1
|
Shin Y, Park CM, Kim DE, Kim S, Lee SY, Lee JY, Jeon WH, Kim HG, Bae S, Yoon CH. Discovery of new acetamide derivatives of 5-indole-1,3,4-oxadiazol-2-thiol as inhibitors of HIV-1 Tat-mediated viral transcription. Antimicrob Agents Chemother 2024; 68:e0064324. [PMID: 39230310 PMCID: PMC11459959 DOI: 10.1128/aac.00643-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/09/2024] [Indexed: 09/05/2024] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) encodes a transcriptional factor called Tat, which is critical for viral transcription. Tat-mediated transcription is highly ordered apart from the cellular manner; therefore, it is considered a target for developing anti-HIV-1 drugs. However, drugs targeting Tat-mediated viral transcription are not yet available. Our high-throughput screen of a compound library employing a dual-reporter assay identified a 1,3,4-oxadiazole scaffold against Tat and HIV-1 infection. Furthermore, a serial structure-activity relation (SAR) study performed with biological assays found 1,3,4-oxadiazole derivatives (9 and 13) containing indole and acetamide that exhibited potent inhibitory effects on HIV-1 infectivity, with half-maximal effective concentrations (EC50) of 0.17 (9) and 0.24 µM (13), respectively. The prominent derivatives specifically interfered with the viral transcriptional step without targeting other infection step(s) and efficiently inhibited the HIV-1 replication cycle in the T cell lines and peripheral blood mononuclear cells infected with HIV-1. Additionally, compared to the wild type, the compounds exhibited similar potency against anti-retroviral drug-resistant HIV-1 strains. In a series of mode-of-action studies, the compounds inhibited the ejection of histone H3 for facilitating viral transcription on the long-terminal repeat (LTR) promoter. Furthermore, SAHA (a histone deacetylase inhibitor) treatment abolished the compound potency, revealing that the compounds can possibly target Tat-regulated epigenetic modulation of LTR to inhibit viral transcription. Overall, our screening identified novel 1,3,4-oxadiazole compounds that inhibited HIV-1 Tat, and subsequent SAR-based optimization led to the derivatives 9 and 13 development that could be a promising scaffold for developing a new class of therapeutic agents for HIV-1 infection.
Collapse
Affiliation(s)
- YoungHyun Shin
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Chul Min Park
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Dong-Eun Kim
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Sungmin Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Sang-Yeop Lee
- Research Center for Bioconvergence Analysis, Ochang Center, Korea Basic Science Institute, Cheongju-si, Republic of Korea
| | - Jun Young Lee
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Won-Hui Jeon
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Hong Gi Kim
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
- Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Songmee Bae
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, Korea National Institute of Health, Cheongju, Republic of Korea
| | - Cheol-Hee Yoon
- Division of Chronic Viral Diseases, Center for Emerging Virus Research, Korea National Institute of Health, Cheongju, Republic of Korea
| |
Collapse
|
2
|
Mbonye U, Karn J. The cell biology of HIV-1 latency and rebound. Retrovirology 2024; 21:6. [PMID: 38580979 PMCID: PMC10996279 DOI: 10.1186/s12977-024-00639-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024] Open
Abstract
Transcriptionally latent forms of replication-competent proviruses, present primarily in a small subset of memory CD4+ T cells, pose the primary barrier to a cure for HIV-1 infection because they are the source of the viral rebound that almost inevitably follows the interruption of antiretroviral therapy. Over the last 30 years, many of the factors essential for initiating HIV-1 transcription have been identified in studies performed using transformed cell lines, such as the Jurkat T-cell model. However, as highlighted in this review, several poorly understood mechanisms still need to be elucidated, including the molecular basis for promoter-proximal pausing of the transcribing complex and the detailed mechanism of the delivery of P-TEFb from 7SK snRNP. Furthermore, the central paradox of HIV-1 transcription remains unsolved: how are the initial rounds of transcription achieved in the absence of Tat? A critical limitation of the transformed cell models is that they do not recapitulate the transitions between active effector cells and quiescent memory T cells. Therefore, investigation of the molecular mechanisms of HIV-1 latency reversal and LRA efficacy in a proper physiological context requires the utilization of primary cell models. Recent mechanistic studies of HIV-1 transcription using latently infected cells recovered from donors and ex vivo cellular models of viral latency have demonstrated that the primary blocks to HIV-1 transcription in memory CD4+ T cells are restrictive epigenetic features at the proviral promoter, the cytoplasmic sequestration of key transcription initiation factors such as NFAT and NF-κB, and the vanishingly low expression of the cellular transcription elongation factor P-TEFb. One of the foremost schemes to eliminate the residual reservoir is to deliberately reactivate latent HIV-1 proviruses to enable clearance of persisting latently infected cells-the "Shock and Kill" strategy. For "Shock and Kill" to become efficient, effective, non-toxic latency-reversing agents (LRAs) must be discovered. Since multiple restrictions limit viral reactivation in primary cells, understanding the T-cell signaling mechanisms that are essential for stimulating P-TEFb biogenesis, initiation factor activation, and reversing the proviral epigenetic restrictions have become a prerequisite for the development of more effective LRAs.
Collapse
Affiliation(s)
- Uri Mbonye
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA.
| |
Collapse
|
3
|
Dynamics of histone acetylation during human early embryogenesis. Cell Discov 2023; 9:29. [PMID: 36914622 PMCID: PMC10011383 DOI: 10.1038/s41421-022-00514-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 12/28/2022] [Indexed: 03/16/2023] Open
Abstract
It remains poorly understood about the regulation of gene and transposon transcription during human early embryogenesis. Here, we report that broad H3K27ac domains are genome-widely distributed in human 2-cell and 4-cell embryos and transit into typical peaks in the 8-cell embryos. The broad H3K27ac domains in early embryos before zygotic genome activation (ZGA) are also observed in mouse. It suggests that broad H3K27ac domains play conserved functions before ZGA in mammals. Intriguingly, a large portion of broad H3K27ac domains overlap with broad H3K4me3 domains. Further investigation reveals that histone deacetylases are required for the removal or transition of broad H3K27ac domains and ZGA. After ZGA, the number of typical H3K27ac peaks is dynamic, which is associated with the stage-specific gene expression. Furthermore, P300 is important for the establishment of H3K27ac peaks and the expression of associated genes in early embryos after ZGA. Our data also indicate that H3K27ac marks active transposons in early embryos. Interestingly, H3K27ac and H3K18ac signals rather than H3K9ac signals are enriched at ERVK elements in mouse embryos after ZGA. It suggests that different types of histone acetylations exert distinct roles in the activation of transposons. In summary, H3K27ac modification undergoes extensive reprogramming during early embryo development in mammals, which is associated with the expression of genes and transposons.
Collapse
|
4
|
Abstract
Viral infections lead to the death of more than a million people each year around the world, both directly and indirectly. Viruses interfere with many cell functions, particularly critical pathways for cell death, by affecting various intracellular mediators. MicroRNAs (miRNAs) are a major example of these mediators because they are involved in many (if not most) cellular mechanisms. Virus-regulated miRNAs have been implicated in three cell death pathways, namely, apoptosis, autophagy, and anoikis. Several molecules (e.g., BECN1 and B cell lymphoma 2 [BCL2] family members) are involved in both apoptosis and autophagy, while activation of anoikis leads to cell death similar to apoptosis. These mechanistic similarities suggest that common regulators, including some miRNAs (e.g., miR-21 and miR-192), are involved in different cell death pathways. Because the balance between cell proliferation and cell death is pivotal to the homeostasis of the human body, miRNAs that regulate cell death pathways have drawn much attention from researchers. miR-21 is regulated by several viruses and can affect both apoptosis and anoikis via modulating various targets, such as PDCD4, PTEN, interleukin (IL)-12, Maspin, and Fas-L. miR-34 can be downregulated by viral infection and has different effects on apoptosis, depending on the type of virus and/or host cell. The present review summarizes the existing knowledge on virus-regulated miRNAs involved in the modulation of cell death pathways. Understanding the mechanisms for virus-mediated regulation of cell death pathways could provide valuable information to improve the diagnosis and treatment of many viral diseases.
Collapse
|
5
|
Schiedel M, Moroglu M, Ascough DMH, Chamberlain AER, Kamps JJAG, Sekirnik AR, Conway SJ. Chemical Epigenetics: The Impact of Chemical and Chemical Biology Techniques on Bromodomain Target Validation. Angew Chem Int Ed Engl 2019; 58:17930-17952. [DOI: 10.1002/anie.201812164] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/08/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Matthias Schiedel
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Mustafa Moroglu
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - David M. H. Ascough
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Anna E. R. Chamberlain
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Jos J. A. G. Kamps
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Angelina R. Sekirnik
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| | - Stuart J. Conway
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
6
|
Schiedel M, Moroglu M, Ascough DMH, Chamberlain AER, Kamps JJAG, Sekirnik AR, Conway SJ. Chemische Epigenetik: der Einfluss chemischer und chemo‐biologischer Techniken auf die Zielstruktur‐Validierung von Bromodomänen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201812164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Matthias Schiedel
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - Mustafa Moroglu
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - David M. H. Ascough
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - Anna E. R. Chamberlain
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - Jos J. A. G. Kamps
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - Angelina R. Sekirnik
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| | - Stuart J. Conway
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford Mansfield Road Oxford OX1 3TA Großbritannien
| |
Collapse
|
7
|
Spector C, Mele AR, Wigdahl B, Nonnemacher MR. Genetic variation and function of the HIV-1 Tat protein. Med Microbiol Immunol 2019; 208:131-169. [PMID: 30834965 DOI: 10.1007/s00430-019-00583-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 02/11/2019] [Indexed: 12/14/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) encodes a transactivator of transcription (Tat) protein, which has several functions that promote viral replication, pathogenesis, and disease. Amino acid variation within Tat has been observed to alter the functional properties of Tat and, depending on the HIV-1 subtype, may produce Tat phenotypes differing from viruses' representative of each subtype and commonly used in in vivo and in vitro experimentation. The molecular properties of Tat allow for distinctive functional activities to be determined such as the subcellular localization and other intracellular and extracellular functional aspects of this important viral protein influenced by variation within the Tat sequence. Once Tat has been transported into the nucleus and becomes engaged in transactivation of the long terminal repeat (LTR), various Tat variants may differ in their capacity to activate viral transcription. Post-translational modification patterns based on these amino acid variations may alter interactions between Tat and host factors, which may positively or negatively affect this process. In addition, the ability of HIV-1 to utilize or not utilize the transactivation response (TAR) element within the LTR, based on genetic variation and cellular phenotype, adds a layer of complexity to the processes that govern Tat-mediated proviral DNA-driven transcription and replication. In contrast, cytoplasmic or extracellular localization of Tat may cause pathogenic effects in the form of altered cell activation, apoptosis, or neurotoxicity. Tat variants have been shown to differentially induce these processes, which may have implications for long-term HIV-1-infected patient care in the antiretroviral therapy era. Future studies concerning genetic variation of Tat with respect to function should focus on variants derived from HIV-1-infected individuals to efficiently guide Tat-targeted therapies and elucidate mechanisms of pathogenesis within the global patient population.
