1
|
Beydoun MA, Beydoun HA, Hu YH, Li Z, Georgescu MF, Noren Hooten N, Bouhrara M, Weiss J, Launer LJ, Evans MK, Zonderman AB. Mediating and moderating effects of plasma proteomic biomarkers on the association between poor oral health problems and brain white matter microstructural integrity: the UK Biobank study. Mol Psychiatry 2025; 30:388-401. [PMID: 39080466 DOI: 10.1038/s41380-024-02678-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 01/22/2025]
Abstract
The plasma proteome can mediate associations between periodontal disease (Pd) and brain white matter integrity (WMI). We screened 5089 UK Biobank participants aged 40-70 years for poor oral health problems (POHP). We examined the association between POHP and WMI (fractional anisotropy (FA), mean diffusivity (MD), Intracellular Volume Fraction (ICVF), Isotropic Volume Fraction (ISOVF) and Orientation Diffusion (OD)), decomposing the total effect through the plasma proteome of 1463 proteins into pure mediation, pure interaction, neither, while adjusting for socio-demographic and cardiovascular health factors. Similarly, structural equations modeling (SEM) was conducted. POHP was more prevalent among men (12.3% vs. 9.6%), and was associated with lower WMI on most metrics, in a sex-specific manner. Of 15 proteins strongly associated with POHP, growth differentiation factor 15 (GDF15) and WAP four-disulfide core domain 2 (WFDC2; also known as human epididymis protein 4; HE4) were consistent mediators. Both proteins mediated 7-8% of total POHP effect on FAmean. SEM yielded significant total effects for FAmean, MDmean and ISOVFmean in full models, with %mediated by common latent factor (GDF15 and WFDC2) ranging between 13% (FAmean) and 19% (ISOVFmean). For FA, mediation by this common factor was found for 16 of 49 tract-specific and global mean metrics. Protein metabolism, immune system, and signal transduction were the most common pathways for mediational effects. POHP was associated with poorer WMI, which was partially mediated by GDF15 and WFDC2.
Collapse
Affiliation(s)
- May A Beydoun
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, 21224, USA.
| | - Hind A Beydoun
- VA National Center on Homelessness Among Veterans, U.S. Department of Veterans Affairs, Washington, DC, 20420, USA
- Department of Management, Policy, and Community Health, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Yi-Han Hu
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, 21224, USA
| | - Zhiguang Li
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, 21224, USA
| | - Michael F Georgescu
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, 21224, USA
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, 21224, USA
| | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, 21224, USA
| | - Jordan Weiss
- Stanford Center on Longevity, Stanford University, Stanford, CA, 94301, USA
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, 21224, USA
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, 21224, USA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, 21224, USA
| |
Collapse
|
2
|
Appel AM, Janbek J, Jensen‐Dahm C, Laursen TM, Waldemar G. The effect of influenza vaccination on the rate of dementia amongst older adults. Eur J Neurol 2024; 31:e16489. [PMID: 39370749 PMCID: PMC11554864 DOI: 10.1111/ene.16489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/22/2024] [Accepted: 09/01/2024] [Indexed: 10/08/2024]
Abstract
BACKGROUND AND PURPOSE Previous studies have reported conflicting results regarding the association between influenza vaccination and dementia. This association was investigated in a nationwide register-based cohort study. METHODS Using nationwide registries, dementia-free adults aged ≥65 years in Denmark from 2002 to 2018 without previous influenza vaccinations were included. Poisson regression facilitated confounder-adjusted comparisons of dementia rates for ever versus never vaccinated, number of vaccinations and within/after 5 years from first vaccination. Sensitivity analyses included stratification on age and sex. RESULTS Vaccination during follow-up was associated with a slightly higher rate of dementia when adjusted for sociodemographic factors and comorbidities, both within and after the first 5 years from first vaccination (incidence rate ratio [IRR] 1.04; 95% confidence interval [CI] 1.03-1.05). The rate of dementia decreased with increasing number of vaccinations. The highest rate was amongst those with only one vaccination (IRR 1.14; 95% CI 1.12-1.17) and the rate of dementia was only decreased amongst those with six or more vaccinations (IRR 0.95; 95% CI 0.93-0.97). Applying the same models to control outcomes of hip fracture and cancer resulted in higher rates amongst vaccinated people of 6% and 7%, respectively. Vaccinated people also had a 10% higher mortality rate. DISCUSSION Our results do not support the case for a preventive effect of influenza vaccination on the risk of dementia in the general population, as reported by some previous studies. However, the higher dementia rate amongst vaccinated people found in this study is probably due to residual confounding, indicated by a higher rate for control outcomes and mortality.
