1
|
Belenki D, Richter-Pechanska P, Shao Z, Bhattacharya A, Lau A, Nabuco Leva Ferreira de Freitas JA, Kandler G, Hick TP, Cai X, Scharnagl E, Bittner A, Schönlein M, Kase J, Pardon K, Brzezicha B, Thiessen N, Bischof O, Dörr JR, Reimann M, Milanovic M, Du J, Yu Y, Chapuy B, Lee S, Leser U, Scheidereit C, Wolf J, Fan DNY, Schmitt CA. Senescence-associated lineage-aberrant plasticity evokes T-cell-mediated tumor control. Nat Commun 2025; 16:3079. [PMID: 40159497 DOI: 10.1038/s41467-025-57429-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/21/2025] [Indexed: 04/02/2025] Open
Abstract
Cellular senescence is a stress-inducible state switch relevant in aging, tumorigenesis and cancer therapy. Beyond a lasting arrest, senescent cells are characterized by profound chromatin remodeling and transcriptional reprogramming. We show here myeloid-skewed aberrant lineage plasticity and its immunological ramifications in therapy-induced senescence (TIS) of primary human and murine B-cell lymphoma. We find myeloid transcription factor (TF) networks, specifically AP-1-, C/EBPβ- and PU.1-governed transcriptional programs, enriched in TIS but not in equally chemotherapy-exposed senescence-incapable cancer cells. Dependent on these master TF, TIS lymphoma cells adopt a lineage-promiscuous state with properties of monocytic-dendritic cell (DC) differentiation. TIS lymphoma cells are preferentially lysed by T-cells in vitro, and mice harboring DC-skewed Eμ-myc lymphoma experience significantly longer tumor-free survival. Consistently, superior long-term outcome is also achieved in diffuse large B-cell lymphoma patients with high expression of a TIS-related DC signature. In essence, these data demonstrate a therapeutically exploitable, prognostically favorable immunogenic role of senescence-dependent aberrant myeloid plasticity in B-cell lymphoma.
Collapse
MESH Headings
- Animals
- Humans
- Cellular Senescence/immunology
- Cellular Senescence/genetics
- Mice
- T-Lymphocytes/immunology
- Cell Lineage
- Cell Differentiation
- Dendritic Cells/immunology
- Cell Line, Tumor
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/genetics
- CCAAT-Enhancer-Binding Protein-beta/metabolism
- CCAAT-Enhancer-Binding Protein-beta/genetics
- Gene Expression Regulation, Neoplastic
- Cell Plasticity
- Transcription Factor AP-1/metabolism
- Mice, Inbred C57BL
- Monocytes/immunology
- Monocytes/metabolism
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/genetics
- Female
- Transcription Factors/metabolism
- Transcription Factors/genetics
- Trans-Activators
Collapse
Affiliation(s)
- Dimitri Belenki
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Paulina Richter-Pechanska
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
| | - Zhiting Shao
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
| | - Animesh Bhattacharya
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
| | - Andrea Lau
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
| | | | - Gregor Kandler
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
| | - Timon P Hick
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
- Knowledge Management in Bioinformatics, Institute for Computer Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Xiurong Cai
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
| | - Eva Scharnagl
- Johannes Kepler University, Medical Faculty, Linz, Austria
| | - Aitomi Bittner
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
| | - Martin Schönlein
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section of Pneumology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria
| | - Julia Kase
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
| | - Katharina Pardon
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
| | | | - Nina Thiessen
- Core Unit Bioinformatics - CUBI, Berlin Institute of Health, Berlin, Germany
| | - Oliver Bischof
- IMRB, Mondor Institute for Biomedical Research, INSERM U955 - Université Paris Est Créteil, UPEC, Faculté de Médecine de Créteil, Créteil, France
| | - Jan R Dörr
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Oncology and Hematology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Experimental and Clinical Research Center (ECRC) of the Max Delbrück Center for Molecular Medicine and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Maurice Reimann
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
| | - Maja Milanovic
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Cancer Immunology, Campus Benjamin Franklin, Berlin, Germany
- Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium), partner site Berlin, Berlin, Germany
| | - Jing Du
- Medical Research Center and Department of Oncology Binzhou Medical University Hospital, 256600, Binzhou, P.R. China
| | - Yong Yu
- Johannes Kepler University, Medical Faculty, Linz, Austria
| | - Björn Chapuy
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology, and Cancer Immunology, Campus Benjamin Franklin, Berlin, Germany
| | - Soyoung Lee
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
- Johannes Kepler University, Medical Faculty, Linz, Austria
| | - Ulf Leser
- Knowledge Management in Bioinformatics, Institute for Computer Science, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Claus Scheidereit
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Jana Wolf
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Department of Mathematics and Computer Science, Free University Berlin, Berlin, Germany
| | - Dorothy N Y Fan
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium), partner site Berlin, Berlin, Germany
| | - Clemens A Schmitt
- Charité - Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Campus Virchow Klinikum, Berlin, Germany.
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany.
- Johannes Kepler University, Medical Faculty, Linz, Austria.
- Deutsches Konsortium für Translationale Krebsforschung (German Cancer Consortium), partner site Berlin, Berlin, Germany.
- Kepler University Hospital, Department of Hematology and Oncology, Krankenhausstraße 9, 4020, Linz, Austria.
| |
Collapse
|
2
|
Nagel S, Meyer C. Aberrant Expression and Oncogenic Activity of SPP1 in Hodgkin Lymphoma. Biomedicines 2025; 13:735. [PMID: 40149711 PMCID: PMC11940585 DOI: 10.3390/biomedicines13030735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/06/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Hodgkin lymphoma (HL) is a B-cell-derived malignancy and one of the most frequent types of lymphoma. The tumour cells typically exhibit multiple genomic alterations together with aberrantly activated signalling pathways, driven by paracrine and/or autocrine modes. SPP1 (alias osteopontin) is a cytokine acting as a signalling activator and has been connected with relapse in HL patients. To understand its pathogenic role, here, we investigated the mechanisms and function of deregulated SPP1 in HL. Methods: We screened public patient datasets and cell lines for aberrant SPP1 expression. HL cell lines were stimulated with SPP1 and subjected to siRNA-mediated knockdown. Gene and protein activities were analyzed by RQ-PCR, ELISA, Western blot, and immuno-cytology. Results: SPP1 expression was detected in 8.3% of classic HL patients and in HL cell line SUP-HD1, chosen to serve as an experimental model. The gene encoding SPP1 is located at chromosomal position 4q22 and is genomically amplified in SUP-HD1. Transcription factor binding site analysis revealed TALE and HOX factors as potential regulators. Consistent with this finding, we showed that aberrantly expressed PBX1 and HOXB9 mediate the transcriptional activation of SPP1. RNA-seq data and knockdown experiments indicated that SPP1 signals via integrin ITGB1 in SUP-HD1. Accordingly, SPP1 activated NFkB in addition to MAPK/ERK which in turn mediated the nuclear import of ETS2, activating oncogenic JUNB expression. Conclusions: SPP1 is aberrantly activated in HL cell line SUP-HD1 via genomic copy number gain and by homeodomain transcription factors PBX1 and HOXB9. SPP1-activated NFkB and MAPK merit further investigation as potential therapeutic targets in affected HL patients.
Collapse
Affiliation(s)
- Stefan Nagel
- Human and Animal Cell Lines, Leibniz-Institute DSMZ, 38124 Braunschweig, Germany
| | | |
Collapse
|
3
|
Bammert M, Ansari M, Haag L, Ahmad Z, Schröder V, Birch J, Santacruz D, Rust W, Viollet C, Strobel B, Dick A, Gantner F, Schlüter H, Ramirez F, Lizé M, Thomas MJ, Le HQ. JUNB O-GlcNAcylation-Mediated Promoter Accessibility of Metabolic Genes Modulates Distinct Epithelial Lineage in Pulmonary Fibrosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406751. [PMID: 39676507 PMCID: PMC11791990 DOI: 10.1002/advs.202406751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/15/2024] [Indexed: 12/17/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a lethal disease with substantial unmet medical needs. While aberrant epithelial remodeling is a key factor in IPF progression, the molecular mechanisms behind this process remain elusive. Harnessing a 3D patient-derived organoid model and multi-omics approach, the first inventory of the connection between metabolic alteration, chromatin accessibility, and transcriptional regulation in IPF aberrant epithelial remodeling is provided. This remodeling is characterized by an increase in chromatin accessibility, particularly at JUNB motif-enriched promoter regions proximal to transcription start sites of metabolic and pro-fibrotic genes. Mechanistically, JUNB undergoes O-linked β-N-acetylglucosamine modification (O-GlcNAcylation), a critical step in modulating pro-fibrotic responses to chronic injury. This modification is pivotal in fostering the emergence of aberrant epithelial basal cells in the alveolar niche, a proposed driver of IPF pathology. Specific deletion of O-GlcNAcylation sites on JUNB attenuates the metaplastic differentiation of basal cells, thereby aiding in the restoration of the alveolar lineage. Together, the findings reveal a novel link between metabolic dysregulation and cell fate regulation at the chromatin level in fibrosis, mediated by the O-GlcNAc-JUNB axis, suggesting avenues for the development of new therapeutic strategies in IPF.
Collapse
Affiliation(s)
- Marie‐Therese Bammert
- Lung Repair & Regeneration DepartmentBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
- Faculty of BiologyUniversity of Konstanz78457KonstanzGermany
| | - Meshal Ansari
- Global Computational Biology and Digital ScienceBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
| | - Leoni Haag
- Lung Repair & Regeneration DepartmentBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
| | - Zuhdi Ahmad
- Lung Repair & Regeneration DepartmentBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
| | - Victoria Schröder
- Lung Repair & Regeneration DepartmentBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
| | - Joseph Birch
- Lung Repair & Regeneration DepartmentBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
| | - Diana Santacruz
- Global Computational Biology and Digital ScienceBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
| | - Werner Rust
- Global Computational Biology and Digital ScienceBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
| | - Coralie Viollet
- Global Computational Biology and Digital ScienceBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
| | - Benjamin Strobel
- Drug Discovery SciencesBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
| | - Alec Dick
- Global Computational Biology and Digital ScienceBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
| | - Florian Gantner
- Faculty of BiologyUniversity of Konstanz78457KonstanzGermany
- C.H. Boehringer Sohn AG and Co. KG55218IngelheimGermany
| | - Holger Schlüter
- Lung Repair & Regeneration DepartmentBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
| | - Fidel Ramirez
- Global Computational Biology and Digital ScienceBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
| | - Muriel Lizé
- Lung Repair & Regeneration DepartmentBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
| | - Matthew J. Thomas
- Lung Repair & Regeneration DepartmentBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
- University of BathBathBA27JXUK
| | - Huy Q. Le
- Lung Repair & Regeneration DepartmentBoehringer Ingelheim Pharma GmbH & Co. KG88400BiberachGermany
| |
Collapse
|
4
|
Heger JM, Mammadova L, Mattlener J, Sobesky S, Cirillo M, Altmüller J, Kirst E, Reinke S, Klapper W, Bröckelmann PJ, Ferdinandus J, Kaul H, Schneider G, Schneider J, Schleifenbaum JK, Ullrich RT, Freihammer M, Awerkiew S, Lohmann M, Klein F, Nürnberg P, Hallek M, Rossi D, Mauz-Körholz C, Gattenlöhner S, Bräuninger A, Borchmann P, von Tresckow B, Borchmann S. Circulating Tumor DNA Sequencing for Biologic Classification and Individualized Risk Stratification in Patients With Hodgkin Lymphoma. J Clin Oncol 2024; 42:4218-4230. [PMID: 39348625 DOI: 10.1200/jco.23.01867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 06/26/2024] [Accepted: 08/14/2024] [Indexed: 10/02/2024] Open
Abstract
PURPOSE Current clinical challenges in Hodgkin lymphoma (HL) include difficult-to-treat relapsed/refractory disease and considerable long-term toxicities of treatment. Since clinical risk factors lack discriminatory power, intensity of therapy is mainly based on tumor burden. Exploring HL genetics and tumor microenvironment (TME) might provide valuable insights for improved risk stratification. MATERIALS AND METHODS In this study, we applied circulating tumor DNA sequencing to 243 patients obtained from pivotal German Hodgkin Study Group trials to identify subtypes of HL. Independent validation of the subtypes was performed in 96 patients treated in the EuroNet-PHL-C2 study. Outcome differences of subtypes were assessed in an event-enriched clinical validation cohort comprising 72 patients from the HD21 trial, using a refined, validated, and clinically feasible assay. RESULTS We propose a biologic classification of HL consisting of three distinct subtypes: inflammatory immune escape HL is characterized by frequent copy-number variations including immune escape variants such as high-level amplifications of the PD-L1 locus and an inflammatory TME. Virally-driven HL is associated with Epstein-Barr virus and/or human herpesvirus 6 and an inflammatory TME with neutrophils and macrophages, while the tumor mutational burden (TMB) is low. Oncogene-driven HL is defined by a high TMB, recurrent mutations in oncogenic drivers such as TNFAIP3, ITPKB, and SOCS1, and a cold TME. A refined and validated assay version aiming at clinically feasible risk stratification showed significant progression-free survival differences between subtypes. In addition, assessment of minimal residual disease (MRD) allowed for the detection of patients at very high risk of relapse within the subtypes. CONCLUSION We propose a clinically feasible, noninvasive method for individualized risk stratification and MRD monitoring in patients with HL on the basis of circulating tumor DNA sequencing.