Collapse
Affiliation(s)
- Cassandra Spector
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Anthony R Mele
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N 15th St, Philadelphia, PA, 19102, USA.
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA, USA.
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Kurnaeva MA, Sheval EV, Musinova YR, Vassetzky YS. Tat basic domain: A "Swiss army knife" of HIV-1 Tat? Rev Med Virol 2019; 29:e2031. [PMID: 30609200 DOI: 10.1002/rmv.2031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 01/16/2023]
Abstract
Tat (transactivator of transcription) regulates transcription from the HIV provirus. It plays a crucial role in disease progression, supporting efficient replication of the viral genome. Tat also modulates many functions in the host genome via its interaction with chromatin and proteins. Many of the functions of Tat are associated with its basic domain rich in arginine and lysine residues. It is still unknown why the basic domain exhibits so many diverse functions. However, the highly charged basic domain, coupled with the overall structural flexibility of Tat protein itself, makes the basic domain a key player in binding to or associating with cellular and viral components. In addition, the basic domain undergoes diverse posttranslational modifications, which further expand and modulate its functions. Here, we review the current knowledge of Tat basic domain and its versatile role in the interaction between the virus and the host cell.
Collapse
Affiliation(s)
- Margarita A Kurnaeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Eugene V Sheval
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, CNRS, Villejuif, France
| | - Yana R Musinova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, CNRS, Villejuif, France.,Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Yegor S Vassetzky
- LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, CNRS, Villejuif, France.,Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia.,Nuclear Organization and Pathologies, CNRS, UMR8126, Université Paris-Sud, Institut Gustave Roussy, Villejuif, France
| |
Collapse
|
9
|
Chen L, Keppler OT, Schölz C. Post-translational Modification-Based Regulation of HIV Replication. Front Microbiol 2018; 9:2131. [PMID: 30254620 PMCID: PMC6141784 DOI: 10.3389/fmicb.2018.02131] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022] Open
Abstract
Human immunodeficiency virus (HIV) relies heavily on the host cellular machinery for production of viral progeny. To exploit cellular proteins for replication and to overcome host factors with antiviral activity, HIV has evolved a set of regulatory and accessory proteins to shape an optimized environment for its replication and to facilitate evasion from the immune system. Several cellular pathways are hijacked by the virus to modulate critical steps during the viral life cycle. Thereby, post-translational modifications (PTMs) of viral and cellular proteins gain increasingly attention as modifying enzymes regulate virtually every step of the viral replication cycle. This review summarizes the current knowledge of HIV-host interactions influenced by PTMs with a special focus on acetylation, ubiquitination, and phosphorylation of proteins linked to cellular signaling and viral replication. Insights into these interactions are surmised to aid development of new intervention strategies.
Collapse
Affiliation(s)
- Lin Chen
- Max von Pettenkofer-Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Oliver T Keppler
- Max von Pettenkofer-Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Christian Schölz
- Max von Pettenkofer-Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
10
|
Ojha CR, Rodriguez M, Dever SM, Mukhopadhyay R, El-Hage N. Mammalian microRNA: an important modulator of host-pathogen interactions in human viral infections. J Biomed Sci 2016; 23:74. [PMID: 27784307 PMCID: PMC5081962 DOI: 10.1186/s12929-016-0292-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/19/2016] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs), which are small non-coding RNAs expressed by almost all metazoans, have key roles in the regulation of cell differentiation, organism development and gene expression. Thousands of miRNAs regulating approximately 60 % of the total human genome have been identified. They regulate genetic expression either by direct cleavage or by translational repression of the target mRNAs recognized through partial complementary base pairing. The active and functional unit of miRNA is its complex with Argonaute proteins known as the microRNA-induced silencing complex (miRISC). De-regulated miRNA expression in the human cell may contribute to a diverse group of disorders including cancer, cardiovascular dysfunctions, liver damage, immunological dysfunction, metabolic syndromes and pathogenic infections. Current day studies have revealed that miRNAs are indeed a pivotal component of host-pathogen interactions and host immune responses toward microorganisms. miRNA is emerging as a tool for genetic study, therapeutic development and diagnosis for human pathogenic infections caused by viruses, bacteria, parasites and fungi. Many pathogens can exploit the host miRNA system for their own benefit such as surviving inside the host cell, replication, pathogenesis and bypassing some host immune barriers, while some express pathogen-encoded miRNA inside the host contributing to their replication, survival and/or latency. In this review, we discuss the role and significance of miRNA in relation to some pathogenic viruses.
Collapse
Affiliation(s)
- Chet Raj Ojha
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Florida, USA.
| | - Myosotys Rodriguez
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Florida, USA
| | - Seth M Dever
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Florida, USA
| | - Rita Mukhopadhyay
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Florida, USA
| | - Nazira El-Hage
- Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Florida, USA
| |
Collapse
|
11
|
Musinova YR, Sheval EV, Dib C, Germini D, Vassetzky YS. Functional roles of HIV-1 Tat protein in the nucleus. Cell Mol Life Sci 2016; 73:589-601. [PMID: 26507246 PMCID: PMC11108392 DOI: 10.1007/s00018-015-2077-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/01/2015] [Accepted: 10/16/2015] [Indexed: 02/06/2023]
Abstract
Human immunodeficiency virus-1 (HIV-1) Tat protein is one of the most important regulatory proteins for viral gene expression in the host cell and can modulate different cellular processes. In addition, Tat is secreted by the infected cell and can be internalized by neighboring cells; therefore, it affects both infected and uninfected cells. Tat can modulate cellular processes by interacting with different cellular structures and signaling pathways. In the nucleus, Tat might be localized either in the nucleoplasm or the nucleolus depending on its concentration. Here we review the distinct functions of Tat in the nucleoplasm and the nucleolus in connection with viral infection and HIV-induced oncogenesis.
Collapse
Affiliation(s)
- Yana R Musinova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
- LIA 1066 French-Russian Joint Cancer Research Laboratory, 94805, Villejuif, France
| | - Eugene V Sheval
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
- LIA 1066 French-Russian Joint Cancer Research Laboratory, 94805, Villejuif, France
| | - Carla Dib
- LIA 1066 French-Russian Joint Cancer Research Laboratory, 94805, Villejuif, France
- UMR8126, Université Paris-Sud, CNRS, Institut de cancérologie Gustave Roussy, 94805, Villejuif, France
| | - Diego Germini
- LIA 1066 French-Russian Joint Cancer Research Laboratory, 94805, Villejuif, France
- UMR8126, Université Paris-Sud, CNRS, Institut de cancérologie Gustave Roussy, 94805, Villejuif, France
| | - Yegor S Vassetzky
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia.
- LIA 1066 French-Russian Joint Cancer Research Laboratory, 94805, Villejuif, France.
- UMR8126, Université Paris-Sud, CNRS, Institut de cancérologie Gustave Roussy, 94805, Villejuif, France.
| |
Collapse
|
12
|
Johri MK, Sharma N, Singh SK. HIV Tat protein: Is Tat-C much trickier than Tat-B? J Med Virol 2015; 87:1334-43. [PMID: 25879536 DOI: 10.1002/jmv.24182] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2015] [Indexed: 01/25/2023]
Abstract
Out of various subtypes of human immunodeficiency virus type 1 (HIV-1), subtype B and C cause most of the infections worldwide. Clade specific differences have been reported in differences in clinical picture of HIV pathogenesis. Transcription of the HIV-1 genome is regulated by the interaction of HIV Tat protein to the trans-activation response (TAR) element. The differential binding of clade B and C Tat proteins to TAR and differences in activation of NF-κB cascade leading to differential transactivation capacity and cytokine expression has been examined in this study. More stable Tat-TAR complex formation by Tat-C revealed by EMSA and higher TNF-α expression shown by Tat-C compared to Tat-B leads to higher NF-κB activation, which may be plausible cause for higher transactivation by Tat-C as obtained by FACS analysis. This comparative study would be helpful in understanding the basic mechanism of clade specific Tat protein differences and their functional relationships.
Collapse
Affiliation(s)
- Manish Kumar Johri
- Laboratory of Neurovirology and Inflammation Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, 500007, India
| | - Nikhil Sharma
- Laboratory of Neurovirology and Inflammation Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, 500007, India
| | - Sunit K Singh
- Laboratory of Neurovirology and Inflammation Biology, CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, 500007, India
| |
Collapse
|
13
|
Gu J, Babayeva ND, Suwa Y, Baranovskiy AG, Price DH, Tahirov TH. Crystal structure of HIV-1 Tat complexed with human P-TEFb and AFF4. Cell Cycle 2014; 13:1788-97. [PMID: 24727379 DOI: 10.4161/cc.28756] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Developing anti-viral therapies targeting HIV-1 transcription has been hampered by the limited structural knowledge of the proteins involved. HIV-1 hijacks the cellular machinery that controls RNA polymerase II elongation through an interaction of HIV-1 Tat with the positive transcription elongation factor P-TEFb, which interacts with an AF4 family member (AFF1/2/3/4) in the super elongation complex (SEC). Because inclusion of Tat•P-TEFb into the SEC is critical for HIV transcription, we have determined the crystal structure of the Tat•AFF4•P-TEFb complex containing HIV-1 Tat (residues 1-48), human Cyclin T1 (1-266), human Cdk9 (7-332), and human AFF4 (27-69). Tat binding to AFF4•P-TEFb causes concerted structural changes in AFF4 via a shift of helix H5' of Cyclin T1 and the α-3 10 helix of AFF4. The interaction between Tat and AFF4 provides structural constraints that explain tolerated Tat mutations. Analysis of the Tat-binding surface of AFF4 coupled with modeling of all other AF4 family members suggests that AFF1 and AFF4 would be preferred over AFF2 or AFF3 for interaction with Tat•P-TEFb. The structure establishes that the Tat-TAR recognition motif (TRM) in Cyclin T1 interacts with both Tat and AFF4, leading to the exposure of arginine side chains for binding to TAR RNA. Furthermore, modeling of Tat Lys28 acetylation suggests that the acetyl group would be in a favorable position for H-bond formation with Asn257 of TRM, thereby stabilizing the TRM in Cyclin T1, and provides a structural basis for the modulation of TAR RNA binding by acetylation of Tat Lys28.
