1
|
Rossatti P, Redpath GMI, Ziegler L, Samson GPB, Clamagirand CD, Legler DF, Rossy J. Rapid increase in transferrin receptor recycling promotes adhesion during T cell activation. BMC Biol 2022; 20:189. [PMID: 36002835 PMCID: PMC9400314 DOI: 10.1186/s12915-022-01386-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 08/09/2022] [Indexed: 11/26/2022] Open
Abstract
Background T cell activation leads to increased expression of the receptor for the iron transporter transferrin (TfR) to provide iron required for the cell differentiation and clonal expansion that takes place during the days after encounter with a cognate antigen. However, T cells mobilise TfR to their surface within minutes after activation, although the reason and mechanism driving this process remain unclear. Results Here we show that T cells transiently increase endocytic uptake and recycling of TfR upon activation, thereby boosting their capacity to import iron. We demonstrate that increased TfR recycling is powered by a fast endocytic sorting pathway relying on the membrane proteins flotillins, Rab5- and Rab11a-positive endosomes. Our data further reveal that iron import is required for a non-canonical signalling pathway involving the kinases Zap70 and PAK, which controls adhesion of the integrin LFA-1 and eventually leads to conjugation with antigen-presenting cells. Conclusions Altogether, our data suggest that T cells boost their iron importing capacity immediately upon activation to promote adhesion to antigen-presenting cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01386-0.
Collapse
Affiliation(s)
- Pascal Rossatti
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland
| | - Gregory M I Redpath
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, Sydney, Australia
| | - Luca Ziegler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland.,Department of Biology, University of Konstanz, Constance, Germany
| | - Guerric P B Samson
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland
| | - Camille D Clamagirand
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland.,Department of Biology, University of Konstanz, Constance, Germany
| | - Jérémie Rossy
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, CH-8280, Kreuzlingen, Switzerland. .,Department of Biology, University of Konstanz, Constance, Germany.
| |
Collapse
|
2
|
Lorenzo-Martín LF, Menacho-Márquez M, Fernández-Parejo N, Rodríguez-Fdez S, Pascual G, Abad A, Crespo P, Dosil M, Benitah SA, Bustelo XR. The Rho guanosine nucleotide exchange factors Vav2 and Vav3 modulate epidermal stem cell function. Oncogene 2022; 41:3341-3354. [PMID: 35534539 PMCID: PMC9187518 DOI: 10.1038/s41388-022-02341-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/21/2022]
Abstract
It is known that Rho GTPases control different aspects of the biology of skin stem cells (SSCs). However, little information is available on the role of their upstream regulators under normal and tumorigenic conditions in this process. To address this issue, we have used here mouse models in which the activity of guanosine nucleotide exchange factors of the Vav subfamily has been manipulated using both gain- and loss-of-function strategies. These experiments indicate that Vav2 and Vav3 regulate the number, functional status, and responsiveness of hair follicle bulge stem cells. This is linked to gene expression programs related to the reinforcement of the identity and the quiescent state of normal SSCs. By contrast, in the case of cancer stem cells, they promote transcriptomal programs associated with the identity, activation state, and cytoskeletal remodeling. These results underscore the role of these Rho exchange factors in the regulation of normal and tumor epidermal stem cells.
Collapse
Affiliation(s)
- L Francisco Lorenzo-Martín
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 37007, Salamanca, Spain
| | - Mauricio Menacho-Márquez
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 37007, Salamanca, Spain
| | - Natalia Fernández-Parejo
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain
| | - Sonia Rodríguez-Fdez
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain
| | | | - Antonio Abad
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 37007, Salamanca, Spain
| | - Piero Crespo
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 37007, Salamanca, Spain.,Instituto de Biomedicina y Biotecnología de Cantabria, CSIC-University of Cantabria, 39011, Santander, Spain
| | - Mercedes Dosil
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 37007, Salamanca, Spain
| | | | - Xosé R Bustelo
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-University of Salamanca, 37007, Salamanca, Spain. .,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 37007, Salamanca, Spain.
| |
Collapse
|
3
|
Rodríguez-Fdez S, Lorenzo-Martín LF, Fabbiano S, Menacho-Márquez M, Sauzeau V, Dosil M, Bustelo XR. New Functions of Vav Family Proteins in Cardiovascular Biology, Skeletal Muscle, and the Nervous System. BIOLOGY 2021; 10:biology10090857. [PMID: 34571735 PMCID: PMC8472352 DOI: 10.3390/biology10090857] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary In this review, we provide information on the role of Vav proteins, a group of signaling molecules that act as both Rho GTPase activators and adaptor molecules, in the cardiovascular system, skeletal muscle, and the nervous system. We also describe how these functions impact in other physiological and pathological processes such as sympathoregulation, blood pressure regulation, systemic metabolism, and metabolic syndrome. Abstract Vav proteins act as tyrosine phosphorylation-regulated guanosine nucleotide exchange factors for Rho GTPases and as molecular scaffolds. In mammals, this family of signaling proteins is composed of three members (Vav1, Vav2, Vav3) that work downstream of protein tyrosine kinases in a wide variety of cellular processes. Recent work with genetically modified mouse models has revealed that these proteins play key signaling roles in vascular smooth and skeletal muscle cells, specific neuronal subtypes, and glia cells. These functions, in turn, ensure the proper regulation of blood pressure levels, skeletal muscle mass, axonal wiring, and fiber myelination events as well as systemic metabolic balance. The study of these mice has also led to the discovery of new physiological interconnection among tissues that contribute to the ontogeny and progression of different pathologies such as, for example, hypertension, cardiovascular disease, and metabolic syndrome. Here, we provide an integrated view of all these new Vav family-dependent signaling and physiological functions.
Collapse
Affiliation(s)
- Sonia Rodríguez-Fdez
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (L.F.L.-M.); (S.F.); (M.M.-M.); (V.S.); (M.D.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
| | - L. Francisco Lorenzo-Martín
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (L.F.L.-M.); (S.F.); (M.M.-M.); (V.S.); (M.D.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
| | - Salvatore Fabbiano
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (L.F.L.-M.); (S.F.); (M.M.-M.); (V.S.); (M.D.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
| | - Mauricio Menacho-Márquez
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (L.F.L.-M.); (S.F.); (M.M.-M.); (V.S.); (M.D.)
- Instituto de Inmunología Clínica y Experimental, CONICET, Rosario 3100, Argentina
| | - Vincent Sauzeau
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (L.F.L.-M.); (S.F.); (M.M.-M.); (V.S.); (M.D.)
- Institut du Thorax, UMR1087 CNRS 6291, INSERM, Université de Nantes, 44096 Nantes, France
| | - Mercedes Dosil
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (L.F.L.-M.); (S.F.); (M.M.-M.); (V.S.); (M.D.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
| | - Xosé R. Bustelo
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (L.F.L.-M.); (S.F.); (M.M.-M.); (V.S.); (M.D.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
- Correspondence: ; Tel.: +34-663-194-634
| |
Collapse
|
4
|
Biochemical and NMR characterization of the interactions of Vav2-SH2 domain with lipids and the EphA2 juxtamembrane region on membrane. Biochem J 2021; 477:3791-3801. [PMID: 32897354 DOI: 10.1042/bcj20200300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 09/05/2020] [Accepted: 09/07/2020] [Indexed: 12/21/2022]
Abstract
Vav2 is a ubiquitous guanine nucleotide exchange factor (GEF) for Rho family GTPases that is involved in regulating a wide range of biological processes. It interacts with several tyrosine-phosphorylated cell surface receptors, including the Eph family receptors, through its SH2 domain. The interaction of Vav2 with EphA2 is crucial for EphA2-mediated tumor angiogenesis. Here we show that Vav2-SH2 domain is a lipid-binding module that can recognize PI(4,5)P2 and PI(3,4,5)P3 lipids weakly but specifically. The specific lipid-binding site in Vav2-SH2 domain was identified by NMR chemical shift perturbation experiments using the head groups of PI(4,5)P2 and PI(3,4,5)P3, both of which bind to Vav2-SH2 with millimolar binding affinities. In addition, the interaction between Vav2-SH2 and the phosphorylated juxtamembrane region (JM) of EphA2 (Y594 phosphorylated) was investigated using NMR techniques. Furthermore, by using a nickel-lipid containing peptide-based nanodiscs system, we studied the binding of Vav2-SH2 to the phosphorylated JM region of EphA2 on lipid membrane and uncovered a role of membrane environment in modulating this protein-protein recognition.
Collapse
|
5
|
Löber J, Hitzing C, Münchhalfen M, Engels N. Vav family proteins constitute disparate branching points for distinct BCR signaling pathways. Eur J Immunol 2020; 50:1912-1928. [PMID: 32671844 DOI: 10.1002/eji.202048621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/18/2020] [Accepted: 07/10/2020] [Indexed: 01/16/2023]
Abstract
Antigen recognition by B-cell antigen receptors (BCRs) activates distinct intracellular signaling pathways that control the differentiation fate of activated B lymphocytes. BCR-proximal signaling enzymes comprise protein tyrosine kinases, phosphatases, and plasma membrane lipid-modifying enzymes, whose function is furthermore coordinated by catalytically inert adaptor proteins. Here, we show that an additional class of enzymatic activity provided by guanine-nucleotide exchange factors (GEFs) of the Vav family controls BCR-proximal Ca2+ mobilization, cytoskeletal actin reorganization, and activation of the PI3 kinase/Akt pathway. Whereas Vav1 and Vav3 supported all of those signaling processes to different extents in a human B-cell model system, Vav2 facilitated Actin remodeling, and activation of Akt but did not promote Ca2+ signaling. On BCR activation, Vav1 was directly recruited to the phosphorylated BCR and to the central adaptor protein SLP65 via its Src homology 2 domain. Pharmacological inhibition or genetic inactivation of the substrates of Vav GEFs, small G proteins of the Rho/Rac family, impaired BCR-induced Ca2+ mobilization, probably because phospholipase Cγ2 requires activated Rac proteins for optimal activity. Our findings show that Vav family members are key relays of the BCR signalosome that differentially control distinct signaling pathways both in a catalysis-dependent and -independent manner.
