1
|
Diamantopoulos MA, Adamopoulos PG, Tsiakanikas P, Nisotakis T, Skourou PC, Scorilas A. Unraveling novel mRNA transcripts of the human DNA N-glycosylase 1 (NTHL1) gene with the implementation of an innovative targeted DNA-seq assay. Gene 2024; 930:148856. [PMID: 39147115 DOI: 10.1016/j.gene.2024.148856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/13/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024]
Abstract
The human NTHL1 gene encodes a DNA glycosylase that plays a key role in the base excision repair (BER) pathway, repairing oxidative DNA damage and maintaining genome integrity. The physiological activity of NTHL1 is crucial in preventing genetic alterations that can lead to cancer. In this study, we employed an innovative targeted DNA sequencing (DNA-seq) methodology to explore the transcriptional landscape of the NTHL1 gene, revealing previously uncharacterized alternative splicing events and novel exons. Our designed approach provided significantly improved sequencing depth and coverage, enabling the identification of novel NTHL1 mRNA transcripts. Bioinformatics analysis confirmed all annotated splice junctions of the main NTHL1 transcripts (v.1 - v.3) and revealed novel mRNA transcripts (NTHL1 v.4 - v.9) derived from splicing events between annotated exons as well as mRNAs containing previously uncharacterized exons (NTHL1 v.10 - v.14). Quantitative PCR analysis highlighted a diverse expression pattern of these novel transcripts across different human cell lines, suggesting cell-specific roles and regulatory mechanisms. Notably, NTHL1 v.5 was overexpressed in luminal A breast cancer cells (MCF-7), while v.13 was prominent in triple negative (BT-20), HER2 + breast cancer (SK-BR-3), prostate, colorectal cancer cells and HEK-293 cells. Our findings suggest that specific novel NTHL1 transcripts may encode protein isoforms with distinct structural features, as indicated by ribosome profiling datasets, while others containing premature termination codons could function as long non-coding RNAs. These insights enhance our understanding of NTHL1 regulatory role and its potential as a biomarker and therapeutic target in human malignancies. This study underscores the importance of exploring the transcriptional diversity of NTHL1 to fully elucidate its role in cancer pathobiology.
Collapse
Affiliation(s)
- Marios A Diamantopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros Nisotakis
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Paraskevi C Skourou
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
2
|
Nugent PJ, Park H, Wladyka CL, Chen KY, Bynum C, Quarterman G, Hsieh AC, Subramaniam AR. Decoding RNA Metabolism by RNA-linked CRISPR Screening in Human Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.25.605204. [PMID: 39091804 PMCID: PMC11291135 DOI: 10.1101/2024.07.25.605204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
RNAs undergo a complex choreography of metabolic processes in human cells that are regulated by thousands of RNA-associated proteins. While the effects of individual RNA-associated proteins on RNA metabolism have been extensively characterized, the full complement of regulators for most RNA metabolic events remain unknown. Here we present a massively parallel RNA-linked CRISPR (ReLiC) screening approach to measure the responses of diverse RNA metabolic events to knockout of 2,092 human genes encoding all known RNA-associated proteins. ReLiC screens highlight modular interactions between gene networks regulating splicing, translation, and decay of mRNAs. When combined with biochemical fractionation of polysomes, ReLiC reveals striking pathway-specific coupling between growth fitness and mRNA translation. Perturbing different components of the translation and proteostasis machineries have distinct effects on ribosome occupancy, while perturbing mRNA transcription leaves ribosome occupancy largely intact. Isoform-selective ReLiC screens capture differential regulation of intron retention and exon skipping by SF3b complex subunits. Chemogenomic screens using ReLiC decipher translational regulators upstream of mRNA decay and uncover a role for the ribosome collision sensor GCN1 during treatment with the anti-leukemic drug homoharringtonine. Our work demonstrates ReLiC as a versatile platform for discovering and dissecting regulatory principles of human RNA metabolism.
Collapse
Affiliation(s)
- Patrick J Nugent
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle WA, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle WA, USA
| | - Heungwon Park
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle WA, USA
| | - Cynthia L Wladyka
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle WA, USA
| | - Katharine Y Chen
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle WA, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle WA, USA
| | - Christine Bynum
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle WA, USA
- Department of Biology, Spelman College, Atlanta GA, USA
| | - Grace Quarterman
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle WA, USA
- Department of Biology, Spelman College, Atlanta GA, USA
| | - Andrew C Hsieh
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle WA, USA
- Department of Medicine and Department of Genome Sciences, University of Washington, Seattle WA, USA
| | - Arvind Rasi Subramaniam
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle WA, USA
- Department of Biochemistry and Department of Genome Sciences, University of Washington, Seattle WA, USA
| |
Collapse
|
3
|
Di Francesco D, Swenerton A, Li WL, Dunham C, Hendson G, Boerkoel CF. Are CUL3 variants an underreported cause of congenital heart disease? Am J Med Genet A 2023; 191:2903-2907. [PMID: 37665043 DOI: 10.1002/ajmg.a.63387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023]
Abstract
Complex heart defects (CHD) are a common malformation associated with disruption of developmental pathways. The Cullin-RING ligases (CRLs) are multi-subunit E3 ubiquitin ligases in which Cullin 3 (CUL3) serves as a scaffolding subunit. Heterozygous CUL3 variants have been associated with neurodevelopmental disorders and pseudohypoaldosteronism type IIE. We report a fetus with CHD and a de novo CUL3 variant (NM_003590.4:c.[1549_1552del];[=], p.(Ser517Profs*23)) and review CUL3 variants reported with CHD. We postulate that CUL3 variants predispose to CHD and hypothesize mechanisms of pathogenesis.
Collapse
Affiliation(s)
- Daniela Di Francesco
- MD Undergraduate Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anne Swenerton
- Provincial Medical Genetics Program, B.C. Women's Hospital, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Christopher Dunham
- Department of Pathology and Laboratory Medicine, University of British Columbia and BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Glenda Hendson
- Department of Pathology and Laboratory Medicine, University of British Columbia and BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Cornelius F Boerkoel
- Provincial Medical Genetics Program, B.C. Women's Hospital, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Patro I, Sahoo A, Nayak BR, Das R, Majumder S, Panigrahi GK. Nonsense-Mediated mRNA Decay: Mechanistic Insights and Physiological Significance. Mol Biotechnol 2023:10.1007/s12033-023-00927-4. [PMID: 37930508 DOI: 10.1007/s12033-023-00927-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/28/2023] [Indexed: 11/07/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is an evolutionarily conserved surveillance mechanism across eukaryotes and also regulates the expression of physiological transcripts, thus involved in gene regulation. It essentially ensures recognition and removal of aberrant transcripts. Therefore, the NMD protects the cellular system by restricting the synthesis of truncated proteins, potentially by eliminating the faulty mRNAs. NMD is an evolutionarily conserved surveillance mechanism across eukaryotes and also regulates the expression of physiological transcripts, thus involved in gene regulation as well. Primarily, the NMD machinery scans and differentiates the aberrant and non-aberrant transcripts. A myriad of cellular dysfunctions arise due to production of truncated proteins, so the NMD core proteins, the up-frameshift factors (UPFs) recognizes the faulty mRNAs and further recruits factors resulting in the mRNA degradation. NMD exhibits astounding variability in its ability in regulating cellular mechanisms including both pathological and physiological events. But, the detailed underlying molecular mechanisms in NMD remains blurred and require extensive investigation to gain insights on cellular homeostasis. The complexity in understanding of NMD pathway arises due to the involvement of numerous proteins, molecular interactions and their functioning in different steps of this process. Moreover methods such as alternative splicing generates numerous isoforms of mRNA, so it makes difficulties in understanding the impact of alternative splicing on the efficiency of NMD functioning. Role of NMD in cancer development is very complex. Studies have shown that in some cases cancer cells use NMD pathway as a tool to exploit the NMD mechanism to maintain tumor microenvironment. A greater level of understanding about the intricate mechanism of how tumor used NMD pathway for their benefits, a strategy can be developed for targeting and inhibiting NMD factors involved in pro-tumor activity. There are very little amount of information available about the NMD pathway, how it discriminate mRNAs that are targeted by NMD from those that are not. This review highlights our current understanding of NMD, specifically the regulatory mechanisms and attempts to outline less explored questions that warrant further investigations. Taken as a whole, a detailed molecular understanding of the NMD mechanism could lead to wide-ranging applications for improving cellular homeostasis and paving out strategies in combating pathological disorders leaping forward toward achieving United Nations sustainable development goals (SDG 3: Good health and well-being).
Collapse
Affiliation(s)
- Ipsita Patro
- School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India
| | - Annapurna Sahoo
- School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India.
| | - Bilash Ranjan Nayak
- School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India
| | - Rutupurna Das
- School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India
| | - Sanjoy Majumder
- School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India
| | - Gagan Kumar Panigrahi
- School of Applied Sciences, Centurion University of Technology and Management, Bhubaneswar, Odisha, India.
| |
Collapse
|
5
|
Monaghan L, Longman D, Cáceres JF. Translation-coupled mRNA quality control mechanisms. EMBO J 2023; 42:e114378. [PMID: 37605642 PMCID: PMC10548175 DOI: 10.15252/embj.2023114378] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023] Open
Abstract
mRNA surveillance pathways are essential for accurate gene expression and to maintain translation homeostasis, ensuring the production of fully functional proteins. Future insights into mRNA quality control pathways will enable us to understand how cellular mRNA levels are controlled, how defective or unwanted mRNAs can be eliminated, and how dysregulation of these can contribute to human disease. Here we review translation-coupled mRNA quality control mechanisms, including the non-stop and no-go mRNA decay pathways, describing their mechanisms, shared trans-acting factors, and differences. We also describe advances in our understanding of the nonsense-mediated mRNA decay (NMD) pathway, highlighting recent mechanistic findings, the discovery of novel factors, as well as the role of NMD in cellular physiology and its impact on human disease.
Collapse
Affiliation(s)
- Laura Monaghan
- MRC Human Genetics Unit, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Dasa Longman
- MRC Human Genetics Unit, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| | - Javier F Cáceres
- MRC Human Genetics Unit, Institute of Genetics and CancerUniversity of EdinburghEdinburghUK
| |
Collapse
|
6
|
McHugh E, Bulloch MS, Batinovic S, Patrick CJ, Sarna DK, Ralph SA. Nonsense-mediated decay machinery in Plasmodium falciparum is inefficient and non-essential. mSphere 2023; 8:e0023323. [PMID: 37366629 PMCID: PMC10449492 DOI: 10.1128/msphere.00233-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 05/15/2023] [Indexed: 06/28/2023] Open
Abstract
Nonsense-mediated decay (NMD) is a conserved mRNA quality control process that eliminates transcripts bearing a premature termination codon. In addition to its role in removing erroneous transcripts, NMD is involved in post-transcriptional regulation of gene expression via programmed intron retention in metazoans. The apicomplexan parasite Plasmodium falciparum shows relatively high levels of intron retention, but it is unclear whether these variant transcripts are functional targets of NMD. In this study, we use CRISPR-Cas9 to disrupt and epitope-tag the P. falciparum orthologs of two core NMD components: PfUPF1 (PF3D7_1005500) and PfUPF2 (PF3D7_0925800). We localize both PfUPF1 and PfUPF2 to puncta within the parasite cytoplasm and show that these proteins interact with each other and other mRNA-binding proteins. Using RNA-seq, we find that although these core NMD orthologs are expressed and interact in P. falciparum, they are not required for degradation of nonsense transcripts. Furthermore, our work suggests that the majority of intron retention in P. falciparum has no functional role and that NMD is not required for parasite growth ex vivo. IMPORTANCE In many organisms, the process of destroying nonsense transcripts is dependent on a small set of highly conserved proteins. We show that in the malaria parasite, these proteins do not impact the abundance of nonsense transcripts. Furthermore, we demonstrate efficient CRISPR-Cas9 editing of the malaria parasite using commercial Cas9 nuclease and synthetic guide RNA, streamlining genomic modifications in this genetically intractable organism.
Collapse
Affiliation(s)
- Emma McHugh
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Michaela S. Bulloch
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Steven Batinovic
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, Victoria, Australia
| | - Cameron J. Patrick
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, Australia
| | - Drishti K. Sarna
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| | - Stuart A. Ralph
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
7
|
de la Peña JB, Chase R, Kunder N, Smith PR, Lou TF, Stanowick A, Suresh P, Shukla T, Butcher SE, Price TJ, Campbell ZT. Inhibition of Nonsense-Mediated Decay Induces Nociceptive Sensitization through Activation of the Integrated Stress Response. J Neurosci 2023; 43:2921-2933. [PMID: 36894318 PMCID: PMC10124962 DOI: 10.1523/jneurosci.1604-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/20/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
RNA stability is meticulously controlled. Here, we sought to determine whether an essential post-transcriptional regulatory mechanism plays a role in pain. Nonsense-mediated decay (NMD) safeguards against translation of mRNAs that harbor premature termination codons and controls the stability of ∼10% of typical protein-coding mRNAs. It hinges on the activity of the conserved kinase SMG1. Both SMG1 and its target, UPF1, are expressed in murine DRG sensory neurons. SMG1 protein is present in both the DRG and sciatic nerve. Using high-throughput sequencing, we examined changes in mRNA abundance following inhibition of SMG1. We confirmed multiple NMD stability targets in sensory neurons, including ATF4. ATF4 is preferentially translated during the integrated stress response (ISR). This led us to ask whether suspension of NMD induces the ISR. Inhibition of NMD increased eIF2-α phosphorylation and reduced the abundance of the eIF2-α phosphatase constitutive repressor of eIF2-α phosphorylation. Finally, we examined the effects of SMG1 inhibition on pain-associated behaviors. Peripheral inhibition of SMG1 results in mechanical hypersensitivity in males and females that persists for several days and priming to a subthreshold dose of PGE2. Priming was fully rescued by a small-molecule inhibitor of the ISR. Collectively, our results indicate that suspension of NMD promotes pain through stimulation of the ISR.SIGNIFICANCE STATEMENT Nociceptors undergo long-lived changes in their plasticity which may contribute to chronic pain. Translational regulation has emerged as a dominant mechanism in pain. Here, we investigate the role of a major pathway of RNA surveillance called nonsense-mediated decay (NMD). Modulation of NMD is potentially beneficial for a broad array of diseases caused by frameshift or nonsense mutations. Our results suggest that inhibition of the rate-limiting step of NMD drives behaviors associated with pain through activation of the ISR. This work reveals complex interconnectivity between RNA stability and translational regulation and suggests an important consideration in harnessing the salubrious benefits of NMD disruption.