Collapse
Affiliation(s)
- Jianyou Gu
- Eppley Institute for Research in Cancer and Allied Diseases; University of Nebraska Medical Center; Omaha, NE USA
| | - Nigar D Babayeva
- Eppley Institute for Research in Cancer and Allied Diseases; University of Nebraska Medical Center; Omaha, NE USA
| | - Yoshiaki Suwa
- Eppley Institute for Research in Cancer and Allied Diseases; University of Nebraska Medical Center; Omaha, NE USA
| | - Andrey G Baranovskiy
- Eppley Institute for Research in Cancer and Allied Diseases; University of Nebraska Medical Center; Omaha, NE USA
| | - David H Price
- Biochemistry Department; University of Iowa; Iowa City, IA USA
| | - Tahir H Tahirov
- Eppley Institute for Research in Cancer and Allied Diseases; University of Nebraska Medical Center; Omaha, NE USA
| |
Collapse
|
14
|
Boudier C, Humbert N, Chaminade F, Chen Y, de Rocquigny H, Godet J, Mauffret O, Fossé P, Mély Y. Dynamic interactions of the HIV-1 Tat with nucleic acids are critical for Tat activity in reverse transcription. Nucleic Acids Res 2013; 42:1065-78. [PMID: 24153111 PMCID: PMC3902927 DOI: 10.1093/nar/gkt934] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The HIV-1 transactivator of transcription (Tat) protein is thought to stimulate reverse transcription (RTion). The Tat protein and, more specifically, its (44–61) domain were recently shown to promote the annealing of complementary DNA sequences representing the HIV-1 transactivation response element TAR, named dTAR and cTAR, that plays a key role in RTion. Moreover, the kinetic mechanism of the basic Tat(44–61) peptide in this annealing further revealed that this peptide constitutes a representative nucleic acid annealer. To further understand the structure–activity relationships of this highly conserved domain, we investigated by electrophoresis and fluorescence approaches the binding and annealing properties of various Tat(44–61) mutants. Our data showed that the Tyr47 and basic residues of the Tat(44–61) domain were instrumental for binding to cTAR through stacking and electrostatic interactions, respectively, and promoting its annealing with dTAR. Furthermore, the annealing efficiency of the mutants clearly correlates with their ability to rapidly associate and dissociate the complementary oligonucleotides and to promote RTion. Thus, transient and dynamic nucleic acid interactions likely constitute a key mechanistic component of annealers and the role of Tat in the late steps of RTion. Finally, our data suggest that Lys50 and Lys51 acetylation regulates Tat activity in RTion.
Collapse
Affiliation(s)
- Christian Boudier
- Laboratoire de Biophotonique et Pharmacologie, UMR-CNRS 7213, Faculté de Pharmacie, Université de Strasbourg, Illkirch 67401, France and Laboratoire de Biologie et Pharmacologie Appliquée, UMR-CNRS 8113, Ecole Normale Supérieure de Cachan, Cachan 94235, France
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Van Lint C, Bouchat S, Marcello A. HIV-1 transcription and latency: an update. Retrovirology 2013; 10:67. [PMID: 23803414 PMCID: PMC3699421 DOI: 10.1186/1742-4690-10-67] [Citation(s) in RCA: 247] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 05/29/2013] [Indexed: 12/11/2022] Open
Abstract
Combination antiretroviral therapy, despite being potent and life-prolonging, is not curative and does not eradicate HIV-1 infection since interruption of treatment inevitably results in a rapid rebound of viremia. Reactivation of latently infected cells harboring transcriptionally silent but replication-competent proviruses is a potential source of persistent residual viremia in cART-treated patients. Although multiple reservoirs may exist, the persistence of resting CD4+ T cells carrying a latent infection represents a major barrier to eradication. In this review, we will discuss the latest reports on the molecular mechanisms that may regulate HIV-1 latency at the transcriptional level, including transcriptional interference, the role of cellular factors, chromatin organization and epigenetic modifications, the viral Tat trans-activator and its cellular cofactors. Since latency mechanisms may also operate at the post-transcriptional level, we will consider inhibition of nuclear RNA export and inhibition of translation by microRNAs as potential barriers to HIV-1 gene expression. Finally, we will review the therapeutic approaches and clinical studies aimed at achieving either a sterilizing cure or a functional cure of HIV-1 infection, with a special emphasis on the most recent pharmacological strategies to reactivate the latent viruses and decrease the pool of viral reservoirs.
Collapse
Affiliation(s)
- Carine Van Lint
- Université Libre de Bruxelles (ULB), Service of Molecular Virology, Institute of Molecular Biology and Medicine, 12, Rue des Profs Jeener et Brachet, 6041, Gosselies, Belgium.
| | | | | |
Collapse
|
16
|
Lu H, Li Z, Xue Y, Zhou Q. Viral-host interactions that control HIV-1 transcriptional elongation. Chem Rev 2013; 113:8567-82. [PMID: 23795863 DOI: 10.1021/cr400120z] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Huasong Lu
- School of Pharmaceutical Sciences, Xiamen University , Xiamen, Fujian 361005, China
| | | | | | | |
Collapse
|
17
|
Quy VC, Pantano S, Rossetti G, Giacca M, Carloni P. HIV-1 Tat Binding to PCAF Bromodomain: Structural Determinants from Computational Methods. BIOLOGY 2012; 1:277-96. [PMID: 24832227 PMCID: PMC4009784 DOI: 10.3390/biology1020277] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/09/2012] [Accepted: 07/26/2012] [Indexed: 12/13/2022]
Abstract
The binding between the HIV-1 trans-activator of transcription (Tat) and p300/(CREB-binding protein)-associated factor (PCAF) bromodomain is a crucial step in the HIV-1 life cycle. However, the structure of the full length acetylated Tat bound to PCAF has not been yet determined experimentally. Acetylation of Tat residues can play a critical role in enhancing HIV-1 transcriptional activation. Here, we have combined a fully flexible protein-protein docking approach with molecular dynamics simulations to predict the structural determinants of the complex for the common HIV-1BRU variant. This model reproduces all the crucial contacts between the Tat peptide 46SYGR(AcK)KRRQRC56 and the PCAF bromodomain previously reported by NMR spectroscopy. Additionally, inclusion of the entire Tat protein results in additional contact points at the protein-protein interface. The model is consistent with the available experimental data reported and adds novel information to our previous structural predictions of the PCAF bromodomain in complex with the rare HIVZ2 variant, which was obtained with a less accurate computational method. This improved characterization of Tat.PCAF bromodomain binding may help in defining the structural determinants of other protein interactions involving lysine acetylation.
Collapse
Affiliation(s)
- Vo Cam Quy
- Computational Biophysics, German Research School for Simulation Sciences, Computational Biomedicine, Institute for Advanced Simulation (IAS-5), Forschungszentrum Jülich, Jülich D-52425, Germany.
| | - Sergio Pantano
- Institut Pasteur de Montevideo, Mataojo 2020, Montevideo CP 11400, Uruguay.
| | - Giulia Rossetti
- Computational Biophysics, German Research School for Simulation Sciences, Computational Biomedicine, Institute for Advanced Simulation (IAS-5), Forschungszentrum Jülich, Jülich D-52425, Germany.
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology, Trieste 34149, Italy.
| | - Paolo Carloni
- Computational Biophysics, German Research School for Simulation Sciences, Computational Biomedicine, Institute for Advanced Simulation (IAS-5), Forschungszentrum Jülich, Jülich D-52425, Germany.
| |
Collapse
|
18
|
Impact of Tat Genetic Variation on HIV-1 Disease. Adv Virol 2012; 2012:123605. [PMID: 22899925 PMCID: PMC3414192 DOI: 10.1155/2012/123605] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 05/14/2012] [Indexed: 01/08/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) promoter or long-terminal repeat (LTR) regulates viral gene expression by interacting with multiple viral and host factors. The viral transactivator protein Tat plays an important role in transcriptional activation of HIV-1 gene expression. Functional domains of Tat and its interaction with transactivation response element RNA and cellular transcription factors have been examined. Genetic variation within tat of different HIV-1 subtypes has been shown to affect the interaction of the viral transactivator with cellular and/or viral proteins, influencing the overall level of transcriptional activation as well as its action as a neurotoxic protein. Consequently, the genetic variability within tat may impact the molecular architecture of functional domains of the Tat protein that may impact HIV pathogenesis and disease. Tat as a therapeutic target for anti-HIV drugs has also been discussed.
Collapse
|
19
|
Abstract
Thirteen years ago, human cyclin T1 was identified as part of the positive transcription elongation factor b (P-TEFb) and the long-sought host cofactor for the HIV-1 transactivator Tat. Recent years have brought new insights into the intricate regulation of P-TEFb function and its relationship with Tat, revealing novel mechanisms for controlling HIV transcription and fueling new efforts to overcome the barrier of transcriptional latency in eradicating HIV. Moreover, the improved understanding of HIV and Tat forms a basis for studying transcription elongation control in general. Here, we review advances in HIV transcription research with a focus on the growing family of cellular P-TEFb complexes, structural insights into the interactions between Tat, P-TEFb, and TAR RNA, and the multifaceted regulation of these interactions by posttranscriptional modifications of Tat.
Collapse
|
20
|
Abstract
Foamy viruses (FVs) are distinct members of the retrovirus (RV) family. In this chapter, the molecular regulation of foamy viral transcription, splicing, polyadenylation, and RNA export will be compared in detail to the orthoretroviruses. Foamy viral transcription is regulated in early and late phases, which are separated by the usage of two promoters. The viral transactivator protein Tas activates both promoters. The nature of this early-late switch and the molecular mechanism used by Tas are unique among RVs. RVs duplicate the long terminal repeats (LTRs) during reverse transcription. These LTRs carry both a promoter region and functional poly(A) sites. In order to express full-length transcripts, RVs have to silence the poly(A) signal in the 5' LTR and to activate it in the 3' LTR. FVs have a unique R-region within these LTRs with a major splice donor (MSD) at +51 followed by a poly(A) signal. FVs use a MSD-dependent mechanism to inactivate the polyadenylation. Most RVs express all their genes from a single primary transcript. In order to allow expression of more than one gene from this RNA, differential splicing is extensively used in complex RVs. The splicing pattern of FV is highly complex. In contrast to orthoretroviruses, FVs synthesize the Pol precursor protein from a specific and spliced transcript. The LTR and IP-derived primary transcripts are spliced into more than 15 different mRNA species. Since the RNA ratios have to be balanced, a tight regulation of splicing is required. Cellular quality control mechanisms retain and degrade unspliced or partially spliced RNAs in the nucleus. In this review, I compare the RNA export pathways used by orthoretroviruses with the distinct RNA export pathway used by FV. All these steps are highly regulated by host and viral factors and set FVs apart from all other RVs.