Collapse
Affiliation(s)
- Jens Löber
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Christoffer Hitzing
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Matthias Münchhalfen
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Niklas Engels
- Institute of Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
Fray MA, Charpentier JC, Sylvain NR, Seminario MC, Bunnell SC. Vav2 lacks Ca 2+ entry-promoting scaffolding functions unique to Vav1 and inhibits T cell activation via Cdc42. J Cell Sci 2020; 133:jcs238337. [PMID: 31974114 PMCID: PMC7075049 DOI: 10.1242/jcs.238337] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/06/2020] [Indexed: 12/16/2022] Open
Abstract
Vav family guanine nucleotide exchange factors (GEFs) are essential regulators of immune function. Despite their structural similarity, Vav1 promotes and Vav2 opposes T cell receptor (TCR)-induced Ca2+ entry. By using a Vav1-deficient Jurkat T cell line, we find that Vav1 facilitates Ca2+ entry via non-catalytic scaffolding functions that are encoded by the catalytic core of Vav1 and flanking linker regions. We implicate, in this scaffolding function, a previously undescribed polybasic motif that is strictly conserved in Vav1 and absent from Vav2 in tetrapods. Conversely, the catalytic activity of Vav2 contributes to the suppression of TCR-mediated Ca2+ entry. By performing an in vivo 'GEF trapping' assay in intact cells, we demonstrate that Cdc42 interacts with the catalytic surface of Vav2 but not Vav1, and that Vav1 discriminates Cdc42 from Rac1 via F56 (W56 in Rac1). Finally, the Cdc42-specific inhibitor ZCL278 and the shRNA-mediated suppression of Cdc42 each prevent the inhibition of TCR-induced Ca2+ entry by Vav2. These findings define stark differences in the functions of Vav1 and Vav2, and provide an explanation for the differential usage of these Vav isoforms by immune subpopulations.
Collapse
Affiliation(s)
- Michael A Fray
- Program in Immunology, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - John C Charpentier
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Nicholas R Sylvain
- Program in Immunology, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Maria-Cristina Seminario
- Program in Immunology, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Stephen C Bunnell
- Program in Immunology, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
7
|
Rodríguez-Fdez S, Fernández-Nevado L, Lorenzo-Martín LF, Bustelo XR. Lysine Acetylation Reshapes the Downstream Signaling Landscape of Vav1 in Lymphocytes. Cells 2020; 9:cells9030609. [PMID: 32143292 PMCID: PMC7140538 DOI: 10.3390/cells9030609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 12/16/2022] Open
Abstract
Vav1 works both as a catalytic Rho GTPase activator and an adaptor molecule. These functions, which are critical for T cell development and antigenic responses, are tyrosine phosphorylation-dependent. However, it is not known whether other posttranslational modifications can contribute to the regulation of the biological activity of this protein. Here, we show that Vav1 becomes acetylated on lysine residues in a stimulation- and SH2 domain-dependent manner. Using a collection of both acetylation- and deacetylation-mimicking mutants, we show that the acetylation of four lysine residues (Lys222, Lys252, Lys587, and Lys716) leads to the downmodulation of the adaptor function of Vav1 that triggers the stimulation of the nuclear factor of activated T cells (NFAT). These sites belong to two functional subclasses according to mechanistic criteria. We have also unveiled additional acetylation sites potentially involved in either the stimulation (Lys782) or the downmodulation (Lys335, Lys374) of specific Vav1-dependent downstream responses. Collectively, these results indicate that Nε-lysine acetylation can play variegated roles in the regulation of Vav1 signaling. Unlike the case of the tyrosine phosphorylation step, this new regulatory layer is not conserved in other Vav family paralogs.
Collapse
Affiliation(s)
- Sonia Rodríguez-Fdez
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (L.F.-N.); (L.F.L.-M.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
| | - Lucía Fernández-Nevado
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (L.F.-N.); (L.F.L.-M.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
| | - L. Francisco Lorenzo-Martín
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (L.F.-N.); (L.F.L.-M.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
| | - Xosé R. Bustelo
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (L.F.-N.); (L.F.L.-M.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007 Salamanca, Spain
- Correspondence: ; Tel.: +34-663194634
| |
Collapse
|
8
|
Rodríguez-Fdez S, Citterio C, Lorenzo-Martín LF, Baltanás-Copado J, Llorente-González C, Corbalán-García S, Vicente-Manzanares M, Bustelo XR. Phosphatidylinositol Monophosphates Regulate Optimal Vav1 Signaling Output. Cells 2019; 8:cells8121649. [PMID: 31888228 PMCID: PMC6952945 DOI: 10.3390/cells8121649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 01/13/2023] Open
Abstract
Phosphatidylinositol–5 phosphate (PI5P) and other mono-phosphoinositides (mono-PIs) play second messenger roles in both physiological and pathological conditions. Despite this, their intracellular targets and mechanisms of action remain poorly characterized. Here, we show that Vav1, a protein that exhibits both Rac1 GDP/GTP exchange and adaptor activities, is positively modulated by PI5P and, possibly, other mono-PIs. Unlike other phospholipid–protein complexes, the affinity and specificity of the Vav1–lipid interaction entail a new structural solution that involves the synergistic action of the Vav1 C1 domain and an adjacent polybasic tail. This new regulatory layer, which is not conserved in the Vav family paralogs, favors the engagement of optimal Vav1 signaling outputs in lymphocytes.
Collapse
Affiliation(s)
- Sonia Rodríguez-Fdez
- Centro de Investigación del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (C.C.); (L.F.L.-M.); (C.L.-G.); (M.V.-M.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC–University of Salamanca, 37007 Salamanca, Spain
| | - Carmen Citterio
- Centro de Investigación del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (C.C.); (L.F.L.-M.); (C.L.-G.); (M.V.-M.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain
| | - L. Francisco Lorenzo-Martín
- Centro de Investigación del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (C.C.); (L.F.L.-M.); (C.L.-G.); (M.V.-M.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC–University of Salamanca, 37007 Salamanca, Spain
| | - Jesús Baltanás-Copado
- Department of Biochemistry and Molecular Biology, University of Murcia, 30100 Murcia, Spain; (J.B.-C.); (S.C.-G.)
- Biomedical Research Institute of Murcia, University of Murcia, 30100 Murcia, Spain
| | - Clara Llorente-González
- Centro de Investigación del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (C.C.); (L.F.L.-M.); (C.L.-G.); (M.V.-M.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain
| | - Senena Corbalán-García
- Department of Biochemistry and Molecular Biology, University of Murcia, 30100 Murcia, Spain; (J.B.-C.); (S.C.-G.)
- Biomedical Research Institute of Murcia, University of Murcia, 30100 Murcia, Spain
| | - Miguel Vicente-Manzanares
- Centro de Investigación del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (C.C.); (L.F.L.-M.); (C.L.-G.); (M.V.-M.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain
| | - Xosé R. Bustelo
- Centro de Investigación del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain; (S.R.-F.); (C.C.); (L.F.L.-M.); (C.L.-G.); (M.V.-M.)
- Instituto de Biología Molecular y Celular del Cáncer, CSIC–University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC–University of Salamanca, 37007 Salamanca, Spain
- Correspondence:
| |
Collapse
|
9
|
Rodríguez-Fdez S, Bustelo XR. The Vav GEF Family: An Evolutionary and Functional Perspective. Cells 2019; 8:E465. [PMID: 31100928 PMCID: PMC6562523 DOI: 10.3390/cells8050465] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023] Open
Abstract
Vav proteins play roles as guanosine nucleotide exchange factors for Rho GTPases and signaling adaptors downstream of protein tyrosine kinases. The recent sequencing of the genomes of many species has revealed that this protein family originated in choanozoans, a group of unicellular organisms from which animal metazoans are believed to have originated from. Since then, the Vav family underwent expansions and reductions in its members during the evolutionary transitions that originated the agnates, chondrichthyes, some teleost fish, and some neoaves. Exotic members of the family harboring atypical structural domains can be also found in some invertebrate species. In this review, we will provide a phylogenetic perspective of the evolution of the Vav family. We will also pay attention to the structure, signaling properties, regulatory layers, and functions of Vav proteins in both invertebrate and vertebrate species.
Collapse
Affiliation(s)
- Sonia Rodríguez-Fdez
- Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Campus Unamuno, E37007 Salamanca, Spain.
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Campus Unamuno, E37007 Salamanca, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Campus Unamuno, E37007 Salamanca, Spain.
| | - Xosé R Bustelo
- Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Campus Unamuno, E37007 Salamanca, Spain.
- Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Campus Unamuno, E37007 Salamanca, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca, Campus Unamuno, E37007 Salamanca, Spain.
| |
Collapse
|
10
|
Hilfenhaus G, Nguyen DP, Freshman J, Prajapati D, Ma F, Song D, Ziyad S, Cuadrado M, Pellegrini M, Bustelo XR, Iruela-Arispe ML. Vav3-induced cytoskeletal dynamics contribute to heterotypic properties of endothelial barriers. J Cell Biol 2018; 217:2813-2830. [PMID: 29858212 PMCID: PMC6080943 DOI: 10.1083/jcb.201706041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 04/12/2018] [Accepted: 05/08/2018] [Indexed: 12/26/2022] Open
Abstract
Through multiple cell-cell and cell-matrix interactions, epithelial and endothelial sheets form tight barriers. Modulators of the cytoskeleton contribute to barrier stability and act as rheostats of vascular permeability. In this study, we sought to identify cytoskeletal regulators that underlie barrier diversity across vessels. To achieve this, we correlated functional and structural barrier features to gene expression of endothelial cells (ECs) derived from different vascular beds. Within a subset of identified candidates, we found that the guanosine nucleotide exchange factor Vav3 was exclusively expressed by microvascular ECs and was closely associated with a high-resistance barrier phenotype. Ectopic expression of Vav3 in large artery and brain ECs significantly enhanced barrier resistance and cortical rearrangement of the actin cytoskeleton. Mechanistically, we found that the barrier effect of Vav3 is dependent on its Dbl homology domain and downstream activation of Rap1. Importantly, inactivation of Vav3 in vivo resulted in increased vascular leakage, highlighting its function as a key regulator of barrier stability.