Collapse
Affiliation(s)
- June Bryan de la Peña
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, Wisconsin 53792
| | - Rebecca Chase
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Nikesh Kunder
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Patrick R Smith
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, Wisconsin 53792
| | - Tzu-Fang Lou
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Alexander Stanowick
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Prarthana Suresh
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas 75080
| | - Tarjani Shukla
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, Wisconsin 53792
| | - Samuel E Butcher
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53792
| | - Theodore J Price
- Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas 75080
- Department of Neuroscience, University of Texas at Dallas, Richardson, Texas 75080
| | - Zachary T Campbell
- Department of Anesthesiology, University of Wisconsin-Madison, Madison, Wisconsin 53792
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53792
| |
Collapse
|
8
|
Dofash LNH, Monahan GV, Servián-Morilla E, Rivas E, Faiz F, Sullivan P, Oates E, Clayton J, Taylor RL, Davis MR, Beilharz T, Laing NG, Cabrera-Serrano M, Ravenscroft G. A KLHL40 3' UTR splice-altering variant causes milder NEM8, an under-appreciated disease mechanism. Hum Mol Genet 2023; 32:1127-1136. [PMID: 36322148 DOI: 10.1093/hmg/ddac272] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/04/2022] [Accepted: 10/29/2022] [Indexed: 12/23/2022] Open
Abstract
Nemaline myopathy 8 (NEM8) is typically a severe autosomal recessive disorder associated with variants in the kelch-like family member 40 gene (KLHL40). Common features include fetal akinesia, fractures, contractures, dysphagia, respiratory failure and neonatal death. Here, we describe a 26-year-old man with relatively mild NEM8. He presented with hypotonia and bilateral femur fractures at birth, later developing bilateral Achilles' contractures, scoliosis, and elbow and knee contractures. He had walking difficulties throughout childhood and became wheelchair bound from age 13 after prolonged immobilization. Muscle magnetic resonance imaging at age 13 indicated prominent fat replacement in his pelvic girdle, posterior compartments of thighs and vastus intermedius. Muscle biopsy revealed nemaline bodies and intranuclear rods. RNA sequencing and western blotting of patient skeletal muscle indicated significant reduction in KLHL40 mRNA and protein, respectively. Using gene panel screening, exome sequencing and RNA sequencing, we identified compound heterozygous variants in KLHL40; a truncating 10.9 kb deletion in trans with a likely pathogenic variant (c.*152G > T) in the 3' untranslated region (UTR). Computational tools SpliceAI and Introme predicted the c.*152G > T variant created a cryptic donor splice site. RNA-seq and in vitro analyses indicated that the c.*152G > T variant induces multiple de novo splicing events that likely provoke nonsense mediated decay of KLHL40 mRNA explaining the loss of mRNA expression and protein abundance in the patient. Analysis of 3' UTR variants in ClinVar suggests variants that introduce aberrant 3' UTR splicing may be underrecognized in Mendelian disease. We encourage consideration of this mechanism during variant curation.
Collapse
Affiliation(s)
- Lein N H Dofash
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Gavin V Monahan
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
| | - Emilia Servián-Morilla
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Sevilla 41013, Spain
| | - Eloy Rivas
- Department of Pathology, Hospital Universitario Virgen del Rocío Sevilla, Sevilla 41013, Spain
| | - Fathimath Faiz
- Diagnostic Genomics, PathWest, Nedlands, WA 6009, Australia
| | - Patricia Sullivan
- Children's Cancer Institute, Lowy Cancer Centre, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Emily Oates
- School of Biotechnology & Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2033, Australia
| | - Joshua Clayton
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
| | - Rhonda L Taylor
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
| | - Mark R Davis
- Diagnostic Genomics, PathWest, Nedlands, WA 6009, Australia
| | - Traude Beilharz
- Development and Stem Cells Program, Department of Biochemistry & Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton 3800 Victoria, Australia
| | - Nigel G Laing
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
| | - Macarena Cabrera-Serrano
- Department of Neurology, Neuromuscular Unit and Instituto de Biomedicina de Sevilla/CSIC, Hospital Universitario Virgen del Rocío, Sevilla 41013, Spain
| | - Gianina Ravenscroft
- Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia, Nedlands, WA 6009, Australia
- School of Biomedical Sciences, University of Western Australia, Nedlands, WA 6009, Australia
| |
Collapse
|
9
|
Boerkoel P, Huynh S, Yang GX, Boerkoel CF, Patel MS, Lehman A, Terry J, Elbert A. NOTCH1 loss of the TAD and PEST domain: An antimorph? Am J Med Genet A 2023; 191:1593-1598. [PMID: 36866832 DOI: 10.1002/ajmg.a.63167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/05/2023] [Accepted: 02/15/2023] [Indexed: 03/04/2023]
Abstract
The Notch proteins play key roles in cell fate determination during development. Germline pathogenic variants in NOTCH1 predispose to a spectrum of cardiovascular malformations including Adams-Oliver syndrome and a wide variety of isolated complex and simple congenital heart defects. The intracellular C-terminus of the single-pass transmembrane receptor encoded by NOTCH1 contains a transcriptional activating domain (TAD) required for target gene activation and a PEST domain (a sequence rich in proline, glutamic acid, serine, and threonine), regulating protein stability and turnover. We present a patient with a novel variant encoding a truncated NOTCH1 protein without the TAD and PEST domain (NM_017617.4: c.[6626_6629del];[=], p.(Tyr2209CysfsTer38)) and extensive cardiovascular abnormalities consistent with a NOTCH1-mediated mechanism. This variant fails to promote transcription of target genes as assessed by luciferase reporter assay. Given the roles of the TAD and PEST domains in NOTCH1 function and regulation, we hypothesize that loss of both the TAD and the PEST domain results in a stable, loss-of-function protein that acts as an antimorph through competition with wild-type NOTCH1.
Collapse
Affiliation(s)
- Pierre Boerkoel
- MD Undergraduate Program, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stephanie Huynh
- Provincial Medical Genetics Program, B.C. Women's Hospital, Vancouver, British Columbia, Canada
| | - Gui Xiang Yang
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Cornelius F Boerkoel
- Provincial Medical Genetics Program, B.C. Women's Hospital, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Millan S Patel
- Provincial Medical Genetics Program, B.C. Women's Hospital, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anna Lehman
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada.,BC Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jefferson Terry
- Department of Pathology and Laboratory Medicine, University of British Columbia and BC Children's Hospital, Vancouver, British Columbia, Canada
| | - Adrienne Elbert
- Provincial Medical Genetics Program, B.C. Women's Hospital, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Greene D, Pirri D, Frudd K, Sackey E, Al-Owain M, Giese APJ, Ramzan K, Riaz S, Yamanaka I, Boeckx N, Thys C, Gelb BD, Brennan P, Hartill V, Harvengt J, Kosho T, Mansour S, Masuno M, Ohata T, Stewart H, Taibah K, Turner CLS, Imtiaz F, Riazuddin S, Morisaki T, Ostergaard P, Loeys BL, Morisaki H, Ahmed ZM, Birdsey GM, Freson K, Mumford A, Turro E. Genetic association analysis of 77,539 genomes reveals rare disease etiologies. Nat Med 2023; 29:679-688. [PMID: 36928819 PMCID: PMC10033407 DOI: 10.1038/s41591-023-02211-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/06/2023] [Indexed: 03/18/2023]
Abstract
The genetic etiologies of more than half of rare diseases remain unknown. Standardized genome sequencing and phenotyping of large patient cohorts provide an opportunity for discovering the unknown etiologies, but this depends on efficient and powerful analytical methods. We built a compact database, the 'Rareservoir', containing the rare variant genotypes and phenotypes of 77,539 participants sequenced by the 100,000 Genomes Project. We then used the Bayesian genetic association method BeviMed to infer associations between genes and each of 269 rare disease classes assigned by clinicians to the participants. We identified 241 known and 19 previously unidentified associations. We validated associations with ERG, PMEPA1 and GPR156 by searching for pedigrees in other cohorts and using bioinformatic and experimental approaches. We provide evidence that (1) loss-of-function variants in the Erythroblast Transformation Specific (ETS)-family transcription factor encoding gene ERG lead to primary lymphoedema, (2) truncating variants in the last exon of transforming growth factor-β regulator PMEPA1 result in Loeys-Dietz syndrome and (3) loss-of-function variants in GPR156 give rise to recessive congenital hearing impairment. The Rareservoir provides a lightweight, flexible and portable system for synthesizing the genetic and phenotypic data required to study rare disease cohorts with tens of thousands of participants.
Collapse
Affiliation(s)
- Daniel Greene
- Department of Medicine, University of Cambridge, Cambridge, UK
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniela Pirri
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Karen Frudd
- National Heart and Lung Institute, Imperial College London, London, UK
- University College London Institute of Ophthalmology, University College London, London, UK
| | - Ege Sackey
- Molecular and Clinical Sciences Institute, St. George's University of London, London, UK
| | - Mohammed Al-Owain
- Department of Medical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Arnaud P J Giese
- Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Khushnooda Ramzan
- Department of Clinical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Sehar Riaz
- Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD, USA
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Itaru Yamanaka
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Nele Boeckx
- Center for Medical Genetics, Antwerp University Hospital/University of Antwerp, Antwerp, Belgium
| | - Chantal Thys
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Bruce D Gelb
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paul Brennan
- Northern Genetics Service, Newcastle upon Tyne Hospitals National Health Service Trust International Centre for Life, Newcastle upon Tyne, UK
| | - Verity Hartill
- Department of Clinical Genetics, Chapel Allerton Hospital, Leeds Teaching Hospitals National Health Service Trust, Leeds, UK
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Julie Harvengt
- Centre for Medical Genetics, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Tomoki Kosho
- Department of Medical Genetics, Shinshu University School of Medicine, Nagano, Japan
- Center for Medical Genetics, Shinshu University Hospital, Nagano, Japan
| | - Sahar Mansour
- Molecular and Clinical Sciences Institute, St. George's University of London, London, UK
- South West Thames Regional Genetics Service, St. George's University Hospitals National Health Service Foundation Trust, London, UK
| | - Mitsuo Masuno
- Department of Medical Genetics, Kawasaki Medical School Hospital, Okayama, Japan
| | | | - Helen Stewart
- Oxford University Hospitals National Health Service Foundation Trust, Oxford, UK
| | - Khalid Taibah
- Ear Nose and Throat Medical Centre, Riyadh, Saudi Arabia
| | - Claire L S Turner
- Peninsula Clinical Genetics Service, Royal Devon & Exeter Hospital, Exeter, UK
| | - Faiqa Imtiaz
- Department of Clinical Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Saima Riazuddin
- Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD, USA
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Takayuki Morisaki
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Osaka, Japan
- Division of Molecular Pathology and Department of Internal Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Pia Ostergaard
- Molecular and Clinical Sciences Institute, St. George's University of London, London, UK
| | - Bart L Loeys
- Center for Medical Genetics, Antwerp University Hospital/University of Antwerp, Antwerp, Belgium
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Hiroko Morisaki
- Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center, Osaka, Japan
- Department of Medical Genetics, Sakakibara Heart Institute, Tokyo, Japan
| | - Zubair M Ahmed
- Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD, USA
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Graeme M Birdsey
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Kathleen Freson
- Department of Cardiovascular Sciences, Center for Molecular and Vascular Biology, KU Leuven, Leuven, Belgium
| | - Andrew Mumford
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
- South West National Health Service Genomic Medicine Service Alliance, Bristol, UK
| | - Ernest Turro
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
11
|
Mitra R, Rehman A, Singh KK, Jaganathan BG. Multifaceted roles of MAGOH Proteins. Mol Biol Rep 2023; 50:1931-1941. [PMID: 36396768 DOI: 10.1007/s11033-022-07904-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 07/14/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022]
Abstract
MAGOH and MAGOHB are paralog proteins that can substitute each other in the exon junction complex (EJC). The EJC is formed of core components EIF4A3, RBM8A, and MAGOH/MAGOHB. As a part of the EJC, MAGOH proteins are required for mRNA splicing, export, translation and nonsense-mediated mRNA decay (NMD). MAGOH is also essential for embryonic development and normal cellular functioning. The haploinsufficiency of MAGOH results in disorders such as microcephaly and cancer. The present review discusses the discovery of MAGOH, its paralog MAGOHB, their roles in cellular function as part of the EJC, and other cellular roles that are not directly associated with mRNA processing. We also discuss how MAGOH haploinsufficiency in cancer cells can be exploited to develop a novel targeted cancer treatment.
