1
|
Tian K, Liu C, Cai Y, Zhou C. Role of 6mA in the Regulation of Metabolic Biosynthesis in Sorghum Callus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19232-19245. [PMID: 39138187 DOI: 10.1021/acs.jafc.4c03411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Plant cell culture technology helps to obtain natural plant-derived metabolites. The callus of sorghum, a prominent cereal crop, possesses various metabolites with potential health benefits. However, the epigenetic mechanism regulating metabolic biosynthetic capabilities in sorghum remains unknown. Therefore, we conducted N6-methyladenine (6mA) methylome analysis using transcriptome profiling and metabolome analysis to investigate the role of 6mA alterations in two calluses having different biosynthetic capacities, which were derived from immature sorghum embryos. Our findings indicate that the 6mA upregulation within gene bodies is crucial in transcriptional activity potentially mediated by the DNA demethylase SbALKBH1. Furthermore, 6mA was significantly enriched in genes involved in the biosynthesis of flavonoids and isoflavonoids. This could serve as a novel source of bioactive compounds for human health. Thus, 6mA could play an essential role in flavonoid biosynthesis in the sorghum callus.
Collapse
Affiliation(s)
- Kewei Tian
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Chang Liu
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Yanjun Cai
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| | - Chao Zhou
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement (CTGU)/Biotechnology Research Center, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China
| |
Collapse
|
2
|
Fan Y, Sun C, Yan K, Li P, Hein I, Gilroy EM, Kear P, Bi Z, Yao P, Liu Z, Liu Y, Bai J. Recent Advances in Studies of Genomic DNA Methylation and Its Involvement in Regulating Drought Stress Response in Crops. PLANTS (BASEL, SWITZERLAND) 2024; 13:1400. [PMID: 38794470 PMCID: PMC11125032 DOI: 10.3390/plants13101400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
As global arid conditions worsen and groundwater resources diminish, drought stress has emerged as a critical impediment to plant growth and development globally, notably causing declines in crop yields and even the extinction of certain cultivated species. Numerous studies on drought resistance have demonstrated that DNA methylation dynamically interacts with plant responses to drought stress by modulating gene expression and developmental processes. However, the precise mechanisms underlying these interactions remain elusive. This article consolidates the latest research on the role of DNA methylation in plant responses to drought stress across various species, focusing on methods of methylation detection, mechanisms of methylation pattern alteration (including DNA de novo methylation, DNA maintenance methylation, and DNA demethylation), and overall responses to drought conditions. While many studies have observed significant shifts in genome-wide or gene promoter methylation levels in drought-stressed plants, the identification of specific genes and pathways involved remains limited. This review aims to furnish a reference for detailed research into plant responses to drought stress through epigenetic approaches, striving to identify drought resistance genes regulated by DNA methylation, specific signaling pathways, and their molecular mechanisms of action.
Collapse
Affiliation(s)
- Youfang Fan
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Y.F.); (P.L.); (Z.B.); (P.Y.); (Z.L.); (Y.L.)
| | - Chao Sun
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Y.F.); (P.L.); (Z.B.); (P.Y.); (Z.L.); (Y.L.)
| | - Kan Yan
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China;
| | - Pengcheng Li
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Y.F.); (P.L.); (Z.B.); (P.Y.); (Z.L.); (Y.L.)
| | - Ingo Hein
- The James Hutton Institute, Dundee DD2 5DA, UK; (I.H.); (E.M.G.)
| | | | - Philip Kear
- International Potato Center (CIP), CIP China Center for Asia Pacific (CCCAP), Beijing 102199, China;
| | - Zhenzhen Bi
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Y.F.); (P.L.); (Z.B.); (P.Y.); (Z.L.); (Y.L.)
| | - Panfeng Yao
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Y.F.); (P.L.); (Z.B.); (P.Y.); (Z.L.); (Y.L.)
| | - Zhen Liu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Y.F.); (P.L.); (Z.B.); (P.Y.); (Z.L.); (Y.L.)
| | - Yuhui Liu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Y.F.); (P.L.); (Z.B.); (P.Y.); (Z.L.); (Y.L.)
| | - Jiangping Bai
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (Y.F.); (P.L.); (Z.B.); (P.Y.); (Z.L.); (Y.L.)
| |
Collapse
|
3
|
Pagano A, Gomes C, Timmerman E, Sulima P, Przyborowski JA, Kruszka D, Impens F, Paiva JAP. Revealing the transitory and local effect of zebularine on development and on proteome dynamics of Salix purpurea. FRONTIERS IN PLANT SCIENCE 2024; 14:1304327. [PMID: 38298602 PMCID: PMC10827895 DOI: 10.3389/fpls.2023.1304327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/19/2023] [Indexed: 02/02/2024]
Abstract
Introduction DNA methylation plays major roles in the epigenetic regulation of gene expression, transposon and transcriptional silencing, and DNA repair, with implications in developmental processes and phenotypic plasticity. Relevantly for woody species, DNA methylation constitutes a regulative layer in cell wall dynamics associated with xylogenesis. The use of methyltransferase and/or demethylase inhibitors has been proven informative to shed light on the methylome dynamics behind the regulation of these processes. Methods The present work employs the cytidine analog zebularine to inhibit DNA methyltransferases and induce DNA hypomethylation in Salix purpurea plantlets grown in vitro and in soil. An integrative approach was adopted to highlight the effects of zebularine on proteomic dynamics, revealing age-specific (3 weeks of in vitro culture and 1 month of growth in soil) and tissue-specific (stem and root) effects. Results and discussion After 3 weeks of recovery from zebularine treatment, a decrease of 5-mC levels was observed in different genomic contexts in the roots of explants that were exposed to zebularine, whereas a functionally heterogeneous subset of protein entries was differentially accumulated in stem samples, including entries related to cell wall biosynthesis, tissue morphogenesis, and hormonal regulation. Significant proteomic remodeling was revealed in the development from in vitro to in-soil culture, but no significant changes in 5-mC levels were observed. The identification of tissue-specific proteomic hallmarks in combination with hypomethylating agents provides new insights into the role of DNA methylation and proteome in early plant development in willow species. Proteomic data are available via ProteomeXchange with identifier PXD045653. WGBS data are available under BioProject accession PRJNA889596.
Collapse
Affiliation(s)
- Andrea Pagano
- Department of Integrative Plant Biology, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Carolina Gomes
- Department of Integrative Plant Biology, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Evy Timmerman
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Proteomics Core, Ghent, Belgium
| | - Paweł Sulima
- Department of Genetics, Plant Breeding and Bioresource Engineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Jerzy Andrzej Przyborowski
- Department of Genetics, Plant Breeding and Bioresource Engineering, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Dariusz Kruszka
- Department of Integrative Plant Biology, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Proteomics Core, Ghent, Belgium
| | - Jorge Almiro Pinto Paiva
- Department of Integrative Plant Biology, Institute of Plant Genetics, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
4
|
Ma X, Jiang N, Fu J, Li Y, Zhou L, Yuan L, Wang Y, Li Y. A cytosine analogue 5-azacitidine improves the accumulation of licochalcone A in licorice Glycyrrhiza inflata. JOURNAL OF PLANT PHYSIOLOGY 2024; 292:154145. [PMID: 38091890 DOI: 10.1016/j.jplph.2023.154145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 02/10/2024]
Abstract
Licochalcone A (LCA) is a characteristic compound of Glycyrrhiza inflata with anti-inflammatory, antioxidant and antitumor activities. However, G. inflata produces LCA in low quantities that does not meet the market demand. In this study, we found that DNA methylation inhibitor 5-azacitidine (5-azaC) successfully improved the LCA contents in G. inflata seedlings. Transcriptome analysis revealed a series of differentially expressed genes (DEGs), including transcription factors such as MYB, ERF, WRKY, and some structural genes related to flavonoid biosynthesis. However, whole genome bisulfite sequencing (BS-seq) results showed little effect of the 5-azaC treatment on the alteration of DNA methylation on these genes, indicating the possibility that 5-azaC acts as a stimulus, but not an epigenetic modulation factor to improve the LCA content in G. inflata. Additionally, we applied the 5-azaC treatment to field plants and hairy roots and successfully increased the LCA contents in both cases. This research demonstrates the feasibility of 5-azaC treatments in future applications to improve plant production of LCA.
