1
|
Masanta S, Wiesyk A, Panja C, Pilch S, Ciesla J, Sipko M, De A, Enkhbaatar T, Maslanka R, Skoneczna A, Kucharczyk R. Fmp40 ampylase regulates cell survival upon oxidative stress by controlling Prx1 and Trx3 oxidation. Redox Biol 2024; 73:103201. [PMID: 38795545 PMCID: PMC11140801 DOI: 10.1016/j.redox.2024.103201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024] Open
Abstract
Reactive oxygen species (ROS), play important roles in cellular signaling, nonetheless are toxic at higher concentrations. Cells have many interconnected, overlapped or backup systems to neutralize ROS, but their regulatory mechanisms remain poorly understood. Here, we reveal an essential role for mitochondrial AMPylase Fmp40 from budding yeast in regulating the redox states of the mitochondrial 1-Cys peroxiredoxin Prx1, which is the only protein shown to neutralize H2O2 with the oxidation of the mitochondrial glutathione and the thioredoxin Trx3, directly involved in the reduction of Prx1. Deletion of FMP40 impacts a cellular response to H2O2 treatment that leads to programmed cell death (PCD) induction and an adaptive response involving up or down regulation of genes encoding, among others the catalase Cta1, PCD inducing factor Aif1, and mitochondrial redoxins Trx3 and Grx2. This ultimately perturbs the reduced glutathione and NADPH cellular pools. We further demonstrated that Fmp40 AMPylates Prx1, Trx3, and Grx2 in vitro and interacts with Trx3 in vivo. AMPylation of the threonine residue 66 in Trx3 is essential for this protein's proper endogenous level and its precursor forms' maturation under oxidative stress conditions. Additionally, we showed the Grx2 involvement in the reduction of Trx3 in vivo. Taken together, Fmp40, through control of the reduction of mitochondrial redoxins, regulates the hydrogen peroxide, GSH and NADPH signaling influencing the yeast cell survival.
Collapse
Affiliation(s)
- Suchismita Masanta
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Aneta Wiesyk
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Chiranjit Panja
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Sylwia Pilch
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Jaroslaw Ciesla
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Marta Sipko
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Abhipsita De
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Tuguldur Enkhbaatar
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Roman Maslanka
- Institute of Biology, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland
| | - Adrianna Skoneczna
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics PAS, Warsaw, 02-106, Pawinskiego 5A, Poland.
| |
Collapse
|
2
|
Park J, Son H. Antioxidant Systems of Plant Pathogenic Fungi: Functions in Oxidative Stress Response and Their Regulatory Mechanisms. THE PLANT PATHOLOGY JOURNAL 2024; 40:235-250. [PMID: 38835295 PMCID: PMC11162859 DOI: 10.5423/ppj.rw.01.2024.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 06/06/2024]
Abstract
During the infection process, plant pathogenic fungi encounter plant-derived oxidative stress, and an appropriate response to this stress is crucial to their survival and establishment of the disease. Plant pathogenic fungi have evolved several mechanisms to eliminate oxidants from the external environment and maintain cellular redox homeostasis. When oxidative stress is perceived, various signaling transduction pathways are triggered and activate the downstream genes responsible for the oxidative stress response. Despite extensive research on antioxidant systems and their regulatory mechanisms in plant pathogenic fungi, the specific functions of individual antioxidants and their impacts on pathogenicity have not recently been systematically summarized. Therefore, our objective is to consolidate previous research on the antioxidant systems of plant pathogenic fungi. In this review, we explore the plant immune responses during fungal infection, with a focus on the generation and function of reactive oxygen species. Furthermore, we delve into the three antioxidant systems, summarizing their functions and regulatory mechanisms involved in oxidative stress response. This comprehensive review provides an integrated overview of the antioxidant mechanisms within plant pathogenic fungi, revealing how the oxidative stress response contributes to their pathogenicity.
Collapse
Affiliation(s)
- Jiyeun Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Hokyoung Son
- Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
3
|
Takallou S, Hajikarimlou M, Al-Gafari M, Wang J, Jagadeesan SK, Kazmirchuk TDD, Moteshareie H, Indrayanti AM, Azad T, Holcik M, Samanfar B, Smith M, Golshani A. Hydrogen peroxide sensitivity connects the activity of COX5A and NPR3 to the regulation of YAP1 expression. FASEB J 2024; 38:e23439. [PMID: 38416461 DOI: 10.1096/fj.202300978rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 12/13/2023] [Accepted: 01/09/2024] [Indexed: 02/29/2024]
Abstract
Reactive oxygen species (ROS) are among the most severe types of cellular stressors with the ability to damage essential cellular biomolecules. Excess levels of ROS are correlated with multiple pathophysiological conditions including neurodegeneration, diabetes, atherosclerosis, and cancer. Failure to regulate the severely imbalanced levels of ROS can ultimately lead to cell death, highlighting the importance of investigating the molecular mechanisms involved in the detoxification procedures that counteract the effects of these compounds in living organisms. One of the most abundant forms of ROS is H2 O2 , mainly produced by the electron transport chain in the mitochondria. Numerous genes have been identified as essential to the process of cellular detoxification. Yeast YAP1, which is homologous to mammalian AP-1 type transcriptional factors, has a key role in oxidative detoxification by upregulating the expression of antioxidant genes in yeast. The current study reveals novel functions for COX5A and NPR3 in H2 O2 -induced stress by demonstrating that their deletions result in a sensitive phenotype. Our follow-up investigations indicate that COX5A and NPR3 regulate the expression of YAP1 through an alternative mode of translation initiation. These novel gene functions expand our understanding of the regulation of gene expression and defense mechanism of yeast against oxidative stress.
Collapse
Affiliation(s)
- Sarah Takallou
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Maryam Hajikarimlou
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Mustafa Al-Gafari
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Jiashu Wang
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Sasi Kumar Jagadeesan
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Thomas David Daniel Kazmirchuk
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Houman Moteshareie
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Biotechnology Laboratory, Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | | | - Taha Azad
- Faculty of Medicine and Health Sciences, Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Research Center of the Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, Quebec, Canada
| | - Martin Holcik
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Bahram Samanfar
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre (ORDC), Ottawa, Ontario, Canada
| | - Myron Smith
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Ashkan Golshani
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Choi JE, Heo SH, Chung WH. Yap1-mediated Flr1 expression reveals crosstalk between oxidative stress signaling and caffeine resistance in Saccharomyces cerevisiae. Front Microbiol 2022; 13:1026780. [PMID: 36504777 PMCID: PMC9726721 DOI: 10.3389/fmicb.2022.1026780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2022] Open
Abstract
Caffeine, a methylxanthine derivative, affects various physiological conditions such as cell growth, proliferation, and energy metabolism. A genome-wide screening for genes required for caffeine resistance in Schizosaccharomyces pombe revealed several candidates, including Pap1 and downstream target genes involved in caffeine efflux. We found that Yap1, a budding yeast AP-1 homolog required for oxidative stress response, has a caffeine tolerance function. Although the Yap1 mutant is not sensitive to caffeine, overexpression of Yap1 renders cells resistant to high concentrations of caffeine. Caffeine sensitivity of mutants lacking two multidrug transporters, Pdr5 or Snq2, is completely recovered by Yap1 overexpression. Among Yap1-dependent target genes, FLR1, a fluconazole-resistant gene, is necessary but not sufficient for caffeine tolerance. Low concentrations of hydrogen peroxide induce Yap1 activation, which restores cell viability against caffeine toxicity. Intriguingly, oxidative stress-mediated cellular adaptation to caffeine toxicity requires Yap1, but not Flr1. Moreover, caffeine is involved in reduction of intracellular reactive oxygen species (ROS), as well as mutation rate and Rad52 foci formation. Altogether, we identified novel reciprocal crosstalk between ROS signaling and caffeine resistance.
Collapse
Affiliation(s)
- Ji Eun Choi
- College of Pharmacy, Duksung Women’s University, Seoul, South Korea,Innovative Drug Center, Duksung Women’s University, Seoul, South Korea
| | - Seo-Hee Heo
- College of Pharmacy, Duksung Women’s University, Seoul, South Korea,Innovative Drug Center, Duksung Women’s University, Seoul, South Korea
| | - Woo-Hyun Chung
- College of Pharmacy, Duksung Women’s University, Seoul, South Korea,Innovative Drug Center, Duksung Women’s University, Seoul, South Korea,*Correspondence: Woo-Hyun Chung,
| |
Collapse
|
5
|
Yang Q, Wang W. The Nuclear Translocation of Heme Oxygenase-1 in Human Diseases. Front Cell Dev Biol 2022; 10:890186. [PMID: 35846361 PMCID: PMC9277552 DOI: 10.3389/fcell.2022.890186] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/10/2022] [Indexed: 12/30/2022] Open
Abstract
Heme oxygenase-1 (HO-1) is a rate-limiting enzyme in the degradation of heme to generate carbon monoxide (CO), free iron and biliverdin, which could then be converted to bilirubin by biliverdin reductase. HO-1 exhibits cytoprotective effects of anti-apoptosis, anti-oxidation, and anti-inflammation via these byproducts generated during the above process. In the last few years, despite the canonical function of HO-1 and possible biological significance of its byproducts, a noncanonical function, through which HO-1 exhibits functions in diseases independent of its enzyme activity, also has been reported. In this review, the noncanonical functions of HO-1 and its translocation in other subcellular compartments are summarized. More importantly, we emphasize the critical role of HO-1 nuclear translocation in human diseases. Intriguingly, this translocation was linked to tumorigenesis and tumor progression in lung, prostate, head, and neck squamous cell carcinomas and chronic myeloid leukemia. Given the importance of HO-1 nuclear translocation in human diseases, nuclear HO-1 as a novel target might be attractive for the prevention and treatment of human diseases.
Collapse
Affiliation(s)
- Qing Yang
- Department of Breast Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenqian Wang
- Department of Plastic Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Wenqian Wang,
| |
Collapse
|
6
|
Yaakoub H, Mina S, Calenda A, Bouchara JP, Papon N. Oxidative stress response pathways in fungi. Cell Mol Life Sci 2022; 79:333. [PMID: 35648225 PMCID: PMC11071803 DOI: 10.1007/s00018-022-04353-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 11/03/2022]
Abstract
Fungal response to any stress is intricate, specific, and multilayered, though it employs only a few evolutionarily conserved regulators. This comes with the assumption that one regulator operates more than one stress-specific response. Although the assumption holds true, the current understanding of molecular mechanisms that drive response specificity and adequacy remains rudimentary. Deciphering the response of fungi to oxidative stress may help fill those knowledge gaps since it is one of the most encountered stress types in any kind of fungal niche. Data have been accumulating on the roles of the HOG pathway and Yap1- and Skn7-related pathways in mounting distinct and robust responses in fungi upon exposure to oxidative stress. Herein, we review recent and most relevant studies reporting the contribution of each of these pathways in response to oxidative stress in pathogenic and opportunistic fungi after giving a paralleled overview in two divergent models, the budding and fission yeasts. With the concept of stress-specific response and the importance of reactive oxygen species in fungal development, we first present a preface on the expanding domain of redox biology and oxidative stress.