Collapse
Affiliation(s)
- Jochen Bodem
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
21
|
Sakane N, Kwon HS, Pagans S, Kaehlcke K, Mizusawa Y, Kamada M, Lassen KG, Chan J, Greene WC, Schnoelzer M, Ott M. Activation of HIV transcription by the viral Tat protein requires a demethylation step mediated by lysine-specific demethylase 1 (LSD1/KDM1). PLoS Pathog 2011; 7:e1002184. [PMID: 21876670 PMCID: PMC3158049 DOI: 10.1371/journal.ppat.1002184] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 06/14/2011] [Indexed: 12/11/2022] Open
Abstract
The essential transactivator function of the HIV Tat protein is regulated by multiple posttranslational modifications. Although individual modifications are well characterized, their crosstalk and dynamics of occurrence during the HIV transcription cycle remain unclear.We examine interactions between two critical modifications within the RNA-binding domain of Tat: monomethylation of lysine 51 (K51) mediated by Set7/9/KMT7, an early event in the Tat transactivation cycle that strengthens the interaction of Tat with TAR RNA, and acetylation of lysine 50 (K50) mediated by p300/KAT3B, a later process that dissociates the complex formed by Tat, TAR RNA and the cyclin T1 subunit of the positive transcription elongation factor b (P-TEFb). We find K51 monomethylation inhibited in synthetic Tat peptides carrying an acetyl group at K50 while acetylation can occur in methylated peptides, albeit at a reduced rate. To examine whether Tat is subject to sequential monomethylation and acetylation in cells, we performed mass spectrometry on immunoprecipitated Tat proteins and generated new modification-specific Tat antibodies against monomethylated/acetylated Tat. No bimodified Tat protein was detected in cells pointing to a demethylation step during the Tat transactivation cycle. We identify lysine-specific demethylase 1 (LSD1/KDM1) as a Tat K51-specific demethylase, which is required for the activation of HIV transcription in latently infected T cells. LSD1/KDM1 and its cofactor CoREST associates with the HIV promoter in vivo and activate Tat transcriptional activity in a K51-dependent manner. In addition, small hairpin RNAs directed against LSD1/KDM1 or inhibition of its activity with the monoamine oxidase inhibitor phenelzine suppresses the activation of HIV transcription in latently infected T cells.Our data support the model that a LSD1/KDM1/CoREST complex, normally known as a transcriptional suppressor, acts as a novel activator of HIV transcription through demethylation of K51 in Tat. Small molecule inhibitors of LSD1/KDM1 show therapeutic promise by enforcing HIV latency in infected T cells.
Collapse
Affiliation(s)
- Naoki Sakane
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, California, United States of America
- Pharmaceutical Frontier Research Laboratory, Yokohama, Japan
| | - Hye-Sook Kwon
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, California, United States of America
| | - Sara Pagans
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, California, United States of America
| | - Katrin Kaehlcke
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, California, United States of America
| | | | - Masafumi Kamada
- Pharmaceutical Frontier Research Laboratory, Yokohama, Japan
| | - Kara G. Lassen
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, California, United States of America
| | - Jonathan Chan
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, California, United States of America
| | - Warner C. Greene
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, California, United States of America
- Department of Medicine, University of California, San Francisco, United States of America
- Department of Microbiology and Immunology, University of California, San Francisco, United States of America
| | - Martina Schnoelzer
- Functional Proteome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, California, United States of America
- Department of Medicine, University of California, San Francisco, United States of America
- * E-mail:
| |
Collapse
|
22
|
Inhibition of HIV-1 Tat-mediated transcription by a coumarin derivative, BPRHIV001, through the Akt pathway. J Virol 2011; 85:9114-26. [PMID: 21697490 DOI: 10.1128/jvi.00175-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1)-encoded RNA-binding protein Tat is known to play an essential role in viral gene expression. In the search for novel compounds to inhibit Tat transactivity, one coumarin derivative, BPRHIV001, was identified, with a 50% effective concentration (EC(50)) against HIV-1 at 1.3 nM. BPRHIV001 is likely to exert its effects at the stage after initiation of RNAPII elongation since Tat protein expression and the assembly of the Tat/P-TEFb complex remained unchanged. Next, a reduction of the p300 protein level, known to modulate Tat function through acetylation, was observed upon BPRHIV001 treatment, while the p300 mRNA level was unaffected. A concordant reduction of phosphorylated Akt, which was shown to be closely related to p300 stability, was observed in the presence of BPRHIV001 and was accompanied by a decrease of phosphorylated PDPK1, a well-known Akt activator. Furthermore, the docking analysis revealed that the reduced PDPK1 phosphorylation likely resulted from the allosteric effect of interaction between BPRHIV001 and PDPK1. With strong synergistic effects with current reverse transcriptase inhibitors, BPRHIV001 has the potential to become a promising lead compound for the development of a novel therapeutic agent against HIV-1 infection.
Collapse
|
23
|
Johri MK, Mishra R, Chhatbar C, Unni SK, Singh SK. Tits and bits of HIV Tat protein. Expert Opin Biol Ther 2011; 11:269-83. [PMID: 21204735 DOI: 10.1517/14712598.2011.546339] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION HIV-Tat protein displays an array of functions that are essential for HIV replication. The structural flexibility of Tat protein has been regarded as one of the unique features responsible for sustaining diverse functions, from facilitated membrane-crossing ability to strong affinity for RNA binding. AREAS COVERED RNA binding ability and presence of multiple interacting domains in the same protein are very important properties of HIV-Tat protein. Tat protein has shown great ability to influence cellular and viral gene expression. We discuss the functions of HIV Tat protein, describing its structural significance, secretion and uptake of HIV Tat protein by immune cells, post-translational modifications and role of HIV Tat protein in HIV pathogenesis. EXPERT OPINION Perturbation in expression of many cytokines and chemokines by HIV-Tat protein exhibits downstream immune suppressive function as well as activation of several apoptotic genes. This explains the massive death of immune cells due to bystander effect of HIV Tat protein among HIV-infected patients.
Collapse
Affiliation(s)
- Manish K Johri
- Laboratory of Neurovirology & Inflammation Biology, Section of Infectious Diseases, Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad-500007, (A.P), India
| | | | | | | | | |
Collapse
|
24
|
Mujtaba S, Zhou MM. Anti-viral opportunities during transcriptional activation of latent HIV in the host chromatin. Methods 2011; 53:97-101. [PMID: 20828615 PMCID: PMC3580173 DOI: 10.1016/j.ymeth.2010.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 08/12/2010] [Accepted: 09/01/2010] [Indexed: 10/19/2022] Open
Abstract
Human immunodeficiency virus (HIV) when integrated into a host chromosome exists in a transcriptionally inactive but replication-competent state. Such latent infection represents a major challenge to HIV eradication efforts because a permanent virus reservoir resided in the infected cell is able to spike the viral load on immune suppression or during interruption of highly active anti-retroviral therapy. Understanding the molecular mechanisms that control HIV proviral latency and its reactivation could provide new perspectives on host factors as therapeutic targets for abolishing cellular reservoirs of dormant HIV. Although the control of HIV latency is multifactorial, chromatin structure and the chromatin-associated transcriptional machinery are known to be important factors. For instance, transcription initiation of the HIV provirus involves a complex molecular interplay between chromatin-associated proteins and the virus-encoded trans-activator, Tat. The first part of this review discusses our current understanding of the elements involved in HIV transcriptional activation and viral mRNA elongation, mainly post-translational modifications of HIV Tat and its interactions with host chromatin-modifying enzymes and chromatin-remodeling complexes. The second part highlights new experimental therapeutic approaches aimed at administrating activators of HIV gene expression to reduce or eliminate the pool of latently HIV-infected cells.
Collapse
Affiliation(s)
- Shiraz Mujtaba
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, 1425 Madison Avenue, Box 1677, New York, NY 10029, USA
| | - Ming-Ming Zhou
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, 1425 Madison Avenue, Box 1677, New York, NY 10029, USA
| |
Collapse
|
25
|
Kim N, Kukkonen S, Gupta S, Aldovini A. Association of Tat with promoters of PTEN and PP2A subunits is key to transcriptional activation of apoptotic pathways in HIV-infected CD4+ T cells. PLoS Pathog 2010; 6:e1001103. [PMID: 20862322 PMCID: PMC2940756 DOI: 10.1371/journal.ppat.1001103] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 08/13/2010] [Indexed: 11/25/2022] Open
Abstract
Apoptosis in HIV-1-infected CD4+ primary T cells is triggered by the alteration of the PI3K and p53 pathways, which converge on the FOXO3a transcriptional activator. Tat alone can cause activation of FOXO3a and of its proapoptotic target genes. To understand how Tat affects this pathway, we carried out ChIP-Chip experiments with Tat. Tat associates with the promoters of PTEN and two PP2A subunit genes, but not with the FOXO3a promoter. PTEN and PP2A encode phosphatases, whose levels and activity are increased when Tat is expressed. They counteract phosphorylation of Akt1 and FOXO3a, and so activate transcriptional activity of FOXO3a. FOXO3a promotes increased transcription of Egr-1, which can further stimulate the transcription of PTEN, thereby reinforcing the pathway that leads to FOXO3a transcriptional activation. RNAi experiments support the role of PTEN and PP2A in the initiation of the Tat-mediated cascade, which is critical to apoptosis. The increased accumulation of PTEN and PP2A subunit mRNAs during Tat expression is more likely to be the result of increased transcription initiation and not relief of promoter-proximal pausing of RNAPII. The Tat-PTEN and -PP2A promoter interactions provide a mechanistic explanation of Tat-mediated apoptosis in CD4+ T cells. HIV infection leads to the depletion of CD4+ T cells, the major viral cell target. The destruction of these cells can occur because of cytopathic effect or apoptosis. HIV Tat is one of the proteins that can contribute to the apoptotic process of both infected and uninfected cells, as it is released in the plasma and enter uninfected cells. Tat expression in CD4+ T-cells is linked to increased transcriptional activity of FOXO3a, a factor that targets the transcription of pro-apoptotic genes. The mechanism by which Tat leads to activation apoptotic pathways is by associating with the promoters of the phospatases PTEN and PP2A and by increasing their levels. The increased amount of these proteins leads to a decreased amount of pAKt1 and increased amount of non-phosphorylated FOXO3a, which migrates from the cytoplasm to the nucleus and increases the transcription of its proapoptotic target genes. These results, together with experiments that silence PTEN and PP2A and measure their activities, identify the association of Tat with PTEN and PP2A promoters as the initiating event of Tat-mediated apoptosis.