Collapse
Affiliation(s)
- Andreas Moses Appel
- Danish Dementia Research Centre, Department of NeurologyCopenhagen University Hospital—RigshospitaletCopenhagenDenmark
| | - Janet Janbek
- Danish Dementia Research Centre, Department of NeurologyCopenhagen University Hospital—RigshospitaletCopenhagenDenmark
| | - Christina Jensen‐Dahm
- Danish Dementia Research Centre, Department of NeurologyCopenhagen University Hospital—RigshospitaletCopenhagenDenmark
| | - Thomas Munk Laursen
- National Centre for Register‐Based Research, Department of Economics and Business Economics, Aarhus BSSAarhus UniversityAarhusDenmark
| | - Gunhild Waldemar
- Danish Dementia Research Centre, Department of NeurologyCopenhagen University Hospital—RigshospitaletCopenhagenDenmark
- Department of Clinical MedicineUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
3
|
Lehrer S, Rheinstein PH. Klebsiella pneumoniae infection increases risk of Alzheimer's Disease in the UK Biobank cohort. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.21.24317739. [PMID: 39606345 PMCID: PMC11601768 DOI: 10.1101/2024.11.21.24317739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Background Infections, including bacterial pathogens, have been implicated in Alzheimer's disease (AD) risk. Klebsiella pneumoniae (K. pneumoniae) is a common hospital-acquired pathogen associated with significant inflammation, which may contribute to neurodegeneration. This study investigates the relationship between K. pneumoniae infections and AD in the UK Biobank cohort. Methods Using UK Biobank data, we assessed AD diagnoses based on linked healthcare records and identified K. pneumoniae infections using ICD-10 codes B96.1 and J15.0. A cohort of 502,494 participants was analyzed for AD incidence in relation to demographic factors, educational years, APOE isoforms, and history of K. pneumoniae infection. Logistic regression was used to assess the association between K. pneumoniae infection and AD risk. Results AD incidence was significantly higher among participants with a history of K. pneumoniae infection (1.0%) compared to those without (0.2%; p < 0.001, Fisher's exact test two tailed). Logistic regression analysis revealed that K. pneumoniae infection was associated with an increased risk of AD (OR = 3.32, p < 0.001), independent of age, sex, education, and APOE isoform. Additionally, AD risk was higher among ε4ε4 carriers and increased with age but decreased with additional years of education. Conclusion Our findings suggest that K. pneumoniae infection may be an independent risk factor for AD. This association underscores the need for further research into infection control and its role in mitigating neurodegenerative disease risk, particularly in populations susceptible to healthcare-associated infections.
Collapse
Affiliation(s)
- Steven Lehrer
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York
| | | |
Collapse
|
4
|
Casey C, Sleator RD. Prions: structure, function, evolution, and disease. Arch Microbiol 2024; 207:1. [PMID: 39572454 DOI: 10.1007/s00203-024-04200-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024]
Abstract
Prions are proteinaceous infectious particles implicated in fatal neurodegenerative disorders known as prion diseases. Herein, we provide an overview of prion biology, emphasizing the structural, functional, and evolutionary aspects of prions, along with their potential applications in protein engineering. Understanding the structure-function relationships of both healthy and disease-associated prion proteins enables a deeper understanding of the mechanisms of prion-induced neurotoxicity. Furthermore, we describe how insights into prion evolution have begun to shed light on their ancient origins and evolutionary resilience, offering deeper insights into the potential roles of prions in primordial chemical processes.
Collapse
Affiliation(s)
- Clara Casey
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, T12 P928, Ireland
- Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Roy D Sleator
- Department of Biological Sciences, Munster Technological University, Bishopstown, Cork, T12 P928, Ireland.
| |
Collapse
|
5
|
Khatir AA, Mousavi F, Sepidarkish M, Arshadi M, Arjmandi D, Aldaghi M, Rostami A. Association between Alzheimer's disease and Toxocara infection/exposure: a case-control study. Trans R Soc Trop Med Hyg 2024; 118:744-751. [PMID: 38899453 DOI: 10.1093/trstmh/trae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/08/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Infections may contribute to Alzheimer's disease (AD) risk. Limited evidence suggests Toxocara spp. infection/exposure could influence AD development. METHODS We investigated Toxocara seropositivity and AD in Iranian adults using a matched case-control study. Our sample included 90 AD cases and 91 healthy older adults. Anti-Toxocara immunoglobulin G (IgG) antibodies were assessed via enzyme-linked immunosorbent assay. We computed the odds ratios (ORs) and 95% confidence intervals (CIs) through univariable and multivariable analyses, adjusting for potential confounders. RESULTS There were 33/90 (36.67% [95% CI 26.75 to 47.48]) anti-Toxocara IgG seropositive individuals identified among the AD cases and 21/91 (23.07% [95% CI 14.89 to 33.09]) among the healthy controls. In univariable analysis, a significant association was identified between anti-Toxocara IgG seropositivity and AD (OR 1.93 [95% CI 1.01 to 3.69], p<0.001). Moreover, the association remained significant (OR 2.18 [95% CI 1.05 to 4.49], p<0.001) in multivariable analysis after adjustment for covariates. There was no association between anti-Toxocara IgG seropositivity and the severity of AD (OR 0.75 [95% CI 0.21 to 2.61], p=0.47). CONCLUSIONS Our findings indicated that Toxocara exposure/infection could be a potential risk factor for development of AD. To better understand a real causality between Toxocara exposure/infection and AD and related dementias, follow-up designed and adequately powered studies are needed.
Collapse
Affiliation(s)
- Ali Alizadeh Khatir
- Mobility Impairment Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Fariborz Mousavi
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mahdi Sepidarkish
- Department of Biostatistics and Epidemiology, School of Public Health, Babol University of Medical Sciences, Babol, Iran
| | - Mahdi Arshadi
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Delaram Arjmandi
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Aldaghi
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Ali Rostami
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
6
|
Williams ZAP, Lang L, Nicolas S, Clarke G, Cryan J, Vauzour D, Nolan YM. Do microbes play a role in Alzheimer's disease? Microb Biotechnol 2024; 17:e14462. [PMID: 38593310 PMCID: PMC11003713 DOI: 10.1111/1751-7915.14462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024] Open
Abstract
Alzheimer's disease is a complex and progressive condition that affects essential neurological functions such as memory and reasoning. In the brain, neuronal loss, synaptic dysfunction, proteinopathy, neurofibrillary tangles, and neuroinflammation are the hallmarks of Alzheimer's disease pathophysiology. In addition, recent evidence has highlighted that microbes, whether commensal or pathogenic, also have the ability to interact with their host and to regulate its immune system, therefore participating in the exchanges that lead to peripheral inflammation and neuropathology. Because of this intimate relationship, bacteria, viruses, fungi, and protozoa have been implicated in the development of Alzheimer's disease. Here, we bring together current and most recent evidence of the role of microbes in Alzheimer's disease, raising burning questions that need to be addressed to guide therapeutic approaches and potential prophylactic strategies.
