKT/mTOR/MAP kinase signaling and the apoptotic markers. Int Immunopharmacol 2021; 98:107830. [PMID: 34118646 DOI: 10.1016/j.intimp.2021.107830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/08/2021] [Accepted: 05/25/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Colon cancer is a malignant condition that affects the lower gastrointestinal tract and has unfavorable prognosis. Its mechanisms range from enhanced production of reactive oxygen species, inflammatory changes in the colon microenvironment and affection of the apoptotic pathways. Due to the high incidence of resistance of colon cancer to the traditional chemotherapeutic agents, a need for finding safe/effective agents that can attenuate the malignant changes had emerged. OBJECTIVE To investigate the possible immunomodulatory and antitumor effects of topiramate on azoxymethane-induced colon cancer in rats. METHODOLOGY Fifty male Wistar rats were randomized into five equal groups as follows: Control; azoxymethane-induced colon cancer; azoxymethane + methyl cellulose; azoxymethane + topiramate small dose; and azoxymethane + topiramate large dose. The body weight gain, serum carcinoembryonic antigen (CEA), tissue antioxidant status, proinflammatory cytokines, vascular endothelial growth factor (VEGF), Nrf2/HO-1 content, p-AKT, mTOR, p38 MAP kinase, caspase 9, nerve growth factor beta and beclin-1 were measured. Also, parts of the colon had undergone histopathological and immunohistochemical evaluation. KEY FINDINGS Topiramate improved the body weight gain, decreased serum CEA, augmented the antioxidant defenses in the colonic tissues with significant amelioration of the inflammatory changes, decline in tissue VEGF and p-AKT/mTOR/MAP kinase signaling and increased Nrf2/HO-1 content in a dose-dependent manner when compared to rats treated with azoxymethane alone. In addition, topiramate, in a dose-dependent manner, significantly enhanced apoptosis and improved the histopathological picture in comparison to animals treated with azoxymethane alone. CONCLUSION Taking these findings together, topiramate might serve as a new effective adjuvant line of treatment of colon cancer.
Collapse
Affiliation(s)
- Ahmed M Kabel
- Pharmacology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt.
| | - Ahmed M Ashour
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al Qura University, P.O. Box 13578, Makkah 21955, Saudi Arabia
| | - Dina A Ali
- Clinical Pathology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Hany H Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
21
|
Bu J, Huang S, Wang J, Xia T, Liu H, You Y, Wang Z, Liu K. The GABA A Receptor Influences Pressure Overload-Induced Heart Failure by Modulating Macrophages in Mice. Front Immunol 2021; 12:670153. [PMID: 34135897 PMCID: PMC8201502 DOI: 10.3389/fimmu.2021.670153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 04/20/2021] [Indexed: 12/24/2022] Open
Abstract
Background Myocardial macrophages have key roles in cardiac remodeling and dysfunction. The gamma-aminobutyric acid subtype A (GABAA) receptor was recently found to be distributed in macrophages, allowing regulation of inflammatory responses to various diseases. This study aimed to clarify the role of GABAA receptor-mediated macrophage responses in pressure overload-induced heart failure. Methods and Results C57BL/6J mice underwent transverse aortic constriction for pressure-overload hypertrophy (POH) and were intraperitoneally treated with a specific GABAA receptor agonist (topiramate) or antagonist (bicuculline). Echocardiography, histology, and flow cytometry were performed to evaluate the causes and effects of myocardial hypertrophy and fibrosis. Activation of the GABAA receptor by topiramate reduced ejection fraction and fractional shortening, enlarged the end-diastolic and end-systolic left ventricular internal diameter, aggravated myocardial hypertrophy and fibrosis, and accelerated heart failure in response to pressure overload. Mechanistically, topiramate increased the number of Ly6Clow macrophages in the heart during POH and circulating Ly6Chigh classic monocyte infiltration in late-phase POH. Further, topiramate drove Ly6Clow macrophages toward MHCIIhigh macrophage polarization. As a result, Ly6Clow macrophages activated the amphiregulin-induced AKT/mTOR signaling pathway, and Ly6ClowMHCIIhigh macrophage polarization increased expression levels of osteopontin and TGF-β, which led to myocardial hypertrophy and fibrosis. Conversely, GABAA receptor blockage with bicuculline reversed these effects. Conclusions Control of the GABAA receptor activity in monocytes/macrophages plays an important role in myocardial hypertrophy and fibrosis after POH. Blockade of the GABAA receptor has the potential to improve pressure overload-induced heart failure.