Collapse
Affiliation(s)
- Georg Hilfenhaus
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA
| | - Dai Phuong Nguyen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA
| | - Jonathan Freshman
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA
| | - Divya Prajapati
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA
| | - Feiyang Ma
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA
| | - Dana Song
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA
| | - Safiyyah Ziyad
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA
| | - Myriam Cuadrado
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, and Centro de Investigación Biomédica en Red de Cáncer, Consejo Superior de Investigaciones Científicas, and University of Salamanca, Campus Unamuno, Salamanca, Spain
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA
| | - Xosé R Bustelo
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, and Centro de Investigación Biomédica en Red de Cáncer, Consejo Superior de Investigaciones Científicas, and University of Salamanca, Campus Unamuno, Salamanca, Spain
| | - M Luisa Iruela-Arispe
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA .,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
11
|
A Novel Vav3 Homolog Identified in Lamprey, Lampetra japonica, with Roles in Lipopolysaccharide-Mediated Immune Response. Int J Mol Sci 2017; 18:ijms18102035. [PMID: 28937614 PMCID: PMC5666717 DOI: 10.3390/ijms18102035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 11/16/2022] Open
Abstract
Vav guanine nucleotide exchange factor 3 (Vav3), a Rho family GTPase, regulates multiple cell signaling pathways including those of T- and B-cell receptors in vertebrates through mediating the activities of the Rho family members. Whether the lamprey possesses Vav3 homolog and what role it plays in immune response remain unknown. Gene cloning, recombinant expression, antibody production and expression pattern analyses were performed to characterize the lamprey Vav3 in the current study. The lamprey Vav3 is closer to jawed vertebrates' Vav3 molecules (about 53% identities in general) than to Vav2 molecules of jawless and jawed vertebrates (about 51% identities in general) in sequence similarity. Conserved motif analysis showed that the most distinguished parts between Vav3 and Vav2 proteins are their two Src-homology 3 domains. The relative expression levels of lamprey vav3 mRNA and protein were significantly up-regulated in lamprey lymphocytes and supraneural myeloid bodies after mixed-antigens stimulation, respectively. In addition, lamprey Vav3 were up-regulated drastically in lymphocytes and supraneural myeloid bodies after lipopolysaccharide (LPS) rather than phytohemagglutinin (PHA) stimulation. Lamprey Vav3 distributed in the cytoplasm of variable lymphocyte receptor B positive (VLRB⁺) lymphocytes, and the number of plasmacytes (VLRB and lamprey Vav3 double positive) in blood lymphocytes also increased after LPS stimulation. Our results proved that lamprey Vav3 was involved in the LPS-mediated immune reaction of lamprey and provided a clue for the further study of the precise role lamprey Vav3 played in the signaling pathway of lamprey VLRB⁺ lymphocytes.
Collapse
|
12
|
Abstract
The Vav family is a group of tyrosine phosphorylation-regulated signal transduction molecules hierarchically located downstream of protein tyrosine kinases. The main function of these proteins is to work as guanosine nucleotide exchange factors (GEFs) for members of the Rho GTPase family. In addition, they can exhibit a variety of catalysis-independent roles in specific signaling contexts. Vav proteins play essential signaling roles for both the development and/or effector functions of a large variety of cell lineages, including those belonging to the immune, nervous, and cardiovascular systems. They also contribute to pathological states such as cancer, immune-related dysfunctions, and atherosclerosis. Here, I will provide an integrated view about the evolution, regulation, and effector properties of these signaling molecules. In addition, I will discuss the pros and cons for their potential consideration as therapeutic targets.
Collapse
Key Words
- Ac, acidic
- Ahr, aryl hydrocarbon receptor
- CH, calponin homology
- CSH3, most C-terminal SH3 domain of Vav proteins
- DAG, diacylglycerol
- DH, Dbl-homology domain
- Dbl-homology
- GDP/GTP exchange factors
- GEF, guanosine nucleotide exchange factor
- HIV, human immunodeficiency virus
- IP3, inositoltriphosphate
- NFAT, nuclear factor of activated T-cells
- NSH3, most N-terminal SH3 domain of Vav proteins
- PH, plekstrin-homology domain
- PI3K, phosphatidylinositol-3 kinase
- PIP3, phosphatidylinositol (3,4,5)-triphosphate
- PKC, protein kinase C
- PKD, protein kinase D
- PLC-g, phospholipase C-g
- PRR, proline-rich region
- PTK, protein tyrosine kinase
- Phox, phagocyte oxidase
- Rho GTPases
- SH2, Src homology 2
- SH3, Src homology 3
- SNP, single nucleotide polymorphism
- TCR, T-cell receptor
- Vav
- ZF, zinc finger region
- cGMP, cyclic guanosine monophosphate
- cancer
- cardiovascular biology
- disease
- immunology
- nervous system
- signaling
- therapies
Collapse
Affiliation(s)
- Xosé R Bustelo
- a Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer ; Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca ; Campus Unamuno; Salamanca , Spain
| |
Collapse
|
13
|
Zhou W, Liu R, Zhang J, Zheng M, Li P, Chang G, Wen J, Zhao G. A genome-wide detection of copy number variation using SNP genotyping arrays in Beijing-You chickens. Genetica 2014; 142:441-50. [PMID: 25214021 DOI: 10.1007/s10709-014-9788-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 08/18/2014] [Indexed: 12/28/2022]
Abstract
Copy number variation (CNV) has been recently examined in many species and is recognized as being a source of genetic variability, especially for disease-related phenotypes. In this study, the PennCNV software, a genome-wide CNV detection system based on the 60 K SNP BeadChip was used on a total sample size of 1,310 Beijing-You chickens (a Chinese local breed). After quality control, 137 high confidence CNVRs covering 27.31 Mb of the chicken genome and corresponding to 2.61 % of the whole chicken genome. Within these regions, 131 known genes or coding sequences were involved. Q-PCR was applied to verify some of the genes related to disease development. Results showed that copy number of genes such as, phosphatidylinositol-5-phosphate 4-kinase II alpha, PHD finger protein 14, RHACD8 (a CD8α- like messenger RNA), MHC B-G, zinc finger protein, sarcosine dehydrogenase and ficolin 2 varied between individual chickens, which also supports the reliability of chip-detection of the CNVs. As one source of genomic variation, CNVs may provide new insight into the relationship between the genome and phenotypic characteristics.
Collapse
Affiliation(s)
- Wei Zhou
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Barreira M, Fabbiano S, Couceiro JR, Torreira E, Martínez-Torrecuadrada JL, Montoya G, Llorca O, Bustelo XR. The C-terminal SH3 domain contributes to the intramolecular inhibition of Vav family proteins. Sci Signal 2014; 7:ra35. [PMID: 24736456 DOI: 10.1126/scisignal.2004993] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Vav proteins are phosphorylation-dependent guanine nucleotide exchange factors (GEFs) that catalyze the activation of members of the Rho family of guanosine triphosphatases (GTPases). The current regulatory model holds that the nonphosphorylated, catalytically inactive state of these GEFs is maintained by intramolecular interactions among the amino-terminal domains and the central catalytic core, which block the binding of Vav proteins to GTPases. We showed that this autoinhibition is mechanistically more complex, also involving the bivalent association of the carboxyl-terminal Src homology 3 (SH3) region of Vav with its catalytic and pleckstrin homology (PH) domains. Such interactions occurred through proline-rich region-independent mechanisms. Full release from this double-locked state required synergistic weakening effects from multiple phosphorylated tyrosine residues, thus providing an optimized system to generate gradients of Vav GEF activity depending on upstream signaling inputs. This mechanism is shared by mammalian and Drosophila melanogaster Vav proteins, suggesting that it may be a common regulatory feature for this protein family.
Collapse
Affiliation(s)
- María Barreira
- 1Centro de Investigación del Cáncer, Campus Unamuno, E37007 Salamanca, Spain
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Li SY, Du MJ, Wan YJ, Lan B, Liu YH, Yang Y, Zhang CZ, Cao Y. The N-terminal 20-amino acid region of guanine nucleotide exchange factor Vav1 plays a distinguished role in T cell receptor-mediated calcium signaling. J Biol Chem 2012; 288:3777-85. [PMID: 23271736 DOI: 10.1074/jbc.m112.426221] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Vav1 is a guanine nucleotide exchange factor (GEF) specifically expressed in hematopoietic cells. It consists of multiple structural domains and plays important roles in T cell activation. The other highly conserved isoforms of Vav family, Vav2 and Vav3, are ubiquitously expressed in human tissues including lymphocytes. All three Vav proteins activate Rho family small GTPases, which are involved in a variety of biological processes during T cell activation. Intensive studies have demonstrated that Vav1 is indispensable for T cell receptor (TCR)-mediated signal transduction, whereas Vav2 and Vav3 function as GEFs that overlap with Vav1 on TCR-induced cytoskeleton reorganization. T cells lacking Vav1 exhibited severe defect in TCR-mediated calcium elevation, indicating that the co-existing Vav2 and Vav3 did not compensate Vav1 in calcium signaling. What is the functional particularity of Vav1 in lymphocytes? In this study, we identified the N-terminal 20 amino acids of Vav1 in the calponin homology (CH) domain to be essential for its interaction with calmodulin (CaM) that leads to TCR-induced calcium mobilization. Substitution of the 1-20 amino acids of Vav1 with those of Vav2 or Vav3 abolished the association with CaM, and the N-terminal mutations of Vav1 failed to potentiate normal TCR-induced calcium mobilization, that in turn, suspended nuclear factor of activated T cells (NFAT) activation and IL-2 production. This study highlights the importance of the N-terminal 20 aa of Vav1 for CaM binding, and provides new insights into the distinguished and irreplaceable role of Vav1 in T cell activation and signal transduction.