Collapse
Affiliation(s)
- Hajar Yaakoub
- Univ Angers, Univ Brest, IRF, SFR ICAT, 49000, Angers, France
| | - Sara Mina
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | | | | | - Nicolas Papon
- Univ Angers, Univ Brest, IRF, SFR ICAT, 49000, Angers, France.
| |
Collapse
|
7
|
Pérez-Pérez WD, Carrasco-Navarro U, García‑Estrada C, Kosalková K, Gutiérrez-Ruíz MC, Barrios-González J, Fierro F. bZIP transcription factors PcYap1 and PcRsmA link oxidative stress response to secondary metabolism and development in Penicillium chrysogenum. Microb Cell Fact 2022; 21:50. [PMID: 35366869 PMCID: PMC8977021 DOI: 10.1186/s12934-022-01765-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 02/27/2022] [Indexed: 01/23/2023] Open
Abstract
Abstract
Background
Reactive oxygen species (ROS) trigger different morphogenic processes in filamentous fungi and have been shown to play a role in the regulation of the biosynthesis of some secondary metabolites. Some bZIP transcription factors, such as Yap1, AtfA and AtfB, mediate resistance to oxidative stress and have a role in secondary metabolism regulation. In this work we aimed to get insight into the molecular basis of this regulation in the industrially important fungus Penicillium chrysogenum through the characterization of the role played by two effectors that mediate the oxidative stress response in development and secondary metabolism.
Results
In P. chrysogenum, penicillin biosynthesis and conidiation are stimulated by the addition of H2O2 to the culture medium, and this effect is mediated by the bZIP transcription factors PcYap1 and PcRsmA. Silencing of expression of both proteins by RNAi resulted in similar phenotypes, characterized by increased levels of ROS in the cell, reduced conidiation, higher sensitivity of conidia to H2O2 and a decrease in penicillin production. Both PcYap1 and PcRsmA are able to sense H2O2-generated ROS in vitro and change its conformation in response to this stimulus. PcYap1 and PcRsmA positively regulate the expression of brlA, the first gene of the conidiation central regulatory pathway. PcYap1 binds in vitro to a previously identified regulatory sequence in the promoter of the penicillin gene pcbAB: TTAGTAA, and to a TTACTAA sequence in the promoter of the brlA gene, whereas PcRsmA binds to the sequences TGAGACA and TTACGTAA (CRE motif) in the promoters of the pcbAB and penDE genes, respectively.
Conclusions
bZIP transcription factors PcYap1 and PcRsmA respond to the presence of H2O2-generated ROS and regulate oxidative stress response in the cell. Both proteins mediate ROS regulation of penicillin biosynthesis and conidiation by binding to specific regulatory elements in the promoters of key genes. PcYap1 is identified as the previously proposed transcription factor PTA1 (Penicillin Transcriptional Activator 1), which binds to the regulatory sequence TTAGTAA in the pcbAB gene promoter. This is the first report of a Yap1 protein directly regulating transcription of a secondary metabolism gene. A model describing the regulatory network mediated by PcYap1 and PcRsmA is proposed.
Collapse
|
8
|
N’Guyen GQ, Raulo R, Porquier A, Iacomi B, Pelletier S, Renou JP, Bataillé-Simoneau N, Campion C, Hamon B, Kwasiborski A, Colou J, Benamar A, Hudhomme P, Macherel D, Simoneau P, Guillemette T. Responses of the Necrotrophic Fungus Alternaria brassisicola to the Indolic Phytoalexin Brassinin. FRONTIERS IN PLANT SCIENCE 2021; 11:611643. [PMID: 33552104 PMCID: PMC7860980 DOI: 10.3389/fpls.2020.611643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Alternaria brassicicola causes black spot disease in Brassicaceae. During host infection, this necrotrophic fungus is exposed to various antimicrobial compounds, such as the phytoalexin brassinin which is produced by many cultivated Brassica species. To investigate the cellular mechanisms by which this compound causes toxicity and the corresponding fungal adaptive strategies, we first analyzed fungal transcriptional responses to short-term exposure to brassinin and then used additional functional approaches. This study supports the hypothesis that indolic phytoalexin primarily targets mitochondrial functions in fungal cells. Indeed, we notably observed that phytoalexin treatment of A. brassicicola disrupted the mitochondrial membrane potential and resulted in a significant and rapid decrease in the oxygen consumption rates. Secondary effects, such as Reactive oxygen species production, changes in lipid and endoplasmic reticulum homeostasis were then found to be induced. Consequently, the fungus has to adapt its metabolism to protect itself against the toxic effects of these molecules, especially via the activation of high osmolarity glycerol and cell wall integrity signaling pathways and by induction of the unfolded protein response.
Collapse
Affiliation(s)
| | - Roxane Raulo
- Institut Charles Viollette – EA 7394, Université de Lille, INRA, ISA, Université d’Artois, Université du Littoral Côte d’Opale, Lille, France
| | | | | | - Sandra Pelletier
- UNIV Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, Angers, France
| | - Jean-Pierre Renou
- UNIV Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, Angers, France
| | | | - Claire Campion
- UNIV Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, Angers, France
| | - Bruno Hamon
- UNIV Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, Angers, France
| | | | - Justine Colou
- UNIV Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, Angers, France
| | - Abdelilah Benamar
- UNIV Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, Angers, France
| | | | - David Macherel
- UNIV Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, Angers, France
| | - Philippe Simoneau
- UNIV Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, Angers, France
| | - Thomas Guillemette
- UNIV Angers, Institut Agro, INRAE, IRHS, SFR 4207 QuaSaV, Angers, France
| |
Collapse
|
9
|
Coffee Extends Yeast Chronological Lifespan through Antioxidant Properties. Int J Mol Sci 2020; 21:ijms21249510. [PMID: 33327536 PMCID: PMC7765085 DOI: 10.3390/ijms21249510] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/02/2020] [Accepted: 12/10/2020] [Indexed: 12/26/2022] Open
Abstract
Aging is a multifactorial process accompanied by loss of cell function. Science has been looking for factors responsible for aging for many years. However, despite identifying a number of possible causes, the definite reason for aging has been elusive so far. One of the factors contributing to aging is oxygen free radicals. In this context, beneficial effects of coffee on various organisms, including humans, were investigated, although the results are far from unequivocal. In our research, we used the budding yeast-something of a workhorse in many studies, including the studies of aging. So far, the impact of coffee on the aging of cells in the budding yeast experimental setup has little known about it. Here, we provide strong evidence that coffee compounds, particularly flavonoids, are responsible for scavenging free radicals and longevity in yeast lacking Sod1, Sod2 and Rad52 proteins. In this paper, we compared Arabica and Robusta coffee types. We present an analysis of the concentration of caffeine and flavonoids measured by the High-Performance Liquid Chromatography method. We show that Robusta has a much greater antioxidant capacity than Arabica. We also conclude that coffee infusions significantly extend the chronological lifespan of the Saccharomyces cerevisiae yeast cells by protecting cells against reactive oxygen species, double DNA-strand break and decrease in metabolic activity.
Collapse
|
10
|
Buechel ER, Pinkett HW. Transcription factors and ABC transporters: from pleiotropic drug resistance to cellular signaling in yeast. FEBS Lett 2020; 594:3943-3964. [PMID: 33089887 DOI: 10.1002/1873-3468.13964] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/07/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022]
Abstract
Budding yeast Saccharomyces cerevisiae survives in microenvironments utilizing networks of regulators and ATP-binding cassette (ABC) transporters to circumvent toxins and a variety of drugs. Our understanding of transcriptional regulation of ABC transporters in yeast is mainly derived from the study of multidrug resistance protein networks. Over the past two decades, this research has not only expanded the role of transcriptional regulators in pleiotropic drug resistance (PDR) but evolved to include the role that regulators play in cellular signaling and environmental adaptation. Inspection of the gene networks of the transcriptional regulators and characterization of the ABC transporters has clarified that they also contribute to environmental adaptation by controlling plasma membrane composition, toxic-metal sequestration, and oxidative stress adaptation. Additionally, ABC transporters and their regulators appear to be involved in cellular signaling for adaptation of S. cerevisiae populations to nutrient availability. In this review, we summarize the current understanding of the S. cerevisiae transcriptional regulatory networks and highlight recent work in other notable fungal organisms, underlining the expansion of the study of these gene networks across the kingdom fungi.
Collapse
Affiliation(s)
- Evan R Buechel
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| | - Heather W Pinkett
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
| |
Collapse
|
11
|
Chen S, Wang X, Nisar MF, Lin M, Zhong JL. Heme Oxygenases: Cellular Multifunctional and Protective Molecules against UV-Induced Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5416728. [PMID: 31885801 PMCID: PMC6907065 DOI: 10.1155/2019/5416728] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/29/2019] [Indexed: 12/20/2022]
Abstract
Ultraviolet (UV) irradiation can be considered as a double-edged sword: not only is it a crucial environmental factor that can cause skin-related disorders but it can also be used for phototherapy of skin diseases. Inducible heme oxygenase-1 (HO-1) in response to a variety of stimuli, including UV exposure, is vital to maintain cell homeostasis. Heme oxygenase-2 (HO-2), another member of the heme oxygenase family, is constitutively expressed. In this review, we discuss how heme oxygenase (HO), a vital rate-limiting enzyme, participates in heme catabolism and cytoprotection. Phylogenetic analysis showed that there may exist a functional differentiation between HO-1 and HO-2 during evolution. Furthermore, depending on functions in immunomodulation and antioxidation, HO-1 participates in disease progression, especially in pathogenesis of skin diseases, such as vitiligo and psoriasis. To further investigate the particular role of HO-1 in diseases, we summarized the profile of the HO enzyme system and its related signaling pathways, such as Nrf2 and endoplasmic reticulum crucial signaling, both known to regulate HO-1 expression. Furthermore, we report on a C-terminal truncation of HO-1, which is generally considered as a signal molecule. Also, a newly identified alternative splice isoform of HO-1 not only provides us a novel perspective on comprehensive HO-1 alternative splicing but also offers us a basis to clarify the relationship between HO-1 transcripts and oxidative diseases. To conclude, the HO system is not only involved in heme catabolism but also involved in biological processes related to the pathogenesis of certain diseases, even though the mechanism of disease progression still remains sketchy. Further understanding the role of the HO system and its relationship to UV is helpful for revealing the HO-related signaling networks and the pathogenesis of many diseases.
