1
|
Gonzalez-Llerena JL, Espinosa-Rodriguez BA, Treviño-Almaguer D, Mendez-Lopez LF, Carranza-Rosales P, Gonzalez-Barranco P, Guzman-Delgado NE, Romo-Mancillas A, Balderas-Renteria I. Cordycepin Triphosphate as a Potential Modulator of Cellular Plasticity in Cancer via cAMP-Dependent Pathways: An In Silico Approach. Int J Mol Sci 2024; 25:5692. [PMID: 38891880 PMCID: PMC11171877 DOI: 10.3390/ijms25115692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Cordycepin, or 3'-deoxyadenosine, is an adenosine analog with a broad spectrum of biological activity. The key structural difference between cordycepin and adenosine lies in the absence of a hydroxyl group at the 3' position of the ribose ring. Upon administration, cordycepin can undergo an enzymatic transformation in specific tissues, forming cordycepin triphosphate. In this study, we conducted a comprehensive analysis of the structural features of cordycepin and its derivatives, contrasting them with endogenous purine-based metabolites using chemoinformatics and bioinformatics tools in addition to molecular dynamics simulations. We tested the hypothesis that cordycepin triphosphate could bind to the active site of the adenylate cyclase enzyme. The outcomes of our molecular dynamics simulations revealed scores that are comparable to, and superior to, those of adenosine triphosphate (ATP), the endogenous ligand. This interaction could reduce the production of cyclic adenosine monophosphate (cAMP) by acting as a pseudo-ATP that lacks a hydroxyl group at the 3' position, essential to carry out nucleotide cyclization. We discuss the implications in the context of the plasticity of cancer and other cells within the tumor microenvironment, such as cancer-associated fibroblast, endothelial, and immune cells. This interaction could awaken antitumor immunity by preventing phenotypic changes in the immune cells driven by sustained cAMP signaling. The last could be an unreported molecular mechanism that helps to explain more details about cordycepin's mechanism of action.
Collapse
Affiliation(s)
- Jose Luis Gonzalez-Llerena
- Laboratory of Molecular Pharmacology and Biological Models, School of Chemistry, Autonomous University of Nuevo Leon, San Nicolas de los Garza 66451, Mexico; (J.L.G.-L.); (B.A.E.-R.); (D.T.-A.); (P.G.-B.)
- Center for Research on Nutrition and Public Health, School of Public Health and Nutrition, Autonomous University of Nuevo Leon, Monterrey 66460, Mexico;
| | - Bryan Alejandro Espinosa-Rodriguez
- Laboratory of Molecular Pharmacology and Biological Models, School of Chemistry, Autonomous University of Nuevo Leon, San Nicolas de los Garza 66451, Mexico; (J.L.G.-L.); (B.A.E.-R.); (D.T.-A.); (P.G.-B.)
| | - Daniela Treviño-Almaguer
- Laboratory of Molecular Pharmacology and Biological Models, School of Chemistry, Autonomous University of Nuevo Leon, San Nicolas de los Garza 66451, Mexico; (J.L.G.-L.); (B.A.E.-R.); (D.T.-A.); (P.G.-B.)
| | - Luis Fernando Mendez-Lopez
- Center for Research on Nutrition and Public Health, School of Public Health and Nutrition, Autonomous University of Nuevo Leon, Monterrey 66460, Mexico;
| | - Pilar Carranza-Rosales
- Laboratory of Cell Biology, Northeast Biomedical Research Center, Mexican Social Security Institute, Monterrey 64720, Mexico;
| | - Patricia Gonzalez-Barranco
- Laboratory of Molecular Pharmacology and Biological Models, School of Chemistry, Autonomous University of Nuevo Leon, San Nicolas de los Garza 66451, Mexico; (J.L.G.-L.); (B.A.E.-R.); (D.T.-A.); (P.G.-B.)
| | - Nancy Elena Guzman-Delgado
- Health Research Division, High Specialty Medical Unit, Cardiology Hospital N. 34. Mexican Social Security Institute, Monterrey 64360, Mexico;
| | - Antonio Romo-Mancillas
- Computer Aided Drug Design and Synthesis Group, School of Chemistry, Autonomous University of Queretaro, Queretaro 76010, Mexico
| | - Isaias Balderas-Renteria
- Laboratory of Molecular Pharmacology and Biological Models, School of Chemistry, Autonomous University of Nuevo Leon, San Nicolas de los Garza 66451, Mexico; (J.L.G.-L.); (B.A.E.-R.); (D.T.-A.); (P.G.-B.)
| |
Collapse
|
2
|
Mastos C, Xu X, Keen AC, Halls ML. Signalling of Adrenoceptors: Canonical Pathways and New Paradigms. Handb Exp Pharmacol 2024; 285:147-184. [PMID: 38227198 DOI: 10.1007/164_2023_704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The concept of G protein-coupled receptors initially arose from studies of the β-adrenoceptor, adenylyl cyclase, and cAMP signalling pathway. Since then both canonical G protein-coupled receptor signalling pathways and emerging paradigms in receptor signalling have been defined by experiments focused on adrenoceptors. Here, we discuss the evidence for G protein coupling specificity of the nine adrenoceptor subtypes. We summarise the ability of each of the adrenoceptors to activate proximal signalling mediators including cAMP, calcium, mitogen-activated protein kinases, and protein kinase C pathways. Finally, we highlight the importance of precise spatial and temporal control of adrenoceptor signalling that is controlled by the localisation of receptors at intracellular membranes and in larger protein complexes.
Collapse
Affiliation(s)
- Chantel Mastos
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Xiaomeng Xu
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Alastair C Keen
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Michelle L Halls
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia.
| |
Collapse
|
3
|
Vujovic F, Shepherd CE, Witting PK, Hunter N, Farahani RM. Redox-Mediated Rewiring of Signalling Pathways: The Role of a Cellular Clock in Brain Health and Disease. Antioxidants (Basel) 2023; 12:1873. [PMID: 37891951 PMCID: PMC10604469 DOI: 10.3390/antiox12101873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/14/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023] Open
Abstract
Metazoan signalling pathways can be rewired to dampen or amplify the rate of events, such as those that occur in development and aging. Given that a linear network topology restricts the capacity to rewire signalling pathways, such scalability of the pace of biological events suggests the existence of programmable non-linear elements in the underlying signalling pathways. Here, we review the network topology of key signalling pathways with a focus on redox-sensitive proteins, including PTEN and Ras GTPase, that reshape the connectivity profile of signalling pathways in response to an altered redox state. While this network-level impact of redox is achieved by the modulation of individual redox-sensitive proteins, it is the population by these proteins of critical nodes in a network topology of signal transduction pathways that amplifies the impact of redox-mediated reprogramming. We propose that redox-mediated rewiring is essential to regulate the rate of transmission of biological signals, giving rise to a programmable cellular clock that orchestrates the pace of biological phenomena such as development and aging. We further review the evidence that an aberrant redox-mediated modulation of output of the cellular clock contributes to the emergence of pathological conditions affecting the human brain.
Collapse
Affiliation(s)
- Filip Vujovic
- IDR/Westmead Institute for Medical Research, Sydney, NSW 2145, Australia; (F.V.); (N.H.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | | | - Paul K. Witting
- Redox Biology Group, Charles Perkins Centre, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Neil Hunter
- IDR/Westmead Institute for Medical Research, Sydney, NSW 2145, Australia; (F.V.); (N.H.)
| | - Ramin M. Farahani
- IDR/Westmead Institute for Medical Research, Sydney, NSW 2145, Australia; (F.V.); (N.H.)
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
4
|
Jin H, Qin S, He J, Xiao J, Li Q, Mao Y, Zhao L. Systematic pan-cancer analysis identifies RALA as a tumor targeting immune therapeutic and prognostic marker. Front Immunol 2022; 13:1046044. [PMID: 36466919 PMCID: PMC9713825 DOI: 10.3389/fimmu.2022.1046044] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/02/2022] [Indexed: 10/07/2023] Open
Abstract
INTRODUCTION RALA is a member of the small GTPase Ras superfamily and has been shown to play a role in promoting cell proliferation and migration in most tumors, and increase the resistance of anticancer drugs such as imatinib and cisplatin. Although many literatures have studied the cancer-promoting mechanism of RALA, there is a lack of relevant pan-cancer analysis. METHODS This study systematically analyzed the differential expression and mutation of RALA in pan-cancer, including different tissues and cancer cell lines, and studied the prognosis and immune infiltration associated with RALA in various cancers. Next, based on the genes co-expressed with RALA in pan-cancer, we selected 241 genes with high correlation for enrichment analysis. In terms of pan-cancer, we also analyzed the protein-protein interaction pathway of RALA and the application of small molecule drug Guanosine-5'-Diphosphate. We screened hepatocellular cancer (HCC) to further study RALA. RESULTS The results indicated that RALA was highly expressed in most cancers. RALA was significantly correlated with the infiltration of B cells and macrophages, as well as the expression of immune checkpoint molecules such as CD274, CTLA4, HAVCR2 and LAG3, suggesting that RALA can be used as a kind of new pan-cancer immune marker. The main functions of 241 genes are mitosis and protein localization to nucleosome, which are related to cell cycle. For HCC, the results displayed that RALA was positively correlated with common intracellular signaling pathways such as angiogenesis and apoptosis. DISCUSSION In summary, RALA was closely related to the clinical prognosis and immune infiltration of various tumors, and RALA was expected to become a broad-spectrum molecular immune therapeutic target and prognostic marker for pan-cancer.
Collapse
Affiliation(s)
- Haoer Jin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Sha Qin
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jiang He
- Center for Molecular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juxiong Xiao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qingling Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yitao Mao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Luqing Zhao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Pathology, School of Basic Medical Science, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
5
|
Ras inhibitor CAPRI enables neutrophil-like cells to chemotax through a higher-concentration range of gradients. Proc Natl Acad Sci U S A 2021; 118:2002162118. [PMID: 34675073 DOI: 10.1073/pnas.2002162118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2021] [Indexed: 01/21/2023] Open
Abstract
Neutrophils sense and migrate through an enormous range of chemoattractant gradients through adaptation. Here, we reveal that in human neutrophils, calcium-promoted Ras inactivator (CAPRI) locally controls the GPCR-stimulated Ras adaptation. Human neutrophils lacking CAPRI (caprikd ) exhibit chemoattractant-induced, nonadaptive Ras activation; significantly increased phosphorylation of AKT, GSK-3α/3β, and cofilin; and excessive actin polymerization. caprikd cells display defective chemotaxis in response to high-concentration gradients but exhibit improved chemotaxis in low- or subsensitive-concentration gradients of various chemoattractants, as a result of their enhanced sensitivity. Taken together, our data reveal that CAPRI controls GPCR activation-mediated Ras adaptation and lowers the sensitivity of human neutrophils so that they are able to chemotax through a higher-concentration range of chemoattractant gradients.