Collapse
Affiliation(s)
- Shi-Yang Li
- Key Laboratory of Microbial Functional Genomics of the Ministry of Education, Medicinal Chemical Biology College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, Peoples Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Wu B, Wang F, Zhang J, Zhang Z, Qin L, Peng J, Li F, Liu J, Lu G, Gong Q, Yao X, Wu J, Shi Y. Identification and structural basis for a novel interaction between Vav2 and Arap3. J Struct Biol 2012; 180:84-95. [DOI: 10.1016/j.jsb.2012.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 06/13/2012] [Accepted: 06/14/2012] [Indexed: 12/17/2022]
|
17
|
Martin VA, Wang WH, Lipchik AM, Parker LL, He Y, Zhang S, Zhang ZY, Geahlen RL. Akt2 inhibits the activation of NFAT in lymphocytes by modulating calcium release from intracellular stores. Cell Signal 2012; 24:1064-73. [PMID: 22261254 DOI: 10.1016/j.cellsig.2012.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 12/20/2011] [Accepted: 01/04/2012] [Indexed: 12/22/2022]
Abstract
The engagement of antigen receptors on lymphocytes leads to the activation of phospholipase C-γ, the mobilization of intracellular calcium and the activation of the NFAT transcription factor. The coupling of antigen receptors to the activation of NFAT is modulated by numerous cellular effectors including phospho-inositide 3-kinase (PI3K), which is activated following receptor cross-linking. The activation of PI3K has both positive and negative effects on the receptor-mediated activation of NFAT. An increase in the level and activity of Akt2, a target of activated PI3K, potently inhibits the subsequent activation of NFAT. In contrast, an elevation in Akt1 has no effect on signaling. Signaling pathways operating both upstream and downstream of inositol 1,4,5-trisphosphate (IP3)-stimulated calcium release from intracellular stores are unaffected by Akt2. An increase in the level of Akt2 has no significant effect on the initial amplitude, but substantially reduces the duration of calcium mobilization. The ability of Akt2 to inhibit prolonged calcium mobilization is abrogated by the administration of a cell permeable peptide that blocks the interaction between Bcl-2 and the IP3 receptor. Thus, Akt2 is a negative regulator of NFAT activation through its ability to inhibit calcium mobilization from the ER.
Collapse
Affiliation(s)
- Victoria A Martin
- Department of Medicinal Chemistry and Molecular Pharmacology and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Nischwitz S, Cepok S, Kroner A, Wolf C, Knop M, Müller-Sarnowski F, Pfister H, Roeske D, Rieckmann P, Hemmer B, Ising M, Uhr M, Bettecken T, Holsboer F, Müller-Myhsok B, Weber F. Evidence for VAV2 and ZNF433 as susceptibility genes for multiple sclerosis. J Neuroimmunol 2010; 227:162-6. [DOI: 10.1016/j.jneuroim.2010.06.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 06/01/2010] [Accepted: 06/02/2010] [Indexed: 01/01/2023]
|
19
|
Jang IK, Zhang J, Gu H. Grb2, a simple adapter with complex roles in lymphocyte development, function, and signaling. Immunol Rev 2010; 232:150-9. [PMID: 19909362 DOI: 10.1111/j.1600-065x.2009.00842.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lymphocyte development, activation, and tolerance depend on antigen receptor signaling transduced via multiple intracellular signalosomes. These signalosomes are assembled by different adapters. Given that signaling molecules can be either positive or negative regulators for a biochemical target, the complex of a target with different regulator may dictate the final signaling outcome. Grb2 is a simple adapter known to be involved in a variety of growth factor receptor signaling. However, its role in antigen receptor signaling as well as lymphocyte development and function has emerged only recently. Despite its simple molecular structure, recent experiments show that Grb2 may play a complex role in T and B-cell antigen receptor signaling. In this article, we review recent findings about the physiological role of Grb2 in T and B-cell development and activation and summarize the current mechanistic understanding of how Grb2 exerts its function following T and B-cell antigen receptor stimulation.
Collapse
Affiliation(s)
- Ihn Kyung Jang
- Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | |
Collapse
|
20
|
Thalappilly S, Soubeyran P, Iovanna JL, Dusetti NJ. VAV2 regulates epidermal growth factor receptor endocytosis and degradation. Oncogene 2010; 29:2528-39. [PMID: 20140013 DOI: 10.1038/onc.2010.1] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Vav proteins are guanine nucleotide exchange factors for Rho GTPases that regulate cell adhesion, motility, spreading and proliferation in response to growth factor signalling. In this work, we show that Vav2 expression delayed epidermal growth factor receptor (EGFR) internalization and degradation, and enhanced EGFR, ERK and Akt phosphorylations. This effect of Vav2 on EGFR degradation is dependent on its guanine nucleotide exchange function. Knockdown of Vav2 in HeLa cells enhanced EGFR degradation and reduced cell proliferation. epidermal growth factor stimulation led to co-localization of Vav2 with EGFR and Rab5 in endosomes. We further show that the effect of Vav2 on EGFR stability is modulated by its interaction with two endosome-associated proteins and require RhoA function. Thus, in this work, we report for the first time that Vav2 can regulate growth factors receptor signalling by slowing receptor internalization and degradation through its interaction with endosome-associated proteins.
Collapse
Affiliation(s)
- S Thalappilly
- INSERM U624, Stress Cellulaire, Marseille F-13288, France
| | | | | | | |
Collapse
|
21
|
Quevedo C, Sauzeau V, Menacho-Márquez M, Castro-Castro A, Bustelo XR. Vav3-deficient mice exhibit a transient delay in cerebellar development. Mol Biol Cell 2010; 21:1125-39. [PMID: 20089829 PMCID: PMC2836963 DOI: 10.1091/mbc.e09-04-0292] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Vav3 is a guanosine diphosphate/guanosine triphosphate exchange factor for Rho/Rac GTPases that has been involved in functions related to the hematopoietic system, bone formation, cardiovascular regulation, angiogenesis, and axon guidance. We report here that Vav3 is expressed at high levels in Purkinje and granule cells, suggesting additional roles for this protein in the cerebellum. Consistent with this hypothesis, we demonstrate using Vav3-deficient mice that this protein contributes to Purkinje cell dendritogenesis, the survival of granule cells of the internal granular layer, the timely migration of granule cells of the external granular layer, and to the formation of the cerebellar intercrural fissure. With the exception of the latter defect, the dysfunctions found in Vav3(-/-) mice only occur at well-defined postnatal developmental stages and disappear, or become ameliorated, in older animals. Vav2-deficient mice do not show any of those defects. Using primary neuronal cultures, we show that Vav3 is important for dendrite branching, but not for primary dendritogenesis, in Purkinje and granule cells. Vav3 function in the cerebellum is functionally relevant, because Vav3(-/-) mice show marked motor coordination and gaiting deficiencies in the postnatal period. These results indicate that Vav3 function contributes to the timely developmental progression of the cerebellum.
Collapse
Affiliation(s)
- Celia Quevedo
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas, University of Salamanca, Campus Unamuno, E-37007 Salamanca, Spain
| | | | | | | | | |
Collapse
|
22
|
|
23
|
Janas ML, Hodson D, Stamataki Z, Hill S, Welch K, Gambardella L, Trotman LC, Pandolfi PP, Vigorito E, Turner M. The effect of deleting p110delta on the phenotype and function of PTEN-deficient B cells. THE JOURNAL OF IMMUNOLOGY 2008; 180:739-46. [PMID: 18178811 DOI: 10.4049/jimmunol.180.2.739] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Control of the intracellular levels of phosphatidylinositol-(3, 4, 5)-trisphosphate by PI3K and phosphatase and tensin homolog (PTEN) is essential for B cell development and differentiation. Deletion of the PI3K catalytic subunit p110delta leads to a severe reduction in B1 and marginal zone (MZ) B cells, whereas deletion of PTEN results in their expansion. We have examined the relationship between these two molecules by generating mice with a B cell-specific deletion of PTEN (PTENB) and a concurrent germline deletion of p110delta. The expanded B1 cell population of PTENB mice was reduced to normal levels in PTENB/p110delta mutant mice, indicating a critical role for the p110delta isoform in the expansion of B1 cells. However, numbers of MZ B cells in the PTENB/p110delta mutants was intermediate between wild-type and PTENB-deficient mice, suggesting an additional role for other PI3K catalytic isoforms in MZ differentiation. Furthermore, the defective class switch recombination in PTENB B cells was only partially reversed in PTENB/p110delta double mutant B cells. These results demonstrate an epistatic relationship between p110delta and PTEN. In addition, they also suggest that additional PI3K catalytic subunits contribute to B cell development and function.
Collapse
Affiliation(s)
- Michelle L Janas
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Babraham, Cambridge, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Torgersen KM, Aandahl EM, Taskén K. Molecular architecture of signal complexes regulating immune cell function. Handb Exp Pharmacol 2008:327-63. [PMID: 18491059 DOI: 10.1007/978-3-540-72843-6_14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Signals transmitted via multichain immunoreceptors control the development, differentiation and activation of hematopoetic cells. The cytoplasmic parts of these receptors contain immunoreceptor tyrosine-based activation motifs (ITAMs) that upon phosphorylation by members of the Src tyrosine kinase family orchestrate a complex set of signaling events involving tyrosine phosphorylation, generation of second messengers like DAG, IP3 and Ca2+, activation of effector molecules like Ras and MAPKs and the translocation and activation of transcription factors like NFAT, API and NF-kB. Spatial and temporal organization of these signaling events is essential both to connect the receptors to downstream cascades as well as to control the functional outcome of the immune activation. Throughout this process control and fine-tuning of the different signals are necessary both for effective immune function and in order to avoid inappropriate or exaggerated immune activation and autoimmunity. This control includes modulating mechanisms that set the threshold for activation and reset the activation status after an immune response has been launched. One immunomodulating pathway is the cAMP-protein kinase A-Csk pathway scaffolded by a supramolecular complex residing in lipid rafts with the A kinase-anchoring protein (AKAP) ezrin, the Csk-binding protein PAG and a linker between the two, EBP50. Failure of correct scaffolding and loss of spatiotemporal control can potentially have severe consequences, leading to immune failure or autoimmunity. The clinical relevance of supramolecular complexes specifically organized by scaffolding proteins in regulating immune activity and the specter of genetic diseases linked to different signaling components suggest that protein-protein contact surfaces can be potential targets for drug intervention. It is also of interest to note that different pathogens have evolved strategies to specifically modulate signal integration, thereby rewiring the signal in a way beneficial for their survival. In addition to demonstrating the importance of different signal processes, these adaptations are elegant illustrations of the potential for drug targeting of protein assembly. This chapter reviews some of the important scaffolding events downstream of immunoreceptors with focus on signaling transduction through the T-cell receptor (TCR).