Collapse
Affiliation(s)
- ShiDa Chen
- The Base of “111 Project” for Biomechanics & Tissue Repair Engineering; Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - XiaoYu Wang
- The Base of “111 Project” for Biomechanics & Tissue Repair Engineering; Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Muhammad Farrukh Nisar
- The Base of “111 Project” for Biomechanics & Tissue Repair Engineering; Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
| | - Mao Lin
- Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
| | - Julia Li Zhong
- The Base of “111 Project” for Biomechanics & Tissue Repair Engineering; Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China
- Chongqing Traditional Chinese Medicine Hospital, Chongqing 400011, China
| |
Collapse
|
12
|
Kim T, Li D, Terasaka T, Nicholas DA, Knight VS, Yang JJ, Lawson MA. SRXN1 Is Necessary for Resolution of GnRH-Induced Oxidative Stress and Induction of Gonadotropin Gene Expression. Endocrinology 2019; 160:2543-2555. [PMID: 31504396 PMCID: PMC6779075 DOI: 10.1210/en.2019-00283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022]
Abstract
A defining characteristic of the hypothalamus-pituitary-gonad reproductive endocrine axis is the episodic secretion of the pituitary gonadotropin hormones LH and FSH by the anterior pituitary gonadotropes. Hormone secretion is dictated by pulsatile stimulation, with GnRH released by hypothalamic neurons that bind and activate the G protein-coupled GnRH receptor expressed by gonadotropes. Hormone secretion and synthesis of gonadotropins are influenced by the amplitude and frequency of GnRH stimulation; variation in either affects the proportion of LH and FSH secreted and the differential regulation of hormone subunit gene expression. Therefore, proper decoding of GnRH signals is essential for appropriate gonadotropin synthesis and secretion. The GnRH receptor robustly activates downstream signaling cascades to facilitate exocytosis and stimulate gene expression and protein synthesis. It is necessary to rapidly quench signaling to preserve sensitivity and adaptability to changing pulse patterns. Reactive oxygen species (ROS) generated by receptor-activated oxidases fulfill the role of rapid signaling intermediates that facilitate robust and transient signaling. However, excess ROS can be detrimental and, unchecked, can confuse signal interpretation. We demonstrate that sulfiredoxin (SRXN1), an ATP-dependent reductase, is essential for normal responses to GnRH receptor signaling and plays a central role in resolution of ROS induced by GnRH stimulation. SRXN1 expression is mitogen-activated protein kinase dependent, and knockdown reduces Lhb and Fshb glycoprotein hormone subunit mRNA and promoter activity. Loss of SRXN1 leads to increased basal and GnRH-stimulated ROS levels. We conclude that SRXN1 is essential for normal responses to GnRH stimulation and plays an important role in ROS management.
Collapse
Affiliation(s)
- Taeshin Kim
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, California
| | - Danmei Li
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, California
| | - Tomohiro Terasaka
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, California
| | - Dequina A Nicholas
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, California
| | - Vashti S Knight
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, California
| | - Joyce J Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, California
| | - Mark A Lawson
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, California
- Correspondence: Mark A. Lawson, PhD, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego Mail Code 0674, 9500 Gilman Drive, La Jolla, California 92093. E-mail:
| |
Collapse
|
13
|
Michel-Ramirez G, Recio-Vega R, Lantz RC, Gandolfi AJ, Olivas-Calderon E, Chau BT, Amistadi MK. Assessment of YAP gene polymorphisms and arsenic interaction in Mexican women with breast cancer. J Appl Toxicol 2019; 40:342-351. [PMID: 31631368 DOI: 10.1002/jat.3907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 09/04/2019] [Indexed: 01/18/2023]
Affiliation(s)
- Gladis Michel-Ramirez
- Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreon, Coahuila, Mexico
| | - Rogelio Recio-Vega
- Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreon, Coahuila, Mexico
| | - R Clark Lantz
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA.,Southwest Environmental Health Science Center, University of Arizona, Tucson, Arizona, USA.,Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, USA
| | - A Jay Gandolfi
- Southwest Environmental Health Science Center, University of Arizona, Tucson, Arizona, USA.,Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, USA
| | - Edgar Olivas-Calderon
- School of Chemical Sciences, University Juarez of Durango State, Gomez Palacio, Durango, Mexico
| | - Binh T Chau
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Mary Kay Amistadi
- Department of Soil, Water and Environmental Science, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
14
|
Chien CT, Chen YC, Liu YC, Liang SH, Lin HH, Lin CH. The antimicrobial photodynamic inactivation resistance of Candida albicans is modulated by the Hog1 pathway and the Cap1 transcription factor. Med Mycol 2019; 57:618-627. [PMID: 30289464 DOI: 10.1093/mmy/myy079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 08/02/2018] [Accepted: 09/23/2018] [Indexed: 12/22/2022] Open
Abstract
Candida albicans is the most important fungal pathogen afflicting humans, particularly immunocompromised patients. However, currently available antifungal drugs are limited and ineffective against drug-resistant strains. The development of new drugs or alternative therapeutic approaches to control fungal infections is urgent and necessary. Photodynamic inactivation (PDI) is a new promising therapy for eradicating microorganism infections through combining visible light, photosensitizers, and oxygen to generate reactive oxygen species (ROS). Although cytoprotective responses induced by photodynamic therapy (PDT) have been well studied in cancer cells, the mechanisms by which C. albicans responds to PDI are largely unknown. In this study, we first demonstrated that PDI induces C. albicans Hog1p activation. Deletion of any of the SSK2, PBS2, and HOG1 genes significantly decreased the survival rate after photochemical reactions, indicating that the Hog1 SAPK pathway is required for tolerance to PDI. Furthermore, the basic leucine zipper transcription factor Cap1 that regulates several downstream antioxidant genes was highly expressed during the response to PDI, and loss of CAP1 also resulted in decreased C. albicans survival rates. This study demonstrates the importance of the Hog1 SAPK and the Cap1 transcription factor, which regulates in resistance to PDI-mediated oxidative stress in C. albicans. Understanding the mechanisms by which C. albicans responds to PDI and consequently scavenges ROS will be very useful for the further development of therapeutics to control fungal infectious diseases, particularly those of the skin and mucosal infections.
Collapse
Affiliation(s)
- Chih-Ting Chien
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Chia Chen
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yun-Chun Liu
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | | | - Hsien-Hen Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ching-Hsuan Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
15
|
Rodrigues-Pousada C, Devaux F, Caetano SM, Pimentel C, da Silva S, Cordeiro AC, Amaral C. Yeast AP-1 like transcription factors (Yap) and stress response: a current overview. MICROBIAL CELL 2019; 6:267-285. [PMID: 31172012 PMCID: PMC6545440 DOI: 10.15698/mic2019.06.679] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Yeast adaptation to stress has been extensively studied. It involves large reprogramming of genome expression operated by many, more or less specific, transcription factors. Here, we review our current knowledge on the function of the eight Yap transcription factors (Yap1 to Yap8) in Saccharomyces cerevisiae, which were shown to be involved in various stress responses. More precisely, Yap1 is activated under oxidative stress, Yap2/Cad1 under cadmium, Yap4/Cin5 and Yap6 under osmotic shock, Yap5 under iron overload and Yap8/Arr1 by arsenic compounds. Yap3 and Yap7 seem to be involved in hydroquinone and nitrosative stresses, respectively. The data presented in this article illustrate how much knowledge on the function of these Yap transcription factors is advanced. The evolution of the Yap family and its roles in various pathogenic and non-pathogenic fungal species is discussed in the last section.
Collapse
Affiliation(s)
- Claudina Rodrigues-Pousada
- Instituto de Tecnologia Química e Biológica Anónio Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, Oeiras 2781-901, Oeiras, Portugal
| | - Frédéric Devaux
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, F-75005, Paris, France
| | - Soraia M Caetano
- Instituto de Tecnologia Química e Biológica Anónio Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, Oeiras 2781-901, Oeiras, Portugal
| | - Catarina Pimentel
- Instituto de Tecnologia Química e Biológica Anónio Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, Oeiras 2781-901, Oeiras, Portugal
| | - Sofia da Silva
- Instituto de Tecnologia Química e Biológica Anónio Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, Oeiras 2781-901, Oeiras, Portugal
| | - Ana Carolina Cordeiro
- Instituto de Tecnologia Química e Biológica Anónio Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, Oeiras 2781-901, Oeiras, Portugal
| | - Catarina Amaral
- Instituto de Tecnologia Química e Biológica Anónio Xavier, Universidade Nova de Lisboa, Avenida da República, EAN, Oeiras 2781-901, Oeiras, Portugal
| |
Collapse
|
16
|
Biradar SP, Tamboli AS, Khandare RV, Pawar PK. Chebulinic acid and Boeravinone B act as anti-aging and anti-apoptosis phyto-molecules during oxidative stress. Mitochondrion 2019; 46:236-246. [DOI: 10.1016/j.mito.2018.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 05/24/2018] [Accepted: 07/13/2018] [Indexed: 11/25/2022]
|
17
|
Mendoza-Martínez AE, Cano-Domínguez N, Aguirre J. Yap1 homologs mediate more than the redox regulation of the antioxidant response in filamentous fungi. Fungal Biol 2019; 124:253-262. [PMID: 32389287 DOI: 10.1016/j.funbio.2019.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 10/27/2022]
Abstract
The regulation of gene expression in response to increased levels of reactive oxygen species (ROS) is a ubiquitous response in aerobic organisms. However, different organisms use different strategies to perceive and respond to high ROS levels. Yeast Yap1 is a paradigmatic example of a specific mechanism used by eukaryotic cells to link ROS sensing and gene regulation. The activation of this transcription factor by H2O2 is mediated by peroxiredoxins, which are widespread enzymes that use cysteine thiols to sense ROS, as well as to catalyze the reduction of peroxides to water. In filamentous fungi, Yap1 homologs and peroxiredoxins also are major regulators of the antioxidant response. However, Yap1 homologs are involved in a wider array of processes by regulating genes involved in nutrient assimilation, secondary metabolism, virulence and development. Such novel functions illustrate the divergent roles of ROS and other oxidizing compounds as important regulatory signaling molecules.
Collapse
Affiliation(s)
- Ariann E Mendoza-Martínez
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 Ciudad de México, Mexico
| | - Nallely Cano-Domínguez
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 Ciudad de México, Mexico
| | - Jesús Aguirre
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70-242, 04510 Ciudad de México, Mexico.
| |
Collapse
|
18
|
Wan X, Marsafari M, Xu P. Engineering metabolite-responsive transcriptional factors to sense small molecules in eukaryotes: current state and perspectives. Microb Cell Fact 2019; 18:61. [PMID: 30914048 PMCID: PMC6434827 DOI: 10.1186/s12934-019-1111-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 03/20/2019] [Indexed: 11/18/2022] Open
Abstract
Nature has evolved exquisite sensing mechanisms to detect cellular and environmental signals surrounding living organisms. These biosensors have been widely used to sense small molecules, detect environmental cues and diagnose disease markers. Metabolic engineers and synthetic biologists have been able to exploit metabolites-responsive transcriptional factors (MRTFs) as basic tools to rewire cell metabolism, reprogram cellular activity as well as boost cell’s productivity. This is commonly achieved by integrating sensor-actuator systems with biocatalytic functions and dynamically allocating cellular resources to drive carbon flux toward the target pathway. Up to date, most of identified MRTFs are derived from bacteria. As an endeavor to advance intelligent biomanufacturing in yeast cell factory, we will summarize the opportunities and challenges to transfer the bacteria-derived MRTFs to expand the small-molecule sensing capability in eukaryotic cells. We will discuss the design principles underlying MRTF-based biosensors in eukaryotic cells, including the choice of reliable reporters and the characterization tools to minimize background noise, strategies to tune the sensor dynamic range, sensitivity and specificity, as well as the criteria to engineer activator and repressor-based biosensors. Due to the physical separation of transcription and protein expression in eukaryotes, we argue that nuclear import/export mechanism of MRTFs across the nuclear membrane plays a critical role in regulating the MRTF sensor dynamics. Precisely-controlled MRTF response will allow us to repurpose the vast majority of transcriptional factors as molecular switches to achieve temporal or spatial gene expression in eukaryotes. Uncovering this knowledge will inform us fundamental design principles to deliver robust cell factories and enable the design of reprogrammable and predictable biological systems for intelligent biomanufacturing, smart therapeutics or precision medicine in the foreseeable future.