Collapse
Affiliation(s)
- Jin Bu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyuan Huang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jue Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tong Xia
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Liu
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya You
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhaohui Wang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Liu
- Institution of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Pluijmert NJ, Atsma DE, Quax PHA. Post-ischemic Myocardial Inflammatory Response: A Complex and Dynamic Process Susceptible to Immunomodulatory Therapies. Front Cardiovasc Med 2021; 8:647785. [PMID: 33996944 PMCID: PMC8113407 DOI: 10.3389/fcvm.2021.647785] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/02/2021] [Indexed: 01/04/2023] Open
Abstract
Following acute occlusion of a coronary artery causing myocardial ischemia and implementing first-line treatment involving rapid reperfusion, a dynamic and balanced inflammatory response is initiated to repair and remove damaged cells. Paradoxically, restoration of myocardial blood flow exacerbates cell damage as a result of myocardial ischemia-reperfusion (MI-R) injury, which eventually provokes accelerated apoptosis. In the end, the infarct size still corresponds to the subsequent risk of developing heart failure. Therefore, true understanding of the mechanisms regarding MI-R injury, and its contribution to cell damage and cell death, are of the utmost importance in the search for successful therapeutic interventions to finally prevent the onset of heart failure. This review focuses on the role of innate immunity, chemokines, cytokines, and inflammatory cells in all three overlapping phases following experimental, mainly murine, MI-R injury known as the inflammatory, reparative, and maturation phase. It provides a complete state-of-the-art overview including most current research of all post-ischemic processes and phases and additionally summarizes the use of immunomodulatory therapies translated into clinical practice.
Collapse
Affiliation(s)
- Niek J Pluijmert
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Douwe E Atsma
- Department of Cardiology, Leiden University Medical Center, Leiden, Netherlands
| | - Paul H A Quax
- Department of Surgery, Leiden University Medical Center, Leiden, Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
23
|
Chen KD, Lin WC, Kuo HC. Chemical and Biochemical Aspects of Molecular Hydrogen in Treating Kawasaki Disease and COVID-19. Chem Res Toxicol 2021; 34:952-958. [PMID: 33719401 DOI: 10.1021/acs.chemrestox.0c00456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Kawasaki disease (KD) is a systemic vasculitis and is the most commonly acquired heart disease among children in many countries, which was first reported 50 years ago in Japan. The 2019 coronavirus disease (COVID-19, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)) has been a pandemic in most of the world since 2020, and since late 2019 in China. Kawasaki-like disease caused by COVID-19 shares some symptoms with KD, referred to as multisystem inflammatory syndrome in children, and has been reported in the United States, Italy, France, England, and other areas of Europe, with an almost 6-10 times or more increase compared with previous years of KD prevalence. Hydrogen gas is a stable and efficient antioxidant, which has a positive effect on oxidative damage, inflammation, cell apoptosis, and abnormal blood vessel inflammation. This review reports the chemical and biochemical aspects of hydrogen gas inhalation in treating KD and COVID-19.
