1
|
Wang J, Cui C, Qi S, Wang Z, Song J, Ji G, Sun N, Liu X, Zhang H. The NAC transcription factor PagNAC17 enhances salt tolerance in poplar by alleviating photosynthetic inhibition. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 221:109645. [PMID: 39955821 DOI: 10.1016/j.plaphy.2025.109645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/24/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
The NAC transcription factor family is essential for plant growth, development, and stress responses. This study, based on RNA-Seq data from 84K poplar and weighted gene co-expression network analysis (WGCNA), identified PagNAC17 as a key factor in the salt stress response of poplar. A total of 202 PtrNAC TFs were identified and categorized into two major subfamilies, with their conserved motifs, gene structures, and cis-acting elements analyzed. Genes co-expressed with PagNAC17 are involved in energy metabolism, such as photosynthesis (e.g., light absorption and CO2 fixation), oxidative phosphorylation, signal transduction processes, and stress responses (e.g., the glutathione metabolism pathway), suggesting that PagNAC17 may regulate salt tolerance in poplar through these pathways. PagNAC17 is localized in the nucleus, primarily expressed in young leaves with the lowest expression in roots, and has transcriptional activation activity. The expression of PagNAC17 in yeast significantly enhances growth under salt conditions. Likewise, the overexpression of PagNAC17 in 84K poplar also significantly enhances salt tolerance, reducing yellowing, wilting, and oxidative damage. In summary, PagNAC17 is a key salt-tolerance regulator within the poplar NAC gene family. This study provides valuable insights for functional research on the NAC TFs family and offers a promising genetic resource for the salt-tolerance breeding of poplar.
Collapse
Affiliation(s)
- Jiechen Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Congcong Cui
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Siyue Qi
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Zheyuan Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Jiaqi Song
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Guangxin Ji
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Nan Sun
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China
| | - Xuemei Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| | - Huihui Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
2
|
Ma T, Ma L, Wei R, Xu L, Ma Y, Chen Z, Dang J, Ma S, Li S. Physiology, Biochemistry, and Transcriptomics Jointly Reveal the Phytotoxicity Mechanism of Acetochlor on Pisum sativum L. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2005-2019. [PMID: 38988284 DOI: 10.1002/etc.5936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/10/2024] [Accepted: 05/23/2024] [Indexed: 07/12/2024]
Abstract
Acetochlor, as a commonly used pre-emergent herbicide, can be toxic to crops and affect production if used improperly. However, the toxic mechanism of acetochlor on plants is not fully understood. The present study used a combination of transcriptomic analysis and physiological measurements to investigate the effects of short-term (15-day) exposure to different concentrations of acetochlor (1, 10, 20 mg/kg) on the morphology, physiology, and transcriptional levels of pea seedlings, aiming to elucidate the toxic response and resistance mechanisms in pea seedlings under herbicide stress. The results showed that the toxicity of acetochlor to pea seedlings was dose-dependent, manifested as dwarfing and stem base browning with increasing concentrations, especially at 10 mg/kg and above. Analysis of the antioxidant system showed that from the 1 mg/kg treatment, malondialdehyde, superoxide dismutase, peroxidase, and glutathione peroxidase in peas increased with increasing concentrations of acetochlor, indicating oxidative damage. Analysis of the glutathione (GSH) metabolism system showed that under 10 mg/kg treatment, the GSH content of pea plants significantly increased, and GSH transferase activity and gene expression were significantly induced, indicating a detoxification response in plants. Transcriptomic analysis showed that after acetochlor treatment, differentially expressed genes in peas were significantly enriched in the phenylpropane metabolic pathway, and the levels of key metabolites (flavonoids and lignin) were increased. In addition, we found that acetochlor-induced dwarfing of pea seedlings may be related to gibberellin signal transduction. Environ Toxicol Chem 2024;43:2005-2019. © 2024 SETAC.
Collapse
Affiliation(s)
- Tingfeng Ma
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Lei Ma
- Agronomy College, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Ruonan Wei
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Ling Xu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Yantong Ma
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Zhen Chen
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Junhong Dang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Shaoying Ma
- Laboratory and Practice Base Management Center, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Sheng Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
- Agronomy College, Gansu Agricultural University, Lanzhou, People's Republic of China
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
| |
Collapse
|
3
|
Park H, Kim HS, Abassi S, Bui QTN, Ki JS. Two novel glutathione S-transferase (GST) genes in the toxic marine dinoflagellate Alexandrium pacificum and their transcriptional responses to environmental contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:169983. [PMID: 38215848 DOI: 10.1016/j.scitotenv.2024.169983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
The present study identified two novel glutathione S-transferase (GST) genes from the toxic dinoflagellate Alexandrium pacificum and examined their molecular characteristics and transcriptional responses to algicides and environmental contaminants. Bioinformatic analysis revealed that both ApGSTs are cytosolic, belonging to the chi-like class (ApGST1) and an undefined class (ApGST2). The overall expression of ApGSTs showed similar patterns depending on the exposed contaminants, while they were differently regulated by polychlorinated biphenyl (PCB). Copper treatments (CuCl2 and CuSO4) did not significantly induce the expression of ApGSTs. The highest up-regulations of ApGST1 and ApGST2 were under 6-h treatments of 0.10 and 0.50 mg L-1 NaOCl. Interestingly, only ApGST1 increased significantly after 0.10, 0.50, and 1.00 mg L-1 of PCB exposure (6 h). Intracellular reactive oxygen species (ROS) increased considerably under NaOCl; however, it was not significantly higher in the PCB-treated cells. GST activity was increased by NaOCl and PCB treatments, but only PCB caused apoptosis. These results suggest that GSTs are involved in the first line of phase II detoxification, protecting dinoflagellate cells against oxidative damage.
Collapse
Affiliation(s)
- Hyunjun Park
- Department of Life Science, Sangmyung University, Seoul, South Korea
| | - Han-Sol Kim
- Department of Life Science, Sangmyung University, Seoul, South Korea
| | - Sofia Abassi
- Department of Life Science, Sangmyung University, Seoul, South Korea
| | - Quynh Thi Nhu Bui
- Department of Life Science, Sangmyung University, Seoul, South Korea
| | - Jang-Seu Ki
- Department of Life Science, Sangmyung University, Seoul, South Korea; Department of Biotechnology, Sangmyung University, Seoul, South Korea.
| |
Collapse
|
4
|
Cen Y, Geng S, Gao L, Wang X, Yan X, Hou Y, Wang P. Genome-Wide Identification and Expression Analysis of RLCK-VII Subfamily Genes Reveal Their Roles in Stress Responses of Upland Cotton. PLANTS (BASEL, SWITZERLAND) 2023; 12:3170. [PMID: 37687414 PMCID: PMC10490013 DOI: 10.3390/plants12173170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/14/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023]
Abstract
Receptor-like cytoplasmic kinase VII (RLCK-VII) subfamily members are vital players in plant innate immunity and are also involved in plant development and abiotic stress tolerance. As a widely cultivated textile crop, upland cotton (Gossypium hirsutum) attaches great importance to the cotton industry worldwide. To obtain details of the composition, phylogeny, and putative function of RLCK-VII genes in upland cotton, genome-wide identification, evolutionary event analysis, and expression pattern examination of RLCK-VII subfamily genes in G. hirsutum were performed. There are 129 RLCK-VII members in upland cotton (GhRLCKs) and they were divided into nine groups based on their phylogenetic relationships. The gene structure and sequence features are relatively conserved within each group, which were divided based on their phylogenetic relationships, and consistent with those in Arabidopsis. The phylogenetic analysis results showed that RLCK-VII subfamily genes evolved in plants before the speciation of Arabidopsis and cotton, and segmental duplication was the major factor that caused the expansion of GhRLCKs. The diverse expression patterns of GhRLCKs in response to abiotic stresses (temperature, salt, and drought) and V. dahliae infection were observed. The candidates that may be involved in cotton's response to these stresses are highlighted. GhRLCK7 (GhRLCK7A and D), which is notably induced by V. dahliae infection, was demonstrated to positively regulate cotton defense against V. dahliae by the loss-of-function assay in cotton. These findings shed light on the details of the RLCK-VII subfamily in cotton and provide a scaffold for the further function elucidation and application of GhRLCKs for the germplasm innovation of cotton.
Collapse
Affiliation(s)
- Yuhan Cen
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China (S.G.)
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Shiyi Geng
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China (S.G.)
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Linying Gao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China (S.G.)
| | - Xinyue Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China (S.G.)
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Xin Yan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China (S.G.)
| | - Yuxia Hou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China (S.G.)
| | - Ping Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China (S.G.)
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Mo Z, Huang Y, Pu T, Duan L, Pi K, Luo J, Long B, Lu A, Liu R. Genome-wide identification and characterization of Glutathione S-Transferases (GSTs) and their expression profile under abiotic stresses in tobacco (Nicotiana tabacum L.). BMC Genomics 2023; 24:341. [PMID: 37344758 DOI: 10.1186/s12864-023-09450-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 06/14/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Glutathione S-transferases (GSTs) are large and multifunctional proteases that play an important role in detoxification, protection against biotic and abiotic stresses, and secondary metabolite transportation which is essential for plant growth and development. However, there is limited research on the identification and function of NtGSTs. RESULTS This study uses K326 and other six tobacco varieties (Hongda, HG, GDH11, Va116, VG, and GDH88) as materials to conduct comprehensive genome-wide identification and functional characterization of the GST gene in tobacco. A total of 59 NtGSTs were identified and classified into seven subfamilies via the whole-genome sequence analysis, with the Tau type serving as the major subfamily. The NtGSTs in the same branch of the evolutionary tree had similar exon/intron structure and motif constitution. There were more than 42 collinear blocks between tobacco and pepper, tomato, and potato, indicating high homology conservation between them. Twelve segmental duplicated gene pairs and one tandem duplication may have had a substantial impact on the evolution and expansion of the tobacco GST gene family. The RT-qPCR results showed that the expression patterns of NtGSTs varied significantly among tissues, varieties, and multiple abiotic stresses, suggesting that NtGST genes may widely respond to various abiotic stresses and hormones in tobacco, including NtGSTF4, NtGSTL1, NtGSTZ1, and NtGSTU40. CONCLUSIONS This study provides a comprehensive analysis of the NtGST gene family, including structures and functions. Many NtGSTs play a critical regulatory role in tobacco growth and development, and responses to abiotic stresses. These findings offer novel and valuable insights for understanding the biological function of NtGSTs and the reference materials for cultivating highly resistant varieties and enhancing the yield and quality of crops.
Collapse
Affiliation(s)
- Zejun Mo
- College of Tobacco, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Ying Huang
- College of Tobacco, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Tianxiunan Pu
- College of Tobacco, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Lili Duan
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
- College of Agriculture, Guizhou University, Guiyang, China
| | - Kai Pi
- College of Tobacco, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Jiajun Luo
- College of Tobacco, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Benshan Long
- College of Tobacco, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Anbin Lu
- College of Tobacco, Guizhou University, Guiyang, China
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China
| | - Renxiang Liu
- College of Tobacco, Guizhou University, Guiyang, China.
- Key Laboratory of Tobacco Quality in Guizhou Province, Guiyang, China.
| |
Collapse
|
6
|
Liu L, Zheng S, Yang D, Zheng J. Genome-wide in silico identification of glutathione S-transferase (GST) gene family members in fig ( Ficus carica L.) and expression characteristics during fruit color development. PeerJ 2023; 11:e14406. [PMID: 36718451 PMCID: PMC9884035 DOI: 10.7717/peerj.14406] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 10/26/2022] [Indexed: 01/26/2023] Open
Abstract
Glutathione S-transferase (GSTs), a large and diverse group of multi-functional enzymes (EC 2.5.1.18), are associated with cellular detoxification, various biotic and abiotic stress responses, as well as secondary metabolites transportation. Here, 53 members of the FcGST gene family were screened from the genome database of fig (Ficus carica), which were further classified into five subfamilies, and the tau and phi were the major subfamilies. These genes were unevenly distributed over all the 13 chromosomes, and 12 tandem and one segmental duplication may contribute to this family expansion. Syntenic analysis revealed that FcGST shared closer genetic evolutionary origin relationship with species from the Ficus genus of the Moraceae family, such as F. microcarpa and F. hispida. The FcGST members of the same subfamily shared similar gene structure and motif distribution. The α helices were the chief structure element in predicted secondary and tertiary structure of FcGSTs proteins. GO and KEGG indicated that FcGSTs play multiple roles in glutathione metabolism and stress reactions as well as flavonoid metabolism. Predictive promoter analysis indicated that FcGSTs gene may be responsive to light, hormone, stress stimulation, development signaling, and regulated by MYB or WRKY. RNA-seq analysis showed that several FcGSTs that mainly expressed in the female flower tissue and peel during 'Purple-Peel' fig fruit development. Compared with 'Green Peel', FcGSTF1, and FcGSTU5/6/7 exhibited high expression abundance in the mature fruit purple peel. Additionally, results of phylogenetic sequences analysis, multiple sequences alignment, and anthocyanin content together showed that the expression changes of FcGSTF1, and FcGSTU5/6/7 may play crucial roles in fruit peel color alteration during fruit ripening. Our study provides a comprehensive overview of the GST gene family in fig, thus facilitating the further clarification of the molecular function and breeding utilization.
