1
|
Li J, Shen S, Yu C, Sun S, Zheng P. Integrated single cell-RNA sequencing and Mendelian randomization for ischemic stroke and metabolic syndrome. iScience 2024; 27:110240. [PMID: 39021802 PMCID: PMC11253530 DOI: 10.1016/j.isci.2024.110240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/22/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
Although more and more evidence has supported that metabolic syndrome (MS) is linked to ischemic stroke (IS), the molecular mechanism and genetic association between them has not been investigated. Here, we combined the existing single-cell RNA sequencing (scRNA-seq) data and mendelian randomization (MR) for stroke to understand the role of dysregulated metabolism in stroke. The shared hub genes were identified with machine learning and WGCNA. A total of six upregulated DEGs and five downregulated genes were selected for subsequent analyses. Nine genes were finally identified with random forest, Lasso regression, and XGBoost method as a potential diagnostic model. scRNA-seq also show the abnormal glycolysis level in most cell clusters in stroke and associated with the expression level of hub genes. The genetic relationship between IS and MS was verified with MR analysis. Our study reveals the common molecular profile and genetic association between ischemic stroke and metabolic syndrome.
Collapse
Affiliation(s)
- Jie Li
- Department of Neurosurgery, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Sen Shen
- Department of Neurosurgery, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Cong Yu
- Department of Neurosurgery, Shanghai Pudong New area People’s Hospital, Shanghai, China
| | - Shuchen Sun
- Department of Neurosurgery, Shanghai Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ping Zheng
- Department of Neurosurgery, Shanghai Pudong New area People’s Hospital, Shanghai, China
| |
Collapse
|
2
|
Shi F, Zhang G, Li J, Shu L, Yu C, Ren D, Zhang Y, Zheng P. Integrated analysis of single cell-RNA sequencing and Mendelian randomization identifies lactate dehydrogenase B as a target of melatonin in ischemic stroke. CNS Neurosci Ther 2024; 30:e14741. [PMID: 38702940 PMCID: PMC11069049 DOI: 10.1111/cns.14741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 05/06/2024] Open
Abstract
AIMS Despite the success of single-cell RNA sequencing in identifying cellular heterogeneity in ischemic stroke, clarifying the mechanisms underlying these associations of differently expressed genes remains challenging. Several studies that integrate gene expression and gene expression quantitative trait loci (eQTLs) with genome wide-association study (GWAS) data to determine their causal role have been proposed. METHODS Here, we combined Mendelian randomization (MR) framework and single cell (sc) RNA sequencing to study how differently expressed genes (DEGs) mediating the effect of gene expression on ischemic stroke. The hub gene was further validated in the in vitro model. RESULTS We identified 2339 DEGs in 10 cell clusters. Among these DEGs, 58 genes were associated with the risk of ischemic stroke. After external validation with eQTL dataset, lactate dehydrogenase B (LDHB) is identified to be positively associated with ischemic stroke. The expression of LDHB has also been validated in sc RNA-seq with dominant expression in microglia and astrocytes, and melatonin is able to reduce the LDHB expression and activity in vitro ischemic models. CONCLUSION Our study identifies LDHB as a novel biomarker for ischemic stroke via combining the sc RNA-seq and MR analysis.