Collapse
Affiliation(s)
- Jan-Michel Heger
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
- Cancer Center Cologne Essen-Partner Site Cologne, CIO Cologne, University of Cologne, Cologne, Germany
- Cologne Lymphoma Working Group (CLWG), Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
| | - Laman Mammadova
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
- Cancer Center Cologne Essen-Partner Site Cologne, CIO Cologne, University of Cologne, Cologne, Germany
- German Hodgkin Study Group (GHSG), Cologne, Germany
| | - Julia Mattlener
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
- Cancer Center Cologne Essen-Partner Site Cologne, CIO Cologne, University of Cologne, Cologne, Germany
- German Hodgkin Study Group (GHSG), Cologne, Germany
| | - Sophia Sobesky
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
- Cancer Center Cologne Essen-Partner Site Cologne, CIO Cologne, University of Cologne, Cologne, Germany
- German Hodgkin Study Group (GHSG), Cologne, Germany
| | - Melita Cirillo
- University of Western Australia and Royal Perth Hospital, Perth, Australia
| | - Janine Altmüller
- West German Genome Center (WGGC), University of Cologne, Cologne, Germany
- Technology Platform Genomics, Berlin Institute of Health at Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Elisabeth Kirst
- West German Genome Center (WGGC), University of Cologne, Cologne, Germany
- Hematopathology Section and Lymph Node Registry, Department of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Sarah Reinke
- Hematopathology Section and Lymph Node Registry, Department of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Wolfram Klapper
- Hematopathology Section and Lymph Node Registry, Department of Pathology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Paul J Bröckelmann
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
- Cancer Center Cologne Essen-Partner Site Cologne, CIO Cologne, University of Cologne, Cologne, Germany
- Cologne Lymphoma Working Group (CLWG), Cologne, Germany
- Mildred Scheel School of Oncology Aachen Bonn Cologne Düsseldorf (MSSO ABCD), Cologne, Faculty of Medicine and University Hospital of Cologne, Cologne, Germany
- German Hodgkin Study Group (GHSG), Cologne, Germany
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Justin Ferdinandus
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
- Cancer Center Cologne Essen-Partner Site Cologne, CIO Cologne, University of Cologne, Cologne, Germany
- German Hodgkin Study Group (GHSG), Cologne, Germany
| | - Helen Kaul
- German Hodgkin Study Group (GHSG), Cologne, Germany
| | | | - Jessica Schneider
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
- Cancer Center Cologne Essen-Partner Site Cologne, CIO Cologne, University of Cologne, Cologne, Germany
| | - Julia Katharina Schleifenbaum
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
- Cancer Center Cologne Essen-Partner Site Cologne, CIO Cologne, University of Cologne, Cologne, Germany
- Cologne Lymphoma Working Group (CLWG), Cologne, Germany
| | - Roland T Ullrich
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
- Cancer Center Cologne Essen-Partner Site Cologne, CIO Cologne, University of Cologne, Cologne, Germany
| | - Max Freihammer
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
- Cancer Center Cologne Essen-Partner Site Cologne, CIO Cologne, University of Cologne, Cologne, Germany
| | - Sabine Awerkiew
- Institute for Virology, University of Cologne, Cologne, Germany
| | - Mia Lohmann
- German Hodgkin Study Group (GHSG), Cologne, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University Duisburg-Essen, German Cancer Consortium (DKTK Partner Site Essen), Essen, Germany
- Cancer Center Cologne Essen-Partner Site Essen, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Florian Klein
- Institute for Virology, University of Cologne, Cologne, Germany
| | - Peter Nürnberg
- West German Genome Center (WGGC), University of Cologne, Cologne, Germany
| | - Michael Hallek
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
- Cancer Center Cologne Essen-Partner Site Cologne, CIO Cologne, University of Cologne, Cologne, Germany
| | - Davide Rossi
- Division of Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland
- Laboratory of Experimental Hematology, Institute of Oncology Research, Bellinzona, Switzerland
| | - Christine Mauz-Körholz
- Pediatric Hematology, Oncology and Immunodeficiencies, Justus-Liebig University of Giessen, Giessen, Germany
- Medical Faculty of the Martin-Luther-University of Halle, Wittenberg, Halle, Germany
| | | | - Andreas Bräuninger
- Institute for Pathology, Justus Liebig University Giessen, Giessen, Germany
| | - Peter Borchmann
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
- Cancer Center Cologne Essen-Partner Site Cologne, CIO Cologne, University of Cologne, Cologne, Germany
- Cologne Lymphoma Working Group (CLWG), Cologne, Germany
- German Hodgkin Study Group (GHSG), Cologne, Germany
| | - Bastian von Tresckow
- German Hodgkin Study Group (GHSG), Cologne, Germany
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University Duisburg-Essen, German Cancer Consortium (DKTK Partner Site Essen), Essen, Germany
- Cancer Center Cologne Essen-Partner Site Essen, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sven Borchmann
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf, University of Cologne, Medical Faculty and University Hospital Cologne, Cologne, Germany
- Cancer Center Cologne Essen-Partner Site Cologne, CIO Cologne, University of Cologne, Cologne, Germany
- Cologne Lymphoma Working Group (CLWG), Cologne, Germany
- German Hodgkin Study Group (GHSG), Cologne, Germany
| |
Collapse
|
5
|
Küppers R. Advances in Hodgkin lymphoma research. Trends Mol Med 2024:S1471-4914(24)00271-5. [PMID: 39443214 DOI: 10.1016/j.molmed.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
Hodgkin lymphoma (HL) has been and still is the most enigmatic lymphoid malignancy in humans. Since the first molecular analysis of isolated Hodgkin and Reed-Sternberg (HRS) tumor cells of classic HL 30 years ago, substantial advances in our understanding of HL have been made. This review describes the cellular origin of HL, summarizes the current knowledge about the genetic lesions in HRS cells, and highlights the role of Epstein-Barr virus (EBV) in HL pathogenesis. Moreover, the pathobiological roles of altered gene expression and deregulated signaling pathways are discussed and key aspects of the HL microenvironment are presented.
Collapse
Affiliation(s)
- Ralf Küppers
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Medical School, Essen, Germany.
| |
Collapse
|
6
|
Zhang Y, Li Y, Han Z, Huo Q, Ji L, Liu X, Li H, Zhu X, Hao Z. miR-328-5p functions as a critical negative regulator in early endothelial inflammation and advanced atherosclerosis. BMB Rep 2024; 57:375-380. [PMID: 38919016 PMCID: PMC11362139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/26/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Early proatherogenic inflammation constitutes a significant risk factor for atherogenesis development. Despite this, the precise molecular mechanisms driving this pathological progression largely remain elusive. Our study unveils a pivotal role for the microRNA miR-328-5p in dampening endothelial inflammation by modulating the stability of JUNB (JunB proto-oncogene). Perturbation of miR-328-5p levels results in heightened monocyte adhesion to endothelial cells and enhanced transendothelial migration, while its overexpression mitigates these inflammatory processes. Furthermore, miR-328-5p hinders macrophage polarization toward the pro-inflammatory M1 phenotype, and exerts a negative influence on atherosclerotic plaque formation in vivo. By pinpointing JUNB as a direct miR-328-5p target, our research underscores the potential of miR-328-5p as a therapeutic target for inflammatory atherosclerosis. Reintroduction of JUNB effectively counteracts the anti-atherosclerotic effects of miR-328-5p, highlighting the promise of pharmacological miR-328-5p targeting in managing inflammatory atherosclerosis. [BMB Reports 2024; 57(8): 375-380].
Collapse
Affiliation(s)
- Yangxia Zhang
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Yingke Li
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Zhisheng Han
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Qingyang Huo
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Longkai Ji
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
| | - Xuejia Liu
- Stem Cells and Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Han Li
- Stem Cells and Biotherapy Engineering Research Center of Henan, College of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
| | - Xinxing Zhu
- Henan Joint International Research Laboratory of Stem Cell Medicine, School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, China
- Department of Respiratory and Critical Care Medicine, Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, First Affiliated Hospital, Bengbu Medical University, Bengbu 233004, China
| | - Zhipeng Hao
- Department of Thoracic Surgery of Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| |
Collapse
|
7
|
Yang ZY, Zhao C, Liu SL, Pan LJ, Zhu YD, Zhao JW, Wang HK, Ye YY, Qiang J, Shi LQ, Mei JW, Xie Y, Gong W, Shu YJ, Dong P, Xiang SS. NONO promotes gallbladder cancer cell proliferation by enhancing oncogenic RNA splicing of DLG1 through interaction with IGF2BP3/RBM14. Cancer Lett 2024; 587:216703. [PMID: 38341127 DOI: 10.1016/j.canlet.2024.216703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Gallbladder cancer (GBC) is a highly malignant and rapidly progressing tumor of the human biliary system, and there is an urgent need to develop new therapeutic targets and modalities. Non-POU domain-containing octamer-binding protein (NONO) is an RNA-binding protein involved in the regulation of transcription, mRNA splicing, and DNA repair. NONO expression is elevated in multiple tumors and can act as an oncogene to promote tumor progression. Here, we found that NONO was highly expressed in GBC and promoted tumor cells growth. The dysregulation of RNA splicing is a molecular feature of almost all tumor types. Accordingly, mRNA-seq and RIP-seq analysis showed that NONO promoted exon6 skipping in DLG1, forming two isomers (DLG1-FL and DLG1-S). Furthermore, lower Percent-Spliced-In (PSI) values of DLG1 were detected in tumor tissue relative to the paraneoplastic tissue, and were associated with poor patient prognosis. Moreover, DLG1-S and DLG1-FL act as tumor promoters and tumor suppressors, respectively, by regulating the YAP1/JUN pathway. N6-methyladenosine (m6A) is the most common and abundant RNA modification involved in alternative splicing processes. We identified an m6A reader, IGF2BP3, which synergizes with NONO to promote exon6 skipping in DLG1 in an m6A-dependent manner. Furthermore, IP/MS results showed that RBM14 was bound to NONO and interfered with NONO-mediated exon6 skipping of DLG1. In addition, IGF2BP3 disrupted the binding of RBM14 to NONO. Overall, our data elucidate the molecular mechanism by which NONO promotes DLG1 exon skipping, providing a basis for new therapeutic targets in GBC treatment.
Collapse
Affiliation(s)
- Zi-Yi Yang
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Cheng Zhao
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Shi-Lei Liu
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Li-Jia Pan
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Yi-di Zhu
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Jing-Wei Zhao
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Hua-Kai Wang
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Yuan-Yuan Ye
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Jing Qiang
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Liu-Qing Shi
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Jia-Wei Mei
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Yang Xie
- Department of Gastroenterology, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Wei Gong
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Yi-Jun Shu
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Ping Dong
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Shan-Shan Xiang
- Laboratory of General Surgery and Department of General Surgery, Xinhua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China; Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
8
|
Guo S, Guo Y, Chen Y, Cui S, Zhang C, Chen D. The role of CEMIP in cancers and its transcriptional and post-transcriptional regulation. PeerJ 2024; 12:e16930. [PMID: 38390387 PMCID: PMC10883155 DOI: 10.7717/peerj.16930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024] Open
Abstract
CEMIP is a protein known for inducing cell migration and binding to hyaluronic acid. Functioning as a hyaluronidase, CEMIP primarily facilitates the breakdown of the extracellular matrix component, hyaluronic acid, thereby regulating various signaling pathways. Recent evidence has highlighted the significant role of CEMIP in different cancers, associating it with diverse pathological states. While identified as a biomarker for several diseases, CEMIP's mechanism in cancer seems distinct. Accumulating data suggests that CEMIP expression is triggered by chemical modifications to itself and other influencing factors. Transcriptionally, chemical alterations to the CEMIP promoter and involvement of transcription factors such as AP-1, HIF, and NF-κB regulate CEMIP levels. Similarly, specific miRNAs have been found to post-transcriptionally regulate CEMIP. This review provides a comprehensive summary of CEMIP's role in various cancers and explores how both transcriptional and post-transcriptional mechanisms control its expression.
Collapse
Affiliation(s)
- Song Guo
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Yunfei Guo
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Yuanyuan Chen
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Shuaishuai Cui
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Chunmei Zhang
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| | - Dahu Chen
- Shandong University of Technology, School of Life Sciences and Medicine, Zibo, Shandong, China
| |
Collapse
|
9
|
Li S, Wei Y, Sun X, Liu M, Zhu M, Yuan Y, Zhang J, Dong Y, Hu K, Ma S, Zhang X, Xu B, Jiang H, Gan L, Liu T. JUNB mediates oxaliplatin resistance via the MAPK signaling pathway in gastric cancer by chromatin accessibility and transcriptomic analysis. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1784-1796. [PMID: 37337631 PMCID: PMC10679881 DOI: 10.3724/abbs.2023119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/19/2023] [Indexed: 06/21/2023] Open
Abstract
Currently, platinum-containing regimens are the most commonly used regimens for advanced gastric cancer patients, and chemotherapy resistance is one of the main reasons for treatment failure. Thus, it is important to reveal the mechanism of oxaliplatin resistance and to seek effective intervention strategies to improve chemotherapy sensitivity, thereby improving the survival and prognosis of gastric cancer patients. To understand the molecular mechanisms of oxaliplatin resistance, we generate an oxaliplatin-resistant gastric cancer cell line and conduct assay for transposase-accessible chromatin sequencing (ATAC-seq) and RNA sequencing (RNA-seq) for both parental and oxaliplatin-resistant AGS cells. A total of 3232 genomic regions are identified to have higher accessibility in oxaliplatin-resistant cells, and DNA-binding motif analysis identifies JUNB as the core transcription factor in the regulatory network. JUNB is overexpressed in oxaliplatin-resistant gastric cancer cells, and its upregulation is associated with poor prognosis in gastric cancer patients, which is validated by our tissue microarray data. Moreover, chromatin immunoprecipitation sequencing (ChIP-seq) analysis reveals that JUNB binds to the transcriptional start site of key genes involved in the MAPK signaling pathway. Knockdown of JUNB inhibits the MAPK signaling pathway and restores sensitivity to oxaliplatin. Combined treatment with the ERK inhibitor piperlongumine or MEK inhibitor trametinib effectively overcomes oxaliplatin resistance. This study provides evidence that JUNB mediates oxaliplatin resistance in gastric cancer by activating the MAPK pathway. The combination of MAPK inhibitors with oxaliplatin overcomes resistance to oxaliplatin, providing a promising treatment opportunity for oxaliplatin-resistant gastric cancer patients.
Collapse
Affiliation(s)
- Suyao Li
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Yichou Wei
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Xun Sun
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Mengling Liu
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Mengxuan Zhu
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Yitao Yuan
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Jiayu Zhang
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Yu Dong
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Keshu Hu
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
| | - Sining Ma
- Department of Obstetrics and GynecologyZhongshan HospitalShanghai200032China
| | - Xiuping Zhang
- Department of OncologyZhongshan Hospital (Xiamen)Fudan UniversityXiamen361004China
| | - Bei Xu
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
- Cancer CenterZhongshan HospitalFudan UniversityShanghai200032China
| | - Hesheng Jiang
- Department of SurgerySouthwest HealthcareSouthern California Medical Education ConsortiumTemecula Valley HospitalTemeculaCA92592USA
| | - Lu Gan
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
- Cancer CenterZhongshan HospitalFudan UniversityShanghai200032China
| | - Tianshu Liu
- Department of Medical OncologyZhongshan HospitalFudan UniversityShanghai200032China
- Cancer CenterZhongshan HospitalFudan UniversityShanghai200032China
| |
Collapse
|
10
|
Schleussner N, Cauchy P, Franke V, Giefing M, Fornes O, Vankadari N, Assi SA, Costanza M, Weniger MA, Akalin A, Anagnostopoulos I, Bukur T, Casarotto MG, Damm F, Daumke O, Edginton-White B, Gebhardt JCM, Grau M, Grunwald S, Hansmann ML, Hartmann S, Huber L, Kärgel E, Lusatis S, Noerenberg D, Obier N, Pannicke U, Fischer A, Reisser A, Rosenwald A, Schwarz K, Sundararaj S, Weilemann A, Winkler W, Xu W, Lenz G, Rajewsky K, Wasserman WW, Cockerill PN, Scheidereit C, Siebert R, Küppers R, Grosschedl R, Janz M, Bonifer C, Mathas S. Transcriptional reprogramming by mutated IRF4 in lymphoma. Nat Commun 2023; 14:6947. [PMID: 37935654 PMCID: PMC10630337 DOI: 10.1038/s41467-023-41954-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 09/20/2023] [Indexed: 11/09/2023] Open
Abstract
Disease-causing mutations in genes encoding transcription factors (TFs) can affect TF interactions with their cognate DNA-binding motifs. Whether and how TF mutations impact upon the binding to TF composite elements (CE) and the interaction with other TFs is unclear. Here, we report a distinct mechanism of TF alteration in human lymphomas with perturbed B cell identity, in particular classic Hodgkin lymphoma. It is caused by a recurrent somatic missense mutation c.295 T > C (p.Cys99Arg; p.C99R) targeting the center of the DNA-binding domain of Interferon Regulatory Factor 4 (IRF4), a key TF in immune cells. IRF4-C99R fundamentally alters IRF4 DNA-binding, with loss-of-binding to canonical IRF motifs and neomorphic gain-of-binding to canonical and non-canonical IRF CEs. IRF4-C99R thoroughly modifies IRF4 function by blocking IRF4-dependent plasma cell induction, and up-regulates disease-specific genes in a non-canonical Activator Protein-1 (AP-1)-IRF-CE (AICE)-dependent manner. Our data explain how a single mutation causes a complex switch of TF specificity and gene regulation and open the perspective to specifically block the neomorphic DNA-binding activities of a mutant TF.