Collapse
Affiliation(s)
- Longbo Liu
- School of Life Science, Huaibei Normal University, Huaibei, Anhui, China
| | - Shuxuan Zheng
- Xiayi Branch of Henan Agricultural Radio and Television School, Shangqiu, Henan, China
| | - Dekun Yang
- School of Life Science, Huaibei Normal University, Huaibei, Anhui, China
| | - Jie Zheng
- School of Life Science, Huaibei Normal University, Huaibei, Anhui, China
| |
Collapse
|
7
|
Wu Q, Pan YB, Su Y, Zou W, Xu F, Sun T, Grisham MP, Yang S, Xu L, Que Y. WGCNA Identifies a Comprehensive and Dynamic Gene Co-Expression Network That Associates with Smut Resistance in Sugarcane. Int J Mol Sci 2022; 23:10770. [PMID: 36142681 PMCID: PMC9506403 DOI: 10.3390/ijms231810770] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 11/29/2022] Open
Abstract
Sugarcane smut is a major fungal disease caused by Sporisorium scitamineum, which seriously reduces the yield and quality of sugarcane. In this study, 36 transcriptome data were collected from two sugarcane genotypes, YT93-159 (resistant) and ROC22 (susceptible) upon S. scitamineum infection. Data analysis revealed 20,273 (12,659 up-regulated and 7614 down-regulated) and 11,897 (7806 up-regulated and 4091 down-regulated) differentially expressed genes (DEGs) in YT93-159 and ROC22, respectively. A co-expression network was then constructed by weighted gene co-expression network analysis (WGCNA), which identified 5010 DEGs in 15 co-expressed gene modules. Four of the 15 modules, namely, Skyblue, Salmon, Darkorange, and Grey60, were significantly associated with smut resistance. The GO and KEGG enrichment analyses indicated that the DEGs involving in these four modules could be enriched in stress-related metabolic pathways, such as MAPK and hormone signal transduction, plant-pathogen interaction, amino acid metabolism, glutathione metabolism, and flavonoid, and phenylpropanoid biosynthesis. In total, 38 hub genes, including six from the Skyblue module, four from the Salmon module, 12 from the Darkorange module, and 16 from the Grey60 module, were screened as candidate hub genes by calculating gene connectivity in the corresponding network. Only 30 hub genes were amplifiable with RT-qPCR, of which 27 were up-regulated upon S. scitamineum infection. The results were consistent with the trend of gene expression in RNA-Seq, suggesting their positive roles in smut resistance. Interestingly, the expression levels of AOX, Cyb5, and LAC were higher in ROC22 than in YT93-159, indicating these three genes may act as negative regulators in response to S. scitamineum infection. This study revealed the transcriptome dynamics in sugarcane challenged by S. scitamineum infection and provided gene targets for smut resistance breeding in sugarcane.
Collapse
Affiliation(s)
- Qibin Wu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yong-Bao Pan
- USDA-ARS, Southeast Area, Sugarcane Research Unit, Houma, LA 70360, USA
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenhui Zou
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Fu Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tingting Sun
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | | | - Shaolin Yang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Yunnan Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan 661600, China
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
8
|
Identification and Characterization of Malate Dehydrogenases in Tomato ( Solanum lycopersicum L.). Int J Mol Sci 2022; 23:ijms231710028. [PMID: 36077425 PMCID: PMC9456053 DOI: 10.3390/ijms231710028] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 12/02/2022] Open
Abstract
Malate dehydrogenase, which facilitates the reversible conversion of malate to oxaloacetate, is essential for energy balance, plant growth, and cold and salt tolerance. However, the genome-wide study of the MDH family has not yet been carried out in tomato (Solanum lycopersicum L.). In this study, 12 MDH genes were identified from the S. lycopersicum genome and renamed according to their chromosomal location. The tomato MDH genes were split into five groups based on phylogenetic analysis and the genes that clustered together showed similar lengths, and structures, and conserved motifs in the encoded proteins. From the 12 tomato MDH genes on the chromosomes, three pairs of segmental duplication events involving four genes were found. Each pair of genes had a Ka/Ks ratio < 1, indicating that the MDH gene family of tomato was purified during evolution. Gene expression analysis exhibited that tomato MDHs were differentially expressed in different tissues, at various stages of fruit development, and differentially regulated in response to abiotic stresses. Molecular docking of four highly expressed MDHs revealed their substrate and co-factor specificity in the reversible conversion process of malate to oxaloacetate. Further, co-localization of tomato MDH genes with quantitative trait loci (QTL) of salt stress-related phenotypes revealed their broader functions in salt stress tolerance. This study lays the foundation for functional analysis of MDH genes and genetic improvement in tomato.
Collapse
|
9
|
Duan Q, Li GR, Qu YP, Yin DX, Zhang CL, Chen YS. Genome-Wide Identification, Evolution and Expression Analysis of the Glutathione S-Transferase Supergene Family in Euphorbiaceae. FRONTIERS IN PLANT SCIENCE 2022; 13:808279. [PMID: 35360301 PMCID: PMC8963715 DOI: 10.3389/fpls.2022.808279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Euphorbiaceae, a family of plants mainly grown in the tropics and subtropics, is also widely distributed all over the world and is well known for being rich in rubber, oil, medicinal materials, starch, wood and other economically important plant products. Glutathione S-transferases (GSTs) constitute a family of proteins encoded by a large supergene family and are widely expressed in animals, bacteria, fungi and plants, but with few reports of them in Euphorbiaceae plants. These proteins participate in and regulate the detoxification and oxidative stress response of heterogeneous organisms, resistance to stress, growth and development, signal transduction and other related processes. In this study, we identified and analyzed the whole genomes of four species of Euphorbiaceae, namely Ricinus communis, Jatropha curcas, Hevea brasiliensis, and Manihot esculenta, which have high economic and practical value. A total of 244 GST genes were identified. Based on their sequence characteristics and conserved domain types, the GST supergene family in Euphorbiaceae was classified into 10 subfamilies. The GST supergene families of Euphorbiaceae and Arabidopsis have been found to be highly conserved in evolution, and tandem repeats and translocations in these genes have made the greatest contributions to gene amplification here and have experienced strong purification selection. An evolutionary analysis showed that Euphorbiaceae GST genes have also evolved into new subtribes (GSTO, EF1BG, MAPEG), which may play a specific role in Euphorbiaceae. An analysis of expression patterns of the GST supergene family in Euphorbiaceae revealed the functions of these GSTs in different tissues, including resistance to stress and participation in herbicide detoxification. In addition, an interaction analysis was performed to determine the GST gene regulatory mechanism. The results of this study have laid a foundation for further analysis of the functions of the GST supergene family in Euphorbiaceae, especially in stress and herbicide detoxification. The results have also provided new ideas for the study of the regulatory mechanism of the GST supergene family, and have provided a reference for follow-up genetics and breeding work.
Collapse
Affiliation(s)
- Qiang Duan
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Castor Breeding of the State Ethnic Affairs Commission, Tongliao, China
- Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Tongliao, China
- Inner Mongolia Key Laboratory of Castor Breeding, Tongliao, China
- Inner Mongolia Collaborative Innovation Center for Castor Industry, Tongliao, China
- Inner Mongolia Engineering Research Center of Industrial Technology Innovation of Castor, Tongliao, China
| | - Guo-Rui Li
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Castor Breeding of the State Ethnic Affairs Commission, Tongliao, China
- Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Tongliao, China
- Inner Mongolia Key Laboratory of Castor Breeding, Tongliao, China
- Inner Mongolia Collaborative Innovation Center for Castor Industry, Tongliao, China
- Inner Mongolia Engineering Research Center of Industrial Technology Innovation of Castor, Tongliao, China
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China
| | - Yi-Peng Qu
- Key Laboratory of Castor Breeding of the State Ethnic Affairs Commission, Tongliao, China
- Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Tongliao, China
- Inner Mongolia Key Laboratory of Castor Breeding, Tongliao, China
- Inner Mongolia Collaborative Innovation Center for Castor Industry, Tongliao, China
- Inner Mongolia Engineering Research Center of Industrial Technology Innovation of Castor, Tongliao, China
| | - Dong-Xue Yin
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Castor Breeding of the State Ethnic Affairs Commission, Tongliao, China
- Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Tongliao, China
- Inner Mongolia Key Laboratory of Castor Breeding, Tongliao, China
- Inner Mongolia Collaborative Innovation Center for Castor Industry, Tongliao, China
- Inner Mongolia Engineering Research Center of Industrial Technology Innovation of Castor, Tongliao, China
| | - Chun-Ling Zhang
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Castor Breeding of the State Ethnic Affairs Commission, Tongliao, China
- Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Tongliao, China
- Inner Mongolia Key Laboratory of Castor Breeding, Tongliao, China
- Inner Mongolia Collaborative Innovation Center for Castor Industry, Tongliao, China
- Inner Mongolia Engineering Research Center of Industrial Technology Innovation of Castor, Tongliao, China
| | - Yong-Sheng Chen
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
- Key Laboratory of Castor Breeding of the State Ethnic Affairs Commission, Tongliao, China
- Inner Mongolia Industrial Engineering Research Center of Universities for Castor, Tongliao, China
- Inner Mongolia Key Laboratory of Castor Breeding, Tongliao, China
- Inner Mongolia Collaborative Innovation Center for Castor Industry, Tongliao, China
- Inner Mongolia Engineering Research Center of Industrial Technology Innovation of Castor, Tongliao, China
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
10
|
Bai X, Zhan G, Tian S, Peng H, Cui X, Islam MA, Goher F, Ma Y, Kang Z, Xu ZS, Guo J. Transcription factor BZR2 activates chitinase Cht20.2 transcription to confer resistance to wheat stripe rust. PLANT PHYSIOLOGY 2021; 187:2749-2762. [PMID: 34618056 PMCID: PMC8644182 DOI: 10.1093/plphys/kiab383] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/13/2021] [Indexed: 05/21/2023]
Abstract
The brassinosteroid pathway promotes a variety of physiological processes in plants and the brassinosteroid insensitive1-ethylmethane sulfonate suppressor (BES)/brassinazole-resistant (BZR) functions as one of its key regulators. We previously showed that the BES/BZR-type transcription factor TaBZR2 mediates the drought stress response in wheat (Triticum aestivum) by directly upregulating the transcriptional activity of glutathione S-transferase 1. However, the function of TaBZR2 in plants under biotic stresses is unknown. In this study, we found that transcript levels of TaBZR2 were upregulated in response to inoculation with wheat stripe rust fungus (Puccinia striiformis f. sp. tritici, Pst) and treatment with flg22 or an elicitor-like protein of Pst, Pst322. Wheat lines overexpressing TaBZR2 conferred increased resistance, whereas TaBZR2-RNAi lines exhibited decreased resistance to multiple races of Pst. TaBZR2 targeted the promoter of the chitinase gene TaCht20.2, activating its transcription. Knockdown of TaCht20.2 in wheat resulted in enhanced susceptibility to Pst, indicating the positive role of TaCht20.2 in wheat resistance. Upon Pst infection in vivo, the overexpression of TaBZR2 increased total chitinase activity, whereas RNAi-mediated silencing of TaBZR2 reduced total chitinase activity. Taken together, our results suggest that TaBZR2 confers broad-spectrum resistance to the stripe rust fungus by increasing total chitinase activity in wheat.