Collapse
Affiliation(s)
- Zoë A. P. Williams
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
- APC Microbiome IrelandUniversity College CorkCorkIreland
| | - Leonie Lang
- Norwich Medical School, Faculty of Medicine and Health SciencesUniversity of East AngliaNorwichUK
| | - Sarah Nicolas
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
- APC Microbiome IrelandUniversity College CorkCorkIreland
| | - Gerard Clarke
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of Psychiatry and Neurobehavioural ScienceUniversity College CorkCorkIreland
| | - John Cryan
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
- APC Microbiome IrelandUniversity College CorkCorkIreland
| | - David Vauzour
- Norwich Medical School, Faculty of Medicine and Health SciencesUniversity of East AngliaNorwichUK
| | - Yvonne M. Nolan
- Department of Anatomy and NeuroscienceUniversity College CorkCorkIreland
- APC Microbiome IrelandUniversity College CorkCorkIreland
| |
Collapse
|
7
|
Olczak T, Śmiga M, Antonyuk SV, Smalley JW. Hemophore-like proteins of the HmuY family in the oral and gut microbiome: unraveling the mystery of their evolution. Microbiol Mol Biol Rev 2024; 88:e0013123. [PMID: 38305743 PMCID: PMC10966948 DOI: 10.1128/mmbr.00131-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
SUMMARY Heme (iron protoporphyrin IX, FePPIX) is the main source of iron and PPIX for host-associated pathogenic bacteria, including members of the Bacteroidota (formerly Bacteroidetes) phylum. Porphyromonas gingivalis, a keystone oral pathogen, uses a unique heme uptake (Hmu) system, comprising a hemophore-like protein, designated as the first member of the novel HmuY family. Compared to classical, secreted hemophores utilized by Gram-negative bacteria or near-iron transporter domain-based hemophores utilized by Gram-positive bacteria, the HmuY family comprises structurally similar proteins that have undergone diversification during evolution. The best characterized are P. gingivalis HmuY and its homologs from Tannerella forsythia (Tfo), Prevotella intermedia (PinO and PinA), Bacteroides vulgatus (Bvu), and Bacteroides fragilis (BfrA, BfrB, and BfrC). In contrast to the two histidine residues coordinating heme iron in P. gingivalis HmuY, Tfo, PinO, PinA, Bvu, and BfrA preferentially use two methionine residues. Interestingly, BfrB, despite conserved methionine residue, binds the PPIX ring without iron coordination. BfrC binds neither heme nor PPIX in keeping with the lack of conserved histidine or methionine residues used by other members of the HmuY family. HmuY competes for heme binding and heme sequestration from host hemoproteins with other members of the HmuY family to increase P. gingivalis competitiveness. The participation of HmuY in the host immune response confirms its relevance in relation to the survival of P. gingivalis and its ability to induce dysbiosis not only in the oral microbiome but also in the gut microbiome or other host niches, leading to local injuries and involvement in comorbidities.
Collapse
Affiliation(s)
- Teresa Olczak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Michał Śmiga
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Svetlana V. Antonyuk
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, the University of Liverpool, Liverpool, United Kingdom
| | - John W. Smalley
- Institute of Life Course and Medical Sciences, School of Dentistry, the University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
8
|
Ria F, Delogu G, Ingrosso L, Sali M, Di Sante G. Secrets and lies of host-microbial interactions: MHC restriction and trans-regulation of T cell trafficking conceal the role of microbial agents on the edge between health and multifactorial/complex diseases. Cell Mol Life Sci 2024; 81:40. [PMID: 38216734 PMCID: PMC11071949 DOI: 10.1007/s00018-023-05040-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/04/2023] [Accepted: 11/06/2023] [Indexed: 01/14/2024]
Abstract
Here we critically discuss data supporting the view that microbial agents (pathogens, pathobionts or commensals alike) play a relevant role in the pathogenesis of multifactorial diseases, but their role is concealed by the rules presiding over T cell antigen recognition and trafficking. These rules make it difficult to associate univocally infectious agents to diseases' pathogenesis using the paradigm developed for canonical infectious diseases. (Cross-)recognition of a variable repertoire of epitopes leads to the possibility that distinct infectious agents can determine the same disease(s). There can be the need for sequential infection/colonization by two or more microorganisms to develop a given disease. Altered spreading of infectious agents can determine an unwanted activation of T cells towards a pro-inflammatory and trafficking phenotype, due to differences in the local microenvironment. Finally, trans-regulation of T cell trafficking allows infectious agents unrelated to the specificity of T cell to modify their homing to target organs, thereby driving flares of disease. The relevant role of microbial agents in largely prevalent diseases provides a conceptual basis for the evaluation of more specific therapeutic approaches, targeted to prevent (vaccine) or cure (antibiotics and/or Biologic Response Modifiers) multifactorial diseases.
Collapse
Affiliation(s)
- F Ria
- Department of Translational Medicine and Surgery, Section of General Pathology, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - G Delogu
- Mater Olbia Hospital, 07026, Olbia, Italy
- Department of Biotechnological, Basic, Intensivological and Perioperatory Sciences-Section of Microbiology, Università Cattolica del S Cuore, 00168, Rome, Italy
| | - L Ingrosso
- Department Infectious Diseases, Istituto Superiore di Sanità, 00161, Rome, Italy
- European Program for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - M Sali
- Department of Biotechnological, Basic, Intensivological and Perioperatory Sciences-Section of Microbiology, Università Cattolica del S Cuore, 00168, Rome, Italy
- Department of Laboratory and Infectivology Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - G Di Sante
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 60132, Perugia, Italy.