Collapse
Affiliation(s)
- Rumela Mitra
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India
| | - Ayushi Rehman
- RNA-Binding Proteins (RBPs) Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India
| | - Kusum Kumari Singh
- RNA-Binding Proteins (RBPs) Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India.
| | - Bithiah Grace Jaganathan
- Stem Cells and Cancer Biology Research Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India.
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India.
| |
Collapse
|
12
|
Franca MM, Condezo YB, Elzaiat M, Felipe-Medina N, Sánchez-Sáez F, Muñoz S, Sainz-Urruela R, Martín-Hervás MR, García-Valiente R, Sánchez-Martín MA, Astudillo A, Mendez J, Llano E, Veitia RA, Mendonca BB, Pendás AM. A truncating variant of RAD51B associated with primary ovarian insufficiency provides insights into its meiotic and somatic functions. Cell Death Differ 2022; 29:2347-2361. [PMID: 35624308 PMCID: PMC9751091 DOI: 10.1038/s41418-022-01021-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 01/31/2023] Open
Abstract
Primary ovarian insufficiency (POI) causes female infertility by abolishing normal ovarian function. Although its genetic etiology has been extensively investigated, most POI cases remain unexplained. Using whole-exome sequencing, we identified a homozygous variant in RAD51B -(c.92delT) in two sisters with POI. In vitro studies revealed that this variant leads to translation reinitiation at methionine 64. Here, we show that this is a pathogenic hypomorphic variant in a mouse model. Rad51bc.92delT/c.92delT mice exhibited meiotic DNA repair defects due to RAD51 and HSF2BP/BMRE1 accumulation in the chromosome axes leading to a reduction in the number of crossovers. Interestingly, the interaction of RAD51B-c.92delT with RAD51C and with its newly identified interactors RAD51 and HELQ was abrogated or diminished. Repair of mitomycin-C-induced chromosomal aberrations was impaired in RAD51B/Rad51b-c.92delT human and mouse somatic cells in vitro and in explanted mouse bone marrow cells. Accordingly, Rad51b-c.92delT variant reduced replication fork progression of patient-derived lymphoblastoid cell lines and pluripotent reprogramming efficiency of primary mouse embryonic fibroblasts. Finally, Rad51bc.92delT/c.92delT mice displayed increased incidence of pituitary gland hyperplasia. These results provide new mechanistic insights into the role of RAD51B not only in meiosis but in the maintenance of somatic genome stability.
Collapse
Affiliation(s)
- Monica M Franca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42 and SELA, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brasil
- Section of Endocrinology Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Yazmine B Condezo
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Maëva Elzaiat
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France
| | - Natalia Felipe-Medina
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Fernando Sánchez-Sáez
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Sergio Muñoz
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Raquel Sainz-Urruela
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - M Rosario Martín-Hervás
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Rodrigo García-Valiente
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Manuel A Sánchez-Martín
- Departamento de Medicina, Universidad de Salamanca, Salamanca, Spain
- Transgenic Facility, Nucleus platform, Universidad de Salamanca, Salamanca, Spain
| | | | - Juan Mendez
- DNA Replication Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, E-28029, Madrid, Spain
| | - Elena Llano
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
- Departamento de Fisiología y Farmacología, Universidad de Salamanca, Salamanca, Spain
| | - Reiner A Veitia
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013, Paris, France.
- Université Paris-Saclay and Institut François Jacob, Comissariat à l'Energie Atomique, Gif-sur-Yvette, France.
| | - Berenice B Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42 and SELA, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brasil.
| | - Alberto M Pendás
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain.
| |
Collapse
|
13
|
Qi Y, Wang M, Jiang Q. PABPC1--mRNA stability, protein translation and tumorigenesis. Front Oncol 2022; 12:1025291. [PMID: 36531055 PMCID: PMC9753129 DOI: 10.3389/fonc.2022.1025291] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/08/2022] [Indexed: 09/29/2023] Open
Abstract
Mammalian poly A-binding proteins (PABPs) are highly conserved multifunctional RNA-binding proteins primarily involved in the regulation of mRNA translation and stability, of which PABPC1 is considered a central regulator of cytoplasmic mRNA homing and is involved in a wide range of physiological and pathological processes by regulating almost every aspect of RNA metabolism. Alterations in its expression and function disrupt intra-tissue homeostasis and contribute to the development of various tumors. There is increasing evidence that PABPC1 is aberrantly expressed in a variety of tumor tissues and cancers such as lung, gastric, breast, liver, and esophageal cancers, and PABPC1 might be used as a potential biomarker for tumor diagnosis, treatment, and clinical application in the future. In this paper, we review the abnormal expression, functional role, and molecular mechanism of PABPC1 in tumorigenesis and provide directions for further understanding the regulatory role of PABPC1 in tumor cells.
Collapse
Affiliation(s)
- Ya Qi
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated of China Medical University, Shenyang, Liaoning, China
| | - Min Wang
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated of China Medical University, Shenyang, Liaoning, China
| | - Qi Jiang
- Second Department of Clinical Medicine, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
14
|
Chrystal PW, Lambacher NJ, Doucette LP, Bellingham J, Schiff ER, Noel NCL, Li C, Tsiropoulou S, Casey GA, Zhai Y, Nadolski NJ, Majumder MH, Tagoe J, D'Esposito F, Cordeiro MF, Downes S, Clayton-Smith J, Ellingford J, Mahroo OA, Hocking JC, Cheetham ME, Webster AR, Jansen G, Blacque OE, Allison WT, Au PYB, MacDonald IM, Arno G, Leroux MR. The inner junction protein CFAP20 functions in motile and non-motile cilia and is critical for vision. Nat Commun 2022; 13:6595. [PMID: 36329026 PMCID: PMC9633640 DOI: 10.1038/s41467-022-33820-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
Motile and non-motile cilia are associated with mutually-exclusive genetic disorders. Motile cilia propel sperm or extracellular fluids, and their dysfunction causes primary ciliary dyskinesia. Non-motile cilia serve as sensory/signalling antennae on most cell types, and their disruption causes single-organ ciliopathies such as retinopathies or multi-system syndromes. CFAP20 is a ciliopathy candidate known to modulate motile cilia in unicellular eukaryotes. We demonstrate that in zebrafish, cfap20 is required for motile cilia function, and in C. elegans, CFAP-20 maintains the structural integrity of non-motile cilia inner junctions, influencing sensory-dependent signalling and development. Human patients and zebrafish with CFAP20 mutations both exhibit retinal dystrophy. Hence, CFAP20 functions within a structural/functional hub centered on the inner junction that is shared between motile and non-motile cilia, and is distinct from other ciliopathy-associated domains or macromolecular complexes. Our findings suggest an uncharacterised pathomechanism for retinal dystrophy, and potentially for motile and non-motile ciliopathies in general.
Collapse
Affiliation(s)
- Paul W Chrystal
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.
| | - Nils J Lambacher
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Lance P Doucette
- Department of Ophthalmology & Visual Science, University of Alberta, Edmonton, AB, Canada
| | | | - Elena R Schiff
- Moorfields Eye Hospital, London, UK
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Nicole C L Noel
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Chunmei Li
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
| | - Sofia Tsiropoulou
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Geoffrey A Casey
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
| | - Yi Zhai
- Department of Ophthalmology & Visual Science, University of Alberta, Edmonton, AB, Canada
| | - Nathan J Nadolski
- Division of Anatomy, Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Mohammed H Majumder
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Julia Tagoe
- Lethbridge Outreach Genetics Service, Alberta Health Services, Lethbridge, AB, Canada
| | - Fabiana D'Esposito
- Western Eye Hospital, Imperial College Healthcare NHS Trust, London, UK
- ICORG, Imperial College London, London, UK
| | | | - Susan Downes
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Jill Clayton-Smith
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Health Innovation Manchester, Manchester, UK
| | - Jamie Ellingford
- Manchester Centre for Genomic Medicine, Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
- Genomics England, London, UK
| | - Omar A Mahroo
- UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital, London, UK
| | - Jennifer C Hocking
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada
- Division of Anatomy, Department of Surgery, University of Alberta, Edmonton, AB, Canada
- Department of Cell Biology, University of Alberta, Edmonton, AB, Canada
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Andrew R Webster
- UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital, London, UK
| | - Gert Jansen
- Department of Cell Biology, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - W Ted Allison
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.
| | - Ping Yee Billie Au
- Department of Medical Genetics, Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Ian M MacDonald
- Department of Medical Genetics, University of Alberta, Edmonton, AB, Canada.
- Department of Ophthalmology & Visual Science, University of Alberta, Edmonton, AB, Canada.
| | - Gavin Arno
- UCL Institute of Ophthalmology, London, UK.
- Moorfields Eye Hospital, London, UK.
- North Thames Genomic Laboratory Hub, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.
| | - Michel R Leroux
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada.
| |
Collapse
|
15
|
Gu W, Fillebeen C, Pantopoulos K. Human IRP1 Translocates to the Nucleus in a Cell-Specific and Iron-Dependent Manner. Int J Mol Sci 2022; 23:ijms231810740. [PMID: 36142654 PMCID: PMC9502121 DOI: 10.3390/ijms231810740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/16/2022] Open
Abstract
Iron regulatory protein 1 (IRP1) is a bifunctional protein with mutually exclusive RNA-binding or enzymatic activities that depend on the presence of a 4Fe-4S cluster. While IRP1 is a well-established cytosolic protein, work in a Drosophila model suggested that it may also exhibit nuclear localization. Herein, we addressed whether mammalian IRP1 can likewise translocate to the nucleus. We utilized primary cells and tissues from wild type and Irp1−/− mice, as well as human cell lines and tissue biopsy sections. IRP1 subcellular localization was analyzed by Western blotting, immunofluorescence and immunohistochemistry. We did not detect presence of nuclear IRP1 in wild type mouse embryonic fibroblasts (MEFs), primary hepatocytes or whole mouse liver. However, we observed IRP1-positive nuclei in human liver but not ovary sections. Biochemical fractionation studies revealed presence of IRP1 in the nucleus of human Huh7 and HepG2 hepatoma cells, but not HeLa cervical cancer cells. Importantly, nuclear IRP1 was only evident in iron-replete cells and disappeared following pharmacological iron chelation. These data provide the first experimental evidence for nuclear IRP1 expression in mammals, which appears to be species- and cell-specific. Furthermore, they suggest that the nuclear translocation of IRP1 is mediated by an iron-dependent mechanism.
Collapse
Affiliation(s)
- Wen Gu
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Carine Fillebeen
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Kostas Pantopoulos
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Correspondence: ; Tel.: +1-514-340-8260 (ext. 25293)
| |
Collapse
|
16
|
Goyal S, Vanita V. A missense mutation in TTC8/BBS8 affecting mRNA splicing in patients with non-syndromic retinitis pigmentosa. Mol Genet Genomics 2022; 297:1439-1449. [PMID: 35939099 DOI: 10.1007/s00438-022-01933-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 07/19/2022] [Indexed: 11/27/2022]
Abstract
Splicing disruption is one type of mutation mechanism for disease-predisposing alleles. To date, less than 30 mutations in TTC8/BBS8 have been reported; however, mutations affecting the splice site are rare. Generally missense mutations are assumed to alter protein function; however, reports have shown that mutations in protein coding exons can disrupt splicing by altering exonic splicing silencer or enhancer motifs. Hence, a missense mutation c.1347G > C (p.Q449H) involving final base of the exon 13 in the TTC8, previously identified by us to be linked with non-syndromic autosomal recessive retinitis pigmentosa (arRP), in an Indian family, that might deleteriously affect splicing has been functionally characterized. RNA was isolated, cDNA prepared and amplified using region-specific primers. PCR products were purified and sequenced bi-directionally by Sanger sequencing. Effect of mutation (c.1347G > C) on mRNA splicing has been predicted using bioinformatics tools. We reported that missense mutation (c.1347G > C) at the last base of exon 13 of TTC8 disrupted the canonical donor splice-site resulting in aberrant RNA splicing. A cryptic donor splice-site got activated 77 bases downstream of the authentic splice donor site in intron 13, resulting in the retention of 77 bases of intron 13, and a frameshift leading to pre-mature termination codon in exon 14 at codon 486. Further, duplication of exon 15 and fusion of its duplicated copy occurred with exon 13. The binding site for SC35 protein, normally involved in splicing, also got disrupted (as predicted by SpliceAid2 software), hence, leading to alternative splicing. Our findings strongly suggest that a missense mutation c.1347G > C in TTC8 disrupted the splice donor site causing retention of 77 bases of intron 13, resulting in a frameshift and subsequently introduced a pre-mature termination codon into exon 14, hence creating an altered mRNA transcript. These findings emphasize the significance of examining missense mutations especially in TTC8, to determine their pathogenic role through alternative splicing. Present findings also reiterate the notion that mutations in the TTC8/BBS8 cause phenotypic heterogeneity and does not always follow Mendelian genetics in this ciliopathy.