Collapse
Affiliation(s)
- Xiaoling Ma
- Guangdong Provincial Key Laboratory of Applied Botany & Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ningxin Jiang
- Guangdong Provincial Key Laboratory of Applied Botany & Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingxian Fu
- Guangdong Provincial Key Laboratory of Applied Botany & Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuping Li
- Guangdong Provincial Key Laboratory of Applied Botany & Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijun Zhou
- Guangdong Provincial Key Laboratory of Applied Botany & Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Yuan
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Applied Botany & Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yongqing Li
- Guangdong Provincial Key Laboratory of Applied Botany & Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Du J, Wang J, Shan S, Mi T, Song Y, Xia Y, Ma S, Zhang G, Ma L, Niu N. Low-Temperature-Mediated Promoter Methylation Relates to the Expression of TaPOR2D, Affecting the Level of Chlorophyll Accumulation in Albino Wheat ( Triticum aestivum L.). Int J Mol Sci 2023; 24:14697. [PMID: 37834145 PMCID: PMC10573025 DOI: 10.3390/ijms241914697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/18/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Chlorophyll is an indispensable photoreceptor in plant photosynthesis. Its anabolic imbalance is detrimental to individual growth and development. As an essential epigenetic modification, DNA methylation can induce phenotypic variations, such as leaf color transformation, by regulating gene expression. Albino line XN1376B is a natural mutation of winter wheat cultivar XN1376; however, the regulatory mechanism of its albinism is still unclear. In this study, we found that low temperatures induced albinism in XN1376B. The number of chloroplasts decreased as the phenomenon of bleaching intensified and the fence tissue and sponge tissue slowly dissolved. We identified six distinct TaPOR (protochlorophyllide oxidoreductase) genes in the wheat genome, and TaPOR2D was deemed to be related to the phenomenon of albinism based on the expression in different color leaves (green leaves, white leaves and returned green leaves) and the analysis of promoters' cis-acting elements. TaPOR2D was localized to chloroplasts. TaPOR2D overexpression (TaPOR2D-OE) enhanced the chlorophyll significantly in Arabidopsis, especially at two weeks; the amount of chlorophyll was 6.46 mg/L higher than in WT. The methylation rate of the TaPOR2D promoter in low-temperature albino leaves is as high as 93%, whereas there was no methylation in green leaves. Correspondingly, three DNA methyltransferase genes (TaMET1, TaDRM and TaCMT) were up-regulated in white leaves. Our study clarified that the expression of TaPOR2D is associated with its promoter methylation at a low temperature; it affects the level of chlorophyll accumulation, which probably causes the abnormal development of plant chloroplasts in albino wheat XN1376B. The results provide a theoretical basis for in-depth analysis of the regulation of development of plant chloroplasts and color variation in wheat XN1376B leaves.
Collapse
Affiliation(s)
- Jingjing Du
- College of Agronomy, Northwest A & F University, Xianyang 712100, China; (J.D.); (J.W.); (S.S.); (T.M.); (Y.S.); (Y.X.); (S.M.); (G.Z.)
- Key Laboratory of Crop Heterosis of Shaanxi Province, Xianyang 712100, China
- Wheat Breeding Engineering Research Center of Ministry of Education, Xianyang 712100, China
| | - Junwei Wang
- College of Agronomy, Northwest A & F University, Xianyang 712100, China; (J.D.); (J.W.); (S.S.); (T.M.); (Y.S.); (Y.X.); (S.M.); (G.Z.)
- Key Laboratory of Crop Heterosis of Shaanxi Province, Xianyang 712100, China
- Wheat Breeding Engineering Research Center of Ministry of Education, Xianyang 712100, China
| | - Sicong Shan
- College of Agronomy, Northwest A & F University, Xianyang 712100, China; (J.D.); (J.W.); (S.S.); (T.M.); (Y.S.); (Y.X.); (S.M.); (G.Z.)
- Key Laboratory of Crop Heterosis of Shaanxi Province, Xianyang 712100, China
- Wheat Breeding Engineering Research Center of Ministry of Education, Xianyang 712100, China
| | - Tian Mi
- College of Agronomy, Northwest A & F University, Xianyang 712100, China; (J.D.); (J.W.); (S.S.); (T.M.); (Y.S.); (Y.X.); (S.M.); (G.Z.)
- Key Laboratory of Crop Heterosis of Shaanxi Province, Xianyang 712100, China
- Wheat Breeding Engineering Research Center of Ministry of Education, Xianyang 712100, China
| | - Yulong Song
- College of Agronomy, Northwest A & F University, Xianyang 712100, China; (J.D.); (J.W.); (S.S.); (T.M.); (Y.S.); (Y.X.); (S.M.); (G.Z.)
- Key Laboratory of Crop Heterosis of Shaanxi Province, Xianyang 712100, China
- Wheat Breeding Engineering Research Center of Ministry of Education, Xianyang 712100, China
| | - Yu Xia
- College of Agronomy, Northwest A & F University, Xianyang 712100, China; (J.D.); (J.W.); (S.S.); (T.M.); (Y.S.); (Y.X.); (S.M.); (G.Z.)
- Key Laboratory of Crop Heterosis of Shaanxi Province, Xianyang 712100, China
- Wheat Breeding Engineering Research Center of Ministry of Education, Xianyang 712100, China
| | - Shoucai Ma
- College of Agronomy, Northwest A & F University, Xianyang 712100, China; (J.D.); (J.W.); (S.S.); (T.M.); (Y.S.); (Y.X.); (S.M.); (G.Z.)
- Key Laboratory of Crop Heterosis of Shaanxi Province, Xianyang 712100, China
- Wheat Breeding Engineering Research Center of Ministry of Education, Xianyang 712100, China
| | - Gaisheng Zhang
- College of Agronomy, Northwest A & F University, Xianyang 712100, China; (J.D.); (J.W.); (S.S.); (T.M.); (Y.S.); (Y.X.); (S.M.); (G.Z.)
- Key Laboratory of Crop Heterosis of Shaanxi Province, Xianyang 712100, China
- Wheat Breeding Engineering Research Center of Ministry of Education, Xianyang 712100, China
| | - Lingjian Ma
- College of Agronomy, Northwest A & F University, Xianyang 712100, China; (J.D.); (J.W.); (S.S.); (T.M.); (Y.S.); (Y.X.); (S.M.); (G.Z.)