Collapse
Affiliation(s)
- Nikolai Schleussner
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Biology of Malignant Lymphomas, 13125, Berlin, Germany
- Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between Charité and MDC, Berlin, Germany
| | - Pierre Cauchy
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
- University Medical Center Freiburg, 79106, Freiburg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Vedran Franke
- Bioinformatics and Omics Data Science Platform, Berlin Institute for Medical Systems Biology, Max-Delbrück-Center, Berlin, Germany
| | - Maciej Giefing
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, 60-479, Poland
- Institute of Human Genetics, Christian-Albrechts-University Kiel, 24105, Kiel, Germany
| | - Oriol Fornes
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Naveen Vankadari
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, 3000, Australia
| | - Salam A Assi
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Mariantonia Costanza
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Biology of Malignant Lymphomas, 13125, Berlin, Germany
- Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between Charité and MDC, Berlin, Germany
| | - Marc A Weniger
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, 45122, Essen, Germany
| | - Altuna Akalin
- Bioinformatics and Omics Data Science Platform, Berlin Institute for Medical Systems Biology, Max-Delbrück-Center, Berlin, Germany
| | - Ioannis Anagnostopoulos
- Institute of Pathology, Universität Würzburg and Comprehensive Cancer Centre Mainfranken (CCCMF), Würzburg, Germany
| | - Thomas Bukur
- TRON gGmbH - Translationale Onkologie an der Universitätsmedizin der Johannes Gutenberg-Universität Mainz, Mainz, Germany
| | - Marco G Casarotto
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Frederik Damm
- Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117, Berlin, Germany
| | - Oliver Daumke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Structural Biology, 13125, Berlin, Germany
| | - Benjamin Edginton-White
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | | | - Michael Grau
- Department of Physics, University of Marburg, 35052, Marburg, Germany
- Medical Department A for Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Stephan Grunwald
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Structural Biology, 13125, Berlin, Germany
| | - Martin-Leo Hansmann
- Frankfurt Institute of Advanced Studies, Frankfurt am Main, Germany
- Institute for Pharmacology and Toxicology, Goethe University, Frankfurt am Main, Germany
| | - Sylvia Hartmann
- Dr. Senckenberg Institute of Pathology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Lionel Huber
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Eva Kärgel
- Signal Transduction in Tumor Cells, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Simone Lusatis
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Biology of Malignant Lymphomas, 13125, Berlin, Germany
- Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between Charité and MDC, Berlin, Germany
| | - Daniel Noerenberg
- Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117, Berlin, Germany
| | - Nadine Obier
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ulrich Pannicke
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Anja Fischer
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, 89081, Ulm, Germany
| | - Anja Reisser
- Department of Physics, Institute of Biophysics, Ulm University, Ulm, Germany
| | - Andreas Rosenwald
- Institute of Pathology, Universität Würzburg and Comprehensive Cancer Centre Mainfranken (CCCMF), Würzburg, Germany
| | - Klaus Schwarz
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Württemberg-Hessen, Ulm, Germany
| | - Srinivasan Sundararaj
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Andre Weilemann
- Medical Department A for Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Wiebke Winkler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Biology of Malignant Lymphomas, 13125, Berlin, Germany
- Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between Charité and MDC, Berlin, Germany
| | - Wendan Xu
- Medical Department A for Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Georg Lenz
- Medical Department A for Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Klaus Rajewsky
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Immune Regulation and Cancer, 13125, Berlin, Germany
| | - Wyeth W Wasserman
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, V5Z 4H4, Canada
| | - Peter N Cockerill
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Claus Scheidereit
- Signal Transduction in Tumor Cells, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Christian-Albrechts-University Kiel, 24105, Kiel, Germany
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, 89081, Ulm, Germany
| | - Ralf Küppers
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, 45122, Essen, Germany
| | - Rudolf Grosschedl
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg, Germany
| | - Martin Janz
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Biology of Malignant Lymphomas, 13125, Berlin, Germany
- Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117, Berlin, Germany
- Experimental and Clinical Research Center (ECRC), a joint cooperation between Charité and MDC, Berlin, Germany
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Stephan Mathas
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Biology of Malignant Lymphomas, 13125, Berlin, Germany.
- Hematology, Oncology, and Cancer Immunology, Charité - Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, 10117, Berlin, Germany.
- Experimental and Clinical Research Center (ECRC), a joint cooperation between Charité and MDC, Berlin, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
| |
Collapse
|
11
|
Arnold L, Gomez JP, Barry M, Yap M, Jackson L, Ly T, Standing D, Padhye SB, Biersack B, Anant S, Thomas SM. Acryl-3,5-bis(2,4-difluorobenzylidene)-4-piperidone targeting cellular JUN proto-oncogene, AP-1 transcription factor subunit inhibits head and neck squamous cell carcinoma progression. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:1104-1121. [PMID: 38023989 PMCID: PMC10651473 DOI: 10.37349/etat.2023.00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/17/2023] [Indexed: 12/01/2023] Open
Abstract
Aim Head and neck squamous cell carcinoma (HNSCC) is the seventh most common cancer worldwide with a survival rate below fifty percent. Addressing meager therapeutic options, a series of small molecule inhibitors were screened for antitumor efficacy. The most potent analog, acryl-3,5-bis(2,4-difluorobenzylidene)-4-piperidone (DiFiD; A-DiFiD), demonstrated strong cellular JUN proto-oncogene, activator protein 1 (AP-1) transcription factor subunit (JUN, c-Jun) antagonism. c-Jun, an oncogenic transcription factor, promotes cancer progression, invasion, and adhesion; high (JUN) mRNA expression correlates with poorer HNSCC survival. Methods Four new small molecules were generated for cytotoxicity screening in HNSCC cell lines. A-DiFiD-treated HNSCC cells were assessed for cytotoxicity, colony formation, invasion, migration, and adhesion. Dot blot array was used to identify targets. Phospho-c-Jun (p-c-Jun) expression was analyzed using immunoblotting. The Cancer Genome Atlas (TCGA) head and neck cancer datasets were utilized to determine overall patient survival. The Clinical Proteomic Tumor Analysis Consortium (CPTAC) datasets interfaced with University of Alabama at Birmingham Cancer Data Analysis Portal (UALCAN) were analyzed to determine protein levels of c-Jun in HNSCC patients and correlate levels with patient. Results Of the small molecules tested, A-DiFiD was the most potent in HNSCC lines, while demonstrating low half-maximal drug inhibitory concentration (IC50) in non-malignant Het-1A cells. Additionally, A-DiFiD abrogated cell invasion, migration, and colony formation. Phospho-kinase in vitro array demonstrated A-DiFiD reduced p-c-Jun. Likewise, a time dependent reduction in p-c-Jun was observed starting at 3 min post A-DiFiD treatment. TCGA Firehose Legacy vs. recurrent and metastatic head and neck cancer reveal a nearly 3% DNA amplification in recurrent/metastatic tumor compared to below 1% in primary tumors that had no lymph node metastasis. CPTAC analysis show higher tumor c-Jun levels compared to normal. Patients with high JUN expression had significantly reduced 3-year survival. Conclusions A-DiFiD targets c-Jun, a clinical HNSCC driver, with potent anti-tumor effects.
Collapse
Affiliation(s)
- Levi Arnold
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Juan Pineda Gomez
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Michael Barry
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Marrion Yap
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Laura Jackson
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Thuc Ly
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - David Standing
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Subhash B. Padhye
- Interdisciplinary Science and Technology Research Academy, University of Pune, Pune 411007, Maharashtra, India
| | - Bernhard Biersack
- Department of Biology, Chemistry, Earth Sciences, University of Bayreuth, 95440 Bayreuth, Germany
| | - Shrikant Anant
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Sufi Mary Thomas
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
- Department of Otolaryngology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
12
|
Tang S, Zhang F, Li J, Dong H, Yang Q, Liu J, Fu Y. The selective activator protein-1 inhibitor T-5224 regulates the IRF4/MYC axis and exerts cooperative antimyeloma activity with bortezomib. Chem Biol Interact 2023; 384:110687. [PMID: 37657595 DOI: 10.1016/j.cbi.2023.110687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/13/2023] [Accepted: 08/26/2023] [Indexed: 09/03/2023]
Abstract
The activating protein-1 (AP-1) transcription factors (TFs) have been associated with many different cancer types and are promising therapeutic targets in logical malignancies. However, the mechanisms of their role in multiple myeloma (MM) remain elusive. The present study determined and compared the mRNA and protein expression levels of the AP-1 family member JunB in CD138+ mononuclear cells from MM patients and healthy donors. Herein, we investigated the effect of T-5224, an inhibitor of JUN/AP-1, on MM. We found that the cytotoxicity of T-5224 toward myeloma is due to its ability to induce cell apoptosis, inhibit proliferation, and induce cell cycle arrest by increasing the levels of cleaved caspase3/7 and concomitantly inhibiting the IRF4/MYC axis. We also noticed that siJunB-mediated deletion of JunB/AP-1 enhanced MM cell apoptosis and affected cell proliferation. The software PROMO was used in the present study to predict the AP-1 TF that may bind the promoter region of IRF4. We confirmed the correlation between JunB/AP-1 and IRF4. Given that bortezomib (BTZ) facilitates IRF4 degradation in MM cells, we applied combination treatment of BTZ with T-5224. T-5224 and BTZ exerted synergistic effects, and T-5224 reversed the effect of BTZ on CD138+ primary resistance in MM cells, in part due to suppression of the IRF4/MYC axis. Our results suggest that targeting AP-1 TFs is a promising therapeutic strategy for MM. Additionally, targeting both AP-1 and IRF4 with T-5224 may be a synergistic therapeutic strategy for this clinically challenging subset of MM.
Collapse
Affiliation(s)
- Sishi Tang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Fangrong Zhang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Jian Li
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Hang Dong
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Qin Yang
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Jing Liu
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, 410013, China.
| | - Yunfeng Fu
- Department of Blood Transfusion, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| |
Collapse
|
13
|
Phatak P, Tulapurkar ME, Burrows WM, Donahue JM. MiR-199a-5p Decreases Esophageal Cancer Cell Proliferation Partially through Repression of Jun-B. Cancers (Basel) 2023; 15:4811. [PMID: 37835506 PMCID: PMC10571772 DOI: 10.3390/cancers15194811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/07/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
MicroRNA (miR)-199a-5p has been shown to function as a tumor suppressor in some malignancies but its role in esophageal cancer is poorly understood. To further explore its role in esophageal cancer, we sought to investigate the interaction between miR-199a-5p and Jun-B, an important component of the AP1 transcription factor, which contains a potential binding site for miR-199a-5p in its mRNA. We found that levels of miR-199a-5p are reduced in both human esophageal cancer specimens and in multiple esophageal cancer cell lines compared to esophageal epithelial cells. Jun-B expression is correspondingly elevated in these tumor specimens and in several cell lines compared to esophageal epithelial cells. Jun-B mRNA expression and stability, as well as protein expression, are markedly decreased following miR-199a-5p overexpression. A direct interaction between miR-199a-5p and Jun-B mRNA was confirmed by a biotinylated RNA-pull down assay and luciferase reporter constructs. Either forced expression of miR-199a-5p or Jun-B silencing led to a significant decrease in cellular proliferation as well as in AP-1 promoter activity. Our results provide evidence that miR-199a-5p functions as a tumor suppressor in esophageal cancer cells by regulating cellular proliferation, partially through repression of Jun B.
Collapse
Affiliation(s)
- Pornima Phatak
- Birmingham Veterans Affairs Health Care System, Birmingham, AL 35233, USA
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Mohan E. Tulapurkar
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Whitney M. Burrows
- Department of Surgery Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - James M. Donahue
- Birmingham Veterans Affairs Health Care System, Birmingham, AL 35233, USA
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| |
Collapse
|
14
|
Wu R, Lim MS. Updates in pathobiological aspects of anaplastic large cell lymphoma. Front Oncol 2023; 13:1241532. [PMID: 37810974 PMCID: PMC10556522 DOI: 10.3389/fonc.2023.1241532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Anaplastic large cell lymphomas (ALCL) encompass several distinct subtypes of mature T-cell neoplasms that are unified by the expression of CD30 and anaplastic cytomorphology. Identification of the cytogenetic abnormality t(2;5)(p23;q35) led to the subclassification of ALCLs into ALK+ ALCL and ALK- ALCL. According to the most recent World Health Organization (WHO) Classification of Haematolymphoid Tumours as well as the International Consensus Classification (ICC) of Mature Lymphoid Neoplasms, ALCLs encompass ALK+ ALCL, ALK- ALCL, and breast implant-associated ALCL (BI-ALCL). Approximately 80% of systemic ALCLs harbor rearrangement of ALK, with NPM1 being the most common partner gene, although many other fusion partner genes have been identified to date. ALK- ALCLs represent a heterogeneous group of lymphomas with distinct clinical, immunophenotypic, and genetic features. A subset harbor recurrent rearrangement of genes, including TYK2, DUSP22, and TP63, with a proportion for which genetic aberrations have yet to be characterized. Although primary cutaneous ALCL (pc-ALCL) is currently classified as a subtype of primary cutaneous T-cell lymphoma, due to the large anaplastic and pleomorphic morphology together with CD30 expression in the malignant cells, this review also discusses the pathobiological features of this disease entity. Genomic and proteomic studies have contributed significant knowledge elucidating novel signaling pathways that are implicated in ALCL pathogenesis and represent candidate targets of therapeutic interventions. This review aims to offer perspectives on recent insights regarding the pathobiological and genetic features of ALCL.
Collapse
Affiliation(s)
| | - Megan S. Lim
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| |
Collapse
|
15
|
Fernández S, Díaz E, Rita CG, Estévez M, Montalbán C, García JF. BET inhibitors induce NF-κB and E2F downregulation in Hodgkin and Reed-Sternberg cells. Exp Cell Res 2023; 430:113718. [PMID: 37468057 DOI: 10.1016/j.yexcr.2023.113718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
The prognosis of patients with relapsed and/or refractory classic Hodgkin lymphoma (cHL) continues to be poor. Therefore, there is a continuing need to develop novel therapies and to rationalize the use of target combinations. In recent years there has been growing interest in epigenetic targets for hematological malignancies under the rationale of the presence of common alterations in epigenetic transcriptional regulation. Since Hodgkin and Reed-Sternberg (HRS) cells have frequent inactivating mutations of the CREBBP and EP300 acetyltransferases, bromodomain and extra-terminal (BET) inhibitors can be a rational therapy for cHL. Here we aimed to confirm the efficacy of BET inhibitors (iBETs) using representative cell models and functional experiments, and to further explore biological mechanisms under iBET treatment using whole-transcriptome analyses. Our results reveal cytostatic rather than cytotoxic activity through the induction of G1/S and G2/M cell-cycle arrest, in addition to variable MYC downregulation. Additionally, massive changes in the transcriptome induced by the treatment include downregulation of relevant pathways in cHL disease: NF-kB and E2F, among others. Our findings support the therapeutic use of iBETs in selected cHL patients and reveal previously unknown biological mechanisms and consequences of pan-BET inhibition.
Collapse
Affiliation(s)
- Sara Fernández
- Translational Research Laboratory, MD Anderson Cancer Center Madrid, Spain
| | - Eva Díaz
- Translational Research Laboratory, MD Anderson Cancer Center Madrid, Spain
| | - Claudia G Rita
- Flow Cytometry Unit, Eurofins-Megalab, MD Anderson Cancer Center Madrid, Spain
| | - Mónica Estévez
- Department of Hematology, MD Anderson Cancer Center Madrid, Spain
| | - Carlos Montalbán
- Department of Hematology, MD Anderson Cancer Center Madrid, Spain
| | - Juan F García
- Translational Research Laboratory, MD Anderson Cancer Center Madrid, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain.
| |
Collapse
|
16
|
Ren FJ, Cai XY, Yao Y, Fang GY. JunB: a paradigm for Jun family in immune response and cancer. Front Cell Infect Microbiol 2023; 13:1222265. [PMID: 37731821 PMCID: PMC10507257 DOI: 10.3389/fcimb.2023.1222265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Jun B proto-oncogene (JunB) is a crucial member of dimeric activator protein-1 (AP-1) complex, which plays a significant role in various physiological processes, such as placental formation, cardiovascular development, myelopoiesis, angiogenesis, endochondral ossification and epidermis tissue homeostasis. Additionally, it has been reported that JunB has great regulatory functions in innate and adaptive immune responses by regulating the differentiation and cytokine secretion of immune cells including T cells, dendritic cells and macrophages, while also facilitating the effector of neutrophils and natural killer cells. Furthermore, a growing body of studies have shown that JunB is involved in tumorigenesis through regulating cell proliferation, differentiation, senescence and metastasis, particularly affecting the tumor microenvironment through transcriptional promotion or suppression of oncogenes in tumor cells or immune cells. This review summarizes the physiological function of JunB, its immune regulatory function, and its contribution to tumorigenesis, especially focusing on its regulatory mechanisms within tumor-associated immune processes.