Collapse
Affiliation(s)
- Kuang-Den Chen
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan 83301.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan 83301.,Taiwan Association for the Promotion of Molecular Hydrogen, Kaohsiung, Taiwan 83301
| | - Wen-Chang Lin
- EPOCH Energy Technology Corporation, Kaohsiung, Taiwan 33302.,Taiwan Association for the Promotion of Molecular Hydrogen, Kaohsiung, Taiwan 83301
| | - Ho-Chang Kuo
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan 83301.,Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan 83301.,College of Medicine, Chang Gung University, Taoyuan, Taiwan 33302.,Department of Respiratory Therapy, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan 83301.,Taiwan Association for the Promotion of Molecular Hydrogen, Kaohsiung, Taiwan 83301
| |
Collapse
|
24
|
Chen X, Li Y, Xiao J, Zhang H, Yang C, Wei Z, Chen W, Du X, Liu J. Modulating Neuro-Immune-Induced Macrophage Polarization With Topiramate Attenuates Experimental Abdominal Aortic Aneurysm. Front Pharmacol 2020; 11:565461. [PMID: 32982758 PMCID: PMC7485436 DOI: 10.3389/fphar.2020.565461] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/12/2020] [Indexed: 12/14/2022] Open
Abstract
The development of abdominal aortic aneurysm (AAA) is attributed to psychological and physical factors. Topiramate, which is an agonist of the GABAA receptor, makes contributions to neuronal disease and is partially involved in immune regulation, may be effective upon abdominal aortic aneurysm progression. We used experimental abdominal aortic aneurysm models: Angiotensin II (Ang II)–induced ApoE−/− male mice (Ang II/APOE model) in our study. In the Ang II/APOE model, all mice (n=64) were divided into four groups: sham group (PBS treatment), control group (Ang II treatment), low-dose group (Ang II + low-dose topiramate, 3 mg/day per mouse), and high-dose group (Ang II + high-dose topiramate, 6 mg/day per mouse). All treatments began on the day after surgery. Moreover, collected tissues and cultured cell were used for histology and biochemical examination. In vitro, the effects of topiramate on bone marrow-derived macrophage stimulated by LPS were investigated. Our data implied that topiramate treatment significantly promoted macrophages preservation and conversion of M1 to M2 macrophage phenotypes in vivo and in vitro. Accordingly, proinflammatory activities mediated by the M1 macrophages were decreased and the repair process mediated by M2 macrophages was enhanced. The low-dose and high-dose groups had abdominal aortic aneurysm incidences of 50% and 37.5%, respectively, compared with 75% in the control group. Topiramate, a promising drug for the psychological disease, that target neuro-immune-induced macrophage polarization may attenuate experimental abdominal aortic aneurysm progression.
Collapse
Affiliation(s)
- Xing Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Xiao
- Department of Cardiovascular Surgery, Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuanlei Yang
- Department of Cardiovascular Surgery, Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, China
| | - Zhanjie Wei
- Department of Thyroid and Breast Surgery, Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, China
| | - Weiqiang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinling Du
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinping Liu
- Department of Cardiovascular Surgery, Zhongnan Hospital, Wuhan University, Wuhan, China
| |
Collapse
|
25
|
Cataldi M, Cignarelli A, Giallauria F, Muscogiuri G, Barrea L, Savastano S, Colao A. Cardiovascular effects of antiobesity drugs: are the new medicines all the same? INTERNATIONAL JOURNAL OF OBESITY SUPPLEMENTS 2020; 10:14-26. [PMID: 32714509 DOI: 10.1038/s41367-020-0015-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Waiting for a definite answer from well-designed randomized prospective clinical trials, the impact of the new antiobesity drugs -liraglutide, bupropion/naltrexone, phentermine/topiramate and lorcaserin- on cardiovascular outcomes remains uncertain. What has been learned from previous experience with older medicines is that antiobesity drugs may influence cardiovascular health not only causing weight reduction but also through direct actions on the cardiovascular system. Therefore, in the present review, we examine what is known, mainly from preclinical investigations, about the cardiovascular pharmacology of the new antiobesity medicines with the aim of highlighting potential mechanistic differences. We will show that the two active substances of the bupropion/naltrexone combination both exert beneficial and unwanted cardiovascular effects. Indeed, bupropion exerts anti-inflammatory effects but at the same time it does increase heart rate and blood pressure by potentiating catecholaminergic neurotransmission, whereas naltrexone reduces TLR4-dependent inflammation and has potential protective effects in stroke but also impairs cardiac adaption to ischemia and the beneficial opioid protective effects mediated in the endothelium. On the contrary, with the only exception of a small increase in heat rate, liraglutide only exerts favorable cardiovascular effects by protecting myocardium and brain from ischemic damage, improving heart contractility, lowering blood pressure and reducing atherogenesis. As far as the phentermine/topiramate combination is concerned, no direct cardiovascular beneficial effect is expected for phentermine (as this drug is an amphetamine derivative), whereas topiramate may exert cardioprotective and neuroprotective effects in ischemia and anti-inflammatory and antiatherogenic actions. Finally, lorcaserin, a selective 5HT2C receptor agonist, does not seem to exert significant direct effects on the cardiovascular system though at very high concentrations this drug may also interact with other serotonin receptor subtypes and exert unwanted cardiovascular effects. In conclusion, the final effect of the new antiobesity drugs on cardiovascular outcomes will be a balance between possible (but still unproved) beneficial effects of weight loss and "mixed" weight-independent drug-specific effects. Therefore comparative studies will be required to establish which one of the new medicines is more appropriate in patients with specific cardiovascular diseases.