Collapse
|
6
|
Xu X, Liu J, Wang Y, Wang Y, Gong X, Pan L. Mechanistic Insights into the Interactions of Ras Subfamily
GTPases
with the
SPN
Domain of Autism‐associated
SHANK3
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaolong Xu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Jianping Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yingli Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Yaru Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xinyu Gong
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Lifeng Pan
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
7
|
Looi CK, Hii LW, Ngai SC, Leong CO, Mai CW. The Role of Ras-Associated Protein 1 (Rap1) in Cancer: Bad Actor or Good Player? Biomedicines 2020; 8:biomedicines8090334. [PMID: 32906721 PMCID: PMC7555474 DOI: 10.3390/biomedicines8090334] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/02/2020] [Accepted: 09/05/2020] [Indexed: 02/05/2023] Open
Abstract
Metastasis is known as the most life-threatening event in cancer patients. In principle, the immune system can prevent tumor development. However, dysfunctional T cells may fail to eliminate the tumor cells effectively and provide additional survival advantages for tumor proliferation and metastasis. Constitutive activation of Ras-associated protein1 (Rap1) has not only led to T cell anergy, but also inhibited autophagy and supported cancer progression through various oncogenic events. Inhibition of Rap1 activity with its negative regulator, Rap1GAP, impairs tumor progression. However, active Rap1 reduces tumor invasion in some cancers, indicating that the pleiotropic effects of Rap1 signaling in cancers could be cancer-specific. All in all, targeting Rap1 signaling and its regulators could potentially control carcinogenesis, metastasis, chemoresistance and immune evasion. Rap1GAP could be a promising therapeutic target in combating cancer.
Collapse
Affiliation(s)
- Chin-King Looi
- School of Postgraduate Study, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (C.-K.L.); (L.-W.H.)
| | - Ling-Wei Hii
- School of Postgraduate Study, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (C.-K.L.); (L.-W.H.)
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
| | - Siew Ching Ngai
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor 43500, Malaysia;
| | - Chee-Onn Leong
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
- Centre for Cancer and Stem Cells Research, Institute for Research, Development, and Innovation (IRDI), International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Chun-Wai Mai
- School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
- Centre for Cancer and Stem Cells Research, Institute for Research, Development, and Innovation (IRDI), International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
- Correspondence: ; Tel.: +60-3-2731-7596
| |
Collapse
|
8
|
Systematic Elucidation of the Mechanism of Quercetin against Gastric Cancer via Network Pharmacology Approach. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3860213. [PMID: 32964029 PMCID: PMC7486643 DOI: 10.1155/2020/3860213] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/25/2020] [Indexed: 12/24/2022]
Abstract
This study was aimed at elucidating the potential mechanisms of quercetin in the treatment of gastric cancer (GC). A network pharmacology approach was used to analyze the targets and pathways of quercetin in treating GC. The predicted targets of quercetin against GC were obtained through database mining, and the correlation of these targets with GC was analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Next, the protein-protein interaction (PPI) network was constructed, and overall survival (OS) analysis of hub targets was performed using the Kaplan–Meier Plotter online tool. Finally, the mechanism was further analyzed via molecular docking of quercetin with the hub targets. Thirty-six quercetin-related genes were identified, 15 of which overlapped with GC-related targets. These targets were further mapped to 319 GO biological process terms and 10 remarkable pathways. In the PPI network analysis, six hub targets were identified, including AKT1, EGFR, SRC, IGF1R, PTK2, and KDR. The high expression of these targets was related to poor OS in GC patients. Molecular docking analysis confirmed that quercetin can bind to these hub targets. In conclusion, this study provided a novel approach to reveal the therapeutic mechanisms of quercetin on GC, which will ease the future clinical application of quercetin in the treatment of GC.
Collapse
|
9
|
Kelly MR, Kostyrko K, Han K, Mooney NA, Jeng EE, Spees K, Dinh PT, Abbott KL, Gwinn DM, Sweet-Cordero EA, Bassik MC, Jackson PK. Combined Proteomic and Genetic Interaction Mapping Reveals New RAS Effector Pathways and Susceptibilities. Cancer Discov 2020; 10:1950-1967. [PMID: 32727735 PMCID: PMC7710624 DOI: 10.1158/2159-8290.cd-19-1274] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 06/08/2020] [Accepted: 07/24/2020] [Indexed: 11/16/2022]
Abstract
Activating mutations in RAS GTPases drive many cancers, but limited understanding of less-studied RAS interactors, and of the specific roles of different RAS interactor paralogs, continues to limit target discovery. We developed a multistage discovery and screening process to systematically identify genes conferring RAS-related susceptibilities in lung adenocarcinoma. Using affinity purification mass spectrometry, we generated a protein-protein interaction map of RAS interactors and pathway components containing hundreds of interactions. From this network, we constructed a CRISPR dual knockout library targeting 119 RAS-related genes that we screened for KRAS-dependent genetic interactions (GI). This approach identified new RAS effectors, including the adhesion controller RADIL and the endocytosis regulator RIN1, and >250 synthetic lethal GIs, including a potent KRAS-dependent interaction between RAP1GDS1 and RHOA. Many GIs link specific paralogs within and between gene families. These findings illustrate the power of multiomic approaches to uncover synthetic lethal combinations specific for hitherto untreatable cancer genotypes. SIGNIFICANCE: We establish a deep network of protein-protein and genetic interactions in the RAS pathway. Many interactions validated here demonstrate important specificities and redundancies among paralogous RAS regulators and effectors. By comparing synthetic lethal interactions across KRAS-dependent and KRAS-independent cell lines, we identify several new combination therapy targets for RAS-driven cancers.This article is highlighted in the In This Issue feature, p. 1775.
Collapse
Affiliation(s)
- Marcus R Kelly
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California.,Program in Cancer Biology, Stanford University School of Medicine, Stanford, California
| | - Kaja Kostyrko
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Kyuho Han
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Nancie A Mooney
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California
| | - Edwin E Jeng
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Kaitlyn Spees
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Phuong T Dinh
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - Keene L Abbott
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California
| | - Dana M Gwinn
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, California
| | - E Alejandro Sweet-Cordero
- Division of Hematology and Oncology, Department of Pediatrics, University of California, San Francisco, San Francisco, California.
| | - Michael C Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford, California. .,Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, California
| | - Peter K Jackson
- Baxter Laboratory, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, California. .,Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, California.,Department of Pathology, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
10
|
Nussinov R, Jang H, Zhang M, Tsai CJ, Sablina AA. The Mystery of Rap1 Suppression of Oncogenic Ras. Trends Cancer 2020; 6:369-379. [PMID: 32249186 PMCID: PMC7211489 DOI: 10.1016/j.trecan.2020.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 12/11/2022]
Abstract
Decades ago, Rap1, a small GTPase very similar to Ras, was observed to suppress oncogenic Ras phenotype, reverting its transformation. The proposed reason, persisting since, has been competition between Ras and Rap1 for a common target. Yet, none was found. There was also Rap1's puzzling suppression of Raf-1 versus activation of BRAF. Reemerging interest in Rap1 envisages capturing its Ras suppression action by inhibitors. Here, we review the literature and resolve the enigma. In vivo oncogenic Ras exists in isoform-distinct nanoclusters. The presence of Rap1 within the nanoclusters reduces the number of the clustered oncogenic Ras molecules, thus suppressing Raf-1 activation and mitogen-activated protein kinase (MAPK) signaling. Nanoclustering suggests that Rap1 suppression is Ras isoform dependent. Altogether, a potent Rap1-like inhibitor appears unlikely.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Anna A Sablina
- VIB Center for the Biology of Disease and KU Leuven Department of Oncology, Leuven Cancer Institute, Leuven, Belgium
| |
Collapse
|
11
|
Integration of Rap1 and Calcium Signaling. Int J Mol Sci 2020; 21:ijms21051616. [PMID: 32120817 PMCID: PMC7084553 DOI: 10.3390/ijms21051616] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023] Open
Abstract
Ca2+ is a universal intracellular signal. The modulation of cytoplasmic Ca2+ concentration regulates a plethora of cellular processes, such as: synaptic plasticity, neuronal survival, chemotaxis of immune cells, platelet aggregation, vasodilation, and cardiac excitation–contraction coupling. Rap1 GTPases are ubiquitously expressed binary switches that alternate between active and inactive states and are regulated by diverse families of guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs). Active Rap1 couples extracellular stimulation with intracellular signaling through secondary messengers—cyclic adenosine monophosphate (cAMP), Ca2+, and diacylglycerol (DAG). Much evidence indicates that Rap1 signaling intersects with Ca2+ signaling pathways to control the important cellular functions of platelet activation or neuronal plasticity. Rap1 acts as an effector of Ca2+ signaling when activated by mechanisms involving Ca2+ and DAG-activated (CalDAG-) GEFs. Conversely, activated by other GEFs, such as cAMP-dependent GEF Epac, Rap1 controls cytoplasmic Ca2+ levels. It does so by regulating the activity of Ca2+ signaling proteins such as sarcoendoplasmic reticulum Ca2+-ATPase (SERCA). In this review, we focus on the physiological significance of the links between Rap1 and Ca2+ signaling and emphasize the molecular interactions that may offer new targets for the therapy of Alzheimer’s disease, hypertension, and atherosclerosis, among other diseases.
Collapse
|
12
|
Nikulina E, Gkioka V, Siddiq MM, Mellado W, Hilaire M, Cain CR, Hannila SS, Filbin MT. Myelin-associated glycoprotein inhibits neurite outgrowth through inactivation of the small GTPase Rap1. FEBS Lett 2020; 594:1389-1402. [PMID: 31985825 DOI: 10.1002/1873-3468.13740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 11/05/2022]
Abstract
Rap1 is a small GTPase that has been implicated in dendritic development and plasticity. In this study, we investigated the role of Rap1 in axonal growth and its activation in response to neurotrophins and myelin-associated inhibitors. We report that Rap1 is activated by brain-derived neurotrophic factor and that this activation can be blocked by myelin-associated glycoprotein (MAG) or central nervous system myelin, which also induced increases in Rap1GAP1 levels. In addition, we demonstrate that adenoviral overexpression of Rap1 enhances neurite outgrowth in the presence of MAG and myelin, while inhibition of Rap1 activity through overexpression of Rap1GAP1 blocks neurite outgrowth. These findings suggest that Rap1GAP1 negatively regulates neurite outgrowth, making it a potential therapeutic target to promote axonal regeneration.