Collapse
Affiliation(s)
- Fu-jia Ren
- Department of Pharmacy, Hangzhou Women’s Hospital, Hangzhou, Zhejiang, China
| | - Xiao-yu Cai
- Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Yao
- Department of Pharmacy, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Guo-ying Fang
- Department of Pharmacy, Hangzhou Women’s Hospital, Hangzhou, Zhejiang, China
| |
Collapse
|
17
|
Nagel S, Meyer C, Pommerenke C. Establishment of the lymphoid ETS-code reveals deregulated ETS genes in Hodgkin lymphoma. PLoS One 2023; 18:e0288031. [PMID: 37428779 DOI: 10.1371/journal.pone.0288031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/16/2023] [Indexed: 07/12/2023] Open
Abstract
The human family of ETS transcription factors numbers 28 genes which control multiple aspects of development, notably the differentiation of blood and immune cells. Otherwise, aberrant expression of ETS genes is reportedly involved in forming leukemia and lymphoma. Here, we comprehensively mapped ETS gene activities in early hematopoiesis, lymphopoiesis and all mature types of lymphocytes using public datasets. We have termed the generated gene expression pattern lymphoid ETS-code. This code enabled identification of deregulated ETS genes in patients with lymphoid malignancies, revealing 12 aberrantly expressed members in Hodgkin lymphoma (HL). For one of these, ETS gene ETV3, expression in stem and progenitor cells in addition to that in developing and mature T-cells was mapped together with downregulation in B-cell differentiation. In contrast, subsets of HL patients aberrantly overexpressed ETV3, indicating oncogenic activity in this B-cell malignancy. Analysis of ETV3-overexpressing HL cell line SUP-HD1 demonstrated genomic duplication of the ETV3 locus at 1q23, GATA3 as mutual activator, and suppressed BMP-signalling as mutual downstream effect. Additional examination of the neighboring ETS genes ETS1 and FLI1 revealed physiological activities in B-cell development and aberrant downregulation in HL patient subsets. SUP-HD1 showed genomic loss on chromosome 11, del(11)(q22q25), targeting both ETS1 and FLI1, underlying their downregulation. Furthermore, in the same cell line we identified PBX1-mediated overexpression of RIOK2 which inhibited ETS1 and activated JAK2 expression. Collectively, we codified normal ETS gene activities in lymphopoiesis and identified oncogenic ETS members in HL.
Collapse
Affiliation(s)
- Stefan Nagel
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Corinna Meyer
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Claudia Pommerenke
- Department of Human and Animal Cell Lines, Leibniz-Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
18
|
Song D, Lian Y, Zhang L. The potential of activator protein 1 (AP-1) in cancer targeted therapy. Front Immunol 2023; 14:1224892. [PMID: 37483616 PMCID: PMC10361657 DOI: 10.3389/fimmu.2023.1224892] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 06/22/2023] [Indexed: 07/25/2023] Open
Abstract
Activator protein-1 (AP-1) is a transcription factor that consists of a diverse group of members including Jun, Fos, Maf, and ATF. AP-1 involves a number of processes such as proliferation, migration, and invasion in cells. Dysfunctional AP-1 activity is associated with cancer initiation, development, invasion, migration and drug resistance. Therefore, AP-1 is a potential target for cancer targeted therapy. Currently, some small molecule inhibitors targeting AP-1 have been developed and tested, showing some anticancer effects. However, AP-1 is complex and diverse in its structure and function, and different dimers may play different roles in different type of cancers. Therefore, more research is needed to reveal the specific mechanisms of AP-1 in cancer, and how to select appropriate inhibitors and treatment strategies. Ultimately, this review summarizes the potential of combination therapy for cancer.
Collapse
Affiliation(s)
- Dandan Song
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Yan Lian
- Department of Obstetrics, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Lin Zhang
- Clinical Medical Research Center for Women and Children Diseases, Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| |
Collapse
|
19
|
Chuang KT, Chiou SS, Hsu SH. Recent Advances in Transcription Factors Biomarkers and Targeted Therapies Focusing on Epithelial-Mesenchymal Transition. Cancers (Basel) 2023; 15:3338. [PMID: 37444447 DOI: 10.3390/cancers15133338] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Transcription factors involve many proteins in the process of transactivating or transcribing (none-) encoded DNA to initiate and regulate downstream signals, such as RNA polymerase. Their unique characteristic is that they possess specific domains that bind to specific DNA element sequences called enhancer or promoter sequences. Epithelial-mesenchymal transition (EMT) is involved in cancer progression. Many dysregulated transcription factors-such as Myc, SNAIs, Twists, and ZEBs-are key drivers of tumor metastasis through EMT regulation. This review summarizes currently available evidence related to the oncogenic role of classified transcription factors in EMT editing and epigenetic regulation, clarifying the roles of the classified conserved transcription factor family involved in the EMT and how these factors could be used as therapeutic targets in future investigations.
Collapse
Affiliation(s)
- Kai-Ting Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shyh-Shin Chiou
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Center of Applied Genomics, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Shih-Hsien Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center of Applied Genomics, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
20
|
An Y, Lee C. Identification and Interpretation of eQTL and eGenes for Hodgkin Lymphoma Susceptibility. Genes (Basel) 2023; 14:1142. [PMID: 37372322 PMCID: PMC10298295 DOI: 10.3390/genes14061142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Genome-wide association studies (GWAS) have revealed approximately 100 genomic signals associated with Hodgkin lymphoma (HL); however, their target genes and underlying mechanisms causing HL susceptibility remain unclear. In this study, transcriptome-wide analysis of expression quantitative trait loci (eQTL) was conducted to identify target genes associated with HL GWAS signals. A mixed model, which explains polygenic regulatory effects by the genomic covariance among individuals, was implemented to discover expression genes (eGenes) using genotype data from 462 European/African individuals. Overall, 80 eGenes were identified to be associated with 20 HL GWAS signals. Enrichment analysis identified apoptosis, immune responses, and cytoskeletal processes as functions of these eGenes. The eGene of rs27524 encodes ERAP1 that can cleave peptides attached to human leukocyte antigen in immune responses; its minor allele may help Reed-Sternberg cells to escape the immune response. The eGene of rs7745098 encodes ALDH8A1 that can oxidize the precursor of acetyl-CoA for the production of ATP; its minor allele may increase oxidization activity to evade apoptosis of pre-apoptotic germinal center B cells. Thus, these minor alleles may be genetic risk factors for HL susceptibility. Experimental studies on genetic risk factors are needed to elucidate the underlying mechanisms of HL susceptibility and improve the accuracy of precision oncology.
Collapse
Affiliation(s)
| | - Chaeyoung Lee
- Department of Bioinformatics and Life Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, Seoul 06978, Republic of Korea
| |
Collapse
|
21
|
Sadaf H, Ambroziak M, Binkowski R, Kluebsoongnoen J, Paszkiewicz-Kozik E, Steciuk J, Markowicz S, Walewski J, Sarnowska E, Sarnowski TJ, Konopinski R. New molecular targets in Hodgkin and Reed-Sternberg cells. Front Immunol 2023; 14:1155468. [PMID: 37266436 PMCID: PMC10230546 DOI: 10.3389/fimmu.2023.1155468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/02/2023] [Indexed: 06/03/2023] Open
Abstract
Recent discoveries shed light on molecular mechanisms responsible for classical Hodgkin lymphoma (HL) development and progression, along with features of Hodgkin - Reed and Sternberg cells (HRS). Here, we summarize current knowledge on characteristic molecular alterations in HL, as well as existing targeted therapies and potential novel treatments for this disease. We discuss the importance of cluster of differentiation molecule 30 (CD30) and the programmed cell death-1 protein (PD-1) and ligands (PD-L1/2), and other molecules involved in immune modulation in HL. We highlight emerging evidence indicating that the altered function of SWI/SNF-type chromatin remodeling complexes, PRC2, and other epigenetic modifiers, contribute to variations in chromatin status, which are typical for HL. We postulate that despite of the existence of plentiful molecular data, the understanding of HL development remains incomplete. We therefore propose research directions involving analysis of reverse signaling in the PD-1/PD-L1 mechanism, chromatin remodeling, and epigenetics-related alterations, in order to identify HL features at the molecular level. Such attempts may lead to the identification of new molecular targets, and thus will likely substantially contribute to the future development of more effective targeted therapies.
Collapse
Affiliation(s)
- Hummaira Sadaf
- Department of Experimental Immunotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Department of Biotechnology, Sardar Bahadur Khan Womens’ University, Balochistan, Pakistan
| | - Maciej Ambroziak
- Department of Experimental Immunotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Robert Binkowski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | | | - Ewa Paszkiewicz-Kozik
- Department of Lymphoid Malignancies, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Jaroslaw Steciuk
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, Poland
| | - Sergiusz Markowicz
- Department of Experimental Immunotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Jan Walewski
- Department of Lymphoid Malignancies, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Elzbieta Sarnowska
- Department of Experimental Immunotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | | | - Ryszard Konopinski
- Department of Experimental Immunotherapy, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
22
|
Nakashima M, Uchimaru K. CD30 Expression and Its Functions during the Disease Progression of Adult T-Cell Leukemia/Lymphoma. Int J Mol Sci 2023; 24:ijms24108731. [PMID: 37240076 DOI: 10.3390/ijms24108731] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
CD30, a member of the tumor necrosis factor receptor superfamily, plays roles in pro-survival signal induction and cell proliferation in peripheral T-cell lymphoma (PTCL) and adult T-cell leukemia/lymphoma (ATL). Previous studies have identified the functional roles of CD30 in CD30-expressing malignant lymphomas, not only PTCL and ATL, but also Hodgkin lymphoma (HL), anaplastic large cell lymphoma (ALCL), and a portion of diffuse large B-cell lymphoma (DLBCL). CD30 expression is often observed in virus-infected cells such as human T-cell leukemia virus type 1 (HTLV-1). HTLV-1 is capable of immortalizing lymphocytes and producing malignancy. Some ATL cases caused by HTLV-1 infection overexpress CD30. However, the molecular mechanism-based relationship between CD30 expression and HTLV-1 infection or ATL progression is unclear. Recent findings have revealed super-enhancer-mediated overexpression at the CD30 locus, CD30 signaling via trogocytosis, and CD30 signaling-induced lymphomagenesis in vivo. Successful anti-CD30 antibody-drug conjugate (ADC) therapy for HL, ALCL, and PTCL supports the biological significance of CD30 in these lymphomas. In this review, we discuss the roles of CD30 overexpression and its functions during ATL progression.
Collapse
Affiliation(s)
- Makoto Nakashima
- Laboratory of Tumor Cell Biology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 1088639, Japan
| | - Kaoru Uchimaru
- Laboratory of Tumor Cell Biology, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo 1088639, Japan
| |
Collapse
|
23
|
Ren T, Chen C, Danilov AV, Liu S, Guan X, Du S, Wu X, Sherman MH, Spellman PT, Coussens LM, Adey AC, Mills GB, Wu LY, Xia Z. Supervised learning of high-confidence phenotypic subpopulations from single-cell data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533712. [PMID: 36993424 PMCID: PMC10055361 DOI: 10.1101/2023.03.23.533712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Accurately identifying phenotype-relevant cell subsets from heterogeneous cell populations is crucial for delineating the underlying mechanisms driving biological or clinical phenotypes. Here, by deploying a learning with rejection strategy, we developed a novel supervised learning framework called PENCIL to identify subpopulations associated with categorical or continuous phenotypes from single-cell data. By embedding a feature selection function into this flexible framework, for the first time, we were able to select informative features and identify cell subpopulations simultaneously, which enables the accurate identification of phenotypic subpopulations otherwise missed by methods incapable of concurrent gene selection. Furthermore, the regression mode of PENCIL presents a novel ability for supervised phenotypic trajectory learning of subpopulations from single-cell data. We conducted comprehensive simulations to evaluate PENCIĽs versatility in simultaneous gene selection, subpopulation identification and phenotypic trajectory prediction. PENCIL is fast and scalable to analyze 1 million cells within 1 hour. Using the classification mode, PENCIL detected T-cell subpopulations associated with melanoma immunotherapy outcomes. Moreover, when applied to scRNA-seq of a mantle cell lymphoma patient with drug treatment across multiple time points, the regression mode of PENCIL revealed a transcriptional treatment response trajectory. Collectively, our work introduces a scalable and flexible infrastructure to accurately identify phenotype-associated subpopulations from single-cell data.
Collapse
Affiliation(s)
- Tao Ren
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Canping Chen
- Computational Biology Program, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | | | - Susan Liu
- Computational Biology Program, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Xiangnan Guan
- Department of Oncology Biomarker Development, Genentech Inc, South San Francisco, CA, USA
| | - Shunyi Du
- Computational Biology Program, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Xiwei Wu
- City of Hope National Medical Center, Duarte, CA, USA
| | - Mara H. Sherman
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Paul T. Spellman
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Lisa M. Coussens
- Department of Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Andrew C. Adey
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR, USA
| | - Gordon B. Mills
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| | - Ling-Yun Wu
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
- School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zheng Xia
- Computational Biology Program, Oregon Health & Science University, Portland, OR, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
24
|
Ma A, Wang X, Li J, Wang C, Xiao T, Liu Y, Cheng H, Wang J, Li Y, Chang Y, Li J, Wang D, Jiang Y, Su L, Xin G, Gu S, Li Z, Liu B, Xu D, Ma Q. Single-cell biological network inference using a heterogeneous graph transformer. Nat Commun 2023; 14:964. [PMID: 36810839 PMCID: PMC9944243 DOI: 10.1038/s41467-023-36559-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/06/2023] [Indexed: 02/23/2023] Open
Abstract
Single-cell multi-omics (scMulti-omics) allows the quantification of multiple modalities simultaneously to capture the intricacy of complex molecular mechanisms and cellular heterogeneity. Existing tools cannot effectively infer the active biological networks in diverse cell types and the response of these networks to external stimuli. Here we present DeepMAPS for biological network inference from scMulti-omics. It models scMulti-omics in a heterogeneous graph and learns relations among cells and genes within both local and global contexts in a robust manner using a multi-head graph transformer. Benchmarking results indicate DeepMAPS performs better than existing tools in cell clustering and biological network construction. It also showcases competitive capability in deriving cell-type-specific biological networks in lung tumor leukocyte CITE-seq data and matched diffuse small lymphocytic lymphoma scRNA-seq and scATAC-seq data. In addition, we deploy a DeepMAPS webserver equipped with multiple functionalities and visualizations to improve the usability and reproducibility of scMulti-omics data analysis.
Collapse
Affiliation(s)
- Anjun Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Xiaoying Wang
- School of Mathematics, Shandong University, Jinan, Shandong, China
| | - Jingxian Li
- School of Mathematics, Shandong University, Jinan, Shandong, China
| | - Cankun Wang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Tong Xiao
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Yuntao Liu
- School of Mathematics, Shandong University, Jinan, Shandong, China
| | - Hao Cheng
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Juexin Wang
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Yang Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Yuzhou Chang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Jinpu Li
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
| | - Duolin Wang
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Yuexu Jiang
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Li Su
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
| | - Gang Xin
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Shaopeng Gu
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Zihai Li
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Bingqiang Liu
- School of Mathematics, Shandong University, Jinan, Shandong, China.
| | - Dong Xu
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO, USA.
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA.
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA.