Collapse
Affiliation(s)
- Shiwali Goyal
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Vanita Vanita
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
17
|
Athanasopoulou K, Adamopoulos PG, Scorilas A. Structural characterization and expression analysis of novel MAPK1 transcript variants with the development of a multiplexed targeted nanopore sequencing approach. Int J Biochem Cell Biol 2022; 150:106272. [PMID: 35878809 DOI: 10.1016/j.biocel.2022.106272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/17/2022] [Accepted: 07/21/2022] [Indexed: 11/27/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) represent a protein family firmly involved in many signaling cascades, regulating a vast spectrum of stimulated cellular processes. Studies have shown that alternatively spliced isoforms of MAPKs play a crucial role in determining the desired cell fate in response to specific stimulations. Although the implication of most MAPKs transcript variants in the MAPK signaling cascades has been clarified, the transcriptional profile of a pivotal member, MAPK1, has not been investigated for the existence of additional isoforms. In the current study we developed and implemented targeted long-read and short-read sequencing approaches to identify novel MAPK1 splice variants. The combination of nanopore sequencing and NGS enabled the implementation of a long-read polishing pipeline using error-rate correction algorithms, which empowered the high accuracy of the results and increased the sequencing efficiency. The utilized multiplexing option in the nanopore sequencing approach allowed not only the identification of novel MAPK1 mRNAs, but also elucidated their expression profile in multiple human malignancies and non-cancerous cell lines. Our study highlights for the first time the existence of ten previously undescribed MAPK1 mRNAs (MAPK1 v.3 - v.12) and evaluates their relative expression levels in comparison to the main MAPK1 v.1. The optimization and employment of qPCR assays revealed that MAPK1 v.3 - v.12 can be quantified in a wide spectrum of human cell lines with notable specificity. Finally, our findings suggest that the novel protein-coding mRNAs are highly expected to participate in the regulation of MAPK pathways, demonstrating differential localizations and functionalities.
Collapse
Affiliation(s)
- Konstantina Athanasopoulou
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
18
|
Morais MB, Machado MV. Benign inheritable disorders of bilirubin metabolism manifested by conjugated hyperbilirubinemia-A narrative review. United European Gastroenterol J 2022; 10:745-753. [PMID: 35860851 PMCID: PMC9486497 DOI: 10.1002/ueg2.12279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/30/2022] [Indexed: 11/08/2022] Open
Abstract
Bilirubin, a breakdown product of heme, is normally glucuronidated and excreted by the liver into bile. Failure of this system can lead to a buildup of conjugated bilirubin in the blood, resulting in jaundice. Hyperbilirubinemia is an important clinical sign that needs to be investigated under a stepwise evaluation. Inherited non-hemolytic conjugated hyperbilirubinemic conditions include Dubin-Johnson syndrome (caused by mutations affecting ABCC2 gene) and Rotor syndrome (caused by the simultaneous presence of mutations in SLCO1B1 and SLCO1B3 genes). Although classically viewed as benign conditions requiring no treatment, they lately gained an increased interest since recent studies suggested that mutations in the responsible genes leading to hyperbilirubinemia, as well as minor genetic variants, may result in an increased susceptibility to drug toxicity. This article provides a comprehensive review on the pathophysiology of Dubin-Johnson and Rotor syndromes, presenting the current knowledge concerning the molecular details and basis of these conditions.
Collapse
Affiliation(s)
- Mariana B Morais
- Centro Hospitalar Universitário Lisboa Norte, Hospital de Santa Maria, Lisbon, Portugal
| | - Mariana Verdelho Machado
- Gastroenterology Department, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal.,Gastroenterology Department, Hospital de Vila Franca de Xira, Lisbon, Portugal
| |
Collapse
|
19
|
Kroetz MB. Retooling conditional gene expression using a floxed exon. Trends Genet 2022; 38:785-786. [DOI: 10.1016/j.tig.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/21/2022] [Indexed: 11/25/2022]
|
20
|
Gilbert A, Saveanu C. Unusual SMG suspects recruit degradation enzymes in nonsense-mediated mRNA decay. Bioessays 2022; 44:e2100296. [PMID: 35266563 DOI: 10.1002/bies.202100296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 11/09/2022]
Abstract
Degradation of eukaryotic RNAs that contain premature termination codons (PTC) during nonsense-mediated mRNA decay (NMD) is initiated by RNA decapping or endonucleolytic cleavage driven by conserved factors. Models for NMD mechanisms, including recognition of PTCs or the timing and role of protein phosphorylation for RNA degradation are challenged by new results. For example, the depletion of the SMG5/7 heterodimer, thought to activate RNA degradation by decapping, leads to a phenotype showing a defect of endonucleolytic activity of NMD complexes. This phenotype is not correlated to a decreased binding of the endonuclease SMG6 with the core NMD factor UPF1, suggesting that it is the result of an imbalance between active (e.g., in polysomes) and inactive (e.g., in RNA-protein condensates) states of NMD complexes. Such imbalance between multiple complexes is not restricted to NMD and should be taken into account when establishing causal links between gene function perturbation and observed phenotypes.
Collapse
Affiliation(s)
- Agathe Gilbert
- Institut Pasteur, Sorbonne Université, CNRS UMR-3525, Paris, F-75015, France
| | - Cosmin Saveanu
- Institut Pasteur, Sorbonne Université, CNRS UMR-3525, Paris, F-75015, France
| |
Collapse
|
21
|
Floxed exon (Flexon): A flexibly positioned stop cassette for recombinase-mediated conditional gene expression. Proc Natl Acad Sci U S A 2022; 119:2117451119. [PMID: 35027456 PMCID: PMC8784106 DOI: 10.1073/pnas.2117451119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2021] [Indexed: 12/15/2022] Open
Abstract
Tools that afford spatiotemporal control of gene expression are crucial for studying genes and processes in multicellular organisms. Stop cassettes consist of exogenous sequences that interrupt gene expression and flanking site-specific recombinase sites to allow for tissue-specific excision and restoration of function by expression of the cognate recombinase. We describe a stop cassette called a flexon, composed of an artificial exon flanked by artificial introns that can be flexibly positioned in a gene. We demonstrate its efficacy in Caenorhabditis elegans for lineage-specific control of gene expression and for tissue-specific RNA interference and discuss other potential uses. The Flexon approach should be feasible in any system amenable to site-specific recombination-based methods and applicable to diverse areas including development, neuroscience, and metabolism. Conditional gene expression is a powerful tool for genetic analysis of biological phenomena. In the widely used “lox-stop-lox” approach, insertion of a stop cassette consisting of a series of stop codons and polyadenylation signals flanked by lox sites into the 5′ untranslated region (UTR) of a gene prevents expression until the cassette is excised by tissue-specific expression of Cre recombinase. Although lox-stop-lox and similar approaches using other site-specific recombinases have been successfully used in many experimental systems, this design has certain limitations. Here, we describe the Floxed exon (Flexon) approach, which uses a stop cassette composed of an artificial exon flanked by artificial introns, designed to cause premature termination of translation and nonsense-mediated decay of the mRNA and allowing for flexible placement into a gene. We demonstrate its efficacy in Caenorhabditis elegans by showing that, when promoters that cause weak and/or transient cell-specific expression are used to drive Cre in combination with a gfp(flexon) transgene, strong and sustained expression of green fluorescent protein (GFP) is obtained in specific lineages. We also demonstrate its efficacy in an endogenous gene context: we inserted a flexon into the Argonaute gene rde-1 to abrogate RNA interference (RNAi), and restored RNAi tissue specifically by expression of Cre. Finally, we describe several potential additional applications of the Flexon approach, including more precise control of gene expression using intersectional methods, tissue-specific protein degradation, and generation of genetic mosaics. The Flexon approach should be feasible in any system where a site-specific recombination-based method may be applied.
Collapse
|
22
|
Morris C, Cluet D, Ricci EP. Ribosome dynamics and mRNA turnover, a complex relationship under constant cellular scrutiny. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1658. [PMID: 33949788 PMCID: PMC8519046 DOI: 10.1002/wrna.1658] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 12/01/2022]
Abstract
Eukaryotic gene expression is closely regulated by translation and turnover of mRNAs. Recent advances highlight the importance of translation in the control of mRNA degradation, both for aberrant and apparently normal mRNAs. During translation, the information contained in mRNAs is decoded by ribosomes, one codon at a time, and tRNAs, by specifically recognizing codons, translate the nucleotide code into amino acids. Such a decoding step does not process regularly, with various obstacles that can hinder ribosome progression, then leading to ribosome stalling or collisions. The progression of ribosomes is constantly monitored by the cell which has evolved several translation-dependent mRNA surveillance pathways, including nonsense-mediated decay (NMD), no-go decay (NGD), and non-stop decay (NSD), to degrade certain problematic mRNAs and the incomplete protein products. Recent progress in sequencing and ribosome profiling has made it possible to discover new mechanisms controlling ribosome dynamics, with numerous crosstalks between translation and mRNA decay. We discuss here various translation features critical for mRNA decay, with particular focus on current insights from the complexity of the genetic code and also the emerging role for the ribosome as a regulatory hub orchestrating mRNA decay, quality control, and stress signaling. Even if the interplay between mRNA translation and degradation is no longer to be demonstrated, a better understanding of their precise coordination is worthy of further investigation. This article is categorized under: RNA Turnover and Surveillance > Regulation of RNA Stability Translation > Translation Regulation RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Christelle Morris
- Laboratory of Biology and Modeling of the CellUniversité de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293LyonFrance
| | - David Cluet
- Laboratory of Biology and Modeling of the CellUniversité de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293LyonFrance
| | - Emiliano P. Ricci
- Laboratory of Biology and Modeling of the CellUniversité de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, Inserm U1293LyonFrance
| |
Collapse
|
23
|
mRNA Analysis of Frameshift Mutations with Stop Codon in the Last Exon: The Case of Hemoglobins Campania [α1 cod95 (-C)] and Sciacca [α1 cod109 (-C)]. Biomedicines 2021; 9:biomedicines9101390. [PMID: 34680508 PMCID: PMC8533187 DOI: 10.3390/biomedicines9101390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 12/05/2022] Open
Abstract
An insertion or deletion of a nucleotide (nt) in the penultimate or the last exon can result in a frameshift and premature termination codon (PTC), giving rise to an unstable protein variant, showing a dominant phenotype. We described two α-globin mutants created by the deletion of a nucleotide in the penultimate or the last exon of the α1-globin gene: the Hb Campania or α1 cod95 (−C), causing a frameshift resulting in a PTC at codon 102, and the Hb Sciacca or α1 cod109 (−C), causing a frameshift and formation of a PTC at codon 133. The carriers showed α-thalassemia alterations (mild microcytosis with normal Hb A2) and lacked hemoglobin variants. The 3D model indicated the α-chain variants’ instability, due to the severe structural alterations with impairment of the chaperone alpha-hemoglobin stabilizing protein (AHSP) interaction. The qualitative and semiquantitative analyses of the α1mRNA from the reticulocytes of carriers highlighted a reduction in the variant cDNAs that constituted 34% (Hb Campania) and 15% (Hb Sciacca) of the total α1-globin cDNA, respectively. We developed a workflow for the in silico analysis of mechanisms triggering no-go decay, and its results suggested that the reduction in the variant mRNA was likely due to no-go decay caused by the presence of a rare triplet, and, in the case of Hb Sciacca, also by the mRNA’s secondary structure variation. It would be interesting to correlate the phenotype with the quantity of other frameshift mRNA variants, but very few data concerning α- and β-globin variants are available.
Collapse
|
24
|
Adamopoulos PG, Athanasopoulou K, Tsiakanikas P, Scorilas A. A comprehensive nanopore sequencing methodology deciphers the complete transcriptional landscape of cyclin-dependent kinase 4 (CDK4) in human malignancies. FEBS J 2021; 289:712-729. [PMID: 34535948 DOI: 10.1111/febs.16201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/02/2021] [Accepted: 09/14/2021] [Indexed: 10/20/2022]
Abstract
Cyclin-dependent kinase 4 (CDK4) is a member of the cyclin-dependent kinases, a family of protein kinases with outstanding roles in signaling pathways, transcription regulation, and cell division. Defective or overactivated CDK4/cyclin D1 pathway leads to enhanced cellular proliferation, thus being implicated in human cancers. Although the biological role of CDK4 has been extensively studied, its pre-mRNA processing mechanism under normal or pathological conditions is neglected. Thus, the identification of novel CDK4 mRNA transcripts, especially protein-coding ones, could lead to the identification of new diagnostic and/or prognostic biomarkers or new therapeutic targets. In the present study, instead of using the 'gold standard' direct RNA sequencing application, we designed and employed a targeted nanopore sequencing approach, which offers higher sequencing depth and enables the thorough investigation of new mRNAs of any target gene. Our study elucidates for the first time the complex transcriptional landscape of the human CDK4 gene, highlighting the existence of previously unknown CDK4 transcripts with new alternative splicing events and protein-coding capacities. The relative expression levels of each novel CDK4 transcript in human malignancies were elucidated with custom qPCR-based assays. The presented wide spectrum of CDK4 transcripts (CDK4 v.2-v.42) is only the first step to distinguish and assemble the missing pieces regarding the exact functions and implications of this fundamental kinase in cellular homeostasis and pathophysiology.