| |
Collapse
|
9
|
Beydoun MA, Beydoun HA, Hu YH, Li Z, Wolf C, Meirelles O, Noren Hooten N, Launer LJ, Evans MK, Zonderman AB. Infection burden and its association with neurite orientation dispersion and density imaging markers in the UK Biobank. Brain Behav Immun 2024; 115:394-405. [PMID: 37858740 PMCID: PMC10873031 DOI: 10.1016/j.bbi.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/15/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Infection burden (IB), although linked to neurodegeneration, including Alzheimer's Disease (AD), has not been examined against neurite orientation, dispersion, and density imaging (NODDI) measures. METHODS Among 38,803 UK Biobank adults (Age:40-70 years), we tested associations of total IB (IBtotal, 47.5 %) and hospital-treated IB (IBhosp, 9.7 %) with NODDI measures (5-15 years later), including volume fraction of Gaussian isotropic diffusion (ISOVF), intra-cellular volume fraction (ICVF) and orientation dispersion (OD) indices, using multiple linear regression models. RESULTS Total and hospital-treated infection burdens (IBtotal and IBhosp) were associated with increased ISOVF, indicating increased free-water component. IBtotal was positively associated with OD, indicating that at higher IBtotal there was greater fanning of neurites. This was more evident in the lower cardiovascular health group. IBhosp was associated with higher OD, and lower ICVF at higher AD polygenic risk. Together, these findings indicate that both total and hospital-treated infections have effects on NODDI outcomes in the direction of poor brain health. These effects were largely homogeneous across cardiovascular health and AD polygenic risk groups, with some effects shown to be stronger at poor cardiovascular health and/or higher AD risk. CONCLUSIONS Total and hospital-treated infections were associated with poorer white matter microstructure (higher ISOVF or OD or lower ICVF), with some heterogeneity across cardiovascular health and AD risk. Longitudinal studies with multiple repeats on neuroimaging markers in comparable samples are needed.
Collapse
Affiliation(s)
- May A Beydoun
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, USA.
| | - Hind A Beydoun
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, USA; Alexander T. Augusta Military Medical Center, Fort Belvoir, VA, USA
| | - Yi-Han Hu
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, USA
| | - Zhiguang Li
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, USA
| | - Claudia Wolf
- Department of Education and Psychology, Freie Universitat, Berlin, Germany; Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Osorio Meirelles
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, USA
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, USA
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, USA
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, USA
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, USA
| |
Collapse
|
10
|
Cabanillas J, Risco R, Munive-Degregori A, Guerrero ME, Mauricio F, Mayta-Tovalino F. Periodontitis and Neuropathic Diseases: A Literature Review. J Int Soc Prev Community Dent 2024; 14:10-15. [PMID: 38559636 PMCID: PMC10980301 DOI: 10.4103/jispcd.jispcd_68_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/20/2022] [Accepted: 05/27/2022] [Indexed: 04/04/2024] Open
Abstract
Aim This narrative review aimed at identifying the existing scientific literature investigating periodontitis and neuropathic diseases. Materials and Methods A search of the literature published between 2000 and 2022 was carried out in the electronic databases of Scopus and PubMed. Studies in which the eligible articles were mainly published in English were included. Descriptive correlational studies, case-control studies, comparative studies, and cohort studies were also included. The following main keywords were used: "Neuropathic diseases," "Periodontitis," "Alzheimer's disease," and "Porphyromonas gingivalis." Results This narrative review found that cognitively impaired persons with severe periodontitis had a higher prevalence and incidence of periodontal diseases than the rest of the population. A significant positive correlation of salivary interleukin (IL)-1beta and immediate recall scores involved in cognition was also evident. It indicates that the most investigated parameter was whether there is any common link between periodontal disease and neurodegeneration. No randomized controlled clinical studies were found in the current literature review. Conclusions Based on the literature reviewed, there is currently no strong scientific evidence to support or discourage the cause-effect relationship of periodontal diseases and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jesus Cabanillas
- Academic Department, Faculty of Dentistry, Universidad Nacional Federico Villarreal, Lima, Peru
| | - Ruth Risco
- Academic Department, Faculty of Dentistry, Universidad Nacional Federico Villarreal, Lima, Peru
| | - Arnaldo Munive-Degregori
- Academic Department of Rehabilitative Stomatology, Faculty of Dentistry, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Maria Eugenia Guerrero
- Academic Department of Medical and Surgical Stomatology, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Franco Mauricio
- Academic Department, Faculty of Dentistry, Universidad Nacional Federico Villarreal, Lima, Peru
| | - Frank Mayta-Tovalino
- CHANGE Research Working Group, Faculty of Health Sciences, Universidad Cientifica del Sur, Lima, Peru
| |
Collapse
|
11
|
Chien YW, Shih HI, Wang YP, Chi CY. Re-examination of the risk of dementia after dengue virus infection: A population-based cohort study. PLoS Negl Trop Dis 2023; 17:e0011788. [PMID: 38055695 DOI: 10.1371/journal.pntd.0011788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023] Open
Abstract
Dengue infection can affect the central nervous system and cause various neurological complications. Previous studies also suggest dengue was associated with a significantly increased long-term risk of dementia. A population-based cohort study was conducted using national health databases in Taiwan and included 37,928 laboratory-confirmed dengue patients aged ≥ 45 years between 2002 and 2015, along with 151,712 matched nondengue individuals. Subdistribution hazard regression models showed a slightly increased risk of Alzheimer's disease, and unspecified dementia, non-vascular dementia, and overall dementia in dengue patients than the nondengue group, adjusted for age, sex, area of residence, urbanization level, income, comorbidities, and all-cause clinical visits within one year before the index date. After considering multiple comparisons using Bonferroni correction, only overall dementia and non-vascular dementia remained statistically significant (adjusted SHR 1.13, 95% CI 1.05-1.21, p = 0.0009; E-value 1.51, 95% CI 1.28-NA). Sensitivity analyses in which dementia cases occurring in the first three or five years after the index dates were excluded revealed no association between dengue and dementia. In conclusion, this study found dengue patients had a slightly increased risk of non-vascular dementia and total dementia than those without dengue. However, the small corresponding E-values and sensitivity analyses suggest the association between dengue and dementia may not be causal.