Collapse
Affiliation(s)
- Fei Shi
- Department of Neurovascular Intervention and Neurosurgery, Shanghai General HospitalShanghai Jiaotong University, School of MedicineShanghaiChina
| | - Guiyun Zhang
- Department of Neurovascular Intervention and Neurosurgery, Shanghai General HospitalShanghai Jiaotong University, School of MedicineShanghaiChina
| | - Jinshi Li
- Department of NeurologyShanghai Pudong New area People's HospitalShanghaiChina
| | - Liang Shu
- Department of NeurologyShanghai Ninth People's HospitalShanghaiChina
| | - Cong Yu
- Department of NeurosurgeryShanghai Pudong New area People's HospitalShanghaiChina
| | - Dabin Ren
- Department of NeurosurgeryShanghai Pudong New area People's HospitalShanghaiChina
| | - Yisong Zhang
- Department of NeurosurgeryShanghai Pudong New area People's HospitalShanghaiChina
| | - Ping Zheng
- Department of NeurosurgeryShanghai Pudong New area People's HospitalShanghaiChina
| |
Collapse
|
3
|
Chen Y, Tan X, Zhang W, Li Y, Deng X, Zeng J, Huang L, Ma X. Natural products targeting macroautophagy signaling in hepatocellular carcinoma therapy: Recent evidence and perspectives. Phytother Res 2024; 38:1623-1650. [PMID: 38302697 DOI: 10.1002/ptr.8103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/07/2023] [Accepted: 12/16/2023] [Indexed: 02/03/2024]
Abstract
Hepatocellular carcinoma (HCC), presently the second leading cause of global cancer-related mortality, continues to pose significant challenges in the realm of medical oncology, impacting both clinical drug selection and mechanistic research. Recent investigations have unveiled autophagy-related signaling as a promising avenue for HCC treatment. A growing body of research has highlighted the pivotal role of autophagy-modulating natural products in inhibiting HCC progression. In this context, we provide a concise overview of the fundamental autophagy mechanism and delineate the involvement of autophagic signaling pathways in HCC development. Additionally, we review pertinent studies demonstrating how natural products regulate autophagy to mitigate HCC. Our findings indicate that natural products exhibit cytotoxic effects through the induction of excessive autophagy, simultaneously impeding HCC cell proliferation by autophagy inhibition, thereby depriving HCC cells of essential energy. These effects have been associated with various signaling pathways, including PI3K/AKT, MAPK, AMPK, Wnt/β-catenin, Beclin-1, and ferroautophagy. These results underscore the considerable therapeutic potential of natural products in HCC treatment. However, it is important to note that the present study did not establish definitive thresholds for autophagy induction or inhibition by natural products. Further research in this domain is imperative to gain comprehensive insights into the dual role of autophagy, equipping us with a better understanding of this double-edged sword in HCC management.
Collapse
Affiliation(s)
- Yuan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiyue Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yubing Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lihua Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Li Y, Li J, Tang X, Xu J, Liu R, Jiang L, Tian J, Zhang Y, Wang D, Sun K, Xu B, Zhao W, Hui R, Gao R, Song L, Yuan J, Zhao X. Association of NPC1L1 and HMGCR gene polymorphisms with coronary artery calcification in patients with premature triple-vessel coronary disease. BMC Med Genomics 2024; 17:22. [PMID: 38233830 PMCID: PMC10795340 DOI: 10.1186/s12920-024-01802-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Coronary artery calcification (CAC) is a highly specific marker of atherosclerosis. Niemann-Pick C1-like 1 (NPC1L1) and 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR) are the therapeutic targets of ezetimibe and statins, respectively, which are important for the progression of atherosclerosis. However, CAC's genetic susceptibility with above targets is still unknown. We aimed to investigate the association of NPC1L1 and HMGCR gene polymorphisms with CAC in patients with premature triple-vessel disease (PTVD). METHODS Four single nucleotide polymorphisms (SNPs) (rs11763759, rs4720470, rs2072183, rs2073547) of NPC1L1, and three SNPs (rs12916, rs2303151, rs4629571) of HMGCR were genotyped in 872 PTVD patients. According to the coronary angiography results, patients were divided into low-degree CAC group and high-degree CAC group. RESULTS A total of 872 PTVD patients (mean age, 47.71 ± 6.12; male, 72.8%) were finally included for analysis. Multivariate logistic regression analysis showed no significant association between the SNPs of NPC1L1 and HMGCR genes and high-degree CAC in the total population (P > 0.05). Subgroup analysis by gender revealed that the variant genotype (TT/CT) of rs4720470 on NPC1L1 gene was associated with increased risk for high-degree CAC in male patients only (OR = 1.505, 95% CI: 1.008-2.249, P = 0.046) in dominant model, but no significant association was found in female population, other SNPs of NPC1L1 and HMGCR genes (all P > 0.05). CONCLUSIONS We reported for the first time that the rs4720470 on NPC1L1 gene was associated with high-degree CAC in male patients with PTVD. In the future, whether therapies related to this target could reduce CAC and cardiovascular events deserves further investigation.