Collapse
Affiliation(s)
- K M Torgersen
- The Biotechnology Centre of Oslo, Gaustadalléen 21, PO Box 1125 Blindern, Oslo, Norway
| | | | | |
Collapse
|
25
|
Lyons LS, Rao S, Balkan W, Faysal J, Maiorino CA, Burnstein KL. Ligand-independent activation of androgen receptors by Rho GTPase signaling in prostate cancer. Mol Endocrinol 2007; 22:597-608. [PMID: 18079321 DOI: 10.1210/me.2007-0158] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer invariably recurs after androgen deprivation therapy. Growth of this recurrent/androgen-independent form of prostate cancer may be due to increased androgen receptor (AR) transcriptional activity in the absence of androgen. This ligand-independent AR activation is promoted by some growth factors but the mechanism is not well understood. Vav3, a Rho guanosine triphosphatase guanine nucleotide exchange factor, which is activated by growth factors, is up-regulated in human prostate cancer. We show here that Vav3 levels increase during in vivo progression of prostate cancer to androgen independence. Vav3 strikingly enhanced growth factor activation of AR in the absence of androgen. Because Vav3 may be chronically activated in prostate cancer by growth factor receptors, we examined the effects of a constitutively active (Ca) form of Vav3 on AR transcriptional activity. Ca Vav3 caused nuclear localization and ligand-independent activation of AR via the Rho guanosine triphosphatase, Rac1. Ca Rac1 activation of AR occurred, in part, through MAPK/ERK signaling. Expression of active Rac1 conferred androgen-independent growth of prostate cancer cells in culture, soft agar, and mice. These findings suggest that Vav3/Rac 1 signaling is an important modulator of ligand-independent AR transcriptional activity in prostate cancer progression.
Collapse
Affiliation(s)
- Leah S Lyons
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, Florida 33136, USA
| | | | | | | | | | | |
Collapse
|
26
|
RasGRF2, a guanosine nucleotide exchange factor for Ras GTPases, participates in T-cell signaling responses. Mol Cell Biol 2007; 27:8127-42. [PMID: 17923690 DOI: 10.1128/mcb.00912-07] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Ras pathway is critical for the development and function of T lymphocytes. The stimulation of this GTPase in T cells occurs primarily through the Vav1- and phospholipase C-gamma1-dependent activation of RasGRP1, a diacylglycerol-responsive Ras GDP/GTP exchange factor. Here, we show that a second exchange factor, RasGRF2, also participates in T-cell signaling. RasGRF2 is expressed in T cells, translocates to immune synapses, activates Ras, and stimulates the transcriptional factor NF-AT (nuclear factor of activated T cells) through Ras- and phospholipase C-gamma1-dependent routes. T-cell receptor-, Vav1-, and Ca2+-elicited pathways synergize with RasGRF2 for NF-AT stimulation. The analysis of RasGRF2-deficient mice indicates that this protein is required for the induction of bona fide NF-AT targets such as the cytokines tumor necrosis factor alpha and interleukin 2, while it plays minor roles in Ras activation itself. The comparison of lymphocytes from Vav1-/-, Rasgrf2-/-, and Vav1-/-; Rasgrf2-/- mice demonstrates that the RasGRF2 pathway cooperates with the Vav1/RasGRP1 route in the blasting transformation and proliferation of mature T cells. These results identify RasGRF2 as an additional component of the signaling machinery involved in T-cell receptor- and NF-AT-mediated immune responses.
Collapse
|
27
|
Haas KM, Tedder TF. Role of the CD19 and CD21/35 receptor complex in innate immunity, host defense and autoimmunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 560:125-39. [PMID: 15934172 DOI: 10.1007/0-387-24180-9_16] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
MESH Headings
- Animals
- Antigens, CD19/genetics
- Antigens, CD19/immunology
- Autoimmunity/immunology
- Bacteria/immunology
- Complement System Proteins/immunology
- Complement System Proteins/physiology
- Immunity, Innate/immunology
- Mice
- Models, Biological
- Receptors, Complement 3b/deficiency
- Receptors, Complement 3b/genetics
- Receptors, Complement 3b/immunology
- Receptors, Complement 3d/deficiency
- Receptors, Complement 3d/genetics
- Receptors, Complement 3d/immunology
Collapse
Affiliation(s)
- Karen M Haas
- Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
28
|
Pearce AC, McCarty OJT, Calaminus SDJ, Vigorito E, Turner M, Watson SP. Vav family proteins are required for optimal regulation of PLCgamma2 by integrin alphaIIbbeta3. Biochem J 2007; 401:753-61. [PMID: 17054426 PMCID: PMC1770845 DOI: 10.1042/bj20061508] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Vav proteins belong to the family of guanine-nucleotide-exchange factors for the Rho/Rac family of small G-proteins. In addition, they serve as important adapter proteins for the activation of PLCgamma (phospholipase Cgamma) isoforms by ITAM (immunoreceptor tyrosine-based activation motif) receptors, including the platelet collagen receptor GPVI (glycoprotein VI). Vav proteins are also regulated downstream of integrins, including the major platelet integrin alphaIIbbeta3, which has recently been shown to regulate PLCgamma2. In the present study, we have investigated the role of Vav family proteins in filopodia and lamellipodia formation on fibrinogen using platelets deficient in Vav1 and Vav3. Wild-type mouse platelets undergo a limited degree of spreading on fibrinogen, characterized by the formation of numerous filopodia and limited lamellipodia structures. Platelets deficient in Vav1 and Vav3 exhibit reduced filopodia and lamellipodia formation during spreading on fibrinogen. This is accompanied by reduced alphaIIbbeta3-mediated PLCgamma2 tyrosine phosphorylation and reduced Ca(2+) mobilization. In contrast, the G-protein agonist thrombin stimulates full spreading of control and Vav1/3-deficient platelets. Consistent with this, stimulation of F-actin (filamentous actin) formation and Rac activation by thrombin is not altered in Vav-deficient cells. These results demonstrate that Vav1 and Vav3 are required for optimal spreading and regulation of PLCgamma2 by integrin alphaIIbbeta3, but that their requirement is by-passed upon G-protein receptor activation.
Collapse
Affiliation(s)
- Andrew C Pearce
- Centre for Cardiovascular Sciences, Institute of Biomedical Research, Division of Medical Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | | | | | | | | | | |
Collapse
|
29
|
Bartolomé RA, Molina-Ortiz I, Samaniego R, Sánchez-Mateos P, Bustelo XR, Teixidó J. Activation of Vav/Rho GTPase signaling by CXCL12 controls membrane-type matrix metalloproteinase-dependent melanoma cell invasion. Cancer Res 2006; 66:248-58. [PMID: 16397238 PMCID: PMC1952211 DOI: 10.1158/0008-5472.can-05-2489] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Melanoma cells express the chemokine receptor CXCR4, which confers invasive signals on binding to its ligand CXCL12. We show here that knocking down membrane-type matrix metalloproteinase (MT1-MMP) expression translates into a blockade of invasion across reconstituted basement membranes and type I collagen gels in response to CXCL12, which is the result of lack of MMP-2 activation. Interference with MMP-2 expression further confirms its important role during this invasion. Vav proteins are guanine-nucleotide exchange factors for Rho GTPases that regulate actin dynamics and gene expression. We show that melanoma cells express Vav1 and Vav2, which are activated by CXCL12 involving Jak activity. Blocking Vav expression by RNA interference results in impaired activation of Rac and Rho by CXCL12 and in a remarkable inhibition of CXCL12-promoted invasion. Importantly, up-regulation of MT1-MMP expression by CXCL12, a mechanism contributing to melanoma cell invasion, is blocked by knocking down Vav expression or by inhibiting Jak. Together, these data indicate that activation of Jak/Vav/Rho GTPase pathway by CXCL12 is a key signaling event for MT1-MMP/MMP-2-dependent melanoma cell invasion.
Collapse
Affiliation(s)
- Rubén A. Bartolomé
- Department of Immunology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas
| | - Isabel Molina-Ortiz
- Department of Immunology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas
| | - Rafael Samaniego
- Servicio de Inmuno-Oncología, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - Paloma Sánchez-Mateos
- Servicio de Inmuno-Oncología, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - Xosé R. Bustelo
- Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | - Joaquin Teixidó
- Department of Immunology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas
| |
Collapse
|
30
|
Lyons LS, Burnstein KL. Vav3, a Rho GTPase guanine nucleotide exchange factor, increases during progression to androgen independence in prostate cancer cells and potentiates androgen receptor transcriptional activity. Mol Endocrinol 2005; 20:1061-72. [PMID: 16384856 DOI: 10.1210/me.2005-0346] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The progression of prostate cancer from androgen dependence to androgen independence is often accompanied by enhanced androgen receptor (AR) transcriptional activity. We observed a marked increase in the expression of Vav3, a Rho GTPase guanine nucleotide exchange factor (GEF), during the progression of human prostate cancer LNCaP cells to the androgen-independent derivative, LNCaP-R1. GEFs activate Rho family GTPases by promoting the exchange of GDP for GTP. Reporter gene assays showed that Vav3 potentiated AR transcriptional activity, and knock down of Vav3 resulted in decreased AR transactivation. Vav3 also increased androgen-induced levels of prostate-specific antigen mRNA. Furthermore, Vav3 enhanced AR activity at subnanomolar concentrations of androgen. This finding is particularly relevant because low androgen levels may be present in prostate tissue of patients undergoing androgen deprivation therapy. Enhancement of AR activity by Vav3 required amino terminal activation function 1 (AF1) of AR; however, Vav3 did not interact with AR or increase AR levels. Neither GEF function nor the C-terminal domains of Vav3 were required for Vav3-mediated enhancement of AR activity; however, the pleckstrin homology domain was obligatory. These data show that Vav3 levels rise during progression to androgen independence and support continued AR signaling (even under conditions of low androgen) by a novel GEF-independent cross-talk mechanism.