Collapse
Affiliation(s)
- Nayoung Kim
- Children's Hospital Boston, Department of Medicine, and Harvard Medical School, Department of Pediatrics, Boston, Massachusetts, United States of America
| | - Sami Kukkonen
- Children's Hospital Boston, Department of Medicine, and Harvard Medical School, Department of Pediatrics, Boston, Massachusetts, United States of America
| | - Sumeet Gupta
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Anna Aldovini
- Children's Hospital Boston, Department of Medicine, and Harvard Medical School, Department of Pediatrics, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
26
|
Characterization of HIV Tat modifications using novel methyl-lysine-specific antibodies. Methods 2010; 53:91-6. [PMID: 20615470 DOI: 10.1016/j.ymeth.2010.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 07/01/2010] [Accepted: 07/01/2010] [Indexed: 12/25/2022] Open
Abstract
Modification-specific antibodies are important tools to examine the dynamics and functions of posttranslational protein modifications in cells. Here, we describe in detail the generation of polyclonal antibodies specific for mono-, di-, and trimethylated lysine 51 within the HIV transactivator Tat. Lysine 51 is a highly conserved residue located in the RNA-binding region of Tat and the target of lysine methyltransferases KMT1E (SETDB1) and KMT7 (Set7/9). Using affinity-purified methyl-specific antibodies of Tat, we find that cellular Tat is predominantly monomethylated at lysine 51, a modification enhanced by coexpression of KMT7.
Collapse
|
27
|
The Cellular lysine methyltransferase Set7/9-KMT7 binds HIV-1 TAR RNA, monomethylates the viral transactivator Tat, and enhances HIV transcription. Cell Host Microbe 2010; 7:234-44. [PMID: 20227666 DOI: 10.1016/j.chom.2010.02.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 12/11/2009] [Accepted: 02/12/2010] [Indexed: 02/03/2023]
Abstract
The Tat protein of HIV-1 plays an essential role in HIV gene expression by promoting efficient elongation of viral transcripts. Posttranslational modifications of Tat fine-tune interactions of Tat with cellular cofactors and TAR RNA, a stem-loop structure at the 5' ends of viral transcripts. Here, we identify the lysine methyltransferase Set7/9 (KMT7) as a coactivator of HIV transcription. Set7/9-KMT7 associates with the HIV promoter in vivo and monomethylates lysine 51, a highly conserved residue located in the RNA-binding domain of Tat. Knockdown of Set7/9-KMT7 suppresses Tat transactivation of the HIV promoter, but does not affect the transcriptional activity of methylation-deficient Tat (K51A). Set7/9-KMT7 binds TAR RNA by itself and in complex with Tat and the positive transcription elongation factor P-TEFb. Our findings uncover a positive role for Set7/9-KMT7 and Tat methylation during early steps of the Tat transactivation cycle.
Collapse
|
28
|
Fang Z, Xing H, Meng Z, Hong K, Liao L, He X, Shao Y. Genetic characterization analysis of the tat exon-1 region of HIV type 1 CRF07_BC strains in China. AIDS Res Hum Retroviruses 2010; 26:359-63. [PMID: 20334571 DOI: 10.1089/aid.2009.0192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
HIV-1 CRF07_BC is one of the predominant strains in China, however, there have been few reports about the genetic characteristics of accessory genes of this strain. In this study, 236 CRF07_BC tat exon-1 regions were obtained by nested PCR and were followed by sequencing. Our results showed some variations in crucial functional domains, especially in the basic region. There were two conserved amino acid variations in the 1 approximately 56 aa fragment of tat gene exon-1 of 07_BC isolates, which were R7N (71.6%) and R46F (90.3%), as compared with subtype B' strains in Thailand. The analysis of the sequences provides some valuable information for an exploration of the predominance of the HIV-1 CRF07_BC epidemic.
Collapse
Affiliation(s)
- Zhiming Fang
- Division of Virology and Immunology, State Key Laboratory for Infectious Disease Control and Prevention, National Center for AIDS/STD Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- School of Life Science, Wenzhou Medical College, Zhejiang 325035, China
| | - Hui Xing
- Division of Virology and Immunology, State Key Laboratory for Infectious Disease Control and Prevention, National Center for AIDS/STD Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Zhefeng Meng
- Division of Virology and Immunology, State Key Laboratory for Infectious Disease Control and Prevention, National Center for AIDS/STD Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Kunxue Hong
- Division of Virology and Immunology, State Key Laboratory for Infectious Disease Control and Prevention, National Center for AIDS/STD Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Lingjie Liao
- Division of Virology and Immunology, State Key Laboratory for Infectious Disease Control and Prevention, National Center for AIDS/STD Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Xiang He
- Division of Virology and Immunology, State Key Laboratory for Infectious Disease Control and Prevention, National Center for AIDS/STD Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yiming Shao
- Division of Virology and Immunology, State Key Laboratory for Infectious Disease Control and Prevention, National Center for AIDS/STD Prevention and Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| |
Collapse
|
29
|
Warren K, Warrilow D, Meredith L, Harrich D. Reverse Transcriptase and Cellular Factors: Regulators of HIV-1 Reverse Transcription. Viruses 2009; 1:873-94. [PMID: 21994574 PMCID: PMC3185528 DOI: 10.3390/v1030873] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Revised: 11/06/2009] [Accepted: 11/09/2009] [Indexed: 01/16/2023] Open
Abstract
There is ample evidence that synthesis of HIV-1 proviral DNA from the viral RNA genome during reverse transcription requires host factors. However, only a few cellular proteins have been described in detail that affect reverse transcription and interact with reverse transcriptase (RT). HIV-1 integrase is an RT binding protein and a number of IN-binding proteins including INI1, components of the Sin3a complex, and Gemin2 affect reverse transcription. In addition, recent studies implicate the cellular proteins HuR, AKAP149, and DNA topoisomerase I in reverse transcription through an interaction with RT. In this review we will consider interactions of reverse transcription complex with viral and cellular factors and how they affect the reverse transcription process.
Collapse
Affiliation(s)
- Kylie Warren
- Division of Infectious Diseases, Queensland Institute of Medical Research, Brisbane, QLD, Australia; E-Mails: (K.W.); (D.W.); (L.M.)
- School of Natural Sciences, University of Western Sydney, Hawkesbury, NSW, Australia
| | - David Warrilow
- Division of Infectious Diseases, Queensland Institute of Medical Research, Brisbane, QLD, Australia; E-Mails: (K.W.); (D.W.); (L.M.)
| | - Luke Meredith
- Division of Infectious Diseases, Queensland Institute of Medical Research, Brisbane, QLD, Australia; E-Mails: (K.W.); (D.W.); (L.M.)
- Griffith Medical Research College, a joint program of Griffith University and the Queensland Institute of Medical Research, QIMR, Herston, QLD, 4006, Australia
| | - David Harrich
- Division of Infectious Diseases, Queensland Institute of Medical Research, Brisbane, QLD, Australia; E-Mails: (K.W.); (D.W.); (L.M.)
- Griffith Medical Research College, a joint program of Griffith University and the Queensland Institute of Medical Research, QIMR, Herston, QLD, 4006, Australia
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +61-7-3845-36791; Fax: +61-7-3362-0107
| |
Collapse
|
30
|
Subcellular localization of the interaction between the human immunodeficiency virus transactivator Tat and the nucleosome assembly protein 1. Amino Acids 2009; 38:1583-93. [DOI: 10.1007/s00726-009-0378-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 10/14/2009] [Indexed: 10/20/2022]
|
31
|
Pelka P, Ablack JNG, Shuen M, Yousef AF, Rasti M, Grand RJ, Turnell AS, Mymryk JS. Identification of a second independent binding site for the pCAF acetyltransferase in adenovirus E1A. Virology 2009; 391:90-8. [PMID: 19541337 DOI: 10.1016/j.virol.2009.05.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 04/22/2009] [Accepted: 05/26/2009] [Indexed: 11/19/2022]
Abstract
The conserved region 3 (CR3) portion of the human adenovirus (HAdV) 5 E1A protein functions as a potent transcriptional activator that induces expression of viral early genes during infection. Expression of HAdV-5 CR3 in the yeast Saccharomyces cerevisiae inhibits growth, as do the corresponding regions of the HAdV-3, 4, 9, 12 and 40 E1A proteins, which represent the remaining five HAdV subgroups. Growth inhibition is alleviated by disruption of the SAGA transcriptional regulatory complex, suggesting that CR3 targets the yeast SAGA complex. In yeast, transcriptional activation by several, but not all, of the CR3 regions requires the Gcn5 acetyltransferase component of SAGA. The CR3 regions of HAdV-3, 5, 9 and 40, but not HAdV-4 and 12 interact with the pCAF acetyltransferase, a mammalian ortholog of yeast Gcn5. Disruption of the previously described N-terminal pCAF binding site abrogates binding by the HAdV-5 243R E1A protein, but not the larger 289R E1A protein, which is otherwise identical except for the presence of CR3. RNA interference directed against pCAF decreased HAdV-5 CR3 dependent transcriptional activation in mammalian cells. Our results identify a second independent binding site for pCAF in E1A and suggest that it contributes to CR3 dependent transcriptional activation.
Collapse
Affiliation(s)
- Peter Pelka
- Department of Oncology, The University of Western Ontario, London Regional Cancer Centre, London, Ontario, Canada N6A 4L6
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Campbell GR, Loret EP. What does the structure-function relationship of the HIV-1 Tat protein teach us about developing an AIDS vaccine? Retrovirology 2009; 6:50. [PMID: 19467159 PMCID: PMC2693501 DOI: 10.1186/1742-4690-6-50] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Accepted: 05/25/2009] [Indexed: 11/03/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) trans-activator of transcription protein Tat is an important factor in viral pathogenesis. In addition to its function as the key trans-activator of viral transcription, Tat is also secreted by the infected cell and taken up by neighboring cells where it has an effect both on infected and uninfected cells. In this review we will focus on the relationship between the structure of the Tat protein and its function as a secreted factor. To this end we will summarize some of the exogenous functions of Tat that have been implicated in HIV-1 pathogenesis and the impact of structural variations and viral subtype variants of Tat on those functions. Finally, since in some patients the presence of Tat-specific antibodies or CTL frequencies are associated with slow or non-progression to AIDS, we will also discuss the role of Tat as a potential vaccine candidate, the advances made in this field, and the importance of using a Tat protein capable of eliciting a protective or therapeutic immune response to viral challenge.
