1
|
Dong R, Zhou X, Zhang H, Shi B, Liu G, Liu Y. Novel FLNC variants in pediatric cardiomyopathy: an insight into disease mechanisms. Hum Genomics 2024; 18:118. [PMID: 39472949 PMCID: PMC11520881 DOI: 10.1186/s40246-024-00683-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/11/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND FLNC gene variants have predominantly been reported in adult populations with cardiomyopathies, and early-onset cases are less common. The genotype-phenotype relationship indicates that dilated cardiomyopathy (DCM) is often associated with FLNC truncating variants. METHODS We conducted a comprehensive genetic analysis using next generation sequencing (NGS) to identify FLNC variants in patients with cardiovascular conditions. Detailed phenotypic and variant analyses were performed to characterize the clinical features and genetic alterations. Minigene assays and structural modeling were used to investigate the pathogenicity caused by the identified variants. RESULTS In a cohort of 58 patients, novel heterozygous FLNC variants, c.3962A > T (p.Glu1321Val) and c.7543C > T (p.Leu2515Phe), were identified in patients presenting with dilated and mixed restrictive/hypertrophic cardiomyopathies, respectively. The c.3962A > T variant disrupted normal splicing, as demonstrated through the splicing prediction tool and minigene studies, further emphasizing its pathogenic potential. CONCLUSION For missense variants of FLNC in patients with DCM, the splicing effect of the variant should be carefully checked. Early detection and intervention are crucial given the high risk of sudden cardiac death and severe cardiac complications.
Collapse
Affiliation(s)
- Rui Dong
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, China
| | - Xin Zhou
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, China
- Cardiovascular department, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China
| | - Haiyan Zhang
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China
- Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, China
| | - Bingyi Shi
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China.
- Cardiovascular department, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China.
| | - Guohua Liu
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China.
- Department of Pediatrics, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital, Jinan), Jinan, China.
| | - Yi Liu
- Pediatric Research Institute, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China.
- Cardiovascular department, Children's Hospital Affiliated to Shandong University (Jinan Children's Hospital), Jinan, China.
| |
Collapse
|
2
|
Gasperetti A, Carrick RT, Protonotarios A, Murray B, Laredo M, van der Schaaf I, Lekanne RH, Syrris P, Cannie D, Tichnell C, Cappelletto C, Gigli M, Medo K, Saguner AM, Duru F, Gilotra NA, Zimmerman S, Hylind R, Abrams DJ, Lakdawala NK, Cadrin-Tourigny J, Targetti M, Olivotto I, Graziosi M, Cox M, Biagini E, Charron P, Casella M, Tondo C, Yazdani M, Ware JS, Prasad SK, Calò L, Smith ED, Helms AS, Hespe S, Ingles J, Tandri H, Ader F, Peretto G, Peters S, Horton A, Yao J, Dittmann S, Schulze-Bahr E, Qureshi M, Young K, Carruth ED, Haggerty C, Parikh VN, Taylor M, Mestroni L, Wilde A, Sinagra G, Merlo M, Gandjbakhch E, van Tintelen JP, Te Riele ASJM, Elliott PM, Calkins H, James CA. Clinical features and outcomes in carriers of pathogenic desmoplakin variants. Eur Heart J 2024:ehae571. [PMID: 39288222 DOI: 10.1093/eurheartj/ehae571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/16/2024] [Accepted: 08/17/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND AND AIMS Pathogenic variants in the desmoplakin (DSP) gene are associated with the development of a distinct arrhythmogenic cardiomyopathy phenotype not fully captured by either dilated cardiomyopathy (DCM), non-dilated left ventricular cardiomyopathy (NDLVC), or arrhythmogenic right ventricular cardiomyopathy (ARVC). Prior studies have described baseline DSP cardiomyopathy genetic, inflammatory, and structural characteristics. However, cohort sizes have limited full clinical characterization and identification of clinical and demographic predictors of sustained ventricular arrhythmias (VAs), heart failure (HF) hospitalizations, and transplant/death. In particular, the relevance of acute myocarditis-like episodes for subsequent disease course is largely unknown. METHODS All patients with pathogenic/likely pathogenic (P/LP) DSP variants in the worldwide DSP-ERADOS Network (26 academic institutions across nine countries) were included. The primary outcomes were the development of sustained VA and HF hospitalizations during follow-up. Fine-Gray regressions were used to test association between clinical and instrumental parameters and the development of outcomes. RESULTS Eight hundred patients [40.3 ± 17.5 years, 47.5% probands, left ventricular ejection fraction (LVEF) 49.5 ± 13.9%] were included. Over 3.7 [1.4-7.1] years, 139 (17.4%, 3.9%/year) and 72 (9.0%, 1.8%/year) patients experienced sustained VA and HF episodes, respectively. A total of 32.5% of individuals did not fulfil diagnostic criteria for ARVC, DCM, or NDLVC; their VA incidence was 0.5%/year. In multivariable regression, risk features associated with the development of VA were female sex [adjusted hazard ratio (aHR) 1.547; P = .025], prior non-sustained ventricular tachycardia (aHR 1.721; P = .009), prior sustained VA (aHR 1.923; P = .006), and LVEF ≤ 50% (aHR: 1.645; P = .032), while for HF, they were the presence of T-wave inversion in 3+ electrocardiogram leads (aHR 2.036, P = .007) and LVEF ≤ 50% (aHR 3.879; P < .001). Additionally, 70 (8.8%) patients experienced a myocardial injury episode at presentation or during follow-up. These episodes were associated with an increased risk of VA and HF thereafter (HR 2.394; P < .001, and HR 5.064, P < .001, respectively). CONCLUSIONS Patients with P/LP DSP variants experience high rates of sustained VA and HF hospitalizations. These patients demonstrate a distinct clinical phenotype (DSP cardiomyopathy), whose most prominent risk features associated with adverse clinical outcomes are the presence of prior non-sustained ventricular tachycardia or sustained VA, T-wave inversion in 3+ leads on electrocardiogram, LVEF ≤ 50%, and myocardial injury events.
Collapse
Affiliation(s)
- Alessio Gasperetti
- Division of Cardiology, Department of Medicine, Johns Hopkins University, 601 North Caroline St., Baltimore, MD 21287, USA
- Department of Genetics, University Medical Center Utrecht, University of Utrecht, The Netherlands
- Department of Medicine, Division of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Richard T Carrick
- Division of Cardiology, Department of Medicine, Johns Hopkins University, 601 North Caroline St., Baltimore, MD 21287, USA
| | | | - Brittney Murray
- Division of Cardiology, Department of Medicine, Johns Hopkins University, 601 North Caroline St., Baltimore, MD 21287, USA
| | - Mikael Laredo
- Institut de Cardiologie, Sorbonne Université, AP-HP, IHU-ICAN, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Iris van der Schaaf
- Department of Medicine, Division of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ronald H Lekanne
- Department of Medicine, Division of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | | | - Crystal Tichnell
- Division of Cardiology, Department of Medicine, Johns Hopkins University, 601 North Caroline St., Baltimore, MD 21287, USA
| | - Chiara Cappelletto
- Division of Cardiology, Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina and University of Trieste, Trieste, Italy
| | - Marta Gigli
- Division of Cardiology, Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina and University of Trieste, Trieste, Italy
| | - Kristen Medo
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ardan M Saguner
- Department of Cardiology, Arrhythmia Unit, University Heart Center, University Hospital Zurich, Zurich, Switzerland
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, Zurich University Hospital, University of Zurich, 8952 Schlieren, Switzerland
| | - Firat Duru
- Department of Cardiology, Arrhythmia Unit, University Heart Center, University Hospital Zurich, Zurich, Switzerland
- Center for Translational and Experimental Cardiology (CTEC), Department of Cardiology, Zurich University Hospital, University of Zurich, 8952 Schlieren, Switzerland
| | - Nisha A Gilotra
- Division of Cardiology, Department of Medicine, Johns Hopkins University, 601 North Caroline St., Baltimore, MD 21287, USA
| | - Stefan Zimmerman
- Division of Cardiology, Department of Medicine, Johns Hopkins University, 601 North Caroline St., Baltimore, MD 21287, USA
| | - Robyn Hylind
- Center for Cardiovascular Genetics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dominic J Abrams
- Center for Cardiovascular Genetics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Neal K Lakdawala
- Brigham and Women's Hospital Cardiovascular Medicine, Boston, MA, USA
| | - Julia Cadrin-Tourigny
- Cardiovascular Genetics Center, Montreal Heart Institute, Université de Montréal, Montréal, QC, Canada
| | - Mattia Targetti
- Department of Experimental and Clinical Medicine, University of Florence, Meyer Children Hospital and Careggi University Hospital, Florence, Italy
| | - Iacopo Olivotto
- Department of Experimental and Clinical Medicine, University of Florence, Meyer Children Hospital and Careggi University Hospital, Florence, Italy
| | - Maddalena Graziosi
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Italy
| | - Moniek Cox
- Department of Cardiology, University Medical Centre Groningen, Groningen, The Netherlands
| | - Elena Biagini
- Cardiology Unit, Cardiac Thoracic and Vascular Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart-ERN GUARD-Heart, Italy
| | - Philippe Charron
- Institut de Cardiologie, Sorbonne Université, AP-HP, IHU-ICAN, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Michela Casella
- Department of Clinical, Special and Dental Sciences, Cardiology and Arrhythmology Clinic, University Hospital 'Ospedali Riuniti', Marche Polytechnic University, Ancona, Italy
| | - Claudio Tondo
- Dept. of Clinical Electrophysiology & Cardiac Pacing, Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Dept. of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Momina Yazdani
- National Heart and Lung Institute and MRC London Institute of Medical Sciences, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - James S Ware
- National Heart and Lung Institute and MRC London Institute of Medical Sciences, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Sanjay K Prasad
- National Heart and Lung Institute and MRC London Institute of Medical Sciences, Imperial College London, London, UK
- Royal Brompton & Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Leonardo Calò
- Department of Cardiology, Policlinico Casilino, Rome, Italy
| | - Eric D Smith
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, USA
| | - Adam S Helms
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, USA
| | - Sophie Hespe
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, Australia
| | - Jodie Ingles
- Centre for Population Genomics, Garvan Institute of Medical Research, and UNSW Sydney, Sydney, Australia
| | - Harikrishna Tandri
- Division of Cardiology, Department of Medicine, Johns Hopkins University, 601 North Caroline St., Baltimore, MD 21287, USA
| | - Flavie Ader
- APHP Sorbonne Université, DMU BioGem, UF de cardiogénétique et myogénétique moléculaire et cellulaire, 75013 Paris, France
- Université Paris Cité, UFR de Pharmacie, UP Biochimie, 75006 Paris, France
| | - Giovanni Peretto
- Department of Cardiac Electrophysiology and Arrhythmology, IRCCS San Raffaele Hospital, Milan, Italy
| | - Stacey Peters
- Royal Melbourne Hospital, Melbourne 3050, Victoria, Australia
| | - Ari Horton
- Royal Melbourne Hospital, Melbourne 3050, Victoria, Australia
| | - Jess Yao
- Royal Melbourne Hospital, Melbourne 3050, Victoria, Australia
| | - Sven Dittmann
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases, University Hospital Münster, Münster, Germany
| | - Eric Schulze-Bahr
- Department of Cardiovascular Medicine, Institute for Genetics of Heart Diseases, University Hospital Münster, Münster, Germany
| | | | | | | | - Chris Haggerty
- The Heart Institute, Geisinger, Danville, PA, USA
- Department of Translational Data Science and Informatics, Geisinger, Danville, PA, USA
| | - Victoria N Parikh
- Stanford Center for Inherited Cardiovascular Disease, Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Matthew Taylor
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Luisa Mestroni
- University of Colorado Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Arthur Wilde
- Department of Cardiology, Amsterdam UMC Location University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, Amsterdam, The Netherlands
| | - Gianfranco Sinagra
- Institut de Cardiologie, Sorbonne Université, AP-HP, IHU-ICAN, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Marco Merlo
- Division of Cardiology, Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina and University of Trieste, Trieste, Italy
| | - Estelle Gandjbakhch
- Institut de Cardiologie, Sorbonne Université, AP-HP, IHU-ICAN, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - J Peter van Tintelen
- Department of Genetics, University Medical Center Utrecht, University of Utrecht, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | - Anneline S J M Te Riele
- Department of Medicine, Division of Cardiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Netherlands Heart Institute, Utrecht, The Netherlands
| | | | - Hugh Calkins
- Division of Cardiology, Department of Medicine, Johns Hopkins University, 601 North Caroline St., Baltimore, MD 21287, USA
| | - Cynthia A James
- Division of Cardiology, Department of Medicine, Johns Hopkins University, 601 North Caroline St., Baltimore, MD 21287, USA
| |
Collapse
|
3
|
Graziano F, Zorzi A, Ungaro S, Bauce B, Rigato I, Cipriani A, Perazzolo Marra M, Pilichou K, Basso C, Corrado D. The 2023 European Task Force Criteria for Diagnosis of Arrhythmogenic Cardiomyopathy: Historical Background and Review of Main Changes. Rev Cardiovasc Med 2024; 25:348. [PMID: 39355594 PMCID: PMC11440389 DOI: 10.31083/j.rcm2509348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 10/03/2024] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a cardiac disease featured by non-ischemic myocardial scarring linked to ventricular electrical instability. As there is no single gold-standard test, diagnosing ACM remains challenging and a combination of specific criteria is needed. The diagnostic criteria were first defined and widespread in 1994 and then revised in 2010, approaching and focusing primarily on right ventricular involvement without considering any kind of left ventricular variant or phenotype. Years later, in 2020, with the purpose of overcoming previous limitations, the Padua Criteria were introduced by an international expert report. The main novel elements were the introduction of specific criteria for left ventricular variants as well as the use of cardiac magnetic resonance for tissue characterization and scar detection. The last modifications and refinement of these criteria were published at the end of 2023 as the European Task Force criteria, by a "head-quarter" of ACM international experts, proving the emerging relevance of this condition besides its difficult diagnosis. In this review, emphasizing the progress in understanding the aetiology of the cardiomyopathy, an analysis of the new criteria is presented. The introduction of the term "scarring/arrhythmogenic cardiomyopathy" sets an important milestone in this field, underlying how non-ischemic myocardial scarring-typical of ACM-and arrhythmic susceptibility could be the main pillars of numerous different phenotypic variants regardless of etiology.