Collapse
Affiliation(s)
- Elena Nikulina
- Department of Biological Sciences, Hunter College, City University of New York, NY, USA
| | - Vasiliki Gkioka
- Department of Biological Sciences, Hunter College, City University of New York, NY, USA
| | - Mustafa M Siddiq
- Icahn Medical Institute 12-52, Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY, USA
| | | | - Melissa Hilaire
- Department of Biological Sciences, Hunter College, City University of New York, NY, USA
| | - Christine R Cain
- Department of Biological Sciences, Hunter College, City University of New York, NY, USA
| | - Sari S Hannila
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Marie T Filbin
- Department of Biological Sciences, Hunter College, City University of New York, NY, USA
| |
Collapse
|
13
|
Cai Q, Hosokawa T, Zeng M, Hayashi Y, Zhang M. Shank3 Binds to and Stabilizes the Active Form of Rap1 and HRas GTPases via Its NTD-ANK Tandem with Distinct Mechanisms. Structure 2019; 28:290-300.e4. [PMID: 31879129 DOI: 10.1016/j.str.2019.11.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/31/2019] [Accepted: 11/27/2019] [Indexed: 12/21/2022]
Abstract
Shank1/2/3, major scaffold proteins in excitatory synapses, are frequently mutated in patients with psychiatric disorders. Although the Shank N-terminal domain and ankyrin repeats domain tandem (NTD-ANK) is known to bind to Ras and Rap1, the molecular mechanism underlying and functional significance of the bindings in synapses are unknown. Here, we demonstrate that Shank3 NTD-ANK specifically binds to the guanosine triphosphate (GTP)-bound form of HRas and Rap1. In addition to the canonical site mediated by the Ras-association domain and common to both GTPases, Shank3 contains an unconventional Rap1 binding site formed by NTD and ANK together. Binding of Shank3 to the GTP-loaded Rap1 slows down its GTP hydrolysis by SynGAP. We further show that the interactions between Shank3 and HRas/Rap1 at excitatory synapses are promoted by synaptic activation. Thus, Shank3 may be able to modulate signaling of the Ras family proteins via directly binding to and stabilizing the GTP-bound form of the enzymes.
Collapse
Affiliation(s)
- Qixu Cai
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Tomohisa Hosokawa
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Menglong Zeng
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yasunori Hayashi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
14
|
Shah S, Brock EJ, Ji K, Mattingly RR. Ras and Rap1: A tale of two GTPases. Semin Cancer Biol 2018; 54:29-39. [PMID: 29621614 DOI: 10.1016/j.semcancer.2018.03.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/16/2018] [Accepted: 03/29/2018] [Indexed: 02/07/2023]
Abstract
Ras oncoproteins play pivotal roles in both the development and maintenance of many tumor types. Unfortunately, these proteins are difficult to directly target using traditional pharmacological strategies, in part due to their lack of obvious binding pockets or allosteric sites. This obstacle has driven a considerable amount of research into pursuing alternative ways to effectively inhibit Ras, examples of which include inducing mislocalization to prevent Ras maturation and inactivating downstream proteins in Ras-driven signaling pathways. Ras proteins are archetypes of a superfamily of small GTPases that play specific roles in the regulation of many cellular processes, including vesicle trafficking, nuclear transport, cytoskeletal rearrangement, and cell cycle progression. Several other superfamily members have also been linked to the control of normal and cancer cell growth and survival. For example, Rap1 has high sequence similarity to Ras, has overlapping binding partners, and has been demonstrated to both oppose and mimic Ras-driven cancer phenotypes. Rap1 plays an important role in cell adhesion and integrin function in a variety of cell types. Mechanistically, Ras and Rap1 cooperate to initiate and sustain ERK signaling, which is activated in many malignancies and is the target of successful therapeutics. Here we review the role activated Rap1 in ERK signaling and other downstream pathways to promote invasion and cell migration and metastasis in various cancer types.
Collapse
Affiliation(s)
- Seema Shah
- Program in Cancer Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Ethan J Brock
- Program in Cancer Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Kyungmin Ji
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Raymond R Mattingly
- Program in Cancer Biology, Wayne State University School of Medicine, Detroit, MI 48201, USA; Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
15
|
Moghadam AR, Patrad E, Tafsiri E, Peng W, Fangman B, Pluard TJ, Accurso A, Salacz M, Shah K, Ricke B, Bi D, Kimura K, Graves L, Najad MK, Dolatkhah R, Sanaat Z, Yazdi M, Tavakolinia N, Mazani M, Amani M, Ghavami S, Gartell R, Reilly C, Naima Z, Esfandyari T, Farassati F. Ral signaling pathway in health and cancer. Cancer Med 2017; 6:2998-3013. [PMID: 29047224 PMCID: PMC5727330 DOI: 10.1002/cam4.1105] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 04/10/2017] [Accepted: 04/14/2017] [Indexed: 12/12/2022] Open
Abstract
The Ral (Ras-Like) signaling pathway plays an important role in the biology of cells. A plethora of effects is regulated by this signaling pathway and its prooncogenic effectors. Our team has demonstrated the overactivation of the RalA signaling pathway in a number of human malignancies including cancers of the liver, ovary, lung, brain, and malignant peripheral nerve sheath tumors. Additionally, we have shown that the activation of RalA in cancer stem cells is higher in comparison with differentiated cancer cells. In this article, we review the role of Ral signaling in health and disease with a focus on the role of this multifunctional protein in the generation of therapies for cancer. An improved understanding of this pathway can lead to development of a novel class of anticancer therapies that functions on the basis of intervention with RalA or its downstream effectors.
Collapse
Affiliation(s)
- Adel Rezaei Moghadam
- Department of Human Anatomy and Cell ScienceUniversity of ManitobaWinnipegCanada
| | - Elham Patrad
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Elham Tafsiri
- Department of Pediatrics, Columbia Presbyterian Medical CenterNew YorkNew York
| | - Warner Peng
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Benjamin Fangman
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Timothy J Pluard
- Saint Luke's HospitalUniversity of Missouri at Kansas CityKansas CityMissouri
| | - Anthony Accurso
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Michael Salacz
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Kushal Shah
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Brandon Ricke
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Danse Bi
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Kyle Kimura
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Leland Graves
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Marzieh Khajoie Najad
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Roya Dolatkhah
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Zohreh Sanaat
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Mina Yazdi
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Naeimeh Tavakolinia
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Mohammad Mazani
- Pasteur Institute of IranTehranIran
- Ardabil University of Medical Sciences, BiochemistryArdabilIran
| | - Mojtaba Amani
- Pasteur Institute of IranTehranIran
- Ardabil University of Medical Sciences, BiochemistryArdabilIran
| | - Saeid Ghavami
- Department of Human Anatomy and Cell ScienceUniversity of ManitobaWinnipegCanada
| | - Robyn Gartell
- Department of Pediatrics, Columbia Presbyterian Medical CenterNew YorkNew York
| | - Colleen Reilly
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Zaid Naima
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Tuba Esfandyari
- Department of Medicine, Molecular Medicine LaboratoryThe University of Kansas Medical SchoolKansas CityKansas
| | - Faris Farassati
- Research Service (151)Kansas City Veteran Affairs Medical Center & Midwest Biomedical Research Foundation4801 E Linwood BlvdKansas CityMissouri64128‐2226
| |
Collapse
|
16
|
Zhang X, Kim KM. Multifactorial Regulation of G Protein-Coupled Receptor Endocytosis. Biomol Ther (Seoul) 2017; 25:26-43. [PMID: 28035080 PMCID: PMC5207461 DOI: 10.4062/biomolther.2016.186] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/21/2016] [Accepted: 11/30/2016] [Indexed: 12/26/2022] Open
Abstract
Endocytosis is a process by which cells absorb extracellular materials via the inward budding of vesicles formed from the plasma membrane. Receptor-mediated endocytosis is a highly selective process where receptors with specific binding sites for extracellular molecules internalize via vesicles. G protein-coupled receptors (GPCRs) are the largest single family of plasma-membrane receptors with more than 1000 family members. But the molecular mechanisms involved in the regulation of GPCRs are believed to be highly conserved. For example, receptor phosphorylation in collaboration with β-arrestins plays major roles in desensitization and endocytosis of most GPCRs. Nevertheless, a number of subsequent studies showed that GPCR regulation, such as that by endocytosis, occurs through various pathways with a multitude of cellular components and processes. This review focused on i) functional interactions between homologous and heterologous pathways, ii) methodologies applied for determining receptor endocytosis, iii) experimental tools to determine specific endocytic routes, iv) roles of small guanosine triphosphate-binding proteins in GPCR endocytosis, and v) role of post-translational modification of the receptors in endocytosis.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Pharmacology Laboratory, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Kyeong-Man Kim
- Pharmacology Laboratory, College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
17
|
Zheng M, Zhang X, Sun N, Min C, Zhang X, Kim KM. RalA employs GRK2 and β-arrestins for the filamin A-mediated regulation of trafficking and signaling of dopamine D2 and D3 receptor. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2072-83. [PMID: 27188791 DOI: 10.1016/j.bbamcr.2016.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/10/2016] [Accepted: 05/13/2016] [Indexed: 12/13/2022]
Abstract
Filamin A (FLNA) is known to act as platform for the signaling and intracellular trafficking of various GPCRs including dopamine D2 and D3 receptors (D2R, D3R). To understand molecular mechanisms involved in the FLNA-mediated regulation of D2R and D3R, comparative studies were conducted on the signaling and intracellular trafficking of the D2R and D3R in FLNA-knockdown cells, with a specific focus on the roles of the proteins that interact with FLNA and the D2R and D3R. Lowering the level of cellular FLNA caused an elevation in RalA activity and resulted in selective interference with the normal intracellular trafficking and signaling of the D2R and D3R, through GRK2 and β-arrestins, respectively. Knockdown of FLNA or coexpression of active RalA interfered with the recycling of the internalized D2R and resulted in the development of receptor tolerance. Active RalA was found to interact with GRK2 to sequester it from D2R. Knockdown of FLNA or coexpression of active RalA prevented D3R from coupling with G protein. The selective involvement of GRK2- and β-arrestins in the RalA-mediated cellular processes of the D2R and D3R was achieved via their different modes of interactions with the receptor and their distinct functional roles in receptor regulation. Our results show that FLNA is a multi-functional protein that acts as a platform on which D2R and D3R can interact with various proteins, through which selective regulation of these receptors occurs in combination with GRK2 and β-arrestins.
Collapse
Affiliation(s)
- Mei Zheng
- Department of Pharmacology, College of Pharmacy, Drug Development Research Institute, Chonnam National University, Gwang-Ju 500-757, Republic of Korea
| | - Xiaohan Zhang
- Department of Pharmacology, College of Pharmacy, Drug Development Research Institute, Chonnam National University, Gwang-Ju 500-757, Republic of Korea
| | - NingNing Sun
- Department of Pharmacology, College of Pharmacy, Drug Development Research Institute, Chonnam National University, Gwang-Ju 500-757, Republic of Korea
| | - Chengchun Min
- Department of Pharmacology, College of Pharmacy, Drug Development Research Institute, Chonnam National University, Gwang-Ju 500-757, Republic of Korea
| | - Xiaowei Zhang
- Department of Pharmacology, College of Pharmacy, Drug Development Research Institute, Chonnam National University, Gwang-Ju 500-757, Republic of Korea
| | - Kyeong-Man Kim
- Department of Pharmacology, College of Pharmacy, Drug Development Research Institute, Chonnam National University, Gwang-Ju 500-757, Republic of Korea.
| |
Collapse
|
18
|
Zhu Z, Di J, Lu Z, Gao K, Zheng J. Rap2B GTPase: structure, functions, and regulation. Tumour Biol 2016; 37:7085-93. [PMID: 27012552 DOI: 10.1007/s13277-016-5033-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/18/2016] [Indexed: 02/08/2023] Open
Abstract
Rap2B GTPase, a member of Ras-related protein superfamily, was first discovered from a platelet cDNA library in the early 1990s. Since then, it has been reported to play an important role in regulating cellular processes including cytoskeletal organization, cell growth, and proliferation. It can be stimulated and suppressed by a wide range of external and internal inducers, circulating between GTP-bound active state and GDP-bound inactive state. Increasing focus on Ras signaling pathway reveals critical effects of Rap2B on tumorigenesis. In particular, Rap2B behaves in a p53-dependent manner in regulation of apoptosis and migration. Apart from being an oncogenic activator, Rap2B has been found to participate in many other physiological events via diverse downstream effectors. In this review, we present recent studies on the structure, regulation, and multiple biological functions of Rap2B, shedding light on its potential status in treatment of cancer as well as other diseases.