Collapse
Affiliation(s)
- Grant R Campbell
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, California 92093-0672, USA.
| | | |
Collapse
|
33
|
Pelka P, Ablack JNG, Torchia J, Turnell AS, Grand RJA, Mymryk JS. Transcriptional control by adenovirus E1A conserved region 3 via p300/CBP. Nucleic Acids Res 2009; 37:1095-106. [PMID: 19129215 PMCID: PMC2651774 DOI: 10.1093/nar/gkn1057] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The human adenovirus type 5 (HAdV-5) E1A 13S oncoprotein is a potent regulator of gene expression and is used extensively as a model for transcriptional activation. It possesses two independent transcriptional activation domains located in the N-terminus/conserved region (CR) 1 and CR3. The protein acetyltransferase p300 was previously identified by its association with the N-terminus/CR1 portion of E1A and this association is required for oncogenic transformation by E1A. We report here that transcriptional activation by 13S E1A is inhibited by co-expression of sub-stoichiometric amounts of the smaller 12S E1A isoform, which lacks CR3. Transcriptional inhibition by E1A 12S maps to the N-terminus and correlates with the ability to bind p300/CBP, suggesting that E1A 12S is sequestering this limiting factor from 13S E1A. This is supported by the observation that the repressive effect of E1A 12S is reversed by expression of exogenous p300 or CBP, but not by a CBP mutant lacking actyltransferase activity. Furthermore, we show that transcriptional activation by 13S E1A is greatly reduced by siRNA knockdown of p300 and that CR3 binds p300 independently of the well-characterized N-terminal/CR1-binding site. Importantly, CR3 is also required to recruit p300 to the adenovirus E4 promoter during infection. These results identify a new functionally significant interaction between E1A CR3 and the p300/CBP acetyltransferases, expanding our understanding of the mechanism by which this potent transcriptional activator functions.
Collapse
Affiliation(s)
- Peter Pelka
- Department of Oncology, The University of Western Ontario, London Regional Cancer Centre, London, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
34
|
Michels AA, Bensaude O. RNA-driven cyclin-dependent kinase regulation: When CDK9/cyclin T subunits of P-TEFb meet their ribonucleoprotein partners. Biotechnol J 2008; 3:1022-32. [DOI: 10.1002/biot.200800104] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
35
|
Van Duyne R, Cardenas J, Easley R, Wu W, Kehn-Hall K, Klase Z, Mendez S, Zeng C, Chen H, Saifuddin M, Kashanchi F. Effect of transcription peptide inhibitors on HIV-1 replication. Virology 2008; 376:308-22. [PMID: 18455747 DOI: 10.1016/j.virol.2008.02.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Revised: 12/21/2007] [Accepted: 02/27/2008] [Indexed: 11/17/2022]
Abstract
HIV-1 manipulates cellular machineries such as cyclin dependent kinases (cdks) and their cyclin elements, to stimulate virus production and maintain latent infection. Specifically, the HIV-1 viral protein Tat increases viral transcription by binding to the TAR promoter element. This binding event is mediated by the phosphorylation of Pol II by complexes such as cdk9/Cyclin T and cdk2/Cyclin E. Recent studies have shown that a Tat 41/44 peptide derivative prevents the loading of cdk2 onto the HIV-1 promoter, inhibiting gene expression and replication. Here we show that Tat peptide analogs computationally designed to dock at the cyclin binding site of cdk2 have the ability to bind to cdk2 and inhibit the association of cdk2 with the HIV promoter. Specifically, the peptide LAALS dissociated the complex and decreased kinase activity in vitro. We also describe our novel small animal model which utilizes humanized Rag2(-/-)gamma(c)(-/-) mice. This small peptide inhibitor induces a decrease in HIV-1 viral transcription in vitro and minimizes viral loads in vivo.
Collapse
Affiliation(s)
- Rachel Van Duyne
- The George Washington University Medical Center, Department of Microbiology, Immunology, and Tropical Medicine, Washington, DC 20037, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
During the past decade, numerous ncRNAs (non-coding RNAs) have been identified as regulators of transcription. This review focuses on a few examples of ncRNAs that directly interact with and regulate components of the transcription machinery. Artificial RNA aptamers have been selected against components of the transcriptional machinery. The bacterial 6S RNA and the eukaryotic B2 RNA directly target RNA polymerases. The 7SK RNA, U1 snRNA (small nuclear RNA) and SRA (steroid receptor RNA activator) RNA bind to and regulate the activity of transcription factors. Xist (X-inactive-specific transcript) and roX (RNA on the X) RNAs are involved in epigenetic regulation of transcription through the recruitment of histone-modifying enzymes.
Collapse
|
37
|
Triboulet R, Benkirane M. [Interplay between HIV-1 replication and the microRNA-silencing pathway]. Med Sci (Paris) 2007; 23:590-2. [PMID: 17631832 DOI: 10.1051/medsci/20072367590] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Robinson Triboulet
- Laboratoire de Virologie Moléculaire, Institut de Génétique Humaine, CNRS UPR 1142, 141, rue de la Cardonille, 34396 Montpellier Cedex 5, France.
| | | |
Collapse
|
38
|
Williams SA, Greene WC. Regulation of HIV-1 latency by T-cell activation. Cytokine 2007; 39:63-74. [PMID: 17643313 PMCID: PMC2063506 DOI: 10.1016/j.cyto.2007.05.017] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Revised: 05/23/2007] [Accepted: 05/30/2007] [Indexed: 01/06/2023]
Abstract
HIV-infected patients harbor approximately 10(5)-10(6) memory CD4 T-cells that contain fully integrated but transcriptionally silent HIV proviruses. While small in number, these latently infected cells form a drug-insensitive reservoir that importantly contributes to the life-long persistence of HIV despite highly effective antiviral therapy. In tissue culture, latent HIV proviruses can be activated when their cellular hosts are exposed to select proinflammatory cytokines or their T-cell receptors are ligated. However, due to a lack of potency and/or dose-limiting toxicity, attempts to purge virus from this latent reservoir in vivo with immune-activating agents, such as anti-CD3 antibodies and IL-2, have failed. A deeper understanding of the molecular underpinnings of HIV latency is clearly required, including determining whether viral latency is actively reinforced by transcriptional repressors, defining which inducible host transcription factors most effectively antagonize latency, and elucidating the role of chromatin in viral latency. Only through such an improved understanding will it be possible to identify combination therapies that might allow complete purging of the latent reservoir and to realize the difficult and elusive goal of complete eradication of HIV in infected patients.
Collapse
Affiliation(s)
- Samuel A. Williams
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA, 94141-1230
- Department of Physiology, University of California, San Francisco, CA, 94141-1230
- Department of Medicine, University of California, San Francisco, CA, 94141-1230
| | - Warner C. Greene
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, CA, 94141-1230
- Department of Medicine, University of California, San Francisco, CA, 94141-1230
- Department of Microbiology and Immunology, University of California, San Francisco, CA, 94141-1230
- *Corresponding author. Mailing address: Gladstone Institute of Virology and Immunology, 1650 Owens Street, San Francisco, CA, 94158, Phone: (415) 734-2000, Fax: (415) 355-0153,
| |
Collapse
|
39
|
Molle D, Maiuri P, Boireau S, Bertrand E, Knezevich A, Marcello A, Basyuk E. A real-time view of the TAR:Tat:P-TEFb complex at HIV-1 transcription sites. Retrovirology 2007; 4:36. [PMID: 17537237 PMCID: PMC1904240 DOI: 10.1186/1742-4690-4-36] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Accepted: 05/30/2007] [Indexed: 11/23/2022] Open
Abstract
HIV-1 transcription is tightly regulated: silent in long-term latency and highly active in acutely-infected cells. Transcription is activated by the viral protein Tat, which recruits the elongation factor P-TEFb by binding the TAR sequence present in nascent HIV-1 RNAs. In this study, we analyzed the dynamic of the TAR:Tat:P-TEFb complex in living cells, by performing FRAP experiments at HIV-1 transcription sites. Our results indicate that a large fraction of Tat present at these sites is recruited by Cyclin T1. We found that in the presence of Tat, Cdk9 remained bound to nascent HIV-1 RNAs for 71s. In contrast, when transcription was activated by PMA/ionomycin, in the absence of Tat, Cdk9 turned-over rapidly and resided on the HIV-1 promoter for only 11s. Thus, the mechanism of trans-activation determines the residency time of P-TEFb at the HIV-1 gene, possibly explaining why Tat is such a potent transcriptional activator. In addition, we observed that Tat occupied HIV-1 transcription sites for 55s, suggesting that the TAR:Tat:P-TEFb complex dissociates from the polymerase following transcription initiation, and undergoes subsequent cycles of association/dissociation.
Collapse
Affiliation(s)
- Dorothée Molle
- IGMM-CNRS UMR 5535, 1919, route de Mende, 34293 Montpellier, France
| | - Paolo Maiuri
- Laboratory of Molecular Virology, ICGEB, Padriciano 99, 34012 Trieste, Italy
| | | | - Edouard Bertrand
- IGMM-CNRS UMR 5535, 1919, route de Mende, 34293 Montpellier, France
| | - Anna Knezevich
- Laboratory of Molecular Virology, ICGEB, Padriciano 99, 34012 Trieste, Italy
| | - Alessandro Marcello
- Laboratory of Molecular Virology, ICGEB, Padriciano 99, 34012 Trieste, Italy
| | - Eugenia Basyuk
- IGMM-CNRS UMR 5535, 1919, route de Mende, 34293 Montpellier, France
| |
Collapse
|
40
|
Sharma A, Awasthi S, Harrod CK, Matlock EF, Khan S, Xu L, Chan S, Yang H, Thammavaram CK, Rasor RA, Burns DK, Skiest DJ, Van Lint C, Girard AM, McGee M, Monnat RJ, Harrod R. The Werner Syndrome Helicase Is a Cofactor for HIV-1 Long Terminal Repeat Transactivation and Retroviral Replication. J Biol Chem 2007; 282:12048-57. [PMID: 17317667 DOI: 10.1074/jbc.m608104200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Werner syndrome helicase (WRN) participates in DNA replication, double strand break repair, telomere maintenance, and p53 activation. Mutations of wrn cause Werner syndrome (WS), an autosomal recessive premature aging disorder associated with cancer predisposition, atherosclerosis, and other aging related symptoms. Here, we report that WRN is a novel cofactor for HIV-1 replication. Immortalized human WRN(-/-) WS fibroblasts, lacking a functional wrn gene, are impaired for basal and Tat-activated HIV-1 transcription. Overexpression of wild-type WRN transactivates the HIV-1 long terminal repeat (LTR) in the absence of Tat, and WRN cooperates with Tat to promote high-level LTR transactivation. Ectopic WRN induces HIV-1 p24(Gag) production and retroviral replication in HIV-1-infected H9(HIV-1IIIB) lymphocytes. A dominant-negative helicase-minus mutant, WRN(K577M), inhibits LTR transactivation and HIV-1 replication. Inhibition of endogenous WRN, through co-expression of WRN(K577M), diminishes recruitment of p300/CREB-binding protein-associated factor (PCAF) and positive transcription elongation factor b (P-TEFb) to Tat/transactivation response-RNA complexes, and immortalized WRN(-/-) WS fibroblasts exhibit comparable defects in recruitment of PCAF and P-TEFb to the HIV-1 LTR. Our results demonstrate that WRN is a novel cellular cofactor for HIV-1 replication and suggest that the WRN helicase participates in the recruitment of PCAF/P-TEFb-containing transcription complexes. WRN may be a plausible target for antiretroviral therapy.