Collapse
Affiliation(s)
- Francesca Graziano
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
- Department of Sports Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - Alessandro Zorzi
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Simone Ungaro
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Barbara Bauce
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Ilaria Rigato
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Alberto Cipriani
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Martina Perazzolo Marra
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Kalliopi Pilichou
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Cristina Basso
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Domenico Corrado
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| |
Collapse
|
4
|
Mehdizadeh K, Soveizi M, Askarinejad A, Elahifar A, Masoumi T, Fazelifar AF, Asadian S, Maleki M, Kalayinia S. Combination of FLNC and JUP variants causing arrhythmogenic cardiomyopathy in an Iranian family with different clinical features. BMC Cardiovasc Disord 2024; 24:442. [PMID: 39180012 PMCID: PMC11342628 DOI: 10.1186/s12872-024-04126-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Arrhythmogenic cardiomyopathy (ACM) characterized by progressive myocardial loss and replacement with fibro-fatty tissue is a major cause of sudden cardiac death (SCD). In particular, ACM with predominantly left ventricular involvement, known as arrhythmogenic left ventricular cardiomyopathy (ALVC), has a poor prognosis. METHODS The proband underwent whole-exome sequencing (WES) to determine the etiology of ALVC. Family members were then analyzed using PCR and Sanger sequencing. Clinical evaluations including 12-lead ECG, transthoracic echocardiography, and cardiac MRI were performed for all available first-degree relatives. RESULTS WES identified two variants in the FLNC (c.G3694A) and JUP (c.G1372A) genes, the combination of which results in ALVC and SCD. CONCLUSION The present study comprehensively investigates the involvement of two discovered variants of FLNC and JUP in the pathogenesis of ALVC. More study is necessary to elucidate the genetic factors involved in the etiology of ALVC.
Collapse
Affiliation(s)
- Kasra Mehdizadeh
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdieh Soveizi
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Askarinejad
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amin Elahifar
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Tannaz Masoumi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Farjam Fazelifar
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sanaz Asadian
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Maleki
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Kalayinia
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Popa OA, Amzulescu M, Bugeac C, Tomescu L, Slavu IM, Gheorghita V, Andrei R, Tulin A. Cardiovascular Magnetic Resonance Imaging in Myocardial Disease. Cureus 2024; 16:e58688. [PMID: 38774162 PMCID: PMC11107957 DOI: 10.7759/cureus.58688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2024] [Indexed: 05/24/2024] Open
Abstract
Cardiovascular magnetic resonance (CMR) is the central non-invasive imaging investigation for the evaluation of myocardial disease. It is the well-established gold standard for measuring cardiac chamber volumes, systolic function, and left ventricular mass, and it brings unique information for therapeutic decisions. In addition, its tissue characterization capability, through T1, T2, and T2* mapping, as well as early and late gadolinium enhancement (LGE) sequences, allows to differentiate in many cases among ischemic, inflammatory, and infiltrative heart disease and permits the quantification of myocardial fibrosis, providing valuable diagnostic and prognostic information. This review aims to highlight the main CMR features of different cardiomyopathies.
Collapse
Affiliation(s)
- Oana-Andreea Popa
- Cardiology, Agrippa Ionescu Emergency Clinical Hospital, Bucharest, ROU
| | - Mihaela Amzulescu
- Cardiology, Centre Hospitalier Universitaire (CHU) Saint Pierre, Bruxelles, BEL
| | - Claudia Bugeac
- Radiology, Agrippa Ionescu Emergency Clinical Hospital, Bucharest, ROU
| | - Luminita Tomescu
- Radiology, Agrippa Ionescu Emergency Clinical Hospital, Bucharest, ROU
| | - Iulian M Slavu
- Anatomy, Carol Davila University of Medicine and Pharmacy, Bucharest, ROU
| | - Valeriu Gheorghita
- Infectious Disease, Agrippa Ionescu Emergency Clinical Hospital, Bucharest, ROU
| | - Rosu Andrei
- Cardiology, Agrippa Ionescu Emergency Clinical Hospital, Bucharest, ROU
| | - Adrian Tulin
- Clinic of General Surgery, Agrippa Ionescu Emergency Clinical Hospital, Bucharest, ROU
| |
Collapse
|
6
|
Antonopoulos AS, Xintarakou A, Protonotarios A, Lazaros G, Miliou A, Tsioufis K, Vlachopoulos C. Imagenetics for Precision Medicine in Dilated Cardiomyopathy. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004301. [PMID: 38415367 DOI: 10.1161/circgen.123.004301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Dilated cardiomyopathy (DCM) is a common heart muscle disorder of nonischemic etiology associated with heart failure development and the risk of malignant ventricular arrhythmias and sudden cardiac death. A tailored approach to risk stratification and prevention of sudden cardiac death is required in genetic DCM given its variable presentation and phenotypic severity. Currently, advances in cardiogenetics have shed light on disease mechanisms, the complex genetic architecture of DCM, polygenic contributors to disease susceptibility and the role of environmental triggers. Parallel advances in imaging have also enhanced disease recognition and the identification of the wide spectrum of phenotypes falling under the DCM umbrella. Genotype-phenotype associations have been also established for specific subtypes of DCM, such as DSP (desmoplakin) or FLNC (filamin-C) cardiomyopathy but overall, they remain elusive and not readily identifiable. Also, despite the accumulated knowledge on disease mechanisms, certain aspects remain still unclear, such as which patients with DCM are at risk for disease progression or remission after treatment. Imagenetics, that is, the combination of imaging and genetics, is expected to further advance research in the field and contribute to precision medicine in DCM management and treatment. In the present article, we review the existing literature in the field, summarize the established knowledge and emerging data on the value of genetics and imaging in establishing genotype-phenotype associations in DCM and in clinical decision making for DCM patients.
Collapse
Affiliation(s)
- Alexios S Antonopoulos
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, Greece (A.S.A., A.X., G.L., A.M., K.T., C.V.)
| | - Anastasia Xintarakou
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, Greece (A.S.A., A.X., G.L., A.M., K.T., C.V.)
| | - Alexandros Protonotarios
- Institute of Cardiovascular Science, University College London, United Kingdom (A.P.)
- Inherited Cardiovascular Disease Unit, St Bartholomew's Hospital, London, United Kingdom (A.P.)
| | - George Lazaros
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, Greece (A.S.A., A.X., G.L., A.M., K.T., C.V.)
| | - Antigoni Miliou
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, Greece (A.S.A., A.X., G.L., A.M., K.T., C.V.)
| | - Konstantinos Tsioufis
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, Greece (A.S.A., A.X., G.L., A.M., K.T., C.V.)
| | - Charalambos Vlachopoulos
- 1st Cardiology Department, Hippokration Hospital, National and Kapodistrian University of Athens, Greece (A.S.A., A.X., G.L., A.M., K.T., C.V.)
| |
Collapse
|
7
|
de Souza Balbueno MC, Martins JA, Malaga SK, Forato J, de Paula Coelho C. Dilated cardiomyopathy phenotype in Callithrix penicillata (E. Geoffroy, 1812): Case report. J Med Primatol 2024; 53:e12678. [PMID: 37747073 DOI: 10.1111/jmp.12678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/27/2023] [Accepted: 09/14/2023] [Indexed: 09/26/2023]
Abstract
Dilated cardiomyopathy (DCM) is a disease of the heart muscle diagnosed by alterations resulting from ventricular systolic dysfunction with enlargement of the heart chambers, which is still underdiagnosed in non-human primates. This report is the first case of the DCM phenotype diagnosed by echocardiography and confirmed by necropsy in Callithrix penicillata.
Collapse
|
8
|
Gregorich ZR, Yanghai Z, Kamp TJ, Granzier H, Guo W. Mechanisms of RBM20 Cardiomyopathy: Insights From Model Systems. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004355. [PMID: 38288598 PMCID: PMC10923161 DOI: 10.1161/circgen.123.004355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
RBM20 (RNA-binding motif protein 20) is a vertebrate- and muscle-specific RNA-binding protein that belongs to the serine-arginine-rich family of splicing factors. The RBM20 gene was first identified as a dilated cardiomyopathy-linked gene over a decade ago. Early studies in Rbm20 knockout rodents implicated disrupted splicing of RBM20 target genes as a causative mechanism. Clinical studies show that pathogenic variants in RBM20 are linked to aggressive dilated cardiomyopathy with early onset heart failure and high mortality. Subsequent studies employing pathogenic variant knock-in animal models revealed that variants in a specific portion of the arginine-serine-rich domain in RBM20 not only disrupt splicing but also hinder nucleocytoplasmic transport and lead to the formation of RBM20 biomolecular condensates in the sarcoplasm. Conversely, mice harboring a disease-associated variant in the RRM (RNA recognition motif) do not show evidence of adverse remodeling or exhibit sudden death despite disrupted splicing of RBM20 target genes. Thus, whether disrupted splicing, biomolecular condensates, or both contribute to dilated cardiomyopathy is under debate. Beyond this, additional questions remain, such as whether there is sexual dimorphism in the presentation of RBM20 cardiomyopathy. What are the clinical features of RBM20 cardiomyopathy and why do some individuals develop more severe disease than others? In this review, we summarize the reported observations and discuss potential mechanisms of RBM20 cardiomyopathy derived from studies employing in vivo animal models and in vitro human-induced pluripotent stem cell-derived cardiomyocytes. Potential therapeutic strategies to treat RBM20 cardiomyopathy are also discussed.
Collapse
Affiliation(s)
- Zachery R. Gregorich
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI
| | - Zhang Yanghai
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI
| | - Timothy J. Kamp
- Cellular and Molecular Arrhythmia Research Program, University of Wisconsin-Madison, Madison, WI
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
- Cardiovascular Research Center, University of Wisconsin-Madison, Madison, WI
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Wei Guo
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI
- Cardiovascular Research Center, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
9
|
Tadros HJ, Miyake CY, Kearney DL, Kim JJ, Denfield SW. The Many Faces of Arrhythmogenic Cardiomyopathy: An Overview. Appl Clin Genet 2023; 16:181-203. [PMID: 37933265 PMCID: PMC10625769 DOI: 10.2147/tacg.s383446] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/10/2023] [Indexed: 11/08/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (AC) is a disease that involves electromechanical uncoupling of cardiomyocytes. This leads to characteristic histologic changes that ultimately lead to the arrhythmogenic clinical features of the disease. Initially thought to affect the right ventricle predominantly, more recent data show that it can affect both the ventricles or the left ventricle alone. Throughout the recent era, diagnostic modalities and criteria for AC have continued to evolve and our understanding of its clinical features in different age groups as well as the genotype to the phenotype correlations have improved. In this review, we set out to detail the epidemiology, etiologies, presentations, evaluation, and management of AC across the age continuum.
Collapse
Affiliation(s)
- Hanna J Tadros
- Department of Pediatrics, Section of Pediatric Cardiology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Christina Y Miyake
- Department of Pediatrics, Section of Pediatric Cardiology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Debra L Kearney
- Department of Pathology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey J Kim
- Department of Pediatrics, Section of Pediatric Cardiology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX, USA
| | - Susan W Denfield
- Department of Pediatrics, Division of Pediatric Cardiology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
10
|
Inoue S, Morita H. Characteristic Imaging Phenotype of Arrhythmogenic Cardiomyopathy With Filamin C Gene Variant. Circ J 2023; 87:1404-1405. [PMID: 37673657 DOI: 10.1253/circj.cj-23-0616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Affiliation(s)
- Shunsuke Inoue
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| | - Hiroyuki Morita
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo
| |
Collapse
|
11
|
Yoshimura F, Oda S, Kidoh M, Hayashi H, Yonemura M, Miyazaki S, Takashio S, Kuramoto Y, Asano Y, Tsujita K, Hirai T. Cardiac Magnetic Resonance Imaging Findings in Filamin C Variant-Associated Arrhythmogenic Left Ventricular Cardiomyopathy. Circ J 2023; 87:1403. [PMID: 37635079 DOI: 10.1253/circj.cj-23-0480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Affiliation(s)
- Fumihiro Yoshimura
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University
| | - Seitaro Oda
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University
| | - Masafumi Kidoh
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University
| | - Hidetaka Hayashi
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University
| | - Mari Yonemura
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University
| | - Shuhei Miyazaki
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University
| | - Seiji Takashio
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University
| | - Yuki Kuramoto
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
| | - Yoshihiro Asano
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine
- Department of Genomic Medicine, National Cerebral and Cardiovascular Center
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine, Faculty of Life Sciences, Kumamoto University
| | - Toshinori Hirai
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University
| |
Collapse
|
12
|
Silvetti E, Lanza O, Romeo F, Martino A, Fedele E, Lanzillo C, Crescenzi C, Fanisio F, Calò L. The pivotal role of ECG in cardiomyopathies. Front Cardiovasc Med 2023; 10:1178163. [PMID: 37404739 PMCID: PMC10315483 DOI: 10.3389/fcvm.2023.1178163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/15/2023] [Indexed: 07/06/2023] Open
Abstract
Cardiomyopathies are a heterogeneous group of pathologies characterized by structural and functional alterations of the heart. Recent technological advances in cardiovascular imaging offer an opportunity for deep phenotypic and etiological definition. Electrocardiogram (ECG) is the first-line diagnostic tool in the evaluation of both asymptomatic and symptomatic individuals. Some electrocardiographic signs are pathognomonic or fall within validated diagnostic criteria of individual cardiomyopathy such as the inverted T waves in right precordial leads (V1-V3) or beyond in individuals with complete pubertal development in the absence of complete right bundle branch block for the diagnosis of arrhythmogenic cardiomyopathy of the right ventricle (ARVC) or the presence of low voltages typically seen in more than 60% of patients with amyloidosis. Most other electrocardiographic findings such as the presence of depolarization changes including QRS fragmentation, the presence of epsilon wave, the presence of reduced or increased voltages as well as alterations in the repolarization phase including the negative T waves in the lateral leads, or the profound inversion of the T waves or downsloping of the ST tract are more non-specific signs which can however raise the clinical suspicion of cardiomyopathy in order to initiate a diagnostic procedure especially using imaging techniques for diagnostic confirmation. Such electrocardiographic alterations not only have a counterpart in imaging investigations such as evidence of late gadolinium enhancement on magnetic resonance imaging, but may also have an important prognostic value once a definite diagnosis has been made. In addition, the presence of electrical stimulus conduction disturbances or advanced atrioventricular blocks that can be seen especially in conditions such as cardiac amyloidosis or sarcoidosis, or the presence of left bundle branch block or posterior fascicular block in dilated or arrhythmogenic left ventricular cardiomyopathies are recognized as a possible expression of advanced pathology. Similarly, the presence of ventricular arrhythmias with typical patterns such as non-sustained or sustained ventricular tachycardia of LBBB morphology in ARVC or non-sustained or sustained ventricular tachycardia with an RBBB morphology (excluding the "fascicular pattern") in arrhythmogenic left ventricle cardiomyopathy could have a significant impact on the course of each disease. It is therefore clear that a learned and careful interpretation of ECG features can raise suspicion of the presence of a cardiomyopathy, identify diagnostic "red flags" useful for orienting the diagnosis toward specific forms, and provide useful tools for risk stratification. The purpose of this review is to emphasize the important role of the ECG in the diagnostic workup, describing the main ECG findings of different cardiomyopathies.