Collapse
Affiliation(s)
- Zhesi Zhu
- Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Jiehui Di
- Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China.,Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, School of Medicine, The University of North Carolina at Chapel Hill, 101 Manning Drive, Chapel Hill, NC, 27514, USA
| | - Zheng Lu
- Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Keyu Gao
- Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Junnian Zheng
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical College, Xuzhou, 221002, Jiangsu, People's Republic of China. .,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou, China.
| |
Collapse
|
19
|
Zheng M, Zhang X, Guo S, Zhang X, Min C, Cheon SH, Oak MH, Kim YR, Kim KM. Agonist-induced changes in RalA activities allows the prediction of the endocytosis of G protein-coupled receptors. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:77-90. [PMID: 26477566 DOI: 10.1016/j.bbamcr.2015.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/10/2015] [Accepted: 10/13/2015] [Indexed: 12/31/2022]
Abstract
GTP binding proteins are classified into two families: heterotrimeric large G proteins which are composed of three subunits, and one subunit of small G proteins. Roles of small G proteins in the intracellular trafficking of G protein-coupled receptors (GPCRs) were studied. Among various small G proteins tested, GTP-bound form (G23V) of RalA inhibited the internalization of dopamine D2 receptor independently of the previously reported downstream effectors of RalA, such as Ral-binding protein 1 and PLD. With high affinity for GRK2, active RalA inhibited the GPCR endocytosis by sequestering the GRK2 from receptors. When it was tested for several GPCRs including an endogenous GPCR, lysophosphatidic acid receptor 1, agonist-induced conversion of GTP-bound to GDP-bound RalA, which presumably releases the sequestered GRK2, was observed selectively with the GPCRs which have tendency to undergo endocytosis. Conversion of RalA from active to inactive state occurred by translocation of RGL, a guanine nucleotide exchange factor, from the plasma membrane to cytosol as a complex with Gβγ. These results suggest that agonist-induced Gβγ-mediated conversion of RalA from the GTP-bound form to the GDP-bound form could be a mechanism to facilitate agonist-induced internalization of GPCRs.
Collapse
Affiliation(s)
- Mei Zheng
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 500-757, Republic of Korea
| | - Xiaohan Zhang
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 500-757, Republic of Korea
| | - Shuohan Guo
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 500-757, Republic of Korea
| | - Xiaowei Zhang
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 500-757, Republic of Korea
| | - Chengchun Min
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 500-757, Republic of Korea
| | - Seung Hoon Cheon
- Department of Medicinal Chemistry, College of Pharmacy, Chonnam National University, Gwang-Ju 500-757, Republic of Korea
| | - Min-Ho Oak
- College of Pharmacy, Mokpo National University, Muan-gun, Jeollanamdo 534-729, Republic of Korea
| | - Young Ran Kim
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 500-757, Republic of Korea
| | - Kyeong-Man Kim
- Department of Pharmacology, College of Pharmacy, Chonnam National University, Gwang-Ju 500-757, Republic of Korea.
| |
Collapse
|
20
|
Joshi S, Singh AR, Zulcic M, Durden DL. A PKC-SHP1 signaling axis desensitizes Fcγ receptor signaling by reducing the tyrosine phosphorylation of CBL and regulates FcγR mediated phagocytosis. BMC Immunol 2014; 15:18. [PMID: 24886428 PMCID: PMC4017086 DOI: 10.1186/1471-2172-15-18] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/23/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fcγ receptors mediate important biological signals in myeloid cells including the ingestion of microorganisms through a process of phagocytosis. It is well-known that Fcγ receptor (FcγR) crosslinking induces the tyrosine phosphorylation of CBL which is associated with FcγR mediated phagocytosis, however how signaling molecules coordinate to desensitize these receptors is unclear. An investigation of the mechanisms involved in receptor desensitization will provide new insight into potential mechanisms by which signaling molecules may downregulate tyrosine phosphorylation dependent signaling events to terminate important signaling processes. RESULTS Using the U937IF cell line, we observed that FcγR1 crosslinking induces the tyrosine phosphorylation of CBL, which is maximal at 5 min. followed by a kinetic pattern of dephosphorylation. An investigation of the mechanisms involved in receptor desensitization revealed that pretreatment of U937IF or J774 cells with PMA followed by Fcγ receptor crosslinking results in the reduced tyrosine phosphorylation of CBL and the abrogation of downstream signals, such as CBL-CRKL binding, Rac-GTP activation and the phagocytic response. Pretreatment of J774 cells with GF109203X, a PKC inhibitor was observed to block dephosphorylation of CBL and rescued the phagocytic response. We demonstrate that the PKC induced desensitization of FcγR/ phagocytosis is associated with the inactivation of Rac-GTP, which is deactivated in a hematopoietic specific phosphatase SHP1 dependent manner following ITAM stimulation. The effect of PKC on FcγR signaling is augmented by the transfection of catalytically active SHP1 and not by the transfection of catalytic dead SHP1 (C124S). CONCLUSIONS Our results suggest a functional model by which PKC interacts with SHP1 to affect the phosphorylation state of CBL, the activation state of Rac and the negative regulation of ITAM signaling i.e. Fcγ receptor mediated phagocytosis. These findings suggest a mechanism for Fcγ receptor desensitization by which a serine-threonine kinase e.g. PKC downregulates tyrosine phosphorylation dependent signaling events via the reduced tyrosine phosphorylation of the complex adapter protein, CBL.
Collapse
Affiliation(s)
| | | | | | - Donald L Durden
- UCSD Department of Pediatrics, Moores UCSD Cancer Center, University of California School of Medicine, San Diego, CA 92093, USA.
| |
Collapse
|
21
|
Zhu YH, Fu L, Chen L, Qin YR, Liu H, Xie F, Zeng T, Dong SS, Li J, Li Y, Dai Y, Xie D, Guan XY. Downregulation of the novel tumor suppressor DIRAS1 predicts poor prognosis in esophageal squamous cell carcinoma. Cancer Res 2013; 73:2298-309. [PMID: 23436800 DOI: 10.1158/0008-5472.can-12-2663] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Loss of chromosome 19p is one of the most frequent allelic imbalances in esophageal squamous cell carcinoma (ESCC), suggesting the existence of one or more tumor suppressor genes within this region. In this study, we investigated a role in ESCCs for a candidate tumor suppressor gene located at 19p13.3, the Ras-like small GTPase DIRAS1. Downregulation of DIRAS1 occurred in approximately 50% of primary ESCCs where it was associated significantly with advanced clinical stage, lymph node metastasis, and poor overall survival. LOH and promoter methylation analyses suggested that loss of DIRAS1 expression was mediated by epigenetic mechanisms. Functional studies established that ectopic re-expression of DIRAS1 in ESCC cells inhibited cell proliferation, clonogenicity, cell motility, and tumor formation. Mechanistic investigations suggested that DIRAS1 acted through extracellular signal-regulated kinase (ERK1/2; MAPK3/1) and p38 mitogen-activated protein kinase (MAPK; MAPK14) signaling to trigger BAD Ser112 dephosphorylation and matrix metalloproteinase (MMP)2/9 transcriptional inactivation to promote apoptosis and inhibit metastasis, respectively. Taken together, our results revealed that DIRAS1 has a pivotal function in ESCC pathogenesis, with possible use as a biomarker and intervention point for new therapeutic strategies.
Collapse
Affiliation(s)
- Ying-Hui Zhu
- State Key Laboratory of Oncology in Southern China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Menon J, Doebele RC, Gomes S, Bevilacqua E, Reindl KM, Rosner MR. A novel interplay between Rap1 and PKA regulates induction of angiogenesis in prostate cancer. PLoS One 2012; 7:e49893. [PMID: 23166790 PMCID: PMC3499522 DOI: 10.1371/journal.pone.0049893] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 10/15/2012] [Indexed: 11/18/2022] Open
Abstract
Angiogenesis inhibition is an important therapeutic strategy for advanced stage prostate cancer. Previous work from our laboratory showed that sustained stimulation of Rap1 by 8-pCPT-2'-O-Me-cAMP (8CPT) via activation of Epac, a Rap1 GEF, or by expression of a constitutively active Rap1 mutant (cRap1) suppresses endothelial cell chemotaxis and subsequent angiogenesis. When we tested this model in the context of a prostate tumor xenograft, we found that 8CPT had no significant effect on prostate tumor growth alone. However, in cells harboring cRap1, 8CPT dramatically inhibited not only prostate tumor growth but also VEGF expression and angiogenesis within the tumor microenvironment. Subsequent analysis of the mechanism revealed that, in prostate tumor epithelial cells, 8CPT acted via stimulation of PKA rather than Epac/Rap1. PKA antagonizes Rap1 and hypoxic induction of 1α protein expression, VEGF production and, ultimately, angiogenesis. Together these findings provide evidence for a novel interplay between Rap1, Epac, and PKA that regulates tumor-stromal induction of angiogenesis.
Collapse
Affiliation(s)
- Jyotsana Menon
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, United States of America
| | - Robert C. Doebele
- School of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Suzana Gomes
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, United States of America
| | - Elena Bevilacqua
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, United States of America
| | - Katie M. Reindl
- Department of Biological Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | - Marsha Rich Rosner
- Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
23
|
Shao X, Miao M, Qi X, Chen Z. Ras-proximate-1 GTPase-activating protein and Rac2 may play pivotal roles in the initial development of myelodysplastic syndrome. Oncol Lett 2012; 4:289-298. [PMID: 22844372 DOI: 10.3892/ol.2012.736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 05/09/2012] [Indexed: 11/06/2022] Open
Abstract
Myelodysplastic syndrome (MDS) is a stem cell disease that has a characteristic morphological dysplasia. Adhesion molecules and the Wnt signaling pathway are mostly involved with the self-renewal, proliferation and differentiation of hematopoietic stem cells (HSCs) while Rho GTPases are closely correlated with the cytoskeleton and therefore cell morphology. To gain insight into the poorly understood pathophysiology of MDS, the present study focused on analyzing the gene expression profiles of these molecules with whole genomic array using CD34(+) cells from MDS patients. These profiles showed that N-cadherin, E-cadherin and c-myc binding protein tended to be downregulated, whereas β-catenin, Ras-proximate-1 GTPase-activating protein (Rap1GAP), c-myc promoter binding protein, Rac1, Rac2 and CDC42 tended to be upregulated. However, no change in the expression of genes involved in the canonical Wnt signaling pathway, with the exception of β-catenin, was observed. The array results were confirmed by real-time quantitative polymerase chain reaction (RQ-PCR) using CD34(+) cells from a cohort of patients with MDS-refractory anemia (RA) [WHO (2008) RCUD, RCMD and MDS-U] who had normal karyotypes. Only Rap1GAP and Rac2 showed higher expression levels when mononuclear cells were used from another group of patients with MDS-RA [WHO (2008) RCUD, RCMD and MDS-U] who also had normal karyotypes. We believe that the cadherin-β-catenin-c-myc signaling axis is crucial in the hematopoiesis of HSCs in the early stages of MDS. In addition, Ras-proximate-1 (Rap1), which is negatively regulated by Rap1GAP, may serve as an initiator of this axis through interplay with cadherin. This pathway is strengthened by the upregulation of Rac2, which may allow the nuclear translocation of β-catenin. The aberrant expression of Rho GTPases may also be responsible for the dysplasia characteristics observed in MDS. This study provides vital and new insights into the pathophysiology of MDS. The two small G proteins, Rap1GAP and Rac2, may act as new molecular markers for the diagnosis of MDS.