Collapse
Affiliation(s)
- Yu-Wen Chien
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsin-I Shih
- Department of Emergency Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- School of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Ping Wang
- Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli County, Taiwan
| | - Chia-Yu Chi
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Miaoli County, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
12
|
Arabi TZ, Alabdulqader AA, Sabbah BN, Ouban A. Brain-inhabiting bacteria and neurodegenerative diseases: the "brain microbiome" theory. Front Aging Neurosci 2023; 15:1240945. [PMID: 37927338 PMCID: PMC10620799 DOI: 10.3389/fnagi.2023.1240945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/29/2023] [Indexed: 11/07/2023] Open
Abstract
Controversies surrounding the validity of the toxic proteinopathy theory of Alzheimer's disease have led the scientific community to seek alternative theories in the pathogenesis of neurodegenerative disorders (ND). Recent studies have provided evidence of a microbiome in the central nervous system. Some have hypothesized that brain-inhabiting organisms induce chronic neuroinflammation, leading to the development of a spectrum of NDs. Bacteria such as Chlamydia pneumoniae, Helicobacter pylori, and Cutibacterium acnes have been found to inhabit the brains of ND patients. Furthermore, several fungi, including Candida and Malassezia species, have been identified in the central nervous system of these patients. However, there remains several limitations to the brain microbiome hypothesis. Varying results across the literature, concerns regarding sample contamination, and the presence of exogenous deoxyribonucleic acids have led to doubts about the hypothesis. These results provide valuable insight into the pathogenesis of NDs. Herein, we provide a review of the evidence for and against the brain microbiome theory and describe the difficulties facing the hypothesis. Additionally, we define possible mechanisms of bacterial invasion of the brain and organism-related neurodegeneration in NDs and the potential therapeutic premises of this theory.
Collapse
Affiliation(s)
| | | | | | - Abderrahman Ouban
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
- Department of Pathology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
13
|
Beydoun MA, Beydoun HA, Gale SD, Hedges D, Weiss J, Li Z, Erickson LD, Noren Hooten N, Launer LJ, Evans MK, Zonderman AB. Cardiovascular health, infection burden and their interactive association with brain volumetric and white matter integrity outcomes in the UK Biobank. Brain Behav Immun 2023; 113:91-103. [PMID: 37393057 PMCID: PMC11040741 DOI: 10.1016/j.bbi.2023.06.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND Cardiovascular health is associated with brain magnetic resonance imaging (MRI) markers of pathology and infections may modulate this association. METHODS Using data from 38,803 adults (aged 40-70 years) and followed-up for 5-15 years, we tested associations of prevalent total (47.5%) and hospital-treated infection burden (9.7%) with brain structural and diffusion-weighted MRI (i.e., sMRI and dMRI, respectively) common in dementia phenome. Poor white matter tissue integrity was operationalized with lower global and tract-specific fractional anisotropy (FA) and higher mean diffusivity (MD). Volumetric sMRI outcomes included total, gray matter (GM), white matter (WM), frontal bilateral GM, white matter hyperintensity (WMH), and selected based on previous associations with dementia. Cardiovascular health was measured with Life's Essential 8 score (LE8) converted to tertiles. Multiple linear regression models were used, adjusting for intracranial volumes (ICV) for subcortical structures, and for demographic, socio-economic, and the Alzheimer's Disease polygenic risk score for all outcomes, among potential confounders. RESULTS In fully adjusted models, hospital-treated infections were inversely related to GM (β ± SE: -1042 ± 379, p = 0.006) and directly related to WMH as percent of ICV (Loge transformed) (β ± SE:+0.026 ± 0.007, p < 0.001). Both total and hospital-treated infections were associated with poor WMI, while the latter was inversely related to FA within the lowest LE8 tertile (β ± SE:-0.0011 ± 0.0003, p < 0.001, PLE8×IB < 0.05), a pattern detected for GM, Right Frontal GM, left accumbens and left hippocampus volumes. Within the uppermost LE8 tertile, total infection burden was linked to smaller right amygdala while being associated with larger left frontal GM and right putamen volumes, in the overall sample. Within that uppermost tertile of LE8, caudate volumes were also positively associated with hospital-treated infections. CONCLUSIONS Hospital-treated infections had more consistent deleterious effects on volumetric and white matter integrity brain neuroimaging outcomes compared with total infectious burden, particularly in poorer cardiovascular health groups. Further studies are needed in comparable populations, including longitudinal studies with multiple repeats on neuroimaging markers.
Collapse
Affiliation(s)
- May A Beydoun
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, United States.
| | - Hind A Beydoun
- Department of Research Programs, Fort Belvoir Community Hospital, Fort Belvoir, VA, United States
| | - Shawn D Gale
- Department of Psychology and the Neuroscience Center, Brigham Young University, Provo, UT, United States
| | - Dawson Hedges
- Department of Psychology and the Neuroscience Center, Brigham Young University, Provo, UT, United States
| | - Jordan Weiss
- Stanford Center on Longevity, Stanford University, Stanford, CA, United States
| | - Zhiguang Li
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, United States
| | - Lance D Erickson
- Department of Sociology, Brigham Young University, Provo, UT, United States
| | - Nicole Noren Hooten
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, United States
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, United States
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, United States
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD, United States
| |
Collapse
|
14
|
Beydoun HA, Beydoun MA, Meirelles O, Erickson LD, Gamaldo AA, Weiss J, Launer LJ, Evans MK, Zonderman AB. Cardiovascular health, infection burden, and incident dementia in the UK Biobank. Alzheimers Dement 2023; 19:4475-4487. [PMID: 37547953 PMCID: PMC10592296 DOI: 10.1002/alz.13405] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/25/2023] [Accepted: 06/30/2023] [Indexed: 08/08/2023]
Abstract
INTRODUCTION Among older adults, total and hospitalized infection may be associated with incidence of all-cause and Alzheimer's disease (AD) dementias, with variation by cardiovascular health (CVH). METHODS We used Cox proportional hazards (PH) models to examine the relationships between International Classification of Diseases-10th revision (ICD-10)-specific viral and bacterial infectious agents and incident all-cause and AD dementia among 355,046 UK Biobank participants ≥50 years at baseline. Life's Essential 8 (LE8) index reflected CVH. RESULTS In both sexes, total infection burden (yes vs. no) was associated with all-cause dementia, with significant interactions by LE8 tertiles, whereby this relationship was significant only in the lowest LE8 tertile. Hospital-treated infection burden (yes vs no) was significantly related to all-cause and AD dementia, with no significant interaction with LE8 tertile. Age group patterns were detected. DISCUSSION AD and all-cause dementia were related to hospital-treated infections, while CVH modified the relationship of total infection burden with all-cause dementia. Highlights Secondary analysis on >355,000 UK Biobank participants ≥50 years at baseline. Alzheimer's disease and all-cause dementia are both related to hospital-treated infection. Cardiovascular health modifies association of infection burden with all-cause dementia.