Collapse
Affiliation(s)
- Leah S Lyons
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, 1600 Northwest 10th Avenue, Miami, Florida 33136, USA
| | | |
Collapse
|
31
|
Vigorito E, Gambardella L, Colucci F, McAdam S, Turner M. Vav proteins regulate peripheral B-cell survival. Blood 2005; 106:2391-8. [PMID: 15941910 DOI: 10.1182/blood-2004-12-4894] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
AbstractMice lacking all 3 Vav proteins fail to produce significant numbers of recirculating follicular or marginal zone B cells. Those B cells that do mature have shortened lifespans. The constitutive nuclear factor-kappaB (NF-κB) activity of resting naive B cells required Vav function and expression of cellular reticuloendotheliosis (c-Rel). Rel-A was reduced in Vav-deficient B cells. Furthermore, expression of the NF-κB-regulated antiapoptotic genes A1 and Bcl-2 was reduced in mature Vav-deficient B cells. Overexpression of Bcl-2 restored the number of mature follicular B cells in the spleens of Vav-deficient mice. When activated by B-cell receptor (BCR) cross-linking, Vav-deficient B cells failed to activate NF-κB. Vav proteins thus regulate an NF-κB-dependent survival signal in naive B cells and are required for NF-κB function after BCR cross-linking.
Collapse
Affiliation(s)
- Elena Vigorito
- Laboratory of Lymphocyte Signaling and Development, Molecular Immunology Programme, The Babraham Institute, Babraham, Cambridge CB2 4AT, United Kingdom.
| | | | | | | | | |
Collapse
|
32
|
Couceiro JR, Martín-Bermudo MD, Bustelo XR. Phylogenetic conservation of the regulatory and functional properties of the Vav oncoprotein family. Exp Cell Res 2005; 308:364-80. [PMID: 15950967 PMCID: PMC1447607 DOI: 10.1016/j.yexcr.2005.04.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 04/19/2005] [Accepted: 04/20/2005] [Indexed: 02/05/2023]
Abstract
Vav proteins are phosphorylation-dependent GDP/GTP exchange factors for Rho/Rac GTPases. Despite intense characterization of mammalian Vav proteins both biochemically and genetically, there is little information regarding the conservation of their biological properties in lower organisms. To approach this issue, we have performed a characterization of the regulatory, catalytic, and functional properties of the single Vav family member of Drosophila melanogaster. These analyses have shown that the intramolecular mechanisms controlling the enzyme activity of mammalian Vav proteins are already present in Drosophila, suggesting that such properties have been set up before the divergence between protostomes and deuterostomes during evolution. We also show that Drosophila and mammalian Vav proteins have similar catalytic specificities. As a consequence, Drosophila Vav can trigger oncogenic transformation, morphological change, and enhanced cell motility in mammalian cells. Gain-of-function studies using transgenic flies support the implication of this protein in cytoskeletal-dependent processes such as embryonic dorsal closure, myoblast fusion, tracheal development, and the migration/guidance of different cell types. These results highlight the important roles of Vav proteins in the signal transduction pathways regulating cytoskeletal dynamics. Moreover, they indicate that the foundations for the regulatory and enzymatic activities of this protein family have been set up very early during evolution.
Collapse
Affiliation(s)
- José R. Couceiro
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Campus Unamuno, E-37007 Salamanca, Spain
| | - María D. Martín-Bermudo
- Instituto de Parasitología y Biomedicina “López-Neyra”, CSIC, Ventanilla St. 11, E-18001 Granada, Spain
| | - Xosé R. Bustelo
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Campus Unamuno, E-37007 Salamanca, Spain
- * Corresponding author. Fax: +34 923 294743. E-mail address: (X.R. Bustelo)
| |
Collapse
|
33
|
Madureira PA, Matos P, Soeiro I, Dixon LK, Simas JP, Lam EWF. Murine gamma-herpesvirus 68 latency protein M2 binds to Vav signaling proteins and inhibits B-cell receptor-induced cell cycle arrest and apoptosis in WEHI-231 B cells. J Biol Chem 2005; 280:37310-8. [PMID: 16150693 DOI: 10.1074/jbc.m507478200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The MHV-68 latent protein, M2, does not have homology to any known viral or cellular proteins, and its function is unclear. To define the role played by M2 during MHV-68 latency as well as the molecular mechanism involved, we used M2 as bait to screen a yeast two-hybrid mouse B-cell cDNA library. Vav1 was identified as an M2-interacting protein in two independent screenings. Subsequent yeast two-hybrid interaction studies showed that M2 also binds to Vav2, but not Vav3, and that three "PXXP" motifs located at the C terminus of M2 are important for this interaction. The interactions between M2 and Vav proteins were also confirmed in vivo in 293T and WEHI-231 B-cells by co-immunoprecipitation assays. Rac1/GST-PAK "pull-down" experiments and Western blot analysis using a phospho-Vav antibody demonstrated that expression of M2 in WEHI-231 cells enhances Vav activity. We further showed in WEHI-231 cells that M2 expression promotes proliferation and survival and is associated with enhanced cyclin D2 and repressed p27(Kip1), p130, and Bim expression. Taken together, these experiments suggest that M2 might have an important role in disseminating the latent virus during the establishment and maintenance of latency by modulating B-cell receptor-mediated signaling events through Vav to promote B-cell activation, proliferation, and survival.
Collapse
Affiliation(s)
- Patrícia A Madureira
- Cancer Research-UK Laboratories, Department of Cancer Medicine, MRC Cyclotron Building, Imperial College London, Hammersmith Hospital
| | | | | | | | | | | |
Collapse
|
34
|
Mogemark L, McGee K, Yuan M, Deleuil F, Fällman M. Disruption of target cell adhesion structures by the Yersinia effector YopH requires interaction with the substrate domain of p130Cas. Eur J Cell Biol 2005; 84:477-89. [PMID: 15900707 DOI: 10.1016/j.ejcb.2004.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The docking protein p130Cas has, together with FAK, been found as a target of the Yersinia virulence effector YopH. YopH is a protein tyrosine phosphatase that is delivered into host cells via the bacterial type III secretion machinery, and the outcome of its activity is inhibition of host cell phagocytosis. In the present study using p130Cas-/- cells, and p130Cas-/- cells expressing variants of GFPp130Cas, we show that this docking protein, via its substrate domain, is responsible for subcellular targeting of YopH in eukaryotic cells. Since YopH inhibits phagocytosis, p130Cas was expected to be critical for signalling mediating bacterial internalization. However, p130Cas-/- cells did not exhibit reduced capacity to internalize Yersinia. On the other hand, when a dominant negative variant of p130Cas was expressed in these cells, the phagocytic capacity was severely impaired. Moreover, the p130Cas-/- cells displayed a marked reduced sensitivity towards YopH-mediated detachment compared to wild-type cells. Transfecting these cells with full-length p130Cas rendered cells hypersensitive to both mechanical and Yersinia-mediated detachment. This hypersensitivity was not seen upon transfection with the dominant negative substrate domain-deleted variant of p130Cas. This implicates p130Cas as a prominent regulator of cell adhesion, where its substrate-binding domain has a significant function.
Collapse
Affiliation(s)
- Lena Mogemark
- Department of Molecular Biology, Umeå University, S-901 87 Umeå, Sweden
| | | | | | | | | |
Collapse
|
35
|
Charvet C, Canonigo AJ, Billadeau DD, Altman A. Membrane localization and function of Vav3 in T cells depend on its association with the adapter SLP-76. J Biol Chem 2005; 280:15289-99. [PMID: 15708849 DOI: 10.1074/jbc.m500275200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Vav family of guanine exchange factors plays a critical role in lymphocyte proliferation, cytoskeletal reorganization, and gene transcription upon immunoreceptor engagement. Although the role of Vav1 in T cells is well documented, the role of Vav3 is less clear. We investigated the subcellular localization of Vav3 during T cell activation. We report here that phosphorylation of Vav3 on tyrosine residue Tyr(173) is not required for T cell receptor (TCR)-induced Vav3 membrane translocation or immunological synapse (IS) recruitment, but mutation of this residue enhanced TCR-induced nuclear factor of activated T cells (NFAT) activation. However, Vav3 mutants either containing an Src homology 2 (SH2)-disabled point mutation (R697L) or lacking its SH3-SH2-SH3 domains were unable to bind SLP-76 did not translocate to the membrane or to the IS and furthermore failed to activate NFAT. Importantly, the membrane translocation of Vav3 was abrogated in Lck, ZAP-70, LAT, and SLP-76-deficient T cells, where Vav3 binding to SLP-76 was disrupted. Finally, we confirmed and underlined the critical role of Vav3 in NFAT activation by knocking down Vav3 expression in Vav1-deficient T cells. Altogether, our data show that TCR-induced association of Vav3 with SLP-76 is required for its membrane/IS localization and function.
Collapse
Affiliation(s)
- Céline Charvet
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121, USA.
| | | | | | | |
Collapse
|
36
|
Abstract
Rho GTPases are molecular switches controlling a broad range of cellular processes including lymphocyte activation. Not surprisingly, Rho GTPases are now recognized as pivotal regulators of antigen-specific T cell activation by APCs and immunological synapse formation. This review summarizes recent advances in our understanding of how Rho GTPase-dependent pathways control T lymphocyte motility, polarization and activation.
Collapse
Affiliation(s)
- M Deckert
- INSERM Unit 576, Hôpital de l'Archet, BP3079, 06202 Nice, France.
| | | | | |
Collapse
|
37
|
Vigorito E, Clayton E, Turner M. BCR activation of PI3K is Vav-independent in murine B cells. Biochem Soc Trans 2004; 32:781-4. [PMID: 15494014 DOI: 10.1042/bst0320781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BCR (B-cell antigen receptor)-induced Ca2+ signalling is initiated by activation of tyrosine kinases, which in concert with adaptor proteins and lipid kinases regulate PLC (phospholipase C) γ2 activation. Vav and PI3K (phosphoinositide 3-kinase) are required for optimal Ca2+ responses, although it has not been established, in primary B-cells, if both proteins are components of the same pathway. In vitro evidence suggests that binding of the PI3K lipid product PIP3 to Vav pleckstrin homology domain contributes to Vav activation. However, pharmacological inhibition of PI3K by wortmannin or deletion of the p110δ catalytic subunit has no effect on Vav activation in response to BCR engagement, suggesting that this mechanism does not operate in vivo. We also show that PI3K recruitment to phosphorylated-tyrosine-containing complexes is Vav-independent. Taken together with our previous observation that protein kinase B phosphorylation is normal in Vav-deficient B-cells, we suggest that PI3K activation is Vav-independent in response to strong signals delivered by multivalent cross-linking.