Collapse
Affiliation(s)
- Mauro Cataldi
- Department of Neuroscience, Reproductive Sciences and Dentistry, Division of Pharmacology, Federico II University of Naples, Naples, Italy
| | - Angelo Cignarelli
- Department of Emergency and Organ Transplantation, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Bari, Italy
| | - Francesco Giallauria
- Department of Translational Medical Sciences, Internal Medicine (Metabolic and Cardiac Rehabilitation Unit), Federico II University of Naples, Naples, Italy
| | - Giovanna Muscogiuri
- Department of Clinical Medicine and Surgery, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Luigi Barrea
- Department of Clinical Medicine and Surgery, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Silvia Savastano
- Department of Clinical Medicine and Surgery, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Annamaria Colao
- Department of Clinical Medicine and Surgery, Unit of Endocrinology, Federico II University Medical School of Naples, Via Sergio Pansini 5, 80131 Naples, Italy
| | | |
Collapse
|
26
|
Peet C, Ivetic A, Bromage DI, Shah AM. Cardiac monocytes and macrophages after myocardial infarction. Cardiovasc Res 2020; 116:1101-1112. [PMID: 31841135 PMCID: PMC7177720 DOI: 10.1093/cvr/cvz336] [Citation(s) in RCA: 307] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/03/2019] [Accepted: 12/12/2019] [Indexed: 12/17/2022] Open
Abstract
Improvements in early interventions after acute myocardial infarction (AMI), notably, the increased use of timely reperfusion therapy, have increased survival dramatically in recent decades. Despite this, maladaptive ventricular remodelling and subsequent heart failure (HF) following AMI remain a significant clinical challenge, particularly because several pre-clinical strategies to attenuate remodelling have failed to translate into clinical practice. Monocytes and macrophages, pleiotropic cells of the innate immune system, are integral in both the initial inflammatory response to injury and subsequent wound healing in many tissues, including the heart. However, maladaptive immune cell behaviour contributes to ventricular remodelling in mouse models, prompting experimental efforts to modulate the immune response to prevent the development of HF. Seminal work in macrophage biology defined macrophages as monocyte-derived cells that are comprised of two populations, pro-inflammatory M1 macrophages and reparative M2 macrophages, and initial investigations into cardiac macrophage populations following AMI suggested they aligned well to this model. However, more recent data, in the heart and other tissues, demonstrate remarkable heterogeneity and plasticity in macrophage development, phenotype, and function. These recent insights into macrophage biology may explain the failure of non-specific immunosuppressive strategies and offer novel opportunities for therapeutic targeting to prevent HF following AMI. Here, we summarize the traditional monocyte-macrophage paradigm, experimental evidence for the significance of these cells in HF after AMI, and the potential relevance of emerging evidence that refutes canonical models of monocyte and macrophage biology.