Collapse
Affiliation(s)
- Xia Wan
- Department of Chemical Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.,Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, Hubei, China.,Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, Hubei, China
| | - Monireh Marsafari
- Department of Chemical Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.,Department of Agronomy and Plant Breeding, University of Guilan, Rasht, Islamic Republic of Iran
| | - Peng Xu
- Department of Chemical Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA.
| |
Collapse
|
19
|
Ukai Y, Kuroiwa M, Kurihara N, Naruse H, Homma T, Maki H, Naito A. Contributions of yap1 Mutation and Subsequent atrF Upregulation to Voriconazole Resistance in Aspergillus flavus. Antimicrob Agents Chemother 2018; 62:AAC.01216-18. [PMID: 30126960 PMCID: PMC6201102 DOI: 10.1128/aac.01216-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/08/2018] [Indexed: 01/16/2023] Open
Abstract
Aspergillus flavus is the second most significant pathogenic cause of invasive aspergillosis; however, its emergence risks and mechanisms of voriconazole (VRC) resistance have not yet been elucidated in detail. Here, we demonstrate that repeated exposure of A. flavus to subinhibitory concentrations of VRC in vitro causes the emergence of a VRC-resistant mutant with a novel resistance mechanism. The VRC-resistant mutant shows a MIC of 16 μg/ml for VRC and of 0.5 μg/ml for itraconazole (ITC). Whole-genome sequencing analysis showed that the mutant possesses a point mutation in yap1, which encodes a bZIP transcription factor working as the master regulator of the oxidative stress response, but no mutations in the cyp51 genes. This point mutation in yap1 caused alteration of Leu558 to Trp (Yap1Leu558Trp) in the putative nuclear export sequence in the carboxy-terminal cysteine-rich domain of Yap1. This Yap1Leu558Trp substitution was confirmed as being responsible for the VRC-resistant phenotype, but not for that of ITC, by the revertant to Yap1wild type with homologous gene replacement. Furthermore, Yap1Leu558Trp caused marked upregulation of the atrF ATP-binding cassette transporter, and the deletion of atrF restored susceptibility to VRC in A. flavus These findings provide new insights into VRC resistance mechanisms via a transcriptional factor mutation that is independent of the cyp51 gene mutation in A. flavus.
Collapse
Affiliation(s)
- Yuuta Ukai
- Drug Discovery & Disease Research Laboratory, Shionogi and Co., Ltd., Toyonaka, Osaka, Japan
| | - Miho Kuroiwa
- Drug Discovery & Disease Research Laboratory, Shionogi and Co., Ltd., Toyonaka, Osaka, Japan
| | - Naoko Kurihara
- Drug Discovery & Disease Research Laboratory, Shionogi and Co., Ltd., Toyonaka, Osaka, Japan
| | - Hiroki Naruse
- Drug Discovery & Disease Research Laboratory, Shionogi and Co., Ltd., Toyonaka, Osaka, Japan
| | - Tomoyuki Homma
- Drug Discovery & Disease Research Laboratory, Shionogi and Co., Ltd., Toyonaka, Osaka, Japan
| | - Hideki Maki
- Drug Discovery & Disease Research Laboratory, Shionogi and Co., Ltd., Toyonaka, Osaka, Japan
| | - Akira Naito
- Drug Discovery & Disease Research Laboratory, Shionogi and Co., Ltd., Toyonaka, Osaka, Japan
| |
Collapse
|
20
|
Roma LP, Deponte M, Riemer J, Morgan B. Mechanisms and Applications of Redox-Sensitive Green Fluorescent Protein-Based Hydrogen Peroxide Probes. Antioxid Redox Signal 2018; 29:552-568. [PMID: 29160083 DOI: 10.1089/ars.2017.7449] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
SIGNIFICANCE Genetically encoded hydrogen peroxide (H2O2) sensors, based on fusions between thiol peroxidases and redox-sensitive green fluorescent protein 2 (roGFP2), have dramatically broadened the available "toolbox" for monitoring cellular H2O2 changes. Recent Advances: Recently developed peroxiredoxin-based probes such as roGFP2-Tsa2ΔCR offer considerably improved H2O2 sensitivity compared with previously available genetically encoded sensors and now permit dynamic, real-time, monitoring of changes in endogenous H2O2 levels. CRITICAL ISSUES The correct understanding and interpretation of probe read-outs is crucial for their meaningful use. We discuss probe mechanisms, potential pitfalls, and best practices for application and interpretation of probe responses and highlight where gaps in our knowledge remain. FUTURE DIRECTIONS The full potential of the newly available sensors remains far from being fully realized and exploited. We discuss how the ability to monitor basal H2O2 levels in real time now allows us to re-visit long-held ideas in redox biology such as the response to ischemia-reperfusion and hypoxia-induced reactive oxygen species production. Further, recently proposed circadian cycles of peroxiredoxin hyperoxidation might now be rigorously tested. Beyond their application as H2O2 probes, roGFP2-based H2O2 sensors hold exciting potential for studying thiol peroxidase mechanisms, inactivation properties, and the impact of post-translational modifications, in vivo. Antioxid. Redox Signal. 29, 552-568.
Collapse
Affiliation(s)
- Leticia Prates Roma
- 1 Biophysics Department, Center for Human and Molecular Biology, Universität des Saarlandes , Homburg/Saar, Germany
| | - Marcel Deponte
- 2 Faculty of Chemistry/Biochemistry, University of Kaiserslautern , Kaiserslautern, Germany
| | - Jan Riemer
- 3 Institute of Biochemistry, University of Cologne , Cologne, Germany
| | - Bruce Morgan
- 4 Department of Cellular Biochemistry, University of Kaiserslautern , Kaiserslautern, Germany
| |
Collapse
|
21
|
Construction and Use of a Recyclable Marker To Examine the Role of Major Facilitator Superfamily Protein Members in Candida glabrata Drug Resistance Phenotypes. mSphere 2018; 3:mSphere00099-18. [PMID: 29600281 PMCID: PMC5874441 DOI: 10.1128/msphere.00099-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 02/27/2018] [Indexed: 11/27/2022] Open
Abstract
Export of drugs is a problem for chemotherapy of infectious organisms. A class of membrane proteins called the major facilitator superfamily contains a large number of proteins that often elevate drug resistance when overproduced but do not impact this phenotype when the gene is removed. We wondered if this absence of a phenotype for a disruption allele might be due to the redundancy of this group of membrane proteins. We describe the production of an easy-to-use recyclable marker cassette that will allow construction of strains lacking multiple members of the MFS family of transporter proteins. Candida glabrata is the second most common species causing candidiasis. C. glabrata can also readily acquire resistance to azole drugs, complicating its treatment. Here we add to the collection of disruption markers to aid in genetic analysis of this yeast. This new construct is marked with a nourseothricin resistance cassette that produces an estrogen-activated form of Cre recombinase in a methionine-regulated manner. This allows eviction and reuse of this cassette in a facile manner. Using this new disruption marker, we have constructed a series of strains lacking different members of the major facilitator superfamily (MFS) of membrane transporter proteins. The presence of 15 MFS proteins that may contribute to drug resistance in C. glabrata placed a premium on development of a marker that could easily be reused to construct multiple gene-disrupted strains. Employing this recyclable marker, we found that loss of the MFS transporter-encoding gene FLR1 caused a dramatic increase in diamide resistance (as seen before), and deletion of two other MFS-encoding genes did not influence this phenotype. Interestingly, loss of FLR1 led to an increase in levels of oxidized glutathione, suggesting a possible molecular explanation for this enhanced oxidant sensitivity. We also found that while overproduction of the transcription factor Yap1 could suppress the fluconazole sensitivity caused by loss of the important ATP-binding cassette transporter protein Cdr1, this required the presence of FLR1. IMPORTANCE Export of drugs is a problem for chemotherapy of infectious organisms. A class of membrane proteins called the major facilitator superfamily contains a large number of proteins that often elevate drug resistance when overproduced but do not impact this phenotype when the gene is removed. We wondered if this absence of a phenotype for a disruption allele might be due to the redundancy of this group of membrane proteins. We describe the production of an easy-to-use recyclable marker cassette that will allow construction of strains lacking multiple members of the MFS family of transporter proteins.
Collapse
|
22
|
Yu P, Wang C, Chen P, Lee M. YAP1 homologue-mediated redox sensing is crucial for a successful infection by Monilinia fructicola. MOLECULAR PLANT PATHOLOGY 2017; 18:783-797. [PMID: 27239957 PMCID: PMC6638302 DOI: 10.1111/mpp.12438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/17/2016] [Accepted: 05/26/2016] [Indexed: 05/20/2023]
Abstract
Monilinia fructicola (G. Winter) Honey is a devastating pathogen on Rosaceae which causes blossom blight and fruit rot. Only a few studies related to the plant-pathogen interaction have been published and there is limited knowledge on the relationship between oxidative stress and successful infection in M. fructicola. In this study, we cloned and characterized a redox-responsive transcription factor MFAP1, a YAP1 homologue. MfAP1-silenced strains were generated by polyethylene glycol-mediated protoplast transformation or Agrobacterium T-DNA-mediated transformation. Pathogenicity assay demonstrated that MfAP1-silenced strains caused smaller lesions on rose and peach petals. Transformants carrying extra copies of MfAP1, driven by the native promoter, were generated for MfAP1 overexpression. Interestingly, MfAP1-overexpressing strains also caused smaller lesions on rose petals. Strains carrying two copies of MfAP1 accumulated reactive oxygen species (ROS) at higher levels and exhibited delayed accumulation of MfAP1 transcripts compared with the wild-type during pathogenesis. By the analysis of ROS production and the expression patterns of redox- and virulence-related genes in the wild-type strain and an MfAP1-overexpressing strain, we found that the M. fructicola wild-type strain responded to oxidative stress at the infection site, activated the expression of MfAP1 and up-regulated the genes required for ROS detoxification and fungal virulence. In contrast, MfAP1 expression in the MfAP1-overexpressing strain was suppressed after the induction of a strong oxidative burst at the infection site, altering the expression of ROS detoxification and virulence-related genes. Our results highlight the importance of MfAP1 and ROS accumulation in the successful infection of M. fructicola.