Collapse
Affiliation(s)
- Xingxuan Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China
| | - Gangming Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China
| | - Shuxin Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China
| | - Huan Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China
| | - Xiaoyu Cui
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/ Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, P.R. China
| | - Md Ashraful Islam
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China
| | - Farhan Goher
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China
| | - Youzhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/ Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, P.R. China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/ Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing 100081, P.R. China
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, P.R. China
- Author for communication:
| |
Collapse
|
11
|
Liu X, Zhang A, Zhao J, Shang J, Zhu Z, Wu X, Zha D. Transcriptome profiling reveals potential genes involved in browning of fresh-cut eggplant (Solanum melongena L.). Sci Rep 2021; 11:16081. [PMID: 34373468 PMCID: PMC8352891 DOI: 10.1038/s41598-021-94831-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/16/2021] [Indexed: 11/25/2022] Open
Abstract
Fresh-cut processing promotes enzymatic browning of fresh fruits and vegetables, which negatively affects the product appearance and impacts their nutrition. We used RNA-sequencing to analyze the transcriptomic changes occurring during the browning of fresh-cut eggplant fruit samples from both browning-sensitive and browning-resistant cultivars to investigate the molecular mechanisms involved in browning. A total of 8347 differentially expressed genes were identified, of which 62 genes were from six gene families (i.e., PPO, PAL, POD, CAT, APX, and GST) potentially associated with enzymatic browning. Furthermore, using qRT-PCR, we verified 231 differentially regulated transcription factors in fresh-cut eggplant fruits. The enzyme activities of PPO, POD, PAL, and CAT in '36' were significantly higher than those of 'F' fresh-cut for 15 min. Both PPO and POD play a major role in the browning of eggplant pulp and might therefore act synergistically in the browning process. Meanwhile, qPCR results of 18 browning related genes randomly screened in 15 eggplant materials with different browning tolerance showed variant-specific expression of genes. Lastly, gene regulatory networks were constructed to identify the browning-related genes. This work provides a basis for future molecular studies of eggplants, and lays a theoretical foundation for the development of browning-resistant fresh-cut fruits and vegetables.
Collapse
Affiliation(s)
- Xiaohui Liu
- Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403, China
- College of Food Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Aidong Zhang
- Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403, China
| | - Jie Zhao
- Pudong New District Agro-Technology Extension Center, Shanghai, 201201, China
| | - Jing Shang
- Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403, China
- College of Food Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Zongwen Zhu
- Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403, China
| | - Xuexia Wu
- Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403, China.
| | - Dingshi Zha
- Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
- Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai, 201403, China.
| |
Collapse
|
12
|
Genome-wide identification and comparative analysis of GST gene family in apple ( Malus domestica) and their expressions under ALA treatment. 3 Biotech 2020; 10:307. [PMID: 32582504 DOI: 10.1007/s13205-020-02299-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/11/2020] [Indexed: 12/20/2022] Open
Abstract
Anthocyanins, a subclass of flavonoids, are synthesized at the cytoplasmic surface of the endoplasmic reticulum (ER), which then accumulate in vacuoles. Plant glutathione S-transferase (GST) genes are involved in anthocyanin transportation. Here, a total of 52, 42, 50, and 29 GST genes were identified from apple, pear, peach, and strawberry, respectively, through a comprehensive genome-wide survey. Based on phylogenetic analyses, the GST proteins of the four crops could be divided into the classes Phi, Tau, DHAR, TCHQD, and Lambda. The structure and chromosomal distribution of apple GST genes were further analyzed. The GST gene family expansion in apple likely occurred through tandem duplications, and purifying selection played a pivotal role in the evolution of GST genes. Synteny analysis showed strong microsynteny between apple and Arabidopsis/strawberry, but no microsynteny was detected between apple/strawberry/Arabidopsis and rice. Aminolevulinic acid (ALA), a key precursor of tetrapyrrole compounds, can significantly improve anthocyanin accumulation in fruits, Using RNA-seq and qRT-PCR analysis, we found that ALA treatment led to the differential expression of GST genes in apples. MdGSTF12 was strongly induced by ALA, suggesting that MdGSTF12 may play a role in ALA-induced anthocyanin accumulation. These results provide a detailed overview of GST genes in four Rosaceae species and indicate that GSTs are involved in ALA-induced anthocyanin accumulation.
Collapse
|
13
|
Vaish S, Gupta D, Mehrotra R, Mehrotra S, Basantani MK. Glutathione S-transferase: a versatile protein family. 3 Biotech 2020; 10:321. [PMID: 32656054 PMCID: PMC7320970 DOI: 10.1007/s13205-020-02312-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022] Open
Abstract
Glutathione-S transferase (GST) is a most ancient protein superfamily of multipurpose roles and evolved principally from gene duplication of an ancestral GSH binding protein. They have implemented in diverse plant functions such as detoxification of xenobiotic, secondary metabolism, growth and development, and majorly against biotic and abiotic stresses. The vital structural features of GSTs like highly divergent functional topographies, conserved integrated architecture with separate binding pockets for substrates and ligand, the stringent structural fidelity with high Tm values (50º-60º), and stress-responsive cis-regulatory elements in the promoter region offer this protein as most flexible plant protein for plant breeding approaches, biotechnological applications, etc. This review article summarizes the recent information of GST evolution, and their distribution and structural features with emphasis on the assorted roles of Ser and Cys GSTs with the signature motifs in their active sites, alongside their recent biotechnological application in the area of agriculture, environment, and nanotechnology have been highlighted.
Collapse
Affiliation(s)
- Swati Vaish
- Institute of Bioscience and Technology, Shri Ramswaroop Memorial University, Lucknow Deva Road, Barabanki, Uttar Pradesh 225003 India
| | - Divya Gupta
- Institute of Bioscience and Technology, Shri Ramswaroop Memorial University, Lucknow Deva Road, Barabanki, Uttar Pradesh 225003 India
| | - Rajesh Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Science, KK Birla Goa Campus, NH-17B, Zuarinagar, Goa 403726 India
| | - Sandhya Mehrotra
- Department of Biological Sciences, Birla Institute of Technology and Science, KK Birla Goa Campus, NH-17B, Zuarinagar, Goa 403726 India
| | - Mahesh Kumar Basantani
- Faculty of Bioscience, Institute of Bioscience and Technology, Shri Ramswaroop Memorial University, Lucknow-Deva Road, Barabanki, Uttar Pradesh India
| |
Collapse
|
14
|
Ghangal R, Rajkumar MS, Garg R, Jain M. Genome-wide analysis of glutathione S-transferase gene family in chickpea suggests its role during seed development and abiotic stress. Mol Biol Rep 2020; 47:2749-2761. [DOI: 10.1007/s11033-020-05377-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/12/2020] [Indexed: 01/01/2023]
|
15
|
Jiang SY, Jin J, Sarojam R, Ramachandran S. A Comprehensive Survey on the Terpene Synthase Gene Family Provides New Insight into Its Evolutionary Patterns. Genome Biol Evol 2020; 11:2078-2098. [PMID: 31304957 PMCID: PMC6681836 DOI: 10.1093/gbe/evz142] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2019] [Indexed: 12/02/2022] Open
Abstract
Terpenes are organic compounds and play important roles in plant growth and development as well as in mediating interactions of plants with the environment. Terpene synthases (TPSs) are the key enzymes responsible for the biosynthesis of terpenes. Although some species were employed for the genome-wide identification and characterization of the TPS family, limited information is available regarding the evolution, expansion, and retention mechanisms occurring in this gene family. We performed a genome-wide identification of the TPS family members in 50 sequenced genomes. Additionally, we also characterized the TPS family from aromatic spearmint and basil plants using RNA-Seq data. No TPSs were identified in algae genomes but the remaining plant species encoded various numbers of the family members ranging from 2 to 79 full-length TPSs. Some species showed lineage-specific expansion of certain subfamilies, which might have contributed toward species or ecotype divergence or environmental adaptation. A large-scale family expansion was observed mainly in dicot and monocot plants, which was accompanied by frequent domain loss. Both tandem and segmental duplication significantly contributed toward family expansion and expression divergence and played important roles in the survival of these expanded genes. Our data provide new insight into the TPS family expansion and evolution and suggest that TPSs might have originated from isoprenyl diphosphate synthase genes.
Collapse
Affiliation(s)
- Shu-Ye Jiang
- Genome Structural Biology Group, Temasek Life Sciences Laboratory, National University of Singapore, Singapore
| | - Jingjing Jin
- Genome Structural Biology Group, Temasek Life Sciences Laboratory, National University of Singapore, Singapore.,School of Computing, National University of Singapore, Singapore.,China Tobacco Gene Research Centre, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, China
| | - Rajani Sarojam
- Genome Structural Biology Group, Temasek Life Sciences Laboratory, National University of Singapore, Singapore
| | - Srinivasan Ramachandran
- Genome Structural Biology Group, Temasek Life Sciences Laboratory, National University of Singapore, Singapore
| |
Collapse
|
16
|
Comparative study of DAM, Dof, and WRKY gene families in fourteen species and their expression in Vitis vinifera. 3 Biotech 2020; 10:72. [PMID: 32030341 DOI: 10.1007/s13205-019-2039-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/26/2019] [Indexed: 12/13/2022] Open
Abstract
Bud dormancy is one of the most important defensive mechanisms through which plants resist cold stress during harsh winter weather. DAM, Dof, and WRKY have been reported to be involved in many biological processes, including bud dormancy. In the present study, grapevine (Vitis vinifera) and other thirteen plants (six woody plants and seven herbaceous plants) were analyzed for the quantity, sequence structure, and evolution patterns of their DAM, Dof, and WRKY gene family members. Moreover, the expression of VvDAM, VvDof, and VvWRKY genes was also investigated. Thus, 51 DAM, 1,205 WRKY, and 489 Dof genes were isolated from selected genomes, while 5 DAM, 114 WRKY, and 50 Dof duplicate gene pairs were identified in 10 genomes. Moreover, WGD and segmental duplication events were associated with the majority of the expansions of Dof and WRKY gene families. The VvDAM, VvDof, and VvWRKY genes significantly differentially expressed throughout bud dormancy outnumbered those significantly differentially expressed throughout fruit development or under abiotic stresses. Interestingly, multiple stress responsive genes were identified, such as VvDAM (VIT_00s0313g00070), two VvDof genes (VIT_18s0001g11310 and VIT_02s0025g02250), and two VvWRKY genes (VIT_07s0031g01710 and VIT_11s0052g00450). These data provide candidate genes for molecular biology research investigating bud dormancy and responses to abiotic stresses (namely salt, drought, copper, and waterlogging).
Collapse
|
17
|
Dobritzsch D, Grancharov K, Hermsen C, Krauss GJ, Schaumlöffel D. Inhibitory effect of metals on animal and plant glutathione transferases. J Trace Elem Med Biol 2020; 57:48-56. [PMID: 31561169 DOI: 10.1016/j.jtemb.2019.09.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/12/2019] [Accepted: 09/16/2019] [Indexed: 01/23/2023]
Abstract
Glutathione transferases (GSTs) represent a widespread enzyme superfamily in eukaryotes and prokaryotes catalyzing different reactions with endogenous and xenobiotic substrates such as organic pollutants. The latter are often found together with metal contamination in the environment. Besides performing of essential functions, GSTs protect cells by conjugation of glutathione with various reactive electrophiles. The interference of toxic metals with this functionality of GSTs may have unpredictable toxicological consequences for the organisms. In this review results from the recent literature are summarized and discussed describing the ability of metals to inhibit intracellular detoxification processes in animals and plants.
Collapse
Affiliation(s)
- Dirk Dobritzsch
- Martin-Luther-Universität Halle-Wittenberg, Institut für Biochemie und Biotechnologie, Abteilung Ökologische und Pflanzen-Biochemie, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany.
| | - Konstantin Grancharov
- Institute of Molecular Biology, Dept. Biochemical Pharmacology and Drug Design, Bulgarian Academy of Sciences, 1113, Sofia, Bulgaria
| | - Corinna Hermsen
- Martin-Luther-Universität Halle-Wittenberg, Institut für Biochemie und Biotechnologie, Abteilung Ökologische und Pflanzen-Biochemie, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| | - Gerd-Joachim Krauss
- Martin-Luther-Universität Halle-Wittenberg, Institut für Biochemie und Biotechnologie, Abteilung Ökologische und Pflanzen-Biochemie, Kurt-Mothes-Str. 3, 06120, Halle (Saale), Germany
| | - Dirk Schaumlöffel
- CNRS / Université de Pau et des Pays de l'Adour / E2S UPPA, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254, 64000, Pau, France
| |
Collapse
|
18
|
Gallé Á, Benyó D, Csiszár J, Györgyey J. Genome-wide identification of the glutathione transferase superfamily in the model organism Brachypodium distachyon. FUNCTIONAL PLANT BIOLOGY : FPB 2019; 46:1049-1062. [PMID: 31575388 DOI: 10.1071/fp19023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/02/2019] [Indexed: 06/10/2023]
Abstract
The detoxification of harmful metabolites can determine the effectiveness of plant stress responses. Scavenging some of these toxic stress by-products through the reduced form of glutathione is catalysed by members of the glutathione transferase (GST) enzyme superfamily. The involvement of these enzymes was studied in the model organism Brachypodium distachyon (L.)P.Beauv. Bd21 and in its derivative Bd21-3, a more drought tolerant line. Osmotic stress treatment resulted in a decrease in the water potential of both Brachypodium genotypes, the difference between the control and treated plant's ψw decreased by the last sampling day in Bd21-3, suggesting some degree of adaptation to the applied osmotic stress. Increased GST activity revealed a severe defence reaction against the harmful imbalance of the redox environment. Screening for the gene sequences led to the identification of 91 full-length or partial GST sequences. Although purple false brome has a relatively small genome, the number of identified GST genes was almost as high as the number predicted in wheat. The estimation of GST expression showed stress-induced differences: higher expression levels or the fast induction of BdGSTF8, BdGSTU35 and BdGSTU42 gene products presumably indicate a strong detoxification under osmotic stress.