Collapse
|
13
|
Castiglione V, Aimo A, Todiere G, Barison A, Fabiani I, Panichella G, Genovesi D, Bonino L, Clemente A, Cademartiri F, Giannoni A, Passino C, Emdin M, Vergaro G. Role of Imaging in Cardiomyopathies. Card Fail Rev 2023; 9:e08. [PMID: 37427006 PMCID: PMC10326670 DOI: 10.15420/cfr.2022.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/07/2022] [Indexed: 07/11/2023] Open
Abstract
Imaging has a central role in the diagnosis, classification, and clinical management of cardiomyopathies. While echocardiography is the first-line technique, given its wide availability and safety, advanced imaging, including cardiovascular magnetic resonance (CMR), nuclear medicine and CT, is increasingly needed to refine the diagnosis or guide therapeutic decision-making. In selected cases, such as in transthyretin-related cardiac amyloidosis or in arrhythmogenic cardiomyopathy, the demonstration of histological features of the disease can be avoided when typical findings are observed at bone-tracer scintigraphy or CMR, respectively. Findings from imaging techniques should always be integrated with data from the clinical, electrocardiographic, biomarker, genetic and functional evaluation to pursue an individualised approach to patients with cardiomyopathy.
Collapse
Affiliation(s)
- Vincenzo Castiglione
- Cardiothoracic Department, Fondazione Toscana Gabriele MonasterioPisa, Italy
- Health Science Interdisciplinary Center, Scuola Superiore Sant’AnnaPisa, Italy
| | - Alberto Aimo
- Cardiothoracic Department, Fondazione Toscana Gabriele MonasterioPisa, Italy
- Health Science Interdisciplinary Center, Scuola Superiore Sant’AnnaPisa, Italy
| | - Giancarlo Todiere
- Cardiothoracic Department, Fondazione Toscana Gabriele MonasterioPisa, Italy
| | - Andrea Barison
- Cardiothoracic Department, Fondazione Toscana Gabriele MonasterioPisa, Italy
- Health Science Interdisciplinary Center, Scuola Superiore Sant’AnnaPisa, Italy
| | - Iacopo Fabiani
- Cardiothoracic Department, Fondazione Toscana Gabriele MonasterioPisa, Italy
| | - Giorgia Panichella
- Cardiothoracic Department, Fondazione Toscana Gabriele MonasterioPisa, Italy
| | - Dario Genovesi
- Cardiothoracic Department, Fondazione Toscana Gabriele MonasterioPisa, Italy
| | - Lucrezia Bonino
- Cardiothoracic Department, Fondazione Toscana Gabriele MonasterioPisa, Italy
| | - Alberto Clemente
- Cardiothoracic Department, Fondazione Toscana Gabriele MonasterioPisa, Italy
| | - Filippo Cademartiri
- Cardiothoracic Department, Fondazione Toscana Gabriele MonasterioPisa, Italy
| | - Alberto Giannoni
- Cardiothoracic Department, Fondazione Toscana Gabriele MonasterioPisa, Italy
- Health Science Interdisciplinary Center, Scuola Superiore Sant’AnnaPisa, Italy
| | - Claudio Passino
- Cardiothoracic Department, Fondazione Toscana Gabriele MonasterioPisa, Italy
- Health Science Interdisciplinary Center, Scuola Superiore Sant’AnnaPisa, Italy
| | - Michele Emdin
- Cardiothoracic Department, Fondazione Toscana Gabriele MonasterioPisa, Italy
- Health Science Interdisciplinary Center, Scuola Superiore Sant’AnnaPisa, Italy
| | - Giuseppe Vergaro
- Cardiothoracic Department, Fondazione Toscana Gabriele MonasterioPisa, Italy
- Health Science Interdisciplinary Center, Scuola Superiore Sant’AnnaPisa, Italy
| |
Collapse
|
14
|
Heliö K, Brandt E, Vaara S, Weckström S, Harjama L, Kandolin R, Järviö J, Hannula-Jouppi K, Heliö T, Holmström M, Koskenvuo JW. DSP c.6310delA p.(Thr2104Glnfs*12) associates with arrhythmogenic cardiomyopathy, increased trabeculation, curly hair, and palmoplantar keratoderma. Front Cardiovasc Med 2023; 10:1130903. [PMID: 37008330 PMCID: PMC10050721 DOI: 10.3389/fcvm.2023.1130903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/20/2023] [Indexed: 03/17/2023] Open
Abstract
BackgroundPathogenic variants in DSP associate with cardiac and cutaneous manifestations including arrhythmogenic right ventricular cardiomyopathy, dilated cardiomyopathy, curly or wavy hair, and palmoplantar keratoderma (PPK). Episodes of myocardial inflammation associated with DSP cardiomyopathy might be confused in clinical work with myocarditis of other etiologies such as viral. Cardiac magnetic resonance imaging (CMR) may help in differential diagnosis.Methods and resultsThis study comprised 49 Finnish patients: 34 participants from families with suspected DSP cardiomyopathy (9 index patients and 25 family members) and 15 patients with myocarditis. All 34 participants underwent genetic testing and cardiac evaluation, and 29 of them also underwent CMR. Participants with the DSP variant, numbering 22, were dermatologically examined. The 15 patients with myocarditis underwent CMR and were evaluated during their hospitalization.A heterozygous truncating DSP c.6310delA p.(Thr2104Glnfs*12) variant was confirmed in 29 participants. Only participants with the DSP variant had pacemakers and life-threatening ventricular arrhythmias. Of the participants with the DSP variant, 24% fulfilled cardiomyopathy criteria, and the median age at diagnosis was 53. Upon CMR, myocardial edema was found to be more common in patients with myocarditis. Both groups had a substantial percentage of late gadolinium enhancement (LGE). A ring-like LGE and increased trabeculation were observed only in participants with the DSP variant. All the studied participants with the DSP variant had PPK and curly or wavy hair. Hyperkeratosis developed before the age of 20 in most patients.ConclusionsThe DSP c.6310delA p.(Thr2104Glnfs*12) variant associates with curly hair, PPK, and arrhythmogenic cardiomyopathy with increased trabeculation. Cutaneous symptoms developing in childhood and adolescence might help recognize these patients at an earlier stage. CMR, together with dermatologic characteristics, may help in diagnosis.
Collapse
Affiliation(s)
- Krista Heliö
- Heart and Lung Center, ERN GUARD-Heart Center, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Eveliina Brandt
- Department of Dermatology and Allergology, ERN-Skin Center, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Satu Vaara
- Radiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Sini Weckström
- Heart and Lung Center, ERN GUARD-Heart Center, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Liisa Harjama
- Department of Dermatology and Allergology, ERN-Skin Center, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Riina Kandolin
- Heart and Lung Center, ERN GUARD-Heart Center, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Johanna Järviö
- Radiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Katariina Hannula-Jouppi
- Department of Dermatology and Allergology, ERN-Skin Center, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland and Research Programs Unit, Stem Cells and Metabolism Research Program, University of Helsinki, Helsinki, Finland
| | - Tiina Heliö
- Heart and Lung Center, ERN GUARD-Heart Center, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Miia Holmström
- Radiology, HUS Diagnostic Center, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Juha W. Koskenvuo
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| |
Collapse
|
15
|
Noureddine M, Gehmlich K. Structural and signaling proteins in the Z-disk and their role in cardiomyopathies. Front Physiol 2023; 14:1143858. [PMID: 36935760 PMCID: PMC10017460 DOI: 10.3389/fphys.2023.1143858] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
The sarcomere is the smallest functional unit of muscle contraction. It is delineated by a protein-rich structure known as the Z-disk, alternating with M-bands. The Z-disk anchors the actin-rich thin filaments and plays a crucial role in maintaining the mechanical stability of the cardiac muscle. A multitude of proteins interact with each other at the Z-disk and they regulate the mechanical properties of the thin filaments. Over the past 2 decades, the role of the Z-disk in cardiac muscle contraction has been assessed widely, however, the impact of genetic variants in Z-disk proteins has still not been fully elucidated. This review discusses the various Z-disk proteins (alpha-actinin, filamin C, titin, muscle LIM protein, telethonin, myopalladin, nebulette, and nexilin) and Z-disk-associated proteins (desmin, and obscurin) and their role in cardiac structural stability and intracellular signaling. This review further explores how genetic variants of Z-disk proteins are linked to inherited cardiac conditions termed cardiomyopathies.
Collapse
Affiliation(s)
- Maya Noureddine
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Katja Gehmlich
- Institute of Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Cardiovascular Medicine, Radcliffe Department of Medicine and British Heart Foundation Centre of Research Excellence Oxford, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
16
|
Merlo M, Gagno G, Baritussio A, Bauce B, Biagini E, Canepa M, Cipriani A, Castelletti S, Dellegrottaglie S, Guaricci AI, Imazio M, Limongelli G, Musumeci MB, Parisi V, Pica S, Pontone G, Todiere G, Torlasco C, Basso C, Sinagra G, Filardi PP, Indolfi C, Autore C, Barison A. Clinical application of CMR in cardiomyopathies: evolving concepts and techniques : A position paper of myocardial and pericardial diseases and cardiac magnetic resonance working groups of Italian society of cardiology. Heart Fail Rev 2023; 28:77-95. [PMID: 35536402 PMCID: PMC9902331 DOI: 10.1007/s10741-022-10235-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
Cardiac magnetic resonance (CMR) has become an essential tool for the evaluation of patients affected or at risk of developing cardiomyopathies (CMPs). In fact, CMR not only provides precise data on cardiac volumes, wall thickness, mass and systolic function but it also a non-invasive characterization of myocardial tissue, thus helping the early diagnosis and the precise phenotyping of the different CMPs, which is essential for early and individualized treatment of patients. Furthermore, several CMR characteristics, such as the presence of extensive LGE or abnormal mapping values, are emerging as prognostic markers, therefore helping to define patients' risk. Lastly new experimental CMR techniques are under investigation and might contribute to widen our knowledge in the field of CMPs. In this perspective, CMR appears an essential tool to be systematically applied in the diagnostic and prognostic work-up of CMPs in clinical practice. This review provides a deep overview of clinical applicability of standard and emerging CMR techniques in the management of CMPs.
Collapse
Affiliation(s)
- Marco Merlo
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy
| | - Giulia Gagno
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy
| | - Anna Baritussio
- Cardiology, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Barbara Bauce
- Cardiology, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Elena Biagini
- Cardiology Unit, St. Orsola Hospital, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, 40138 Bologna, Italy
| | - Marco Canepa
- Cardiologia, IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Dipartimento di Medicina Interna e Specialità Mediche, Università degli Studi di Genova, Genova, Italy
| | - Alberto Cipriani
- Cardiology, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Silvia Castelletti
- Department of Cardiology, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Santo Dellegrottaglie
- Division of Cardiology, Ospedale Accreditato Villa dei Fiori, 80011 Acerra, Naples, Italy
| | - Andrea Igoren Guaricci
- University Cardiology Unit, Department of Emergency and Organ Transplantation, University of Bari, 70124 Bari, Italy
| | - Massimo Imazio
- Cardiothoracic Department, University Hospital “Santa Maria Della Misericordia”, Udine, Italy
| | - Giuseppe Limongelli
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, AORN Dei Colli, Monaldi Hospital, Naples, Italy
| | - Maria Beatrice Musumeci
- Cardiology, Clinical and Molecular Medicine Department, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | - Vanda Parisi
- Cardiology Unit, St. Orsola Hospital, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, 40138 Bologna, Italy
| | - Silvia Pica
- Multimodality Cardiac Imaging Section, IRCCS Policlinico San Donato, Milan, Italy
| | - Gianluca Pontone
- Dipartimento di Cardiologia Perioperatoria e Imaging Cardiovascolare, Centro Cardiologico Monzino IRCCS, Milan, Italy
| | | | - Camilla Torlasco
- Department of Cardiology, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Cristina Basso
- Cardiology, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Padova, Italy
| | - Gianfranco Sinagra
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy
| | - Pasquale Perrone Filardi
- Dipartimento Scienze Biomediche Avanzate, Università degli Studi Federico II, Mediterranea CardioCentro, Naples, Italy
| | - Ciro Indolfi
- Dipartimento di Scienze Mediche e Chirurgiche, Cattedra di Cardiologia, Università Magna Graecia, Catanzaro, Mediterranea Cardiocentro, Napoli, Italy
| | - Camillo Autore
- Cardiology, Clinical and Molecular Medicine Department, Faculty of Medicine and Psychology, Sapienza University of Rome, 00189 Rome, Italy
| | | |
Collapse
|
17
|
Bariani R, Bueno Marinas M, Rigato I, Veronese P, Celeghin R, Cipriani A, Cason M, Pergola V, Mattesi G, Deola P, Zorzi A, Limongelli G, Iliceto S, Corrado D, Basso C, Pilichou K, Bauce B. Pregnancy in Women with Arrhythmogenic Left Ventricular Cardiomyopathy. J Clin Med 2022; 11:jcm11226735. [PMID: 36431211 PMCID: PMC9698035 DOI: 10.3390/jcm11226735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 10/26/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND In the last few years, a phenotypic variant of arrhythmogenic cardiomyopathy (ACM) labeled arrhythmogenic left ventricular cardiomyopathy (ALVC) has been defined and researched. This type of cardiomyopathy is characterized by a predominant left ventricular (LV) involvement with no or minor right ventricular (RV) abnormalities. Data on the specific risk and management of pregnancy in women affected by ALVC are, thus far, not available. We have sought to characterize pregnancy course and outcomes in women affected by ALVC through the evaluation of a series of childbearing patients. METHODS A series of consecutive female ALVC patients were analyzed in a cross-sectional, retrospective study. Study protocol included 12-lead ECG assessments, 24-h Holter ECG evaluations, 2D-echocardiogram tests, cardiac magnetic resonance assessments, and genetic analysis. Furthermore, the long-term disease course of childbearing patients was compared with a group of nulliparous ALVC women. RESULTS A total of 35 patients (mean age 45 ± 9 years, 51% probands) were analyzed. Sixteen women (46%) reported a pregnancy, for a total of 27 singleton viable pregnancies (mean age at first childbirth 30 ± 9 years). Before pregnancy, all patients were in the NYHA class I and none of the patients reported a previous heart failure (HF) episode. No significant differences were found between childbearing and nulliparous women regarding ECG features, LV dimensions, function, and extent of late enhancement. Overall, 7 patients (20%, 4 belonging to the childbearing group) experienced a sustained ventricular tachycardia and 2 (6%)-one for each group-showed heart failure (HF) episodes. The analysis of arrhythmia-free survival patients did not show significant differences between childbearing and nulliparous women. CONCLUSIONS In a cohort of ALVC patients without previous episodes of HF, pregnancy was well tolerated, with no significant influence on disease progression and degree of electrical instability. Further studies on a larger cohort of women with different degrees of disease extent and genetic background are needed in order to achieve a more comprehensive knowledge regarding the outcome of pregnancy in ALVC patients.