- Key Laboratory of Crop Heterosis of Shaanxi Province, Xianyang 712100, China
- Wheat Breeding Engineering Research Center of Ministry of Education, Xianyang 712100, China
| | - Na Niu
- College of Agronomy, Northwest A & F University, Xianyang 712100, China; (J.D.); (J.W.); (S.S.); (T.M.); (Y.S.); (Y.X.); (S.M.); (G.Z.)
- Key Laboratory of Crop Heterosis of Shaanxi Province, Xianyang 712100, China
- Wheat Breeding Engineering Research Center of Ministry of Education, Xianyang 712100, China
| |
Collapse
|
6
|
Li H, Song K, Zhang X, Wang D, Dong S, Liu Y, Yang L. Application of Multi-Perspectives in Tea Breeding and the Main Directions. Int J Mol Sci 2023; 24:12643. [PMID: 37628823 PMCID: PMC10454712 DOI: 10.3390/ijms241612643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/29/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Tea plants are an economically important crop and conducting research on tea breeding contributes to enhancing the yield and quality of tea leaves as well as breeding traits that satisfy the requirements of the public. This study reviews the current status of tea plants germplasm resources and their utilization, which has provided genetic material for the application of multi-omics, including genomics and transcriptomics in breeding. Various molecular markers for breeding were designed based on multi-omics, and available approaches in the direction of high yield, quality and resistance in tea plants breeding are proposed. Additionally, future breeding of tea plants based on single-cellomics, pangenomics, plant-microbe interactions and epigenetics are proposed and provided as references. This study aims to provide inspiration and guidance for advancing the development of genetic breeding in tea plants, as well as providing implications for breeding research in other crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Long Yang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
7
|
Li Y, Shi Y, Li Y, Lu J, Sun Y, Zhang Y, Chen W, Yang X, Grierson D, Lang Z, Jiang G, Chen K. DNA methylation mediated by RdDM pathway and demethylation affects furanone accumulation through regulation of QUINONE OXIDOREDUCTASE in strawberry. HORTICULTURE RESEARCH 2023; 10:uhad131. [PMID: 37560014 PMCID: PMC10407599 DOI: 10.1093/hr/uhad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 06/19/2023] [Indexed: 08/11/2023]
Abstract
Recently, increasing evidence suggests that DNA methylation plays a crucial role in fruit ripening. However, the role of DNA methylation in regulating specific traits, such as flavor, remains unclear. Here, we report a role of DNA methylation in affecting furanone biosynthesis in strawberry. Strawberry quinone oxidoreductase (FaQR) is a key enzyme in furanone biosynthesis. There are four FaQR homologs in strawberry cultivar 'Yuexin', and one of them, FaQR3, contributes ~50% of FaQR transcripts, indicating a major role of FaQR3 in furanone biosynthesis. Through characterization of levels of DNA methylation and FaQR3 transcript and furanone contents during fruit ripening and after the application of DNA methylation inhibitor, we found that the DNA methylation level of the FaQR3 promoter was negatively correlated with FaQR3 expression and furanone accumulation, suggesting that DNA methylation may be involved in furanone biosynthesis through adjusting FaQR3 expression, and responded to different temperatures consistently. In addition, transient expression of a gene in the RNA-directed DNA methylation (RdDM) pathway, FaAGO4, and enrichment analysis of the 24-nucleotide siRNAs suggested that DNA methylation in the FaQR3 promoter is mediated by the RdDM pathway. Transient RNA interference (RNAi) of FaDML indicated that the demethylation pathway may be involved in regulating furanone accumulation. These findings provide new insights into the role of DNA methylation and demethylation in affecting flavor quality in strawberry during fruit ripening.
Collapse
Affiliation(s)
- Yunduan Li
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yanna Shi
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yichen Li
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Jiao Lu
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yunfan Sun
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Yuanyuan Zhang
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Wenbo Chen
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | - Xiaofang Yang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Donald Grierson
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, United Kingdom
| | - Zhaobo Lang
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guihua Jiang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Kunsong Chen
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| |
Collapse
|
8
|
Fortini EA, Batista DS, Felipe SHS, Silva TD, Correia LNF, Farias LM, Faria DV, Pinto VB, Santa-Catarina C, Silveira V, De-la-Peña C, Castillo-Castro E, Otoni WC. Physiological, epigenetic, and proteomic responses in Pfaffia glomerata growth in vitro under salt stress and 5-azacytidine. PROTOPLASMA 2023; 260:467-482. [PMID: 35788779 DOI: 10.1007/s00709-022-01789-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Plants adjust their complex molecular, biochemical, and metabolic processes to overcome salt stress. Here, we investigated the proteomic and epigenetic alterations involved in the morphophysiological responses of Pfaffia glomerata, a medicinal plant, to salt stress and the demethylating agent 5-azacytidine (5-azaC). Moreover, we investigated how these changes affected the biosynthesis of 20-hydroxyecdysone (20-E), a pharmacologically important specialized metabolite. Plants were cultivated in vitro for 40 days in Murashige and Skoog medium supplemented with NaCl (50 mM), 5-azaC (25 μM), and NaCl + 5-azaC. Compared with the control (medium only), the treatments reduced growth, photosynthetic rates, and photosynthetic pigment content, with increase in sucrose, total amino acids, and proline contents, but a reduction in starch and protein. Comparative proteomic analysis revealed 282 common differentially accumulated proteins involved in 87 metabolic pathways, most of them related to amino acid and carbohydrate metabolism, and specialized metabolism. 5-azaC and NaCl + 5-azaC lowered global DNA methylation levels and 20-E content, suggesting that 20-E biosynthesis may be regulated by epigenetic mechanisms. Moreover, downregulation of a key protein in jasmonate biosynthesis indicates the fundamental role of this hormone in the 20-E biosynthesis. Taken together, our results highlight possible regulatory proteins and epigenetic changes related to salt stress tolerance and 20-E biosynthesis in P. glomerata, paving the way for future studies of the mechanisms involved in this regulation.