Collapse
Affiliation(s)
- Ágnes Gallé
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary; and Corresponding author.
| | - Dániel Benyó
- Institute of Plant Biology, Biological Research Centre, H-6726 Szeged, Hungary
| | - Jolán Csiszár
- Department of Plant Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - János Györgyey
- Institute of Plant Biology, Biological Research Centre, H-6726 Szeged, Hungary
| |
Collapse
|
19
|
Islam S, Sajib SD, Jui ZS, Arabia S, Islam T, Ghosh A. Genome-wide identification of glutathione S-transferase gene family in pepper, its classification, and expression profiling under different anatomical and environmental conditions. Sci Rep 2019; 9:9101. [PMID: 31235811 PMCID: PMC6591324 DOI: 10.1038/s41598-019-45320-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 06/05/2019] [Indexed: 01/18/2023] Open
Abstract
Glutathione S-transferases (GSTs) compose a family of multifunctional enzymes involved in the numerous aspects of regulating plant growth, development, and stress response. An in silico genome-wide analysis of pepper (Capsicum annuum L.) was performed to identify eighty-five GST genes that were annotated according to their chromosomal location. Segmental duplication contributed more than tandem duplication for the expansion of GST gene family in pepper. All the identified members belong to ten different classes which are highly conserved among Arabidopsis, rice, tomato and potato counterparts indicating the pre-dicot-monocot split diversification of GST classes. Gene structure, protein domain, and motif organization were found to be notably conserved over the distinct phylogenetic groups, which demonstrated the evolutionary significant role of each class. Expression of most of the CaGST transcripts as well as the total pepper GST activity was found to be significantly up-regulated in response to cold, heat, drought, salinity and osmotic stress conditions. Presence of various hormone and stress-responsive cis-elements on most of the putative CaGST promoter regions could be directly correlated with the alteration of their transcripts. All these findings might provide opportunities for future functional validation of this important gene family in pepper.
Collapse
Affiliation(s)
- Shiful Islam
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Saikat Das Sajib
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh
| | - Zakya Sultana Jui
- Plant Breeding and Biotechnology Laboratory, Department of Botany, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Shatil Arabia
- Plant Breeding and Biotechnology Laboratory, Department of Botany, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Tahmina Islam
- Plant Breeding and Biotechnology Laboratory, Department of Botany, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Ajit Ghosh
- Department of Biochemistry and Molecular Biology, Shahjalal University of Science and Technology, Sylhet, 3114, Bangladesh. .,Max-Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, D-50829, Cologne, Germany.
| |
Collapse
|
20
|
Wei L, Zhu Y, Liu R, Zhang A, Zhu M, Xu W, Lin A, Lu K, Li J. Genome wide identification and comparative analysis of glutathione transferases (GST) family genes in Brassica napus. Sci Rep 2019; 9:9196. [PMID: 31235772 PMCID: PMC6591421 DOI: 10.1038/s41598-019-45744-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/14/2019] [Indexed: 11/09/2022] Open
Abstract
Glutathione transferases (GSTs) are multifunctional enzymes that play important roles in plant development and responses to biotic and abiotic stress. However, a systematic analysis of GST family members in Brassica napus has not yet been reported. In this study, we identified 179 full-length GST genes in B. napus, 44.2% of which are clustered on various chromosomes. In addition, we identified 141 duplicated GST gene pairs in B. napus. Molecular evolutionary analysis showed that speciation and whole-genome triplication played important roles in the divergence of the B. napus GST duplicated genes. Transcriptome analysis of 21 tissues at different developmental stages showed that 47.6% of duplicated GST gene pairs have divergent expression patterns, perhaps due to structural divergence. We constructed a GST gene coexpression network with genes encoding various transcription factors (NAC, MYB, WRKY and bZIP) and identified six modules, including genes expressed during late seed development (after 40 days; BnGSTU19, BnGSTU20 and BnGSTZ1) and in the seed coat (BnGSTF6 and BnGSTF12), stamen and anther (BnGSTF8), root and stem (BnGSTU21), leaves and funiculus, as well as during the late stage of pericarp development (after 40 days; BnGSTU12 and BnGSTF2) and in the radicle during seed germination (BnGSTF14, BnGSTU1, BnGSTU28, and BnGSTZ1). These findings lay the foundation for elucidating the roles of GSTs in B. napus.
Collapse
Affiliation(s)
- Lijuan Wei
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Yan Zhu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Ruiying Liu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Aoxiang Zhang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Meicheng Zhu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Wen Xu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Ai Lin
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China.,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China. .,Academy of Agricultural Sciences, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
21
|
Baek YS, Goodrich LV, Brown PJ, James BT, Moose SP, Lambert KN, Riechers DE. Transcriptome Profiling and Genome-Wide Association Studies Reveal GSTs and Other Defense Genes Involved in Multiple Signaling Pathways Induced by Herbicide Safener in Grain Sorghum. FRONTIERS IN PLANT SCIENCE 2019; 10:192. [PMID: 30906302 PMCID: PMC6418823 DOI: 10.3389/fpls.2019.00192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/05/2019] [Indexed: 05/04/2023]
Abstract
Herbicide safeners protect cereal crops from herbicide injury by inducing genes and proteins involved in detoxification reactions, such as glutathione S-transferases (GSTs) and cytochrome P450s (P450s). Only a few studies have characterized gene or protein expression profiles for investigating plant responses to safener treatment in cereal crops, and most transcriptome analyses in response to safener treatments have been conducted in dicot model species that are not protected by safener from herbicide injury. In this study, three different approaches were utilized in grain sorghum (Sorghum bicolor (L.) Moench) to investigate mechanisms involved in safener-regulated signaling pathways. An initial transcriptome analysis was performed to examine global gene expression in etiolated shoot tissues of hybrid grain sorghum following treatment with the sorghum safener, fluxofenim. Most upregulated transcripts encoded detoxification enzymes, including P450s, GSTs, and UDP-dependent glucosyltransferases (UGTs). Interestingly, several of these upregulated transcripts are similar to genes involved with the biosynthesis and recycling/catabolism of dhurrin, an important chemical defense compound, in these seedling tissues. Secondly, 761 diverse sorghum inbred lines were evaluated in a genome-wide association study (GWAS) to determine key molecular-genetic factors governing safener-mediated signaling mechanisms and/or herbicide detoxification. GWAS revealed a significant single nucleotide polymorphism (SNP) associated with safener-induced response on chromosome 9, located within a phi-class SbGST gene and about 15-kb from a different phi-class SbGST. Lastly, the expression of these two candidate SbGSTs was quantified in etiolated shoot tissues of sorghum inbred BTx623 in response to fluxofenim treatment. SbGSTF1 and SbGSTF2 transcripts increased within 12-hr after fluxofenim treatment but the level of safener-induced expression differed between the two genes. In addition to identifying specific GSTs potentially involved in the safener-mediated detoxification pathway, this research elucidates a new direction for studying both constitutive and inducible mechanisms for chemical defense in cereal crop seedlings.
Collapse
Affiliation(s)
- You Soon Baek
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Loren V. Goodrich
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Jerseyville Research Center, Monsanto Company, Jerseyville, IL, United States
| | - Patrick J. Brown
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Brandon T. James
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Stephen P. Moose
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Kris N. Lambert
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Dean E. Riechers
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
22
|
Jiang S, Chen M, He N, Chen X, Wang N, Sun Q, Zhang T, Xu H, Fang H, Wang Y, Zhang Z, Wu S, Chen X. MdGSTF6, activated by MdMYB1, plays an essential role in anthocyanin accumulation in apple. HORTICULTURE RESEARCH 2019; 6:40. [PMID: 30854214 PMCID: PMC6395711 DOI: 10.1038/s41438-019-0118-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/29/2018] [Accepted: 12/30/2018] [Indexed: 05/16/2023]
Abstract
Anthocyanins are biosynthesized on the cytosolic surface of the endoplasmic reticulum and then transported into the vacuole for storage. Glutathione S-transferases (GSTs) are considered to be responsible for the transport of anthocyanins into the vacuole. However, the regulatory mechanisms of GSTs in plants are still unclear. Here, we performed a genome-wide analysis and identified 69 GST genes in apple. The expression of MdGSTF6 was positively correlated with the anthocyanin content (r = 0.949) during 'Yanfu 8' fruit development. The overexpression of MdGSTF6 in the Arabidopsis thaliana tt19 mutant resulted in seedlings of 35S::MdGSTF6-GFP/tt19 that could accumulate anthocyanin and rescue its phenotype, suggesting that MdGSTF6 was an anthocyanin transporter. The silencing of MdGSTF6 affected anthocyanin accumulation in apple fruit. Moreover, the knockdown of MdGSTF6 by RNA interference in cultured 'Gala' seedlings inhibited anthocyanin accumulation. The interaction experiments showed that MdMYB1 could bind directly to the MdGSTF6 promoter to transcriptionally activate its expression. Collectively, our results demonstrate that MdGSTF6 encodes an important GST transporter of anthocyanins in apple fruit and provide evidence for the associated regulatory mechanisms. Therefore, MdMYB1 can not only regulate anthocyanin synthesis, but also control the transport of anthocyanin in apples. This information may be useful for further clarifying the regulation of anthocyanin transport in apple.
Collapse
Affiliation(s)
- Shenghui Jiang
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
| | - Min Chen
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
| | - Naibo He
- National Oceanographic Center, 88 Xuzhou Road, Qingdao, 266071 China
| | - Xiaoliu Chen
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
| | - Nan Wang
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
| | - Qingguo Sun
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
| | - Tianliang Zhang
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
| | - Haifeng Xu
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
| | - Hongcheng Fang
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
| | - Yicheng Wang
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
| | - Zongying Zhang
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
| | - Shujing Wu
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
| | - Xuesen Chen
- College of Horticulture Science and Engineering, State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, Shandong Agricultural University, 61 Daizong Road, Tai’an, 271018 China
| |
Collapse
|
23
|
Csiszár J, Hecker A, Labrou NE, Schröder P, Riechers DE. Editorial: Plant Glutathione Transferases: Diverse, Multi-Tasking Enzymes With Yet-to-Be Discovered Functions. FRONTIERS IN PLANT SCIENCE 2019; 10:1304. [PMID: 31681390 PMCID: PMC6813781 DOI: 10.3389/fpls.2019.01304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 09/18/2019] [Indexed: 05/21/2023]
Affiliation(s)
- Jolán Csiszár
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Arnaud Hecker
- Interactions Arbres-Microorganismes, Institut National de la Recherche Agronomique, Université de Lorraine, Nancy, France
| | - Nikolaos E. Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Peter Schröder
- Research Unit for Comparative Microbiome Analyses, Department of Environmental Sciences, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Dean E. Riechers
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Dean E. Riechers,
| |
Collapse
|
24
|
Ma L, Zhang Y, Meng Q, Shi F, Liu J, Li Y. Molecular cloning, identification of GSTs family in sunflower and their regulatory roles in biotic and abiotic stress. World J Microbiol Biotechnol 2018; 34:109. [PMID: 29971547 DOI: 10.1007/s11274-018-2481-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 06/12/2018] [Indexed: 11/24/2022]
Abstract
Glutathione-S-transferase (GST) genes exist widely in plants and play major role in metabolic detoxification of exogenous chemical substances and oxidative stress. In this study, 14 sunflower GST genes (HaGSTs) were identified based on the sunflower transcriptome database that we had constructed. Full-length cDNA of 14 HaGTSs were isolated from total RNA by reverse transcription PCR (RT-PCR). Sunflower was received biotic stress (Sclerotinia sclerotiorum) and abiotic stress (NaCl, low-temperature, drought and wound). GST activity was measured by using the universal substrate. The results showed that most of the HaGSTs were up-regulated after NaCl and PEG6000-induced stresses, while a few HaGSTs were up-regulated after S. sclerotiorum, hypothermia and wound-induced stressed, and there was correlation between the changes of GST activity and the expression of HaGSTs, indicating that HaGSTs may play regulatory role in the biotic and abiotic stress responses. 14 HaGSTs from sunflower were identified, and the expression of HaGSTs were tissue-specific and played regulatory roles in both stress and abiotic stress.