Collapse
Affiliation(s)
- Riccardo Bariani
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35122 Padua, Italy
| | - Maria Bueno Marinas
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35122 Padua, Italy
| | - Ilaria Rigato
- Azienda Ospedaliera di Padova, Via Giustiniani, 2, 35128 Padova, Italy
| | - Paola Veronese
- Azienda Ospedaliera di Padova, Via Giustiniani, 2, 35128 Padova, Italy
| | - Rudy Celeghin
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35122 Padua, Italy
| | - Alberto Cipriani
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35122 Padua, Italy
| | - Marco Cason
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35122 Padua, Italy
| | - Valeria Pergola
- Azienda Ospedaliera di Padova, Via Giustiniani, 2, 35128 Padova, Italy
| | - Giulia Mattesi
- Azienda Ospedaliera di Padova, Via Giustiniani, 2, 35128 Padova, Italy
| | - Petra Deola
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35122 Padua, Italy
| | - Alessandro Zorzi
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35122 Padua, Italy
| | - Giuseppe Limongelli
- Department of Translational Sciences, University della Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Sabino Iliceto
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35122 Padua, Italy
| | - Domenico Corrado
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35122 Padua, Italy
| | - Cristina Basso
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35122 Padua, Italy
| | - Kalliopi Pilichou
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35122 Padua, Italy
- Correspondence: (K.P.); (B.B.)
| | - Barbara Bauce
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35122 Padua, Italy
- Correspondence: (K.P.); (B.B.)
| |
Collapse
|
18
|
Murray B, James CA. Genotype-phenotype Correlates in Arrhythmogenic Cardiomyopathies. Curr Cardiol Rep 2022; 24:1557-1565. [PMID: 36074218 DOI: 10.1007/s11886-022-01777-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 01/11/2023]
Abstract
PURPOSE OF THE REVIEW The definition of arrhythmogenic cardiomyopathy (ACM) has expanded beyond desmosomal arrhythmogenic right ventricular cardiomyopathy (ARVC) to include other genetic cardiomyopathies with a significant arrhythmia burden. Emerging data on genotype-phenotype correlations has led recent consensus guidelines to urge genetic testing as a critical component of not only diagnosis but also management of ACM. RECENT FINDINGS Plakophilin-2 (PKP2) ARVC/ACM is most likely to meet ARVC Task Force Criteria with right sided involvement and ventricular arrhythmias, while desmoplakin (DSP) ACM may have a normal electrocardiogram (ECG) and has a subepicardial LV scar pattern. Extra-desmosomal ACM including ACM associated with transmembrane protein 43 and phospholamban variants may have characteristic ECG patterns and biventricular cardiomyopathy. Lamin A/C and SCN5A cardiomyopathy often have heart block on ECG with DCM, but are distinct from DCM in that they have significantly elevated arrhythmic risk. Newer genes, especially filamin-C (FLNC) also may have distinct imaging scar patterns, arrhythmia risk, and risk predictors. Recognition of these key differences have implications for clinical management and reinforce the importance of genetic testing in the diagnosis and the emerging opportunities for genotype-specific management of ACM patients.
Collapse
Affiliation(s)
- Brittney Murray
- School of Medicine/Division of Cardiology, Johns Hopkins University, 600 N. Wolfe St. Blalock 545, Baltimore, MD, 21287, USA.
| | - Cynthia A James
- School of Medicine/Division of Cardiology, Johns Hopkins University, 600 N. Wolfe St. Blalock 545, Baltimore, MD, 21287, USA
| |
Collapse
|
19
|
Huang W, Sun R, Liu W, Xu R, Zhou Z, Bai W, Hou R, Xu H, Guo Y, Yu L, Ye L. Prognostic Value of Late Gadolinium Enhancement in Left Ventricular Noncompaction: A Multicenter Study. Diagnostics (Basel) 2022; 12:diagnostics12102457. [PMID: 36292149 PMCID: PMC9600954 DOI: 10.3390/diagnostics12102457] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Current diagnostic criteria for left ventricular noncompaction (LVNC) may be poorly related to adverse prognosis. Late gadolinium enhancement (LGE) is a predictor of major adverse cardiovascular events (MACE), but risk stratification of LGE in patients with LVNC remains unclear. We retrospectively analyzed the clinical and cardiovascular magnetic resonance (CMR) data of 75 patients from three institutes and examined the correlation between different LGE types and MACE based on the extent, pattern (including a specific ring-like pattern), and locations of LGE in LVNC. A total of 51 patients (68%) presented LGE. A specific ring-like pattern was observed in 9 (12%). MACE occurred in 29 (38.7%) at 4.3 years of follow-up (interquartile range: 2.1−5.7 years). The adjusted hazard ratio (HR) for patients with ring-like LGE were 6.10 (95% CI, 1.39−26.75, p < 0.05). Free-wall or mid-wall LGE was associated with an increased risk of MACE after adjustment (HR 2.85, 95% CI, 1.31−6.21; HR 4.35, 95% CI, 1.23−15.37, respectively, p < 0.05). The risk of MACE in LVNC significantly increased when the LGE extent was greater than 7.5% and ring-like, multiple segments, and free-wall LGE were associated with MACE. These results suggest the value of LGE risk stratification in patients with LVNC.
Collapse
Affiliation(s)
- Wei Huang
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610017, China
| | - Ran Sun
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610017, China
| | - Wenbin Liu
- Department of Radiology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Rong Xu
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610017, China
| | - Ziqi Zhou
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610017, China
| | - Wei Bai
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610017, China
| | - Ruilai Hou
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610017, China
| | - Huayan Xu
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610017, China
| | - Yingkun Guo
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610017, China
| | - Li Yu
- Department of Pediatric Cardiology, West China Second University Hospital, Sichuan University, Chengdu 610017, China
- Correspondence: (L.Y.); (L.Y.)
| | - Lu Ye
- Department of Ultrasound, West China Second University Hospital, Sichuan University, Chengdu 610017, China
- Correspondence: (L.Y.); (L.Y.)
| |
Collapse
|
20
|
Amin RJ, Morris-Rosendahl D, Edwards M, Tayal U, Buchan R, Hammersley DJ, Jones RE, Gati S, Khalique Z, Almogheer B, Pennell DJ, Baksi AJ, Pantazis A, Ware JS, Prasad SK, Halliday BP. The addition of genetic testing and cardiovascular magnetic resonance to routine clinical data for stratification of etiology in dilated cardiomyopathy. Front Cardiovasc Med 2022; 9:1017119. [PMID: 36277766 PMCID: PMC9582287 DOI: 10.3389/fcvm.2022.1017119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Background Guidelines recommend genetic testing and cardiovascular magnetic resonance (CMR) for the investigation of dilated cardiomyopathy (DCM). However, the incremental value is unclear. We assessed the impact of these investigations in determining etiology. Methods Sixty consecutive patients referred with DCM and recruited to our hospital biobank were selected. Six independent experts determined the etiology of each phenotype in a step-wise manner based on (1) routine clinical data, (2) clinical and genetic data and (3) clinical, genetic and CMR data. They indicated their confidence (1-3) in the classification and any changes to management at each step. Results Six physicians adjudicated 60 cases. The addition of genetics and CMR resulted in 57 (15.8%) and 26 (7.2%) changes in the classification of etiology, including an increased number of genetic diagnoses and a reduction in idiopathic diagnoses. Diagnostic confidence improved at each step (p < 0.0005). The number of diagnoses made with low confidence reduced from 105 (29.2%) with routine clinical data to 71 (19.7%) following the addition of genetics and 37 (10.3%) with the addition of CMR. The addition of genetics and CMR led to 101 (28.1%) and 112 (31.1%) proposed changes to management, respectively. Interobserver variability showed moderate agreement with clinical data (κ = 0.44) which improved following the addition of genetics (κ = 0.65) and CMR (κ = 0.68). Conclusion We demonstrate that genetics and CMR, frequently changed the classification of etiology in DCM, improved confidence and interobserver variability in determining the diagnosis and had an impact on proposed management.
Collapse
Affiliation(s)
- Ravi J. Amin
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
- National Heart Lung Institute, Imperial College, London, United Kingdom
| | - Deborah Morris-Rosendahl
- National Heart Lung Institute, Imperial College, London, United Kingdom
- Clinical Genetics and Genomics Laboratory, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Mat Edwards
- Clinical Genetics and Genomics Laboratory, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Upasana Tayal
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
- National Heart Lung Institute, Imperial College, London, United Kingdom
- Department of Inherited Cardiovascular Conditions, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Rachel Buchan
- National Heart Lung Institute, Imperial College, London, United Kingdom
| | - Daniel J. Hammersley
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
- National Heart Lung Institute, Imperial College, London, United Kingdom
| | - Richard E. Jones
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
- National Heart Lung Institute, Imperial College, London, United Kingdom
| | - Sabiha Gati
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
- National Heart Lung Institute, Imperial College, London, United Kingdom
- Department of Inherited Cardiovascular Conditions, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Zohya Khalique
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
- National Heart Lung Institute, Imperial College, London, United Kingdom
- Department of Inherited Cardiovascular Conditions, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Batool Almogheer
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
- Department of Inherited Cardiovascular Conditions, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Dudley J. Pennell
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
- National Heart Lung Institute, Imperial College, London, United Kingdom
| | - Arun John Baksi
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
- National Heart Lung Institute, Imperial College, London, United Kingdom
- Department of Inherited Cardiovascular Conditions, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Antonis Pantazis
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
- Department of Inherited Cardiovascular Conditions, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - James S. Ware
- National Heart Lung Institute, Imperial College, London, United Kingdom
- Department of Inherited Cardiovascular Conditions, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
- MRC London Institute of Medical Sciences, Imperial College London, London, United Kingdom
| | - Sanjay K. Prasad
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
- National Heart Lung Institute, Imperial College, London, United Kingdom
- Department of Inherited Cardiovascular Conditions, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Brian P. Halliday
- Cardiovascular Magnetic Resonance Unit, Royal Brompton Hospital, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
- National Heart Lung Institute, Imperial College, London, United Kingdom
- Department of Inherited Cardiovascular Conditions, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
21
|
Cardiac magnetic resonance imaging of arrhythmogenic cardiomyopathy: evolving diagnostic perspectives. Eur Radiol 2022; 33:270-282. [PMID: 35788758 DOI: 10.1007/s00330-022-08958-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 01/09/2023]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a genetically determined heart muscle disease characterized by fibro-fatty myocardial replacement, clinically associated with malignant ventricular arrhythmias and sudden cardiac death. Originally described a disease with a prevalent right ventricular (RV) involvement, subsequently two other phenotypes have been recognized, such as the left dominant and the biventricular phenotypes, for which a recent International Expert consensus document provided upgrade diagnostic criteria (the 2020 "Padua Criteria"). In this novel workup for the diagnosis of the entire spectrum of phenotypic variants of ACM, including left ventricular (LV) variants, cardiac magnetic resonance (CMR) has emerged as the cardiac imaging technique of choice, due to its capability of detailed morpho-functional and tissue characterization evaluation of both RV and LV. In this review, the key role of CMR in the diagnosis of ACM is outlined, including the supplemental value for the characterization of the disease variants. An ACM-specific CMR study protocol, as well as strengths and weaknesses of each imaging technique, is also provided. KEY POINTS: • Arrhythmogenic cardiomyopathy includes three different phenotypes: dominant right, biventricular, and dominant left. • In 2020, diagnostic criteria have been updated and cardiac magnetic resonance has emerged as the cardiac imaging technique of choice. • This aim of this review is to provide an update of the current state of art regarding the use of CMR in ACM, with a particular focus on novel diagnostic criteria, CMR protocols, and prognostic significance of CMR findings in ACM.
Collapse
|
22
|
Lukas Laws J, Lancaster MC, Ben Shoemaker M, Stevenson WG, Hung RR, Wells Q, Marshall Brinkley D, Hughes S, Anderson K, Roden D, Stevenson LW. Arrhythmias as Presentation of Genetic Cardiomyopathy. Circ Res 2022; 130:1698-1722. [PMID: 35617362 PMCID: PMC9205615 DOI: 10.1161/circresaha.122.319835] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
There is increasing evidence regarding the prevalence of genetic cardiomyopathies, for which arrhythmias may be the first presentation. Ventricular and atrial arrhythmias presenting in the absence of known myocardial disease are often labelled as idiopathic, or lone. While ventricular arrhythmias are well-recognized as presentation for arrhythmogenic cardiomyopathy in the right ventricle, the scope of arrhythmogenic cardiomyopathy has broadened to include those with dominant left ventricular involvement, usually with a phenotype of dilated cardiomyopathy. In addition, careful evaluation for genetic cardiomyopathy is also warranted for patients presenting with frequent premature ventricular contractions, conduction system disease, and early onset atrial fibrillation, in which most detected genes are in the cardiomyopathy panels. Sudden death can occur early in the course of these genetic cardiomyopathies, for which risk is not adequately tracked by left ventricular ejection fraction. Only a few of the cardiomyopathy genotypes implicated in early sudden death are recognized in current indications for implantable cardioverter defibrillators which otherwise rely upon a left ventricular ejection fraction ≤0.35 in dilated cardiomyopathy. The genetic diagnoses impact other aspects of clinical management such as exercise prescription and pharmacological therapy of arrhythmias, and new therapies are coming into clinical investigation for specific genetic cardiomyopathies. The expansion of available genetic information and implications raises new challenges for genetic counseling, particularly with the family member who has no evidence of a cardiomyopathy phenotype and may face a potentially negative impact of a genetic diagnosis. Discussions of risk for both probands and relatives need to be tailored to their numeric literacy during shared decision-making. For patients presenting with arrhythmias or cardiomyopathy, extension of genetic testing and its implications will enable cascade screening, intervention to change the trajectory for specific genotype-phenotype profiles, and enable further development and evaluation of emerging targeted therapies.