Collapse
Affiliation(s)
- Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Athanasopoulou
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Tsiakanikas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
25
|
El-Sappah AH, Yan K, Huang Q, Islam MM, Li Q, Wang Y, Khan MS, Zhao X, Mir RR, Li J, El-Tarabily KA, Abbas M. Comprehensive Mechanism of Gene Silencing and Its Role in Plant Growth and Development. FRONTIERS IN PLANT SCIENCE 2021; 12:705249. [PMID: 34589097 PMCID: PMC8475493 DOI: 10.3389/fpls.2021.705249] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/10/2021] [Indexed: 05/19/2023]
Abstract
Gene silencing is a negative feedback mechanism that regulates gene expression to define cell fate and also regulates metabolism and gene expression throughout the life of an organism. In plants, gene silencing occurs via transcriptional gene silencing (TGS) and post-transcriptional gene silencing (PTGS). TGS obscures transcription via the methylation of 5' untranslated region (5'UTR), whereas PTGS causes the methylation of a coding region to result in transcript degradation. In this review, we summarized the history and molecular mechanisms of gene silencing and underlined its specific role in plant growth and crop production.
Collapse
Affiliation(s)
- Ahmed H. El-Sappah
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Kuan Yan
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Qiulan Huang
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
- College of Tea Science, Yibin University, Yibin, China
| | | | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, China
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yu Wang
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Muhammad Sarwar Khan
- Center of Agriculture Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Pakistan
| | - Xianming Zhao
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture (FoA), Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST–K), Sopore, India
| | - Jia Li
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| | - Khaled A. El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
- Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Manzar Abbas
- School of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, China
- Key Laboratory of Sichuan Province for Refining Sichuan Tea, Yibin, China
| |
Collapse
|
26
|
Powers KT, Stevenson-Jones F, Yadav SKN, Amthor B, Bufton JC, Borucu U, Shen D, Becker JP, Lavysh D, Hentze MW, Kulozik AE, Neu-Yilik G, Schaffitzel C. Blasticidin S inhibits mammalian translation and enhances production of protein encoded by nonsense mRNA. Nucleic Acids Res 2021; 49:7665-7679. [PMID: 34157102 PMCID: PMC8287960 DOI: 10.1093/nar/gkab532] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/16/2021] [Accepted: 06/08/2021] [Indexed: 12/14/2022] Open
Abstract
Deciphering translation is of paramount importance for the understanding of many diseases, and antibiotics played a pivotal role in this endeavour. Blasticidin S (BlaS) targets translation by binding to the peptidyl transferase center of the large ribosomal subunit. Using biochemical, structural and cellular approaches, we show here that BlaS inhibits both translation elongation and termination in Mammalia. Bound to mammalian terminating ribosomes, BlaS distorts the 3′CCA tail of the P-site tRNA to a larger extent than previously reported for bacterial ribosomes, thus delaying both, peptide bond formation and peptidyl-tRNA hydrolysis. While BlaS does not inhibit stop codon recognition by the eukaryotic release factor 1 (eRF1), it interferes with eRF1’s accommodation into the peptidyl transferase center and subsequent peptide release. In human cells, BlaS inhibits nonsense-mediated mRNA decay and, at subinhibitory concentrations, modulates translation dynamics at premature termination codons leading to enhanced protein production.
Collapse
Affiliation(s)
- Kyle T Powers
- University of Bristol, School of Biochemistry, University Walk, Bristol BS8 1TD, UK
| | | | - Sathish K N Yadav
- University of Bristol, School of Biochemistry, University Walk, Bristol BS8 1TD, UK
| | - Beate Amthor
- Department of Pediatric Oncology, Hematology and Immunology, Hopp Children's Cancer Research Center Heidelberg (KiTZ), University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU) European Molecular Biology Laboratory (EMBL) and University of Heidelberg, Heidelberg, Germany
| | - Joshua C Bufton
- University of Bristol, School of Biochemistry, University Walk, Bristol BS8 1TD, UK
| | - Ufuk Borucu
- University of Bristol, School of Biochemistry, University Walk, Bristol BS8 1TD, UK
| | - Dakang Shen
- University of Bristol, School of Biochemistry, University Walk, Bristol BS8 1TD, UK
| | - Jonas P Becker
- Department of Pediatric Oncology, Hematology and Immunology, Hopp Children's Cancer Research Center Heidelberg (KiTZ), University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU) European Molecular Biology Laboratory (EMBL) and University of Heidelberg, Heidelberg, Germany
| | - Daria Lavysh
- Department of Pediatric Oncology, Hematology and Immunology, Hopp Children's Cancer Research Center Heidelberg (KiTZ), University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU) European Molecular Biology Laboratory (EMBL) and University of Heidelberg, Heidelberg, Germany
| | - Matthias W Hentze
- Molecular Medicine Partnership Unit (MMPU) European Molecular Biology Laboratory (EMBL) and University of Heidelberg, Heidelberg, Germany.,European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Andreas E Kulozik
- Department of Pediatric Oncology, Hematology and Immunology, Hopp Children's Cancer Research Center Heidelberg (KiTZ), University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU) European Molecular Biology Laboratory (EMBL) and University of Heidelberg, Heidelberg, Germany
| | - Gabriele Neu-Yilik
- Department of Pediatric Oncology, Hematology and Immunology, Hopp Children's Cancer Research Center Heidelberg (KiTZ), University of Heidelberg, Heidelberg, Germany.,Molecular Medicine Partnership Unit (MMPU) European Molecular Biology Laboratory (EMBL) and University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
27
|
Andjus S, Morillon A, Wery M. From Yeast to Mammals, the Nonsense-Mediated mRNA Decay as a Master Regulator of Long Non-Coding RNAs Functional Trajectory. Noncoding RNA 2021; 7:ncrna7030044. [PMID: 34449682 PMCID: PMC8395947 DOI: 10.3390/ncrna7030044] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 12/22/2022] Open
Abstract
The Nonsense-Mediated mRNA Decay (NMD) has been classically viewed as a translation-dependent RNA surveillance pathway degrading aberrant mRNAs containing premature stop codons. However, it is now clear that mRNA quality control represents only one face of the multiple functions of NMD. Indeed, NMD also regulates the physiological expression of normal mRNAs, and more surprisingly, of long non-coding (lnc)RNAs. Here, we review the different mechanisms of NMD activation in yeast and mammals, and we discuss the molecular bases of the NMD sensitivity of lncRNAs, considering the functional roles of NMD and of translation in the metabolism of these transcripts. In this regard, we describe several examples of functional micropeptides produced from lncRNAs. We propose that translation and NMD provide potent means to regulate the expression of lncRNAs, which might be critical for the cell to respond to environmental changes.
Collapse
Affiliation(s)
- Sara Andjus
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, PSL University, Sorbonne Université, CNRS UMR3244, 26 Rue d’Ulm, CEDEX 05, F-75248 Paris, France;
| | - Antonin Morillon
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, Sorbonne Université, CNRS UMR3244, 26 Rue d’Ulm, CEDEX 05, F-75248 Paris, France
- Correspondence: (A.M.); (M.W.)
| | - Maxime Wery
- ncRNA, Epigenetic and Genome Fluidity, Institut Curie, Sorbonne Université, CNRS UMR3244, 26 Rue d’Ulm, CEDEX 05, F-75248 Paris, France
- Correspondence: (A.M.); (M.W.)
| |
Collapse
|
28
|
Cheruiyot A, Li S, Nonavinkere Srivatsan S, Ahmed T, Chen Y, Lemacon DS, Li Y, Yang Z, Wadugu BA, Warner WA, Pruett-Miller SM, Obeng EA, Link DC, He D, Xiao F, Wang X, Bailis JM, Walter MJ, You Z. Nonsense-Mediated RNA Decay Is a Unique Vulnerability of Cancer Cells Harboring SF3B1 or U2AF1 Mutations. Cancer Res 2021; 81:4499-4513. [PMID: 34215620 DOI: 10.1158/0008-5472.can-20-4016] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/26/2021] [Accepted: 06/30/2021] [Indexed: 11/16/2022]
Abstract
Nonsense-mediated RNA decay (NMD) is recognized as an RNA surveillance pathway that targets aberrant mRNAs with premature translation termination codons (PTC) for degradation, however, its molecular mechanisms and roles in health and disease remain incompletely understood. In this study, we developed a novel reporter system to accurately measure NMD activity in individual cells. A genome-wide CRISPR-Cas9 knockout screen using this reporter system identified novel NMD-promoting factors, including multiple components of the SF3B complex and other U2 spliceosome factors. Interestingly, cells with mutations in the spliceosome genes SF3B1 and U2AF1, which are commonly found in myelodysplastic syndrome (MDS) and cancers, have overall attenuated NMD activity. Compared with wild-type (WT) cells, SF3B1- and U2AF1-mutant cells were more sensitive to NMD inhibition, a phenotype that is accompanied by elevated DNA replication obstruction, DNA damage, and chromosomal instability. Remarkably, the sensitivity of spliceosome mutant cells to NMD inhibition was rescued by overexpression of RNase H1, which removes R-loops in the genome. Together, these findings shed new light on the functional interplay between NMD and RNA splicing and suggest a novel synthetic lethal strategy for the treatment of MDS and cancers with spliceosome mutations. SIGNIFICANCE: This study has developed a novel NMD reporter system and identified a potential therapeutic approach of targeting the NMD pathway to treat cancer with spliceosome gene mutations.
Collapse
Affiliation(s)
- Abigael Cheruiyot
- Department of Cell Biology and Physiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Shan Li
- Department of Cell Biology and Physiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Sridhar Nonavinkere Srivatsan
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Washington University School in St. Louis, St. Louis, Missouri
| | - Tanzir Ahmed
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Washington University School in St. Louis, St. Louis, Missouri
| | - Yuhao Chen
- Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Delphine S Lemacon
- Department of Cell Biology and Physiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Ying Li
- Department of Cell Biology and Physiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri.,Clinical Biobank, The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Zheng Yang
- Department of Cell Biology and Physiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri.,Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| | - Brian A Wadugu
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Washington University School in St. Louis, St. Louis, Missouri
| | - Wayne A Warner
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Washington University School in St. Louis, St. Louis, Missouri
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Esther A Obeng
- Molecular Oncology Division, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Daniel C Link
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Washington University School in St. Louis, St. Louis, Missouri
| | - Dalin He
- Department of Urology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| | - Fei Xiao
- Clinical Biobank, The Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Xiaowei Wang
- Department of Radiation Oncology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | | | - Matthew J Walter
- Division of Hematology and Oncology, Department of Medicine, School of Medicine, Washington University School in St. Louis, St. Louis, Missouri
| | - Zhongsheng You
- Department of Cell Biology and Physiology, School of Medicine, Washington University in St. Louis, St. Louis, Missouri.
| |
Collapse
|
29
|
Supek F, Lehner B, Lindeboom RG. To NMD or Not To NMD: Nonsense-Mediated mRNA Decay in Cancer and Other Genetic Diseases. Trends Genet 2021; 37:657-668. [DOI: 10.1016/j.tig.2020.11.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 02/07/2023]
|
30
|
SMG5-SMG7 authorize nonsense-mediated mRNA decay by enabling SMG6 endonucleolytic activity. Nat Commun 2021; 12:3965. [PMID: 34172724 PMCID: PMC8233366 DOI: 10.1038/s41467-021-24046-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 05/30/2021] [Indexed: 12/28/2022] Open
Abstract
Eukaryotic gene expression is constantly controlled by the translation-coupled nonsense-mediated mRNA decay (NMD) pathway. Aberrant translation termination leads to NMD activation, resulting in phosphorylation of the central NMD factor UPF1 and robust clearance of NMD targets via two seemingly independent and redundant mRNA degradation branches. Here, we uncover that the loss of the first SMG5-SMG7-dependent pathway also inactivates the second SMG6-dependent branch, indicating an unexpected functional connection between the final NMD steps. Transcriptome-wide analyses of SMG5-SMG7-depleted cells confirm exhaustive NMD inhibition resulting in massive transcriptomic alterations. Intriguingly, we find that the functionally underestimated SMG5 can substitute the role of SMG7 and individually activate NMD. Furthermore, the presence of either SMG5 or SMG7 is sufficient to support SMG6-mediated endonucleolysis of NMD targets. Our data support an improved model for NMD execution that features two-factor authentication involving UPF1 phosphorylation and SMG5-SMG7 recruitment to access SMG6 activity. Degradation of nonsense mediated mRNA decay (NMD) substrates is carried out by two seemingly independent pathways, SMG6-mediated endonucleolytic cleavage and/or SMG5-SMG7-induced accelerated deadenylation. Here the authors show that SMG5-SMG7 maintain NMD activity by permitting SMG6 activation.