Collapse
Affiliation(s)
- Ligong Ma
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Harbin, 150086, Heilongjiang, China.,Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang, China
| | - Yunhua Zhang
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang, China.
| | - Qinglin Meng
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang, China.
| | - Fengmei Shi
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang, China
| | - Jia Liu
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang, China
| | - Yichu Li
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, No. 368 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang, China
| |
Collapse
|
25
|
Asrar H, Hussain T, Gul B, Khan MA, Nielsen BL. Differential protein expression reveals salt tolerance mechanisms of Desmostachya bipinnata at moderate and high levels of salinity. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:793-812. [PMID: 32291063 DOI: 10.1071/fp17281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 01/26/2018] [Indexed: 06/11/2023]
Abstract
A proteomics approach was used to investigate salt tolerance mechanisms of Desmostachya bipinnata (L.) Stapf. Plants were subjected to 0mM (control), 100mM (moderate) and 400mM (high) NaCl. Proteins were separated by two-dimensional gel electrophoresis and identified with available databases. Optimal plant fresh weight was found at moderate salinity but declined at high salinity. Water potential, osmotic potential, Na+/K+ ratio, leaf electrolyte leakage, sugars and proline were altered at high salinity. However, water potential, proline content and electrolyte leakage were maintained at moderate salinity; Na+ and K+ concentrations increased, whereas sugars and osmotic potential decreased. Comparative proteome analysis revealed 103 salt responsive proteins. At moderate salinity, most of the proteins involved in energy metabolism, transport, antioxidative defence and cell growth were either unchanged or increased. Proteins related to amino-acid metabolism were decreased while those associated with secondary metabolism were accumulated. At high salinity, amino-acid metabolism and dehydration responses were evident; proteins of energy metabolism, transport and stress defence were downregulated. These results suggest that an efficient defence system, improved transport of water and metabolites, increased cell wall lignification and regulation of energy and carbohydrate metabolism allowed better potential for plant growth under moderately saline conditions.
Collapse
Affiliation(s)
- Hina Asrar
- Institute of Sustainable Halophyte Utilisation, University of Karachi, Karachi-75270, Pakistan
| | - Tabassum Hussain
- Institute of Sustainable Halophyte Utilisation, University of Karachi, Karachi-75270, Pakistan
| | - Bilquees Gul
- Institute of Sustainable Halophyte Utilisation, University of Karachi, Karachi-75270, Pakistan
| | - M Ajmal Khan
- Institute of Sustainable Halophyte Utilisation, University of Karachi, Karachi-75270, Pakistan
| | - Brent L Nielsen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
26
|
Bjarnholt N, Neilson EHJ, Crocoll C, Jørgensen K, Motawia MS, Olsen CE, Dixon DP, Edwards R, Møller BL. Glutathione transferases catalyze recycling of auto-toxic cyanogenic glucosides in sorghum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:1109-1125. [PMID: 29659075 DOI: 10.1111/tpj.13923] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/13/2018] [Accepted: 03/13/2018] [Indexed: 05/20/2023]
Abstract
Cyanogenic glucosides are nitrogen-containing specialized metabolites that provide chemical defense against herbivores and pathogens via the release of toxic hydrogen cyanide. It has been suggested that cyanogenic glucosides are also a store of nitrogen that can be remobilized for general metabolism via a previously unknown pathway. Here we reveal a recycling pathway for the cyanogenic glucoside dhurrin in sorghum (Sorghum bicolor) that avoids hydrogen cyanide formation. As demonstrated in vitro, the pathway proceeds via spontaneous formation of a dhurrin-derived glutathione conjugate, which undergoes reductive cleavage by glutathione transferases of the plant-specific lambda class (GSTLs) to produce p-hydroxyphenyl acetonitrile. This is further metabolized to p-hydroxyphenylacetic acid and free ammonia by nitrilases, and then glucosylated to form p-glucosyloxyphenylacetic acid. Two of the four GSTLs in sorghum exhibited high stereospecific catalytic activity towards the glutathione conjugate, and form a subclade in a phylogenetic tree of GSTLs in higher plants. The expression of the corresponding two GSTLs co-localized with expression of the genes encoding the p-hydroxyphenyl acetonitrile-metabolizing nitrilases at the cellular level. The elucidation of this pathway places GSTs as key players in a remarkable scheme for metabolic plasticity allowing plants to reverse the resource flow between general and specialized metabolism in actively growing tissue.
Collapse
Affiliation(s)
- Nanna Bjarnholt
- VILLUM Research Center for Plant Plasticity, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark
| | - Elizabeth H J Neilson
- VILLUM Research Center for Plant Plasticity, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark
| | - Christoph Crocoll
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark
| | - Kirsten Jørgensen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark
| | - Mohammed Saddik Motawia
- VILLUM Research Center for Plant Plasticity, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark
| | - Carl Erik Olsen
- VILLUM Research Center for Plant Plasticity, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark
| | - David P Dixon
- Center for Bioactive Chemistry, Durham University, Durham, DH1 3LE, UK
| | - Robert Edwards
- Center for Bioactive Chemistry, Durham University, Durham, DH1 3LE, UK
| | - Birger Lindberg Møller
- VILLUM Research Center for Plant Plasticity, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, 1871, Denmark
| |
Collapse
|
27
|
Genome-Wide Identification, Classification, and Expression Divergence of Glutathione-Transferase Family in Brassica rapa under Multiple Hormone Treatments. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6023457. [PMID: 29992155 PMCID: PMC5994329 DOI: 10.1155/2018/6023457] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 04/03/2018] [Accepted: 04/16/2018] [Indexed: 12/26/2022]
Abstract
The GSTs is one of the most important multifunctional protein families which has been playing a crucial role in the different aspects of plant growth. This extensive study about GSTs may establish a solid foundation for the brief functional analysis of BraGSTs in future. In this study, a total of 75 genes were identified in B. rapa. Phylogenetic analysis characterized them into eight different subclasses, while Tau and Phi subclasses were the most numerous. The exon-intron structure and the motif composition of BraGSTs were exhibited accordingly to their subclasses. Notably, we also investigated 15 tandem paralogous pairs of genes, which highlighted that all the pairs were purifying in nature as their synonymous values were lower than 1.00. Duplication analysis indicated that about 45.33% of genes mainly occurred through tandem duplication in B. rapa. Predominately, the tandem cluster of genes in subclass Tau was greater than the other subclasses. Furthermore, among eight multiple hormonal treatments (ABA, GA, BR, ETH, IAA, IBA, NPA, and JA), most number of BraGSTs was activated by NPA, BR, and ABA treatments. This analysis has provided comprehensive information about GSTs family which may assist in elucidating their exact functions in B. rapa.
Collapse
|
28
|
Evans AF, O'Brien SR, Ma R, Hager AG, Riggins CW, Lambert KN, Riechers DE. Biochemical characterization of metabolism-based atrazine resistance in Amaranthus tuberculatus and identification of an expressed GST associated with resistance. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1238-1249. [PMID: 28218978 PMCID: PMC5595711 DOI: 10.1111/pbi.12711] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/02/2017] [Accepted: 02/08/2017] [Indexed: 05/08/2023]
Abstract
Rapid detoxification of atrazine in naturally tolerant crops such as maize (Zea mays) and grain sorghum (Sorghum bicolor) results from glutathione S-transferase (GST) activity. In previous research, two atrazine-resistant waterhemp (Amaranthus tuberculatus) populations from Illinois, U.S.A. (designated ACR and MCR), displayed rapid formation of atrazine-glutathione (GSH) conjugates, implicating elevated rates of metabolism as the resistance mechanism. Our main objective was to utilize protein purification combined with qualitative proteomics to investigate the hypothesis that enhanced atrazine detoxification, catalysed by distinct GSTs, confers resistance in ACR and MCR. Additionally, candidate AtuGST expression was analysed in an F2 population segregating for atrazine resistance. ACR and MCR showed higher specific activities towards atrazine in partially purified ammonium sulphate and GSH affinity-purified fractions compared to an atrazine-sensitive population (WCS). One-dimensional electrophoresis of these fractions displayed an approximate 26-kDa band, typical of GST subunits. Several phi- and tau-class GSTs were identified by LC-MS/MS from each population, based on peptide similarity with GSTs from Arabidopsis. Elevated constitutive expression of one phi-class GST, named AtuGSTF2, correlated strongly with atrazine resistance in ACR and MCR and segregating F2 population. These results indicate that AtuGSTF2 may be linked to a metabolic mechanism that confers atrazine resistance in ACR and MCR.
Collapse
Affiliation(s)
- Anton F. Evans
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Sarah R. O'Brien
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Rong Ma
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Aaron G. Hager
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Chance W. Riggins
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Kris N. Lambert
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Dean E. Riechers
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| |
Collapse
|
29
|
Salvato F, Wilson R, Portilla Llerena JP, Kiyota E, Lima Reis K, Boaretto LF, Balbuena TS, Azevedo RA, Thelen JJ, Mazzafera P. Luxurious Nitrogen Fertilization of Two Sugar Cane Genotypes Contrasting for Lignin Composition Causes Changes in the Stem Proteome Related to Carbon, Nitrogen, and Oxidant Metabolism but Does Not Alter Lignin Content. J Proteome Res 2017; 16:3688-3703. [PMID: 28836437 DOI: 10.1021/acs.jproteome.7b00397] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sugar cane is an important crop for sugar and biofuel production. Its lignocellulosic biomass represents a promising option as feedstock for second-generation ethanol production. Nitrogen fertilization can affect differently tissues and its biopolymers, including the cell-wall polysaccharides and lignin. Lignin content and composition are the most important factors associated with biomass recalcitrance to convert cell-wall polysaccharides into fermentable sugars. Thus it is important to understand the metabolic relationship between nitrogen fertilization and lignin in this feedstock. In this study, a large-scale proteomics approach based on GeLC-MS/MS was employed to identify and relatively quantify proteins differently accumulated in two contrasting genotypes for lignin composition after excessive nitrogen fertilization. From the ∼1000 nonredundant proteins identified, 28 and 177 were differentially accumulated in response to nitrogen from IACSP04-065 and IACSP04-627 lines, respectively. These proteins were associated with several functional categories, including carbon metabolism, amino acid metabolism, protein turnover, and oxidative stress. Although nitrogen fertilization has not changed lignin content, phenolic acids and lignin composition were changed in both species but not in the same way. Sucrose and reducing sugars increased in plants of the genotype IACSP04-065 receiving nitrogen.
Collapse
Affiliation(s)
- Fernanda Salvato
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas , Campinas, São Paulo 13083-862, Brazil.,Universidade de São Paulo , Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba, São Paulo 13418-900, Brazil
| | - Rashaun Wilson
- Department of Biochemistry, University of Missouri Columbia, Missouri 65201, United States
| | - Juan Pablo Portilla Llerena
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas , Campinas, São Paulo 13083-862, Brazil
| | - Eduardo Kiyota
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas , Campinas, São Paulo 13083-862, Brazil
| | - Karina Lima Reis
- Universidade de São Paulo , Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba, São Paulo 13418-900, Brazil
| | - Luis Felipe Boaretto
- Universidade de São Paulo , Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba, São Paulo 13418-900, Brazil
| | - Tiago S Balbuena
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista "Júlio de Mesquita Filho" , Jaboticabal, São Paulo 14884-900, Brazil
| | - Ricardo A Azevedo
- Universidade de São Paulo , Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba, São Paulo 13418-900, Brazil
| | - Jay J Thelen
- Department of Biochemistry, University of Missouri Columbia, Missouri 65201, United States
| | - Paulo Mazzafera
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas , Campinas, São Paulo 13083-862, Brazil.,Universidade de São Paulo , Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba, São Paulo 13418-900, Brazil
| |
Collapse
|
30
|
Nianiou-Obeidat I, Madesis P, Kissoudis C, Voulgari G, Chronopoulou E, Tsaftaris A, Labrou NE. Plant glutathione transferase-mediated stress tolerance: functions and biotechnological applications. PLANT CELL REPORTS 2017; 36:791-805. [PMID: 28391528 DOI: 10.1007/s00299-017-2139-7] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/27/2017] [Indexed: 05/07/2023]
Abstract
Plant glutathione transferases (EC 2.5.1.18, GSTs) are an ancient, multimember and diverse enzyme class. Plant GSTs have diverse roles in plant development, endogenous metabolism, stress tolerance, and xenobiotic detoxification. Their study embodies both fundamental aspects and agricultural interest, because of their ability to confer tolerance against biotic and abiotic stresses and to detoxify herbicides. Here we review the biotechnological applications of GSTs towards developing plants that are resistant to biotic and abiotic stresses. We integrate recent discoveries, highlight, and critically discuss the underlying biochemical and molecular pathways involved. We elaborate that the functions of GSTs in abiotic and biotic stress adaptation are potentially a result of both catalytic and non-catalytic functions. These include conjugation of reactive electrophile species with glutathione and the modulation of cellular redox status, biosynthesis, binding, and transport of secondary metabolites and hormones. Their major universal functions under stress underline the potential in developing climate-resilient cultivars through a combination of molecular and conventional breeding programs. We propose that future GST engineering efforts through rational and combinatorial approaches, would lead to the design of improved isoenzymes with purpose-designed catalytic activities and novel functional properties. Concurrent GST-GSH metabolic engineering can incrementally increase the effectiveness of GST biotechnological deployment.