Collapse
Affiliation(s)
- Claire Peet
- School of Cardiovascular Medicine and Sciences, James Black Centre, King's College London BHF Centre of Excellence, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Aleksandar Ivetic
- School of Cardiovascular Medicine and Sciences, James Black Centre, King's College London BHF Centre of Excellence, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Daniel I Bromage
- School of Cardiovascular Medicine and Sciences, James Black Centre, King's College London BHF Centre of Excellence, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Ajay M Shah
- School of Cardiovascular Medicine and Sciences, James Black Centre, King's College London BHF Centre of Excellence, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
27
|
Popescu MR, Panaitescu AM, Pavel B, Zagrean L, Peltecu G, Zagrean AM. Getting an Early Start in Understanding Perinatal Asphyxia Impact on the Cardiovascular System. Front Pediatr 2020; 8:68. [PMID: 32175294 PMCID: PMC7055155 DOI: 10.3389/fped.2020.00068] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
Perinatal asphyxia (PA) is a burdening pathology with high short-term mortality and severe long-term consequences. Its incidence, reaching as high as 10 cases per 1000 live births in the less developed countries, prompts the need for better awareness and prevention of cases at risk, together with management by easily applicable protocols. PA acts first and foremost on the nervous tissue, but also on the heart, by hypoxia and subsequent ischemia-reperfusion injury. Myocardial development at birth is still incomplete and cannot adequately respond to this aggression. Cardiac dysfunction, including low ventricular output, bradycardia, and pulmonary hypertension, complicates the already compromised circulatory status of the newborn with PA. Multiorgan and especially cardiovascular failure seem to play a crucial role in the secondary phase of hypoxic-ischemic encephalopathy (HIE) and its high mortality rate. Hypothermia is an acceptable solution for HIE, but there is a fragile equilibrium between therapeutic gain and cardiovascular instability. A profound understanding of the underlying mechanisms of the nervous and cardiovascular systems and a close collaboration between the bench and bedside specialists in these domains is compulsory. More resources need to be directed toward the prevention of PA and the consecutive decrease of cardiovascular dysfunction. Not much can be done in case of an unexpected acute event that produces PA, where recognition and prompt delivery are the key factors for a positive clinical result. However, the situation is different for high-risk pregnancies or circumstances that make the fetus more vulnerable to asphyxia. Improving the outcome in these cases is possible through careful monitoring, identifying the high-risk pregnancies, and the implementation of novel prenatal strategies. Also, apart from adequately supporting the heart through the acute episode, there is a need for protocols for long-term cardiovascular follow-up. This will increase our recognition of any lasting myocardial damage and will enhance our perspective on the real impact of PA. The goal of this article is to review data on the cardiovascular consequences of PA, in the context of an immature cardiovascular system, discuss the potential contribution of cardiovascular impairment on short and long-term outcomes, and propose further directions of research in this field.
Collapse
Affiliation(s)
- Mihaela Roxana Popescu
- Cardiology Department, Elias University Hospital, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Anca Maria Panaitescu
- Department of Obstetrics and Gynecology, Filantropia Clinical Hospital, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Bogdan Pavel
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
- Intensive Care Department, Clinical Emergency Hospital of Plastic Surgery and Burns, Bucharest, Romania
| | - Leon Zagrean
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Gheorghe Peltecu
- Department of Obstetrics and Gynecology, Filantropia Clinical Hospital, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| | - Ana-Maria Zagrean
- Division of Physiology and Neuroscience, Department of Functional Sciences, “Carol Davila” University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
28
|
Iking J, Klose J, Staniszewska M, Fendler WP, Herrmann K, Rischpler C. Imaging inflammation after myocardial infarction: implications for prognosis and therapeutic guidance. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF RADIOPHARMACEUTICAL CHEMISTRY AND BIOLOGY 2020; 64:35-50. [PMID: 32077669 DOI: 10.23736/s1824-4785.20.03232-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammation after myocardial infarction (MI) has been in the focus of cardiovascular research for several years as it influences the remodeling process of the ischemic heart and thereby critically determines the clinical outcome of the patient. Today, it is well appreciated that inflammation is a crucial necessity for the initiation of the natural wound healing process; however, excessive inflammation can have detrimental effects and might result in adverse ventricular remodeling which is associated with an increased risk of heart failure. Newly emerged imaging techniques facilitate the non-invasive assessment of immune cell infiltration into the ischemic myocardium and can provide greater insight into the underlying complex and dynamic repair mechanisms. Molecular imaging of inflammation in the context of MI may help with stratification of patients at high risk of adverse ventricular remodeling post-MI which may be of diagnostic, therapeutic, and prognostic value. Novel radiopharmaceuticals may additionally provide a way to combine patient monitoring and therapy. In spite of great advances in recent years in the field of imaging sciences, clinicians still need to overcome some obstacles to a wider implementation of inflammation imaging post-MI. This review focuses on inflammation as a molecular imaging target and its potential implication in prognosis and therapeutic guidance.