Collapse
|
31
|
Strubbe S, De Bruyne M, Pannicke U, Beyls E, Vandekerckhove B, Leclercq G, De Baere E, Bordon V, Vral A, Schwarz K, Haerynck F, Taghon T. A Novel Non-Coding Variant in DCLRE1C Results in Deregulated Splicing and Induces SCID Through the Generation of a Truncated ARTEMIS Protein That Fails to Support V(D)J Recombination and DNA Damage Repair. Front Immunol 2021; 12:674226. [PMID: 34220820 PMCID: PMC8248492 DOI: 10.3389/fimmu.2021.674226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/03/2021] [Indexed: 11/13/2022] Open
Abstract
Severe Combined Immune Deficiency (SCID) is a primary deficiency of the immune system in which opportunistic and recurring infections are often fatal during neonatal or infant life. SCID is caused by an increasing number of genetic defects that induce an abrogation of T lymphocyte development or function in which B and NK cells might be affected as well. Because of the increased availability and usage of next-generation sequencing (NGS), many novel variants in SCID genes are being identified and cause a heterogeneous disease spectrum. However, the molecular and functional implications of these new variants, of which some are non-coding, are often not characterized in detail. Using targeted NGS, we identified a novel homozygous c.465-1G>C splice acceptor site variant in the DCLRE1C gene in a T-B-NK+ SCID patient and fully characterized the molecular and functional impact. By performing a minigene splicing reporter assay, we revealed deregulated splicing of the DCLRE1C transcript since a cryptic splice acceptor in exon 7 was employed. This induced a frameshift and the generation of a p.Arg155Serfs*15 premature termination codon (PTC) within all DCLRE1C splice variants, resulting in the absence of full-length ARTEMIS protein. Consistently, a V(D)J recombination assay and a G0 micronucleus assay demonstrated the inability of the predicted mutant ARTEMIS protein to perform V(D)J recombination and DNA damage repair, respectively. Together, these experiments molecularly and functionally clarify how a newly identified c.465-1G>C variant in the DCLRE1C gene is responsible for inducing SCID. In a clinical context, this demonstrates how the experimental validation of new gene variants, that are identified by NGS, can facilitate the diagnosis of SCID which can be vital for implementing appropriate therapies.
Collapse
Affiliation(s)
- Steven Strubbe
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | | | - Ulrich Pannicke
- The Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Elien Beyls
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Bart Vandekerckhove
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Georges Leclercq
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Elfride De Baere
- Center for Medical Genetics Ghent (CMGG), Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Victoria Bordon
- Department of Internal Medicine and Pediatrics, Division of Pediatric Hemato-Oncology and Stem Cell Transplantation, Ghent University Hospital, Ghent, Belgium
| | - Anne Vral
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Klaus Schwarz
- The Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, Germa Red Cross Blood Service Baden-Württemberg – Hessen, Ulm, Germany
| | - Filomeen Haerynck
- Primary Immunodeficiency Research Lab, Jeffrey Modell Diagnosis and Research Center, Ghent University Hospital, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Division of Pediatric Immunology and Pulmonology, Ghent University Hospital, Ghent, Belgium
| | - Tom Taghon
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
32
|
The Combined Human Genotype of Truncating TTN and RBM20 Mutations Is Associated with Severe and Early Onset of Dilated Cardiomyopathy. Genes (Basel) 2021; 12:genes12060883. [PMID: 34201072 PMCID: PMC8228627 DOI: 10.3390/genes12060883] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/01/2021] [Accepted: 06/05/2021] [Indexed: 12/30/2022] Open
Abstract
A major cause of heart failure is cardiomyopathies, with dilated cardiomyopathy (DCM) as the most common form. Over 40 genes are linked to DCM, among them TTN and RBM20. Next Generation Sequencing in clinical DCM cohorts revealed truncating variants in TTN (TTNtv), accounting for up to 25% of familial DCM cases. Mutations in the cardiac splicing factor RNA binding motif protein 20 (RBM20) are also known to be associated with severe cardiomyopathies. TTN is one of the major RBM20 splicing targets. Most of the pathogenic RBM20 mutations are localized in the highly conserved arginine serine rich domain (RS), leading to a cytoplasmic mislocalization of mutant RBM20. Here, we present a patient with an early onset DCM carrying a combination of (likely) pathogenic TTN and RBM20 mutations. We show that the splicing of RBM20 target genes is affected in the mutation carrier. Furthermore, we reveal RBM20 haploinsufficiency presumably caused by the frameshift mutation in RBM20.
Collapse
|
33
|
Clinical Characteristics of POC1B-Associated Retinopathy and Assignment of Pathogenicity to Novel Deep Intronic and Non-Canonical Splice Site Variants. Int J Mol Sci 2021; 22:ijms22105396. [PMID: 34065499 PMCID: PMC8160832 DOI: 10.3390/ijms22105396] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/18/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022] Open
Abstract
Mutations in POC1B are a rare cause of inherited retinal degeneration. In this study, we present a thorough phenotypic and genotypic characterization of three individuals harboring putatively pathogenic variants in the POC1B gene. All patients displayed a similar, slowly progressive retinopathy (cone dystrophy or cone-rod dystrophy) with normal funduscopy but disrupted outer retinal layers on optical coherence tomography and variable age of onset. Other symptoms were decreased visual acuity and photophobia. Whole genome sequencing revealed a novel homozygous frameshift variant in one patient. Another patient was shown to harbor a novel deep intronic variant in compound heterozygous state with a previously reported canonical splice site variant. The third patient showed a novel nonsense variant and a novel non-canonical splice site variant. We aimed to validate the effect of the deep intronic variant and the non-canonical splice site variant by means of in vitro splice assays. In addition, direct RNA analysis was performed in one patient. Splicing analysis revealed that the non-canonical splice site variant c.561-3T>C leads to exon skipping while the novel deep intronic variant c.1033-327T>A causes pseudoexon activation. Our data expand the genetic landscape of POC1B mutations and confirm the benefit of genome sequencing in combination with downstream functional validation using minigene assays for the analysis of putative splice variants. In addition, we provide clinical multimodal phenotyping of the affected individuals.
Collapse
|
34
|
Nogueira G, Fernandes R, García-Moreno JF, Romão L. Nonsense-mediated RNA decay and its bipolar function in cancer. Mol Cancer 2021; 20:72. [PMID: 33926465 PMCID: PMC8082775 DOI: 10.1186/s12943-021-01364-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/19/2021] [Indexed: 12/17/2022] Open
Abstract
Nonsense-mediated decay (NMD) was first described as a quality-control mechanism that targets and rapidly degrades aberrant mRNAs carrying premature termination codons (PTCs). However, it was found that NMD also degrades a significant number of normal transcripts, thus arising as a mechanism of gene expression regulation. Based on these important functions, NMD regulates several biological processes and is involved in the pathophysiology of a plethora of human genetic diseases, including cancer. The present review aims to discuss the paradoxical, pro- and anti-tumorigenic roles of NMD, and how cancer cells have exploited both functions to potentiate the disease. Considering recent genetic and bioinformatic studies, we also provide a comprehensive overview of the present knowledge of the advantages and disadvantages of different NMD modulation-based approaches in cancer therapy, reflecting on the challenges imposed by the complexity of this disease. Furthermore, we discuss significant advances in the recent years providing new perspectives on the implications of aberrant NMD-escaping frameshifted transcripts in personalized immunotherapy design and predictive biomarker optimization. A better understanding of how NMD differentially impacts tumor cells according to their own genetic identity will certainly allow for the application of novel and more effective personalized treatments in the near future.
Collapse
Affiliation(s)
- Gonçalo Nogueira
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016, Lisbon, Portugal.,BioISI - Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | - Rafael Fernandes
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016, Lisbon, Portugal.,BioISI - Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | - Juan F García-Moreno
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016, Lisbon, Portugal.,BioISI - Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisbon, Portugal
| | - Luísa Romão
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016, Lisbon, Portugal. .,BioISI - Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisbon, Portugal.
| |
Collapse
|
35
|
Becker JP, Helm D, Rettel M, Stein F, Hernandez-Sanchez A, Urban K, Gebert J, Kloor M, Neu-Yilik G, von Knebel Doeberitz M, Hentze MW, Kulozik AE. NMD inhibition by 5-azacytidine augments presentation of immunogenic frameshift-derived neoepitopes. iScience 2021; 24:102389. [PMID: 33981976 PMCID: PMC8082087 DOI: 10.1016/j.isci.2021.102389] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/11/2021] [Accepted: 03/30/2021] [Indexed: 12/22/2022] Open
Abstract
Frameshifted protein sequences elicit tumor-specific T cell-mediated immune responses in microsatellite-unstable (MSI) cancers if presented by HLA class I molecules. However, their expression and presentation are limited by nonsense-mediated RNA decay (NMD). We employed an unbiased immunopeptidomics workflow to analyze MSI HCT-116 cells and identified >10,000 HLA class I-presented peptides including five frameshift-derived InDel neoepitopes. Notably, pharmacological NMD inhibition with 5-azacytidine stabilizes frameshift-bearing transcripts and increases the HLA class I-mediated presentation of InDel neoepitopes. The frameshift mutation underlying one of the identified InDel neoepitopes is highly recurrent in MSI colorectal cancer cell lines and primary patient samples, and immunization with the corresponding neoepitope induces strong CD8+ T cell responses in an HLA-A∗02:01 transgenic mouse model. Our data show directly that pharmacological NMD inhibition augments HLA class I-mediated presentation of immunogenic frameshift-derived InDel neoepitopes thus highlighting the clinical potential of NMD inhibition in anti-cancer immunotherapy strategies.
Collapse
Affiliation(s)
- Jonas P. Becker
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University, 69120 Heidelberg, Germany
- Hopp Children's Cancer Center, National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Dominic Helm
- Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Mandy Rettel
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Frank Stein
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Alejandro Hernandez-Sanchez
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University, 69120 Heidelberg, Germany
- Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Katharina Urban
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University, 69120 Heidelberg, Germany
- Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Johannes Gebert
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University, 69120 Heidelberg, Germany
- Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Matthias Kloor
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University, 69120 Heidelberg, Germany
- Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Gabriele Neu-Yilik
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University, 69120 Heidelberg, Germany
- Hopp Children's Cancer Center, National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| | - Magnus von Knebel Doeberitz
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Department of Applied Tumor Biology, Institute of Pathology, Heidelberg University, 69120 Heidelberg, Germany
- Collaboration Unit Applied Tumor Biology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Matthias W. Hentze
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Andreas E. Kulozik
- Molecular Medicine Partnership Unit (MMPU), Heidelberg University, 69120 Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University, 69120 Heidelberg, Germany
- Hopp Children's Cancer Center, National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany
| |
Collapse
|
36
|
Lee PJ, Yang S, Sun Y, Guo JU. Regulation of nonsense-mediated mRNA decay in neural development and disease. J Mol Cell Biol 2021; 13:269-281. [PMID: 33783512 PMCID: PMC8339359 DOI: 10.1093/jmcb/mjab022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/27/2021] [Accepted: 02/05/2021] [Indexed: 11/26/2022] Open
Abstract
Eukaryotes have evolved a variety of mRNA surveillance mechanisms to detect and degrade aberrant mRNAs with potential deleterious outcomes. Among them, nonsense-mediated mRNA decay (NMD) functions not only as a quality control mechanism targeting aberrant mRNAs containing a premature termination codon but also as a posttranscriptional gene regulation mechanism targeting numerous physiological mRNAs. Despite its well-characterized molecular basis, the regulatory scope and biological functions of NMD at an organismal level are incompletely understood. In humans, mutations in genes encoding core NMD factors cause specific developmental and neurological syndromes, suggesting a critical role of NMD in the central nervous system. Here, we review the accumulating biochemical and genetic evidence on the developmental regulation and physiological functions of NMD as well as an emerging role of NMD dysregulation in neurodegenerative diseases.
Collapse
Affiliation(s)
- Paul Jongseo Lee
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA.,Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
| | - Suzhou Yang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA.,Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
| | - Yu Sun
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Junjie U Guo
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA.,Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
37
|
Poulter JA, Gravett MSC, Taylor RL, Fujinami K, De Zaeytijd J, Bellingham J, Rehman AU, Hayashi T, Kondo M, Rehman A, Ansar M, Donnelly D, Toomes C, Ali M, De Baere E, Leroy BP, Davies NP, Henderson RH, Webster AR, Rivolta C, Zeitz C, Mahroo OA, Arno G, Black GCM, McKibbin M, Harris SA, Khan KN, Inglehearn CF. New variants and in silico analyses in GRK1 associated Oguchi disease. Hum Mutat 2021; 42:164-176. [PMID: 33252155 PMCID: PMC7898643 DOI: 10.1002/humu.24140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/15/2020] [Accepted: 11/05/2020] [Indexed: 12/16/2022]
Abstract
Biallelic mutations in G-Protein coupled receptor kinase 1 (GRK1) cause Oguchi disease, a rare subtype of congenital stationary night blindness (CSNB). The purpose of this study was to identify disease causing GRK1 variants and use in-depth bioinformatic analyses to evaluate how their impact on protein structure could lead to pathogenicity. Patients' genomic DNA was sequenced by whole genome, whole exome or focused exome sequencing. Disease associated variants, published and novel, were compared to nondisease associated missense variants. The impact of GRK1 missense variants at the protein level were then predicted using a series of computational tools. We identified twelve previously unpublished cases with biallelic disease associated GRK1 variants, including eight novel variants, and reviewed all GRK1 disease associated variants. Further structure-based scoring revealed a hotspot for missense variants in the kinase domain. In addition, to aid future clinical interpretation, we identified the bioinformatics tools best able to differentiate disease associated from nondisease associated variants. We identified GRK1 variants in Oguchi disease patients and investigated how disease-causing variants may impede protein function in-silico.