Collapse
Affiliation(s)
- Irini Nianiou-Obeidat
- Laboratory of Genetics and Plant Breeding, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 261, 54124, Thessaloniki, Greece.
| | - Panagiotis Madesis
- Institute of Applied Biosciences, CERTH, 6th km Charilaou-Thermis Road, Thermi, P.O. Box 361, 57001, Thessaloniki, Greece
| | - Christos Kissoudis
- Laboratory of Genetics and Plant Breeding, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 261, 54124, Thessaloniki, Greece
- Wageningen UR Plant Breeding, Wageningen University and Research Centre, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Georgia Voulgari
- Laboratory of Genetics and Plant Breeding, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 261, 54124, Thessaloniki, Greece
| | - Evangelia Chronopoulou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 Iera Odos Street, 11855, Athens, Greece
| | - Athanasios Tsaftaris
- Laboratory of Genetics and Plant Breeding, School of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, P.O. Box 261, 54124, Thessaloniki, Greece
- Institute of Applied Biosciences, CERTH, 6th km Charilaou-Thermis Road, Thermi, P.O. Box 361, 57001, Thessaloniki, Greece
| | - Nikolaos E Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Food, Biotechnology and Development, Agricultural University of Athens, 75 Iera Odos Street, 11855, Athens, Greece
| |
Collapse
|
31
|
Nielsen LJ, Stuart P, Pičmanová M, Rasmussen S, Olsen CE, Harholt J, Møller BL, Bjarnholt N. Dhurrin metabolism in the developing grain of Sorghum bicolor (L.) Moench investigated by metabolite profiling and novel clustering analyses of time-resolved transcriptomic data. BMC Genomics 2016; 17:1021. [PMID: 27964718 PMCID: PMC5154151 DOI: 10.1186/s12864-016-3360-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 11/28/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The important cereal crop Sorghum bicolor (L.) Moench biosynthesize and accumulate the defensive compound dhurrin during development. Previous work has suggested multiple roles for the compound including a function as nitrogen storage/buffer. Crucial for this function is the endogenous turnover of dhurrin for which putative pathways have been suggested but not confirmed. RESULTS In this study, the biosynthesis and endogenous turnover of dhurrin in the developing sorghum grain was studied by metabolite profiling and time-resolved transcriptome analyses. Dhurrin was found to accumulate in the early phase of grain development reaching maximum amounts 25 days after pollination. During the subsequent maturation period, the dhurrin content was turned over, resulting in only negligible residual dhurrin amounts in the mature grain. Dhurrin accumulation correlated with the transcript abundance of the three genes involved in biosynthesis. Despite the accumulation of dhurrin, the grains were acyanogenic as demonstrated by the lack of hydrogen cyanide release from macerated grain tissue and by the absence of transcripts encoding dhurrinases. With the missing activity of dhurrinases, the decrease in dhurrin content in the course of grain maturation represents the operation of hitherto uncharacterized endogenous dhurrin turnover pathways. Evidence for the operation of two such pathways was obtained by metabolite profiling and time-resolved transcriptome analysis. By combining cluster- and phylogenetic analyses with the metabolite profiling, potential gene candidates of glutathione S-transferases, nitrilases and glycosyl transferases involved in these pathways were identified. The absence of dhurrin in the mature grain was replaced by a high content of proanthocyanidins. Cluster- and phylogenetic analyses coupled with metabolite profiling, identified gene candidates involved in proanthocyanidin biosynthesis in sorghum. CONCLUSIONS The results presented in this article reveal the existence of two endogenous dhurrin turnover pathways in sorghum, identify genes putatively involved in these transformations and show that dhurrin in addition to its insect deterrent properties may serve as a storage form of reduced nitrogen. In the course of sorghum grain maturation, proanthocyanidins replace dhurrin as a defense compound. The lack of cyanogenesis in the developing sorghum grain renders this a unique experimental system to study CNglc synthesis as well as endogenous turnover.
Collapse
Affiliation(s)
| | - Peter Stuart
- Seedtek, 12 Kestrel Court, Toowoomba, 4350 Australia
| | - Martina Pičmanová
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871 Denmark
- VILLUM Research Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871 Denmark
- Center for Synthetic Biology ‘bioSYNergy’, University of Copenhagen, Copenhagen, Denmark
| | - Simon Rasmussen
- Department of Systems Biology, Technical University of Denmark, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Carl Erik Olsen
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871 Denmark
| | - Jesper Harholt
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| | - Birger Lindberg Møller
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871 Denmark
- VILLUM Research Center for Plant Plasticity, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871 Denmark
- Center for Synthetic Biology ‘bioSYNergy’, University of Copenhagen, Copenhagen, Denmark
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| | - Nanna Bjarnholt
- Plant Biochemistry Laboratory, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, 1871 Denmark
| |
Collapse
|
32
|
Imran M, Tang K, Liu JY. Comparative Genome-Wide Analysis of the Malate Dehydrogenase Gene Families in Cotton. PLoS One 2016; 11:e0166341. [PMID: 27829020 PMCID: PMC5102359 DOI: 10.1371/journal.pone.0166341] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/27/2016] [Indexed: 11/19/2022] Open
Abstract
Malate dehydrogenases (MDHs) play crucial roles in the physiological processes of plant growth and development. In this study, 13 and 25 MDH genes were identified from Gossypium raimondii and Gossypium hirsutum, respectively. Using these and 13 previously reported Gossypium arboretum MDH genes, a comparative molecular analysis between identified MDH genes from G. raimondii, G. hirsutum, and G. arboretum was performed. Based on multiple sequence alignments, cotton MDHs were divided into five subgroups: mitochondrial MDH, peroxisomal MDH, plastidial MDH, chloroplastic MDH and cytoplasmic MDH. Almost all of the MDHs within the same subgroup shared similar gene structure, amino acid sequence, and conserved motifs in their functional domains. An analysis of chromosomal localization suggested that segmental duplication played a major role in the expansion of cotton MDH gene families. Additionally, a selective pressure analysis indicated that purifying selection acted as a vital force in the evolution of MDH gene families in cotton. Meanwhile, an expression analysis showed the distinct expression profiles of GhMDHs in different vegetative tissues and at different fiber developmental stages, suggesting the functional diversification of these genes in cotton growth and fiber development. Finally, a promoter analysis indicated redundant but typical cis-regulatory elements for the potential functions and stress activity of many MDH genes. This study provides fundamental information for a better understanding of cotton MDH gene families and aids in functional analyses of the MDH genes in cotton fiber development.
Collapse
Affiliation(s)
- Muhammad Imran
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kai Tang
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jin-Yuan Liu
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- * E-mail:
| |
Collapse
|
33
|
Glutathione Transferases Superfamily: Cold-Inducible Expression of Distinct GST Genes in Brassica oleracea. Int J Mol Sci 2016; 17:ijms17081211. [PMID: 27472324 PMCID: PMC5000609 DOI: 10.3390/ijms17081211] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/15/2016] [Accepted: 07/15/2016] [Indexed: 02/08/2023] Open
Abstract
Plants, as sessile organisms, can suffer serious growth and developmental consequences under cold stress conditions. Glutathione transferases (GSTs, EC 2.5.1.18) are ubiquitous and multifunctional conjugating proteins, which play a major role in stress responses by preventing oxidative damage by reactive oxygen species (ROS). Currently, understanding of their function(s) during different biochemical and signaling pathways under cold stress condition remain unclear. In this study, using combined computational strategy, we identified 65 Brassica oleracea glutathione transferases (BoGST) and characterized them based on evolutionary analysis into 11 classes. Inter-species and intra-species duplication was evident between BoGSTs and Arabidopsis GSTs. Based on localization analyses, we propose possible pathways in which GST genes are involved during cold stress. Further, expression analysis of the predicted putative functions for GST genes were investigated in two cold contrasting genotypes (cold tolerance and susceptible) under cold condition, most of these genes were highly expressed at 6 h and 1 h in the cold tolerant (CT) and cold susceptible (CS) lines, respectively. Overall, BoGSTU19, BoGSTU24, BoGSTF10 are candidate genes highly expressed in B. oleracea. Further investigation of GST superfamily in B. oleracea will aid in understanding complex mechanism underlying cold tolerance in plants.
Collapse
|
34
|
Zhu JH, Li HL, Guo D, Wang Y, Dai HF, Mei WL, Peng SQ. Transcriptome-wide identification and expression analysis of glutathione S-transferase genes involved in flavonoids accumulation in Dracaena cambodiana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 104:304-11. [PMID: 27208821 DOI: 10.1016/j.plaphy.2016.05.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/10/2016] [Accepted: 05/10/2016] [Indexed: 05/03/2023]
Abstract
Dragon's blood is a traditional medicine widely used in the world, and the main components of which are flavonoids. However, little is known about its formation mechanism. Previous studies indicate that plant glutathione S-transferase (GST) genes are involved in transportation of flavonoids from cytosolic synthesis to vacuolar accumulation. In this study, 20 Dracaena cambodiana GST genes (DcGSTs) were identified based on transcriptome database. Phylogenetic analysis revealed that 20 DcGSTs belonged to seven different classes. Tissue-specific expression analysis suggested that DcGSTs displayed differential expressions either in their transcript abundance or expression patterns under normal growth conditions. The transcript profiles of three DcGSTs in response to the inducer of dragon's blood were strongly correlated with flavonoids biosynthetic genes, consistent with dragon's blood accumulation. Our survey provides useful information for future studies on GST genes involved in dragon's blood formation in D. cambodiana.
Collapse
Affiliation(s)
- Jia-Hong Zhu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Hui-Liang Li
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Dong Guo
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Ying Wang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Hao-Fu Dai
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Wen-Li Mei
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| | - Shi-Qing Peng
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| |
Collapse
|
35
|
Dong Y, Li C, Zhang Y, He Q, Daud MK, Chen J, Zhu S. Glutathione S-Transferase Gene Family in Gossypium raimondii and G. arboreum: Comparative Genomic Study and their Expression under Salt Stress. FRONTIERS IN PLANT SCIENCE 2016; 7:139. [PMID: 26904090 PMCID: PMC4751282 DOI: 10.3389/fpls.2016.00139] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 01/27/2016] [Indexed: 05/06/2023]
Abstract
Glutathione S-transferases (GSTs) play versatile functions in multiple aspects of plant growth and development. A comprehensive genome-wide survey of this gene family in the genomes of G. raimondii and G. arboreum was carried out in this study. Based on phylogenetic analyses, the GST gene family of both two diploid cotton species could be divided into eight classes, and approximately all the GST genes within the same subfamily shared similar gene structure. Additionally, the gene structures between the orthologs were highly conserved. The chromosomal localization analyses revealed that GST genes were unevenly distributed across the genome in both G. raimondii and G. arboreum. Tandem duplication could be the major driver for the expansion of GST gene families. Meanwhile, the expression analysis for the selected 40 GST genes showed that they exhibited tissue-specific expression patterns and their expression were induced or repressed by salt stress. Those findings shed lights on the function and evolution of the GST gene family in Gossypium species.
Collapse
Affiliation(s)
- Yating Dong
- Department of Agronomy, Zhejiang UniversityHangzhou, China
| | - Cong Li
- Department of Agronomy, Zhejiang UniversityHangzhou, China
| | - Yi Zhang
- Department of Agronomy, Zhejiang UniversityHangzhou, China
| | - Qiuling He
- Department of Agronomy, Zhejiang UniversityHangzhou, China
| | - Muhammad K. Daud
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and TechnologyKohat, Pakistan
| | - Jinhong Chen
- Department of Agronomy, Zhejiang UniversityHangzhou, China
- *Correspondence: Jinhong Chen
| | - Shuijin Zhu
- Department of Agronomy, Zhejiang UniversityHangzhou, China
- Shuijin Zhu
| |
Collapse
|
36
|
Mejía-Guerra MK, Li W, Galeano NF, Vidal M, Gray J, Doseff AI, Grotewold E. Core Promoter Plasticity Between Maize Tissues and Genotypes Contrasts with Predominance of Sharp Transcription Initiation Sites. THE PLANT CELL 2015; 27:3309-20. [PMID: 26628745 PMCID: PMC4707454 DOI: 10.1105/tpc.15.00630] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/11/2015] [Indexed: 05/03/2023]
Abstract
Core promoters are crucial for gene regulation, providing blueprints for the assembly of transcriptional machinery at transcription start sites (TSSs). Empirically, TSSs define the coordinates of core promoters and other regulatory sequences. Thus, experimental TSS identification provides an essential step in the characterization of promoters and their features. Here, we describe the application of CAGE (cap analysis of gene expression) to identify genome-wide TSSs used in root and shoot tissues of two maize (Zea mays) inbred lines (B73 and Mo17). Our studies indicate that most TSS clusters are sharp in maize, similar to mice, but distinct from Arabidopsis thaliana, Drosophila melanogaster, or zebra fish, in which a majority of genes have broad-shaped TSS clusters. We established that ∼38% of maize promoters are characterized by a broader TATA-motif consensus, and this motif is significantly enriched in genes with sharp TSSs. A noteworthy plasticity in TSS usage between tissues and inbreds was uncovered, with ∼1500 genes showing significantly different dominant TSSs, sometimes affecting protein sequence by providing alternate translation initiation codons. We experimentally characterized instances in which this differential TSS utilization results in protein isoforms with additional domains or targeted to distinct subcellular compartments. These results provide important insights into TSS selection and gene expression in an agronomically important crop.