Collapse
Affiliation(s)
- Pei‐Ling Yu
- Department of Plant PathologyNational Chung‐Hsing University250 Kuo‐Kuang Rd.Taichung402Taiwan
- NCHU‐UCD Plant and Food Biotechnology CenterNational Chung‐Hsing University250 Kuo‐Kuang Rd.Taichung402Taiwan
- Agricultural Biotechnology CenterNational Chung‐Hsing University250 Kuo‐Kuang Rd.Taichung402Taiwan
| | - Chih‐Li Wang
- Department of Plant PathologyNational Chung‐Hsing University250 Kuo‐Kuang Rd.Taichung402Taiwan
| | - Pei‐Yin Chen
- Department of Plant PathologyNational Chung‐Hsing University250 Kuo‐Kuang Rd.Taichung402Taiwan
| | - Miin‐Huey Lee
- Department of Plant PathologyNational Chung‐Hsing University250 Kuo‐Kuang Rd.Taichung402Taiwan
- NCHU‐UCD Plant and Food Biotechnology CenterNational Chung‐Hsing University250 Kuo‐Kuang Rd.Taichung402Taiwan
- Agricultural Biotechnology CenterNational Chung‐Hsing University250 Kuo‐Kuang Rd.Taichung402Taiwan
| |
Collapse
|
23
|
Gruhlke MCH, Schlembach I, Leontiev R, Uebachs A, Gollwitzer PUG, Weiss A, Delaunay A, Toledano M, Slusarenko AJ. Yap1p, the central regulator of the S. cerevisiae oxidative stress response, is activated by allicin, a natural oxidant and defence substance of garlic. Free Radic Biol Med 2017; 108:793-802. [PMID: 28479370 DOI: 10.1016/j.freeradbiomed.2017.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/20/2017] [Accepted: 05/02/2017] [Indexed: 11/24/2022]
Abstract
UNLABELLED Allicin is a thiol-reactive sulfur-containing natural product from garlic with a broad range of antimicrobial effects against prokaryotes and eukaryotes. Previous work showed that the S. cerevisiae OSI1 gene is highly induced by allicin and other thiol-reactive compounds, and in silico analysis revealed multiple Yap1p binding motifs in the OSI1 promoter sequence. An OSI1-promoter::luciferase reporter construct expressed in Wt and Δyap1 cells showed absolute Yap1p-dependence for allicin-induced OSI1-expression. A GFP Yap1p fusion protein accumulated in the nucleus within 10min of allicin treatment and a Δyap1 mutant was highly sensitive to allicin. Yap1p regulates glutathione (GSH) metabolism genes, and Δgsh1, Δgsh2 and Δglr1 mutants showed increased sensitivity to allicin. Allicin activated the OSI1-promoter::luciferase reporter construct in Δgpx3 and Δybp1 cells, indicating that allicin activates Yap1p directly rather than via H2O2 production. A systematic series of C-to-A Yap1p exchange mutants showed that the C-term C598 and C620 residues were necessary for allicin activation. These data suggest that Yap1p is an important transcriptional regulator for the resistance of yeast cells to allicin, and that activation occurs by direct modification of C-term cysteines as shown for other electrophiles.
Collapse
Affiliation(s)
- Martin C H Gruhlke
- Department of Plant Physiology, RWTH Aachen University, 52056 Aachen, Germany
| | - Ivan Schlembach
- Department of Plant Physiology, RWTH Aachen University, 52056 Aachen, Germany; Institute for Applied Microbiology, RWTH Aachen University, 52056 Aachen, Germany
| | - Roman Leontiev
- Department of Plant Physiology, RWTH Aachen University, 52056 Aachen, Germany; Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbrücken, Germany
| | - Andreas Uebachs
- Department of Plant Physiology, RWTH Aachen University, 52056 Aachen, Germany
| | - Peter U G Gollwitzer
- Department of Plant Physiology, RWTH Aachen University, 52056 Aachen, Germany; Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Allianz, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Alexander Weiss
- Department of Plant Physiology, RWTH Aachen University, 52056 Aachen, Germany; Laboratoire Stress Oxydants et Cancer, SBMS, DBJC, CEA-Saclay, Gif-sur-Yvette, France
| | - Agnes Delaunay
- Laboratoire Stress Oxydants et Cancer, SBMS, DBJC, CEA-Saclay, Gif-sur-Yvette, France
| | - Michel Toledano
- Laboratoire Stress Oxydants et Cancer, SBMS, DBJC, CEA-Saclay, Gif-sur-Yvette, France
| | - Alan J Slusarenko
- Department of Plant Physiology, RWTH Aachen University, 52056 Aachen, Germany.
| |
Collapse
|
24
|
Bersweiler A, D'Autréaux B, Mazon H, Kriznik A, Belli G, Delaunay-Moisan A, Toledano MB, Rahuel-Clermont S. A scaffold protein that chaperones a cysteine-sulfenic acid in H2O2 signaling. Nat Chem Biol 2017. [DOI: 10.1038/nchembio.2412] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Michel-Ramirez G, Recio-Vega R, Ocampo-Gomez G, Palacios-Sanchez E, Delgado-Macias M, Delgado-Gaona M, Lantz RC, Gandolfi J, Gonzalez-Cortes T. Association between YAP expression in neoplastic and non-neoplastic breast tissue with arsenic urinary levels. J Appl Toxicol 2017; 37:1195-1202. [PMID: 28524356 DOI: 10.1002/jat.3481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/07/2017] [Accepted: 03/30/2017] [Indexed: 11/11/2022]
Abstract
The Hippo pathway regulates cell proliferation and apoptosis and it has been noted that loss of critical components of this pathway can lead to uncontrolled cell growth. Yes-associated protein (YAP) is an important component of this Hippo pathway because YAP is the nuclear effector of the Hippo tumor suppressor pathway and it is crucial for the response to oxidative stress induced by cellular process and by different xenobiotics, including arsenic. It has been proposed that YAP dysregulation can contribute to a malignant cellular phenotype acting as both a tumor suppressor and an oncogene. The aim of the study was to assess and compare the expression of YAP in neoplastic and non-neoplastic breast tissue of women chronically exposed to arsenic through drinking water. YAP expression was assessed by immunohistochemistry in 120 breast biopsies from women with breast cancer and from women with other non-neoplastic breast pathologies. Arsenic concentration was quantified in urine. The results disclosed a significant lower percentage of cytoplasm YAP expression in cases and that YAP high-intensity staining in the cytoplasm but not in the nucleus decreases the risk for breast cancer. In conclusion, our overall data suggest that YAP may act as a tumor suppressor protein because their reduced expression in cases, which can induce an environment favorable for inhibition of apoptosis and promoting cellular proliferation by increasing genetic instability of cells, which might contribute to the pathogenesis of cancer. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Gladis Michel-Ramirez
- Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreon, Coahuila, Mexico
| | - Rogelio Recio-Vega
- Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreon, Coahuila, Mexico
| | - Guadalupe Ocampo-Gomez
- Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreon, Coahuila, Mexico
| | - Eduardo Palacios-Sanchez
- Department of Gynecologic Oncology, Mexican Institute of Social Security, Torreon, Coahuila, México
| | - Manuel Delgado-Macias
- Department of Medical Education, School of Medicine, University of Coahuila, Torreon, Coahuila, México
| | | | - Robert Clark Lantz
- Southwest Environmental Health Science Center, University of Arizona, Tucson, AZ, USA.,Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Jay Gandolfi
- Southwest Environmental Health Science Center, University of Arizona, Tucson, AZ, USA.,Department of Pharmacology and Toxicology, University of Arizona, Tucson, AZ, USA
| | - Tania Gonzalez-Cortes
- Department of Environmental Health, Biomedical Research Center, School of Medicine, University of Coahuila, Torreon, Coahuila, Mexico
| |
Collapse
|
26
|
Boronat S, Domènech A, Hidalgo E. Proteomic Characterization of Reversible Thiol Oxidations in Proteomes and Proteins. Antioxid Redox Signal 2017; 26:329-344. [PMID: 27089838 DOI: 10.1089/ars.2016.6720] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
SIGNIFICANCE Reactive oxygen species are produced during normal metabolism in cells, and their excesses have been implicated in protein damage and toxicity, as well as in the activation of signaling events. In particular, hydrogen peroxide participates in the regulation of different physiological processes as well as in the induction of antioxidant cascades, and often the redox molecular events triggering these pathways are based on reversible cysteine (Cys) oxidation. Recent Advances: Increases in peroxides can cause the accumulation of reversible Cys oxidations in proteomes, which may be either protecting thiols from irreversible oxidations or may just be reporters of future toxicity. It is also becoming clear, however, that only a few proteins, such as the bacterial OxyR or peroxidases, can suffer direct oxidation of their Cys residues by hydrogen peroxide and, therefore, may be the only true sensors initiating signaling events. CRITICAL ISSUES We will in this study describe some of the methodologies used to characterize at the proteome level reversible thiol oxidations, specifically those combining gel-free approaches with mass spectrometry. In the second part of this review, we will summarize some of the electrophoretic and proteomic techniques used to monitor Cys oxidation at the protein level, needed to confirm that a protein contains redox Cys involved in signaling relays, using as examples some of the best characterized redox sensors such as bacterial OxyR or yeast Tpx1/Pap1. FUTURE DIRECTIONS While Cys oxidations are often detected in proteomes and in specific proteins, major efforts have to be made to establish that they are physiologically relevant. Antioxid. Redox Signal. 26, 329-344.
Collapse
Affiliation(s)
- Susanna Boronat
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra , Barcelona, Spain
| | - Alba Domènech
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra , Barcelona, Spain
| | - Elena Hidalgo
- Oxidative Stress and Cell Cycle Group, Universitat Pompeu Fabra , Barcelona, Spain
| |
Collapse
|
27
|
Wible RS, Sutter TR. Soft Cysteine Signaling Network: The Functional Significance of Cysteine in Protein Function and the Soft Acids/Bases Thiol Chemistry That Facilitates Cysteine Modification. Chem Res Toxicol 2017; 30:729-762. [DOI: 10.1021/acs.chemrestox.6b00428] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ryan S. Wible
- Department
of Chemistry, ‡Department of Biological Sciences, and §W. Harry Feinstone Center for Genomic
Research, University of Memphis, 3700 Walker Avenue, Memphis, Tennessee 38152-3370, United States
| | - Thomas R. Sutter
- Department
of Chemistry, ‡Department of Biological Sciences, and §W. Harry Feinstone Center for Genomic
Research, University of Memphis, 3700 Walker Avenue, Memphis, Tennessee 38152-3370, United States
| |
Collapse
|
28
|
Zhang J, Sonnenschein N, Pihl TPB, Pedersen KR, Jensen MK, Keasling JD. Engineering an NADPH/NADP + Redox Biosensor in Yeast. ACS Synth Biol 2016; 5:1546-1556. [PMID: 27419466 DOI: 10.1021/acssynbio.6b00135] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Genetically encoded biosensors have emerged as powerful tools for timely and precise in vivo evaluation of cellular metabolism. In particular, biosensors that can couple intercellular cues with downstream signaling responses are currently attracting major attention within health science and biotechnology. Still, there is a need for bioprospecting and engineering of more biosensors to enable real-time monitoring of specific cellular states and controlling downstream actuation. In this study, we report the engineering and application of a transcription factor-based NADPH/NADP+ redox biosensor in the budding yeast Saccharomyces cerevisiae. Using the biosensor, we are able to monitor the cause of oxidative stress by chemical induction, and changes in NADPH/NADP+ ratios caused by genetic manipulations. Because of the regulatory potential of the biosensor, we also show that the biosensor can actuate upon NADPH deficiency by activation of NADPH regeneration. Finally, we couple the biosensor with an expression of dosage-sensitive genes (DSGs) and thereby create a novel tunable sensor-selector useful for synthetic selection of cells with higher NADPH/NADP+ ratios from mixed cell populations. We show that the combination of exploitation and rational engineering of native signaling components is applicable for diagnosis, regulation, and selection of cellular redox states.
Collapse
Affiliation(s)
- Jie Zhang
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Nikolaus Sonnenschein
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Thomas P. B. Pihl
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Kasper R. Pedersen
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Michael K. Jensen
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Jay D. Keasling
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
- Joint BioEnergy Institute, Emeryville, California 94608, United States
- Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
29
|
He Y, Chen Y, Song W, Zhu L, Dong Z, Ow DW. A Pap1-Oxs1 signaling pathway for disulfide stress in Schizosaccharomyces pombe. Nucleic Acids Res 2016; 45:106-114. [PMID: 27664222 PMCID: PMC5224502 DOI: 10.1093/nar/gkw818] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 01/06/2023] Open
Abstract
We describe a Pap1–Oxs1 pathway for diamide-induced disulfide stress in Schizosaccharomyces pombe, where the nucleocytoplasmic HMG protein Oxs1 acts cooperatively with Pap1 to regulate transcription. Oxs1 and Pap1 form a complex when cells are exposed to diamide or Cd that causes disulfide stress. When examined for promoters up-regulated by diamide, effective Pap1 binding to these targets requires Oxs1, and vice versa. With some genes, each protein alone enhances transcription, but the presence of both exerts an additive positive effect. In other genes, although transcription is induced by diamide, Oxs1 or Pap1 plays a negative role with full de-repression requiring loss of both proteins. In a third class of genes, Oxs1 positively regulates expression, but in its absence, Pap1 plays a negative role. The Oxs1–Pap1 regulatory interaction appears evolutionarily conserved, as heterologous (human, mouse and Arabidopsis) Oxs1 and Pap1-homologues can bind interchangeably with each other in vitro, and at least in the fission yeast, heterologous Oxs1 and Pap1-homologues can substitute for S. pombe Oxs1 and Pap1 to enhance stress tolerance.