Collapse
Affiliation(s)
- J Lukas Laws
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Megan C Lancaster
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - M Ben Shoemaker
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - William G Stevenson
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Rebecca R Hung
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Quinn Wells
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - D Marshall Brinkley
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Sean Hughes
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Katherine Anderson
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Dan Roden
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| | - Lynne W Stevenson
- Division of Cardiovascular Medicine, Vanderbilt Heart and Vascular Institute, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
23
|
Kucher AN, Sleptcov AA, Nazarenko MS. Genetic Landscape of Dilated Cardiomyopathy. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422030085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Graziosi M, Ditaranto R, Rapezzi C, Pasquale F, Lovato L, Leone O, Parisi V, Potena L, Ferrara V, Minnucci M, Caponetti AG, Chiti C, Ferlini A, Gualandi F, Rossi C, Berardini A, Tini G, Bertini M, Ziacchi M, Biffi M, Galie N, Olivotto I, Biagini E. Clinical presentations leading to arrhythmogenic left ventricular cardiomyopathy. Open Heart 2022; 9:openhrt-2021-001914. [PMID: 35444050 PMCID: PMC9021777 DOI: 10.1136/openhrt-2021-001914] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/08/2022] [Indexed: 01/15/2023] Open
Abstract
OBJECTIVES To describe a cohort of patients with arrhythmogenic left ventricular cardiomyopathy (ALVC), focusing on the spectrum of the clinical presentations. METHODS Patients were retrospectively evaluated between January 2012 and June 2020. Diagnosis was based on (1) ≥3 contiguous segments with subepicardial/midwall late gadolinium enhancement in the left ventricle (LV) at cardiac magnetic resonance plus a likely pathogenic/pathogenic arrhythmogenic cardiomyopathy (AC) associated genetic mutation and/or familial history of AC and/or red flags for ALVC (ie, negative T waves in V4-6/aVL, low voltages in limb leads, right bundle branch block like ventricular tachycardia) or (2) pathology examination of explanted hearts or autoptic cases suffering sudden cardiac death (SCD). Significant right ventricular involvement was an exclusion criterion. RESULTS Fifty-two patients (63% males, age 45 years (31-53)) composed the study cohort. Twenty-one (41%) had normal echocardiogram, 13 (25%) a hypokinetic non-dilated cardiomyopathy (HNDC) and 17 (33%) a dilated cardiomyopathy (DCM). Of 47 tested patients, 29 (62%) were carriers of a pathogenic/likely pathogenic DNA variant. Clinical contexts leading to diagnosis were SCD in 3 (6%), ventricular arrhythmias in 15 (29%), chest pain in 8 (15%), heart failure in 6 (12%) and familial screening in 20 (38%). Thirty patients (57%) had previously received a diagnosis other than ALVC with a diagnostic delay of 6 years (IQR 1-7). CONCLUSIONS ALVC is hidden in different clinical scenarios with a phenotypic spectrum ranging from normal LV to HNDC and DCM. Ventricular arrhythmias, chest pain, heart failure and SCD are the main clinical presentations, being familial screening essential for the affected relatives' identification.
Collapse
Affiliation(s)
- Maddalena Graziosi
- Cardiology Unit, St. Orsola Hospital, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Raffaello Ditaranto
- Cardiology Unit, St. Orsola Hospital, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Claudio Rapezzi
- Cardiological Center, University of Ferrara, Ferrara, Italy.,Cardiology Unit, Maria Cecilia Hospital SpA, Cotignola, Emilia-Romagna, Italy
| | - Ferdinando Pasquale
- Cardiology Unit, St. Orsola Hospital, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Luigi Lovato
- Cardio-Thoracic Radiology, IRCCS University Hospital of Bologna S Orsola-Malpighi Polyclinic, Bologna, Italy
| | - Ornella Leone
- Department of Pathology, Cardiovascular and Cardiac Transplant Pathology Unit, Sant'Orsola-Malpighi University Hospital, Bologna, Italy
| | - Vanda Parisi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Luciano Potena
- Cardiology Unit, St. Orsola Hospital, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Valentina Ferrara
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Matteo Minnucci
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Angelo Giuseppe Caponetti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Chiara Chiti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Alessandra Ferlini
- Department of Medical Sciences, Unit of Medical Genetics, Universita degli Studi di Ferrara, Ferrara, Italy
| | - Francesca Gualandi
- Department of Medical Sciences, Unit of Medical Genetics, Universita degli Studi di Ferrara, Ferrara, Italy
| | - Cesare Rossi
- Medical Genetics Unit, IRCCS University Hospital of Bologna S Orsola-Malpighi Polyclinic, Bologna, Italy
| | - Alessandra Berardini
- Cardiology Unit, St. Orsola Hospital, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giacomo Tini
- Department of Experimental and Clinical Medicine, Cardiomyopathy Unit, University Hospital Careggi, Firenze, Italy
| | - Matteo Bertini
- Cardiological Center, University of Ferrara, Ferrara, Italy
| | - Matteo Ziacchi
- Cardiology Unit, St. Orsola Hospital, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Mauro Biffi
- Cardiology Unit, St. Orsola Hospital, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Nazzareno Galie
- Cardiology Unit, St. Orsola Hospital, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Iacopo Olivotto
- Department of Experimental and Clinical Medicine, University Hospital Careggi, Firenze, Italy
| | - Elena Biagini
- Cardiology Unit, St. Orsola Hospital, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
25
|
Genetic Insights into Primary Restrictive Cardiomyopathy. J Clin Med 2022; 11:jcm11082094. [PMID: 35456187 PMCID: PMC9027761 DOI: 10.3390/jcm11082094] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 12/04/2022] Open
Abstract
Restrictive cardiomyopathy is a rare cardiac disease causing severe diastolic dysfunction, ventricular stiffness and dilated atria. In consequence, it induces heart failure often with preserved ejection fraction and is associated with a high mortality. Since it is a poor clinical prognosis, patients with restrictive cardiomyopathy frequently require heart transplantation. Genetic as well as non-genetic factors contribute to restrictive cardiomyopathy and a significant portion of cases are of unknown etiology. However, the genetic forms of restrictive cardiomyopathy and the involved molecular pathomechanisms are only partially understood. In this review, we summarize the current knowledge about primary genetic restrictive cardiomyopathy and describe its genetic landscape, which might be of interest for geneticists as well as for cardiologists.
Collapse
|
26
|
Peng Y, Tang Q, Xiao F, Fu N. Regulation of Lipid Metabolism by Lamin in Mutation-Related Diseases. Front Pharmacol 2022; 13:820857. [PMID: 35281936 PMCID: PMC8914069 DOI: 10.3389/fphar.2022.820857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Nuclear lamins, known as type 5 intermediate fibers, are composed of lamin A, lamin C, lamin B1, and lamin B2, which are encoded by LMNA and LMNB genes, respectively. Importantly, mutations in nuclear lamins not only participate in lipid disorders but also in the human diseases, such as lipodystrophy, metabolic-associated fatty liver disease, and dilated cardiomyopathy. Among those diseases, the mechanism of lamin has been widely discussed. Thereby, this review mainly focuses on the regulatory mechanism of the mutations in the lamin gene in lipid alterations and the human diseases. Considering the protean actions, targeting nuclear lamins may be a potent therapeutic avenue for lipid metabolic disorders and human diseases in the future.
Collapse
Affiliation(s)
- Yue Peng
- The Affiliated Nanhua Hospital, Department of Gastroenterology, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang, China
| | - Qianyu Tang
- The Affiliated Nanhua Hospital, Department of Gastroenterology, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang, China
| | - Fan Xiao
- The Affiliated Nanhua Hospital, Clinical Research Institute, Hengyang Medical School, University of South China, Hengyang, China
- *Correspondence: Nian Fu, ; Fan Xiao,
| | - Nian Fu
- The Affiliated Nanhua Hospital, Department of Gastroenterology, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang, China
- The Affiliated Nanhua Hospital, Clinical Research Institute, Hengyang Medical School, University of South China, Hengyang, China
- *Correspondence: Nian Fu, ; Fan Xiao,
| |
Collapse
|
27
|
Xie T, Yang Y, Gong K, Luo Y, Guo H, Liu R, Wang L, Tan Z, Luo J, Xie L. Whole-Exome Sequencing Identifies a Novel Variant (c.1538T > C) of TNNI3K in Arrhythmogenic Right Ventricular Cardiomyopathy. Front Cardiovasc Med 2022; 9:843837. [PMID: 35274013 PMCID: PMC8902045 DOI: 10.3389/fcvm.2022.843837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 01/25/2022] [Indexed: 11/25/2022] Open
Abstract
Backgrounds Arrhythmic right ventricular cardiomyopathy (ARVC) is a cardiomyopathy with a genetic predisposition that can lead to a sudden cardiac death and heart failure. According to the 2010 Task Force Criteria, genetic diagnosis is one of the most important methods, but, so far, only a few genes related to ARVC have been identified. Methods In this study, the pathogenic gene of a patient with ARVC was examined using whole-exome sequencing. The plasmids of TNNI3K were constructed, and the effects of the TNNI3K variant was investigated by a real-time polymerase chain reaction (PCR) and western blot. Results A novel variant (c.1538T > C) of TNNI3K was identified, with phenotypes of dominant right ventricular (RV) disease preliminarily fulfilling the diagnosis of ARVC. A comprehensive assessment revealed that the variant was pathogenic. We found that this variant would lead to a decrease in the level of TNNI3K mRNA and protein, as well as a decrease in the expression of the RYR2 gene, which further proves that TNNI3K plays an important role in cardiomyopathy and expands the spectrum of the TNNI3K variants. Conclusion In this study, we reported a TNNI3K variant in ARVC for the first time, and the results not only contribute to the diagnosis of ARVC, but also provide a reference for genetic counseling and promote the understanding of the genetic mechanism of cardiomyopathy.
Collapse
Affiliation(s)
- Ting Xie
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
- The Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Yifeng Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
- The Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Ke Gong
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
- The Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Yong Luo
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
- The Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Hui Guo
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
- The Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Ruilin Liu
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
- The Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Lei Wang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
- The Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Zhiping Tan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
- The Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
| | - Jinwen Luo
- Department of Cardio-Thoracic Surgery, Hunan Children's Hospital, Changsha, China
| | - Li Xie
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
- The Clinical Center for Gene Diagnosis and Therapy, The Second Xiangya Hospital of Central South University, Central South University, Changsha, China
- *Correspondence: Li Xie
| |
Collapse
|
28
|
Keil L, Berisha F, Knappe D, Kubisch C, Shoukier M, Kirchhof P, Fabritz L, Hellenbroich Y, Woitschach R, Magnussen C. LMNA Mutation in a Family with a Strong History of Sudden Cardiac Death. Genes (Basel) 2022; 13:genes13020169. [PMID: 35205214 PMCID: PMC8871815 DOI: 10.3390/genes13020169] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 11/16/2022] Open
Abstract
We report a family with heterozygous deletion of exons 3–6 of the LMNA gene. The main presentation of affected family members was characterized by ventricular and supraventricular arrhythmias, atrioventricular (AV) block and sudden cardiac death (SCD) but also by severe dilative cardiomyopathy (DCM). We report on two siblings, a 36-year-old female and her 40-year-old brother, who suffer from heart failure with mildly reduced ejection fraction, AV conduction delays and premature ventricular complexes. Their 65-year-old mother underwent heart transplantation at the age of 55 due to advanced heart failure. Originally, the LMNA mutation was detected in one of the uncles. This index patient and three of his brothers died of SCD as well as their father and aunt. The two siblings were treated with implanted defibrillators in our specialized tertiary heart failure center. This case report places this specific genetic variant in the context of LMNA-associated familial DCM.
Collapse
Affiliation(s)
- Laura Keil
- Department of Cardiology, University Heart and Vascular Center Hamburg, 20251 Hamburg, Germany; (F.B.); (D.K.); (P.K.); (L.F.); (C.M.)
- Correspondence:
| | - Filip Berisha
- Department of Cardiology, University Heart and Vascular Center Hamburg, 20251 Hamburg, Germany; (F.B.); (D.K.); (P.K.); (L.F.); (C.M.)
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, 20251 Hamburg, Germany
| | - Dorit Knappe
- Department of Cardiology, University Heart and Vascular Center Hamburg, 20251 Hamburg, Germany; (F.B.); (D.K.); (P.K.); (L.F.); (C.M.)
| | - Christian Kubisch
- Institute of Human Genetics, University Hospital Hamburg Eppendorf, 20246 Hamburg, Germany; (C.K.); (R.W.)
| | - Moneef Shoukier
- Prenatal Medicine Munich, Department of Molecular Genetics, 80639 Munich, Germany;
| | - Paulus Kirchhof
- Department of Cardiology, University Heart and Vascular Center Hamburg, 20251 Hamburg, Germany; (F.B.); (D.K.); (P.K.); (L.F.); (C.M.)
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, 20251 Hamburg, Germany
| | - Larissa Fabritz
- Department of Cardiology, University Heart and Vascular Center Hamburg, 20251 Hamburg, Germany; (F.B.); (D.K.); (P.K.); (L.F.); (C.M.)
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, 20251 Hamburg, Germany
| | - Yorck Hellenbroich
- Institute of Human Genetics, University of Luebeck, 23538 Luebeck, Germany;
| | - Rixa Woitschach
- Institute of Human Genetics, University Hospital Hamburg Eppendorf, 20246 Hamburg, Germany; (C.K.); (R.W.)
| | - Christina Magnussen
- Department of Cardiology, University Heart and Vascular Center Hamburg, 20251 Hamburg, Germany; (F.B.); (D.K.); (P.K.); (L.F.); (C.M.)
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Luebeck, 20251 Hamburg, Germany
| |
Collapse
|
29
|
Graziano F, Zorzi A, Cipriani A, De Lazzari M, Bauce B, Rigato I, Brunetti G, Pilichou K, Basso C, Perazzolo Marra M, Corrado D. The 2020 "Padua Criteria" for Diagnosis and Phenotype Characterization of Arrhythmogenic Cardiomyopathy in Clinical Practice. J Clin Med 2022; 11:jcm11010279. [PMID: 35012021 PMCID: PMC8746198 DOI: 10.3390/jcm11010279] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 12/04/2022] Open
Abstract
Arrhythmogenic Cardiomyopathy (ACM) is a heredo-familial cardiac disease characterized by fibro-fatty myocardial replacement and increased risk of sudden cardiac death. The diagnosis of ACM can be challenging due to the lack of a single gold-standard test: for this reason, it is required to satisfy a combination of multiple criteria from different categories including ventricular morpho-functional abnormalities, repolarization and depolarization ECG changes, ventricular arrhythmias, tissue characterization findings and positive family history/molecular genetics. The first diagnostic criteria were published by an International Task Force (ITF) of experts in 1994 and revised in 2010 with the aim to increase sensitivity for early diagnosis. Limitations of the 2010 ITF criteria include the absence of specific criteria for left ventricle (LV) involvement and the limited role of cardiac magnetic resonance (CMR) as the use of the late gadolinium enhancement technique for tissue characterization was not considered. In 2020, new diagnostic criteria ("the Padua criteria") were proposed. The traditional organization in six categories of major/minor criteria was maintained. The criteria for identifying the right ventricular involvement were modified and a specific set of criteria for identifying LV involvement was created. Depending on the combination of criteria for right and LV involvement, a diagnosis of classic (right dominant) ACM, biventricular ACM or left-dominant ACM is then made. The article reviews the rationale of the Padua criteria, summarizes the main modifications compared to the previous 2010 ITF criteria and provides three examples of the application of the Padua criteria in clinical practice.