Collapse
Affiliation(s)
- Evandro Alexandre Fortini
- Laboratório de Cultura de Tecidos Vegetais (LCTII), Departamento de Biologia Vegetal/BIOAGRO, Universidade Federal de Viçosa, Campus Universitário, Avenida Peter Henry Rolfs s/n, Viçosa, MG, 36570-900, Brazil
| | - Diego Silva Batista
- Departamento de Agricultura, Universidade Federal da Paraíba, Campus III, Bananeiras, PB, 58220-000, Brazil
| | - Sérgio Heitor Sousa Felipe
- PPG em Agroecologia, Universidade Estadual do Maranhão, Av. Lourenço Vieira da Silva, s/nº, Cidade Universitária Paulo VI, São Luís, MA, Brazil
| | - Tatiane Dulcineia Silva
- Laboratório de Cultura de Tecidos Vegetais (LCTII), Departamento de Biologia Vegetal/BIOAGRO, Universidade Federal de Viçosa, Campus Universitário, Avenida Peter Henry Rolfs s/n, Viçosa, MG, 36570-900, Brazil
| | - Ludmila Nayara Freitas Correia
- Laboratório de Cultura de Tecidos Vegetais (LCTII), Departamento de Biologia Vegetal/BIOAGRO, Universidade Federal de Viçosa, Campus Universitário, Avenida Peter Henry Rolfs s/n, Viçosa, MG, 36570-900, Brazil
| | - Letícia Monteiro Farias
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Daniele Vidal Faria
- Laboratório de Cultura de Tecidos Vegetais (LCTII), Departamento de Biologia Vegetal/BIOAGRO, Universidade Federal de Viçosa, Campus Universitário, Avenida Peter Henry Rolfs s/n, Viçosa, MG, 36570-900, Brazil
| | - Vitor Batista Pinto
- Laboratório de Biotecnologia (LBT), Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Claudete Santa-Catarina
- Laboratório de Biologia Celular e Tecidual (LBCT), CBB-UENF, Campos dos Goytacazes, RJ, Brazil
| | - Vanildo Silveira
- Laboratório de Biotecnologia (LBT), Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego 2000, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Clelia De-la-Peña
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A. C. (CICY), 97205, Mérida, Yucatán, Mexico
| | - Eduardo Castillo-Castro
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A. C. (CICY), 97205, Mérida, Yucatán, Mexico
| | - Wagner Campos Otoni
- Laboratório de Cultura de Tecidos Vegetais (LCTII), Departamento de Biologia Vegetal/BIOAGRO, Universidade Federal de Viçosa, Campus Universitário, Avenida Peter Henry Rolfs s/n, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
9
|
Liu HN, Shu Q, Lin-Wang K, Espley RV, Allan AC, Pei MS, Li XL, Su J, Wu J. DNA methylation reprogramming provides insights into light-induced anthocyanin biosynthesis in red pear. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111499. [PMID: 36265764 DOI: 10.1016/j.plantsci.2022.111499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/11/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
DNA methylation, an epigenetic mark, is proposed to regulate plant anthocyanin biosynthesis. It well known that light induces anthocyanin accumulation, with bagging treatments commonly used to investigate light-controlled anthocyanin biosynthesis. We studied the DNA methylome landscape during pear skin coloration under various conditions (fruits re-exposed to sunlight after bag removal). The DNA methylation level in gene body/TE and its flanking sequence was generally similar between debagged and bagged treatments, however differentially methylated regions (DMRs) were re-modelled after light-exposure. Both DNA demethylase homologs and the RNA-directed DNA methylation (RdDM) pathways contributed to this re-distribution. A total of 310 DEGs were DMR-associated during light-induced anthocyanin biosynthesis between debagged and bagged treatments. The hypomethylated mCHH context was seen within the promoter of PyUFGT, together with other anthocyanin biosynthesis genes (PyPAL, PyDFR and PyANS). This enhanced transcriptional activation and promoted anthocyanin accumulation after light re-exposure. Unlike previous reports on bud sports, we did not detect DMRs within the MYB10 promoter. Instead, we observed the genome-wide re-distribution of methylation patterns, suggesting different mechanisms underlying methylation patterns of differentially accumulated anthocyanins caused by either bud mutation or environment change. We investigate the dynamic landscape of genome-scale DNA methylation, which is the combined effect of DNA demethylation and RdDM pathway, in the process of light-induced fruit colour formation in pear. This process is regulated by methylation changes on promoter regions of several DEGs. These results provide a DMR-associated DEGs set and new insight into the mechanism of DNA methylation involved in light-induced anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Hai-Nan Liu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China.
| | - Qun Shu
- Institute of Horticulture, Yunnan Academy of Agricultural Sciences, Kunming 650205, China.
| | - Kui Lin-Wang
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand.
| | - Richard V Espley
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand.
| | - Andrew C Allan
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand; School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| | - Mao-Song Pei
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023, China.
| | - Xiao-Long Li
- College of Horticulture Science, Zhejiang A & F University, Hangzhou 311300, China.
| | - Jun Su
- Institute of Horticulture, Yunnan Academy of Agricultural Sciences, Kunming 650205, China.
| | - Jun Wu
- College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
10
|
Duan S, Xin R, Guan S, Li X, Fei R, Cheng W, Pan Q, Sun X. Optimization of callus induction and proliferation of Paeonia lactiflora Pall. and Agrobacterium-mediated genetic transformation. FRONTIERS IN PLANT SCIENCE 2022; 13:996690. [PMID: 36589115 PMCID: PMC9800923 DOI: 10.3389/fpls.2022.996690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Paeonia lactiflora Pall. is an important ornamental plant with high economic and medicinal value, which has considerable development prospects worldwide. The lack of efficient tissue culture techniques and genetic transformation systems has become a master obstacle for P. lactiflora research. The purpose of the present study focuses on obtaining an efficient and stable genetic transformation method using callus as the receptor and exploring an efficient protocol for callus induction and proliferation associated with P. lactiflora. Callus induction and proliferation were performed using MS medium with various concentrations of 2,4-Dichlorophenoxyacetic acid (2,4-D), 1-Naphthaleneacetic acid (NAA), 6-Benzylaminopurine (6-BA) and thidiazuron (TDZ). The sensitivity of callus to kanamycin and cefotaxime was determined. Several parameters such as Agrobacterium cell density, infection time and co-culture duration were studied to optimize transformation efficiency. Agrobacterium strains EHA105 and pBI121 binary vector harboring the β-glucuronidase (GUS) gene were used for transformation. Expression of the GUS reporter gene was detected by GUS assay, polymerase chain reaction (PCR) and Quantitative Real-time PCR (RT-qPCR). The MS medium containing 1.0 mg·L-1 NAA, 0.5 mg·L-1 2,4-D and 0.5 mg·L-1 TDZ was optimal for callus induction and MS medium containing 0.5 mg·L-1 NAA, 1.0 mg·L-1 2,4-D and 0.5 mg·L-1 TDZ was the best for callus proliferation. The concentrations of kanamycin and cefotaxime used for screening positive callus were 125 mg·L-1 and 200 mg·L-1, respectively. Among various combinations analyzed, the best transformation result was obtained via the 25 min of infection of Agrobacterium at 0.6 OD600 and 3 d of co-culture. Overall, this study provided technical support and theoretical guidance for improving the callus induction and proliferation efficiency and the study of gene function in P. lactiflora.
Collapse
Affiliation(s)
- Siyang Duan
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Rujie Xin
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Shixin Guan
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Xueting Li
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Riwen Fei
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Wan Cheng
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Qing Pan
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Xiaomei Sun
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
11
|
Martínez-Rivas FJ, Blanco-Portales R, Molina-Hidalgo FJ, Caballero JL, Perez de Souza L, Alseekh S, Fernie AR, Muñoz-Blanco J, Rodríguez-Franco A. Azacytidine arrests ripening in cultivated strawberry (Fragaria × ananassa) by repressing key genes and altering hormone contents. BMC PLANT BIOLOGY 2022; 22:278. [PMID: 35672704 PMCID: PMC9172142 DOI: 10.1186/s12870-022-03670-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Strawberry ripening involves a number of irreversible biochemical reactions that cause sensory changes through accumulation of sugars, acids and other compounds responsible for fruit color and flavor. The process, which is strongly dependent on methylation marks in other fruits such as tomatoes and oranges, is highly controlled and coordinated in strawberry. RESULTS Repeated injections of the hypomethylating compound 5-azacytidine (AZA) into green and unripe Fragaria × ananassa receptacles fully arrested the ripening of the fruit. The process, however, was reversible since treated fruit parts reached full maturity within a few days after AZA treatment was stopped. Transcriptomic analyses showed that key genes responsible for the biosynthesis of anthocyanins, phenylpropanoids, and hormones such as abscisic acid (ABA) were affected by the AZA treatment. In fact, AZA downregulated genes associated with ABA biosynthetic genes but upregulated genes associated with its degradation. AZA treatment additionally downregulated a number of essential transcription factors associated with the regulation and control of ripening. Metabolic analyses revealed a marked imbalance in hormone levels, with treated parts accumulating auxins, gibberellins and ABA degradation products, as well as metabolites associated with unripe fruits. CONCLUSIONS AZA completely halted strawberry ripening by altering the hormone balance, and the expression of genes involves in hormone biosynthesis and degradation processes. These results contradict those previously obtained in other climacteric and fleshly fruits, where AZA led to premature ripening. In any case, our results suggests that the strawberry ripening process is governed by methylation marks.