Collapse
Affiliation(s)
- E Vigorito
- Laboratory of Lymphocyte Signaling and Development, Molecular Immunology Programme, The Babraham Institute, Babraham, Cambridge CB2 4AT, UK
| | | | | |
Collapse
|
38
|
Vigorito E, Bardi G, Glassford J, Lam EWF, Clayton E, Turner M. Vav-dependent and vav-independent phosphatidylinositol 3-kinase activation in murine B cells determined by the nature of the stimulus. THE JOURNAL OF IMMUNOLOGY 2004; 173:3209-14. [PMID: 15322182 DOI: 10.4049/jimmunol.173.5.3209] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We show in this study that B cell activation following high avidity ligation of IgM or coligation of membrane Ig with CD19 elicits similar levels of Ca(2+) flux using different mechanisms. Each form of activation requires the function of Vav and PI3K. However, Vav regulates Ca(2+) flux independently of PI3K following anti-IgM cross-linking. By contrast, Vav function is essential for PI3K activation following membrane Ig (mIg)/CD19 coligation. Inhibition of PI3K revealed anti-IgM-stimulated Ca(2+) flux has a PI3K-independent component, while Ca(2+) flux following mIg/CD19 coligation is totally PI3K dependent. The p85alpha and p110delta subunits of PI3K both participate in anti-IgM and mIg/CD19 coligation-induced Ca(2+) flux, although the defects are not as severe as observed after pharmacological inhibition. This may reflect the recruitment of additional PI3K subunits, as we found that p110alpha becomes associated with CD19 upon B cell activation. These data show that the nature of the Ag encountered by B cells determines the contribution of Vav proteins to PI3K activation. Our results indicate that the strong signals delivered by multivalent cross-linking agents activate B cells in a qualitatively different manner from those triggered by coreceptor recruitment.
Collapse
Affiliation(s)
- Elena Vigorito
- Laboratory of Lymphocyte Signaling and Development, Molecular Immunology Programme, Babraham Institute, Babraham, Cambridge, United Kingdom.
| | | | | | | | | | | |
Collapse
|
39
|
Cella M, Fujikawa K, Tassi I, Kim S, Latinis K, Nishi S, Yokoyama W, Colonna M, Swat W. Differential requirements for Vav proteins in DAP10- and ITAM-mediated NK cell cytotoxicity. ACTA ACUST UNITED AC 2004; 200:817-23. [PMID: 15365099 PMCID: PMC2211968 DOI: 10.1084/jem.20031847] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Natural killer (NK) cells express multiple activating receptors that initiate signaling cascades through DAP10- or immunoreceptor tyrosine-based activation motif–containing adapters, including DAP12 and FcRγ. Among downstream signaling mediators, the guanine nucleotide exchange factor Vav1 carries out a key role in activation. However, whether Vav1 regulates only some or all NK cell–activating pathways is matter of debate. It is also possible that two other Vav family molecules, Vav2 and Vav3, are involved in NK cell activation. Here, we examine the relative contribution of each of these exchange factors to NK cell–mediated cytotoxicity using mice lacking one, two, or all three Vav proteins. We found that Vav1 deficiency is sufficient to disrupt DAP10-mediated cytotoxicity, whereas lack of Vav2 and Vav3 profoundly impairs FcRγ- and DAP12-mediated cytotoxicity. Our results provide evidence that these three Vav proteins function specifically in distinct pathways that trigger NK cell cytotoxicity.
Collapse
Affiliation(s)
- Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zakaria S, Gomez TS, Savoy DN, McAdam S, Turner M, Abraham RT, Billadeau DD. Differential regulation of TCR-mediated gene transcription by Vav family members. ACTA ACUST UNITED AC 2004; 199:429-34. [PMID: 14757747 PMCID: PMC2211790 DOI: 10.1084/jem.20031228] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although all three Vav family members are expressed in T lymphocytes, the role that Vav3 plays in T cell activation is poorly defined. Here we show that, like Vav1, Vav3 undergoes rapid tyrosine phosphorylation after T cell receptor (TCR) cross-linkage and interacts with the adaptor molecules SLP76 and 3BP2 in a SH2-dependent manner. However, depletion of Vav1 but not Vav3 protein by RNA interference affects TCR-mediated IL-2 promoter activity. In contrast, Vav3 function is specifically required for coupling TCR stimulation to serum response element–mediated gene transcription. These data indicate that, although both Vav proteins are biochemically coupled to the TCR, they regulate distinct molecular pathways leading to defined gene transcriptional events.
Collapse
Affiliation(s)
- Shaheen Zakaria
- Division of Oncology Research, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Foucault I, Le Bras S, Charvet C, Moon C, Altman A, Deckert M. The adaptor protein 3BP2 associates with VAV guanine nucleotide exchange factors to regulate NFAT activation by the B-cell antigen receptor. Blood 2004; 105:1106-13. [PMID: 15345594 DOI: 10.1182/blood-2003-08-2965] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Engagement of the B-cell antigen receptor (BCR) activates kinases of the Src and Syk families and signaling complexes assembled by adaptor proteins, which dictate B-cell fate and function. The adaptor 3BP2/SH3BP2, an Abl Src homology domain 3 (SH3)-binding and Syk-kinases interacting protein, exhibits positive regulatory roles in T, natural killer (NK), and basophilic cells. However, its involvement in BCR signaling is completely unknown. Here we show that 3BP2 is tyrosine phosphorylated following BCR aggregation on B lymphoma cells, and that 3BP2 is a substrate for Syk and Fyn, but not Btk. To further explore the function of 3BP2 in B cells, we screened a yeast 2-hybrid B-lymphocyte library and found 3BP2 as a binding partner of Vav proteins. The interaction between 3BP2 and Vav proteins involved both constitutive and inducible mechanisms. 3BP2 also interacted with other components of the BCR signaling pathway, including Syk and phospholipase C gamma (PLC-gamma). Furthermore, overexpression and RNAi blocking experiments showed that 3BP2 regulated BCR-mediated activation of nuclear factor of activated T cells (NFATs). Finally, evidence was provided that 3BP2 functionally cooperates with Vav proteins and Rho GTPases to activate NFATs. Our results show that 3BP2 may regulate BCR-mediated gene activation through Vav proteins.
Collapse
Affiliation(s)
- Isabelle Foucault
- Institut National de la Santé et de la Recherche Médicale Unité 576, Nice, France
| | | | | | | | | | | |
Collapse
|
42
|
Zolodz MD, Wood KV, Regnier FE, Geahlen RL. New Approach for Analysis of the Phosphotyrosine Proteome and Its Application to the Chicken B Cell Line, DT40. J Proteome Res 2004; 3:743-50. [PMID: 15359727 DOI: 10.1021/pr049967i] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we have begun to analyze phosphotyrosyl and associated proteins present in a DT40 chicken B cell line overexpressing the nonreceptor protein-tyrosine kinase, Syk. An anti-phosphotyrosine antibody was used to select tyrosine-phosphorylated proteins. After tryptic digestion, peptides were subjected to a beta-elimination reaction and phosphotyrosine-containing peptides were enriched via immobilized metal affinity chromatography. Several known substrates and candidate substrates for Syk and the location of 22 tyrosine phosphorylation sites were identified.
Collapse
Affiliation(s)
- Melissa D Zolodz
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | |
Collapse
|
43
|
Abstract
AbstractThe nuclear factor of activated T cells (NFAT) proteins are a family of transcription factors whose activation is controlled by calcineurin, a Ca2+-dependent phosphatase. Once dephosphorylated, these proteins move to the nucleus where they interact with cofactors to form transcription factor complexes. Inhibition of NFAT proteins by immunosuppressants, such as cyclosporin A (CsA) and FK506, is used clinically to prevent transplant rejection. Although these drugs have revolutionized organ transplantation, their use is associated with severe side effects in other organs in which NFAT proteins are important. One of the signal transducers that controls NFAT activity is Vav1, which is exclusively expressed in the hematopoietic system. Vav1 contains numerous modular domains that enable its function as a guanine exchange factor (GEF) toward RhoGTPases as well as participate in protein-protein interactions. This review focuses on the mechanisms by which Vav1 regulates NFAT through GEF-dependent and -independent cascades, emphasizing the newly assigned role of Vav1 in the regulation of Ca2+ release. Because of its restriction to hematopoietic cell lineages and its importance in the regulation of NFAT, targeting Vav1 and, in particular, its association with other proteins may offer a highly selective means of modifying T-cell behavior, thus allowing the development of more specific immunosuppressive therapies.
Collapse
Affiliation(s)
- Shulamit Katzav
- Hubert H Humphrey Center for Experimental Medicine & Cancer Research, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
44
|
Fujikawa K, Miletic AV, Alt FW, Faccio R, Brown T, Hoog J, Fredericks J, Nishi S, Mildiner S, Moores SL, Brugge J, Rosen FS, Swat W. Vav1/2/3-null mice define an essential role for Vav family proteins in lymphocyte development and activation but a differential requirement in MAPK signaling in T and B cells. ACTA ACUST UNITED AC 2004; 198:1595-608. [PMID: 14623913 PMCID: PMC2194126 DOI: 10.1084/jem.20030874] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The Vav family of Rho guanine nucleotide exchange factors is thought to orchestrate signaling events downstream of lymphocyte antigen receptors. Elucidation of Vav function has been obscured thus far by the expression of three highly related family members. We generated mice lacking all Vav family proteins and show that Vav-null mice produce no functional T or B cells and completely fail to mount both T-dependent and T-independent humoral responses. Whereas T cell development is blocked at an early stage in the thymus, immature B lineage cells accumulate in the periphery but arrest at a late “transitional” stage. Mechanistically, we show that the Vav family is crucial for both TCR and B cell receptor (BCR)–induced Ca2+ signaling and, surprisingly, is only required for mitogen-activated protein kinase (MAPK) activation in developing and mature T cells but not in B cells. Thus, the abundance of immature B cells generated in Vav-null mice may be due to intact Ras/MAPK signaling in this lineage. Although the expression of Vav1 alone is sufficient for normal lymphocyte development, our data also reveal lineage-specific roles for Vav2 and Vav3, with the first demonstration that Vav3 plays a critical compensatory function in T cells. Together, we define an essential role for the entire Vav protein family in lymphocyte development and activation and establish the limits of functional redundancy both within this family and between Vav and other Rho–guanine nucleotide exchange factors.