Collapse
Affiliation(s)
- Yulong Li
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Jiawen Li
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Xiaofang Tang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Jingjing Xu
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Ru Liu
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Lin Jiang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Jian Tian
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Yin Zhang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Dong Wang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Kai Sun
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Bo Xu
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Wei Zhao
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Rutai Hui
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Runlin Gao
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China
| | - Lei Song
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China.
| | - Jinqing Yuan
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China.
| | - Xueyan Zhao
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 Beilishi Road, Xicheng District, Beijing, 100037, China.
| |
Collapse
|
5
|
Functional Crosstalk between PCSK9 Internalization and Pro-Inflammatory Activation in Human Macrophages: Role of Reactive Oxygen Species Release. Int J Mol Sci 2022; 23:ijms23169114. [PMID: 36012389 PMCID: PMC9409451 DOI: 10.3390/ijms23169114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 02/06/2023] Open
Abstract
Atherosclerosis is a cardiovascular disease caused mainly by dyslipidemia and is characterized by the formation of an atheroma plaque and chronic inflammation. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a protease that induces the degradation of the LDL receptor (LDLR), which contributes to increased levels of LDL cholesterol and the progress of atherosclerosis. Given that macrophages are relevant components of the lipidic and inflammatory environment of atherosclerosis, we studied the effects of PCSK9 treatment on human macrophages. Our data show that human macrophages do not express PCSK9 but rapidly incorporate the circulating protein through the LDLR and also activate the pro-inflammatory TLR4 pathway. Both LDLR and TLR4 are internalized after incubation of macrophages with exogenous PCSK9. PCSK9 uptake increases the production of reactive oxygen species and reduces the expression of genes involved in lipid metabolism and cholesterol efflux, while enhancing the production of pro-inflammatory cytokines through a TLR4-dependent mechanism. Under these conditions, the viability of macrophages is compromised, leading to increased cell death. These results provide novel insights into the role of PCSK9 in the crosstalk of lipids and cholesterol metabolism through the LDLR and on the pro-inflammatory activation of macrophages through TLR4 signaling. These pathways are relevant in the outcome of atherosclerosis and highlight the relevance of PCSK9 as a therapeutic target for the treatment of cardiovascular diseases.
Collapse
|
6
|
Differential regulation of mRNAs and lncRNAs related to lipid metabolism in Duolang and Small Tail Han sheep. Sci Rep 2022; 12:11157. [PMID: 35778462 PMCID: PMC9249921 DOI: 10.1038/s41598-022-15318-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/22/2022] [Indexed: 11/21/2022] Open
Abstract
The function of long non-coding RNA (lncRNA) can be achieved through the regulation of target genes, and the deposition of fat is regulated by lncRNA. Fat has an important effect on meat quality. However, there are relatively few studies on lncRNAs in the subcutaneous adipose tissue of Duolang sheep and Small Tail Han sheep. In this study, RNA-Seq technology and bioinformatics methods were used to identify and analyze the lncRNA and mRNA in the subcutaneous adipose tissue of the two breeds of sheep. The results showed that 107 lnRNAs and 1329 mRNAs were differentially expressed. The differentially expressed genes and lncRNA target genes were significantly enriched in the biosynthesis of unsaturated fatty acids signaling pathway, fatty acid metabolism, adipocyte differentiation and other processes related to fat deposition. Among them, LOC105616076, LOC114118103, LOC105607837, LOC101116622, and LOC105603235 target FADS1, SCD, ELOVL6, HSD17B12 and HACD2, respectively. They play a key regulatory role in the biosynthesis of unsaturated fatty acids. This study lays a foundation for the study of the molecular mechanism of lncRNA on fat development, and has reference value for studying the differences in fat deposition between Duolang sheep and Small Tail Han sheep.