Collapse
Affiliation(s)
- Anima Sharma
- Laboratory of Molecular Virology, Department of Biological Sciences, Southern Methodist University, Dallas, Texas 75275-0376, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Chéné ID, Basyuk E, Lin YL, Triboulet R, Knezevich A, Chable-Bessia C, Mettling C, Baillat V, Reynes J, Corbeau P, Bertrand E, Marcello A, Emiliani S, Kiernan R, Benkirane M. Suv39H1 and HP1gamma are responsible for chromatin-mediated HIV-1 transcriptional silencing and post-integration latency. EMBO J 2007; 26:424-35. [PMID: 17245432 PMCID: PMC1783455 DOI: 10.1038/sj.emboj.7601517] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Accepted: 11/30/2006] [Indexed: 12/11/2022] Open
Abstract
HIV-1 gene expression is the major determinant regulating the rate of virus replication and, consequently, AIDS progression. Following primary infection, most infected cells produce virus. However, a small population becomes latently infected and constitutes the viral reservoir. This stable viral reservoir seriously challenges the hope of complete viral eradication. Viewed in this context, it is critical to define the molecular mechanisms involved in the establishment of transcriptional latency and the reactivation of viral expression. We show that Suv39H1, HP1gamma and histone H3Lys9 trimethylation play a major role in chromatin-mediated repression of integrated HIV-1 gene expression. Suv39H1, HP1gamma and histone H3Lys9 trimethylation are reversibly associated with HIV-1 in a transcription-dependent manner. Finally, we show in different cellular models, including PBMCs from HIV-1-infected donors, that HIV-1 reactivation could be achieved after HP1gamma RNA interference.
Collapse
Affiliation(s)
- Isaure du Chéné
- Laboratoire de Virologie Moléculaire, Institut de Génétique Humaine, UPR 1142, Montpellier, France
| | - Euguenia Basyuk
- Traffic et Assemblage des RNPs, Institut de Génétique Moléculaire, UMR 5355, Montpellier, France
| | - Yea-Lih Lin
- Lentivirus et Transfert de Gènes, Institut de Génétique Humaine, UPR 1142, Montpellier, France
| | - Robinson Triboulet
- Laboratoire de Virologie Moléculaire, Institut de Génétique Humaine, UPR 1142, Montpellier, France
| | - Anna Knezevich
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Christine Chable-Bessia
- Laboratoire de Virologie Moléculaire, Institut de Génétique Humaine, UPR 1142, Montpellier, France
| | - Clement Mettling
- Lentivirus et Transfert de Gènes, Institut de Génétique Humaine, UPR 1142, Montpellier, France
| | - Vincent Baillat
- Service des Maladies Infectieuses et Tropicales Hôpital Gui de Chauliac, Institut de Génétique Moléculaire, UMR 5355, Montpellier, France
| | - Jacques Reynes
- Service des Maladies Infectieuses et Tropicales Hôpital Gui de Chauliac, Institut de Génétique Moléculaire, UMR 5355, Montpellier, France
| | - Pierre Corbeau
- Lentivirus et Transfert de Gènes, Institut de Génétique Humaine, UPR 1142, Montpellier, France
| | - Edouard Bertrand
- Traffic et Assemblage des RNPs, Institut de Génétique Moléculaire, UMR 5355, Montpellier, France
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Stephane Emiliani
- Département de Maladies Infectieuses, Institut Cochin, Paris, France
| | - Rosemary Kiernan
- Laboratoire de Virologie Moléculaire, Institut de Génétique Humaine, UPR 1142, Montpellier, France
| | - Monsef Benkirane
- Laboratoire de Virologie Moléculaire, Institut de Génétique Humaine, UPR 1142, Montpellier, France
- Laboratoire de Virologie Moléculaire, Institut de Génétique Humaine, CNRS, UPR 1142, Montpellier, 141 rue la Cardonille, 34396 Montpellier Cedex 5, France. Tel.: +33 4 99 61 99 32; Fax: + 33 4 99 61 99 01; E-mail:
| |
Collapse
|
42
|
Linares LK, Kiernan R, Triboulet R, Chable-Bessia C, Latreille D, Cuvier O, Lacroix M, Le Cam L, Coux O, Benkirane M. Intrinsic ubiquitination activity of PCAF controls the stability of the oncoprotein Hdm2. Nat Cell Biol 2007; 9:331-8. [PMID: 17293853 DOI: 10.1038/ncb1545] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 12/28/2006] [Indexed: 12/19/2022]
Abstract
The p300-CBP-associated factor (PCAF) is a histone acetyltransferase (HAT) involved in the reversible acetylation of various transcriptional regulators, including the tumour suppressor p53. It is implicated in many cellular processes, such as transcription, differentiation, proliferation and apoptosis. We observed that knockdown of PCAF expression in HeLa or U2OS cell lines induces stabilization of the oncoprotein Hdm2, a RING finger E3 ligase primarily known for its role in controlling p53 stability. To investigate the molecular basis of this effect, we examined whether PCAF is involved in Hdm2 ubiquitination. Here, we show that PCAF, in addition to its acetyltransferase activity, possesses an intrinsic ubiquitination activity that is critical for controlling Hdm2 expression levels, and thus p53 functions. Our data highlight a regulatory crosstalk between PCAF and Hdm2 activities, which is likely to have a central role in the subtle control of p53 activity after DNA damage.
Collapse
Affiliation(s)
- Laëtitia K Linares
- Centre de Recherches de Biochimie Macromoléculaire, CNRS-UMII UMR5237, Montpellier, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Hetzer C, Bisgrove D, Cohen MS, Pedal A, Kaehlcke K, Speyerer A, Bartscherer K, Taunton J, Ott M. Recruitment and activation of RSK2 by HIV-1 Tat. PLoS One 2007; 2:e151. [PMID: 17225856 PMCID: PMC1764712 DOI: 10.1371/journal.pone.0000151] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Accepted: 12/11/2006] [Indexed: 12/21/2022] Open
Abstract
The transcriptional activity of the integrated HIV provirus is dependent on the chromatin organization of the viral promoter and the transactivator Tat. Tat recruits the cellular pTEFb complex and interacts with several chromatin-modifying enzymes, including the histone acetyltransferases p300 and PCAF. Here, we examined the interaction of Tat with activation-dependent histone kinases, including the p90 ribosomal S6 kinase 2 (RSK2). Dominant-negative RSK2 and treatment with a small-molecule inhibitor of RSK2 kinase activity inhibited the transcriptional activity of Tat, indicating that RSK2 is important for Tat function. Reconstitution of RSK2 in cells from subjects with a genetic defect in RSK2 expression (Coffin-Lowry syndrome) enhanced Tat transactivation. Tat interacted with RSK2 and activated RSK2 kinase activity in cells. Both properties were lost in a mutant Tat protein (F38A) that is deficient in HIV transactivation. Our data identify a novel reciprocal regulation of Tat and RSK2 function, which might serve to induce early changes in the chromatin organization of the HIV LTR.
Collapse
Affiliation(s)
| | - Dwayne Bisgrove
- Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Michael S. Cohen
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
| | - Angelika Pedal
- Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Katrin Kaehlcke
- Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, California, United States of America
| | - Anja Speyerer
- Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, United States of America
| | - Melanie Ott
- Gladstone Institute of Virology and Immunology, University of California San Francisco, San Francisco, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
44
|
Bodem J, Kräusslich HG, Rethwilm A. Acetylation of the foamy virus transactivator Tas by PCAF augments promoter-binding affinity and virus transcription. J Gen Virol 2007; 88:259-263. [PMID: 17170459 DOI: 10.1099/vir.0.82169-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
It was shown recently that retrovirus transactivators interact with transcriptional coactivators, such as histone acetyltransferases (HATs). Foamy viruses (FVs) direct gene expression from the long terminal repeat and from an internal promoter. The activity of both promoters is strictly dependent on the DNA-binding transactivator Tas. Recently, it was shown that Tas interacts with the HATs p300 and PCAF. Based on these findings, it is demonstrated here that PCAF has the ability to acetylate Tas in vitro and in vivo. Tas acetylation resulted in enhanced DNA binding to the virus promoters. In vitro transcription reactions on non-chromatinized template showed that only acetylated Tas enhanced transcription significantly. These results demonstrate that acetylation of the FV transactivator Tas may be an effective means to regulate virus transcription.