Collapse
Affiliation(s)
- Hind A. Beydoun
- Department of Research Programs, Fort Belvoir Community Hospital, Fort Belvoir, VA 22060
| | - May A. Beydoun
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD 21224
| | - Osorio Meirelles
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD 21224
| | | | - Alyssa A. Gamaldo
- Human Development and Family Studies, Penn State University, State College, PA 16802
| | - Jordan Weiss
- Stanford Center on Longevity, Stanford University, Palo Alto, CA 94305
| | - Lenore J. Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD 21224
| | - Michele K. Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD 21224
| | - Alan B. Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIA/NIH/IRP, Baltimore, MD 21224
| |
Collapse
|
15
|
Olivera E, Sáez A, Carniglia L, Caruso C, Lasaga M, Durand D. Alzheimer's disease risk after COVID-19: a view from the perspective of the infectious hypothesis of neurodegeneration. Neural Regen Res 2023; 18:1404-1410. [PMID: 36571334 PMCID: PMC10075115 DOI: 10.4103/1673-5374.360273] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In light of the rising evidence of the association between viral and bacterial infections and neurodegeneration, we aimed at revisiting the infectious hypothesis of Alzheimer's disease and analyzing the possible implications of COVID-19 neurological sequelae in long-term neurodegeneration. We wondered how SARS-CoV-2 could be related to the amyloid-β cascade and how it could lead to the pathological hallmarks of the disease. We also predict a paradigm change in clinical medicine, which now has a great opportunity to conduct prospective surveillance of cognitive sequelae and progression to dementia in people who suffered severe infections together with other risk factors for Alzheimer's disease.
Collapse
Affiliation(s)
- Eugenia Olivera
- Instituto de Investigaciones Biomédicas INBIOMED UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Albany Sáez
- Instituto de Investigaciones Biomédicas INBIOMED UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Lila Carniglia
- Instituto de Investigaciones Biomédicas INBIOMED UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Carla Caruso
- Instituto de Investigaciones Biomédicas INBIOMED UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Mercedes Lasaga
- Instituto de Investigaciones Biomédicas INBIOMED UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | - Daniela Durand
- Instituto de Investigaciones Biomédicas INBIOMED UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| |
Collapse
|
16
|
Johnson AM, Lukens JR. The innate immune response in tauopathies. Eur J Immunol 2023; 53:e2250266. [PMID: 36932726 PMCID: PMC10247424 DOI: 10.1002/eji.202250266] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/23/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023]
Abstract
Tauopathies, which include frontotemporal dementia, Alzheimer's disease, and chronic traumatic encephalopathy, are a class of neurological disorders resulting from pathogenic tau aggregates. These aggregates disrupt neuronal health and function leading to the cognitive and physical decline of tauopathy patients. Genome-wide association studies and clinical evidence have brought to light the large role of the immune system in inducing and driving tau-mediated pathology. More specifically, innate immune genes are found to harbor tauopathy risk alleles, and innate immune pathways are upregulated throughout the course of disease. Experimental evidence has expanded on these findings by describing pivotal roles for the innate immune system in the regulation of tau kinases and tau aggregates. In this review, we summarize the literature implicating innate immune pathways as drivers of tauopathy.
Collapse
Affiliation(s)
- Alexis M. Johnson
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia (UVA), Charlottesville, VA 22908, USA
- Neuroscience Graduate Program, UVA, Charlottesville, VA 22908, USA
- BIG Training Graduate Program, UVA, Charlottesville, VA 22908, USA
| | - John R. Lukens
- Center for Brain Immunology and Glia (BIG), Department of Neuroscience, University of Virginia (UVA), Charlottesville, VA 22908, USA
- Neuroscience Graduate Program, UVA, Charlottesville, VA 22908, USA
- BIG Training Graduate Program, UVA, Charlottesville, VA 22908, USA
| |
Collapse
|
17
|
Opsteen S, Files JK, Fram T, Erdmann N. The role of immune activation and antigen persistence in acute and long COVID. J Investig Med 2023; 71:545-562. [PMID: 36879504 PMCID: PMC9996119 DOI: 10.1177/10815589231158041] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/09/2023] [Accepted: 01/24/2023] [Indexed: 03/08/2023]
Abstract
In late 2019, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) triggered the global coronavirus disease 2019 (COVID-19) pandemic. Although most infections cause a self-limited syndrome comparable to other upper respiratory viral pathogens, a portion of individuals develop severe illness leading to substantial morbidity and mortality. Furthermore, an estimated 10%-20% of SARS-CoV-2 infections are followed by post-acute sequelae of COVID-19 (PASC), or long COVID. Long COVID is associated with a wide variety of clinical manifestations including cardiopulmonary complications, persistent fatigue, and neurocognitive dysfunction. Severe acute COVID-19 is associated with hyperactivation and increased inflammation, which may be an underlying cause of long COVID in a subset of individuals. However, the immunologic mechanisms driving long COVID development are still under investigation. Early in the pandemic, our group and others observed immune dysregulation persisted into convalescence after acute COVID-19. We subsequently observed persistent immune dysregulation in a cohort of individuals experiencing long COVID. We demonstrated increased SARS-CoV-2-specific CD4+ and CD8+ T-cell responses and antibody affinity in patients experiencing long COVID symptoms. These data suggest a portion of long COVID symptoms may be due to chronic immune activation and the presence of persistent SARS-CoV-2 antigen. This review summarizes the COVID-19 literature to date detailing acute COVID-19 and convalescence and how these observations relate to the development of long COVID. In addition, we discuss recent findings in support of persistent antigen and the evidence that this phenomenon contributes to local and systemic inflammation and the heterogeneous nature of clinical manifestations seen in long COVID.