Collapse
Affiliation(s)
- James A. Poulter
- Division of Molecular Medicine, Leeds Institute of Medical ResearchUniversity of LeedsLeedsUK
| | | | - Rachel L. Taylor
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicines and HealthUniversity of ManchesterManchesterUK
| | - Kaoru Fujinami
- National Institute of Sensory Organs, National Hospital Organization Tokyo Medical CentreTokyoJapan
- Moorfields Eye HospitalLondonUK
- UCL Institute of OphthalmologyLondonUK
- Keio University School of MedicineTokyoJapan
| | | | | | - Atta Ur Rehman
- Division of Genetic Medicine, Centre Hospitalier Universitaire Vaudois (CHUV)University of LausanneLausanneSwitzerland
| | | | - Mineo Kondo
- Mie University Graduate School of MedicineMieJapan
| | - Abdur Rehman
- Department of Genetics, Faculty of ScienceHazara University MansehraDhodialPakistan
| | - Muhammad Ansar
- Clinical Research Center, Institute of Molecular and Clinical Ophthalmology Basel (IOB)BaselSwitzerland
| | - Dan Donnelly
- School of Biomedical Sciences, University of LeedsLeedsUK
| | - Carmel Toomes
- Division of Molecular Medicine, Leeds Institute of Medical ResearchUniversity of LeedsLeedsUK
| | - Manir Ali
- Division of Molecular Medicine, Leeds Institute of Medical ResearchUniversity of LeedsLeedsUK
| | | | | | - Bart P. Leroy
- Ghent UniversityGhentBelgium
- Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | | | | | - Andrew R. Webster
- Moorfields Eye HospitalLondonUK
- UCL Institute of OphthalmologyLondonUK
| | - Carlo Rivolta
- Department of Genetics and Genome BiologyUniversity of LeicesterLeicesterUK
- Clinical Research Center, Institute of Molecular and Clinical Ophthalmology Basel (IOB)BaselSwitzerland
- Department of OphthalmologyUniversity Hospital BaselBaselSwitzerland
| | - Christina Zeitz
- Sorbonne UniversitéINSERM, CNRS, Institut de la VisionParisFrance
| | - Omar A. Mahroo
- Moorfields Eye HospitalLondonUK
- UCL Institute of OphthalmologyLondonUK
| | - Gavin Arno
- National Institute of Sensory Organs, National Hospital Organization Tokyo Medical CentreTokyoJapan
- Moorfields Eye HospitalLondonUK
- UCL Institute of OphthalmologyLondonUK
| | - Graeme C. M. Black
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicines and HealthUniversity of ManchesterManchesterUK
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation TrustManchesterUK
| | - Martin McKibbin
- Division of Molecular Medicine, Leeds Institute of Medical ResearchUniversity of LeedsLeedsUK
- Leeds Teaching Hospitals NHS Trust, St James’ University HospitalLeedsUK
| | | | - Kamron N. Khan
- Division of Molecular Medicine, Leeds Institute of Medical ResearchUniversity of LeedsLeedsUK
- Manchester Centre for Genomic Medicine, Saint Mary's Hospital, Manchester University NHS Foundation TrustManchesterUK
| | - Chris F. Inglehearn
- Division of Molecular Medicine, Leeds Institute of Medical ResearchUniversity of LeedsLeedsUK
| |
Collapse
|
38
|
The Axenfeld-Rieger Syndrome Gene FOXC1 Contributes to Left-Right Patterning. Genes (Basel) 2021; 12:genes12020170. [PMID: 33530637 PMCID: PMC7912076 DOI: 10.3390/genes12020170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 02/06/2023] Open
Abstract
Precise spatiotemporal expression of the Nodal-Lefty-Pitx2 cascade in the lateral plate mesoderm establishes the left–right axis, which provides vital cues for correct organ formation and function. Mutations of one cascade constituent PITX2 and, separately, the Forkhead transcription factor FOXC1 independently cause a multi-system disorder known as Axenfeld–Rieger syndrome (ARS). Since cardiac involvement is an established ARS phenotype and because disrupted left–right patterning can cause congenital heart defects, we investigated in zebrafish whether foxc1 contributes to organ laterality or situs. We demonstrate that CRISPR/Cas9-generated foxc1a and foxc1b mutants exhibit abnormal cardiac looping and that the prevalence of cardiac situs defects is increased in foxc1a−/−; foxc1b−/− homozygotes. Similarly, double homozygotes exhibit isomerism of the liver and pancreas, which are key features of abnormal gut situs. Placement of the asymmetric visceral organs relative to the midline was also perturbed by mRNA overexpression of foxc1a and foxc1b. In addition, an analysis of the left–right patterning components, identified in the lateral plate mesoderm of foxc1 mutants, reduced or abolished the expression of the NODAL antagonist lefty2. Together, these data reveal a novel contribution from foxc1 to left–right patterning, demonstrating that this role is sensitive to foxc1 gene dosage, and provide a plausible mechanism for the incidence of congenital heart defects in Axenfeld–Rieger syndrome patients.
Collapse
|
39
|
Annibaldis G, Domanski M, Dreos R, Contu L, Carl S, Kläy N, Mühlemann O. Readthrough of stop codons under limiting ABCE1 concentration involves frameshifting and inhibits nonsense-mediated mRNA decay. Nucleic Acids Res 2020; 48:10259-10279. [PMID: 32941650 PMCID: PMC7544199 DOI: 10.1093/nar/gkaa758] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 08/28/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
To gain insight into the mechanistic link between translation termination and nonsense-mediated mRNA decay (NMD), we depleted the ribosome recycling factor ABCE1 in human cells, resulting in an upregulation of NMD-sensitive mRNAs. Suppression of NMD on these mRNAs occurs prior to their SMG6-mediated endonucleolytic cleavage. ABCE1 depletion caused ribosome stalling at termination codons (TCs) and increased ribosome occupancy in 3′ UTRs, implying enhanced TC readthrough. ABCE1 knockdown indeed increased the rate of readthrough and continuation of translation in different reading frames, providing a possible explanation for the observed NMD inhibition, since enhanced readthrough displaces NMD activating proteins from the 3′ UTR. Our results indicate that stalling at TCs triggers ribosome collisions and activates ribosome quality control. Collectively, we show that improper translation termination can lead to readthrough of the TC, presumably due to ribosome collisions pushing the stalled ribosomes into the 3′ UTR, where it can resume translation in-frame as well as out-of-frame.
Collapse
Affiliation(s)
- Giuditta Annibaldis
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Mittelstrasse 43, CH-3012 Bern, Switzerland
| | - Michal Domanski
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - René Dreos
- Center for Integrative Genomics, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Lara Contu
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Mittelstrasse 43, CH-3012 Bern, Switzerland
| | - Sarah Carl
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland
| | - Nina Kläy
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Oliver Mühlemann
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| |
Collapse
|
40
|
Papatsirou M, Adamopoulos PG, Artemaki PI, Georganti VP, Scorilas A, Vassilacopoulou D, Kontos CK. Next-generation sequencing reveals alternative L-DOPA decarboxylase (DDC) splice variants bearing novel exons, in human hepatocellular and lung cancer cells. Gene 2020; 768:145262. [PMID: 33141052 DOI: 10.1016/j.gene.2020.145262] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/14/2020] [Accepted: 10/20/2020] [Indexed: 12/26/2022]
Abstract
The human L-DOPA decarboxylase (DDC) is an enzyme that displays a pivotal role in metabolic processes. It is implicated in various human disorders, including hepatocellular and lung cancer. Several splice variants of DDC have previously been described, most of which encode for protein isoforms of this enzyme. In the present study, we used next-generation sequencing (NGS) technology along with nested touchdown PCR and Sanger sequencing to identify new splice variants bearing novel exons of the DDC gene, in hepatocellular and lung cancer cell lines. Using an in-house-developed algorithm, we discovered seven novel DDC exons. Next, we determined the structure of ten novel DDC transcripts, three of which contain an open reading frame (ORF) and probably encode for three previously unknown protein isoforms of this enzyme. Future studies should focus on the elucidation of their role in cellular physiology and cancer pathobiology.
Collapse
Affiliation(s)
- Maria Papatsirou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Pinelopi I Artemaki
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Vasiliki P Georganti
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Dido Vassilacopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece.
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
41
|
Gerbracht JV, Boehm V, Britto-Borges T, Kallabis S, Wiederstein JL, Ciriello S, Aschemeier DU, Krüger M, Frese CK, Altmüller J, Dieterich C, Gehring NH. CASC3 promotes transcriptome-wide activation of nonsense-mediated decay by the exon junction complex. Nucleic Acids Res 2020; 48:8626-8644. [PMID: 32621609 PMCID: PMC7470949 DOI: 10.1093/nar/gkaa564] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/20/2020] [Accepted: 07/01/2020] [Indexed: 01/08/2023] Open
Abstract
The exon junction complex (EJC) is an essential constituent and regulator of spliced messenger ribonucleoprotein particles (mRNPs) in metazoans. As a core component of the EJC, CASC3 was described to be pivotal for EJC-dependent nuclear and cytoplasmic processes. However, recent evidence suggests that CASC3 functions differently from other EJC core proteins. Here, we have established human CASC3 knockout cell lines to elucidate the cellular role of CASC3. In the knockout cells, overall EJC composition and EJC-dependent splicing are unchanged. A transcriptome-wide analysis reveals that hundreds of mRNA isoforms targeted by nonsense-mediated decay (NMD) are upregulated. Mechanistically, recruiting CASC3 to reporter mRNAs by direct tethering or via binding to the EJC stimulates mRNA decay and endonucleolytic cleavage at the termination codon. Building on existing EJC-NMD models, we propose that CASC3 equips the EJC with the persisting ability to communicate with the NMD machinery in the cytoplasm. Collectively, our results characterize CASC3 as a peripheral EJC protein that tailors the transcriptome by promoting the degradation of EJC-dependent NMD substrates.
Collapse
Affiliation(s)
| | - Volker Boehm
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
| | - Thiago Britto-Borges
- Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III and Klaus Tschira Institute for Integrative Computational Cardiology, University of Heidelberg, 69120 Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Sebastian Kallabis
- CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Janica L Wiederstein
- CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Simona Ciriello
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
| | | | - Marcus Krüger
- CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Christian K Frese
- CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Cologne, 50931 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III and Klaus Tschira Institute for Integrative Computational Cardiology, University of Heidelberg, 69120 Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Niels H Gehring
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
42
|
Long L, Yang X, Southwood M, Moore S, Crosby A, Upton PD, Dunmore BJ, Morrell NW. Targeting translational read-through of premature termination mutations in BMPR2 with PTC124 for pulmonary arterial hypertension. Pulm Circ 2020; 10:2045894020935783. [PMID: 32733669 PMCID: PMC7372630 DOI: 10.1177/2045894020935783] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 05/28/2020] [Indexed: 02/02/2023] Open
Abstract
Pulmonary arterial hypertension is a fatal disorder of the lung circulation in which accumulation of vascular cells progressively obliterates the pulmonary arterioles. This results in sustained elevation in pulmonary artery pressure leading eventually to right heart failure. Approximately, 80% of familial and 20% of sporadic idiopathic pulmonary arterial hypertension cases are caused by mutations in the bone morphogenetic protein receptor type 2 (BMPR2). Nonsense mutations in BMPR2 are amongst the most common mutations found, where the insertion of a premature termination codon causes mRNA degradation via activation of the nonsense-mediated decay pathway leading to a state of haploinsufficiency. Ataluren (PTC124), a compound that permits ribosomal read-through of premature stop codons, has been previously reported to increase BMPR2 protein expression in cells derived from pulmonary arterial hypertension patients harbouring nonsense mutations. In this study, we characterised the effects of PTC124 on a range of nonsense BMPR2 mutations, focusing on the R584X mutation both in vitro and in vivo. Treatment with PTC124 partially restored BMPR2 protein expression in blood outgrowth endothelial cells isolated from a patient harbouring the R584X mutation. Furthermore, a downstream bone morphogenetic protein signalling target, Id1, was rescued by PTC124 treatment. Mutant cells also exhibited increased lipopolysaccharide-induced permeability, which was reversed by PTC124 treatment. Increased proliferation and apoptosis in R584X blood outgrowth endothelial cells were also significantly reduced by PTC124. Moreover, oral PTC124 increased lung BMPR2 protein expression in mice harbouring the R584X mutation (Bmpr2 +/R584X ). Our findings provide support for future experimental medicine studies of PTC124 in pulmonary arterial hypertension patients with specific nonsense BMPR2 mutations.