Collapse
Affiliation(s)
- Yumei He
- Plant Gene Engineering Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yan Chen
- Plant Gene Engineering Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Song
- Plant Gene Expression Center, USDA/UC Berkeley, Albany, CA 94710, USA
| | - Lei Zhu
- Plant Gene Engineering Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhicheng Dong
- Plant Gene Engineering Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - David W Ow
- Plant Gene Engineering Center, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China .,Plant Gene Expression Center, USDA/UC Berkeley, Albany, CA 94710, USA
| |
Collapse
|
30
|
Truong T, Zeng G, Qingsong L, Kwang LT, Tong C, Chan FY, Wang Y, Seneviratne CJ. Comparative Ploidy Proteomics of Candida albicans Biofilms Unraveled the Role of the AHP1 Gene in the Biofilm Persistence Against Amphotericin B. Mol Cell Proteomics 2016; 15:3488-3500. [PMID: 27644984 DOI: 10.1074/mcp.m116.061523] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Indexed: 01/23/2023] Open
Abstract
Candida albicans is a major fungal pathogen causing lethal infections in immunocompromised patients. C. albicans forms antifungal tolerant biofilms contributing significantly to therapeutic failure. The recently established haploid C. albicans biofilm model provides a new toolbox to uncover the mechanism governing the higher antifungal tolerance of biofilms. Here, we comprehensively examined the proteomics and antifungal susceptibility of standard diploid (SC5314 and BWP17) and stable haploid (GZY792 and GZY803) strains of C. albicans biofilms. Subsequent downstream analyses identified alkyl hydroperoxide reductase 1 (AHP1) as a critical determinant of C. albicans biofilm's tolerance of amphotericin B. At 32 μg/ml of amphotericin B, GZY803 haploid biofilms showed 0.1% of persister population as compared with 1% of the diploid biofilms. AHP1 expression was found to be lower in GZY803 biofilms, and AHP1 overexpression in GZY803 restored the percentage of persister population. Consistently, deleting AHP1 in the diploid strain BWP17 caused a similar increase in amphotericin B susceptibility. AHP1 expression was also positively correlated with the antioxidant potential. Furthermore, C. albicans ira2Δ/Δ biofilms were susceptible to amphotericin B and had a diminished antioxidant capacity. Interestingly, AHP1 overexpression in the ira2Δ/Δ strain restored the antioxidant potential and enhanced the persister population against amphotericin B, and shutting down the AHP1 expression in ira2Δ/Δ biofilms reversed the effect. In conclusion, we provide evidence that the AHP1 gene critically determines the amphotericin B tolerance of C. albicans biofilms possibly by maintaining the persisters' antioxidant capacity. This finding will open up new avenues for developing therapies targeting the persister population of C. albicans biofilms. The mass spectrometry proteomics data are available via ProteomeXchange with identifier PXD004274.
Collapse
Affiliation(s)
- Thuyen Truong
- From the ‡Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore 119083
| | - Guisheng Zeng
- the §Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore 138673, and
| | - Lin Qingsong
- the ¶Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543
| | - Lim Teck Kwang
- the ¶Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543
| | - Cao Tong
- From the ‡Oral Sciences, Faculty of Dentistry, National University of Singapore, Singapore 119083
| | - Fong Yee Chan
- the §Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore 138673, and
| | - Yue Wang
- the §Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Proteos, Singapore 138673, and
| | | |
Collapse
|
31
|
Sun Y, Wang Y, Tian C. bZIP transcription factor CgAP1 is essential for oxidative stress tolerance and full virulence of the poplar anthracnose fungus Colletotrichum gloeosporioides. Fungal Genet Biol 2016; 95:58-66. [PMID: 27544415 DOI: 10.1016/j.fgb.2016.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 08/10/2016] [Accepted: 08/16/2016] [Indexed: 11/28/2022]
Abstract
Yeast AP1 transcription factor is a regulator of oxidative stress response. Here, we report the identification and characterization of CgAP1, an ortholog of YAP1 in poplar anthracnose fungus Colletotrichum gloeosporioides. The expression of CgAP1 was highly induced by reactive oxygen species. CgAP1 deletion mutants displayed enhanced sensitivity to oxidative stress compared with the wild-type strain, and their poplar leaf virulence was obviously reduced. However, the mutants exhibited no obvious defects in aerial hyphal growth, conidia production, and appressoria formation. CgAP1::eGFP fusion protein localized to the nucleus after TBH (tert-Butyl hydroperoxide) treatment, suggesting that CgAP1 functions as a redox sensor in C. gloeosporioides. In addition, CgAP1 prevented the accumulation of ROS during early stages of biotrophic growth. CgAP1 also acted as a positive regulator of several ROS-related genes (i.e., Glr1, Hyr1, and Cyt1) involved in the antioxidative response. These results highlight the key regulatory role of CgAP1 transcription factor in oxidative stress response and provide insights into the function of ROS detoxification in virulence of C. gloeosporioides.
Collapse
Affiliation(s)
- Yingjiao Sun
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| | - Yonglin Wang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China.
| | - Chengming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
32
|
Pillay CS, Eagling BD, Driscoll SRE, Rohwer JM. Quantitative measures for redox signaling. Free Radic Biol Med 2016; 96:290-303. [PMID: 27151506 DOI: 10.1016/j.freeradbiomed.2016.04.199] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/25/2016] [Accepted: 04/29/2016] [Indexed: 12/17/2022]
Abstract
Redox signaling is now recognized as an important regulatory mechanism for a number of cellular processes including the antioxidant response, phosphokinase signal transduction and redox metabolism. While there has been considerable progress in identifying the cellular machinery involved in redox signaling, quantitative measures of redox signals have been lacking, limiting efforts aimed at understanding and comparing redox signaling under normoxic and pathogenic conditions. Here we have outlined some of the accepted principles for redox signaling, including the description of hydrogen peroxide as a signaling molecule and the role of kinetics in conferring specificity to these signaling events. Based on these principles, we then develop a working definition for redox signaling and review a number of quantitative methods that have been employed to describe signaling in other systems. Using computational modeling and published data, we show how time- and concentration- dependent analyses, in particular, could be used to quantitatively describe redox signaling and therefore provide important insights into the functional organization of redox networks. Finally, we consider some of the key challenges with implementing these methods.
Collapse
Affiliation(s)
- Ché S Pillay
- School of Life Sciences, University of KwaZulu-Natal, Carbis Road, Pietermaritzburg 3201, South Africa.
| | - Beatrice D Eagling
- School of Life Sciences, University of KwaZulu-Natal, Carbis Road, Pietermaritzburg 3201, South Africa
| | - Scott R E Driscoll
- School of Life Sciences, University of KwaZulu-Natal, Carbis Road, Pietermaritzburg 3201, South Africa
| | - Johann M Rohwer
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602 Stellenbosch, South Africa
| |
Collapse
|
33
|
Microarray Analysis of Gene Expression in Saccharomyces cerevisiae kap108Δ Mutants upon Addition of Oxidative Stress. G3-GENES GENOMES GENETICS 2016; 6:1131-9. [PMID: 26888869 PMCID: PMC4825647 DOI: 10.1534/g3.116.027011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Protein transport between the nucleus and cytoplasm of eukaryotic cells is tightly regulated, providing a mechanism for controlling intracellular localization of proteins, and regulating gene expression. In this study, we have investigated the importance of nucleocytoplasmic transport mediated by the karyopherin Kap108 in regulating cellular responses to oxidative stress in Saccharomyces cerevisiae. We carried out microarray analyses on wild-type and kap108 mutant cells grown under normal conditions, shortly after introduction of oxidative stress, after 1 hr of oxidative stress, and 1 hr after oxidative stress was removed. We observe more than 500 genes that undergo a 40% or greater change in differential expression between wild-type and kap108Δ cells under at least one of these conditions. Genes undergoing changes in expression can be categorized in two general groups: 1) those that are differentially expressed between wild-type and kap108Δ cells, no matter the oxidative stress conditions; and 2) those that have patterns of response dependent upon both the absence of Kap108, and introduction or removal of oxidative stress. Gene ontology analysis reveals that, among the genes whose expression is reduced in the absence of Kap108 are those involved in stress response and intracellular transport, while those overexpressed are largely involved in mating and pheromone response. We also identified 25 clusters of genes that undergo similar patterns of change in gene expression when oxidative stresses are added and subsequently removed, including genes involved in stress response, oxidation–reduction processing, iron homeostasis, ascospore wall assembly, transmembrane transport, and cell fusion during mating. These data suggest that Kap108 is important for regulating expression of genes involved in a variety of specific cell functions.
Collapse
|
34
|
Abstract
The oligodendrocyte transcription factor Olig1 is critical for both oligodendrocyte development and remyelination in mice. Nuclear to cytoplasmic translocation of Olig1 protein occurs during brain development and in multiple sclerosis, but the detailed molecular mechanism of this translocation remains elusive. Here, we report that Olig1 acetylation and deacetylation drive its active translocation between the nucleus and the cytoplasm in both mouse and rat oligodendrocytes. We identified three functional nuclear export sequences (NES) localized in the basic helix-loop-helix domain and one specific acetylation site at Lys 150 (human Olig1) in NES1. Olig1 acetylation and deacetylation are regulated by the acetyltransferase CREB-binding protein and the histone deacetylases HDAC1, HDAC3, and HDAC10. Acetylation of Olig1 decreased its chromatin association, increased its interaction with inhibitor of DNA binding 2 and facilitated its retention in the cytoplasm of mature oligodendrocytes. These studies establish that acetylation of Olig1 regulates its chromatin dissociation and subsequent translocation to the cytoplasm and is required for its function in oligodendrocyte maturation.
Collapse
|
35
|
Netto LES, de Oliveira MA, Tairum CA, da Silva Neto JF. Conferring specificity in redox pathways by enzymatic thiol/disulfide exchange reactions. Free Radic Res 2016; 50:206-45. [DOI: 10.3109/10715762.2015.1120864] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
36
|
Kırlı K, Karaca S, Dehne HJ, Samwer M, Pan KT, Lenz C, Urlaub H, Görlich D. A deep proteomics perspective on CRM1-mediated nuclear export and nucleocytoplasmic partitioning. eLife 2015; 4:e11466. [PMID: 26673895 PMCID: PMC4764573 DOI: 10.7554/elife.11466] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/13/2015] [Indexed: 12/23/2022] Open
Abstract
CRM1 is a highly conserved, RanGTPase-driven exportin that carries proteins and RNPs from the nucleus to the cytoplasm. We now explored the cargo-spectrum of CRM1 in depth and identified surprisingly large numbers, namely >700 export substrates from the yeast S. cerevisiae, ≈1000 from Xenopus oocytes and >1050 from human cells. In addition, we quantified the partitioning of ≈5000 unique proteins between nucleus and cytoplasm of Xenopus oocytes. The data suggest new CRM1 functions in spatial control of vesicle coat-assembly, centrosomes, autophagy, peroxisome biogenesis, cytoskeleton, ribosome maturation, translation, mRNA degradation, and more generally in precluding a potentially detrimental action of cytoplasmic pathways within the nuclear interior. There are also numerous new instances where CRM1 appears to act in regulatory circuits. Altogether, our dataset allows unprecedented insights into the nucleocytoplasmic organisation of eukaryotic cells, into the contributions of an exceedingly promiscuous exportin and it provides a new basis for NES prediction.