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
25
|
Pérez-Benavente B, Fathinajafabadi A, de la Fuente L, Gandía C, Martínez-Férriz A, Pardo-Sánchez JM, Milián L, Conesa A, Romero OA, Carretero J, Matthiesen R, Jariel-Encontre I, Piechaczyk M, Farràs R. New roles for AP-1/JUNB in cell cycle control and tumorigenic cell invasion via regulation of cyclin E1 and TGF-β2. Genome Biol 2022; 23:252. [PMID: 36494864 PMCID: PMC9733061 DOI: 10.1186/s13059-022-02800-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 10/20/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND JUNB transcription factor contributes to the formation of the ubiquitous transcriptional complex AP-1 involved in the control of many physiological and disease-associated functions. The roles of JUNB in the control of cell division and tumorigenic processes are acknowledged but still unclear. RESULTS Here, we report the results of combined transcriptomic, genomic, and functional studies showing that JUNB promotes cell cycle progression via induction of cyclin E1 and repression of transforming growth factor (TGF)-β2 genes. We also show that high levels of JUNB switch the response of TGF-β2 stimulation from an antiproliferative to a pro-invasive one, induce endogenous TGF-β2 production by promoting TGF-β2 mRNA translation, and enhance tumor growth and metastasis in mice. Moreover, tumor genomic data indicate that JUNB amplification associates with poor prognosis in breast and ovarian cancer patients. CONCLUSIONS Our results reveal novel functions for JUNB in cell proliferation and tumor aggressiveness through regulation of cyclin E1 and TGF-β2 expression, which might be exploited for cancer prognosis and therapy.
Collapse
Affiliation(s)
| | | | - Lorena de la Fuente
- Centro de Investigación Príncipe Felipe, Valencia, Spain
- Present Address: PerkinElmer Informatics, Tres Cantos, Madrid, Spain
| | | | | | | | - Lara Milián
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain
| | - Ana Conesa
- Spanish National Research Council, Institute for Integrative Systems Biology, Paterna, Valencia, Spain
- Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Octavio A Romero
- Cancer Genetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Julián Carretero
- Departament de Fisiologia, Facultat de Farmacia, Universitat de València, Burjassot, Valencia, Spain
| | - Rune Matthiesen
- Computational and Experimental Biology Group, NOVA Medical School-Research, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Isabelle Jariel-Encontre
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
- Present address: IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Montpellier, France
| | - Marc Piechaczyk
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Rosa Farràs
- Centro de Investigación Príncipe Felipe, Valencia, Spain.
| |
Collapse
|
26
|
De Re V, Repetto O, Mussolin L, Brisotto G, Elia C, Lopci E, d’Amore ESG, Burnelli R, Mascarin M. Promising drugs and treatment options for pediatric and adolescent patients with Hodgkin lymphoma. Front Cell Dev Biol 2022; 10:965803. [PMID: 36506094 PMCID: PMC9729954 DOI: 10.3389/fcell.2022.965803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
Currently-available therapies for newly-diagnosed pediatric and adolescent patients with Hodgkin lymphoma result in >95% survival at 5 years. Long-term survivors may suffer from long-term treatment-related side effects, however, so the past 20 years have seen clinical trials for children and adolescents with HL gradually abandon the regimens used in adults in an effort to improve this situation. Narrower-field radiotherapy can reduce long-term toxicity while maintaining good tumor control. Various risk-adapted chemo-radiotherapy strategies have been used. Early assessment of tumor response with interim positron emission tomography and/or measuring metabolic tumor volume has been used both to limit RT in patients with favorable characteristics and to adopt more aggressive therapies in patients with a poor response. Most classical Hodgkin's lymphoma relapses occur within 3 years of initial treatment, while relapses occurring 5 years or more after diagnosis are rare. As the outcome for patients with relapsed/refractory classical Hodgkin lymphoma remains unsatisfactory, new drugs have been proposed for its prevention or treatment. This review summarizes the important advances made in recent years in the management of pediatric and adolescent with classical Hodgkin lymphoma, and the novel targeted treatments for relapsed and refractory classical Hodgkin lymphoma.
Collapse
Affiliation(s)
- Valli De Re
- Immunopatologia e Biomarcatori Oncologici, Dipartimento di Ricerca e Diagnostica Avanzata dei Tumori, CRO Aviano, National Cancer Institute, Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, Aviano, Italy,*Correspondence: Valli De Re, ; Maurizio Mascarin,
| | - Ombretta Repetto
- Immunopatologia e Biomarcatori Oncologici, Dipartimento di Ricerca e Diagnostica Avanzata dei Tumori, CRO Aviano, National Cancer Institute, Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, Aviano, Italy
| | - Lara Mussolin
- Pediatric Hemato-Oncology Unit, Department of Women’s and Children’s Health, University of Padua, Padua, Italy
| | - Giulia Brisotto
- Immunopatologia e Biomarcatori Oncologici, Dipartimento di Ricerca e Diagnostica Avanzata dei Tumori, CRO Aviano, National Cancer Institute, Istituto di Ricovero e Cura a Carattere Scientifico, IRCCS, Aviano, Italy
| | - Caterina Elia
- AYA Oncology and Pediatric Radiotherapy Unit, Centro di Riferimento Oncologico IRCCS, Aviano, Italy
| | - Egesta Lopci
- Nuclear Medicine, IRCCS—Humanitas Research Hospital, Rozzano, MI, Italy
| | | | - Roberta Burnelli
- Pediatric Hematology-Oncology Unit, Azienda Ospedaliera Universitaria, Ospedale Sant’Anna, Ferrara, Italy
| | - Maurizio Mascarin
- AYA Oncology and Pediatric Radiotherapy Unit, Centro di Riferimento Oncologico IRCCS, Aviano, Italy,*Correspondence: Valli De Re, ; Maurizio Mascarin,
| |
Collapse
|
27
|
Fabre ML, Canzoneri R, Gurruchaga A, Lee J, Tatineni P, Kil H, Lacunza E, Aldaz CM, Abba MC. MALINC1 an Immune-Related Long Non-Coding RNA Associated with Early-Stage Breast Cancer Progression. Cancers (Basel) 2022; 14:cancers14122819. [PMID: 35740485 PMCID: PMC9221538 DOI: 10.3390/cancers14122819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/19/2022] [Accepted: 06/02/2022] [Indexed: 11/29/2022] Open
Abstract
Simple Summary Here we characterize the phenotypic and molecular effects of MALINC1, a long non-coding RNA (lncRNA) that we found significantly upregulated in premalignant ductal carcinoma in-situ lesions. We provide evidence that MALINC1 behaves as an oncogenic and immune-related lncRNA involved with early-stage breast cancer progression, showing prognostic and predictive value to immunotherapy in invasive breast carcinomas. Abstract Long non-coding RNAs are increasingly being recognized as cancer biomarkers in various malignancies, acting as either tumor suppressors or oncogenes. The long non-coding MALINC1 intergenic RNA was identified as significantly upregulated in breast ductal carcinoma in situ. The aim of this study was to characterize MALINC1 expression, localization, and phenotypic and molecular effects in non-invasive and invasive breast cancer cells. We determined that MALINC1 is an estrogen–estrogen receptor-modulated lncRNA enriched in the cytoplasmic fraction of luminal A/B breast cancer cells that is associated with worse overall survival in patients with primary invasive breast carcinomas. Transcriptomic studies in normal and DCIS cells identified the main signaling pathways modulated by MALINC1, which mainly involve bioprocesses related to innate and adaptive immune responses, extracellular matrix remodeling, cell adhesion, and activation of AP-1 signaling pathway. We determined that MALINC1 induces premalignant phenotypic changes by increasing cell migration in normal breast cells. Moreover, high MALINC1 expression in invasive carcinomas was associated with a pro-tumorigenic immune environment and a favorable predicted response to immunotherapy both in luminal and basal-like subtypes compared with low-MALINC1-expression tumors. We conclude that MALINC1 behaves as an oncogenic and immune-related lncRNA involved with early-stage breast cancer progression.
Collapse
Affiliation(s)
- María Laura Fabre
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata 1900, Argentina; (M.L.F.); (R.C.); (A.G.); (E.L.)
| | - Romina Canzoneri
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata 1900, Argentina; (M.L.F.); (R.C.); (A.G.); (E.L.)
| | - Agustina Gurruchaga
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata 1900, Argentina; (M.L.F.); (R.C.); (A.G.); (E.L.)
| | - Jaeho Lee
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (J.L.); (P.T.); (H.K.)
| | - Pradeep Tatineni
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (J.L.); (P.T.); (H.K.)
| | - Hyunsuk Kil
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (J.L.); (P.T.); (H.K.)
| | - Ezequiel Lacunza
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata 1900, Argentina; (M.L.F.); (R.C.); (A.G.); (E.L.)
| | - C. Marcelo Aldaz
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; (J.L.); (P.T.); (H.K.)
- Correspondence: (C.M.A.); (M.C.A.)
| | - Martín Carlos Abba
- Centro de Investigaciones Inmunológicas Básicas y Aplicadas (CINIBA), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata 1900, Argentina; (M.L.F.); (R.C.); (A.G.); (E.L.)
- Correspondence: (C.M.A.); (M.C.A.)
| |
Collapse
|
28
|
Satou A, Takahara T, Nakamura S. An Update on the Pathology and Molecular Features of Hodgkin Lymphoma. Cancers (Basel) 2022; 14:cancers14112647. [PMID: 35681627 PMCID: PMC9179292 DOI: 10.3390/cancers14112647] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Hodgkin lymphomas (HLs) include two main types, classic HL (CHL) and nodular lymphocyte predominant HL (NLPHL). Recent molecular findings in HLs have contributed to dramatic changes in the treatment and identification of tumor characteristics. For example, PD-1/PD-L1 blockade and brentuximab vedotin, an anti-CD30 antibody bearing a cytotoxic compound, are now widely used in patients with CHL. Biological continuity between NLPHL and T-cell/histiocyte-rich large B-cell lymphoma has been highlighted. An era of novel therapeutics for HL has begun. The aim of this paper is to review the morphologic, immunophenotypic, and molecular features of CHL and NLPHL, which must be understood for the development of novel therapeutics. Abstract Hodgkin lymphomas (HLs) are lymphoid neoplasms derived from B cells and consist histologically of large neoplastic cells known as Hodgkin and Reed–Sternberg cells and abundant reactive bystander cells. HLs include two main types, classic HL (CHL) and nodular lymphocyte predominant HL (NLPHL). Recent molecular analyses have revealed that an immune evasion mechanism, particularly the PD-1/PD-L1 pathway, plays a key role in the development of CHL. Other highlighted key pathways in CHL are NF-κB and JAK/STAT. These advances have dramatically changed the treatment for CHL, particularly relapsed/refractory CHL. For example, PD-1 inhibitors are now widely used in relapsed/refractory CHL. Compared with CHL, NLPHL is more characterized by preserved B cell features. Overlapping morphological and molecular features between NLPHL and T-cell/histiocyte-rich large B-cell lymphoma (THRLBCL) have been reported, and biological continuity between these two entities has been highlighted. Some THRLBCLs are considered to represent progression from NLPHLs. With considerable new understanding becoming available from molecular studies in HLs, therapies and classification of HLs are continually evolving. This paper offers a summary of and update on the pathological and molecular features of HLs for a better understanding of the diseases.
Collapse
Affiliation(s)
- Akira Satou
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute 480-1195, Japan;
- Correspondence: ; Tel.: +81-561-62-3311; Fax: +81-561-61-3811
| | - Taishi Takahara
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute 480-1195, Japan;
| | - Shigeo Nakamura
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, Nagoya 466-8550, Japan;
| |
Collapse
|
29
|
Nihira NT, Miki Y. Regulation of Intrinsic Functions of PD-L1 by Post-Translational Modification in Tumors. Front Oncol 2022; 12:825284. [PMID: 35402280 PMCID: PMC8984111 DOI: 10.3389/fonc.2022.825284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Tumor cells are eliminated by the immune system, including T lymphocytes and natural killer cells; however, many types of tumor cells acquire the immune tolerance by inhibiting T-cell activation and functions via immune checkpoint molecules. Immunotherapy targeting immune checkpoint molecules such as Programmed death receptor 1 (PD-1)/Programmed death ligand 1 (PD-L1) and cytotoxic T lymphocyte associated protein 4 (CTLA-4) have shown successful outcomes for multiple cancer treatments, however some patients show the lack of durable responses. Thus, discovering the chemical compounds or drugs manipulating the expression or function of immune checkpoint molecules are anticipated to overcome the drug resistance of immune checkpoint inhibitors. Function of inhibitory immune checkpoint molecules is often dysregulated by the transcriptional and post-translational levels in tumors. Here, this review focuses on the post-translational modification of intrinsic PD-L1 functions and regulators for PD-L1 transcription.
Collapse
Affiliation(s)
- Naoe Taira Nihira
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Department of Translational Oncology, St. Marianna University Graduate School of Medicine, Kawasaki, Japan
- *Correspondence: Naoe Taira Nihira,
| | - Yoshio Miki
- Department of Molecular Genetics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
30
|
Cai M, Chen N. The Roles of IRF-8 in Regulating IL-9-Mediated Immunologic Mechanisms in the Development of DLBCL: A State-of-the-Art Literature Review. Front Oncol 2022; 12:817069. [PMID: 35211408 PMCID: PMC8860898 DOI: 10.3389/fonc.2022.817069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/18/2022] [Indexed: 01/05/2023] Open
Abstract
Interferon regulatory factor 8 (IRF-8) is a transcription suppressor that functions through associations with other transcription factors, contributing to the growth and differentiation of bone marrow cells and the activation of macrophages. IRF-8 expression profoundly affects pathogenic processes ranging from infections to blood diseases. Interleukin-9 (IL-9) is a multipotent cytokine that acts on a variety of immune cells by binding to the IL-9 receptor (IL-9R) and is involved in a variety of diseases such as cancer, autoimmune diseases, and other pathogen-mediated immune regulatory diseases. Studies have shown that IL-9 levels are significantly increased in the serum of patients with diffuse large B-cell lymphoma (DLBCL), and IL-9 levels are correlated with the DLBCL prognostic index. The activator protein-1 (AP-1) complex is a dimeric transcription factor that plays a critical role in cellular proliferation, apoptosis, angiogenesis, oncogene-induced transformation, and invasion by controlling basic and induced transcription of several genes containing the AP-1 locus. The AP-1 complex is involved in many cancers, including hematological tumors. In this report, we systematically review the precise roles of IL-9, IRF-8, and AP-1 in tumor development, particularly with regard to DLBCL. Finally, the recent progress in IRF-8 and IL-9 research is presented; the possible relationship among IRF-8, IL-9, and AP-1 family members is analyzed; and future research prospects are discussed.