Collapse
|
7
|
Vargas G, Cortés O, Arias-Muñoz E, Hernández S, Cerda-Troncoso C, Hernández L, González AE, Tatham MH, Bustamante HA, Retamal C, Cancino J, Varas-Godoy M, Hay RT, Rojas-Fernández A, Cavieres VA, Burgos PV. Negative Modulation of Macroautophagy by Stabilized HERPUD1 is Counteracted by an Increased ER-Lysosomal Network With Impact in Drug-Induced Stress Cell Survival. Front Cell Dev Biol 2022; 10:743287. [PMID: 35309917 PMCID: PMC8924303 DOI: 10.3389/fcell.2022.743287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 01/27/2022] [Indexed: 11/25/2022] Open
Abstract
Macroautophagy and the ubiquitin proteasome system work as an interconnected network in the maintenance of cellular homeostasis. Indeed, efficient activation of macroautophagy upon nutritional deprivation is sustained by degradation of preexisting proteins by the proteasome. However, the specific substrates that are degraded by the proteasome in order to activate macroautophagy are currently unknown. By quantitative proteomic analysis we identified several proteins downregulated in response to starvation independently of ATG5 expression. Among them, the most significant was HERPUD1, an ER membrane protein with low expression and known to be degraded by the proteasome under normal conditions. Contrary, under ER stress, levels of HERPUD1 increased rapidly due to a blockage in its proteasomal degradation. Thus, we explored whether HERPUD1 stability could work as a negative regulator of autophagy. In this work, we expressed a version of HERPUD1 with its ubiquitin-like domain (UBL) deleted, which is known to be crucial for its proteasome degradation. In comparison to HERPUD1-WT, we found the UBL-deleted version caused a negative role on basal and induced macroautophagy. Unexpectedly, we found stabilized HERPUD1 promotes ER remodeling independent of unfolded protein response activation observing an increase in stacked-tubular structures resembling previously described tubular ER rearrangements. Importantly, a phosphomimetic S59D mutation within the UBL mimics the phenotype observed with the UBL-deleted version including an increase in HERPUD1 stability and ER remodeling together with a negative role on autophagy. Moreover, we found UBL-deleted version and HERPUD1-S59D trigger an increase in cellular size, whereas HERPUD1-S59D also causes an increased in nuclear size. Interestingly, ER remodeling by the deletion of the UBL and the phosphomimetic S59D version led to an increase in the number and function of lysosomes. In addition, the UBL-deleted version and phosphomimetic S59D version established a tight ER-lysosomal network with the presence of extended patches of ER-lysosomal membrane-contact sites condition that reveals an increase of cell survival under stress conditions. Altogether, we propose stabilized HERPUD1 downregulates macroautophagy favoring instead a closed interplay between the ER and lysosomes with consequences in drug-cell stress survival.
Collapse
Affiliation(s)
- Gabriela Vargas
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Omar Cortés
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Eloisa Arias-Muñoz
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica, Santiago, Chile
| | - Sergio Hernández
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Cristobal Cerda-Troncoso
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Laura Hernández
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Alexis E González
- Facultad de Medicina, Instituto de Fisiología, Universidad Austral de Chile, Valdivia, Chile
| | - Michael H Tatham
- Center for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Hianara A Bustamante
- Facultad de Medicina, Instituto de Microbiología Clínica, Universidad Austral de Chile, Valdivia, Chile
| | - Claudio Retamal
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Jorge Cancino
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Manuel Varas-Godoy
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Ronald T Hay
- Center for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Alejandro Rojas-Fernández
- Center for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, United Kingdom.,Instituto de Medicina & Centro Interdisciplinario de Estudios del Sistema Nervioso (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Viviana A Cavieres
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica, Santiago, Chile
| | - Patricia V Burgos
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Centro de Envejecimiento y Regeneración (CARE-UC), Facultad de Ciencias Biológicas, Pontificia Universidad Católica, Santiago, Chile.,Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| |
Collapse
|
8
|
Analysis of Rare Variants in Genes Related to Lipid Metabolism in Patients with Familial Hypercholesterolemia in Western Siberia (Russia). J Pers Med 2021; 11:jpm11111232. [PMID: 34834584 PMCID: PMC8624238 DOI: 10.3390/jpm11111232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 12/29/2022] Open
Abstract
The aim of this work was to identify genetic variants potentially involved in familial hypercholesterolemia in 43 genes associated with lipid metabolism disorders. Targeted high-throughput sequencing of lipid metabolism genes was performed (80 subjects with a familial-hypercholesterolemia phenotype). For patients without functionally significant substitutions in the above genes, multiplex ligation-dependent probe amplification was conducted to determine bigger mutations (deletions and/or duplications) in the LDLR promoter and exons. A clinically significant variant in some gene associated with familial hypercholesterolemia was identified in 47.5% of the subjects. Clinically significant variants in the LDLR gene were identified in 19 probands (73.1% of all variants identified in probands); in three probands (11.5%), pathogenic variants were found in the APOB gene; and in four probands (15.4%), rare, clinically significant variants were identified in genes LPL, SREBF1, APOC3, and ABCG5. In 12 (85.7%) of 14 children of the probands, clinically significant variants were detectable in genes associated with familial hypercholesterolemia. The use of clinical criteria, targeted sequencing, and multiplex ligation-dependent probe amplification makes it possible to identify carriers of rare clinically significant variants in a wide range of lipid metabolism genes and to investigate their influence on phenotypic manifestations of familial hypercholesterolemia.