Collapse
Affiliation(s)
- Janette Iking
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany.,Department of Cardiology I for Coronary and Peripheral Vascular Disease, and Heart Failure, University Hospital Münster, Münster, Germany
| | - Jasmin Klose
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | | | - Wolfgang P Fendler
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, Essen, Germany
| | | |
Collapse
|
29
|
Giannarelli C, Fernandez DM. Manipulating Macrophage Polarization to Fix the Broken Heart: Challenges and Hopes. J Am Coll Cardiol 2019; 72:905-907. [PMID: 30115229 DOI: 10.1016/j.jacc.2018.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 06/18/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Chiara Giannarelli
- Cardiovascular Research Center, The Icahn Institute for Genomics and Multiscale Biology, New York, New York; Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, New York, New York; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Dawn M Fernandez
- Cardiovascular Research Center, The Icahn Institute for Genomics and Multiscale Biology, New York, New York; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
30
|
Mater S, Lee JJ, Jedrych J, Rosenbach M, English JC. Topiramate-induced reactive granulomatous dermatitis. JAAD Case Rep 2019; 5:501-503. [PMID: 31193974 PMCID: PMC6546962 DOI: 10.1016/j.jdcr.2019.03.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Sara Mater
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jonathan J. Lee
- Department of Dermatology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
- Correspondence to: Jonathan J. Lee, MD, 3708 Fifth Avenue Fifth Floor, Suite 500.68, Pittsburgh, PA 15213.
| | - Jaroslaw Jedrych
- Department of Dermatology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Misha Rosenbach
- Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Joseph C. English
- Department of Dermatology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
31
|
Andreadou I, Cabrera-Fuentes HA, Devaux Y, Frangogiannis NG, Frantz S, Guzik T, Liehn EA, Gomes CPC, Schulz R, Hausenloy DJ. Immune cells as targets for cardioprotection: new players and novel therapeutic opportunities. Cardiovasc Res 2019; 115:1117-1130. [PMID: 30825305 PMCID: PMC6529904 DOI: 10.1093/cvr/cvz050] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/18/2018] [Accepted: 02/24/2019] [Indexed: 12/22/2022] Open
Abstract
New therapies are required to reduce myocardial infarct (MI) size and prevent the onset of heart failure in patients presenting with acute myocardial infarction (AMI), one of the leading causes of death and disability globally. In this regard, the immune cell response to AMI, which comprises an initial pro-inflammatory reaction followed by an anti-inflammatory phase, contributes to final MI size and post-AMI remodelling [changes in left ventricular (LV) size and function]. The transition between these two phases is critical in this regard, with a persistent and severe pro-inflammatory reaction leading to adverse LV remodelling and increased propensity for developing heart failure. In this review article, we provide an overview of the immune cells involved in orchestrating the complex and dynamic inflammatory response to AMI-these include neutrophils, monocytes/macrophages, and emerging players such as dendritic cells, lymphocytes, pericardial lymphoid cells, endothelial cells, and cardiac fibroblasts. We discuss potential reasons for past failures of anti-inflammatory cardioprotective therapies, and highlight new treatment targets for modulating the immune cell response to AMI, as a potential therapeutic strategy to improve clinical outcomes in AMI patients. This article is part of a Cardiovascular Research Spotlight Issue entitled 'Cardioprotection Beyond the Cardiomyocyte', and emerged as part of the discussions of the European Union (EU)-CARDIOPROTECTION Cooperation in Science and Technology (COST) Action, CA16225.