Collapse
Affiliation(s)
- Lu Long
- Department of Medicine, University of
Cambridge School of Clinical Medicine, Cambridge, UK
| | - Xudong Yang
- Department of Medicine, University of
Cambridge School of Clinical Medicine, Cambridge, UK
| | - Mark Southwood
- Pathology Research, Royal Papworth
Hospital NHS Foundation Trust, Cambridge, UK
| | - Stephen Moore
- Department of Medicine, University of
Cambridge School of Clinical Medicine, Cambridge, UK
| | - Alexi Crosby
- Department of Medicine, University of
Cambridge School of Clinical Medicine, Cambridge, UK
| | - Paul D. Upton
- Department of Medicine, University of
Cambridge School of Clinical Medicine, Cambridge, UK
| | - Benjamin J. Dunmore
- Department of Medicine, University of
Cambridge School of Clinical Medicine, Cambridge, UK
| | - Nicholas W. Morrell
- Department of Medicine, University of
Cambridge School of Clinical Medicine, Cambridge, UK,Nicholas W. Morrell, Division of Respiratory
Medicine, Department of Medicine, Box 157, Addenbrooke's Hospital, Hills Road,
Cambridge CB2 0QQ, United Kingdom.
| |
Collapse
|
43
|
Zisi Z, Adamopoulos PG, Kontos CK, Scorilas A. Identification and expression analysis of novel splice variants of the human carcinoembryonic antigen-related cell adhesion molecule 19 (CEACAM19) gene using a high-throughput sequencing approach. Genomics 2020; 112:4268-4276. [PMID: 32659328 DOI: 10.1016/j.ygeno.2020.06.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 03/12/2020] [Accepted: 06/25/2020] [Indexed: 02/01/2023]
Abstract
Alternative splicing is commonly involved in carcinogenesis, being highly implicated in differential expression of cancer-related genes. Recent studies have shown that the human CEACAM19 gene is overexpressed in malignant breast and ovarian tumors, possessing significant biomarker attributes. In the present study, 3' rapid amplification of cDNA ends (3' RACE) and next-generation sequencing (NGS) were used for the detection and identification of novel CEACAM19 transcripts. Bioinformatical analysis of our NGS data revealed novel splice junctions between previously annotated exons and ultimately new exons. Next, fifteen novel CEACAM19 transcripts were identified with Sanger sequencing. Additionally, their expression profile was investigated in a wide panel of human cell lines, using nested PCR with variant-specific primers. The broad expression pattern of the CEACAM19 gene, along with the fact that its overexpression has previously been associated with ovarian and breast cancer progression, indicate the potential of novel CEACAM19 transcripts as putative diagnostic and/or prognostic biomarkers.
Collapse
Affiliation(s)
- Zafeiro Zisi
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis G Adamopoulos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
44
|
Lavysh D, Neu-Yilik G. UPF1-Mediated RNA Decay-Danse Macabre in a Cloud. Biomolecules 2020; 10:E999. [PMID: 32635561 PMCID: PMC7407380 DOI: 10.3390/biom10070999] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/18/2020] [Accepted: 06/29/2020] [Indexed: 12/21/2022] Open
Abstract
Nonsense-mediated RNA decay (NMD) is the prototype example of a whole family of RNA decay pathways that unfold around a common central effector protein called UPF1. While NMD in yeast appears to be a linear pathway, NMD in higher eukaryotes is a multifaceted phenomenon with high variability with respect to substrate RNAs, degradation efficiency, effector proteins and decay-triggering RNA features. Despite increasing knowledge of the mechanistic details, it seems ever more difficult to define NMD and to clearly distinguish it from a growing list of other UPF1-mediated RNA decay pathways (UMDs). With a focus on mammalian, we here critically examine the prevailing NMD models and the gaps and inconsistencies in these models. By exploring the minimal requirements for NMD and other UMDs, we try to elucidate whether they are separate and definable pathways, or rather variations of the same phenomenon. Finally, we suggest that the operating principle of the UPF1-mediated decay family could be considered similar to that of a computing cloud providing a flexible infrastructure with rapid elasticity and dynamic access according to specific user needs.
Collapse
Affiliation(s)
- Daria Lavysh
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany;
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany
- Department Clinical Pediatric Oncology, Hopp Kindertumorzentrum am NCT Heidelberg, 69120 Heidelberg, Germany
| | - Gabriele Neu-Yilik
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Im Neuenheimer Feld 430, 69120 Heidelberg, Germany;
- Molecular Medicine Partnership Unit, University of Heidelberg and European Molecular Biology Laboratory, Im Neuenheimer Feld 350, 69120 Heidelberg, Germany
- Department Clinical Pediatric Oncology, Hopp Kindertumorzentrum am NCT Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
45
|
Morais P, Adachi H, Yu YT. Suppression of Nonsense Mutations by New Emerging Technologies. Int J Mol Sci 2020; 21:ijms21124394. [PMID: 32575694 PMCID: PMC7352488 DOI: 10.3390/ijms21124394] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/18/2022] Open
Abstract
Nonsense mutations often result from single nucleotide substitutions that change a sense codon (coding for an amino acid) to a nonsense or premature termination codon (PTC) within the coding region of a gene. The impact of nonsense mutations is two-fold: (1) the PTC-containing mRNA is degraded by a surveillance pathway called nonsense-mediated mRNA decay (NMD) and (2) protein translation stops prematurely at the PTC codon, and thus no functional full-length protein is produced. As such, nonsense mutations result in a large number of human diseases. Nonsense suppression is a strategy that aims to correct the defects of hundreds of genetic disorders and reverse disease phenotypes and conditions. While most clinical trials have been performed with small molecules, there is an increasing need for sequence-specific repair approaches that are safer and adaptable to personalized medicine. Here, we discuss recent advances in both conventional strategies as well as new technologies. Several of these will soon be tested in clinical trials as nonsense therapies, even if they still have some limitations and challenges to overcome.
Collapse
Affiliation(s)
- Pedro Morais
- ProQR Therapeutics, Zernikedreef 9, 2333 CK Leiden, The Netherlands;
| | - Hironori Adachi
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA;
| | - Yi-Tao Yu
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA;
- Correspondence: ; Tel.: +1-(585)-275-1271; Fax: +1-(585)-275-6007
| |
Collapse
|
46
|
A Day in the Life of the Exon Junction Complex. Biomolecules 2020; 10:biom10060866. [PMID: 32517083 PMCID: PMC7355637 DOI: 10.3390/biom10060866] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/29/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
The exon junction complex (EJC) is an abundant messenger ribonucleoprotein (mRNP) component that is assembled during splicing and binds to mRNAs upstream of exon-exon junctions. EJCs accompany the mRNA during its entire life in the nucleus and the cytoplasm and communicate the information about the splicing process and the position of introns. Specifically, the EJC’s core components and its associated proteins regulate different steps of gene expression, including pre-mRNA splicing, mRNA export, translation, and nonsense-mediated mRNA decay (NMD). This review summarizes the most important functions and main protagonists in the life of the EJC. It also provides an overview of the latest findings on the assembly, composition and molecular activities of the EJC and presents them in the chronological order, in which they play a role in the EJC’s life cycle.
Collapse
|
47
|
Sun J, Zhou Z, Weng C, Wang C, Chen J, Feng X, Yu P, Qi M. Identification and functional characterization of a hemizygous novel intronic variant in OCRL gene causes Lowe syndrome. Clin Exp Nephrol 2020; 24:657-665. [PMID: 32394213 DOI: 10.1007/s10157-020-01897-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/23/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Lowe syndrome is an X-linked multisystem disorder affecting eyes, nervous system, and kidney. The main causes are mutations in the OCRL gene that encodes a member of the inositol polyphosphate-5-phosphatase protein family. In this study, we aimed to gain new insights into the consequences of a novel OCRL intronic variant on pre-mRNA splicing as a main cause of Lowe syndrome in a boy. METHODS After clinical diagnosis of the patient with Lowe syndrome, genetic testing was used to detect the presence of the OCRL variants. In silico analysis, human splicing finder and PyMol were used to predict this variant effect. Then, we analyzed the variant transcript by using a minigene construct in addition to in silico analysis. RESULTS A hemizygous novel splicing variant in the intron 10 splice donor site of OCRL (c.939 + 3A > C) was identified in a boy with Lowe syndrome. We detected that the splice junction variant leads to aberrant OCRL mRNA splicing which results in the formation of an alternative transcript in which 29 nucleotides of exon 10 were skipped. The findings obtained from the exon-trapping assay were identical to those of in silico analysis. Hence, the truncated OCRL protein may lacked the last 597 native amino acids. CONCLUSIONS The minigene assays detected the same transcript abnormality to in silico assay and were reliable in revealing the pathogenicity of the intronic variant we have used previously. Overall, this study provides new insights about Lowe syndrome and further reveals the molecular pathogenicity mechanism of the intronic variant disease.
Collapse
Affiliation(s)
- Junhui Sun
- Department of Cell Biology and Medical Genetics, School of Medicine, Zhejiang University, Research Building A713, Yuhangtang Road 866, Hangzhou, China.,Zhejiang California International Nanosystems Institute, Zhjiang University, Hangzhou, China
| | - Zhongwei Zhou
- Department of Cell Biology and Medical Genetics, School of Medicine, Zhejiang University, Research Building A713, Yuhangtang Road 866, Hangzhou, China
| | - Chen Weng
- Department of Cell Biology and Medical Genetics, School of Medicine, Zhejiang University, Research Building A713, Yuhangtang Road 866, Hangzhou, China
| | - Chaojun Wang
- Department of Urology, The First Affiliated Hospital of Zhejiang University, Hangzhou, China
| | - Jiao Chen
- Department of Cell Biology and Medical Genetics, School of Medicine, Zhejiang University, Research Building A713, Yuhangtang Road 866, Hangzhou, China
| | - Xue Feng
- Department of Cell Biology and Medical Genetics, School of Medicine, Zhejiang University, Research Building A713, Yuhangtang Road 866, Hangzhou, China
| | - Ping Yu
- Department of Cell Biology and Medical Genetics, School of Medicine, Zhejiang University, Research Building A713, Yuhangtang Road 866, Hangzhou, China
| | - Ming Qi
- Department of Cell Biology and Medical Genetics, School of Medicine, Zhejiang University, Research Building A713, Yuhangtang Road 866, Hangzhou, China. .,Zhejiang California International Nanosystems Institute, Zhjiang University, Hangzhou, China. .,Center for Genetic and Genomic Medicine First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China. .,Department of Pathology and Laboratory of Medicine, University of Rochester Medical Centre, Rochester, NY, USA. .,DIAN Diagnostics, Hangzhou, China.
| |
Collapse
|
48
|
Hernández-Gallardo AK, Missirlis F. Cellular iron sensing and regulation: Nuclear IRP1 extends a classic paradigm. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118705. [PMID: 32199885 DOI: 10.1016/j.bbamcr.2020.118705] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/02/2020] [Accepted: 03/16/2020] [Indexed: 01/26/2023]
Abstract
The classic view is that iron regulatory proteins operate at the post-transcriptional level. Iron Regulatory Protein 1 (IRP1) shifts between an apo-form that binds mRNAs and a holo-form that harbors a [4Fe4S] cluster. The latter form is not considered relevant to iron regulation, but rather thought to act as a non-essential cytosolic aconitase. Recent work in Drosophila, however, shows that holo-IRP1 can also translocate to the nucleus, where it appears to downregulate iron metabolism genes, preparing the cell for a decline in iron uptake. The shifting of IRP1 between states requires a functional mitoNEET pathway that includes a glycogen branching enzyme for the repair or disassembly of IRP1's oxidatively damaged [3Fe4S] cluster. The new findings add to the notion that glucose metabolism is modulated by iron metabolism. Furthermore, we propose that ferritin ferroxidase activity participates in the repair of the IRP1 [3Fe4S] cluster leading to the hypothesis that cytosolic ferritin directly contributes to cellular iron sensing.
Collapse
Affiliation(s)
| | - Fanis Missirlis
- Departamento de Fisiología, Biofísica y Neurociencias, Cinvestav, CDMX, Mexico.
| |
Collapse
|
49
|
Kurosaki T, Popp MW, Maquat LE. Quality and quantity control of gene expression by nonsense-mediated mRNA decay. Nat Rev Mol Cell Biol 2020; 20:406-420. [PMID: 30992545 DOI: 10.1038/s41580-019-0126-2] [Citation(s) in RCA: 446] [Impact Index Per Article: 111.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is one of the best characterized and most evolutionarily conserved cellular quality control mechanisms. Although NMD was first found to target one-third of mutated, disease-causing mRNAs, it is now known to also target ~10% of unmutated mammalian mRNAs to facilitate appropriate cellular responses - adaptation, differentiation or death - to environmental changes. Mutations in NMD genes in humans are associated with intellectual disability and cancer. In this Review, we discuss how NMD serves multiple purposes in human cells by degrading both mutated mRNAs to protect the integrity of the transcriptome and normal mRNAs to control the quantities of unmutated transcripts.
Collapse
Affiliation(s)
- Tatsuaki Kurosaki
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.,Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Maximilian W Popp
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA.,Center for RNA Biology, University of Rochester, Rochester, NY, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY, USA. .,Center for RNA Biology, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
50
|
Screening Readthrough Compounds to Suppress Nonsense Mutations: Possible Application to β-Thalassemia. J Clin Med 2020; 9:jcm9020289. [PMID: 31972957 PMCID: PMC7073686 DOI: 10.3390/jcm9020289] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 02/07/2023] Open
Abstract
Several types of thalassemia (including β039-thalassemia) are caused by nonsense mutations in genes controlling globin production, leading to premature translation termination and mRNA destabilization mediated by the nonsense mediated mRNA decay. Drugs (for instance, aminoglycosides) can be designed to suppress premature translation termination by inducing readthrough (or nonsense suppression) at the premature termination codon. These findings have introduced new hopes for the development of a pharmacologic approach to cure this genetic disease. In the present review, we first summarize the principle and current status of the chemical relief for the expression of functional proteins from genes otherwise unfruitful for the presence of nonsense mutations. Second, we compare data available on readthrough molecules for β0-thalassemia. The examples reported in the review strongly suggest that ribosomal readthrough should be considered as a therapeutic approach for the treatment of β0-thalassemia caused by nonsense mutations. Concluding, the discovery of molecules, exhibiting the property of inducing β-globin, such as readthrough compounds, is of great interest and represents a hope for several patients, whose survival will depend on the possible use of drugs rendering blood transfusion and chelation therapy unnecessary.
Collapse
|