Collapse
|
30
|
Castrichini M, Eldemire R, Groves DW, Taylor MR, Miyamoto S, Mestroni L. Clinical and genetic features of arrhythmogenic cardiomyopathy: diagnosis, management and the heart failure perspective. PROGRESS IN PEDIATRIC CARDIOLOGY 2022; 63. [PMID: 34970070 DOI: 10.1016/j.ppedcard.2021.101459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Background Arrhythmogenic cardiomyopathy (ACM) is an emerging new concept of a life-threatening heart muscle disorder due not only to desmosome gene mutations, but also to non-desmosome genes, such as filamin C, lamin A/C, phospholamban, transmembrane protein 43, titin, SCN5A and RNA binding motif protein 20.Multi-modality imaging along with genetic testing are important tools for risk stratification to tailor treatment to a single patient. Cardiac magnetic resonance imaging (CMR) with late gadolinium enhancement (LGE) is the gold standard for evaluating left and right ventricular structure and function, edema, and fibrosis. The identification of regional fibrosis with LGE has prognostic value. The management of ACM involves several aspects: treatment of arrhythmias and heart failure, risk stratification, implantable cardioverter-defibrillator (ICD) placement, exercise restrictions, and life-style changes. The decision for ICD placement in ACM patients is not well established and should be made weighing risks and benefits. However, the presence of specific genotypes can allow a precision medicine approach. In ACM patients with only mild left ventricular dysfunction but phospholamban, filamin C or lamin A/C mutations, an ICD is now considered a reasonable approach. Aim of Review We sought to provide an overview of clinical and genetic feature of arrhythmogenic cardiomyopathy providing epidemiology, imaging, diagnostic and treatment information, using a systematic genetic approach.
Collapse
Affiliation(s)
- Matteo Castrichini
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO
- Division of Cardiology, Cardiothoracovascular Department, Azienda Ospedaliera Universitaria Integrata Giuliano Isontina (ASUGI), Trieste, Italy
| | - Ramone Eldemire
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Daniel W Groves
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO
- Division of Cardiothoracic Imaging, University of Colorado Anschutz Medical Campus Aurora, CO
| | - Matthew Rg Taylor
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO
- Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Shelley Miyamoto
- Division of Cardiology, Children's Hospital Colorado and University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Luisa Mestroni
- Division of Cardiology, University of Colorado Anschutz Medical Campus, Aurora, CO
| |
Collapse
|
31
|
Ma C, Fan J, Zhou B, Zhao C, Zhao X, Su B, Miao Y, Liao Y, Wang L. Myocardial strain measured via two-dimensional speckle-tracking echocardiography in a family diagnosed with arrhythmogenic left ventricular cardiomyopathy. Cardiovasc Ultrasound 2021; 19:40. [PMID: 34930282 PMCID: PMC8686556 DOI: 10.1186/s12947-021-00270-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Arrhythmogenic cardiomyopathy is a myocardial disorder characterized by ventricular arrhythmias, right and/or left ventricular involvement, and fibrofatty infiltrations in the myocardium. We report a family diagnosed with arrhythmogenic left ventricular cardiomyopathy (ALVC) and depict their echocardiographic characteristics. METHODS AND RESULTS Fifteen family members were divided into three groups based on whether they carried the TMEM43 mutation and had been diagnosed with ALVC. Eight of them had TMEM43 mutations, and four were diagnosed with ALVC according to the Padua criteria. Only the proband experienced sudden cardiac death and had a dilated left ventricle. Left ventricular ejection fraction was reduced in two patients; however, left ventricular global longitudinal strain was depressed in three patients. Low QRS voltages in limb leads were evident in three patients, and five patients had frequent ventricular premature contractions. Late gadolinium enhancement was evident in three patients. Left ventricular layer-specific strain showed that the transmural strain gradient ratio was increased in patients diagnosed with ALVC, and it was elevated in the genotype-positive and phenotype-negative groups compared with healthy individuals. CONCLUSION Global left ventricular longitudinal strain better evaluated left ventricular function than left ventricular ejection fraction. The transmural strain gradient ratio was elevated in patients diagnosed with ALVC, suggesting that it was useful for the evaluation of ALVC.
Collapse
Affiliation(s)
- Changsheng Ma
- The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiali Fan
- The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Bingyuan Zhou
- The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Caiming Zhao
- The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Zhao
- The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bo Su
- The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuzhu Miao
- The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuping Liao
- The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Li Wang
- The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
32
|
Pathogenesis, Diagnosis and Risk Stratification in Arrhythmogenic Cardiomyopathy. CARDIOGENETICS 2021. [DOI: 10.3390/cardiogenetics11040025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a genetically determined myocardial disease associated with sudden cardiac death (SCD). It is most frequently caused by mutations in genes encoding desmosomal proteins. However, there is growing evidence that ACM is not exclusively a desmosome disease but rather appears to be a disease of the connexoma. Fibroadipose replacement of the right ventricle (RV) had long been the hallmark of ACM, although biventricular involvement or predominant involvement of the left ventricle (LD-ACM) is increasingly found, raising the challenge of differential diagnosis with arrhythmogenic dilated cardiomyopathy (a-DCM). A-DCM, ACM, and LD-ACM are increasingly acknowledged as a single nosological entity, the hallmark of which is electrical instability. Our aim was to analyze the complex molecular mechanisms underlying arrhythmogenic cardiomyopathies, outlining the role of inflammation and autoimmunity in disease pathophysiology. Secondly, we present the clinical tools used in the clinical diagnosis of ACM. Focusing on the challenge of defining the risk of sudden death in this clinical setting, we present available risk stratification strategies. Lastly, we summarize the role of genetics and imaging in risk stratification, guiding through the appropriate patient selection for ICD implantation.
Collapse
|
33
|
Yamada T, Nomura S. Recent Findings Related to Cardiomyopathy and Genetics. Int J Mol Sci 2021; 22:12522. [PMID: 34830403 PMCID: PMC8623065 DOI: 10.3390/ijms222212522] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
With the development and advancement of next-generation sequencing (NGS), genetic analysis is becoming more accessible. High-throughput genetic studies using NGS have contributed to unraveling the association between cardiomyopathy and genetic background, as is the case with many other diseases. Rare variants have been shown to play major roles in the pathogenesis of cardiomyopathy, which was empirically recognized as a monogenic disease, and it has been elucidated that the clinical course of cardiomyopathy varies depending on the causative genes. These findings were not limited to dilated and hypertrophic cardiomyopathy; similar trends were reported one after another for peripartum cardiomyopathy (PPCM), cancer therapy-related cardiac dysfunction (CTRCD), and alcoholic cardiomyopathy (ACM). In addition, as the association between clinical phenotypes and the causative genes becomes clearer, progress is being made in elucidating the mechanisms and developing novel therapeutic agents. Recently, it has been suggested that not only rare variants but also common variants contribute to the development of cardiomyopathy. Cardiomyopathy and genetics are approaching a new era, which is summarized here in this overview.
Collapse
Grants
- JP21ek0210152, JP21gm6210010, JP20bm0704026, JP21ek0210141, JP21ek0109440, JP21ek0109487, JP21gm0810013, JP21km0405209, JP21ek0210118, JP21ek0109406, JP21ek0109543, JP21ek0109569 Japan Agency for Medical Research and Development
Collapse
Affiliation(s)
| | - Seitaro Nomura
- Department of Cardiovascular Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8654, Japan;
| |
Collapse
|
34
|
Gigli M, Stolfo D, Graw SL, Merlo M, Gregorio C, Nee Chen S, Dal Ferro M, PaldinoMD A, De Angelis G, Brun F, Jirikowic J, Salcedo EE, Turja S, Fatkin D, Johnson R, van Tintelen JP, Te Riele ASJM, Wilde AAM, Lakdawala NK, Picard K, Miani D, Muser D, Maria Severini G, Calkins H, James CA, Murray B, Tichnell C, Parikh VN, Ashley EA, Reuter C, Song J, Judge DP, McKenna WJ, Taylor MRG, Sinagra G, Mestroni L. Phenotypic Expression, Natural History, and Risk Stratification of Cardiomyopathy Caused by Filamin C Truncating Variants. Circulation 2021; 144:1600-1611. [PMID: 34587765 DOI: 10.1161/circulationaha.121.053521] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Filamin C truncating variants (FLNCtv) cause a form of arrhythmogenic cardiomyopathy: the mode of presentation, natural history, and risk stratification of FLNCtv remain incompletely explored. We aimed to develop a risk profile for refractory heart failure and life-threatening arrhythmias in a multicenter cohort of FLNCtv carriers. METHODS FLNCtv carriers were identified from 10 tertiary care centers for genetic cardiomyopathies. Clinical and outcome data were compiled. Composite outcomes were all-cause mortality/heart transplantation/left ventricle assist device (D/HT/LVAD), nonarrhythmic death/HT/LVAD, and sudden cardiac death/major ventricular arrhythmias. Previously established cohorts of 46 patients with LMNA and 60 with DSP-related arrhythmogenic cardiomyopathies were used for prognostic comparison. RESULTS Eighty-five patients carrying FLNCtv were included (42±15 years, 53% men, 45% probands). Phenotypes were heterogeneous at presentation: 49% dilated cardiomyopathy, 25% arrhythmogenic left dominant cardiomyopathy, 3% arrhythmogenic right ventricular cardiomyopathy. Left ventricular ejection fraction was <50% in 64% of carriers and 34% had right ventricular fractional area changes (RVFAC=(right ventricular end-diastolic area - right ventricular end-systolic area)/right ventricular end-diastolic area) <35%. During follow-up (median time 61 months), 19 (22%) carriers experienced D/HT/LVAD, 13 (15%) experienced nonarrhythmic death/HT/LVAD, and 23 (27%) experienced sudden cardiac death/major ventricular arrhythmias. The sudden cardiac death/major ventricular arrhythmias incidence of FLNCtv carriers did not significantly differ from LMNA carriers and DSP carriers. In FLNCtv carriers, left ventricular ejection fraction was associated with the risk of D/HT/LVAD and nonarrhythmic death/HT/LVAD. CONCLUSIONS Among patients referred to tertiary referral centers, FLNCtv arrhythmogenic cardiomyopathy is phenotypically heterogeneous and characterized by a high risk of life-threatening arrhythmias, which does not seem to be associated with the severity of left ventricular dysfunction.
Collapse
Affiliation(s)
- Marta Gigli
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy (M.G., D.S., M.M., M.D.F., A.P., G.D.A., F.B., G.S.)
| | - Davide Stolfo
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy (M.G., D.S., M.M., M.D.F., A.P., G.D.A., F.B., G.S.).,Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden (D.S.)
| | - Sharon L Graw
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora (S.G., S.N.C., J.J., E.E.S., S.T., M.R.G.T., L.M.)
| | - Marco Merlo
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy (M.G., D.S., M.M., M.D.F., A.P., G.D.A., F.B., G.S.)
| | - Caterina Gregorio
- Biostatistics Unit, Department of Medical Sciences, University of Trieste, Italy (C.G.).,MOX-Modeling and Scientific Computing Laboratory, Department of Mathematics, Politecnico di Milano, Milan, Italy (C.G.)
| | - Suet Nee Chen
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora (S.G., S.N.C., J.J., E.E.S., S.T., M.R.G.T., L.M.)
| | - Matteo Dal Ferro
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy (M.G., D.S., M.M., M.D.F., A.P., G.D.A., F.B., G.S.)
| | - Alessia PaldinoMD
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy (M.G., D.S., M.M., M.D.F., A.P., G.D.A., F.B., G.S.)
| | - Giulia De Angelis
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy (M.G., D.S., M.M., M.D.F., A.P., G.D.A., F.B., G.S.)
| | - Francesca Brun
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy (M.G., D.S., M.M., M.D.F., A.P., G.D.A., F.B., G.S.)
| | - Jean Jirikowic
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora (S.G., S.N.C., J.J., E.E.S., S.T., M.R.G.T., L.M.)
| | - Ernesto E Salcedo
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora (S.G., S.N.C., J.J., E.E.S., S.T., M.R.G.T., L.M.)
| | - Sylvia Turja
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora (S.G., S.N.C., J.J., E.E.S., S.T., M.R.G.T., L.M.)
| | - Diane Fatkin
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, and St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Australia (D.F., R.J.).,Cardiology Department, St Vincent's Hospital, Sydney, Australia (D.F.)
| | - Renee Johnson
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, and St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Australia (D.F., R.J.)
| | - J Peter van Tintelen
- Division of Medicine, Department of Genetics and Cardiology, University Medical Center, Utrecht, the Netherlands (J.P.v.T., A.S.J.M.T.R.).,Netherlands Heart Institute, Utrecht (J.P.v.T., A.S.J.M.T.R.)
| | - Anneline S J M Te Riele
- Division of Medicine, Department of Genetics and Cardiology, University Medical Center, Utrecht, the Netherlands (J.P.v.T., A.S.J.M.T.R.).,Netherlands Heart Institute, Utrecht (J.P.v.T., A.S.J.M.T.R.)
| | - Arthur A M Wilde
- Heart Centre, Department of Clinical and Experimental Cardiology, Amsterdam UMC, University of Amsterdam, the Netherlands (A.W.)
| | - Neal K Lakdawala
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA (N.K.L., K.P.)
| | - Kermshlise Picard
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA (N.K.L., K.P.)
| | - Daniela Miani
- University Hospital of Udine, Italy (D. Miani, D. Muser)
| | - Daniele Muser
- University Hospital of Udine, Italy (D. Miani, D. Muser)
| | | | - Hugh Calkins
- Division of Cardiology, Department of Medicine, The Johns Hopkins University, Baltimore, MD (H.C., C.A.J., B.M., C.T.)
| | - Cynthia A James
- Division of Cardiology, Department of Medicine, The Johns Hopkins University, Baltimore, MD (H.C., C.A.J., B.M., C.T.)
| | - Brittney Murray
- Division of Cardiology, Department of Medicine, The Johns Hopkins University, Baltimore, MD (H.C., C.A.J., B.M., C.T.)
| | - Crystal Tichnell
- Division of Cardiology, Department of Medicine, The Johns Hopkins University, Baltimore, MD (H.C., C.A.J., B.M., C.T.)
| | - Victoria N Parikh
- Stanford Center for Inherited Cardiovascular Disease, CA (V.N.P., E.A.A., C.R.)
| | - Euan A Ashley
- Stanford Center for Inherited Cardiovascular Disease, CA (V.N.P., E.A.A., C.R.)
| | - Chloe Reuter
- Stanford Center for Inherited Cardiovascular Disease, CA (V.N.P., E.A.A., C.R.)
| | - Jiangping Song
- National Center for Cardiovascular Diseases in Beijing, China (J.S.)
| | | | - William J McKenna
- Institute of Cardiovascular Science, University College of London, United Kingdom (W.J.M.)
| | - Matthew R G Taylor
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora (S.G., S.N.C., J.J., E.E.S., S.T., M.R.G.T., L.M.)
| | - Gianfranco Sinagra
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), University of Trieste, Trieste, Italy (M.G., D.S., M.M., M.D.F., A.P., G.D.A., F.B., G.S.)
| | - Luisa Mestroni
- Cardiovascular Institute and Adult Medical Genetics Program, University of Colorado Anschutz Medical Campus, Aurora (S.G., S.N.C., J.J., E.E.S., S.T., M.R.G.T., L.M.)
| |
Collapse
|
35
|
Corrado D, Zorzi A, Cipriani A, Bauce B, Bariani R, Beffagna G, De Lazzari M, Migliore F, Pilichou K, Rampazzo A, Rigato I, Rizzo S, Thiene G, Perazzolo Marra M, Basso C. Evolving Diagnostic Criteria for Arrhythmogenic Cardiomyopathy. J Am Heart Assoc 2021; 10:e021987. [PMID: 34533054 PMCID: PMC8649536 DOI: 10.1161/jaha.121.021987] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Criteria for diagnosis of arrhythmogenic cardiomyopathy (ACM) were first proposed in 1994 and revised in 2010 by a Task Force. Although the Task Force criteria demonstrated a good accuracy for diagnosis of the original right ventricular phenotype (arrhythmogenic right ventricular cardiomyopathy), they lacked sensitivity for identification of the expanding phenotypic spectrum of ACM, which includes left‐sided variants and did not incorporate late‐gadolinium enhancement findings by cardiac magnetic resonance. The 2020 International criteria (“Padua criteria”) have been developed by International experts with the aim to improve the diagnosis of ACM by providing new criteria for the diagnosis of left ventricular phenotypic features. The key upgrade was the incorporation of tissue characterization findings by cardiac magnetic resonance for noninvasive detection of late‐gadolinium enhancement/myocardial fibrosis that are determinants for characterization of arrhythmogenic biventricular and left ventricular cardiomyopathy. The 2020 International criteria are heavily dependent on cardiac magnetic resonance, which has become mandatory to characterize the ACM phenotype and to exclude other diagnoses. New criteria regarding left ventricular depolarization and repolarization ECG abnormalities and ventricular arrhythmias of left ventricular origin were also provided. This article reviews the evolving approach to diagnosis of ACM, going back to the 1994 and 2010 International Task Force criteria and then grapple with the modern 2020 International criteria.