Collapse
Affiliation(s)
- Mingyue Cai
- Provincial Hospital Affiliated to Shandong First Medical University, Department of Hematology, Jinan, China
| | - Na Chen
- Provincial Hospital Affiliated to Shandong First Medical University, Department of Hematology, Jinan, China.,School of Medicine, Shandong University, Jinan, China
| |
Collapse
|
31
|
Shen DF, Cheng H, Cai BZ, Cai WF, Wang B, Zhu Q, Wu YB, Liu M, Chen RJ, Gao FF, Zhang YM, Niu YD, Shi GG. N-n-Butyl haloperidol iodide ameliorates liver fibrosis and hepatic stellate cell activation in mice. Acta Pharmacol Sin 2022; 43:133-145. [PMID: 33758354 PMCID: PMC8724321 DOI: 10.1038/s41401-021-00630-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/17/2021] [Indexed: 02/05/2023]
Abstract
N-n-Butyl haloperidol iodide (F2) is a novel compound that has antiproliferative and antifibrogenic activities. In this study we investigated the therapeutic potential of F2 against liver fibrosis in mice and the underlying mechanisms. Two widely used mouse models of fibrosis was established in mice by injection of either carbon tetrachloride (CCl4) or thioacetamide (TAA). The mice received F2 (0.75, 1.5 or 3 mg·kg-1·d-1, ip) for 4 weeks of fibrosis induction. We showed that F2 administration dose-dependently ameliorated CCl4- or TAA-induced liver fibrosis, evidenced by significant decreases in collagen deposition and c-Jun, TGF-β receptor II (TGFBR2), α-smooth muscle actin (α-SMA), and collagen I expression in the liver. In transforming growth factor beta 1 (TGF-β1)-stimulated LX-2 cells (a human hepatic stellate cell line) and primary mouse hepatic stellate cells, treatment with F2 (0.1, 1, 10 μM) concentration-dependently inhibited the expression of α-SMA, and collagen I. In LX-2 cells, F2 inhibited TGF-β/Smad signaling through reducing the levels of TGFBR2; pretreatment with LY2109761 (TGF-β signaling inhibitor) or SP600125 (c-Jun signaling inhibitor) markedly inhibited TGF-β1-induced induction of α-SMA and collagen I. Knockdown of c-Jun decreased TGF-β signaling genes, including TGFBR2 levels. We revealed that c-Jun was bound to the TGFBR2 promoter, whereas F2 suppressed the binding of c-Jun to the TGFBR2 promoter to restrain TGF-β signaling and inhibit α-SMA and collagen I upregulation. In conclusion, the therapeutic benefit of F2 against liver fibrosis results from inhibition of c-Jun expression to reduce TGFBR2 and concomitant reduction of the responsiveness of hepatic stellate cells to TGF-β1. F2 may thus be a potentially new effective pharmacotherapy for human liver fibrosis.
Collapse
Affiliation(s)
- Dai-Fei Shen
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - He Cheng
- Qingyuan Maternal and Child Health Hospital, Qingyuan, 511515, China
| | - Bo-Zhi Cai
- Laboratory of Molecular Cardiology, The First Affiliated Hospital, Shantou University Medical College, Shantou, 515041, China
| | - Wen-Feng Cai
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Bin Wang
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Qing Zhu
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Yue-Bin Wu
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Man Liu
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Run-Ji Chen
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Fen-Fei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Yan-Mei Zhang
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Yong-Dong Niu
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Gang-Gang Shi
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| |
Collapse
|
32
|
Pansy K, Uhl B, Krstic J, Szmyra M, Fechter K, Santiso A, Thüminger L, Greinix H, Kargl J, Prochazka K, Feichtinger J, Deutsch AJA. Immune Regulatory Processes of the Tumor Microenvironment under Malignant Conditions. Int J Mol Sci 2021; 22:13311. [PMID: 34948104 PMCID: PMC8706102 DOI: 10.3390/ijms222413311] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 02/07/2023] Open
Abstract
The tumor microenvironment (TME) is a critical regulator of tumor growth, progression, and metastasis. Since immune cells represent a large fraction of the TME, they play a key role in mediating pro- and anti-tumor immune responses. Immune escape, which suppresses anti-tumor immunity, enables tumor cells to maintain their proliferation and growth. Numerous mechanisms, which have been intensively studied in recent years, are involved in this process and based on these findings, novel immunotherapies have been successfully developed. Here, we review the composition of the TME and the mechanisms by which immune evasive processes are regulated. In detail, we describe membrane-bound and soluble factors, their regulation, and their impact on immune cell activation in the TME. Furthermore, we give an overview of the tumor/antigen presentation and how it is influenced under malignant conditions. Finally, we summarize novel TME-targeting agents, which are already in clinical trials for different tumor entities.
Collapse
Affiliation(s)
- Katrin Pansy
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (K.P.); (B.U.); (M.S.); (K.F.); (L.T.); (H.G.); (K.P.)
| | - Barbara Uhl
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (K.P.); (B.U.); (M.S.); (K.F.); (L.T.); (H.G.); (K.P.)
| | - Jelena Krstic
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria; (J.K.); (J.F.)
| | - Marta Szmyra
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (K.P.); (B.U.); (M.S.); (K.F.); (L.T.); (H.G.); (K.P.)
| | - Karoline Fechter
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (K.P.); (B.U.); (M.S.); (K.F.); (L.T.); (H.G.); (K.P.)
| | - Ana Santiso
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria; (A.S.); (J.K.)
| | - Lea Thüminger
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (K.P.); (B.U.); (M.S.); (K.F.); (L.T.); (H.G.); (K.P.)
| | - Hildegard Greinix
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (K.P.); (B.U.); (M.S.); (K.F.); (L.T.); (H.G.); (K.P.)
| | - Julia Kargl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, Universitätsplatz 4, 8010 Graz, Austria; (A.S.); (J.K.)
| | - Katharina Prochazka
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (K.P.); (B.U.); (M.S.); (K.F.); (L.T.); (H.G.); (K.P.)
| | - Julia Feichtinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria; (J.K.); (J.F.)
| | - Alexander JA. Deutsch
- Division of Hematology, Medical University of Graz, Auenbruggerplatz 38, 8036 Graz, Austria; (K.P.); (B.U.); (M.S.); (K.F.); (L.T.); (H.G.); (K.P.)
| |
Collapse
|
33
|
Cuesta-Mateos C, Terrón F, Herling M. CCR7 in Blood Cancers - Review of Its Pathophysiological Roles and the Potential as a Therapeutic Target. Front Oncol 2021; 11:736758. [PMID: 34778050 PMCID: PMC8589249 DOI: 10.3389/fonc.2021.736758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/12/2021] [Indexed: 11/23/2022] Open
Abstract
According to the classical paradigm, CCR7 is a homing chemokine receptor that grants normal lymphocytes access to secondary lymphoid tissues such as lymph nodes or spleen. As such, in most lymphoproliferative disorders, CCR7 expression correlates with nodal or spleen involvement. Nonetheless, recent evidence suggests that CCR7 is more than a facilitator of lymphatic spread of tumor cells. Here, we review published data to catalogue CCR7 expression across blood cancers and appraise which classical and novel roles are attributed to this receptor in the pathogenesis of specific hematologic neoplasms. We outline why novel therapeutic strategies targeting CCR7 might provide clinical benefits to patients with CCR7-positive hematopoietic tumors.
Collapse
Affiliation(s)
- Carlos Cuesta-Mateos
- Immunology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria- Instituto la Princesa (IIS-IP), Madrid, Spain.,Immunological and Medicinal Products (IMMED S.L.), Madrid, Spain.,Catapult Therapeutics BV, Lelystad, Netherlands
| | - Fernando Terrón
- Immunological and Medicinal Products (IMMED S.L.), Madrid, Spain.,Catapult Therapeutics BV, Lelystad, Netherlands
| | - Marco Herling
- Clinic of Hematology and Cellular Therapy, University of Leipzig, Leipzig, Germany
| |
Collapse
|
34
|
Uetz-von Allmen E, Samson GPB, Purvanov V, Maeda T, Legler DF. CAL-1 as Cellular Model System to Study CCR7-Guided Human Dendritic Cell Migration. Front Immunol 2021; 12:702453. [PMID: 34603281 PMCID: PMC8482423 DOI: 10.3389/fimmu.2021.702453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/31/2021] [Indexed: 11/23/2022] Open
Abstract
Dendritic cells (DCs) are potent and versatile professional antigen-presenting cells and central for the induction of adaptive immunity. The ability to migrate and transport peripherally acquired antigens to draining lymph nodes for subsequent cognate T cell priming is a key feature of DCs. Consequently, DC-based immunotherapies are used to elicit tumor-antigen specific T cell responses in cancer patients. Understanding chemokine-guided DC migration is critical to explore DCs as cellular vaccines for immunotherapeutic approaches. Currently, research is hampered by the lack of appropriate human cellular model systems to effectively study spatio-temporal signaling and CCR7-driven migration of human DCs. Here, we report that the previously established human neoplastic cell line CAL-1 expresses the human DC surface antigens CD11c and HLA-DR together with co-stimulatory molecules. Importantly, if exposed for three days to GM-CSF, CAL-1 cells induce the endogenous expression of the chemokine receptor CCR7 upon encountering the clinically approved TLR7/8 agonist Resiquimod R848 and readily migrate along chemokine gradients. Further, we demonstrate that CAL-1 cells can be genetically modified to express fluorescent (GFP)-tagged reporter proteins to study and visualize signaling or can be gene-edited using CRISPR/Cas9. Hence, we herein present the human CAL-1 cell line as versatile and valuable cellular model system to effectively study human DC migration and signaling.
Collapse
Affiliation(s)
- Edith Uetz-von Allmen
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Guerric P B Samson
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland.,Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Bern, Switzerland
| | - Vladimir Purvanov
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland
| | - Takahiro Maeda
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg) at the University of Konstanz, Kreuzlingen, Switzerland.,Theodor Kocher Institute, University of Bern, Bern, Switzerland.,Department of Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
35
|
Cabo M, Santana-Hernández S, Costa-Garcia M, Rea A, Lozano-Rodríguez R, Ataya M, Balaguer F, Juan M, Ochoa MC, Menéndez S, Comerma L, Rovira A, Berraondo P, Albanell J, Melero I, López-Botet M, Muntasell A. CD137 Costimulation Counteracts TGFβ Inhibition of NK-cell Antitumor Function. Cancer Immunol Res 2021; 9:1476-1490. [PMID: 34580116 DOI: 10.1158/2326-6066.cir-21-0030] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 06/19/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022]
Abstract
Enhancing natural killer (NK) cell-based cancer immunotherapy by overcoming immunosuppression is an area of intensive research. Here, we have demonstrated that the anti-CD137 agonist urelumab can overcome TGFβ-mediated inhibition of human NK-cell proliferation and antitumor function. Transcriptomic, immunophenotypic, and functional analyses showed that CD137 costimulation modified the transcriptional program induced by TGFβ on human NK cells by rescuing their proliferation in response to IL2, preserving their expression of activating receptors (NKG2D) and effector molecules (granzyme B, IFNγ) while allowing the acquisition of tumor-homing/retention features (CXCR3, CD103). Activated NK cells cultured in the presence of TGFβ1 and CD137 agonist recovered CCL5 and IFNγ secretion and showed enhanced direct and antibody-dependent cytotoxicity upon restimulation with cancer cells. Trastuzumab treatment of fresh breast carcinoma-derived multicellular cultures induced CD137 expression on tumor-infiltrating CD16+ NK cells, enabling the action of urelumab, which fostered tumor-infiltrating NK cells and recapitulated the enhancement of CCL5 and IFNγ production. Bioinformatic analysis pointed to IFNG as the driver of the association between NK cells and clinical response to trastuzumab in patients with HER2-positive primary breast cancer, highlighting the translational relevance of the CD137 costimulatory axis for enhancing IFNγ production. Our data reveals CD137 as a targetable checkpoint for overturning TGFβ constraints on NK-cell antitumor responses.
Collapse
Affiliation(s)
- Mariona Cabo
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Sara Santana-Hernández
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | | | - Anna Rea
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Roberto Lozano-Rodríguez
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | | | - Francesc Balaguer
- Gastroenterology Department, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, University of Barcelona, Barcelona, Spain
| | - Manel Juan
- Immunology Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Maria C Ochoa
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Centro de Investigación Médica Aplicada (CIMA)-Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Navarra Institute of Health Research (IDISNA), Universidad de Navarra, Pamplona, Spain
| | - Silvia Menéndez
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Laura Comerma
- Pathology Department, Hospital del Mar, Barcelona, Spain
| | - Ana Rovira
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Oncology Department, Hospital del Mar, Barcelona, Spain
| | - Pedro Berraondo
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Centro de Investigación Médica Aplicada (CIMA)-Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Navarra Institute of Health Research (IDISNA), Universidad de Navarra, Pamplona, Spain
| | - Joan Albanell
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Oncology Department, Hospital del Mar, Barcelona, Spain
| | - Ignacio Melero
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Centro de Investigación Médica Aplicada (CIMA)-Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Navarra Institute of Health Research (IDISNA), Universidad de Navarra, Pamplona, Spain.,Clínica Universitaria de Navarra, Pamplona, Spain
| | - Miguel López-Botet
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Aura Muntasell
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
36
|
Liang HC, Costanza M, Prutsch N, Zimmerman MW, Gurnhofer E, Montes-Mojarro IA, Abraham BJ, Prokoph N, Stoiber S, Tangermann S, Lobello C, Oppelt J, Anagnostopoulos I, Hielscher T, Pervez S, Klapper W, Zammarchi F, Silva DA, Garcia KC, Baker D, Janz M, Schleussner N, Fend F, Pospíšilová Š, Janiková A, Wallwitz J, Stoiber D, Simonitsch-Klupp I, Cerroni L, Pileri S, de Leval L, Sibon D, Fataccioli V, Gaulard P, Assaf C, Knörr F, Damm-Welk C, Woessmann W, Turner SD, Look AT, Mathas S, Kenner L, Merkel O. Super-enhancer-based identification of a BATF3/IL-2R-module reveals vulnerabilities in anaplastic large cell lymphoma. Nat Commun 2021; 12:5577. [PMID: 34552066 PMCID: PMC8458384 DOI: 10.1038/s41467-021-25379-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 07/29/2021] [Indexed: 12/18/2022] Open
Abstract
Anaplastic large cell lymphoma (ALCL), an aggressive CD30-positive T-cell lymphoma, comprises systemic anaplastic lymphoma kinase (ALK)-positive, and ALK-negative, primary cutaneous and breast implant-associated ALCL. Prognosis of some ALCL subgroups is still unsatisfactory, and already in second line effective treatment options are lacking. To identify genes defining ALCL cell state and dependencies, we here characterize super-enhancer regions by genome-wide H3K27ac ChIP-seq. In addition to known ALCL key regulators, the AP-1-member BATF3 and IL-2 receptor (IL2R)-components are among the top hits. Specific and high-level IL2R expression in ALCL correlates with BATF3 expression. Confirming a regulatory link, IL-2R-expression decreases following BATF3 knockout, and BATF3 is recruited to IL2R regulatory regions. Functionally, IL-2, IL-15 and Neo-2/15, a hyper-stable IL-2/IL-15 mimic, accelerate ALCL growth and activate STAT1, STAT5 and ERK1/2. In line, strong IL-2Rα-expression in ALCL patients is linked to more aggressive clinical presentation. Finally, an IL-2Rα-targeting antibody-drug conjugate efficiently kills ALCL cells in vitro and in vivo. Our results highlight the importance of the BATF3/IL-2R-module for ALCL biology and identify IL-2Rα-targeting as a promising treatment strategy for ALCL. Anaplastic large cell lymphoma (ALCL) is an aggressive T-cell lymphoma often with poor prognosis. To identify genes defining ALCL cell state and dependencies, the authors here characterize ALCL-specific super-enhancers and describe the BATF3/IL-2R−module as a therapeutic opportunity for ALCL.