Collapse
Affiliation(s)
- Félix Juan Martínez-Rivas
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain.
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| | - Rosario Blanco-Portales
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain
| | - Francisco Javier Molina-Hidalgo
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain
| | - José Luis Caballero
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain
| | - Leonardo Perez de Souza
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Ruski Blvd. 139, 4000, Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Ruski Blvd. 139, 4000, Plovdiv, Bulgaria
| | - Juan Muñoz-Blanco
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain.
| | - Antonio Rodríguez-Franco
- Department of Biochemistry and Molecular Biology, University of Cordoba, Edificio Severo Ochoa, Campus de Rabanales, E-14014, Córdoba, Spain.
| |
Collapse
|
12
|
Plant DNA Methylation Responds to Nutrient Stress. Genes (Basel) 2022; 13:genes13060992. [PMID: 35741754 PMCID: PMC9222553 DOI: 10.3390/genes13060992] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 12/16/2022] Open
Abstract
Nutrient stress as abiotic stress has become one of the important factors restricting crop yield and quality. DNA methylation is an essential epigenetic modification that can effectively regulate genome stability. Exploring DNA methylation responses to nutrient stress could lay the foundation for improving plant tolerance to nutrient stress. This article summarizes the plant DNA methylation patterns, the effects of nutrient stress, such as nitrogen, phosphorus, iron, zinc and sulfur stress, on plant DNA methylation and research techniques for plant DNA methylation, etc. Our discussion provides insight for further research on epigenetics response to nutrient stress in the future.
Collapse
|
13
|
Gu H, Ding W, Shi T, Ouyang Q, Yang X, Yue Y, Wang L. Integrated transcriptome and endogenous hormone analysis provides new insights into callus proliferation in Osmanthus fragrans. Sci Rep 2022; 12:7609. [PMID: 35534621 PMCID: PMC9085794 DOI: 10.1038/s41598-022-11801-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/22/2022] [Indexed: 11/09/2022] Open
Abstract
Osmanthus fragrans is an important evergreen species with both medicinal and ornamental value in China. Given the low efficiency of callus proliferation and the difficulty of adventitious bud differentiation, tissue culture and regeneration systems have not been successfully established for this species. To understand the mechanism of callus proliferation, transcriptome sequencing and endogenous hormone content determination were performed from the initial growth stages to the early stages of senescence on O. fragrans calli. In total, 47,340 genes were identified by transcriptome sequencing, including 1798 previously unidentified genes specifically involved in callus development. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of differentially expressed genes (DEGs) was significantly enriched in plant hormone signal transduction pathways. Furthermore, our results from the orthogonal projections to latent structures discrimination analysis (OPLS-DA) of six typical hormones in five development stages of O. fragrans calli showed jasmonic acid (JA) could play important role in the initial stages of calli growth, whereas JA and auxin (IAA) were dominant in the early stages of calli senescence. Based on the weighted gene co-expression network analysis, OfSRC2, OfPP2CD5 and OfARR1, OfPYL3, OfEIL3b were selected as hub genes from the modules with the significant relevance to JA and IAA respectively. The gene regulation network and quantitative real-time PCR implied that during the initial stages of callus growth, the transcription factors (TFs) OfERF4 and OfMYC2a could down-regulate the expression of hub genes OfSRC2 and OfPP2CD5, resulting in decreased JA content and rapid callus growth; during the late stage of callus growth, the TFs OfERF4, OfMYC2a and OfTGA21c, OfHSFA1 could positively regulate the expression of hub genes OfSRC2, OfPP2CD5 and OfARR1, OfPYL3, OfEIL3b, respectively, leading to increased JA and IAA contents and inducing the senescence of O. fragrans calli. Hopefully, our results could provide new insights into the molecular mechanism of the proliferation of O. fragrans calli.
Collapse
|
14
|
Zheng X, Yang Y, Al-Babili S. Exploring the Diversity and Regulation of Apocarotenoid Metabolic Pathways in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:787049. [PMID: 34956282 PMCID: PMC8702529 DOI: 10.3389/fpls.2021.787049] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/17/2021] [Indexed: 05/31/2023]
Abstract
In plants, carotenoids are subjected to enzyme-catalyzed oxidative cleavage reactions as well as to non-enzymatic degradation processes, which produce various carbonyl products called apocarotenoids. These conversions control carotenoid content in different tissues and give rise to apocarotenoid hormones and signaling molecules, which play important roles in plant growth and development, response to environmental stimuli, and in interactions with surrounding organisms. In addition, carotenoid cleavage gives rise to apocarotenoid pigments and volatiles that contribute to the color and flavor of many flowers and several fruits. Some apocarotenoid pigments, such as crocins and bixin, are widely utilized as colorants and additives in food and cosmetic industry and also have health-promoting properties. Considering the importance of this class of metabolites, investigation of apocarotenoid diversity and regulation has increasingly attracted the attention of plant biologists. Here, we provide an update on the plant apocarotenoid biosynthetic pathway, especially highlighting the diversity of the enzyme carotenoid cleavage dioxygenase 4 (CCD4) from different plant species with respect to substrate specificity and regioselectivity, which contribute to the formation of diverse apocarotenoid volatiles and pigments. In addition, we summarize the regulation of apocarotenoid metabolic pathway at transcriptional, post-translational, and epigenetic levels. Finally, we describe inter- and intraspecies variation in apocarotenoid production observed in many important horticulture crops and depict recent progress in elucidating the genetic basis of the natural variation in the composition and amount of apocarotenoids. We propose that the illustration of biochemical, genetic, and evolutionary background of apocarotenoid diversity would not only accelerate the discovery of unknown biosynthetic and regulatory genes of bioactive apocarotenoids but also enable the identification of genetic variation of causal genes for marker-assisted improvement of aroma and color of fruits and vegetables and CRISPR-based next-generation metabolic engineering of high-value apocarotenoids.
Collapse
|
15
|
Strategies to meet the global demand for natural food colorant bixin: A multidisciplinary approach. J Biotechnol 2021; 338:40-51. [PMID: 34271054 DOI: 10.1016/j.jbiotec.2021.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/02/2021] [Accepted: 07/09/2021] [Indexed: 11/23/2022]
Abstract
Bixin is an apocarotenoid derived from Bixa orellana L. well known as a food colorant along with its numerous industrial and therapeutic applications. With the current surge in usage of natural products, bixin has contributed immensely to the world carotenoid market and showcases a spike in its requirement globally. To bridge the gap between bixin availability and utility, owed to its bioactivity and demand as a colouring agent in industries the sustainable production of bixin is critical. Therefore, to meet up this challenge effective use of multidisciplinary strategies is a promising choice to enhance bixin quantity and quality. Here we report, an optimal blend of approaches directed towards manipulation of bixin biosynthesis pathway with an insight into the impact of regulatory mechanisms and environmental dynamics, engineering carotenoid degradation in plants other than annatto, usage of tissue culture techniques supported with diverse elicitations, molecular breeding, application of in silico predictive tools, screening of microbial bio-factories as alternatives, preservation of bixin bioavailability, and promotion of eco-friendly extraction techniques to play a collaborative role in promoting sustainable bixin production.