Collapse
Affiliation(s)
- Skye Opsteen
- Division of Infectious Diseases, Department
of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jacob K Files
- Division of Infectious Diseases, Department
of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Tim Fram
- Division of Infectious Diseases, Department
of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nathan Erdmann
- Division of Infectious Diseases, Department
of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
18
|
Isola G, Santonocito S, Lupi SM, Polizzi A, Sclafani R, Patini R, Marchetti E. Periodontal Health and Disease in the Context of Systemic Diseases. Mediators Inflamm 2023; 2023:9720947. [PMID: 37214190 PMCID: PMC10199803 DOI: 10.1155/2023/9720947] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 09/04/2022] [Accepted: 04/07/2023] [Indexed: 05/24/2023] Open
Abstract
During recent years, considerable progress has been made in understanding the etiopathogenesis of periodontitis in its various forms and their interactions with the host. Furthermore, a number of reports have highlighted the importance of oral health and disease in systemic conditions, especially cardiovascular diseases and diabetes. In this regard, research has attempted to explain the role of periodontitis in promoting alteration in distant sites and organs. Recently, DNA sequencing studies have revealed how oral infections can occur in distant sites such as the colon, reproductive tissues, metabolic diseases, and atheromas. The objective of this review is to describe and update the emerging evidence and knowledge regarding the association between periodontitis and systemic disease and to analyse the evidence that has reported periodontitis as a risk factor for the development of various forms of systemic diseases in order to provide a better understanding of the possible shared etiopathogenetic pathways between periodontitis and the different forms of systemic diseases.
Collapse
Affiliation(s)
- Gaetano Isola
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania, Italy
| | - Simona Santonocito
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania, Italy
| | - Saturnino Marco Lupi
- Department of Clinical Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia, Italy
| | - Alessandro Polizzi
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania, Italy
| | - Rossana Sclafani
- Department of General Surgery and Surgical-Medical Specialties, School of Dentistry, University of Catania, Catania, Italy
| | - Romeo Patini
- Institute of Dentistry and Maxillofacial Surgery, Fondazione Policlinico Universitario Agostino Gemelli, Catholic University of the Sacred Heart, Rome, Italy
| | - Enrico Marchetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| |
Collapse
|
19
|
Abstract
Alzheimer's disease (AD) is a debilitating age-related neurodegenerative condition. Unbiased genetic studies have implicated a central role for microglia, the resident innate immune cells of the central nervous system, in AD pathogenesis. On-going efforts are clarifying the biology underlying these associations and the microglial pathways that are dysfunctional in AD. Several genetic risk factors converge to decrease the function of activating microglial receptors and increase the function of inhibitory receptors, resulting in a seemingly dampened microglial phenotype in AD. Moreover, many of these microglial proteins that are genetically associated with AD appear to interact and share pathways or regulatory mechanisms, presenting several points of convergence that may be strategic targets for therapeutic intervention. Here, we review some of these studies and their implications for microglial participation in AD pathogenesis.
Collapse
|
20
|
Yamanashi T, Sullivan EJ, Comp KR, Nishizawa Y, Akers CC, Chang G, Modukuri M, Tran T, Anderson ZEEM, Marra PS, Crutchley KJ, Wahba NE, Iwata M, Karam MD, Noiseux NO, Cho HR, Shinozaki G. Anti-inflammatory medication use associated with reduced delirium risk and all-cause mortality: A retrospective cohort study. J Psychosom Res 2023; 168:111212. [PMID: 36963165 DOI: 10.1016/j.jpsychores.2023.111212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 03/26/2023]
Abstract
OBJECTIVE To investigate the relationship between history of anti-inflammatory medication use and delirium risk, as well as long-term mortality. METHODS In this retrospective cohort study, subjects recruited between January 2016 and March 2020 were analyzed. Information about anti-inflammatory medication use history including aspirin, NSAIDs, glucosamine, and other anti-inflammatory drugs, was collected. Logistic regression analysis investigated the relationship between anti-inflammatory medications and delirium. Log-rank analysis and cox proportional hazards model investigated the relationship between anti-inflammatory medications and one-year mortality. RESULTS The data from 1274 subjects were analyzed. The prevalence of delirium was significantly lower in subjects with NSAIDs usage (23.0%) than in those without NSAIDs usage (35.0%) (p < 0.001). Logistic regression analysis controlling for age, sex, dementia status, and hospitalization department showed that the risk of delirium tended to be reduced by a history of NSAIDs use (OR, 0.76 [95% CI, 0.55 to 1.03]). The one-year mortality in the subjects with NSAIDs (survival rate, 0.879 [95% CI, 0.845 to 0.906]) was significantly higher than in the subjects without NSAIDs (survival rate, 0.776 [95% CI, 0.746 to 0.803]) (p < 0.001). A history of NSAIDs use associated with the decreased risk of one-year mortality even after adjustment for age, sex, Charlson Comorbidity Index, delirium status, and hospitalization department (HR, 0.70 [95% CI, 0.51 to 0.96]). CONCLUSION This study suggested that NSAIDs usage was associated with decreased delirium prevalence and lower one-year mortality. The potential benefit of NSAIDs on delirium risk and mortality were shown.