Collapse
Affiliation(s)
- Xuejun Shao
- The First Affiliated Hospital, Soochow University, Jiangsu Institute of Hematology, Jiangsu, P.R. China
| | | | | | | |
Collapse
|
24
|
Gutiérrez-Herrero S, Maia V, Gutiérrez-Berzal J, Calzada N, Sanz M, González-Manchón C, Pericacho M, Ortiz-Rivero S, González-Porras JR, Arechederra M, Porras A, Guerrero C. C3G transgenic mouse models with specific expression in platelets reveal a new role for C3G in platelet clotting through its GEF activity. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1366-77. [PMID: 22659131 DOI: 10.1016/j.bbamcr.2012.05.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 05/17/2012] [Accepted: 05/18/2012] [Indexed: 01/10/2023]
Abstract
We have generated mouse transgenic lineages for C3G (tgC3G) and C3GΔCat (tgC3GΔCat, C3G mutant lacking the GEF domain), where the transgenes are expressed under the control of the megakaryocyte and platelet specific PF4 (platelet factor 4) gene promoter. Transgenic platelet activity has been analyzed through in vivo and in vitro approaches, including bleeding time, aggregation assays and flow cytometry. Both transgenes are expressed (RNA and protein) in purified platelets and megakaryocytes and do not modify the number of platelets in peripheral blood. Transgenic C3G animals showed bleeding times significantly shorter than control animals, while tgC3GΔCat mice presented a remarkable bleeding diathesis as compared to their control siblings. Accordingly, platelets from tgC3G mice showed stronger activation in response to platelet agonists such as thrombin, PMA, ADP or collagen than control platelets, while those from tgC3GΔCat animals had a lower response. In addition, we present data indicating that C3G is a mediator in the PKC pathway leading to Rap1 activation. Remarkably, a significant percentage of tgC3G mice presented a higher level of neutrophils than their control siblings. These results indicate that C3G plays an important role in platelet clotting through a mechanism involving its GEF activity and suggest that it might be also involved in neutrophil development.
Collapse
|
25
|
Ferrando IM, Chaerkady R, Zhong J, Molina H, Jacob HKC, Herbst-Robinson K, Dancy BM, Katju V, Bose R, Zhang J, Pandey A, Cole PA. Identification of targets of c-Src tyrosine kinase by chemical complementation and phosphoproteomics. Mol Cell Proteomics 2012; 11:355-69. [PMID: 22499769 DOI: 10.1074/mcp.m111.015750] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The cellular proto-oncogene c-Src is a nonreceptor tyrosine kinase involved in cell growth and cytoskeletal regulation. Despite being dysregulated in a variety of human cancers, its precise functions are not fully understood. Identification of the substrates of c-Src remains a major challenge, because there is no simple way to directly stimulate its activity. Here we combine the chemical rescue of mutant c-Src and global quantitative phosphoproteomics to obtain the first high resolution snapshot of the range of tyrosine phosphorylation events that occur in the cell immediately after specific c-Src stimulation. After enrichment by anti-phosphotyrosine antibodies, we identified 29 potential novel c-Src substrate proteins. Tyrosine phosphopeptide mapping allowed the identification of 382 nonredundant tyrosine phosphopeptides on 213 phosphoproteins. Stable isotope labeling of amino acids in cell culture-based quantitation allowed the detection of 97 nonredundant tyrosine phosphopeptides whose level of phosphorylation is increased by c-Src. A large number of previously uncharacterized c-Src putative protein targets and phosphorylation sites are presented here, a majority of which play key roles in signaling and cytoskeletal networks, particularly in cell adhesion. Integrin signaling and focal adhesion kinase signaling pathway are two of the most altered pathways upon c-Src activation through chemical rescue. In this context, our study revealed the temporal connection between c-Src activation and the GTPase Rap1, known to stimulate integrin-dependent adhesion. Chemical rescue of c-Src provided a tool to dissect the spatiotemporal mechanism of activation of the Rap1 guanine exchange factor, C3G, one of the identified potential c-Src substrates that plays a role in focal adhesion signaling. In addition to unveiling the role of c-Src in the cell and, specifically, in the Crk-C3G-Rap1 pathway, these results exemplify a strategy for obtaining a comprehensive understanding of the functions of nonreceptor tyrosine kinases with high specificity and kinetic resolution.
Collapse
Affiliation(s)
- Isabel Martinez Ferrando
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Cavalcanti DD, Kalani MYS, Martirosyan NL, Eales J, Spetzler RF, Preul MC. Cerebral cavernous malformations: from genes to proteins to disease. J Neurosurg 2011; 116:122-32. [PMID: 21962164 DOI: 10.3171/2011.8.jns101241] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Over the past half century molecular biology has led to great advances in our understanding of angio- and vasculogenesis and in the treatment of malformations resulting from these processes gone awry. Given their sporadic and familial distribution, their developmental and pathological link to capillary telangiectasias, and their observed chromosomal abnormalities, cerebral cavernous malformations (CCMs) are regarded as akin to cancerous growths. Although the exact pathological mechanisms involved in the formation of CCMs are still not well understood, the identification of 3 genetic loci has begun to shed light on key developmental pathways involved in CCM pathogenesis. Cavernous malformations can occur sporadically or in an autosomal dominant fashion. Familial forms of CCMs have been attributed to mutations at 3 different loci implicated in regulating important processes such as proliferation and differentiation of angiogenic precursors and members of the apoptotic machinery. These processes are important for the generation, maintenance, and pruning of every vessel in the body. In this review the authors highlight the latest discoveries pertaining to the molecular genetics of CCMs, highlighting potential new therapeutic targets for the treatment of these lesions.
Collapse
Affiliation(s)
- Daniel D Cavalcanti
- Division of Neurological Surgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, Arizona 85013, USA
| | | | | | | | | | | |
Collapse
|
27
|
Communication between 5-HT and small GTPases. Curr Opin Pharmacol 2011; 11:23-8. [PMID: 21320798 DOI: 10.1016/j.coph.2011.01.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 01/25/2011] [Accepted: 01/25/2011] [Indexed: 11/21/2022]
Abstract
Advances over the past decade have improved our understanding of the serotonin (5-HT) biology outside the central nervous system specifically the molecular mechanisms of serotonergic signaling in association with small GTPases. It is now recognized that the communication between 5-HT and GTPases plays important roles in peripheral tissues, vascular cells and are involved in coagulation, hypertension, inflammation, healing and protection. Furthermore, 5-HT receptors as heterotrimeric GTP-binding protein-coupled receptors act as effector protein on the small GTPases. Therefore, the antagonists or agonists of the effector proteins of small GTPases could be useful therapeutic agents for the treatment of several diseases and disorders.
Collapse
|
28
|
Enforced hematopoietic cell E- and L-selectin ligand (HCELL) expression primes transendothelial migration of human mesenchymal stem cells. Proc Natl Acad Sci U S A 2011; 108:2258-63. [PMID: 21257905 DOI: 10.1073/pnas.1018064108] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
According to the multistep model of cell migration, chemokine receptor engagement (step 2) triggers conversion of rolling interactions (step 1) into firm adhesion (step 3), yielding transendothelial migration. We recently reported that glycosyltransferase-programmed stereosubstitution (GPS) of CD44 on human mesenchymal stem cells (hMSCs) creates the E-selectin ligand HCELL (hematopoietic cell E-selectin/L-selectin ligand) and, despite absence of CXCR4, systemically administered HCELL(+)hMSCs display robust osteotropism visualized by intravital microscopy. Here we performed studies to define the molecular effectors of this process. We observed that engagement of hMSC HCELL with E-selectin triggers VLA-4 adhesiveness, resulting in shear-resistant adhesion to ligand VCAM-1. This VLA-4 activation is mediated via a Rac1/Rap1 GTPase signaling pathway, resulting in transendothelial migration on stimulated human umbilical vein endothelial cells without chemokine input. These findings indicate that hMSCs coordinately integrate CD44 ligation and integrin activation, circumventing chemokine-mediated signaling, yielding a step 2-bypass pathway of the canonical multistep paradigm of cell migration.
Collapse
|
29
|
Milani R, Ferreira CV, Granjeiro JM, Paredes-Gamero EJ, Silva RA, Justo GZ, Nader HB, Galembeck E, Peppelenbosch MP, Aoyama H, Zambuzzi WF. Phosphoproteome reveals an atlas of protein signaling networks during osteoblast adhesion. J Cell Biochem 2010; 109:957-66. [PMID: 20127719 DOI: 10.1002/jcb.22479] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell adhesion on surfaces is a fundamental process in the emerging biomaterials field and developmental events as well. However, the mechanisms regulating this biological process in osteoblasts are not fully understood. Reversible phosphorylation catalyzed by kinases is probably the most important regulatory mechanism in eukaryotes. Therefore, the goal of this study is to assess osteoblast adhesion through a molecular prism under a peptide array technology, revealing essential signaling proteins governing adhesion-related events. First, we showed that there are main morphological changes on osteoblast shape during adhesion up to 3 h. Second, besides classical proteins activated upon integrin activation, our results showed a novel network involving signaling proteins such as Rap1A, PKA, PKC, and GSK3beta during osteoblast adhesion on polystyrene. Third, these proteins were grouped in different signaling cascades including focal adhesion establishment, cytoskeleton rearrangement, and cell-cycle arrest. We have thus provided evidence that a global phosphorylation screening is able to yield a systems-oriented look at osteoblast adhesion, providing new insights for understanding of bone formation and improvement of cell-substratum interactions. Altogether, these statements are necessary means for further intervention and development of new approaches for the progress of tissue engineering.
Collapse
Affiliation(s)
- Renato Milani
- Department of Biochemistry, Institute of Biology, University of Campinas (UNICAMP), 13083-970 Campinas, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kubota E, Kataoka H, Aoyama M, Mizoshita T, Mori Y, Shimura T, Tanaka M, Sasaki M, Takahashi S, Asai K, Joh T. Role of ES cell-expressed Ras (ERas) in tumorigenicity of gastric cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:955-63. [PMID: 20566745 DOI: 10.2353/ajpath.2010.091056] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
ERas, a unique member of the Ras family, was initially found only in embryonic stem (ES) cells, where it plays a crucial role in the transformation of transplanted ES cells to teratomas. ERas is involved in ES cell survival, and unlike other Ras family members, is constitutively active without any mutations. The aim of this study was to investigate the expression and role of ERas in human gastric cancer. To test whether ERas played a significant role in human cancer cells, we examined its expression and function in gastric cancer. ERas was expressed in gastric cancer cell lines at different levels. Induction of ERas expression activated the phosphatidylinositol 3 kinase (PI3K)/Akt axis and then enhanced anchorage-independent growth and ERas knockdown by siRNA suppressed cell invasion. Immunohistochemical analyses revealed that ERas was expressed in 38.7% (55/142) of human gastric carcinoma tissues, and its expression was significantly associated with metastasis to the liver (P < 0.0001) and lymph nodes (P < 0.05). ERas up-regulated transcription regulatory factors including ZFHX1A, ZFHX1B, and TCF3, which repress E-cadherin. These data suggest that ERas is activated in a significant population of gastric cancer, where it may play a crucial role in gastric cancer cell survival and metastases to liver via down-regulation of E-cadherin.