Collapse
Affiliation(s)
- Keiko Fujikawa
- 660 S. Euclid Ave., Dept. of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Johmura S, Oh-hora M, Inabe K, Nishikawa Y, Hayashi K, Vigorito E, Kitamura D, Turner M, Shingu K, Hikida M, Kurosaki T. Regulation of Vav localization in membrane rafts by adaptor molecules Grb2 and BLNK. Immunity 2003; 18:777-87. [PMID: 12818159 DOI: 10.1016/s1074-7613(03)00139-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Despite the importance of the Vav family proteins for B cell receptor (BCR) signaling, their activation mechanisms remain poorly understood. We demonstrate here that adaptor molecules Grb2 and BLNK, in addition to Vav, are required for efficient Rac1 activation in response to BCR stimulation. Loss of either Grb2 or BLNK results in decreased translocation of Vav3 to membrane rafts. By expression of Vav3 as a raft-targeted construct, the defective Rac1 activation in Grb2- or BLNK-deficient B cells is restored. Hence, our findings suggest that Grb2 and BLNK cooperate to localize Vav into membrane rafts, thereby contributing to optimal activation of Vav in B cells.
Collapse
Affiliation(s)
- Sachiko Johmura
- Department of Molecular Genetics, Institute for Liver Research, Kansai Medical University, 10-15 Fumizono-cho, Moriguchi 570-8506, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Turner M. The role of Vav proteins in B cell responses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2003; 512:29-34. [PMID: 12405184 DOI: 10.1007/978-1-4615-0757-4_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Affiliation(s)
- Martin Turner
- Laboratory of Lymphocyte Signaling and Development Molecular Immunology Programme, The Babraham Institute Cambridge, UK
| |
Collapse
|
47
|
Abstract
Guanine exchange factors (GEF) of the Vav family are critical activators of Rho GTPases, which control actin cytoskeletal reorganization and gene transcription. Among all GEFs identified, Vav proteins are the only GEFs regulated by tyrosine phosphorylation. Moreover, their structure contains several protein-protein or protein-lipid interaction domains. These domains are involved in the formation of multimolecular signalling complexes, highlighting the adaptor role of Vav proteins. The unique combination of these properties makes Vav proteins privileged integrators of multiple signalling pathways in a broad range of tissues and cells. Lymphocyte function during inflammatory and immune responses requires a dynamic remodeling of cellular architecture. Thus, it is not surprising that Vav proteins have been found to play a central role in the regulation of physiologic and pathologic lymphocyte responses.
Collapse
Affiliation(s)
- Céline Charvet
- Inserm U.343, Interactions cellulaires en immunologie et immunopathologie, Hôpital de l'Archet, Route de Saint-Antoine de Ginestière, BP 3079, 06202 Nice, France
| | | |
Collapse
|
48
|
Knoetig SM, Torrey TA, Naghashfar Z, McCarty T, Morse HC. CD19 signaling pathways play a major role for murine AIDS induction and progression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:5607-14. [PMID: 12421939 DOI: 10.4049/jimmunol.169.10.5607] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Infection of genetically susceptible mice with the LP-BM5 mixture of murine leukemia viruses including an etiologic defective virus (BM5def) causes an immunodeficiency syndrome called murine AIDS (MAIDS). The disease is characterized by interactions between B cells and CD4(+) T cells resulting in polyclonal activation of both cell types. It is known that BM5def is expressed at highest levels in B cells and that B cells serve as viral APC. The CD19-CD21 complex and CD22 on the surface of B cells play critical roles as regulators of B cell responses to a variety of stimuli, influencing cell activation, differentiation, and survival. CD19 integrates positive signals induced by B cell receptor ligation by interacting with the protooncogene Vav, which leads to subsequent tyrosine phosphorylation of this molecule. In contrast, CD22 negatively regulates Vav phosphorylation. To analyze the role of CD19, CD21, Vav, and CD22 in MAIDS, we infected mice deficient in CD19, CD21 (CR2), Vav-1, or CD22 with LP-BM5 murine leukemia viruses. Infected CR2(-/-) mice developed MAIDS with a time course and severity indistinguishable from that of wild-type mice. In contrast, CD19 as well as Vav-1 deficiency restricted viral replication and suppressed the development of typical signs of MAIDS including splenomegaly, lymphadenopathy, and hypergammaglobulinemia. Finally, CD22 deficiency was found to accelerate MAIDS development. These results provide novel insights into the B cell signaling pathways required for normal induction and progression of MAIDS.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD19/genetics
- Antigens, CD19/physiology
- Antigens, Differentiation, B-Lymphocyte/genetics
- Antiviral Agents/physiology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/virology
- Cell Adhesion Molecules
- Cell Cycle Proteins
- Cell Line, Transformed
- Disease Progression
- Immune Sera/biosynthesis
- Immunoglobulin Class Switching/genetics
- Immunoglobulin E/biosynthesis
- Immunophenotyping
- Lectins/deficiency
- Lectins/genetics
- Leukemia Virus, Murine/immunology
- Leukemia Virus, Murine/metabolism
- Lymphocyte Activation/genetics
- Lymphoproliferative Disorders/genetics
- Lymphoproliferative Disorders/immunology
- Lymphoproliferative Disorders/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Murine Acquired Immunodeficiency Syndrome/genetics
- Murine Acquired Immunodeficiency Syndrome/immunology
- Murine Acquired Immunodeficiency Syndrome/pathology
- Murine Acquired Immunodeficiency Syndrome/virology
- Protein Binding/genetics
- Protein Binding/immunology
- Proto-Oncogene Proteins/deficiency
- Proto-Oncogene Proteins/genetics
- Proto-Oncogene Proteins/physiology
- Proto-Oncogene Proteins c-vav
- Receptors, Complement 3d/deficiency
- Receptors, Complement 3d/genetics
- Severity of Illness Index
- Sialic Acid Binding Ig-like Lectin 2
- Signal Transduction/genetics
- Signal Transduction/immunology
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
- Spleen/pathology
- Virus Integration/genetics
- Virus Integration/immunology
- Virus Replication/genetics
- Virus Replication/immunology
Collapse
Affiliation(s)
- Sonja M Knoetig
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5640 Fishers Lane, Rockville, MD 20852, USA
| | | | | | | | | |
Collapse
|
49
|
Cao Y, Janssen EM, Duncan AW, Altman A, Billadeau DD, Abraham RT. Pleiotropic defects in TCR signaling in a Vav-1-null Jurkat T-cell line. EMBO J 2002; 21:4809-19. [PMID: 12234921 PMCID: PMC126295 DOI: 10.1093/emboj/cdf499] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Rac/Rho-specific guanine nucleotide exchange factor, Vav-1, is a key component of the T-cell antigen receptor (TCR)-linked signaling machinery. Here we have used somatic cell gene-targeting technology to generate a Vav-1-deficient Jurkat T-cell line. The J.Vav1 cell line exhibits dramatic defects in TCR-dependent interleukin (IL)-2 promoter activation, accompanied by significant reductions in the activities of the NFAT(IL-2), NFkappaB, AP-1 and REAP transcription factors that bind to the IL-2 promoter region. In contrast, loss of Vav-1 had variable effects on early TCR-stimulated signaling events. J.Vav1 cells display a selective defect in sustained Ca(2+) signaling during TCR stimulation, and complementation of this abnormality by exogenously introduced Vav-1 is dependent on the Vav-1 calponin homology domain. While JNK activation was severely impaired, the stimulation of Ras, ERK and protein kinase C-theta activities, as well as the mobilization of lipid rafts, appeared normal in the J.Vav1 cells. Finally, evidence is presented to suggest that the alternative Vav family members, Vav-2 and Vav-3, are activated during TCR ligation, and partially compensate for the loss of Vav-1 in Jurkat T cells.
Collapse
Affiliation(s)
- Youjia Cao
- Department of Pharmacology and Cancer Biology and Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | | | |
Collapse
|
50
|
Sen G, Wu HJ, Bikah G, Venkataraman C, Robertson DA, Snow EC, Bondada S. Defective CD19-dependent signaling in B-1a and B-1b B lymphocyte subpopulations. Mol Immunol 2002; 39:57-68. [PMID: 12213328 DOI: 10.1016/s0161-5890(02)00047-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Peritoneal and pleural cavities in mice and humans contain a unique population of B-lymphocytes called B-1 cells that are defective in B cell antigen receptor (BCR) signaling but have an increased propensity to produce autoantibodies. Several molecules such as Btk, Vav, and CD19 known to be important for BCR signaling have been shown to be critical for the development of B-1 cells from undefined precursors. Here we demonstrate that B-1 cell unresponsiveness to BCR cross-linking is in part due to defective signaling through CD19, a molecule known to modulate signaling thresholds in B cells. The defective CD19 signaling is manifested in reduced synergy between mIgM and CD19 to stimulate calcium mobilization in B-1 cells. BCR induced tyrosine phosphorylation of CD19 was transient in B-1 cells while it was prolonged in splenic B-2 cells. In both B-1 and B-2 cells BCR cross-linking induced a modest increase of CD19 associated Lyn, a Src family protein tyrosine kinase (PTK) thought to be important for CD19 phosphorylation. However, the tyrosine phosphorylated CD19 in B-1 cells binds less phosphatidylinositol 3-kinase (PI3-K) compared to B-2 cells. Most interestingly, we find that Vav-1 and Vav-2, proteins thought to be critical for CD19 signal transduction, are severely reduced in B-1 cells resulting in a complete absence of any CD19 associated Vav. Also we showed that both B-1a and B-1b B cells failed to proliferate in response to BCR cross-linking which in part appears to be due to defects in CD19 mediated amplification of BCR induced calcium mobilization.
Collapse
Affiliation(s)
- Goutam Sen
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY 40536-0230, USA
| | | | | | | | | | | | | |
Collapse
|