Collapse
Affiliation(s)
- Huan-Chang Liang
- Department of Pathology, Unit of Experimental and Laboratory Animal Pathology, Medical University of Vienna, Vienna, Austria.,European Research Initiative on ALK-Related Malignancies (ERIA), Suzanne Turner, Cambridge, UK
| | - Mariantonia Costanza
- European Research Initiative on ALK-Related Malignancies (ERIA), Suzanne Turner, Cambridge, UK.,Group Biology of Malignant Lymphomas, Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin, Germany.,Department of Hematology, Oncology, and Cancer Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany, and Experimental and Clinical Research Center (ECRC), a joint cooperation between the MDC and Charité, Berlin, Germany
| | - Nicole Prutsch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Mark W Zimmerman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Elisabeth Gurnhofer
- Department of Pathology, Unit of Experimental and Laboratory Animal Pathology, Medical University of Vienna, Vienna, Austria
| | - Ivonne A Montes-Mojarro
- European Research Initiative on ALK-Related Malignancies (ERIA), Suzanne Turner, Cambridge, UK.,Institute of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Brian J Abraham
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nina Prokoph
- European Research Initiative on ALK-Related Malignancies (ERIA), Suzanne Turner, Cambridge, UK.,Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Stefan Stoiber
- Department of Pathology, Unit of Experimental and Laboratory Animal Pathology, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory (CDL) for Applied Metabolomics, Medical University of Vienna, Vienna, Austria
| | - Simone Tangermann
- Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Cosimo Lobello
- European Research Initiative on ALK-Related Malignancies (ERIA), Suzanne Turner, Cambridge, UK.,Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Jan Oppelt
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | | | - Thomas Hielscher
- German Cancer Consortium (DKTK) German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Shahid Pervez
- Department of Pathology and Laboratory Medicine, Aga Khan University Hospital, Karachi, Pakistan
| | - Wolfram Klapper
- Department of Pathology, Hematopathology Section, University Hospital Schleswig-Holstein Campus Kiel, Kiel, Germany
| | | | - Daniel-Adriano Silva
- Institute for Protein Design, University of Washington, Seattle, WA, USA.,Department of Biochemistry, University of Washington, Seattle, WA, USA.,Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - K Christopher Garcia
- Departments of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, WA, USA.,Department of Biochemistry, University of Washington, Seattle, WA, USA.,Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Martin Janz
- Group Biology of Malignant Lymphomas, Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin, Germany.,Department of Hematology, Oncology, and Cancer Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany, and Experimental and Clinical Research Center (ECRC), a joint cooperation between the MDC and Charité, Berlin, Germany
| | - Nikolai Schleussner
- Group Biology of Malignant Lymphomas, Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin, Germany.,Department of Hematology, Oncology, and Cancer Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany, and Experimental and Clinical Research Center (ECRC), a joint cooperation between the MDC and Charité, Berlin, Germany
| | - Falko Fend
- European Research Initiative on ALK-Related Malignancies (ERIA), Suzanne Turner, Cambridge, UK.,Institute of Pathology and Neuropathology, University Hospital and Comprehensive Cancer Center Tübingen, Tübingen, Germany
| | - Šárka Pospíšilová
- European Research Initiative on ALK-Related Malignancies (ERIA), Suzanne Turner, Cambridge, UK.,Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic.,Department of Internal Medicine-Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Andrea Janiková
- European Research Initiative on ALK-Related Malignancies (ERIA), Suzanne Turner, Cambridge, UK.,Department of Internal Medicine-Hematology and Oncology, University Hospital Brno, Brno, Czech Republic
| | - Jacqueline Wallwitz
- Department of Pharmacology, Physiology and Microbiology, Division Pharmacology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Dagmar Stoiber
- Department of Pharmacology, Physiology and Microbiology, Division Pharmacology, Karl Landsteiner University of Health Sciences, Krems, Austria
| | - Ingrid Simonitsch-Klupp
- Department of Pathology, Unit of Experimental and Laboratory Animal Pathology, Medical University of Vienna, Vienna, Austria
| | - Lorenzo Cerroni
- Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Stefano Pileri
- Division of Haematopathology, European Institute of Oncology IRCCS, Milan, Italy
| | - Laurence de Leval
- Institute of Pathology, Lausanne University Hospital (CHUV) and Lausanne University, Lausanne, Switzerland
| | - David Sibon
- Hematology Department, Necker University Hospital, Assistance Publique-Hôpitaux de Paris, and Institut Necker-Enfants Malades, INSERM UMR1151 (Normal and pathological lymphoid differentiation), Université de Paris, Paris, France
| | - Virginie Fataccioli
- Department of Pathology, Henri Mondor University Hospital, AP-HP, INSERM U955, University Paris East, Créteil, France
| | - Philippe Gaulard
- Department of Pathology, Henri Mondor University Hospital, AP-HP, INSERM U955, University Paris East, Créteil, France
| | - Chalid Assaf
- Department of Dermatology, HELIOS Hospital Krefeld, Krefeld, Department of Dermatology and Allergy, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Fabian Knörr
- Pediatric Hematology and Oncology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Christine Damm-Welk
- European Research Initiative on ALK-Related Malignancies (ERIA), Suzanne Turner, Cambridge, UK.,Pediatric Hematology and Oncology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Wilhelm Woessmann
- European Research Initiative on ALK-Related Malignancies (ERIA), Suzanne Turner, Cambridge, UK.,Pediatric Hematology and Oncology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Suzanne D Turner
- European Research Initiative on ALK-Related Malignancies (ERIA), Suzanne Turner, Cambridge, UK.,Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.,Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - A Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Stephan Mathas
- European Research Initiative on ALK-Related Malignancies (ERIA), Suzanne Turner, Cambridge, UK. .,Group Biology of Malignant Lymphomas, Max-Delbrück-Center (MDC) for Molecular Medicine, Berlin, Germany. .,Department of Hematology, Oncology, and Cancer Immunology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany, and Experimental and Clinical Research Center (ECRC), a joint cooperation between the MDC and Charité, Berlin, Germany. .,German Cancer Consortium (DKTK) German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Lukas Kenner
- Department of Pathology, Unit of Experimental and Laboratory Animal Pathology, Medical University of Vienna, Vienna, Austria. .,European Research Initiative on ALK-Related Malignancies (ERIA), Suzanne Turner, Cambridge, UK. .,Christian Doppler Laboratory (CDL) for Applied Metabolomics, Medical University of Vienna, Vienna, Austria. .,Unit of Laboratory Animal Pathology, University of Veterinary Medicine Vienna, Vienna, Austria. .,Center for Biomarker Research in Medicine (CBMed) Core Lab 2, Medical University of Vienna, Vienna, Austria.
| | - Olaf Merkel
- Department of Pathology, Unit of Experimental and Laboratory Animal Pathology, Medical University of Vienna, Vienna, Austria. .,European Research Initiative on ALK-Related Malignancies (ERIA), Suzanne Turner, Cambridge, UK.
| |
Collapse
|
37
|
Wutschka J, Kast B, Sator-Schmitt M, Appak-Baskoy S, Hess J, Sinn HP, Angel P, Schorpp-Kistner M. JUNB suppresses distant metastasis by influencing the initial metastatic stage. Clin Exp Metastasis 2021; 38:411-423. [PMID: 34282521 PMCID: PMC8318945 DOI: 10.1007/s10585-021-10108-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 06/23/2021] [Indexed: 01/01/2023]
Abstract
The complex interactions between cells of the tumor microenvironment and cancer cells are considered a major determinant of cancer progression and metastasis. Yet, our understanding of the mechanisms of metastatic disease is not sufficient to successfully treat patients with advanced-stage cancer. JUNB is a member of the AP-1 transcription factor family shown to be frequently deregulated in human cancer and associated with invasion and metastasis. A strikingly high stromal JUNB expression in human breast cancer samples prompted us to functionally investigate the consequences of JUNB loss in cells of the tumor microenvironment on cancer progression and metastasis in mice. To adequately mimic the clinical situation, we applied a syngeneic spontaneous breast cancer metastasis model followed by primary tumor resection and identified stromal JUNB as a potent suppressor of distant metastasis. Comprehensive characterization of the JUNB-deficient tumor microenvironment revealed a strong influx of myeloid cells into primary breast tumors and lungs at early metastatic stage. In these infiltrating neutrophils, BV8 and MMP9, proteins promoting angiogenesis and tissue remodeling, were specifically upregulated in a JUNB-dependent manner. Taken together, we established stromal JUNB as a strong suppressor of distant metastasis. Consequently, therapeutic strategies targeting AP-1 should be carefully designed not to interfere with stromal JUNB expression as this may be detrimental for cancer patients.
Collapse
Affiliation(s)
- Juliane Wutschka
- Division of Signal Transduction and Growth Control, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Faculty of Biosciences, University Heidelberg, Heidelberg, Germany
| | - Bettina Kast
- Division of Signal Transduction and Growth Control, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Melanie Sator-Schmitt
- Division of Signal Transduction and Growth Control, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Sila Appak-Baskoy
- Division of Signal Transduction and Growth Control, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
- Department of Chemistry and Biology, Ryerson University, Toronto, ON, Canada
- iBEST (Institute of Biomedical Engineering, Science and Technology), Toronto, ON, Canada
| | - Jochen Hess
- Department of Otorhinolaryngology, Head and Neck Surgery, Heidelberg University Hospital, Heidelberg, Germany
- Research Group Molecular Mechanisms of Head and Neck Tumors, DKFZ, Heidelberg, Germany
| | - Hans-Peter Sinn
- Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Peter Angel
- Division of Signal Transduction and Growth Control, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Marina Schorpp-Kistner
- Division of Signal Transduction and Growth Control, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
38
|
Expression of the prosurvival kinase HCK requires PAX5 and mutated MYD88 signaling in MYD88-driven B-cell lymphomas. Blood Adv 2021; 4:141-153. [PMID: 31935288 DOI: 10.1182/bloodadvances.2019000947] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/12/2019] [Indexed: 11/20/2022] Open
Abstract
Hematopoietic cell kinase (HCK) is an SRC family member that is aberrantly upregulated in B-cell neoplasms dependent on MYD88-activating mutations and supports their growth and survival. We showed herein that activation of Toll-like receptor (TLR) signaling in MYD88 wild-type B cells also triggered HCK expression, denoting on path regulatory function for HCK by MYD88. To clarify the signaling cascades responsible for aberrant HCK expression in MYD88-mutated B-cell lymphomas, we performed promoter-binding transcription factor (TF) profiling, PROMO weighted TF consensus binding motif analysis, and chromatin immunoprecipitation studies. We identified PAX5, and the mutated MYD88 downstream signaling mediators STAT3, NF-κB, and AP-1, as important drivers of HCK transcription. Knockdown of PAX5, a crucial regulatory factor required for B-cell commitment and identity, abrogated HCK transcription in MYD88-mutated lymphoma cells. Among AP-1 complex components, JunB showed greatest relevance to TLR/MYD88 signaling and HCK transcription regulation. In MYD88-mutated Waldenström macroglobulinemia and activated B-cell-diffuse large B-cell lymphoma cells, knockdown of MYD88 reduced phosphorylation of JunB but not c-Jun, and knockdown of JunB reduced HCK protein levels. Deletion of STAT3, NF-κB, and AP-1 binding sites reduced corresponding TFs binding and HCK promoter activity. Moreover, inhibitors to STAT3, NF-κB, and AP-1 reduced HCK promoter activity and messenger RNA levels, particularly in combination, in MYD88-mutated lymphoma cells. The findings provide new insights into the transcriptional regulation of HCK prosurvival signaling by mutated MYD88, and the importance of JunB as a downstream mediator of the MYD88-directed signaling apparatus.
Collapse
|
39
|
Shao C, Huang Y, Fu B, Pan S, Zhao X, Zhang N, Wang W, Zhang Z, Qiu Y, Wang R, Jin M, Kong D. Targeting c-Jun in A549 Cancer Cells Exhibits Antiangiogenic Activity In Vitro and In Vivo Through Exosome/miRNA-494-3p/PTEN Signal Pathway. Front Oncol 2021; 11:663183. [PMID: 33898323 PMCID: PMC8062808 DOI: 10.3389/fonc.2021.663183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/18/2021] [Indexed: 01/08/2023] Open
Abstract
The oncogene c-Jun is activated by Jun N-terminal kinase (JNK). Exosomes are nanometer-sized membrane vesicles released from a variety of cell types, and are essential for cell-to-cell communication. By using specific JNK inhibitor SP600125 or CRISPR/Cas9 to delete c-Jun, we found that exosomes from SP600125-treated A549 cancer cells (Exo-SP) or from c-Jun-KO-A549 cells (Exo-c-Jun-KO) dramatically inhibited tube formation of HUVECs. And the miR-494 levels in SP600125 treated or c-Jun-KO A549 cells, Exo-SP or Exo-c-Jun-KO, and HUVECs treated with Exo-SP or Exo-c-Jun-KO were significantly decreased. Meanwhile, Exo-SP and Exo-c-Jun-KO enhanced expression of phosphatase and tensin homolog deleted on chromosome ten (PTEN). Addition of miR-494 agomir in Exo-c-Jun-KO treated HUVECs inhibited PTEN expression and promoted tube formation, suggesting the target of miR-494 might be PTEN in HUVECs. Moreover, A549 tumor xenograft model and Matrigel plug assay demonstrated that Exo-c-Jun-KO attenuated tumor growth and angiogenesis through reducing miR-494. Taken together, inhibition of c-Jun in A549 cancer cells exhibited antiangiogenic activity in vitro and in vivo through exosome/miRNA-494-3p/PTEN signal pathway.
Collapse
Affiliation(s)
- Chen Shao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Yingying Huang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Bingjie Fu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Shunli Pan
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Xiaoxia Zhao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ning Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Wei Wang
- Department of Otorhinolaryngology Head and Neck, Institute of Otorhinolaryngology, Tianjin First Central Hospital, Tianjin, China
| | - Zhe Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Yuling Qiu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Ran Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Meihua Jin
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Dexin Kong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China.,School of Medicine, Tianjin Tianshi College, Tianyuan University, Tianjin, China
| |
Collapse
|
40
|
Weniger MA, Küppers R. Molecular biology of Hodgkin lymphoma. Leukemia 2021; 35:968-981. [PMID: 33686198 PMCID: PMC8024192 DOI: 10.1038/s41375-021-01204-6] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/01/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
Classical Hodgkin lymphoma (cHL) is unique among lymphoid malignancies in several key biological features. (i) The Hodgkin and Reed-Sternberg (HRS) tumor cells are rare among an extensive and complex microenvironment. (ii) They derive from B cells, but have largely lost the B-cell typical gene expression program. (iii) Their specific origin appears to be pre-apoptotic germinal center (GC) B cells. (iv) They consistently develop bi- or multinucleated Reed-Sternberg cells from mononuclear Hodgkin cells. (v) They show constitutive activation of numerous signaling pathways. Recent studies have begun to uncover the basis of these specific features of cHL: HRS cells actively orchestrate their complex microenvironment and attract many distinct subsets of immune cells into the affected tissues, to support their survival and proliferation, and to create an immunosuppressive environment. Reed-Sternberg cells are generated by incomplete cytokinesis and refusion of Hodgkin cells. Epstein-Barr virus (EBV) plays a major role in the rescue of crippled GC B cells from apoptosis and hence is a main player in early steps of lymphomagenesis of EBV+ cHL cases. The analysis of the landscape of genetic lesions in HRS cells so far did not reveal any highly recurrent HRS cell-specific lesions, but major roles of genetic lesions in members of the NF-κB and JAK/STAT pathways and of factors of immune evasion. It is perhaps the combination of the genetic lesions and the peculiar cellular origin of HRS cells that are disease defining. A combination of such genetic lesions and multiple cellular interactions with cells in the microenvironment causes the constitutive activation of many signaling pathways, often interacting in complex fashions. In nodular lymphocyte predominant Hodgkin lymphoma, the GC B cell-derived tumor cells have largely retained their typical GC B-cell expression program and follicular microenvironment. For IgD-positive cases, bacterial antigen triggering has recently been implicated in early stages of its pathogenesis.
Collapse
Affiliation(s)
- Marc A Weniger
- Medical Faculty, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Ralf Küppers
- Medical Faculty, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
41
|
Pawlonka J, Rak B, Ambroziak U. The regulation of cyclin D promoters - review. Cancer Treat Res Commun 2021; 27:100338. [PMID: 33618151 DOI: 10.1016/j.ctarc.2021.100338] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/06/2021] [Accepted: 02/15/2021] [Indexed: 11/25/2022]
Abstract
Cyclins are key regulators of cell cycle progression and survival. Particularly cyclins D (cyclin D1, D2, and D3) act in response to the mitogenic stimulation and are pivotal mediators between proliferative pathways and the nuclear cell cycle machinery. Dysregulation of cyclins expression results in impaired development, abnormal cell growth or tumorigenesis. In this review we summarize current knowledge about regulatory role of the cyclin D promoters, transcriptional factors: regulators, co-activators and adaptor proteins necessary to their activation. We focused on the intracellular signaling pathways vital to cell growth, differentiation and apoptosis including transcription factor families: activator protein 1 (AP1), nuclear factor (NFκB), signal transducer and activator of transcription (STAT), cAMP response element-binding protein (CREB) and Sp/NF-Y, with a special insight into the tissue specific cyclin representation.