Collapse
Affiliation(s)
- María Katherine Mejía-Guerra
- Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio 43210 Molecular Cellular and Developmental Biology Graduate Program, The Ohio State University, Columbus, Ohio 43210
| | - Wei Li
- Department of Physiology and Cell Biology, 305B Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210 Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210
| | - Narmer F Galeano
- Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio 43210 Instituto de Investigación en Microbiología y Biotecnología Agroindustrial, Universidad Católica de Manizales, Carrera 23 No 60-63 Manizales, Colombia
| | - Mabel Vidal
- Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio 43210
| | - John Gray
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606
| | - Andrea I Doseff
- Department of Physiology and Cell Biology, 305B Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio 43210 Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210
| | - Erich Grotewold
- Center for Applied Plant Sciences, The Ohio State University, Columbus, Ohio 43210 Department of Molecular Genetics, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
37
|
Xu J, Xing XJ, Tian YS, Peng RH, Xue Y, Zhao W, Yao QH. Transgenic Arabidopsis Plants Expressing Tomato Glutathione S-Transferase Showed Enhanced Resistance to Salt and Drought Stress. PLoS One 2015; 10:e0136960. [PMID: 26327625 PMCID: PMC4556630 DOI: 10.1371/journal.pone.0136960] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 08/11/2015] [Indexed: 11/19/2022] Open
Abstract
Although glutathione S-transferases (GST, EC 2.5.1.18) are involved in response to abiotic stress, limited information is available regarding gene function in tomato. In this study, a GST gene from tomato, designated LeGSTU2, was cloned and functionally characterized. Expression profile analysis results showed that it was expressed in roots and flowers, and the transcription was induced by salt, osmotic, and heat stress. The gene was then introduced to Arabidopsis by Agrobacterium tumefaciens-mediated transformation. Transgenic Arabidopsis plants were normal in terms of growth and maturity compared with wild-type plants. Transgenic plants also showed an enhanced resistance to salt and osmotic stress induced by NaCl and mannitol. The increased tolerance of transgenic plants was correlated with the changes in proline, malondialdehyde and antioxidative emzymes activities. Our results indicated that the gene from tomato plays a positive role in improving tolerance to salinity and drought stresses in Arabidopsis.
Collapse
Affiliation(s)
- Jing Xu
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Xiao-Juan Xing
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Yong-Sheng Tian
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Ri-He Peng
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Yong Xue
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Wei Zhao
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| | - Quan-Hong Yao
- Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
| |
Collapse
|
38
|
Vicentini R, Bottcher A, Brito MDS, dos Santos AB, Creste S, Landell MGDA, Cesarino I, Mazzafera P. Large-Scale Transcriptome Analysis of Two Sugarcane Genotypes Contrasting for Lignin Content. PLoS One 2015; 10:e0134909. [PMID: 26241317 PMCID: PMC4524650 DOI: 10.1371/journal.pone.0134909] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/15/2015] [Indexed: 12/16/2022] Open
Abstract
Sugarcane is an important crop worldwide for sugar and first generation ethanol production. Recently, the residue of sugarcane mills, named bagasse, has been considered a promising lignocellulosic biomass to produce the second-generation ethanol. Lignin is a major factor limiting the use of bagasse and other plant lignocellulosic materials to produce second-generation ethanol. Lignin biosynthesis pathway is a complex network and changes in the expression of genes of this pathway have in general led to diverse and undesirable impacts on plant structure and physiology. Despite its economic importance, sugarcane genome was still not sequenced. In this study a high-throughput transcriptome evaluation of two sugarcane genotypes contrasting for lignin content was carried out. We generated a set of 85,151 transcripts of sugarcane using RNA-seq and de novo assembling. More than 2,000 transcripts showed differential expression between the genotypes, including several genes involved in the lignin biosynthetic pathway. This information can give valuable knowledge on the lignin biosynthesis and its interactions with other metabolic pathways in the complex sugarcane genome.
Collapse
Affiliation(s)
- Renato Vicentini
- Systems Biology Laboratory, Centre for Molecular Biology and Genetic Engineering, State University of Campinas, Campinas, SP, Brazil
- * E-mail:
| | - Alexandra Bottcher
- Department of Plant Biology, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| | - Michael dos Santos Brito
- Department of Plant Biology, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
- Sugarcane Center, Agronomic Institute of Campinas, Ribeirão Preto, SP, Brazil
| | | | - Silvana Creste
- Sugarcane Center, Agronomic Institute of Campinas, Ribeirão Preto, SP, Brazil
| | | | - Igor Cesarino
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, SP, Brazil
| | - Paulo Mazzafera
- Department of Plant Biology, Institute of Biology, State University of Campinas, Campinas, SP, Brazil
| |
Collapse
|
39
|
Datta R, Chattopadhyay S. Changes in the proteome of pad2-1, a glutathione depleted Arabidopsis mutant, during Pseudomonas syringae infection. J Proteomics 2015; 126:82-93. [PMID: 26032221 DOI: 10.1016/j.jprot.2015.04.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/20/2015] [Accepted: 04/28/2015] [Indexed: 01/19/2023]
Abstract
The involvement of glutathione (GSH) in plant defense against pathogen invasion is an established fact. However, the molecular mechanism conferring this tolerance remains to be explored. Here, proteomic analysis of pad2-1, an Arabidopsis thaliana GSH-depleted mutant, in response to Pseudomonas syringae infection has been performed to explore the intricate position of GSH in defense against biotrophic pathogens. The pad2-1 mutant displayed severe susceptibility to P. syringae infection compared to the wild-type (Col-0) thus re-establishing a fundamental role of GSH in defense. Apart from general up-accumulation of energy metabolism-related protein-species in both infected Col-0 and pad2-1, several crucial defense-related protein-species were identified to be differentially accumulated. Leucine-rich repeat-receptor kinase (LRR-RK) and nucleotide-binding site-leucine-rich repeat resistance protein (NBS-LRR), known to play a pioneering role against pathogen attack, were only weakly up-accumulated in pad2-1 after infection. Transcriptional and post-transcriptional regulators like MYB-P1 and glycine-rich repeat RNA-binding protein (GRP) and several other stress-related protein-species like heat shock protein 17 (HSP17) and glutathione-S-transferase (GST) were also identified to be differentially regulated in pad2-1 and Col-0 in response to infection. Together, the present investigation reveals that the optimum GSH-level is essential for the efficient activation of plant defense signaling cascades thus conferring resistance to pathogen invasion.
Collapse
Affiliation(s)
- Riddhi Datta
- Plant Biology Laboratory, Drug Development/Diagnostics & Biotechnology Division, CSIR - Indian Institute of Chemical Biology, 4, Raja S.C.Mullick Road, Kolkata 700 032, India
| | - Sharmila Chattopadhyay
- Plant Biology Laboratory, Drug Development/Diagnostics & Biotechnology Division, CSIR - Indian Institute of Chemical Biology, 4, Raja S.C.Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
40
|
Zagorchev L, Terzieva M, Stoichkova M, Odjakova M. Changes in protein thiols in response to salt stress in embryogenic suspension cultures of Dactylis glomerata L. BIOTECHNOL BIOTEC EQ 2014; 28:616-621. [PMID: 26019548 PMCID: PMC4433836 DOI: 10.1080/13102818.2014.946798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/19/2014] [Indexed: 12/26/2022] Open
Abstract
The aim of the present study is to assess the rate of protein disulphide formation and the activity of NADPH-dependent thioredoxin and glutaredoxin systems, responsible for the reverse reduction of protein and mixed protein-glutathione disulphides, in embryogenic suspension cultures of Dactylis glomerata, subjected to salt stress. Two concentrations of NaCl previously established as enhancing (0.085 mol/L) and inhibiting (0.17 mol/L) somatic embryogenesis were used. The quantitative (by colour reaction with Ellman's reagent) and qualitative (by diagonal gel electrophoresis) analyses showed a significant increase in protein disulphide formation in salt-treated cultures compared to controls. The ratio of disulphides to free thiols is higher in 0.17 mol/L NaCl-treated cultures. The activity of the thioredoxin-thioredoxin reductase system has been increased accordingly in 0.085 mol/L NaCl-treated cultures but decreased at the higher salt concentration. The activity of glutaredoxins was also estimated, by using glutathionylated bovine serum albumin as substrate and following the decrease of NADPH absorbance at 340 nm in the presence of glutathione and glutathione reductase. Mild salt (0.085 mol/L NaCl) treated cultures again showed the highest activity compared to controls and 0.17 mol/L NaCl-treated cultures. Based on these observations it was suggested that salt treatment resulted in increased protein disulphide formation and thioredoxin and glutaredoxin systems are important regulators of this process, strongly involved in salt stress response. The highest activity at 0.085 mol/L NaCl may be also related to the regulatory mechanisms, involved in the potentiating of somatic embryogenesis at this salt concentration.
Collapse
Affiliation(s)
- Lyuben Zagorchev
- Department of Biochemistry, Faculty of Biology, Sofia University St. Kliment Ohridski , Sofia, Bulgaria
| | - Miroslava Terzieva
- Department of Biochemistry, Faculty of Biology, Sofia University St. Kliment Ohridski , Sofia, Bulgaria
| | - Marina Stoichkova
- Department of Biochemistry, Faculty of Biology, Sofia University St. Kliment Ohridski , Sofia, Bulgaria
| | - Mariela Odjakova
- Department of Biochemistry, Faculty of Biology, Sofia University St. Kliment Ohridski , Sofia, Bulgaria
| |
Collapse
|
41
|
Shi HY, Li ZH, Zhang YX, Chen L, Xiang DY, Zhang YF. Two pear glutathione S-transferases genes are regulated during fruit development and involved in response to salicylic acid, auxin, and glucose signaling. PLoS One 2014; 9:e89926. [PMID: 24587129 PMCID: PMC3934943 DOI: 10.1371/journal.pone.0089926] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 01/23/2014] [Indexed: 11/19/2022] Open
Abstract
Two genes encoding putative glutathione S-transferase proteins were isolated from pear (Pyrus pyrifolia) and designated PpGST1 and PpGST2. The deduced PpGST1 and PpGST2 proteins contain conserved Glutathione S-transferase N-terminal domain (GST_N) and Glutathione S-transferase, C-terminal domain (GST_C). Using PCR amplification technique, the genomic clones corresponding to PpGST1 and PpGST2 were isolated and shown to contain two introns and a singal intron respectively with typical GT/AG boundaries defining the splice junctions. Phylogenetic analysis clearly demonstrated that PpGST1 belonged to Phi class of GST superfamilies and had high homology with apple MdGST, while PpGST2 was classified into the Tau class of GST superfamilies. The expression of PpGST1 and PpGST2 genes was developmentally regulated in fruit. Further study demonstrated that PpGST1 and PpGST2 expression was remarkably induced by glucose, salicylic acid (SA) and indole-3-aceticacid (IAA) treatments in pear fruit, and in diseased fruit. These data suggested that PpGST1 and PpGST2 might be involved in response to sugar, SA, and IAA signaling during fruit development of pear.