Collapse
|
9
|
Zhang X, Zhang B, Zhang C, Sun G, Sun X. Current Progress in Delineating the Roles of Pseudokinase TRIB1 in Controlling Human Diseases. J Cancer 2021; 12:6012-6020. [PMID: 34539875 PMCID: PMC8425202 DOI: 10.7150/jca.51627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Tribbles homolog 1 (TRIB1) is a member of the tribbles family of pseudoprotein kinases and is widely expressed in numerous tissues, such as bone marrow, skeletal muscle, liver, heart, and adipose tissue. It is closely associated with acute myeloid leukemia, prostate cancer, and tumor drug resistance, and can interfere with the hematopoietic stem cell cycle, promote tumor cell proliferation, and inhibit apoptosis. Recent studies have shown that TRIB1 can regulate acute and chronic inflammation by affecting the secretion of inflammatory factors, which is closely related to the occurrence of hyperlipidemia and cardiovascular diseases. Given the important biological functions of TRIB1, the reviews published till now are not sufficiently comprehensive. Therefore, this paper reviews the progress in TRIB1 research aimed at exploring its roles in cancer, hyperlipidemia, and cardiovascular disease, and providing a theoretical basis for further studies on the biological roles of TRIB1.
Collapse
Affiliation(s)
- Xuelian Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.,Key Laboratory of efficacy evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Bin Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.,Key Laboratory of efficacy evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Chenyang Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.,Key Laboratory of efficacy evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Guibo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.,Key Laboratory of efficacy evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.,Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing 100193, China.,Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing 100193, China.,Key Laboratory of efficacy evaluation of Chinese Medicine against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing 100193, China
| |
Collapse
|
10
|
Guo N, Wang P, Yang J, Yang X, van der Voet M, Wildwater M, Wei J, Tang X, Wang M, Yang H. Serum Metabolomic Analysis of Coronary Heart Disease Patients with Stable Angina Pectoris Subtyped by Traditional Chinese Medicine Diagnostics Reveals Biomarkers Relevant to Personalized Treatments. Front Pharmacol 2021; 12:664320. [PMID: 34194326 PMCID: PMC8236985 DOI: 10.3389/fphar.2021.664320] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/28/2021] [Indexed: 11/29/2022] Open
Abstract
To improve the treatment of patients with coronary heart disease (CHD), personalized treatments based on potential biomarkers could make a difference. To investigate if such potential biomarkers could be found for CHD inhomogeneous, we combined traditional Chinese medicine based diagnosis with untargeted and targeted metabolomics analyses. Shi and Xu patient subtype groups of CHD with angina pectoris were identified. Different metabolites including lipids, fatty acids and amino acids were further analyzed with targeted metabolomics and mapped to disease-related pathways. The long-chain unsaturated lipids ceramides metabolism, bile acid metabolism were differentially affected in the Xu subtype groups. While, Shi-subtype patients seemed to show inflammation, anomalous levels of bioactive phospholipids and antioxidant molecules. Furthermore, variations in the endothelial damage response and energy metabolism found based on ELISA analysis are the key divergence points between different CHD subtypes. The results showed Xu subtype patients might benefit from long-chain unsaturated lipids ceramides as therapeutic targets. Shi subtype patients might benefit more from levels of polyunsaturated fatty acid consumption and treatments that help in restoring energy balance. Metabolic differences can be essential for treatment protocols. Thus, patient group specific differences can serve as important information to refine current treatment approaches in a personalized manner.