Collapse
|
16
|
Liang MH, He YJ, Liu DM, Jiang JG. Regulation of carotenoid degradation and production of apocarotenoids in natural and engineered organisms. Crit Rev Biotechnol 2021; 41:513-534. [PMID: 33541157 DOI: 10.1080/07388551.2021.1873242] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Carotenoids are important precursors of a wide range of apocarotenoids with their functions including: hormones, pigments, retinoids, volatiles, and signals, which can be used in the food, flavors, fragrances, cosmetics, and pharmaceutical industries. This article focuses on the formation of these multifaceted apocarotenoids and their diverse biological roles in all living systems. Carotenoid degradation pathways include: enzymatic oxidation by specific carotenoid cleavage oxygenases (CCOs) or nonspecific enzymes such as lipoxygenases and peroxidases and non-enzymatic oxidation by reactive oxygen species. Recent advances in the regulation of carotenoid cleavage genes and the biotechnological production of multiple apocarotenoids are also covered. It is suggested that different developmental stages and environmental stresses can influence both the expression of carotenoid cleavage genes and the formation of apocarotenoids at multiple levels of regulation including: transcriptional, transcription factors, posttranscriptional, posttranslational, and epigenetic modification. Regarding the biotechnological production of apocarotenoids especially: crocins, retinoids, and ionones, enzymatic biocatalysis and metabolically engineered microorganisms have been a promising alternative route. New substrates, carotenoid cleavage enzymes, biosynthetic pathways for apocarotenoids, and new biological functions of apocarotenoids will be discussed with the improvement of our understanding of apocarotenoid biology, biochemistry, function, and formation from different organisms.
Collapse
Affiliation(s)
- Ming-Hua Liang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Yu-Jing He
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Dong-Mei Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jian-Guo Jiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
17
|
Ye LX, Gan ZM, Wang WF, Ai XY, Xie ZZ, Hu CG, Zhang JZ. Comparative analysis of the transcriptome, methylome, and metabolome during pollen abortion of a seedless citrus mutant. PLANT MOLECULAR BIOLOGY 2020; 104:151-171. [PMID: 32656674 DOI: 10.1007/s11103-020-01034-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Pollen abortion could be mainly attributed to abnormal meiosis in the mutant. Multiomics analysis uncovered significant epigenetic variations between the mutant and its wild type during the pollen abortion process. Male sterility caused by aborted pollen can result in seedless fruit. A seedless Ponkan mandarin mutant (bud sport) was used to compare the transcriptome, methylome, and metabolome with its progenitor to understand the mechanism of citrus pollen abortion. Cytological observations showed that the anther of the mutant could form microspore mother cells, although the microspores failed to develop fertile pollen at the anther dehiscence stage. Based on pollen phenotypic analysis, pollen abortion could be mainly attributed to abnormal meiosis in the mutant. A transcriptome analysis uncovered the molecular mechanisms underlying pollen abortion between the mutant and its wild type. A total of 5421 differentially expressed genes were identified, and some of these genes were involved in the meiosis, hormone biosynthesis and signaling, carbohydrate, and flavonoid pathways. A total of 50,845 differentially methylated regions corresponding to 15,426 differentially methylated genes in the genic region were found between the mutant and its wild type by the methylome analysis. The expression level of these genes was negatively correlated with their methylation level, especially in the promoter regions. In addition, 197 differential metabolites were identified between the mutant and its wild type based on the metabolome analysis. The transcription and metabolome analysis further indicated that the expression of genes in the flavonoid, carbohydrate, and hormone metabolic pathways was significantly modulated in the pollen of the mutant. These results indicated that demethylation may alleviate the silencing of carbohydrate genes in the mutant, resulting in excessive starch and sugar hydrolysis and thereby causing pollen abortion in the mutant.
Collapse
Affiliation(s)
- Li-Xia Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhi-Meng Gan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen-Feng Wang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiao-Yan Ai
- Institute of Pomology and Tea, Hubei Academy of Agricultural Sciences, Wuhan, 430070, China
| | - Zong-Zhou Xie
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chun-Gen Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jin-Zhi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
18
|
Gao S, Ma W, Lyu X, Cao X, Yao Y. Melatonin may increase disease resistance and flavonoid biosynthesis through effects on DNA methylation and gene expression in grape berries. BMC PLANT BIOLOGY 2020; 20:231. [PMID: 32448301 PMCID: PMC7247213 DOI: 10.1186/s12870-020-02445-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/14/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Melatonin can regulate plant growth, development and biotic responses by causing global changes in gene expression; however, the melatonin-induced changes in gene expression via the modification of DNA methylation remain unclear in plants. RESULTS A total of 1,169,852 and 1,008,894 methylated cytosines (mCs) were identified in the control and melatonin-treated grape berries, respectively, and mCs occurred primarily at CG sites, followed by CHG sites and CHH sites. Compared to the control, melatonin treatment broadly decreased methylation levels at CHG and particularly CHH sites in various gene regions. Melatonin treatment generated a total of 25,125 differentially methylated regions (DMRs), which included 6517 DMR-associated genes. RNA-Seq demonstrated that 2479 genes were upregulated, and 1072 genes were repressed by melatonin treatment. The evaluation of the interconnection of the DNA methylome and transcriptome identified 144 genes showing a negative correlation between promoter methylation and gene expression, which were primarily related to biotic stress responses and flavonoid biosynthesis. Additionally, the application of 5́-azacytidine and melatonin led to similar effects on mycelial growth of B. cinerea, berry decay rate and flavonoid biosynthesis. Moreover, EDS1 was used to show that melatonin increased gene expression by decreasing promoter methylation levels. CONCLUSION Our results demonstrated that melatonin broadly decreased DNA methylation and altered gene expression in grape berries. We propose that melatonin increases disease resistance and flavonoid biosynthesis by decreasing the methylation levels of the promoters of the genes involved.
Collapse
Affiliation(s)
- Shiwei Gao
- State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Wanyun Ma
- State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xinning Lyu
- State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiaolei Cao
- State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Yuxin Yao
- State Key Laboratory of Crop Biology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| |
Collapse
|
19
|
Zhang Y, Si F, Wang Y, Liu C, Zhang T, Yuan Y, Gai S. Application of 5-azacytidine induces DNA hypomethylation and accelerates dormancy release in buds of tree peony. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:91-100. [PMID: 31855819 DOI: 10.1016/j.plaphy.2019.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/28/2019] [Accepted: 12/09/2019] [Indexed: 05/22/2023]
Abstract
Release of bud dormancy is a prerequisite for the growth resumption and production in perennial plants such as tree peony. DNA methylation plays a pivotal role in regulating gene expression. In this study, combination of morphologic observation and DNA methylation analysis indicated that 5-azacytidine (5-azaC) application for 7 d declined 5 mC quantities and promoted dormancy release. After 5-azaC treatment, total 174,341 unigenes and 1818 differentially expression genes (DEGs) were obtained by RNA-seq, of which there were 1194 DEGs after 1 d 5-azaC treatment (AD1 vs CD1), and 624 DEGs after 7 d (AD7 vs CD7), respectively. The KEGG pathway analysis identified that totally 10 DEGs annotated in DNA replication pathway were enriched when AD7 compared with CD7. Furthermore, the expression patterns of several DEGs by real-time quantitative RT-PCR were consistent with that of RNA-seq data. 5-azaC application significantly decreased the expression levels of DNA methyltransferase genes, PsCMT3, PsMET1 and PsDRM2, and increased the transcript of demethylase gene PsROS1. Simultaneously, total methyltransferases activity decreased, and demethylase activity was induced by 5-azaC. In summary, application of 5-azaC inhibited the expression of the genes related to growth and development in short-term, indicating a possible toxic effect to plant, and its long-term effect was to induce hypomethylation by increasing demethylase genes transcripts and decreasing the expressions of methyltransferase genes, and then activate cell cycle, DNA replication and glycol-metabolism processes, which subsequently accelerated dormancy release. All these would provide a new strategy to further understand the molecular mechanism of dormancy release in tree peony.