Collapse
Affiliation(s)
- Hai-Yan Shi
- College of Horticulture, Agricultural University of Hebei, Baoding, China
| | - Zheng-Hong Li
- College of Horticulture, Agricultural University of Hebei, Baoding, China
| | - Yu-Xing Zhang
- College of Horticulture, Agricultural University of Hebei, Baoding, China
| | - Liang Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture and Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Di-Ying Xiang
- College of Horticulture, Agricultural University of Hebei, Baoding, China
| | - Yu-Feng Zhang
- College of Horticulture, Agricultural University of Hebei, Baoding, China
| |
Collapse
|
42
|
Licciardello C, D’Agostino N, Traini A, Recupero GR, Frusciante L, Chiusano ML. Characterization of the glutathione S-transferase gene family through ESTs and expression analyses within common and pigmented cultivars of Citrus sinensis (L.) Osbeck. BMC PLANT BIOLOGY 2014; 14:39. [PMID: 24490620 PMCID: PMC3922800 DOI: 10.1186/1471-2229-14-39] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 12/20/2013] [Indexed: 05/05/2023]
Abstract
BACKGROUND Glutathione S-transferases (GSTs) represent a ubiquitous gene family encoding detoxification enzymes able to recognize reactive electrophilic xenobiotic molecules as well as compounds of endogenous origin. Anthocyanin pigments require GSTs for their transport into the vacuole since their cytoplasmic retention is toxic to the cell. Anthocyanin accumulation in Citrus sinensis (L.) Osbeck fruit flesh determines different phenotypes affecting the typical pigmentation of Sicilian blood oranges. In this paper we describe: i) the characterization of the GST gene family in C. sinensis through a systematic EST analysis; ii) the validation of the EST assembly by exploiting the genome sequences of C. sinensis and C. clementina and their genome annotations; iii) GST gene expression profiling in six tissues/organs and in two different sweet orange cultivars, Cadenera (common) and Moro (pigmented). RESULTS We identified 61 GST transcripts, described the full- or partial-length nature of the sequences and assigned to each sequence the GST class membership exploiting a comparative approach and the classification scheme proposed for plant species. A total of 23 full-length sequences were defined. Fifty-four of the 61 transcripts were successfully aligned to the C. sinensis and C. clementina genomes. Tissue specific expression profiling demonstrated that the expression of some GST transcripts was 'tissue-affected' and cultivar specific. A comparative analysis of C. sinensis GSTs with those from other plant species was also considered. Data from the current analysis are accessible at http://biosrv.cab.unina.it/citrusGST/, with the aim to provide a reference resource for C. sinensis GSTs. CONCLUSIONS This study aimed at the characterization of the GST gene family in C. sinensis. Based on expression patterns from two different cultivars and on sequence-comparative analyses, we also highlighted that two sequences, a Phi class GST and a Mapeg class GST, could be involved in the conjugation of anthocyanin pigments and in their transport into the vacuole, specifically in fruit flesh of the pigmented cultivar.
Collapse
Affiliation(s)
- Concetta Licciardello
- Consiglio per la Ricerca e la sperimentazione in Agricoltura - Centro di ricerca per l'Agrumicoltura e le Colture Mediterranee (CRA-ACM), Corso Savoia 190, 95024 Acireale, Catania, Italy
| | - Nunzio D’Agostino
- Consiglio per la Ricerca e la sperimentazione in Agricoltura - Centro di ricerca per l'Orticoltura (CRA-ORT), via Cavalleggeri 25, 84098 Pontecagnano, Salerno, Italy
| | | | - Giuseppe Reforgiato Recupero
- Consiglio per la Ricerca e la sperimentazione in Agricoltura - Centro di ricerca per l'Agrumicoltura e le Colture Mediterranee (CRA-ACM), Corso Savoia 190, 95024 Acireale, Catania, Italy
| | - Luigi Frusciante
- Dipartimento di Agraria, Università degli Studi di Napoli “Federico II”, Via Università, 100, 80055 Portici, Naples, Italy
| | - Maria Luisa Chiusano
- Dipartimento di Agraria, Università degli Studi di Napoli “Federico II”, Via Università, 100, 80055 Portici, Naples, Italy
| |
Collapse
|
43
|
Rajput SG, Plyler-Harveson T, Santra DK. Development and Characterization of SSR Markers in Proso Millet Based on Switchgrass Genomics. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ajps.2014.51023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
44
|
Sharma N, Hundal GS, Sharma I, Bhardwaj R. 28-homobrassinolide alters protein content and activities of glutathione-s-transferase and polyphenol oxidase in raphanus sativus L. Plants under heavy metal stress. Toxicol Int 2014; 21:44-50. [PMID: 24748734 PMCID: PMC3989914 DOI: 10.4103/0971-6580.128792] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES The application of brassinosteroids (BRs), the plant steroidal hormones, results in an increased tolerance toward stress and thus helps improving the yield of crop plants. The present study was carried out to investigate the effect of 28-homobrassinolide (28-HBL) on the protein content as well as activities of antioxidant enzymes viz., glutathione-s-transferase (GST) and polyphenol oxidase (PPO) in radish plants grown under Cadmium (Cd) and Mercury (Hg) metal stress. MATERIALS AND METHODS Shoots of 60 and 90 days old radish plants, grown under Cd and Hg metal stress (0, 0.5, 1.0, 1.5 mM) and given the presowing treatment of 28-HBL (0, 10(-7), 10(-9), 10(-11) M) to seeds for 8 h, were analyzed for protein content and GST and PPO enzyme activities. RESULTS Protein content showed decrease in plants given Cd and Hg metal treatment alone, while treatment with 28-HBL enhanced the protein content, suggesting its stress protective role. An increase in the activity of antioxidative enzymes was also observed in plants stressed with heavy metals as well as in those supplemented with 28-HBL. CONCLUSIONS In the present investigation, the activity of antioxidative enzymes was found to increase due to metal stress and a further increase was noticed in plants given both metal and 28-HBL treatment, suggesting the stress protective role of 28-HBL via modulating the antioxidative enzymes.
Collapse
Affiliation(s)
- Neha Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Gurjinder Singh Hundal
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Indu Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
45
|
Liu D, Liu Y, Rao J, Wang G, Li H, Ge F, Chen C. Overexpression of the glutathione S-transferase gene from Pyrus pyrifolia fruit improves tolerance to abiotic stress in transgenic tobacco plants. Mol Biol 2013. [DOI: 10.1134/s0026893313040109] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Hui KM, Hao FY, Li W, Zhang Z, Zhang CY, Wang W, Ren Q. Cloning and identification of four Mu-type glutathione S-transferases from the giant freshwater prawn Macrobrachium rosenbergii. FISH & SHELLFISH IMMUNOLOGY 2013; 35:546-552. [PMID: 23727284 DOI: 10.1016/j.fsi.2013.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 05/13/2013] [Accepted: 05/17/2013] [Indexed: 06/02/2023]
Abstract
Glutathione S-transferases (GSTs) are essential components of the cellular detoxification system because of their capability to protect organisms against the toxicity of reactive oxygen species (ROSs). Four different GSTs (MrMuGST1-MrMuGST4) showing similarities with Mu-type GSTs were cloned from the hepatopancreas of Macrobrachium rosenbergii. These four GSTs have 219, 216, 218 and 219 amino acids in length, respectively. MrMuGST1-MrMuGST4 proteins all have a G-site in the N-terminus and an H-site in the C-terminus. Phylogenetic analysis reveals that four Mu-type GSTs are classified into two different clades (MrMuGST2 one clade; MrMuGST1, MrMuGST3 and MrMuGST4 other clades). Nonetheless, no site under positive selection was detected but rapid evolution was found in the few of MuGST genes. Reverse transcription-polymerase chain reaction (RT-PCR) results showed that MrMuGST1 and MrMuGST2 transcripts were expressed in all detected tissues, however, MrMuGST3 and MrMuGST4 were just mainly expressed in hepatopancreas and intestines. Quantitative RT-PCR analysis showed that MrMuGST1 and MrMuGST2 were down-regulated upon Vibrio anguillarum challenge, whereas MrMuGST3 and MrMuGST4 were quickly up-regulated 2 h after the Vibrio challenge. Our results imply that different Mu-type GSTs may respond to Vibrio challenge with different manners.
Collapse
Affiliation(s)
- Kai-Min Hui
- Jiangsu Key Laboratory for Biodiversity & Biotechnology and Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Life Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210046, PR China
| | | | | | | | | | | | | |
Collapse
|
47
|
Jiang SY, González JM, Ramachandran S. Comparative genomic and transcriptomic analysis of tandemly and segmentally duplicated genes in rice. PLoS One 2013; 8:e63551. [PMID: 23696832 PMCID: PMC3656045 DOI: 10.1371/journal.pone.0063551] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 04/03/2013] [Indexed: 12/20/2022] Open
Abstract
Tandem and segmental duplications significantly contribute to gene family expansion and genome evolution. Genome-wide identification of tandem and segmental genes has been analyzed before in several plant genomes. However, comparative studies in functional bias, expression divergence and their roles in species domestication are still lacking. We have carried out a genome-wide identification and comparative analysis of tandem and segmental genes in the rice genome. A total of 3,646 and 3,633 pairs of tandem and segmental genes, respectively, were identified in the genome. They made up around 30% of total annotated rice genes (excluding transposon-coding genes). Both tandem and segmental duplicates showed different physical locations and exhibited a biased subset of functions. These two types of duplicated genes were also under different functional constrains as shown by nonsynonymous substitutions per site (Ka) and synonymous substitutions per site (Ks) analysis. They are also differently regulated depending on the tissues and abiotic and biotic stresses based on transcriptomics data. The expression divergence might be related to promoter differentiation and DNA methylation status after tandem or segmental duplications. Both tandem and segmental duplications differ in their contribution to genetic novelty but evidence suggests that they play their role in species domestication and genome evolution.
Collapse
Affiliation(s)
- Shu-Ye Jiang
- Temasek Life Sciences Laboratory, The National University of Singapore, Singapore, Singapore
| | - José M. González
- Department of Microbiology, University of La Laguna, La Laguna, Tenerife, Spain
| | - Srinivasan Ramachandran
- Temasek Life Sciences Laboratory, The National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
48
|
A central role for thiols in plant tolerance to abiotic stress. Int J Mol Sci 2013; 14:7405-32. [PMID: 23549272 PMCID: PMC3645693 DOI: 10.3390/ijms14047405] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 02/28/2013] [Accepted: 03/14/2013] [Indexed: 01/05/2023] Open
Abstract
Abiotic stress poses major problems to agriculture and increasing efforts are being made to understand plant stress response and tolerance mechanisms and to develop new tools that underpin successful agriculture. However, the molecular mechanisms of plant stress tolerance are not fully understood, and the data available is incomplete and sometimes contradictory. Here, we review the significance of protein and non-protein thiol compounds in relation to plant tolerance of abiotic stress. First, the roles of the amino acids cysteine and methionine, are discussed, followed by an extensive discussion of the low-molecular-weight tripeptide, thiol glutathione, which plays a central part in plant stress response and oxidative signalling and of glutathione-related enzymes, including those involved in the biosynthesis of non-protein thiol compounds. Special attention is given to the glutathione redox state, to phytochelatins and to the role of glutathione in the regulation of the cell cycle. The protein thiol section focuses on glutaredoxins and thioredoxins, proteins with oxidoreductase activity, which are involved in protein glutathionylation. The review concludes with a brief overview of and future perspectives for the involvement of plant thiols in abiotic stress tolerance.
Collapse
|
49
|
Comparative proteomic analysis for assessment of the ecological significance of maize and peanut intercropping. J Proteomics 2013; 78:447-60. [DOI: 10.1016/j.jprot.2012.10.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 10/04/2012] [Accepted: 10/14/2012] [Indexed: 12/25/2022]
|
50
|
Xue Z, Duan L, Liu D, Guo J, Ge S, Dicks J, ÓMáille P, Osbourn A, Qi X. Divergent evolution of oxidosqualene cyclases in plants. THE NEW PHYTOLOGIST 2012; 193:1022-1038. [PMID: 22150097 DOI: 10.1111/j.1469-8137.2011.03997.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Triterpenes are one of the largest classes of plant metabolites and have important functions. A diverse array of triterpenoid skeletons are synthesized via the isoprenoid pathway by enzymatic cyclization of 2,3-oxidosqualene. The genomes of the lower plants Chlamydomonas reinhardtii and moss (Physcomitrella patens) contain just one oxidosqualene cyclase (OSC) gene (for sterol biosynthesis), whereas the genomes of higher plants contain nine to 16 OSC genes. Here we carry out functional analysis of rice OSCs and rigorous phylogenetic analysis of 96 OSCs from higher plants, including Arabidopsis thaliana, Oryza sativa, Sorghum bicolor and Brachypodium distachyon. The functional analysis identified an amino acid sequence for isoarborinol synthase (OsIAS) (encoded by Os11g35710/OsOSC11) in rice. Our phylogenetic analysis suggests that expansion of OSC members in higher plants has occurred mainly through tandem duplication followed by positive selection and diversifying evolution, and consolidated the previous suggestion that dicot triterpene synthases have been derived from an ancestral lanosterol synthase instead of directly from their cycloartenol synthases. The phylogenetic trees are consistent with the reaction mechanisms of the protosteryl and dammarenyl cations which parent a wide variety of triterpene skeletal types, allowing us to predict the functions of the uncharacterized OSCs.
Collapse
Affiliation(s)
- Zheyong Xue
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing 100093, China
| | - Lixin Duan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing 100093, China
| | - Dan Liu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing 100093, China
| | - Jie Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing 100093, China
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing 100093, China
| | - Jo Dicks
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Paul ÓMáille
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Anne Osbourn
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Xiaoquan Qi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Fragrant Hill, Beijing 100093, China
| |
Collapse
|