Collapse
Affiliation(s)
- Na Guo
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, Center for Post-doctoral Research, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peili Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiaying Yang
- College of Pharmacy, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Xiaofang Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | | | | | - Junying Wei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xuan Tang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mei Wang
- LU-European Center for Chinese Medicine and Natural Compounds, Institute of Biology, Leiden University, Leiden, Netherlands
| | - Hongjun Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Crone B, Krause AM, Hornsby WE, Willer CJ, Surakka I. Translating genetic association of lipid levels for biological and clinical application. Cardiovasc Drugs Ther 2021; 35:617-626. [PMID: 33604704 PMCID: PMC8272953 DOI: 10.1007/s10557-021-07156-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/09/2021] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW This review focuses on the foundational evidence from the last two decades of lipid genetics research and describes the current status of data-driven approaches for transethnic GWAS, fine-mapping, transcriptome informed fine-mapping, and disease prediction. RECENT FINDINGS Current lipid genetics research aims to understand the association mechanisms and clinical relevance of lipid loci as well as to capture population specific associations found in global ancestries. Recent genome-wide trans-ethnic association meta-analyses have identified 118 novel lipid loci reaching genome-wide significance. Gene-based burden tests of whole exome sequencing data have identified three genes-PCSK9, LDLR, and APOB-with significant rare variant burden associated with familial dyslipidemia. Transcriptome-wide association studies discovered five previously unreported lipid-associated loci. Additionally, the predictive power of genome-wide genetic risk scores amalgamating the polygenic determinants of lipid levels can potentially be used to increase the accuracy of coronary artery disease prediction. CONCLUSIONS Lipids are one of the most successful group of traits in the era of genome-wide genetic discovery for identification of novel loci and plausible drug targets. However, a substantial fraction of lipid trait heritability remains unexplained. Further analysis of diverse ancestries and state of the art methods for association locus refinement could potentially reveal some of this missing heritability and increase the clinical application of the genomic association results.
Collapse
Affiliation(s)
- Bradley Crone
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Amelia M Krause
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Michigan Medicine, Ann Arbor, MI, USA
| | - Whitney E Hornsby
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Michigan Medicine, Ann Arbor, MI, USA
| | - Cristen J Willer
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Michigan Medicine, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Ida Surakka
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Michigan Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
12
|
Cohain AT, Barrington WT, Jordan DM, Beckmann ND, Argmann CA, Houten SM, Charney AW, Ermel R, Sukhavasi K, Franzen O, Koplev S, Whatling C, Belbin GM, Yang J, Hao K, Kenny EE, Tu Z, Zhu J, Gan LM, Do R, Giannarelli C, Kovacic JC, Ruusalepp A, Lusis AJ, Bjorkegren JLM, Schadt EE. An integrative multiomic network model links lipid metabolism to glucose regulation in coronary artery disease. Nat Commun 2021; 12:547. [PMID: 33483510 PMCID: PMC7822923 DOI: 10.1038/s41467-020-20750-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 12/08/2020] [Indexed: 01/30/2023] Open
Abstract
Elevated plasma cholesterol and type 2 diabetes (T2D) are associated with coronary artery disease (CAD). Individuals treated with cholesterol-lowering statins have increased T2D risk, while individuals with hypercholesterolemia have reduced T2D risk. We explore the relationship between lipid and glucose control by constructing network models from the STARNET study with sequencing data from seven cardiometabolic tissues obtained from CAD patients during coronary artery by-pass grafting surgery. By integrating gene expression, genotype, metabolomic, and clinical data, we identify a glucose and lipid determining (GLD) regulatory network showing inverse relationships with lipid and glucose traits. Master regulators of the GLD network also impact lipid and glucose levels in inverse directions. Experimental inhibition of one of the GLD network master regulators, lanosterol synthase (LSS), in mice confirms the inverse relationships to glucose and lipid levels as predicted by our model and provides mechanistic insights.
Collapse
Affiliation(s)
- Ariella T Cohain
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - William T Barrington
- Department of Human Genetics/Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Daniel M Jordan
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Noam D Beckmann
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Carmen A Argmann
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sander M Houten
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Alexander W Charney
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Raili Ermel
- Department of Cardiac Surgery, Tartu University Hospital, Tartu, Estonia
| | | | - Oscar Franzen
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Karolinska Universitetssjukhuset, Huddinge, Sweden
| | - Simon Koplev
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Carl Whatling
- Translational Science, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Gillian M Belbin
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jialiang Yang
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Ke Hao
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eimear E Kenny
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Zhidong Tu
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jun Zhu
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Li-Ming Gan
- Early Clinical Development, Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Ron Do
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Chiara Giannarelli
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Cardiovascular Research Centre, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jason C Kovacic
- Cardiovascular Research Centre, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Arno Ruusalepp
- Department of Cardiac Surgery, Tartu University Hospital, Tartu, Estonia
| | - Aldons J Lusis
- Department of Human Genetics/Medicine, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| | - Johan L M Bjorkegren
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Clinical Gene Networks AB, Stockholm, Sweden.