Collapse
Affiliation(s)
- Koray Kırlı
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Samir Karaca
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Heinz Jürgen Dehne
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Matthias Samwer
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Kuan Ting Pan
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Christof Lenz
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Bioanalytics, Institute for Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Dirk Görlich
- Department of Cellular Logistics, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
37
|
Bauer NC, Doetsch PW, Corbett AH. Mechanisms Regulating Protein Localization. Traffic 2015; 16:1039-61. [PMID: 26172624 DOI: 10.1111/tra.12310] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 07/08/2015] [Accepted: 07/08/2015] [Indexed: 12/23/2022]
Abstract
Cellular functions are dictated by protein content and activity. There are numerous strategies to regulate proteins varying from modulating gene expression to post-translational modifications. One commonly used mode of regulation in eukaryotes is targeted localization. By specifically redirecting the localization of a pool of existing protein, cells can achieve rapid changes in local protein function. Eukaryotic cells have evolved elegant targeting pathways to direct proteins to the appropriate cellular location or locations. Here, we provide a general overview of these localization pathways, with a focus on nuclear and mitochondrial transport, and present a survey of the evolutionarily conserved regulatory strategies identified thus far. We end with a description of several specific examples of proteins that exploit localization as an important mode of regulation.
Collapse
Affiliation(s)
- Nicholas C Bauer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.,Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Current address: Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Paul W Doetsch
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA.,Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Anita H Corbett
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
38
|
Moye-Rowley WS. Multiple mechanisms contribute to the development of clinically significant azole resistance in Aspergillus fumigatus. Front Microbiol 2015; 6:70. [PMID: 25713565 PMCID: PMC4322724 DOI: 10.3389/fmicb.2015.00070] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 01/20/2015] [Indexed: 01/30/2023] Open
Abstract
Infections caused by the filamentous fungus Aspergillus fumigatus are a significant clinical issue and represent the second most-common form of fungal infection. Azole drugs are effective against this pathogen but resistant isolates are being found more frequently. Infections associated with azole resistant A. fumigatus have a significantly increased mortality making understanding drug resistance in this organism a priority. The target of azole drugs is the lanosterol α-14 demethylase enzyme encoded by the cyp51A gene in A. fumigatus. Mutations in cyp51A have been described that give rise to azole resistance and been argued to be the primary, if not sole, contributor to azole resistance. Here, I discuss recent developments that indicate multiple mechanisms, including increased expression of ATP-binding cassette (ABC) transporter proteins, contribute to azole resistance. ABC transporters are well-established determinants of drug resistance in other fungal pathogens and seem likely to play a similar role in A. fumigatus.
Collapse
Affiliation(s)
- W S Moye-Rowley
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa Iowa City, IA, USA
| |
Collapse
|
39
|
Cryptococcus neoformans Yap1 is required for normal fluconazole and oxidative stress resistance. Fungal Genet Biol 2014; 74:1-9. [PMID: 25445311 DOI: 10.1016/j.fgb.2014.10.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Revised: 10/07/2014] [Accepted: 10/27/2014] [Indexed: 11/20/2022]
Abstract
Cryptococcus neoformans is a pathogen that is the most common cause of fungal meningitis. As with most fungal pathogens, the most prevalent clinical antifungal used to treat Cryptococcosis is orally administered fluconazole. Resistance to this antifungal is an increasing concern in treatment of fungal disease in general. Our knowledge of the specific determinants involved in fluconazole resistance in Cryptococcus is limited. Here we report the identification of an important genetic determinant of fluconazole resistance in C. neoformans that encodes a basic region-leucine zipper transcription factor homologous to Saccharomyces cerevisiae Yap1. Expression of a codon-optimized form of the Cn YAP1 cDNA in S. cerevisiae complemented defects caused by loss of the endogenous S. cerevisiae YAP1 gene and activated transcription from a reporter gene construct. Mutant strains of C. neoformans lacking YAP1 were hypersensitive to a range of oxidative stress agents but importantly also to fluconazole. Loss of Yap1 homologues from other fungal pathogens like Candida albicans or Aspergillus fumigatus was previously found to cause oxidant hypersensitivity but had no detectable effect on fluconazole resistance. Our data provide evidence for a unique biological role of Yap1 in wild-type fluconazole resistance in C. neoformans.
Collapse
|
40
|
Ragu S, Dardalhon M, Sharma S, Iraqui I, Buhagiar-Labarchède G, Grondin V, Kienda G, Vernis L, Chanet R, Kolodner RD, Huang ME, Faye G. Loss of the thioredoxin reductase Trr1 suppresses the genomic instability of peroxiredoxin tsa1 mutants. PLoS One 2014; 9:e108123. [PMID: 25247923 PMCID: PMC4172583 DOI: 10.1371/journal.pone.0108123] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 08/25/2014] [Indexed: 11/19/2022] Open
Abstract
The absence of Tsa1, a key peroxiredoxin that scavenges H2O2 in Saccharomyces cerevisiae, causes the accumulation of a broad spectrum of mutations. Deletion of TSA1 also causes synthetic lethality in combination with mutations in RAD51 or several key genes involved in DNA double-strand break repair. In the present study, we propose that the accumulation of reactive oxygen species (ROS) is the primary cause of genome instability of tsa1Δ cells. In searching for spontaneous suppressors of synthetic lethality of tsa1Δ rad51Δ double mutants, we identified that the loss of thioredoxin reductase Trr1 rescues their viability. The trr1Δ mutant displayed a Can(R) mutation rate 5-fold lower than wild-type cells. Additional deletion of TRR1 in tsa1Δ mutant reduced substantially the Can(R) mutation rate of tsa1Δ strain (33-fold), and to a lesser extent, of rad51Δ strain (4-fold). Loss of Trr1 induced Yap1 nuclear accumulation and over-expression of a set of Yap1-regulated oxido-reductases with antioxidant properties that ultimately re-equilibrate intracellular redox environment, reducing substantially ROS-associated DNA damages. This trr1Δ -induced effect was largely thioredoxin-dependent, probably mediated by oxidized forms of thioredoxins, the primary substrates of Trr1. Thioredoxin Trx1 and Trx2 were constitutively and strongly oxidized in the absence of Trr1. In trx1Δ trx2Δ cells, Yap1 was only moderately activated; consistently, the trx1Δ trx2Δ double deletion failed to efficiently rescue the viability of tsa1Δ rad51Δ. Finally, we showed that modulation of the dNTP pool size also influences the formation of spontaneous mutation in trr1Δ and trx1Δ trx2Δ strains. We present a tentative model that helps to estimate the respective impact of ROS level and dNTP concentration in the generation of spontaneous mutations.
Collapse
Affiliation(s)
- Sandrine Ragu
- Centre National de la Recherche Scientifique, UMR3348, Orsay, France
- Institut Curie, Centre de Recherche, Orsay, France
| | - Michèle Dardalhon
- Centre National de la Recherche Scientifique, UMR3348, Orsay, France
- Institut Curie, Centre de Recherche, Orsay, France
| | - Sushma Sharma
- Department of Medical Biochemistry and Biophysics, Umea University, Umea, Sweden
| | - Ismail Iraqui
- Centre National de la Recherche Scientifique, UMR3348, Orsay, France
- Institut Curie, Centre de Recherche, Orsay, France
| | - Géraldine Buhagiar-Labarchède
- Centre National de la Recherche Scientifique, UMR3348, Orsay, France
- Institut Curie, Centre de Recherche, Orsay, France
| | - Virginie Grondin
- Centre National de la Recherche Scientifique, UMR3348, Orsay, France
- Institut Curie, Centre de Recherche, Orsay, France
| | - Guy Kienda
- Centre National de la Recherche Scientifique, UMR3348, Orsay, France
- Institut Curie, Centre de Recherche, Orsay, France
| | - Laurence Vernis
- Centre National de la Recherche Scientifique, UMR3348, Orsay, France
- Institut Curie, Centre de Recherche, Orsay, France
| | - Roland Chanet
- Centre National de la Recherche Scientifique, UMR3348, Orsay, France
- Institut Curie, Centre de Recherche, Orsay, France
| | - Richard D. Kolodner
- Ludwig Institute for Cancer Research, University of California School of Medicine San Diego, La Jolla, California, United States of America
| | - Meng-Er Huang
- Centre National de la Recherche Scientifique, UMR3348, Orsay, France
- Institut Curie, Centre de Recherche, Orsay, France
| | - Gérard Faye
- Centre National de la Recherche Scientifique, UMR3348, Orsay, France
- Institut Curie, Centre de Recherche, Orsay, France
| |
Collapse
|
41
|
Pimentel C, Caetano SM, Menezes R, Figueira I, Santos CN, Ferreira RB, Santos MA, Rodrigues-Pousada C. Yap1 mediates tolerance to cobalt toxicity in the yeast Saccharomyces cerevisiae. Biochim Biophys Acta Gen Subj 2014; 1840:1977-86. [DOI: 10.1016/j.bbagen.2014.01.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 01/08/2014] [Accepted: 01/21/2014] [Indexed: 01/27/2023]
|
42
|
García-Santamarina S, Boronat S, Hidalgo E. Reversible Cysteine Oxidation in Hydrogen Peroxide Sensing and Signal Transduction. Biochemistry 2014; 53:2560-80. [DOI: 10.1021/bi401700f] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Sarela García-Santamarina
- Oxidative
Stress and Cell
Cycle Group, Departament de Ciències Experimentals i de la
Salut, Universitat Pompeu Fabra, C/Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Susanna Boronat
- Oxidative
Stress and Cell
Cycle Group, Departament de Ciències Experimentals i de la
Salut, Universitat Pompeu Fabra, C/Dr. Aiguader 88, E-08003 Barcelona, Spain
| | - Elena Hidalgo
- Oxidative
Stress and Cell
Cycle Group, Departament de Ciències Experimentals i de la
Salut, Universitat Pompeu Fabra, C/Dr. Aiguader 88, E-08003 Barcelona, Spain
| |
Collapse
|
43
|
Importins and exportins regulating allergic immune responses. Mediators Inflamm 2014; 2014:476357. [PMID: 24733961 PMCID: PMC3964845 DOI: 10.1155/2014/476357] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/18/2014] [Accepted: 01/21/2014] [Indexed: 12/21/2022] Open
Abstract
Nucleocytoplasmic shuttling of macromolecules is a well-controlled process involving importins and exportins. These karyopherins recognize and bind to receptor-mediated intracellular signals through specific signal sequences that are present on cargo proteins and transport into and out of the nucleus through nuclear pore complexes. Nuclear localization signals (NLS) present on cargo molecules to be imported while nuclear export signals (NES) on the molecules to be exported are recognized by importins and exportins, respectively. The classical NLS are found on many transcription factors and molecules that are involved in the pathogenesis of allergic diseases. In addition, several immune modulators, including corticosteroids and vitamin D, elicit their cellular responses by regulating the expression and activity of importin molecules. In this review article, we provide a comprehensive list of importin and exportin molecules and their specific cargo that shuttled between cytoplasm and the nucleus. We also critically review the role and regulation of specific importin and exportin involved in the transport of activated transcription factors in allergic diseases, the underlying molecular mechanisms, and the potential target sites for developing better therapeutic approaches.