Collapse
Affiliation(s)
- Eiji Kubota
- Department of Gastroenterology and Metabolism, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Ferro E, Trabalzini L. RalGDS family members couple Ras to Ral signalling and that's not all. Cell Signal 2010; 22:1804-10. [PMID: 20478380 DOI: 10.1016/j.cellsig.2010.05.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 05/07/2010] [Indexed: 11/26/2022]
Abstract
Ras proteins function as molecular switches that are activated in response to signalling pathways initiated by various extracellular stimuli and subsequently bind to numerous effector proteins leading to the activation of several signalling cascades within the cell. Ras and Ras-related proteins belong to a large superfamily of small GTPases characterized by significant sequence and function similarities. Several evidence indicate the existence of complex signalling networks that link Ras with its relatives in the family. A key role in this cross-talk is played by guanine nucleotide exchange factors (GEFs) that serve both as regulators and as effectors of Ras family proteins. The members of the RalGDS family, RalGDS, RGL, RGL2/Rlf and RGL3, can interact with activated Ras through their Ras Binding Domain (RBD), but may function as effectors for other Ras family members. They possess a REM-CDC25 homology region like RasGEFs, but specifically activate only RalA and RalB and not Ras or other Ras-related small GTPases. In this review we provide an update on this recently discovered family of GEFs, highlighting their crucial role in coupling activated Ras to activation of Ral, thus regulating several fundamental cell processes, and also discussing some evidence supporting Ras-independent additional functions of RalGDS proteins.
Collapse
Affiliation(s)
- Elisa Ferro
- Dipartimento di Biologia Molecolare, Università degli Studi di Siena, Via Fiorentina, 1, 53100 Siena, Italy
| | | |
Collapse
|
32
|
Abstract
Recent studies have demonstrated that a number of E3 ubiquitin ligases, including Cbl, Smurf1, Smurf2, HDM2, BCA2, SCF(beta-TRCP) and XRNF185, play important roles in cell adhesion and migration. Cbl negatively regulates cell adhesion via alpha integrin and Rap1 and inhibits actin polymerization by ubiquitinating mDab1 and WAVE2. Smurf1 regulates cell migration through ubiquitination of RhoA, talin head domain and hPEM2, while Smurf2 ubiquitinates Smurf1, TGFbeta type I receptor and RaplB to modulate cell migration and adhesion. HDM2 negatively regulates cell migration by targeting NFAT (a transcription factor) for ubiquitination and degradation, while SCF(beta-TRCP) ubiquitinates Snail (a transcriptional repressor of E-cadherin) to inhibit cell migration. TRIM32 promotes cell migration through ubiquitination of Abl interactor 2 (Abi2), a tumor suppressor. RNF5 and XRNF185 modulate cell migration by ubiquitinating paxillin. Thus, these E3 ubiquitin ligases regulate cell adhesion and (or) migration through ubiquitination of their specific substrates.
Collapse
Affiliation(s)
- Cai Huang
- Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
33
|
Abstract
Alterations in signalling via protein kinase B (PKB/Akt) and the mammalian target of rapamycin (mTOR) frequently occur in type 2 diabetes and various human malignancies. Proline-rich Akt substrate of 40-kDa (PRAS40) has a regulatory function at the intersection of these pathways. The interaction of PRAS40 with the mTOR complex 1 (mTORC1) inhibits the activity of mTORC1. Phosphorylation of PRAS40 by PKB/Akt and mTORC1 disrupts the binding between mTORC1 and PRAS40, and relieves the inhibitory constraint of PRAS40 on mTORC1 activity. This review summarizes the signalling pathways regulating PRAS40 phosphorylation, as well as the dual function of PRAS40 as substrate and inhibitor of mTORC1 in the physiological situation, and under pathological conditions, such as insulin resistance and cancer.
Collapse
Affiliation(s)
- Emmani B M Nascimento
- Department of Molecular Cell Biology, Section Signal Transduction and Ageing, Leiden University Medical Centre, Leiden, The Netherlands
| | | |
Collapse
|
34
|
Regulator of G-protein signaling 14 (RGS14) is a selective H-Ras effector. PLoS One 2009; 4:e4884. [PMID: 19319189 PMCID: PMC2655719 DOI: 10.1371/journal.pone.0004884] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Accepted: 02/18/2009] [Indexed: 11/29/2022] Open
Abstract
Background Regulator of G-protein signaling (RGS) proteins have been well-described as accelerators of Gα-mediated GTP hydrolysis (“GTPase-accelerating proteins” or GAPs). However, RGS proteins with complex domain architectures are now known to regulate much more than Gα GTPase activity. RGS14 contains tandem Ras-binding domains that have been reported to bind to Rap- but not Ras GTPases in vitro, leading to the suggestion that RGS14 is a Rap-specific effector. However, more recent data from mammals and Drosophila imply that, in vivo, RGS14 may instead be an effector of Ras. Methodology/Principal Findings Full-length and truncated forms of purified RGS14 protein were found to bind indiscriminately in vitro to both Rap- and Ras-family GTPases, consistent with prior literature reports. In stark contrast, however, we found that in a cellular context RGS14 selectively binds to activated H-Ras and not to Rap isoforms. Co-transfection / co-immunoprecipitation experiments demonstrated the ability of full-length RGS14 to assemble a multiprotein complex with components of the ERK MAPK pathway in a manner dependent on activated H-Ras. Small interfering RNA-mediated knockdown of RGS14 inhibited both nerve growth factor- and basic fibrobast growth factor-mediated neuronal differentiation of PC12 cells, a process which is known to be dependent on Ras-ERK signaling. Conclusions/Significance In cells, RGS14 facilitates the formation of a selective Ras·GTP-Raf-MEK-ERK multiprotein complex to promote sustained ERK activation and regulate H-Ras-dependent neuritogenesis. This cellular function for RGS14 is similar but distinct from that recently described for its closely-related paralogue, RGS12, which shares the tandem Ras-binding domain architecture with RGS14.
Collapse
|
35
|
Parkinson K, Bolourani P, Traynor D, Aldren NL, Kay RR, Weeks G, Thompson CRL. Regulation of Rap1 activity is required for differential adhesion, cell-type patterning and morphogenesis in Dictyostelium. J Cell Sci 2009; 122:335-44. [PMID: 19126673 PMCID: PMC2724730 DOI: 10.1242/jcs.036822] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2008] [Indexed: 12/19/2022] Open
Abstract
Regulated cell adhesion and motility have important roles during growth, development and tissue homeostasis. Consequently, great efforts have been made to identify genes that control these processes. One candidate is Rap1, as it has been implicated in the regulation of adhesion and motility in cell culture. To further study the role of Rap1 during multicellular development, we generated a mutant in a potential Rap1 GTPase activating protein (RapGAPB) in Dictyostelium. rapGAPB(-) cells have increased levels of active Rap1 compared with wild-type cells, indicating that RapGAPB regulates Rap1 activity. Furthermore, rapGAPB(-) cells exhibit hallmark phenotypes of other known mutants with hyperactivated Rap1, including increased substrate adhesion and abnormal F-actin distribution. However, unlike these other mutants, rapGAPB(-) cells do not exhibit impaired motility or chemotaxis, indicating that RapGAPB might only regulate specific roles of Rap1. Importantly, we also found that RapGAPB regulates Rap1 activity during multicellular development and is required for normal morphogenesis. First, streams of aggregating rapGAPB(-) cells break up as a result of decreased cell-cell adhesion. Second, rapGAPB(-) cells exhibit cell-autonomous defects in prestalk cell patterning. Using cell-type-specific markers, we demonstrate that RapGAPB is required for the correct sorting behaviour of different cell types. Finally, we show that inactivation of RapGAPB affects prestalk and prespore cell adhesion. We therefore propose that a possible mechanism for RapGAPB-regulated cell sorting is through differential adhesion.
Collapse
Affiliation(s)
- Katie Parkinson
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Manchester, UK
| | | | | | | | | | | | | |
Collapse
|
36
|
Enhanced clonogenic survival induced by protein tyrosine phosphatase (PTP) inhibition after Cr(VI) exposure is mediated by c-Raf and Ras activity. Cell Signal 2009; 21:727-36. [PMID: 19167484 DOI: 10.1016/j.cellsig.2009.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 01/03/2009] [Indexed: 11/23/2022]
Abstract
Our recent studies showed that maintenance of protein tyrosine phosphorylation by PTP inhibition enhanced cell growth, clonogenic survival, and mutagenesis after a single low-level Cr(VI) exposure, thereby suggesting that tyrosine phosphorylation-dependent signaling may govern inappropriate survival in human lung fibroblasts (HLFs). Our goal is to identify specific phospho-tyrosine regulator(s)/ downstream effectors involved in enhanced survival after Cr(VI) exposure and PTP inhibition. Phosphotyrosine profiling array showed that PTP inhibition following Cr(VI) exposure increased tyrosine phosphorylation of specific proteins, such as FGR and ABL, which are upstream regulators of both Erk and Akt pathways. To explore the roles of these pathways in the PTP-induced increase in clonogenic survival after Cr(VI) exposure, we examined the effect of combined Akt1 and Erk1/2 knockdown via siRNA technology. Akt1 and/or Erk1/2 silencing had no effect on the PTP inhibitor-induced increase in survival following Cr(VI) exposure, suggesting the presence of non-Akt/non-Erk-mediated survival signaling. Interestingly, geldanamycin, an HSP90 inhibitor and non-specific Raf inhibitor, abrogated the PTP inhibitor-mediated increase in survival following Cr(VI) exposure and abolished the expression/activity of c-Raf and activity of Mek. These findings prompted us to explore upstream regulators of Erk, i.e., Ras, c-Raf and Mek for their potential roles in clonogenic survival. GW5074, a specific c-Raf kinase inhibitor did not alter the effect of the PTP inhibitor but decreased Cr(VI)-mediated clonogenic lethality, potentially though Mek hyperactivation. A genetic approach with a c/a Mek1 mutant also showed that Mek activity was not directly associated with the PTP inhibitor effect. Finally, a genetic approach with d/n or c/a Ras and c-Raf mutants, showed that Ras and c-Raf activities play a substantive role in enhancing clonogenic survival by PTP inhibition following Cr(VI) insult. In conclusion, these studies highlight a novel pro-survival mechanism for clonogenic survival in the face of genotoxic stress in the presence of PTP inhibition via an Erk/Mek-independent and Ras/c-Raf-dependent regulation in normal human lung fibroblasts.