| | - Eric E Schadt
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Sema4, Stamford, CT, USA.
| |
Collapse
|
13
|
Siewert KM, Voight BF. Bivariate Genome-Wide Association Scan Identifies 6 Novel Loci Associated With Lipid Levels and Coronary Artery Disease. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 11:e002239. [PMID: 30525989 DOI: 10.1161/circgen.118.002239] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Plasma lipid levels are heritable and genetically associated with risk of coronary artery disease (CAD). However, genome-wide association studies (GWAS) routinely analyze these traits independent of one another. Joint GWAS for two related phenotypes can lead to a higher powered analysis to detect variants contributing to both traits. METHODS We performed a bivariate GWAS to discover novel loci associated with both heart disease, using a CAD meta-analysis (122 733 cases and 424 528 controls), and lipid traits, using results from the Global Lipid Genetics Consortium (188 577 subjects). RESULTS We identified six previously unreported loci at genome-wide significance ( P<5×10-8), three which were associated with triglycerides and CAD, two which were associated with LDL (low-density lipoprotein) cholesterol and CAD, and one associated with total cholesterol and CAD. At several of our loci, the GWAS signals jointly localize with genetic variants associated with expression level changes for more than one neighboring genes, indicating that these loci may be affecting disease risk through regulatory activity. CONCLUSIONS We discovered six novel variants individually associated with both lipids and CAD.
Collapse
Affiliation(s)
- Katherine M Siewert
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia (K.M.S.)
| | - Benjamin F Voight
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (B.F.V.).,Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (B.F.V.).,Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia (B.F.V.)
| |
Collapse
|
14
|
Zhu Y, Swanson KM, Rojas RL, Wang Z, St Sauver JL, Visscher SL, Prokop LJ, Bielinski SJ, Wang L, Weinshilboum R, Borah BJ. Systematic review of the evidence on the cost-effectiveness of pharmacogenomics-guided treatment for cardiovascular diseases. Genet Med 2019; 22:475-486. [PMID: 31591509 PMCID: PMC7056639 DOI: 10.1038/s41436-019-0667-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/23/2019] [Indexed: 02/08/2023] Open
Abstract
PURPOSE To examine the evidence on the cost-effectiveness of implementing pharmacogenomics (PGx) in cardiovascular disease (CVD) care. METHODS We conducted a systematic review using multiple databases from inception to 2018. The titles and abstracts of cost-effectiveness studies on PGx-guided treatment in CVD care were screened, and full texts were extracted. RESULTS We screened 909 studies and included 46 to synthesize. Acute coronary syndrome and atrial fibrillation were the predominantly studied conditions (59%). Most studies (78%) examined warfarin-CYP2C9/VKORC1 or clopidogrel-CYP2C19. A payer's perspective was commonly used (39%) for cost calculations, and most studies (46%) were US-based. The majority (67%) of the studies found PGx testing to be cost-effective in CVD care, but cost-effectiveness varied across drugs and conditions. Two studies examined PGx panel testing, of which one examined pre-emptive testing strategies. CONCLUSION We found mixed evidence on the cost-effectiveness of PGx in CVD care. Supportive evidence exists for clopidogrel-CYP2C19 and warfarin-CYP2C9/VKORC1, but evidence is limited in other drug-gene combinations. Gaps persist, including unclear explanation of perspective and cost inputs, underreporting of study design elements critical to economic evaluations, and limited examination of PGx panel and pre-emptive testing for their cost-effectiveness. This review identifies the need for further research on economic evaluations of PGx implementation.
Collapse
Affiliation(s)
- Ye Zhu
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN, USA.,Division of Health Care Policy and Research, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Kristi M Swanson
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN, USA
| | - Ricardo L Rojas
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Zhen Wang
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN, USA.,Evidence-Based Practice Center, Mayo Clinic, Rochester, MN, USA
| | - Jennifer L St Sauver
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN, USA.,Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Sue L Visscher
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN, USA
| | - Larry J Prokop
- Library Public Services, Mayo Clinic, Rochester, MN, USA
| | - Suzette J Bielinski
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Liewei Wang
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Richard Weinshilboum
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Bijan J Borah
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN, USA. .,Division of Health Care Policy and Research, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|