Collapse
Affiliation(s)
- Domenico Corrado
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health University of Padova Italy
| | - Alessandro Zorzi
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health University of Padova Italy
| | - Alberto Cipriani
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health University of Padova Italy
| | - Barbara Bauce
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health University of Padova Italy
| | - Riccardo Bariani
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health University of Padova Italy
| | - Giorgia Beffagna
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health University of Padova Italy
| | - Manuel De Lazzari
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health University of Padova Italy
| | - Federico Migliore
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health University of Padova Italy
| | - Kalliopi Pilichou
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health University of Padova Italy
| | | | - Ilaria Rigato
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health University of Padova Italy
| | - Stefania Rizzo
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health University of Padova Italy
| | - Gaetano Thiene
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health University of Padova Italy
| | - Martina Perazzolo Marra
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health University of Padova Italy
| | - Cristina Basso
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health University of Padova Italy
| |
Collapse
|
36
|
Abstract
Cardiomyopathy affects approximately 1 in 500 adults and is the leading cause of death. Familial cases are common, and mutations in many genes are involved in cardiomyopathy, especially those in genes encoding cytoskeletal, sarcomere, and nuclear envelope proteins. Filamin C is an actin-binding protein encoded by filamin C (FLNC) gene and participates in sarcomere stability maintenance. FLNC was first demonstrated to be a causal gene of myofibrillar myopathy; recently, it has been found that FLNC mutation plays a critical role in the pathogenesis of cardiomyopathy. In this review, we summarized the physiological roles of filamin C in cardiomyocytes and the genetic evidence for links between FLNC mutations and cardiomyopathies. Truncated FLNC is enriched in dilated cardiomyopathy and arrhythmogenic right ventricular cardiomyopathy. Non-truncated FLNC is enriched in hypertrophic cardiomyopathy and restrictive cardiomyopathy. Two major pathomechanisms in FLNC-related cardiomyopathy have been described: protein aggregation resulting from non-truncating mutations and haploinsufficiency triggered by filamin C truncation. Therefore, it is important to understand the cellular biology and molecular regulation of FLNC to design new therapies to treat patients with FLNC-related cardiomyopathy.
Collapse
|
37
|
Migliore F, Mattesi G, Zorzi A, Bauce B, Rigato I, Corrado D, Cipriani A. Arrhythmogenic Cardiomyopathy-Current Treatment and Future Options. J Clin Med 2021; 10:2750. [PMID: 34206637 PMCID: PMC8268983 DOI: 10.3390/jcm10132750] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inheritable heart muscle disease characterised pathologically by fibrofatty myocardial replacement and clinically by ventricular arrhythmias (VAs) and sudden cardiac death (SCD). Although, in its original description, the disease was believed to predominantly involve the right ventricle, biventricular and left-dominant variants, in which the myocardial lesions affect in parallel or even mostly the left ventricle, are nowadays commonly observed. The clinical management of these patients has two main purposes: the prevention of SCD and the control of arrhythmic and heart failure (HF) events. An implantable cardioverter defibrillator (ICD) is the only proven lifesaving treatment, despite significant morbidity because of device-related complications and inappropriate shocks. Selection of patients who can benefit the most from ICD therapy is one of the most challenging issues in clinical practice. Risk stratification in ACM patients is mostly based on arrhythmic burden and ventricular dysfunction severity, although other clinical features resulting from electrocardiogram and imaging modalities such as cardiac magnetic resonance may have a role. Medical therapy is crucial for treatment of VAs and the prevention of negative ventricular remodelling. In this regard, the efficacy of novel anti-HF molecules and drugs acting on the inflammatory pathway in patients with ACM is, to date, unknown. Catheter ablation represents an effective strategy to treat ventricular tachycardia relapses and recurrent ICD shocks. The present review will address the current strategies for prevention of SCD and treatment of VAs and HF in patients with ACM.
Collapse
Affiliation(s)
- Federico Migliore
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Giulia Mattesi
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Alessandro Zorzi
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Barbara Bauce
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Ilaria Rigato
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Domenico Corrado
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Alberto Cipriani
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| |
Collapse
|
38
|
Han FT. Empiric ablation of asymptomatic PVCs when there is greater than 20% burden but normal left ventricular function-An argument in support of catheter ablation. Heart Rhythm O2 2021; 2:205-209. [PMID: 34113923 PMCID: PMC8183869 DOI: 10.1016/j.hroo.2021.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Frederick T Han
- Section of Cardiac Electrophysiology University of California, San Diego Cardiovascular Institute, La Jolla, California
| |
Collapse
|
39
|
The Combined Human Genotype of Truncating TTN and RBM20 Mutations Is Associated with Severe and Early Onset of Dilated Cardiomyopathy. Genes (Basel) 2021; 12:genes12060883. [PMID: 34201072 PMCID: PMC8228627 DOI: 10.3390/genes12060883] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/01/2021] [Accepted: 06/05/2021] [Indexed: 12/30/2022] Open
Abstract
A major cause of heart failure is cardiomyopathies, with dilated cardiomyopathy (DCM) as the most common form. Over 40 genes are linked to DCM, among them TTN and RBM20. Next Generation Sequencing in clinical DCM cohorts revealed truncating variants in TTN (TTNtv), accounting for up to 25% of familial DCM cases. Mutations in the cardiac splicing factor RNA binding motif protein 20 (RBM20) are also known to be associated with severe cardiomyopathies. TTN is one of the major RBM20 splicing targets. Most of the pathogenic RBM20 mutations are localized in the highly conserved arginine serine rich domain (RS), leading to a cytoplasmic mislocalization of mutant RBM20. Here, we present a patient with an early onset DCM carrying a combination of (likely) pathogenic TTN and RBM20 mutations. We show that the splicing of RBM20 target genes is affected in the mutation carrier. Furthermore, we reveal RBM20 haploinsufficiency presumably caused by the frameshift mutation in RBM20.
Collapse
|
40
|
Akintoye E, Ashwath ML. Cardiac magnetic resonance imaging findings in primary arrhythmogenic left ventricular cardiomyopathy with cardiocutaneous phenotype-Carvajal syndrome. HeartRhythm Case Rep 2021; 7:312-315. [PMID: 34026522 PMCID: PMC8134784 DOI: 10.1016/j.hrcr.2021.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Emmanuel Akintoye
- Division of Cardiovascular Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | - Mahi L Ashwath
- Division of Cardiovascular Medicine, University of Iowa Hospitals and Clinics, Iowa City, Iowa
| |
Collapse
|
41
|
Mattesi G, Cipriani A, Bauce B, Rigato I, Zorzi A, Corrado D. Arrhythmogenic Left Ventricular Cardiomyopathy: Genotype-Phenotype Correlations and New Diagnostic Criteria. J Clin Med 2021; 10:jcm10102212. [PMID: 34065276 PMCID: PMC8160676 DOI: 10.3390/jcm10102212] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/06/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited heart muscle disease characterized by loss of ventricular myocardium and fibrofatty replacement, which predisposes to scar-related ventricular arrhythmias and sudden cardiac death, particularly in the young and athletes. Although in its original description the disease was characterized by an exclusive or at least predominant right ventricle (RV) involvement, it has been demonstrated that the fibrofatty scar can also localize in the left ventricle (LV), with the LV lesion that can equalize or even overcome that of the RV. While the right-dominant form is typically associated with mutations in genes encoding for desmosomal proteins, other (non-desmosomal) mutations have been showed to cause the biventricular and left-dominant variants. This has led to a critical evaluation of the 2010 International Task Force criteria, which exclusively addressed the right phenotypic manifestations of ACM. An International Expert consensus document has been recently developed to provide upgraded criteria (“the Padua Criteria”) for the diagnosis of the whole spectrum of ACM phenotypes, particularly left-dominant forms, highlighting the use of cardiac magnetic resonance. This review aims to offer an overview of the current knowledge on the genetic basis, the phenotypic expressions, and the diagnosis of left-sided variants, both biventricular and left-dominant, of ACM.
Collapse
|
42
|
The Role of Z-disc Proteins in Myopathy and Cardiomyopathy. Int J Mol Sci 2021; 22:ijms22063058. [PMID: 33802723 PMCID: PMC8002584 DOI: 10.3390/ijms22063058] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/07/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
The Z-disc acts as a protein-rich structure to tether thin filament in the contractile units, the sarcomeres, of striated muscle cells. Proteins found in the Z-disc are integral for maintaining the architecture of the sarcomere. They also enable it to function as a (bio-mechanical) signalling hub. Numerous proteins interact in the Z-disc to facilitate force transduction and intracellular signalling in both cardiac and skeletal muscle. This review will focus on six key Z-disc proteins: α-actinin 2, filamin C, myopalladin, myotilin, telethonin and Z-disc alternatively spliced PDZ-motif (ZASP), which have all been linked to myopathies and cardiomyopathies. We will summarise pathogenic variants identified in the six genes coding for these proteins and look at their involvement in myopathy and cardiomyopathy. Listing the Minor Allele Frequency (MAF) of these variants in the Genome Aggregation Database (GnomAD) version 3.1 will help to critically re-evaluate pathogenicity based on variant frequency in normal population cohorts.
Collapse
|
43
|
Yuan P, Cheedipudi SM, Rouhi L, Fan S, Simon L, Zhao Z, Hong K, Gurha P, Marian AJ. Single-Cell RNA Sequencing Uncovers Paracrine Functions of the Epicardial-Derived Cells in Arrhythmogenic Cardiomyopathy. Circulation 2021; 143:2169-2187. [PMID: 33726497 DOI: 10.1161/circulationaha.120.052928] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Arrhythmogenic cardiomyopathy (ACM) manifests with sudden death, arrhythmias, heart failure, apoptosis, and myocardial fibro-adipogenesis. The phenotype typically starts at the epicardium and advances transmurally. Mutations in genes encoding desmosome proteins, including DSP (desmoplakin), are major causes of ACM. METHODS To delineate contributions of the epicardium to the pathogenesis of ACM, the Dsp allele was conditionally deleted in the epicardial cells in mice upon expression of tamoxifen-inducible Cre from the Wt1 locus. Wild type (WT) and Wt1-CreERT2:DspW/F were crossed to Rosa26mT/mG (R26mT/mG) dual reporter mice to tag the epicardial-derived cells with the EGFP (enhanced green fluorescent protein) reporter protein. Tagged epicardial-derived cells from adult Wt1-CreERT2:R26mT/mG and Wt1-CreERT2: R26mT/mG:DspW/F mouse hearts were isolated by fluorescence-activated cell staining and sequenced by single-cell RNA sequencing. RESULTS WT1 (Wilms tumor 1) expression was progressively restricted postnatally and was exclusive to the epicardium by postnatal day 21. Expression of Dsp was reduced in the epicardial cells but not in cardiac myocytes in the Wt1-CreERT2:DspW/F mice. The Wt1-CreERT2:DspW/F mice exhibited premature death, cardiac dysfunction, arrhythmias, myocardial fibro-adipogenesis, and apoptosis. Single-cell RNA sequencing of ≈18 000 EGFP-tagged epicardial-derived cells identified genotype-independent clusters of endothelial cells, fibroblasts, epithelial cells, and a very small cluster of cardiac myocytes, which were confirmed on coimmunofluorescence staining of the myocardial sections. Differentially expressed genes between the paired clusters in the 2 genotypes predicted activation of the inflammatory and mitotic pathways-including the TGFβ1 (transforming growth factor β1) and fibroblast growth factors-in the epicardial-derived fibroblast and epithelial clusters, but predicted their suppression in the endothelial cell cluster. The findings were corroborated by analysis of gene expression in the pooled RNA-sequencing data, which identified predominant dysregulation of genes involved in epithelial-mesenchymal transition, and dysregulation of 146 genes encoding the secreted proteins (secretome), including genes in the TGFβ1 pathway. Activation of the TGFβ1 and its colocalization with fibrosis in the Wt1-CreERT2:R26mT/mG:DspW/F mouse heart was validated by complementary methods. CONCLUSIONS Epicardial-derived cardiac fibroblasts and epithelial cells express paracrine factors, including TGFβ1 and fibroblast growth factors, which mediate epithelial-mesenchymal transition, and contribute to the pathogenesis of myocardial fibrosis, apoptosis, arrhythmias, and cardiac dysfunction in a mouse model of ACM. The findings uncover contributions of the epicardial-derived cells to the pathogenesis of ACM.
Collapse
Affiliation(s)
- Ping Yuan
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine (P.Y., S.M.C., L.R., S.F., P.G., A.J.M.).,Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, China (P.Y., K.H.)
| | - Sirisha M Cheedipudi
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine (P.Y., S.M.C., L.R., S.F., P.G., A.J.M.)
| | - Leila Rouhi
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine (P.Y., S.M.C., L.R., S.F., P.G., A.J.M.)
| | - Siyang Fan
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine (P.Y., S.M.C., L.R., S.F., P.G., A.J.M.)
| | - Lukas Simon
- Center for Precision Health, School of Biomedical Informatics and School of Public Health, University of Texas Health Science Center at Houston (L.S., Z.Z.)