Collapse
|
44
|
Marinho HS, Real C, Cyrne L, Soares H, Antunes F. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol 2014; 2:535-62. [PMID: 24634836 PMCID: PMC3953959 DOI: 10.1016/j.redox.2014.02.006] [Citation(s) in RCA: 585] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 02/19/2014] [Accepted: 02/21/2014] [Indexed: 12/12/2022] Open
Abstract
The regulatory mechanisms by which hydrogen peroxide (H2O2) modulates the activity of transcription factors in bacteria (OxyR and PerR), lower eukaryotes (Yap1, Maf1, Hsf1 and Msn2/4) and mammalian cells (AP-1, NRF2, CREB, HSF1, HIF-1, TP53, NF-κB, NOTCH, SP1 and SCREB-1) are reviewed. The complexity of regulatory networks increases throughout the phylogenetic tree, reaching a high level of complexity in mammalians. Multiple H2O2 sensors and pathways are triggered converging in the regulation of transcription factors at several levels: (1) synthesis of the transcription factor by upregulating transcription or increasing both mRNA stability and translation; (ii) stability of the transcription factor by decreasing its association with the ubiquitin E3 ligase complex or by inhibiting this complex; (iii) cytoplasm–nuclear traffic by exposing/masking nuclear localization signals, or by releasing the transcription factor from partners or from membrane anchors; and (iv) DNA binding and nuclear transactivation by modulating transcription factor affinity towards DNA, co-activators or repressors, and by targeting specific regions of chromatin to activate individual genes. We also discuss how H2O2 biological specificity results from diverse thiol protein sensors, with different reactivity of their sulfhydryl groups towards H2O2, being activated by different concentrations and times of exposure to H2O2. The specific regulation of local H2O2 concentrations is also crucial and results from H2O2 localized production and removal controlled by signals. Finally, we formulate equations to extract from typical experiments quantitative data concerning H2O2 reactivity with sensor molecules. Rate constants of 140 M−1 s−1 and ≥1.3 × 103 M−1 s−1 were estimated, respectively, for the reaction of H2O2 with KEAP1 and with an unknown target that mediates NRF2 protein synthesis. In conclusion, the multitude of H2O2 targets and mechanisms provides an opportunity for highly specific effects on gene regulation that depend on the cell type and on signals received from the cellular microenvironment. Complexity of redox regulation increases along the phylogenetic tree. Complex regulatory networks allow for a high degree of H2O2 biological plasticity. H2O2 modulates gene expression at all steps from transcription to protein synthesis. Fast response (s) is mediated by sensors with high H2O2 reactivity. Low reactivity H2O2 sensors may mediate slow (h) or localized H2O2 responses.
Collapse
Affiliation(s)
- H. Susana Marinho
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Carla Real
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Luísa Cyrne
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Helena Soares
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- Escola Superior de Tecnologia da Saúde de Lisboa, IPL, Lisboa, Portugal
| | - Fernando Antunes
- Departamento de Química e Bioquímica, Centro de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Corresponding author.
| |
Collapse
|
45
|
Characterization of the aap1 gene of Agaricus bisporus, a homolog of the yeast YAP1. C R Biol 2014; 337:29-43. [DOI: 10.1016/j.crvi.2013.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/22/2013] [Accepted: 10/25/2013] [Indexed: 11/19/2022]
|
46
|
Montibus M, Ducos C, Bonnin-Verdal MN, Bormann J, Ponts N, Richard-Forget F, Barreau C. The bZIP transcription factor Fgap1 mediates oxidative stress response and trichothecene biosynthesis but not virulence in Fusarium graminearum. PLoS One 2013; 8:e83377. [PMID: 24349499 PMCID: PMC3861502 DOI: 10.1371/journal.pone.0083377] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/01/2013] [Indexed: 11/22/2022] Open
Abstract
Redox sensing is of primary importance for fungi to cope with oxidant compounds found in their environment. Plant pathogens are particularly subject to the oxidative burst during the primary steps of infection. In the budding yeast Saccharomyces cerevisiae, it is the transcription factor Yap1 that mediates the response to oxidative stress via activation of genes coding for detoxification enzymes. In the cereal pathogen Fusarium graminearum, Fgap1 a homologue of Yap1 was identified and its role was investigated. During infection, this pathogen produces mycotoxins belonging to the trichothecenes family that accumulate in the grains. The global regulation of toxin biosynthesis is not completely understood. However, it is now clearly established that an oxidative stress activates the production of toxins by F. graminearum. The involvement of Fgap1 in this activation was investigated. A deleted mutant and a strain expressing a truncated constitutive form of Fgap1 were constructed. None of the mutants was affected in pathogenicity. The deleted mutant showed higher level of trichothecenes production associated with overexpression of Tri genes. Moreover activation of toxin accumulation in response to oxidative stress was no longer observed. Regarding the mutant with the truncated constitutive form of Fgap1, toxin production was strongly reduced. Expression of oxidative stress response genes was not activated in the deleted mutant and expression of the gene encoding the mitochondrial superoxide dismutase MnSOD1 was up-regulated in the mutant with the truncated constitutive form of Fgap1. Our results demonstrate that Fgap1 plays a key role in the link between oxidative stress response and F. graminearum secondary metabolism.
Collapse
Affiliation(s)
- Mathilde Montibus
- Institut National de la Recherche Agronomique, Unité de Recherche 1264 MycSA, Villenave d’Ornon, France
- * E-mail:
| | - Christine Ducos
- Institut National de la Recherche Agronomique, Unité de Recherche 1264 MycSA, Villenave d’Ornon, France
| | | | - Jorg Bormann
- University of Hamburg, Biocenter Klein Flottbek, Department of Molecular Phytopathology and Genetics, Hamburg, Germany
| | - Nadia Ponts
- Institut National de la Recherche Agronomique, Unité de Recherche 1264 MycSA, Villenave d’Ornon, France
| | - Florence Richard-Forget
- Institut National de la Recherche Agronomique, Unité de Recherche 1264 MycSA, Villenave d’Ornon, France
| | - Christian Barreau
- Institut National de la Recherche Agronomique, Unité de Recherche 1264 MycSA, Villenave d’Ornon, France
- Centre National de la Recherche Scientifique, Unité de Recherche 1264 MycSA, Villenave d’Ornon, France
| |
Collapse
|
47
|
Bauer NC, Corbett AH, Doetsch PW. Automated quantification of the subcellular localization of multicompartment proteins via Q-SCAn. Traffic 2013; 14:1200-8. [PMID: 24034606 PMCID: PMC3836439 DOI: 10.1111/tra.12118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/06/2013] [Accepted: 09/11/2013] [Indexed: 01/19/2023]
Abstract
In eukaryotic cells, proteins can occupy multiple intracellular compartments and even move between compartments to fulfill critical biological functions or respond to cellular signals. Examples include transcription factors that reside in the cytoplasm but are mobilized to the nucleus as well as dual-purpose DNA repair proteins that are charged with simultaneously maintaining the integrity of both the nuclear and mitochondrial genomes. While numerous methods exist to study protein localization and dynamics, automated methods to quantify the relative amounts of proteins that occupy multiple subcellular compartments have not been extensively developed. To address this need, we present a rapid, automated method termed quantitative subcellular compartmentalization analysis (Q-SCAn). To develop this method, we exploited the facile molecular biology of the budding yeast, Saccharomyces cerevisiae. Individual subcellular compartments are defined by a fluorescent marker protein and the intensity of a target GFP-tagged protein is then quantified within each compartment. To validate Q-SCAn, we analyzed relocalization of the transcription factor Yap1 following oxidative stress and then extended the approach to multicompartment localization by examining two DNA repair proteins critical for the base excision repair pathway, Ntg1 and Ung1. Our findings demonstrate the utility of Q-SCAn for quantitative analysis of the subcellular distribution of multicompartment proteins.
Collapse
Affiliation(s)
- Nicholas C. Bauer
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Graduate Program in Biochemistry, Cell, and Developmental Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Anita H. Corbett
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, United States
| | - Paul W. Doetsch
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, 30322, United States
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, GA, 30322, United States
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, 30322, United States
| |
Collapse
|
48
|
Relationship between ethanol and oxidative stress in laboratory and brewing yeast strains. J Biosci Bioeng 2013; 116:697-705. [DOI: 10.1016/j.jbiosc.2013.05.037] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 05/13/2013] [Accepted: 05/31/2013] [Indexed: 11/22/2022]
|
49
|
Montibus M, Pinson-Gadais L, Richard-Forget F, Barreau C, Ponts N. Coupling of transcriptional response to oxidative stress and secondary metabolism regulation in filamentous fungi. Crit Rev Microbiol 2013; 41:295-308. [PMID: 24041414 DOI: 10.3109/1040841x.2013.829416] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
To survive sudden and potentially lethal changes in their environment, filamentous fungi must sense and respond to a vast array of stresses, including oxidative stresses. The generation of reactive oxygen species, or ROS, is an inevitable aspect of existence under aerobic conditions. In addition, in the case of fungi with pathogenic lifestyles, ROS are produced by the infected hosts and serve as defense weapons via direct toxicity, as well as effectors in fungal cell death mechanisms. Filamentous fungi have thus developed complex and sophisticated responses to evade oxidative killing. Several steps are determinant in these responses, including the activation of transcriptional regulators involved in the control of the antioxidant machinery. Gathering and integrating the most recent advances in knowledge of oxidative stress responses in fungi are the main objectives of this review. Most of the knowledge coming from two models, the yeast Saccharomyces cerevisiae and fungi of the genus Aspergillus, is summarized. Nonetheless, recent information on various other fungi is delivered when available. Finally, special attention is given on the potential link between the functional interaction between oxidative stress and secondary metabolism that has been suggested in recent reports, including the production of mycotoxins.
Collapse
|
50
|
Abstract
Copper is an essential but potentially toxic redox-active metal, so the levels and distribution of this metal are carefully regulated to ensure that it binds to the correct proteins. Previous studies of copper-dependent transcription in the yeast Saccharomyces cerevisiae have focused on the response of genes to changes in the exogenous levels of copper. We now report that yeast copper genes are regulated in response to the DNA-damaging agents methyl methanesulfonate (MMS) and hydroxyurea by a mechanism(s) that requires the copper-responsive transcription factors Mac1 and AceI, copper superoxide dismutase (Sod1) activity, and the Rad53 checkpoint kinase. Furthermore, in copper-starved yeast, the response of the Rad53 pathway to MMS is compromised due to a loss of Sod1 activity, consistent with the model that yeast imports copper to ensure Sod1 activity and Rad53 signaling. Crucially, the Mac1 transcription factor undergoes changes in its redox state in response to changing levels of copper or MMS. This study has therefore identified a novel regulatory relationship between cellular redox, copper homeostasis, and the DNA damage response in yeast.
Collapse
|