Collapse
|
37
|
Wittchen ES. Endothelial signaling in paracellular and transcellular leukocyte transmigration. Front Biosci (Landmark Ed) 2009; 14:2522-45. [PMID: 19273217 DOI: 10.2741/3395] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
As the primary physical barrier between blood and tissue compartments within the body, blood vessel endothelial cells and integrity of the cell junctions connecting them must be carefully regulated to support leukocyte transendothelial migration only when necessary. Leukocytes utilize two independent routes across the endothelium: the paracellular route involves migration in-between adjacent endothelial cells and requires the transient disassembly of endothelial cell junctions, while the transcellular route occurs directly through an individual endothelial cell, likely requiring the formation of a channel or pore. In this review, I will first summarize the signaling events that are transduced by leukocyte engagement of endothelial cell-surface receptors like ICAM-1 and VCAM-1. Some of these signals include activation of GTPases, production of reactive oxygen species, and phosphorylation of target proteins. These signaling pathways converge to cause junctional disruption, cytoskeletal remodeling, and/or the membrane fusion events that are associated with leukocyte transendothelial migration. The review will conclude with a detailed discussion of the newly characterized transmigratory cup structure, and the recent advances made towards understanding the mechanisms of transcellular transendothelial migration.
Collapse
Affiliation(s)
- Erika S Wittchen
- Department of Cell and Developmental Biology and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7295, USA.
| |
Collapse
|
38
|
Ammoun S, Flaiz C, Ristic N, Schuldt J, Hanemann CO. Dissecting and targeting the growth factor-dependent and growth factor-independent extracellular signal-regulated kinase pathway in human schwannoma. Cancer Res 2008; 68:5236-45. [PMID: 18593924 DOI: 10.1158/0008-5472.can-07-5849] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Schwannomas are tumors of the nervous system that occur sporadically and in patients with the cancer predisposition syndrome neurofibromatosis type 2 (NF2). Schwannomas and all NF2-related tumors are caused by loss of the tumor suppressor merlin. Using our human in vitro model for schwannoma, we analyzed extracellular signal-regulated kinase 1/2 (ERK1/2) and AKT signaling pathways, their upstream growth factor receptors, and their role in schwannoma cell proliferation and adhesion to find new systemic therapies for these tumors that, to date, are very difficult to treat. We show here that human primary schwannoma cells show an enhanced basal Raf/mitogen-activated protein/ERK kinase/ERK1/2 pathway activity compared with healthy Schwann cells. Due to a strong and prolonged activation of platelet-derived growth factor receptor beta (PDGFRbeta), which is highly overexpressed, ERK1/2 and AKT activation was further increased in schwannoma, leading to increased proliferation. Using specific inhibitors, we discovered that ERK1/2 activation involves the integrin/focal adhesion kinase/Src/Ras signaling cascades and PDGFRbeta-mediated ERK1/2 activation is triggered through the phosphatidylinositol 3-kinase/protein kinase C/Src/c-Raf pathway. Due to the complexity of signals leading to schwannoma cell proliferation, potential new therapeutic agents should target several signaling pathways. The PDGFR and c-Raf inhibitor sorafenib (BAY 43-9006; Bayer Pharmaceuticals), currently approved for treatment of advanced renal cell cancer, inhibits both basal and PDGFRbeta-mediated ERK1/2 and AKT activity and decreases cell proliferation in human schwannoma cells, suggesting that this drug constitutes a promising tool to treat schwannomas. We conclude that our schwannoma in vitro model can be used to screen for new therapeutic targets in general and that sorafenib is possible candidate for future clinical trials.
Collapse
Affiliation(s)
- Sylwia Ammoun
- Clinical Neurobiology, Peninsula College for Medicine and Dentistry, Research Way, Plymouth, United Kingdom
| | | | | | | | | |
Collapse
|
39
|
Rap1a is a key regulator of fibroblast growth factor 2-induced angiogenesis and together with Rap1b controls human endothelial cell functions. Mol Cell Biol 2008; 28:5803-10. [PMID: 18625726 DOI: 10.1128/mcb.00393-08] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Angiogenesis, the formation of new blood vessels from existing vasculature, is regulated primarily by endothelial cell activity. We show herein that the Ras family GTPase Rap1 has a key role in the regulation of angiogenesis by modulating endothelial cell functions. Blood vessel growth into fibroblast growth factor 2 (FGF2)-containing Matrigel plugs was absent from rap1a(-/-) mice, and aortic rings derived from rap1a(-/-) mice failed to sprout primitive tubes in response to FGF2, when the tissue was embedded in Matrigel. Knocking down either rap1a or rap1b, two closely related rap1 family members, in human microvascular endothelial cells (HMVECs) by utilizing siRNA confirmed that Rap1 plays key roles in endothelial cell function. The rap1a or rap1b knockdown resulted in decreased adhesion to extracellular matrices and impaired cell migration. HMVEC monolayers lacking Rap1 had increased permeability, and Rap1-deficient endothelial cells failed to form three-dimensional tubular structures when they were plated on Matrigel in vitro. Finally, the activation levels of extracellular signal-regulated kinase (ERK), p38, and Rac, which are important signaling molecules in angiogenesis, were all reduced in response to FGF2 when either of the Rap1 proteins was depleted. These observations place Rap1 centrally in the human angiogenic process and suggest that both the Rap1a and Rap1b proteins are required for angiogenesis and that Rap1 is a critical mediator of FGF-induced ERK activation.
Collapse
|
40
|
Abstract
The Ras superfamily of GTP-binding proteins is involved in many cellular processes, including cell proliferation, movement, and morphology. One such member, Ral GTPase, activates downstream signaling molecules after a conversion to the active state on GTP binding. The RalGDS-related (Rgr) oncogene belongs to the RalGDS family of guanine nucleotide exchange factors (GEFs). RalGEFs activate Ral by stimulating the dissociation of GDP, allowing the binding of GTP and the initiation of downstream signaling events by Ral effectors. Rgr was first identified as a fusion between the rabbit homolog of the Rad 23 gene and the Rgr gene in a rabbit squamous cell carcinoma. The Rgr portion of the fusion was demonstrated to contain the oncogenic activity. The human form of the Rgr oncogene was identified recently, and expression was detected in human T-cell malignancies. This chapter describes the analysis of rabbit and human Rgr function using various methods. These assays may be used for the study of oncogene function in other systems.
Collapse
Affiliation(s)
- Laura A Martello
- Department of Pathology, New York Cancer Institute, New York University School of Medicine, New York, New York, USA
| | | |
Collapse
|
41
|
Abstract
The biological activity of androgens is thought to occur predominantly through binding to intracellular androgen-receptors, a member of the nuclear receptor family, that interact with specific nucleotide sequences to alter gene expression. This genomic-androgen effect typically takes at least more than half an hour. In contrast, the rapid or non-genomic actions of androgens are manifested within in seconds to few minutes. This rapid effect of androgens are manifold, ranging from activation of G-protein coupled membrane androgen-receptors or sex hormone-binding globulin receptors, stimulation of different protein kinases, to direct modulation of voltage- and ligand gated ion-channels and transporters. The physiological relevance of these non-genomic androgen actions has not yet been determined in detail. However, it may contribute to modulate several second messenger systems or transcription factors, which suggests a cross-talk between the fast non-genomic and the slow genomic pathway of androgens. This review will focus on the rapid effects of androgens on cell surface and cytoplasmic level.
Collapse
Affiliation(s)
- Guido Michels
- Department of Internal Medicine III and Center for Molecular Medicine (CMMC), University of Cologne, Kerpener Street 62, D-50937 Cologne, Germany
| | | |
Collapse
|
42
|
Gerits N, Kostenko S, Shiryaev A, Johannessen M, Moens U. Relations between the mitogen-activated protein kinase and the cAMP-dependent protein kinase pathways: comradeship and hostility. Cell Signal 2008; 20:1592-607. [PMID: 18423978 DOI: 10.1016/j.cellsig.2008.02.022] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2007] [Revised: 02/28/2008] [Accepted: 02/29/2008] [Indexed: 01/05/2023]
Abstract
Inter- and intracellular communications and responses to environmental changes are pivotal for the orchestrated and harmonious operation of multi-cellular organisms. These well-tuned functions in living organisms are mediated by the action of signal transduction pathways, which are responsible for receiving a signal, transmitting and amplifying it, and eliciting the appropriate cellular responses. Mammalian cells posses numerous signal transduction pathways that, rather than acting in solitude, interconnect with each other, a phenomenon referred to as cross-talk. This allows cells to regulate the distribution, duration, intensity and specificity of the response. The cAMP/cAMP-dependent protein kinase (PKA) pathway and the mitogen-activated protein kinase (MAPK) cascades modulate common processes in the cell and multiple levels of cross-talk between these signalling pathways have been described. The first- and best-characterized interconnections are the PKA-dependent inhibition of the MAPKs ERK1/2 mediated by RAF-1, and PKA-induced activation of ERK1/2 interceded through B-RAF. Recently, novel interactions between components of these pathways and new mechanisms for cross-talk have been elucidated. This review discusses both known and novel interactions between compounds of the cAMP/PKA and MAPKs signalling pathways in mammalian cells.
Collapse
Affiliation(s)
- Nancy Gerits
- Department of Microbiology and Virology, University of Tromsø, N-9037 Tromsø, Norway
| | | | | | | | | |
Collapse
|
43
|
Spatiotemporal control of cAMP signalling processes by anchored signalling complexes. Biochem Soc Trans 2008; 35:931-7. [PMID: 17956249 DOI: 10.1042/bst0350931] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Ligand-induced changes in cAMP concentration vary in duration, amplitude and extension into the cell. cAMP microdomains are shaped by adenylate cyclases that form cAMP as well as PDEs (phosphodiesterases) that degrade cAMP. Various extracellular signals converge on the cAMP/PKA (protein kinase A) pathway through ligand binding to GPCRs (G-protein-coupled receptors) and the cAMP/PKA pathway is therefore tightly regulated on several levels to maintain specificity in the multitude of signal inputs. AKAPs (A-kinase-anchoring proteins) target PKA to specific substrates and distinct subcellular compartments, providing spatial and temporal specificity for mediation of biological effects channelled through the cAMP/PKA pathway. AKAPs also serve as scaffolding proteins that assemble PKA together with signal terminators such as phosphoprotein phosphatases and cAMP-specific PDEs as well as components of other signalling pathways into multiprotein signalling complexes.