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics and School of Public Health, University of Texas Health Science Center at Houston (L.S., Z.Z.)
| | - Kui Hong
- Department of Cardiovascular Medicine, Second Affiliated Hospital of Nanchang University, China (P.Y., K.H.)
| | - Priyatansh Gurha
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine (P.Y., S.M.C., L.R., S.F., P.G., A.J.M.)
| | - Ali J Marian
- Center for Cardiovascular Genetics, Institute of Molecular Medicine and Department of Medicine (P.Y., S.M.C., L.R., S.F., P.G., A.J.M.)
| |
Collapse
|
44
|
Marrow BA, Cook SA, Prasad SK, McCann GP. Emerging Techniques for Risk Stratification in Nonischemic Dilated Cardiomyopathy: JACC Review Topic of the Week. J Am Coll Cardiol 2020; 75:1196-1207. [PMID: 32164893 DOI: 10.1016/j.jacc.2019.12.058] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
Dilated cardiomyopathy (DCM) is a common condition, which carries significant mortality from sudden cardiac death and pump failure. Left ventricular ejection fraction has conventionally been used as a risk marker for sudden cardiac death, but has performed poorly in trials. There have been significant advances in the areas of cardiac magnetic resonance imaging and genetics, which are able to provide useful rick prediction in DCM. Biomarkers and cardiopulmonary exercise testing are well validated in the prediction of risk in heart failure; however, they have been tested less specifically in the DCM setting. This review will discuss these methods with a view toward multiparametric risk assessment in DCM with the hope of creating parametric risk models to predict sudden cardiac death and pump failure in the DCM population.
Collapse
Affiliation(s)
- Benjamin A Marrow
- Department of Cardiovascular Sciences, University of Leicester and the National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Stuart A Cook
- Department of Cardiovascular Medicine, National Heart & Lung Institute, Imperial College, London, United Kingdom; Department of Cardiology, National Heart Centre Singapore, Singapore
| | - Sanjay K Prasad
- Department of Cardiovascular Medicine, National Heart & Lung Institute, Imperial College, London, United Kingdom
| | - Gerry P McCann
- Department of Cardiovascular Sciences, University of Leicester and the National Institute for Health Research (NIHR) Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom.
| |
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Dilated cardiomyopathy (DCM) frequently involves an underlying genetic etiology, but the clinical approach for genetic diagnosis and application of results in clinical practice can be complex. RECENT FINDINGS International sequence databases described the landscape of genetic variability across populations, which informed guidelines for the interpretation of DCM gene variants. New evidence indicates that loss-of-function mutations in filamin C (FLNC) contribute to DCM and portend high risk of ventricular arrhythmia. A clinical framework aids in referring patients for DCM genetic testing and applying results to patient care. Results of genetic testing can change medical management, particularly in a subset of genes that increase risk for life-threatening ventricular arrhythmias, and can influence decisions for defibrillator therapy. Clinical screening and cascade genetic testing of family members should be diligently pursued to identify those at risk of developing DCM.
Collapse
Affiliation(s)
- Lisa D Wilsbacher
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Simpson Querrey Biomedical Research Center 8-404, 303 E. Superior St, Chicago, IL, 60611, USA.
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
46
|
Patel V, Asatryan B, Siripanthong B, Munroe PB, Tiku-Owens A, Lopes LR, Khanji MY, Protonotarios A, Santangeli P, Muser D, Marchlinski FE, Brady PA, Chahal CAA. State of the Art Review on Genetics and Precision Medicine in Arrhythmogenic Cardiomyopathy. Int J Mol Sci 2020; 21:ijms21186615. [PMID: 32927679 PMCID: PMC7554944 DOI: 10.3390/ijms21186615] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiomyopathy characterised by ventricular arrhythmia and an increased risk of sudden cardiac death (SCD). Numerous genetic determinants and phenotypic manifestations have been discovered in ACM, posing a significant clinical challenge. Further to this, wider evaluation of family members has revealed incomplete penetrance and variable expressivity in ACM, suggesting a complex genotype-phenotype relationship. This review details the genetic basis of ACM with specific genotype-phenotype associations, providing the reader with a nuanced perspective of this condition; whilst also proposing a future roadmap to delivering precision medicine-based management in ACM.
Collapse
Affiliation(s)
- Viraj Patel
- Department of Cardiology, Royal Papworth Hospital, Cambridge CB2 0AY, UK;
| | - Babken Asatryan
- Department of Cardiology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland;
| | | | - Patricia B. Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK;
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Anjali Tiku-Owens
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA; (A.T.-O.); (P.S.); (D.M.); (F.E.M.)
| | - Luis R. Lopes
- Department of Cardiology, St Bartholomew’s Hospital, London EC1A 7BE, UK; (L.R.L.); (M.Y.K.); (A.P.)
- Centre for Heart Muscle Disease, UCL Institute of Cardiovascular Science, London WC1E 6BT, UK
| | - Mohammed Y. Khanji
- NIHR Barts Cardiovascular Biomedical Research Centre, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
- Department of Cardiology, St Bartholomew’s Hospital, London EC1A 7BE, UK; (L.R.L.); (M.Y.K.); (A.P.)
| | - Alexandros Protonotarios
- Department of Cardiology, St Bartholomew’s Hospital, London EC1A 7BE, UK; (L.R.L.); (M.Y.K.); (A.P.)
- Centre for Heart Muscle Disease, UCL Institute of Cardiovascular Science, London WC1E 6BT, UK
| | - Pasquale Santangeli
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA; (A.T.-O.); (P.S.); (D.M.); (F.E.M.)
| | - Daniele Muser
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA; (A.T.-O.); (P.S.); (D.M.); (F.E.M.)
| | - Francis E. Marchlinski
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA; (A.T.-O.); (P.S.); (D.M.); (F.E.M.)
| | - Peter A. Brady
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Division of Cardiology, Department of Medicine, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA
| | - C. Anwar A. Chahal
- Department of Cardiology, Royal Papworth Hospital, Cambridge CB2 0AY, UK;
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA; (A.T.-O.); (P.S.); (D.M.); (F.E.M.)
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA;
- Correspondence: ; Tel.: +1-267-252-3461
| |
Collapse
|
47
|
Pătru AE, Onciul S, Sturzu A, Cinteză E, Gima E, Popescu BA, Chevalier P, Jurcuț R. Acute Myocarditis-Like Episode in a Curly-Haired Young Boy-Red Flags for Familial Arrhythmogenic Cardiomyopathy. Diagnostics (Basel) 2020; 10:diagnostics10090651. [PMID: 32878047 PMCID: PMC7555819 DOI: 10.3390/diagnostics10090651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/26/2020] [Accepted: 08/26/2020] [Indexed: 11/30/2022] Open
Abstract
The present case report describes a mother and son with arrhythmogenic cardiomyopathy (ACM) with early and greater left ventricle (LV) involvement. The presence of curly hair in both, together with the resuscitated sudden cardiac death of the mother, allowed timely genetic testing, which found a pathogenic nonsense mutation of the desmoplakin gene. While asymptomatic from an arrhythmic point of view, the son’s evolution was characterized by a well-documented exercise-induced myocarditis-like stage.
Collapse
Affiliation(s)
- Alina Elena Pătru
- Expert Center for Genetic Cardiovascular Diseases, Emergency Institute for Cardiovascular Diseases, Sos. Fundeni nr. 258, 022328 Bucharest, Romania; (A.E.P.); (A.S.); (B.A.P.)
| | - Sebastian Onciul
- Department 4-Cardiothoracic Pathology, University of Medicine and Pharmacy Carol Davila, Eroii Sanitari Bvd. 8, 050474 Bucharest, Romania; (S.O.); (E.C.)
- Department of Cardiology, Emergency Clinical Hospital Floreasca, Calea Floreasca nr 8, 014461 Bucharest, Romania
- Emerald Medical Center, Nicolae G. Caramfil, no 75, 077190 Bucharest, Romania
| | - Adrian Sturzu
- Expert Center for Genetic Cardiovascular Diseases, Emergency Institute for Cardiovascular Diseases, Sos. Fundeni nr. 258, 022328 Bucharest, Romania; (A.E.P.); (A.S.); (B.A.P.)
- Department 4-Cardiothoracic Pathology, University of Medicine and Pharmacy Carol Davila, Eroii Sanitari Bvd. 8, 050474 Bucharest, Romania; (S.O.); (E.C.)
| | - Eliza Cinteză
- Department 4-Cardiothoracic Pathology, University of Medicine and Pharmacy Carol Davila, Eroii Sanitari Bvd. 8, 050474 Bucharest, Romania; (S.O.); (E.C.)
- Department of Pediatric Cardiology, Emergency Clinical Children’s Hospital “Marie S. Curie”, Bd. Constantin Brâncoveanu 20, 077120 Bucharest, Romania
| | - Eleonora Gima
- Department of Cardiology, University County Clinical Hospital, Bd. Tomis 145, 900591 Constanta, Romania;
| | - Bogdan A. Popescu
- Expert Center for Genetic Cardiovascular Diseases, Emergency Institute for Cardiovascular Diseases, Sos. Fundeni nr. 258, 022328 Bucharest, Romania; (A.E.P.); (A.S.); (B.A.P.)
- Department 4-Cardiothoracic Pathology, University of Medicine and Pharmacy Carol Davila, Eroii Sanitari Bvd. 8, 050474 Bucharest, Romania; (S.O.); (E.C.)
| | - Philippe Chevalier
- Department of Rhythmology, Hospices Civils de Lyon, Louis Pradel Cardiovascular Hospital, 26 Avenue du Doyen Jean Lépine, 69500 Lyon, France;
- Lyon Reference Center for Inherited Arrhythmias, Louis Pradel Cardiovascular Hospital, Université de Lyon, 28 avenue Doyen Lépine, 69500 Lyon, France
| | - Ruxandra Jurcuț
- Expert Center for Genetic Cardiovascular Diseases, Emergency Institute for Cardiovascular Diseases, Sos. Fundeni nr. 258, 022328 Bucharest, Romania; (A.E.P.); (A.S.); (B.A.P.)
- Department 4-Cardiothoracic Pathology, University of Medicine and Pharmacy Carol Davila, Eroii Sanitari Bvd. 8, 050474 Bucharest, Romania; (S.O.); (E.C.)
- Correspondence: ; Tel.: +40-21-3175227
| |
Collapse
|
48
|
Emerging role of genetic analysis for stratification of sudden cardiac death risk in dilated cardiomyopathy: An illustrative case. HeartRhythm Case Rep 2020; 6:499-502. [PMID: 32817827 PMCID: PMC7424303 DOI: 10.1016/j.hrcr.2020.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
49
|
Hammersley DJ, Halliday BP. Sudden Cardiac Death Prediction in Non-ischemic Dilated Cardiomyopathy: a Multiparametric and Dynamic Approach. Curr Cardiol Rep 2020; 22:85. [PMID: 32648053 PMCID: PMC7347683 DOI: 10.1007/s11886-020-01343-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Sudden cardiac death is recognised as a devastating consequence of non-ischaemic dilated cardiomyopathy. Although implantable cardiac defibrillators offer protection against some forms of sudden death, the identification of patients in this population most likely to benefit from this therapy remains challenging and controversial. In this review, we evaluate current guidelines and explore established and novel predictors of sudden cardiac death in patients with non-ischaemic dilated cardiomyopathy. RECENT FINDINGS Current international guidelines for primary prevention implantable defibrillator therapy do not result in improved longevity for many patients with non-ischemic cardiomyopathy and severe left ventricular dysfunction. More precise methods for identifying higher-risk patients that derive true prognostic benefit from this therapy are required. Dynamic and multi-parametric characterization of myocardial, electrical, serological and genetic substrate offers novel strategies for predicting major arrhythmic risk. Balancing the risk of non-sudden death offers an opportunity to personalize therapy and avoid unnecessary device implantation for those less likely to derive benefit.
Collapse
Affiliation(s)
- Daniel J. Hammersley
- Cardiovascular Research Centre, Royal Brompton Hospital, Sydney Street, London, SW3 6NP UK
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Brian P. Halliday
- Cardiovascular Research Centre, Royal Brompton Hospital, Sydney Street, London, SW3 6NP UK
- National Heart & Lung Institute, Imperial College London, London, UK
| |
Collapse
|
50
|
Tsuruta Y, Sueta D, Takashio S, Oda S, Sakamoto K, Kaikita K, Kato K, Ohno S, Horie M, Tsujita K. Left-dominant arrhythmogenic cardiomyopathy with a nonsense mutation in DSP. ESC Heart Fail 2020; 7:3174-3178. [PMID: 32592540 PMCID: PMC7524242 DOI: 10.1002/ehf2.12790] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/24/2020] [Accepted: 05/07/2020] [Indexed: 01/06/2023] Open
Abstract
A 74‐year‐old man had abnormal left ventricular (LV) function according to a perioperative test at a local hospital and was transferred to our institution for further evaluation and treatment. His electrocardiogram demonstrated the presence of premature ventricular contraction with a QRS complex of the right bundle branch block type and superior axis. His echocardiography showed systolic dysfunction of the LV (LV ejection fraction, 44.6%). Cardiac computed tomography imaging revealed banded and patchy densities observed frequently from the middle to epicardial layer of the LV wall. Cardiac magnetic resonance imaging showed fat signals on fat‐selective images and late gadolinium enhancement in the mid‐wall to subepicardial layers in the LV myocardium. Endomyocardial biopsy revealed the histological presence of fibrofatty replacement. A genetic analysis revealed a nonsense mutation in the desmoplakin gene. Thus, he was diagnosed with left‐dominant arrhythmogenic cardiomyopathy. To prevent fatal ventricular arrhythmias, an implantable cardioverter defibrillator was successfully implanted.
Collapse
Affiliation(s)
- Yuichiro Tsuruta
- Department of Cardiovascular Medicine and Diagnostic Radiology, Faculty of Life Sciences, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Daisuke Sueta
- Department of Cardiovascular Medicine and Diagnostic Radiology, Faculty of Life Sciences, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Seiji Takashio
- Department of Cardiovascular Medicine and Diagnostic Radiology, Faculty of Life Sciences, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Seitaro Oda
- Department of Diagnostic Radiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kenij Sakamoto
- Department of Cardiovascular Medicine and Diagnostic Radiology, Faculty of Life Sciences, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Koichi Kaikita
- Department of Cardiovascular Medicine and Diagnostic Radiology, Faculty of Life Sciences, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Koichi Kato
- Department of Cardiovascular Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Seiko Ohno
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Minoru Horie
- Center for Epidemiologic Research in Asia, Shiga University of Medical Science, Otsu, Japan
| | - Kenichi Tsujita
- Department of Cardiovascular Medicine and Diagnostic Radiology, Faculty of Life Sciences, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| |
Collapse
|