Collapse
Affiliation(s)
- Yuxi Zhang
- College of Life Science, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China.
| | - Fuhui Si
- College of Life Science, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China.
| | - Yanyan Wang
- College of Life Science, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China.
| | - Chunying Liu
- College of Life Science, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China.
| | - Tao Zhang
- College of Life Science, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China.
| | - Yanchao Yuan
- College of Life Science, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China.
| | - Shupeng Gai
- College of Life Science, Qingdao Agricultural University, Key Lab of Plant Biotechnology in Universities of Shandong Province, Qingdao, China.
| |
Collapse
|
20
|
Li Y, Zhang S, Dong R, Wang L, Yao J, van Nocker S, Wang X. The grapevine homeobox gene VvHB58 influences seed and fruit development through multiple hormonal signaling pathways. BMC PLANT BIOLOGY 2019; 19:523. [PMID: 31775649 PMCID: PMC6882351 DOI: 10.1186/s12870-019-2144-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/18/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND The homeobox transcription factor has a diversity of functions during plant growth and development process. Previous transcriptome analyses of seed development in grape hybrids suggested that specific homeodomain transcription factors are involved in seed development in seedless cultivars. However, the molecular mechanism of homeobox gene regulating seed development in grape is rarely reported. RESULTS Here, we report that the grapevine VvHB58 gene, encoding a homeodomain-leucine zipper (HD-Zip I) transcription factor, participates in regulating fruit size and seed number. The VvHB58 gene was differentially expressed during seed development between seedless and seeded cultivars. Subcellular localization assays revealed that the VvHB58 protein was located in the nucleus. Transgenic expression of VvHB58 in tomato led to loss of apical dominance, a reduction in fruit pericarp expansion, reduced fruit size and seed number, and larger endosperm cells. Analysis of the cytosine methylation levels within the VvHB58 promoter indicated that the differential expression during seed development between seedless and seeded grapes may be caused by different transcriptional regulatory mechanisms rather than promoter DNA methylation. Measurements of five classic endogenous hormones and expression analysis of hormone-related genes between VvHB58 transgenic and nontransgenic control plants showed that expression of VvHB58 resulted in significant changes in auxin, gibberellin and ethylene signaling pathways. Additionally, several DNA methylation-related genes were expressed differentially during seed development stages in seedless and seeded grapes, suggesting changes in methylation levels during seed development may be associated with seed abortion. CONCLUSION VvHB58 has a potential function in regulating fruit and seed development by impacting multiple hormonal pathways. These results expand understanding of homeodomain transcription factors and potential regulatory mechanism of seed development in grapevine, and provided insights into molecular breeding for grapes.
Collapse
Affiliation(s)
- Yunduan Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi China
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang China
| | - Songlin Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi China
| | - Ruzhuang Dong
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi China
| | - Li Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi China
| | - Jin Yao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi China
| | - Steve van Nocker
- Department of Horticulture, Michigan State University, East Lansing, MI USA
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi China
| |
Collapse
|
21
|
Guo DL, Li Q, Ji XR, Wang ZG, Yu YH. Transcriptome profiling of 'Kyoho' grape at different stages of berry development following 5-azaC treatment. BMC Genomics 2019; 20:825. [PMID: 31703618 PMCID: PMC6839162 DOI: 10.1186/s12864-019-6204-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 10/21/2019] [Indexed: 01/15/2023] Open
Abstract
Background 5-Azacytidine (5-azaC) promotes the development of ‘Kyoho’ grape berry but the associated changes in gene expression have not been reported. In this study, we performed transcriptome analysis of grape berry at five developmental stages after 5-azaC treatment to elucidate the gene expression networks controlling berry ripening. Results The expression patterns of most genes across the time series were similar between the 5-azaC treatment and control groups. The number of differentially expressed genes (DEGs) at a given developmental stage ranged from 9 (A3_C3) to 690 (A5_C5). The results indicated that 5-azaC treatment had not very great influences on the expressions of most genes. Functional annotation of the DEGs revealed that they were mainly related to fruit softening, photosynthesis, protein phosphorylation, and heat stress. Eight modules showed high correlation with specific developmental stages and hub genes such as PEROXIDASE 4, CAFFEIC ACID 3-O-METHYLTRANSFERASE 1, and HISTONE-LYSINE N-METHYLTRANSFERASE EZA1 were identified by weighted gene correlation network analysis. Conclusions 5-AzaC treatment alters the transcriptional profile of grape berry at different stages of development, which may involve changes in DNA methylation.
Collapse
Affiliation(s)
- Da-Long Guo
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China. .,Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, Henan Province, China.
| | - Qiong Li
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China.,Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, Henan Province, China
| | - Xiao-Ru Ji
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China.,Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, Henan Province, China
| | - Zhen-Guang Wang
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China.,Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, Henan Province, China
| | - Yi-He Yu
- College of Forestry, Henan University of Science and Technology, Luoyang, 471023, Henan Province, China.,Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, Henan Province, China
| |
Collapse
|
22
|
Global increase in DNA methylation during orange fruit development and ripening. Proc Natl Acad Sci U S A 2019; 116:1430-1436. [PMID: 30635417 DOI: 10.1073/pnas.1815441116] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
DNA methylation is an important epigenetic mark involved in many biological processes. The genome of the climacteric tomato fruit undergoes a global loss of DNA methylation due to active DNA demethylation during the ripening process. It is unclear whether the ripening of other fruits is also associated with global DNA demethylation. We characterized the single-base resolution DNA methylomes of sweet orange fruits. Compared with immature orange fruits, ripe orange fruits gained DNA methylation at over 30,000 genomic regions and lost DNA methylation at about 1,000 genomic regions, suggesting a global increase in DNA methylation during orange fruit ripening. This increase in DNA methylation was correlated with decreased expression of DNA demethylase genes. The application of a DNA methylation inhibitor interfered with ripening, indicating that the DNA hypermethylation is critical for the proper ripening of orange fruits. We found that ripening-associated DNA hypermethylation was associated with the repression of several hundred genes, such as photosynthesis genes, and with the activation of hundreds of genes, including genes involved in abscisic acid responses. Our results suggest important roles of DNA methylation in orange fruit ripening.