Collapse
Affiliation(s)
- Jan Pawlonka
- Department of Internal Medicine and Endocrinology, Medical University of Warsaw, Warsaw
| | - Beata Rak
- Department of Internal Medicine and Endocrinology, Medical University of Warsaw, Warsaw; Department of Genomic Medicine, Medical University of Warsaw, Warsaw.
| | - Urszula Ambroziak
- Department of Internal Medicine and Endocrinology, Medical University of Warsaw, Warsaw
| |
Collapse
|
42
|
Wu Z, Nicoll M, Ingham RJ. AP-1 family transcription factors: a diverse family of proteins that regulate varied cellular activities in classical hodgkin lymphoma and ALK+ ALCL. Exp Hematol Oncol 2021; 10:4. [PMID: 33413671 PMCID: PMC7792353 DOI: 10.1186/s40164-020-00197-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 01/07/2023] Open
Abstract
Classical Hodgkin lymphoma (cHL) and anaplastic lymphoma kinase-positive, anaplastic large cell lymphoma (ALK+ ALCL) are B and T cell lymphomas respectively, which express the tumour necrosis factor receptor superfamily member, CD30. Another feature shared by cHL and ALK+ ALCL is the aberrant expression of multiple members of the activator protein-1 (AP-1) family of transcription factors which includes proteins of the Jun, Fos, ATF, and Maf subfamilies. In this review, we highlight the varied roles these proteins play in the pathobiology of these lymphomas including promoting proliferation, suppressing apoptosis, and evading the host immune response. In addition, we discuss factors contributing to the elevated expression of these transcription factors in cHL and ALK+ ALCL. Finally, we examine therapeutic strategies for these lymphomas that exploit AP-1 transcriptional targets or the signalling pathways they regulate.
Collapse
Affiliation(s)
- Zuoqiao Wu
- grid.17089.37Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada ,grid.17063.330000 0001 2157 2938Present Address: Department of Medicine, University of Toronto, Toronto, Canada
| | - Mary Nicoll
- grid.17089.37Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada ,grid.14709.3b0000 0004 1936 8649Present Address: Department of Biology, McGill University, Montreal, Canada
| | - Robert J. Ingham
- grid.17089.37Department of Medical Microbiology and Immunology, Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada
| |
Collapse
|
43
|
Venkatraman S, Meller J, Hongeng S, Tohtong R, Chutipongtanate S. Transcriptional Regulation of Cancer Immune Checkpoints: Emerging Strategies for Immunotherapy. Vaccines (Basel) 2020; 8:E735. [PMID: 33291616 PMCID: PMC7761936 DOI: 10.3390/vaccines8040735] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 12/19/2022] Open
Abstract
The study of immune evasion has gained a well-deserved eminence in cancer research by successfully developing a new class of therapeutics, immune checkpoint inhibitors, such as pembrolizumab and nivolumab, anti-PD-1 antibodies. By aiming at the immune checkpoint blockade (ICB), these new therapeutics have advanced cancer treatment with notable increases in overall survival and tumor remission. However, recent reports reveal that 40-60% of patients fail to benefit from ICB therapy due to acquired resistance or tumor relapse. This resistance may stem from increased expression of co-inhibitory immune checkpoints or alterations in the tumor microenvironment that promotes immune suppression. Because these mechanisms are poorly elucidated, the transcription factors that regulate immune checkpoints, known as "master regulators", have garnered interest. These include AP-1, IRF-1, MYC, and STAT3, which are known to regulate PD/PD-L1 and CTLA-4. Identifying these and other potential master regulators as putative therapeutic targets or biomarkers can be facilitated by mining cancer literature, public datasets, and cancer genomics resources. In this review, we describe recent advances in master regulator identification and characterization of the mechanisms underlying immune checkpoints regulation, and discuss how these master regulators of immune checkpoint molecular expression can be targeted as a form of auxiliary therapeutic strategy to complement traditional immunotherapy.
Collapse
Affiliation(s)
- Simran Venkatraman
- Graduate Program in Molecular Medicine, Faculty of Science Joint Program Faculty of Medicine Ramathibodi Hospital, Faculty of Medicine Siriraj Hospital, Faculty of Dentistry, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
| | - Jarek Meller
- Departments of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45267, USA
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Rutaiwan Tohtong
- Graduate Program in Molecular Medicine, Faculty of Science Joint Program Faculty of Medicine Ramathibodi Hospital, Faculty of Medicine Siriraj Hospital, Faculty of Dentistry, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand;
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Somchai Chutipongtanate
- Pediatric Translational Research Unit, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
44
|
Wang H, Zhan H, Jiang X, Jin L, Zhao T, Xie S, Liu W, Jia Y, Liang H, Zeng H. A Novel miRNA Restores the Chemosensitivity of AML Cells Through Targeting FosB. Front Med (Lausanne) 2020; 7:582923. [PMID: 33123543 PMCID: PMC7573296 DOI: 10.3389/fmed.2020.582923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/26/2020] [Indexed: 11/13/2022] Open
Abstract
The heterogeneous nature of acute myeloid leukemia (AML) and its poor prognosis necessitate therapeutic improvement. Current advances in AML research yield important insights regarding both AML genetics and epigenetics. MicroRNAs (miRNAs) play important roles in cell proliferation, differentiation, and survival and may be useful for AML diagnosis and prognosis. In this study, a novel miRNA, hsa-miR-12462, was identified in bone marrow (BM) samples from AML patients at diagnosis by small RNA sequencing. A significant higher level of hsa-miR-12462 was found in patients who achieve complete remission (AML-CR) after induction therapy compared with those who suffer relapse/refractory (AML-RR). FosB was predicted to be the target of hsa-miR-12462 through RNA sequencing, bioinformatics analysis, and protein–protein interaction (PPI) network analysis and then verified by luciferase activity assay. T-5224, the inhibitor of FosB, was administered to AML cell lines, which could inhibit cell proliferation, promote apoptosis, and restore the sensitivity of AML cells to cytarabine (Ara-C). In summary, a higher level of hsa-miR-12462 in AML cells is associated with increased sensitivity to Ara-C via targeting FosB.
Collapse
Affiliation(s)
- Huiwen Wang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Huien Zhan
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xinya Jiang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Lilian Jin
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Tianming Zhao
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shurong Xie
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Wei Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Yan Jia
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Liang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
| | - Hui Zeng
- Department of Hematology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| |
Collapse
|
45
|
Brennan A, Leech JT, Kad NM, Mason JM. Selective antagonism of cJun for cancer therapy. J Exp Clin Cancer Res 2020; 39:184. [PMID: 32917236 PMCID: PMC7488417 DOI: 10.1186/s13046-020-01686-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/20/2020] [Indexed: 01/10/2023] Open
Abstract
The activator protein-1 (AP-1) family of transcription factors modulate a diverse range of cellular signalling pathways into outputs which can be oncogenic or anti-oncogenic. The transcription of relevant genes is controlled by the cellular context, and in particular by the dimeric composition of AP-1. Here, we describe the evidence linking cJun in particular to a range of cancers. This includes correlative studies of protein levels in patient tumour samples and mechanistic understanding of the role of cJun in cancer cell models. This develops an understanding of cJun as a focal point of cancer-altered signalling which has the potential for therapeutic antagonism. Significant work has produced a range of small molecules and peptides which have been summarised here and categorised according to the binding surface they target within the cJun-DNA complex. We highlight the importance of selectively targeting a single AP-1 family member to antagonise known oncogenic function and avoid antagonism of anti-oncogenic function.
Collapse
Affiliation(s)
- Andrew Brennan
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - James T Leech
- School of Biosciences, University of Kent, Canterbury, CT2 7NH, UK
| | - Neil M Kad
- School of Biosciences, University of Kent, Canterbury, CT2 7NH, UK
| | - Jody M Mason
- Department of Biology & Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
46
|
Wang Y, Wang C, Cai X, Mou C, Cui X, Zhang Y, Ge F, Dong H, Hao Y, Cai L, Wu S, Feng C, Chen J, Li J, Xu W, Fan L, Xie W, Tong Y, Gu HF, Wu L. IL-21 Stimulates the expression and activation of cell cycle regulators and promotes cell proliferation in EBV-positive diffuse large B cell lymphoma. Sci Rep 2020; 10:12326. [PMID: 32704112 PMCID: PMC7378064 DOI: 10.1038/s41598-020-69227-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022] Open
Abstract
The clinical features of EBV-positive diffuse large B cell lymphoma (DLBCL) indicate a poorer prognosis than EBV-negative DLBCL. Currently, there is no efficacious drug for EBV-positive DLBCL. The cytokine interleukin-21 (IL-21) has been reported to be pro-apoptotic in DLBCL cell lines and is being explored as a new therapeutic strategy for this type of lymphomas. However, our previous studies showed that IL-21 stimulation of EBV-positive DLBCL cell lines leads to increased proliferation. Here, analysis of a rare clinical sample of EBV-positive DLBCL, in combination with a NOD/SCID mouse xenograft model, confirmed the effect of IL-21 on the proliferation of EBV-positive DLBCL cells. Using RNA-sequencing, we identified the pattern of differentially-expressed genes following IL-21 treatment and verified the expression of key genes at the protein level using western blotting. We found that IL-21 upregulates expression of the host MYC and AP-1 (composed of related Jun and Fos family proteins) and STAT3 phosphorylation, as well as expression of the viral LMP-1 protein. These proteins are known to promote the G1/S phase transition to accelerate cell cycle progression. Furthermore, in NOD/SCID mouse xenograft model experiments, we found that IL-21 treatment increases glucose uptake and angiogenesis in EBV-positive DLBCL tumours. Although more samples are needed to validate these observations, our study reconfirms the adverse effects of IL-21 on EBV-positive DLBCL, which has implications for the drug development of DLBCL.
Collapse
Affiliation(s)
- Yuxuan Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Chengcheng Wang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiyunyi Cai
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Chang Mou
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Xueting Cui
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Yingying Zhang
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Feng Ge
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Hao Dong
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuanyuan Hao
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Lei Cai
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Shuting Wu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Chenjie Feng
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Jiamin Chen
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China
| | - Jianyong Li
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Wei Xu
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China
| | - Lei Fan
- Department of Hematology, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Province Hospital, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing, 210029, China.
| | - Weijia Xie
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, China
| | - Yue Tong
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing, China.,School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Harvest Feng Gu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Liang Wu
- Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
47
|
The immune landscape and response to immune checkpoint blockade therapy in lymphoma. Blood 2020; 135:523-533. [PMID: 31790142 DOI: 10.1182/blood.2019000847] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/22/2019] [Indexed: 12/18/2022] Open
Abstract
The clinical development of effective cancer immunotherapies, along with advances in genomic analysis, has led to the identification of tumor environmental features that predict for sensitivity to immune checkpoint blockade therapy (CBT). Early-phase clinical trial results have demonstrated the remarkable effectiveness of CBT in specific lymphoma subtypes, including classical Hodgkin lymphoma and primary mediastinal B-cell lymphoma. Conversely, CBT has been relatively disappointing in follicular lymphoma and diffuse large B-cell lymphoma. These clinical observations, coupled with important scientific discoveries, have uncovered salient features of the lymphoma microenvironment that correlate with immunotherapy response in patients. For example, classical Hodgkin lymphoma is characterized by an inflammatory environment, genetic alterations that facilitate escape from immune attack, and sensitivity to PD-1 blockade therapy. On the other hand, for lymphomas in which measures of immune surveillance are lacking, including follicular lymphoma and most diffuse large B-cell lymphomas, anti-PD-1 therapy has been less effective. An improved understanding of the immune landscapes of these lymphomas is needed to define subsets that might benefit from CBT. In this article, we describe the immune environments associated with major B-cell lymphomas with an emphasis on the immune escape pathways orchestrated by these diseases. We also discuss how oncogenic alterations in lymphoma cells may affect the cellular composition of the immune environment and ultimately, vulnerability to CBT. Finally, we highlight key areas for future investigation, including the need for the development of biomarkers that predict for sensitivity to CBT in lymphoma patients.
Collapse
|
48
|
A Driver Never Works Alone-Interplay Networks of Mutant p53, MYC, RAS, and Other Universal Oncogenic Drivers in Human Cancer. Cancers (Basel) 2020; 12:cancers12061532. [PMID: 32545208 PMCID: PMC7353041 DOI: 10.3390/cancers12061532] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
The knowledge accumulating on the occurrence and mechanisms of the activation of oncogenes in human neoplasia necessitates an increasingly detailed understanding of their systemic interactions. None of the known oncogenic drivers work in isolation from the other oncogenic pathways. The cooperation between these pathways is an indispensable element of a multistep carcinogenesis, which apart from inactivation of tumor suppressors, always includes the activation of two or more proto-oncogenes. In this review we focus on representative examples of the interaction of major oncogenic drivers with one another. The drivers are selected according to the following criteria: (1) the highest frequency of known activation in human neoplasia (by mutations or otherwise), (2) activation in a wide range of neoplasia types (universality) and (3) as a part of a distinguishable pathway, (4) being a known cause of phenotypic addiction of neoplastic cells and thus a promising therapeutic target. Each of these universal oncogenic factors—mutant p53, KRAS and CMYC proteins, telomerase ribonucleoprotein, proteasome machinery, HSP molecular chaperones, NF-κB and WNT pathways, AP-1 and YAP/TAZ transcription factors and non-coding RNAs—has a vast network of molecular interrelations and common partners. Understanding this network allows for the hunt for novel therapeutic targets and protocols to counteract drug resistance in a clinical neoplasia treatment.
Collapse
|
49
|
Choi H, Song H, Jung YW. The Roles of CCR7 for the Homing of Memory CD8+ T Cells into Their Survival Niches. Immune Netw 2020; 20:e20. [PMID: 32655968 PMCID: PMC7327150 DOI: 10.4110/in.2020.20.e20] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/04/2020] [Accepted: 05/09/2020] [Indexed: 12/11/2022] Open
Abstract
Memory CD8+ T cells in the immune system are responsible for the removal of external Ags for a long period of time to protect against re-infection. Naïve to memory CD8+ T cell differentiation and memory CD8+ T cell maintenance require many different factors including local environmental factors. Thus, it has been suggested that the migration of memory CD8+ T cells into specific microenvironments alters their longevity and functions. In this review, we have summarized the subsets of memory CD8+ T cells based on their migratory capacities and described the niche hypothesis for their survival. In addition, the basic roles of CCR7 in conjunction with the migration of memory CD8+ T cells and recent understandings of their survival niches have been introduced. Finally, the applications of altering CCR7 signaling have been discussed.
Collapse
Affiliation(s)
- Hanbyeul Choi
- Department of Pharmacy, Korea University, Sejong 30019, Korea
| | - Heonju Song
- Department of Pharmacy, Korea University, Sejong 30019, Korea
| | - Yong Woo Jung
- Department of Pharmacy, Korea University, Sejong 30019, Korea
| |
Collapse
|
50
|
Hajifathali A, Parkhideh S, Kazemi MH, Chegeni R, Roshandel E, Gholizadeh M. Immune checkpoints in hematologic malignancies: What made the immune cells and clinicians exhausted! J Cell Physiol 2020; 235:9080-9097. [DOI: 10.1002/jcp.29769] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/27/2020] [Accepted: 04/27/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Abbas Hajifathali
- Hematopoietic Stem Cell Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Sayeh Parkhideh
- Hematopoietic Stem Cell Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Mohammad H. Kazemi
- Hematopoietic Stem Cell Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Rouzbeh Chegeni
- The Michener Institute of Education at University Health Network Toronto Canada
| | - Elham Roshandel
- Hematopoietic Stem Cell Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| | - Majid Gholizadeh
- Hematopoietic Stem Cell Research Center Shahid Beheshti University of Medical Sciences Tehran Iran
| |
Collapse
|