Collapse
Affiliation(s)
- Jochen Bodem
- Institut für Virologie und Immunbiologie, Universität Würzburg, Germany
- Institut für Virologie, Universität Heidelberg, Germany
| | | | - Axel Rethwilm
- Institut für Virologie und Immunbiologie, Universität Würzburg, Germany
| |
Collapse
|
45
|
Gatignol A. Transcription of HIV: Tat and cellular chromatin. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2007; 55:137-59. [PMID: 17586314 DOI: 10.1016/s1054-3589(07)55004-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Anne Gatignol
- Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research,, Department of Microbiology & Immunology and Experimental Medicine, McGill University, Montréal, Québec, Canada
| |
Collapse
|
46
|
Ammosova T, Berro R, Jerebtsova M, Jackson A, Charles S, Klase Z, Southerland W, Gordeuk VR, Kashanchi F, Nekhai S. Phosphorylation of HIV-1 Tat by CDK2 in HIV-1 transcription. Retrovirology 2006; 3:78. [PMID: 17083724 PMCID: PMC1636661 DOI: 10.1186/1742-4690-3-78] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2006] [Accepted: 11/03/2006] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Transcription of HIV-1 genes is activated by HIV-1 Tat protein, which induces phosphorylation of RNA polymerase II (RNAPII) C-terminal domain (CTD) by CDK9/cyclin T1. Earlier we showed that CDK2/cyclin E phosphorylates HIV-1 Tat in vitro. We also showed that CDK2 induces HIV-1 transcription in vitro and that inhibition of CDK2 expression by RNA interference inhibits HIV-1 transcription and viral replication in cultured cells. In the present study, we analyzed whether Tat is phosphorylated in cultured cells by CDK2 and whether Tat phosphorylation has a regulatory effect on HIV-1 transcription. RESULTS We analyzed HIV-1 Tat phosphorylation by CDK2 in vitro and identified Ser16 and Ser46 residues of Tat as potential phosphorylation sites. Tat was phosphorylated in HeLa cells infected with Tat-expressing adenovirus and metabolically labeled with 32P. CDK2-specific siRNA reduced the amount and the activity of cellular CDK2 and significantly decreased phosphorylation of Tat. Tat co-migrated with CDK2 on glycerol gradient and co-immunoprecipitated with CDK2 from the cellular extracts. Tat was phosphorylated on serine residues in vivo, and mutations of Ser16 and Ser46 residues of Tat reduced Tat phosphorylation in vivo. Mutation of Ser16 and Ser46 residues of Tat reduced HIV-1 transcription in transiently transfected cells. The mutations of Tat also inhibited HIV-1 viral replication and Tat phosphorylation in the context of the integrated HIV-1 provirus. Analysis of physiological importance of the S16QP(K/R)19 and S46YGR49 sequences of Tat showed that Ser16 and Ser46 and R49 residues are highly conserved whereas mutation of the (K/R)19 residue correlated with non-progression of HIV-1 disease. CONCLUSION Our results indicate for the first time that Tat is phosphorylated in vivo; Tat phosphorylation is likely to be mediated by CDK2; and phosphorylation of Tat is important for HIV-1 transcription.
Collapse
Affiliation(s)
- Tatyana Ammosova
- Center for Sickle Cell Disease, Howard University College of Medicine, 520 W Street N.W., Washington, DC 20059, USA
| | - Reem Berro
- Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, 2300 I Street N.W., Washington, DC 20037, USA
| | - Marina Jerebtsova
- Children's National Medical Center, CRI Center III, 111 Michigan Ave., N.W. Washington, D.C. 20010-2970, USA
| | - Angela Jackson
- Department of Biochemistry and Molecular Biology, Howard University College of Medicine, 520 W Street N.W., Washington, DC 20059, USA
| | - Sharroya Charles
- Program in Genetics, Howard University College of Medicine, 520 W Street N.W., Washington, DC 20059, USA
| | - Zachary Klase
- Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, 2300 I Street N.W., Washington, DC 20037, USA
| | - William Southerland
- Department of Biochemistry and Molecular Biology, Howard University College of Medicine, 520 W Street N.W., Washington, DC 20059, USA
| | - Victor R Gordeuk
- Center for Sickle Cell Disease, Howard University College of Medicine, 520 W Street N.W., Washington, DC 20059, USA
| | - Fatah Kashanchi
- Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, 2300 I Street N.W., Washington, DC 20037, USA
| | - Sergei Nekhai
- Center for Sickle Cell Disease, Howard University College of Medicine, 520 W Street N.W., Washington, DC 20059, USA
- Department of Biochemistry and Molecular Biology, Howard University College of Medicine, 520 W Street N.W., Washington, DC 20059, USA
- Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, 2300 I Street N.W., Washington, DC 20037, USA
| |
Collapse
|
47
|
Stevens M, De Clercq E, Balzarini J. The regulation of HIV-1 transcription: molecular targets for chemotherapeutic intervention. Med Res Rev 2006; 26:595-625. [PMID: 16838299 PMCID: PMC7168390 DOI: 10.1002/med.20081] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The regulation of transcription of the human immunodeficiency virus (HIV) is a complex event that requires the cooperative action of both viral and cellular components. In latently infected resting CD4(+) T cells HIV-1 transcription seems to be repressed by deacetylation events mediated by histone deacetylases (HDACs). Upon reactivation of HIV-1 from latency, HDACs are displaced in response to the recruitment of histone acetyltransferases (HATs) by NF-kappaB or the viral transcriptional activator Tat and result in multiple acetylation events. Following chromatin remodeling of the viral promoter region, transcription is initiated and leads to the formation of the TAR element. The complex of Tat with p-TEFb then binds the loop structures of TAR RNA thereby positioning CDK9 to phosphorylate the cellular RNA polymerase II. The Tat-TAR-dependent phosphorylation of RNA polymerase II plays an important role in transcriptional elongation as well as in other post-transcriptional events. As such, targeting of Tat protein (and/or cellular cofactors) provide an interesting perspective for therapeutic intervention in the HIV replicative cycle and may afford lifetime control of the HIV infection.
Collapse
Affiliation(s)
- Miguel Stevens
- Rega Institute for Medical Research, Minderbroedersstraat 10, B‐3000 Leuven, Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research, Minderbroedersstraat 10, B‐3000 Leuven, Belgium
| | - Jan Balzarini
- Rega Institute for Medical Research, Minderbroedersstraat 10, B‐3000 Leuven, Belgium
| |
Collapse
|
48
|
Solis M, Wilkinson P, Romieu R, Hernandez E, Wainberg MA, Hiscott J. Gene expression profiling of the host response to HIV-1 B, C, or A/E infection in monocyte-derived dendritic cells. Virology 2006; 352:86-99. [PMID: 16730773 DOI: 10.1016/j.virol.2006.04.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Revised: 01/17/2006] [Accepted: 04/03/2006] [Indexed: 02/04/2023]
Abstract
Dendritic cells (DC) are among the first targets of human immunodeficiency virus type-1 (HIV-1) infection and in turn play a crucial role in viral transmission to T cells and in the regulation of the immune response. The major group of HIV-1 has diversified genetically based on variation in env sequences and comprise at least 11 subtypes. Because little is known about the host response elicited against different HIV-1 clade isolates in vivo, we sought to use gene expression profiling to identify genes regulated by HIV-1 subtypes B, C, and A/E upon de novo infection of primary immature monocyte-derived DC (iMDDCs). A total of 3700 immune-related genes were subjected to a significance analysis of microarrays (SAM); 656 genes were selected as significant and were further divided into 8 functional categories. Regardless of the time of infection, 20% of the genes affected by HIV-1 were involved in signal transduction, followed by 14% of the genes identified as transcription-related genes, and 7% were classified as playing a role in cell proliferation and cell cycle. Furthermore, 7% of the genes were immune response genes. By 72 h postinfection, genes upregulated by subtype B included the inhibitor of the matrix metalloproteinase TIMP2 and the heat shock protein 40 homolog (Hsp40) DNAJB1, whereas the IFN inducible gene STAT1, the MAPK1/ERK2 kinase regulator ST5, and the chemokine CXCL3 and SHC1 genes were induced by subtypes C and A/E. These analyses distinguish a temporally regulated host response to de novo HIV-1 infection in primary dendritic cells.
Collapse
Affiliation(s)
- Mayra Solis
- McGill AIDS Center, Lady Davis Institute for Medical Research, Jewish General Hospital, Department of Microbiology and Immunology, McGill University, 3755 Cote Ste. Catherine, Montreal, Quebec, Canada H3T1E2
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
HIV-1 Tat protein is a crucial element for viral replication; therefore, its inhibition might be exploited against the AIDS infection. To gain insights on the natural variability of this protein, we present a comparative investigation on the relationship between the primary sequences and the experimentally available three-dimensional structures from the HIV-1 Tat variants Z2, BRU, and MAL. Our computational tools include sequence conservation algorithms, structural analysis, electrostatic modeling, and molecular dynamics (MD) simulations. We find that two regions located between residues 10-18 and 41-52 display the highest primary sequence conservation, while the most conserved region among the available structures corresponds approximately to the segment between positions approximately 44 and 50. Furthermore, in spite of their large structural divergence, Tat variants share a common mode for long-range intramolecular interactions. Finally, the flexibility of the Z2, BRU, and MAL variants, as emerging from multinanosecond MD simulations, is rather similar. Based on this work, we conclude that the turnlike region between amino acids 44 and 50 is structurally most conserved, emerging as an important motif for pharmaceutical targeting aimed toward inhibiting Tat action.
Collapse
Affiliation(s)
- Sergio Pantano
- International School for Advanced Studies and INFM-DEMOCRITOS Modeling Center for Research in Atomistic Simulation, Trieste, Italy
| | | |
Collapse
|
50
|
Mahmoudi T, Parra M, Vries RGJ, Kauder SE, Verrijzer CP, Ott M, Verdin E. The SWI/SNF chromatin-remodeling complex is a cofactor for Tat transactivation of the HIV promoter. J Biol Chem 2006; 281:19960-8. [PMID: 16687403 DOI: 10.1074/jbc.m603336200] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tat is a critical viral transactivator essential for human immunodeficiency virus (HIV) gene expression. Activation involves binding to an RNA stem-loop structure and recruitment of the positive transcription elongation factor b. Tat also induces the remodeling of a single nucleosome in the HIV promoter. However, the mechanism of this remodeling has remained unclear. Knockdown of INI-1 and BRG-1, two components of the SWI/SNF chromatin-remodeling complex, suppressed Tat-mediated transactivation. Cells lacking INI-1 (G401 and MON) or BRG-1 (C33A) exhibited defective transactivation by Tat that was restored upon INI-1 and BRG-1 expression, respectively. Tat was co-immunoprecipitated with several SWI/SNF subunits, including INI-1, BRG-1, and beta-actin. The SWI/SNF complex interacted with the integrated HIV promoter in a Tat-dependent manner. We also found that INI-1 and BRG-1 synergized with the p300 acetyltransferase to activate the HIV promoter. This synergism depended on the acetyltransferase activity of p300 and on Tat Lys(50) and Lys(51). In conclusion, Tat-mediated activation of the HIV promoter requires the SWI/SNF complex in synergy with the coactivator p300.
Collapse
Affiliation(s)
- Tokameh Mahmoudi
- Gladstone Institute of Virology and Immunology, University of California, San Francisco, California 94158, USA
| | | | | | | | | | | | | |
Collapse
|