Collapse
|
23
|
Duan CG, Zhu JK, Cao X. Retrospective and perspective of plant epigenetics in China. J Genet Genomics 2018; 45:621-638. [PMID: 30455036 DOI: 10.1016/j.jgg.2018.09.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/25/2018] [Accepted: 09/30/2018] [Indexed: 01/21/2023]
Abstract
Epigenetics refers to the study of heritable changes in gene function that do not involve changes in the DNA sequence. Such effects on cellular and physiological phenotypic traits may result from external or environmental factors or be part of normal developmental program. In eukaryotes, DNA wraps on a histone octamer (two copies of H2A, H2B, H3 and H4) to form nucleosome, the fundamental unit of chromatin. The structure of chromatin is subjected to a dynamic regulation through multiple epigenetic mechanisms, including DNA methylation, histone posttranslational modifications (PTMs), chromatin remodeling and noncoding RNAs. As conserved regulatory mechanisms in gene expression, epigenetic mechanisms participate in almost all the important biological processes ranging from basal development to environmental response. Importantly, all of the major epigenetic mechanisms in mammalians also occur in plants. Plant studies have provided numerous important contributions to the epigenetic research. For example, gene imprinting, a mechanism of parental allele-specific gene expression, was firstly observed in maize; evidence of paramutation, an epigenetic phenomenon that one allele acts in a single locus to induce a heritable change in the other allele, was firstly reported in maize and tomato. Moreover, some unique epigenetic mechanisms have been evolved in plants. For example, the 24-nt siRNA-involved RNA-directed DNA methylation (RdDM) pathway is plant-specific because of the involvements of two plant-specific DNA-dependent RNA polymerases, Pol IV and Pol V. A thorough study of epigenetic mechanisms is of great significance to improve crop agronomic traits and environmental adaptability. In this review, we make a brief summary of important progress achieved in plant epigenetics field in China over the past several decades and give a brief outlook on future research prospects. We focus our review on DNA methylation and histone PTMs, the two most important aspects of epigenetic mechanisms.
Collapse
Affiliation(s)
- Cheng-Guo Duan
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China; Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA.
| | - Xiaofeng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
24
|
Transcriptome Profiling Reveals Transcriptional Regulation by DNA Methyltransferase Inhibitor 5-Aza-2'-Deoxycytidine Enhancing Red Pigmentation in Bagged "Granny Smith" Apples ( Malus domestica). Int J Mol Sci 2018; 19:ijms19103133. [PMID: 30322020 PMCID: PMC6213223 DOI: 10.3390/ijms19103133] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/02/2018] [Accepted: 10/09/2018] [Indexed: 11/16/2022] Open
Abstract
The red color of apples (Malus domestica) is an attractive trait for consumers. The green skinned "Granny Smith" cultivar develops red pigmentation after bagging treatment. DNA methylation plays an important role in various developmental processes in plants. To explore the possible functions of DNA methylation in the pigmentation of bagged "Granny Smith" apples, we first analyzed the anthocyanin content of fruit skin following treatment with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-aza-dC). The results revealed an increase in anthocyanin content in bagged fruits following 5-aza-dC treatment, while no anthocyanins were detected in unbagged fruits. In addition, 8482 differentially expressed genes between 5-aza-dC-treated and control groups were identified in bagged fruits by RNA sequencing, including genes encoding transcription factors, enzymes related to anthocyanin accumulation, and methylases. Changes in the expression of these genes may be responsible for 5-aza-dC-induced red pigmentation in bagged fruits of "Granny Smith". The findings provide novel evidence for the involvement of DNA methylation in the red pigmentation of non-red-skinned apples.
Collapse
|
25
|
Fan S, Wang J, Lei C, Gao C, Yang Y, Li Y, An N, Zhang D, Han M. Identification and characterization of histone modification gene family reveal their critical responses to flower induction in apple. BMC PLANT BIOLOGY 2018; 18:173. [PMID: 30126363 DOI: 10.1186/s12870-018-1388-1380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/14/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND Histone methylation and acetylation regulate biological processes in plants through various histone modifications (HMs) gene families. However, knowledge of HMs genes is limited in horticultural deciduous trees, including apple (Malus domestica). RESULTS Here, a comprehensive study of identifying and investigating HMs genes was performed using the recently published apple genome. In total, 198 MdHMs were identified, including 71 histone methyltransferases, 44 histone demethylases, 57 histone acetylases, and 26 histone deacetylases. Detailed analysis of the MdHMs, including chromosomes locations, gene structures, protein motif and protein-protein interactions were performed, and their orthologous genes were also predicted against nine plant species. Meanwhile, a syntenic analysis revealed that tandem, segmental, and whole genome duplications were involved in the evolution and expansion of the MdHMs gene family. Most MdHMs underwent purifying selection. The expression profiles of 198 MdHMs were investigated in response to 6-BA treatment and different flowering varieties (easy-flowering 'Yanfu No.6' and difficult-flowering 'Nagafu No.2') using transcriptome sequencing data, and most MdHMs were involved in flower induction processes. Subsequent quantitative real-time PCR was then performed to confirm the expression levels of candidate MdHMs under different flowering-related circumstances. CONCLUSION MdHMs were involved in, and responsive to, flower induction in apple. This study established an MdHMs platform that provided valuable information and presented enriched biological theories on flower induction in apple. The data could also be used to study the evolutionary history and functional prospects of MdHMs genes, as well as other trees.
Collapse
Affiliation(s)
- Sheng Fan
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jue Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chao Lei
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Cai Gao
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yang Yang
- Innovation Experimental College, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Youmei Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Na An
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Dong Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
26
|
Fan S, Wang J, Lei C, Gao C, Yang Y, Li Y, An N, Zhang D, Han M. Identification and characterization of histone modification gene family reveal their critical responses to flower induction in apple. BMC PLANT BIOLOGY 2018; 18:173. [PMID: 30126363 PMCID: PMC6102887 DOI: 10.1186/s12870-018-1388-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/14/2018] [Indexed: 05/17/2023]
Abstract
BACKGROUND Histone methylation and acetylation regulate biological processes in plants through various histone modifications (HMs) gene families. However, knowledge of HMs genes is limited in horticultural deciduous trees, including apple (Malus domestica). RESULTS Here, a comprehensive study of identifying and investigating HMs genes was performed using the recently published apple genome. In total, 198 MdHMs were identified, including 71 histone methyltransferases, 44 histone demethylases, 57 histone acetylases, and 26 histone deacetylases. Detailed analysis of the MdHMs, including chromosomes locations, gene structures, protein motif and protein-protein interactions were performed, and their orthologous genes were also predicted against nine plant species. Meanwhile, a syntenic analysis revealed that tandem, segmental, and whole genome duplications were involved in the evolution and expansion of the MdHMs gene family. Most MdHMs underwent purifying selection. The expression profiles of 198 MdHMs were investigated in response to 6-BA treatment and different flowering varieties (easy-flowering 'Yanfu No.6' and difficult-flowering 'Nagafu No.2') using transcriptome sequencing data, and most MdHMs were involved in flower induction processes. Subsequent quantitative real-time PCR was then performed to confirm the expression levels of candidate MdHMs under different flowering-related circumstances. CONCLUSION MdHMs were involved in, and responsive to, flower induction in apple. This study established an MdHMs platform that provided valuable information and presented enriched biological theories on flower induction in apple. The data could also be used to study the evolutionary history and functional prospects of MdHMs genes, as well as other trees.
Collapse
Affiliation(s)
- Sheng Fan
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jue Wang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chao Lei
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Cai Gao
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yang Yang
- Innovation Experimental College, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Youmei Li
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Na An
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Dong Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|