Collapse
|
44
|
A diketopiperazine fragment of human serum albumin modulates T-lymphocyte cytokine production through rap1. ACTA ACUST UNITED AC 2008; 64:35-41. [PMID: 18188096 DOI: 10.1097/ta.0b013e3181589ff9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Aspartyl-alanyl- diketopiperazine (DA-DKP) is generated by cleavage and cyclization from the N-terminus of human albumin during the preparation of commercial serum albumin product. Antigen-stimulated human T lymphocytes produce significantly lower quantities of interferon-gamma and tumor necrosis factor-alpha after stimulation in vitro in the presence of DA-DKP. METHODS T lymphocytes activated in the presence of DA-DKP were analyzed by pull-down western blot assay for the activation of the guanosine triphosphatase Rap1 and by quantitative immunoassay for the phosphorylated transcription factors ATF-2 (activating transcription factor-2) and c-jun, which regulate the production of interferon-gamma and tumor necrosis factor-alpha. RESULTS Exposure of human T lymphocytes to DA-DKP resulted in increased levels of active Rap1 and decreased activation factors relevant to the T-cell receptor signal transduction pathway and subsequently, decreased phosphorylated ATF-2 and c-jun expression. CONCLUSION The cyclized N- terminal fragment of human serum albumin, DA-DKP, can modulate the inflammatory immune response through a molecular pathway implicated in T- lymphocyte anergy.
Collapse
|
45
|
Kawato M, Shirakawa R, Kondo H, Higashi T, Ikeda T, Okawa K, Fukai S, Nureki O, Kita T, Horiuchi H. Regulation of platelet dense granule secretion by the Ral GTPase-exocyst pathway. J Biol Chem 2007; 283:166-174. [PMID: 17938170 DOI: 10.1074/jbc.m705340200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Non-hydrolyzable GTP analogues, such as guanosine 5'-(beta, gamma-imido)triphosphate (GppNHp), induce granule secretion from permeabilized platelets in the absence of increased intracellular Ca(2+). Here, we show that the GppNHp-induced dense granule secretion from permeabilized platelets occurred concomitantly with the activation of small GTPase Ral. This secretion was inhibited by the addition of GTP-Ral-binding domain (RBD) of Sec5, which is a component of the exocyst complex known to function as a tethering factor at the plasma membrane for vesicles. We generated an antibody against Sec5-RBD, which abolished the interaction between GTP-Ral and the exocyst complex in vitro. The addition of this antibody inhibited the GppNHp-induced secretion. These data indicate that Ral mediates the GppNHp-induced dense granule secretion from permeabilized platelets through interaction with its effector, the exocyst complex. Furthermore, GppNHp enhanced the Ca(2+) sensitivity of dense granule secretion from permeabilized platelets, and this enhancement was inhibited by Sec5-RBD. In intact platelets, the association between Ral and the exocyst complex was induced by thrombin stimulation with a time course similar to that of dense granule secretion and Ral activation. Taken together, our results suggest that the Ral-exocyst pathway participates in the regulation of platelet dense granule secretion by enhancing the Ca(2+) sensitivity of the secretion.
Collapse
Affiliation(s)
- Mitsunori Kawato
- Department of Cardiovascular Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Ryutaro Shirakawa
- Department of Cardiovascular Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Hirokazu Kondo
- Department of Cardiovascular Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Tomohito Higashi
- Department of Cardiovascular Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Tomoyuki Ikeda
- Department of Cardiovascular Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Katsuya Okawa
- Frontier Technology Center, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Shuya Fukai
- Department of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan; Life Science Division, Synchrotron Radiation Research Organization, University of Tokyo, Tokyo, 113-0032, Japan
| | - Osamu Nureki
- Department of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Toru Kita
- Department of Cardiovascular Medicine, Kyoto University, Kyoto, 606-8507, Japan
| | - Hisanori Horiuchi
- Department of Cardiovascular Medicine, Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
46
|
Abstract
The Ras superfamily consists of over 50 low-molecular-weight proteins that cycle between an inactive guanosine diphosphate-bound state and an active guanosine triphosphate (GTP)-bound state. They are involved in a variety of signal transduction pathways that regulate cell growth, intracellular trafficking, cell migration, and apoptosis. Several methods have been devised to measure the activation state of Ras proteins, defined as the percent of Ras molecules in the active GTP-bound state. We have previously developed a quantitative biochemical method that can be applied to animal and human tissues and have used it to measure the activation state of Ras, Rap1, Rheb, and Rho proteins in cultured cells and in animal and human tumors. Ras, Rac, and Rho all play roles in regulating the functions of T and B lymphocytes and dendritic cells, and these proteins are clearly important in maintaining normal immune system function.
Collapse
Affiliation(s)
- Juergen S Scheele
- Co-ordinating Center for Clinical Trials, Martin Luther University, Halle, Germany
| | | | | |
Collapse
|
47
|
Abstract
Leukocyte-function-associated antigen-1 (LFA-1) is an integrin that is critical for T-cell adhesion and immunologic responses. As a transmembrane receptor and adhesion molecule, LFA-1 signals bidirectionally, whereby information about extracellular ligands is passed outside-in while cellular activation is transmitted inside-out to the adhesive ectodomain. Here, we review the role of small guanosine triphosphatases (GTPases) in LFA-1 signaling. Rap1, a Ras-related GTPase, appears to be central to LFA-1 function. Rap1 is regulated by receptor signaling [e.g. T-cell receptor (TCR), CD28, and cytotoxic T-lymphocyte antigen-4 (CTLA-4)] and by adapter proteins [e.g. adhesion and degranulation-promoting adapter protein (ADAP) and Src kinase-associated phosphoprotein of 55 kDa (SKAP-55)]. Inside-out signaling flows through Rap1 to regulator of adhesion and cell polarization enriched in lymphoid tissues (RAPL) and Rap1-GTP interacting adapter molecule (RIAM) that act in conjunction with the cytoskeleton on the cytosolic domain of LFA-1 to increase adhesion of the ectodomain. Outside-in signaling also relies on small GTPases such as Rho proteins. Vav-1, a guanine nucleotide exchange factor for Rho proteins, is activated as a consequence of LFA-1 engagement. Jun-activating binding protein-1 (JAB-1) and cytohesin-1 have been implicated as possible outside-in signaling intermediates. We have recently shown that Ras is also downstream of LFA-1 engagement: LFA-1 signaling through phospholipase D (PLD) to RasGRP1 was required for Ras activation on the plasma membrane following stimulation of TCR.
Collapse
Affiliation(s)
- Adam Mor
- Department of Medicine, NYU School of Medicine, New York, NY 10016, USA
| | | | | |
Collapse
|
48
|
Boudreaux MK, Catalfamo JL, Klok M. Calcium-diacylglycerol guanine nucleotide exchange factor I gene mutations associated with loss of function in canine platelets. Transl Res 2007; 150:81-92. [PMID: 17656327 DOI: 10.1016/j.trsl.2007.03.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 03/07/2007] [Accepted: 03/10/2007] [Indexed: 02/02/2023]
Abstract
Calcium-Diacylglycerol Guanine Nucleotide Exchange Factor I (CalDAG-GEFI) has been implicated in platelet aggregation signaling in CalDAG-GEFI knockouts. Functional mutations were identified in the gene encoding for CalDAG-GEFI in 3 dog breeds. Affected dogs experienced epistaxis, gingival bleeding, and petechiation. Platelet number, von Willebrand factor, clot retraction, and coagulation screening assays were normal, whereas bleeding time tests were prolonged. Platelet aggregation and release responses to all agonists, except thrombin, were markedly impaired. Platelet membranes had normal concentrations of integrin alphaIIb-beta3; however, ADP-induced fibrinogen binding by activated platelets was markedly impaired. Forskolin-stimulated platelets exhibited a marked increase in intraplatelet cAMP associated with impaired phosphodiesterase (PDE) activity, whereas levels of extractable phosphoinositides were 1.5-fold to 2-fold higher in thrombin-stimulated affected platelets. DNA analysis of the CalDAG-GEFI gene in affected dogs documented the existence of 3 distinct mutations within portions of the CalDAG-GEFI gene encoding for structurally conserved regions within the catalytic domain of the protein. The mutations are predicted to result in either lack of synthesis, enhanced degradation, or marked impairment of protein function. The dysfunctional profile of canine platelets observed in mutant dogs putatively links CalDAG-GEFI and its target Rap1 or other Ras family member, for the first time, to a role in pathways that regulate cAMP PDE activity and thrombin-stimulated phosphoinositide anchoring or metabolism. The finding of distinct functional mutations in 3 dog breeds suggests that mutations in the CalDAG-GEFI gene may be implicated in similar defects in human patients with congenital platelet disorders having primary secretion defects of unknown etiology.
Collapse
Affiliation(s)
- Mary K Boudreaux
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849-5519, USA.
| | | | | |
Collapse
|
49
|
Abstract
G proteins provide signal-coupling mechanisms to heptahelical cell surface receptors and are critically involved in the regulation of different mitogen-activated protein kinase (MAPK) networks. The four classes of G proteins, defined by the G(s), G(i), G(q) and G(12) families, regulate ERK1/2, JNK, p38MAPK, ERK5 and ERK6 modules by different mechanisms. The alpha- as well as betagamma-subunits are involved in the regulation of these MAPK modules in a context-specific manner. While the alpha- and betagamma-subunits primarily regulate the MAPK pathways via their respective effector-mediated signaling pathways, recent studies have unraveled several novel signaling intermediates including receptor tyrosine kinases and small GTPases through which these G-protein subunits positively as well as negatively regulate specific MAPK modules. Multiple mechanisms together with specific scaffold proteins that can link G-protein-coupled receptors or G proteins to distinct MAPK modules contribute to the context-specific and spatio-temporal regulation of mitogen-activated protein signaling networks by G proteins.
Collapse
Affiliation(s)
- Z G Goldsmith
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | |
Collapse
|
50
|
Tomić S, Bertosa B, Wang T, Wade RC. COMBINE analysis of the specificity of binding of Ras proteins to their effectors. Proteins 2007; 67:435-47. [PMID: 17295314 DOI: 10.1002/prot.21321] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The small guanosine triphosphate (GTP)-binding proteins of the Ras family are involved in many cellular pathways leading to cell growth, differentiation, and apoptosis. Understanding the interaction of Ras with other proteins is of importance not only for studying signalling mechanisms but also, because of their medical relevance as targets, for anticancer therapy. To study their selectivity and specificity, which are essential to their signal transfer function, we performed COMparative BINding Energy (COMBINE) analysis for 122 different wild-type and mutant complexes between the Ras proteins, Ras and Rap, and their effectors, Raf and RalGDS. The COMBINE models highlighted the amino acid residues responsible for subtle differences in binding of the same effector to the two different Ras proteins, as well as more significant differences in the binding of the two different effectors (RalGDS and Raf) to Ras. The study revealed that E37, D38, and D57 in Ras are nonspecific hot spots at its effector interface, important for stabilization of both the RalGDS-Ras and Raf-Ras complexes. The electrostatic interaction between a GTP analogue and the effector, either Raf or RalGDS, also stabilizes these complexes. The Raf-Ras complexes are specifically stabilized by S39, Y40, and D54, and RalGDS-Ras complexes by E31 and D33. Binding of a small molecule in the vicinity of one of these groups of amino acid residues could increase discrimination between the Raf-Ras and RalGDS-Ras complexes. Despite the different size of the RalGDS-Ras and Raf-Ras complexes, we succeeded in building COMBINE models for one type of complex that were also predictive for the other type of protein complex. Further, using system-specific models trained with only five complexes selected according to the results of principal component analysis, we were able to predict binding affinities for the other mutants of the particular Ras-effector complex. As the COMBINE analysis method is able to explicitly reveal the amino acid residues that have most influence on binding affinity, it is a valuable aid for protein design.
Collapse
|