Collapse
Affiliation(s)
- Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, Athens, Greece
| | - Hector A Cabrera-Fuentes
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore
- Institute of Biochemistry, Medical School, Justus-Liebig University, Ludwigstrasse 23, Giessen, Germany
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Av. Eugenio Garza Sada 2501 Sur, Nuevo Leon, Mexico
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Kremlyovskaya St, 18, Kazan, Respublika Tatarstan, Russia
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, 1A-B rue Thomas Edison, Strassen, Luxembourg
| | - Nikolaos G Frangogiannis
- Wilf Family Cardiovascular Research Institute Department of Medicine (Cardiology) Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer G46B Bronx NY USA
| | - Stefan Frantz
- Department of Internal Medicine I, University Hospital Würzburg, Oberdürrbacher Str. 6, Würzburg, Germany
| | - Tomasz Guzik
- Department of Internal and Agricultural Medicine, Jagiellonian University Medical College, Świętej Anny 12, Kraków, Poland
- Institute of Cardiovascular and Medical Sciences, University ofGlasgow, University Avenue, Glasgow, UK
| | - Elisa A Liehn
- Institute for Molecular Cardiovascular Research, Rheinisch Westfälische Technische Hochschule Aachen University,Templergraben 55, Aachen, Germany
- Human Genomics Laboratory, University of Medicine and Pharmacy Craiova, Strada Petru Rareș 2, Craiova, Romania
- Department of Cardiology, Pulmonology, Angiology and Intensive Care, University Hospital, Rheinisch Westfälische Technische Hochschule,Templergraben 55, Aachen, Germany
| | - Clarissa P C Gomes
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, 1A-B rue Thomas Edison, Strassen, Luxembourg
| | - Rainer Schulz
- Physiologisches Institut Fachbereich Medizin der Justus-Liebig-Universität, Aulweg 129, Giessen, Germany
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Av. Eugenio Garza Sada 2501 Sur, Nuevo Leon, Mexico
- Yong Loo Lin School of Medicine, National University Singapore, 1E Kent Ridge Road, Singapore
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, UK
- The National Institute of Health Research University College London Hospitals Biomedical Research Centre, Research & Development, Maple House 1st floor, 149 Tottenham Court Road, London, UK
| |
Collapse
|
32
|
Affiliation(s)
- Pingjin Gao
- Department of Hypertension, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Xu JY, Xiong YY, Lu XT, Yang YJ. Regulation of Type 2 Immunity in Myocardial Infarction. Front Immunol 2019; 10:62. [PMID: 30761134 PMCID: PMC6362944 DOI: 10.3389/fimmu.2019.00062] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/11/2019] [Indexed: 12/12/2022] Open
Abstract
Type 2 immunity participates in the pathogeneses of helminth infection and allergic diseases. Emerging evidence indicates that the components of type 2 immunity are also involved in maintaining metabolic hemostasis and facilitating the healing process after tissue injury. Numerous preclinical studies have suggested regulation of type 2 immunity-related cytokines, such as interleukin-4, -13, and -33, and cell types, such as M2 macrophages, mast cells, and eosinophils, affects cardiac functions after myocardial infarction (MI), providing new insights into the importance of immune modulation in the infarcted heart. This review provides an overview of the functions of these cytokines and cells in the setting of MI as well as their potential to predict the severity and prognosis of MI.
Collapse
Affiliation(s)
- Jun-Yan Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yu-Yan Xiong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiao-Tong Lu
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|