Collapse
Affiliation(s)
- Takehiko Yamanashi
- Stanford University School of Medicine, Department of Psychiatry and Behavioral Sciences, Palo Alto, CA, United States of America; University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA, United States of America; Tottori University Faculty of Medicine, Department of Neuropsychiatry, Yonago, Tottori, Japan
| | - Eleanor J Sullivan
- University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA, United States of America
| | - Katie R Comp
- University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA, United States of America
| | - Yoshitaka Nishizawa
- Stanford University School of Medicine, Department of Psychiatry and Behavioral Sciences, Palo Alto, CA, United States of America; Osaka Medical and Pharmaceutical University Faculty of Medicine, Department of Neuropsychiatry, Takatsuki, Osaka, Japan
| | - Cade C Akers
- University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA, United States of America
| | - Gloria Chang
- University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA, United States of America
| | - Manisha Modukuri
- University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA, United States of America
| | - Tammy Tran
- University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA, United States of America
| | - Zoe-Ella E M Anderson
- University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA, United States of America
| | - Pedro S Marra
- University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA, United States of America
| | - Kaitlyn J Crutchley
- University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA, United States of America
| | - Nadia E Wahba
- University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA, United States of America
| | - Masaaki Iwata
- Tottori University Faculty of Medicine, Department of Neuropsychiatry, Yonago, Tottori, Japan
| | - Matthew D Karam
- University of Iowa Carver College of Medicine, Department of Orthopedic Surgery, Iowa City, IA, United States of America
| | - Nicolas O Noiseux
- University of Iowa Carver College of Medicine, Department of Orthopedic Surgery, Iowa City, IA, United States of America
| | - Hyunkeun R Cho
- University of Iowa College of Public Health, Department of Biostatistics, Iowa City, IA, United States of America
| | - Gen Shinozaki
- Stanford University School of Medicine, Department of Psychiatry and Behavioral Sciences, Palo Alto, CA, United States of America; University of Iowa Carver College of Medicine, Department of Psychiatry, Iowa City, IA, United States of America.
| |
Collapse
|
21
|
Kim J, Seok H, Jeon JH, Choi WS, Seo GH, Park DW. Association of scrub typhus with incidence of dementia: a nationwide population-based cohort study in Korea. BMC Infect Dis 2023; 23:127. [PMID: 36859244 PMCID: PMC9976677 DOI: 10.1186/s12879-023-08107-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Scrub typhus is a mite-borne infectious rickettsial disease that can occur in rural and urban areas, with an especially high prevalence in older populations. This disease causes systemic vasculitis that can invade the central nervous system. Considering these characteristics, here we examined whether scrub typhus was associated with the occurrence of dementia, using large population-based cohort data. METHOD This population-based cohort study enrolled patients aged 60-89 years using data from the Health Insurance Review and Assessment database of South Korea between 2009 and 2018. We defined scrub typhus and dementia using International Classification of Diseases, Tenth Edition diagnostic codes. The control group was stratified according to age and sex at a ratio of 1:5 to the case group in the study population. The index date was set after 90 days beyond the date of the scrub typhus diagnosis, while the observation period was from the time of the index appointment to December 31, 2020. The primary outcome was newly diagnosed dementia. The secondary outcome was dementia classification, such as Alzheimer's disease, vascular dementia, and other. All analyses were conducted by matching age, gender, and comorbidity. RESULTS During the observation period, 10,460 of 71,047 (14.7%) people who had a history of scrub typhus versus 42,965 of 355,235 (12.1%) people in the control group, that is, with no history of scrub typhus, were diagnosed with dementia (adjusted hazard ratio, 1.12; 95% confidence interval, 1.10-1.15, p < 0.001). The Kaplan-Meier curves for time to cumulative incidence of dementia showed that the dementia incidence in both groups increased over time, while individuals with a past history of scrub typhus had a higher incidence of dementia than the control group. Second, the risk of Alzheimer's disease was significantly higher among patients with a history of scrub typhus (adjusted hazard ratio, 1.15; 95% confidence interval 1.13-1.18, p < 0.001). CONCLUSION In conclusion, a history of scrub typhus infection in old age is significantly associated with an increase in dementia, especially Alzheimer's disease. Our results suggest that prevention and appropriate treatment of scrub typhus should be emphasized as a dementia prevention measure.
Collapse
Affiliation(s)
- Jooyun Kim
- grid.222754.40000 0001 0840 2678Division of Infectious Diseases, Department of Medicine, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeukgeum-ro, Danwon-gu, Ansan, 15355 Republic of Korea
| | - Hyeri Seok
- grid.222754.40000 0001 0840 2678Division of Infectious Diseases, Department of Medicine, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeukgeum-ro, Danwon-gu, Ansan, 15355 Republic of Korea
| | - Ji Hoon Jeon
- grid.222754.40000 0001 0840 2678Division of Infectious Diseases, Department of Medicine, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeukgeum-ro, Danwon-gu, Ansan, 15355 Republic of Korea
| | - Won Suk Choi
- grid.222754.40000 0001 0840 2678Division of Infectious Diseases, Department of Medicine, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeukgeum-ro, Danwon-gu, Ansan, 15355 Republic of Korea
| | - Gi Hyeon Seo
- Health Insurance Review and Assessment Service, 60 Hyeoksin-ro, Wonju-si, Gangwon-do, 26465, Republic of Korea.
| | - Dae Won Park
- Division of Infectious Diseases, Department of Medicine, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeukgeum-ro, Danwon-gu, Ansan, 15355, Republic of Korea.
| |
Collapse
|
22
|
Emery DC, Davies M, Cerajewska TL, Taylor J, Hazell M, Paterson A, Allen-Birt SJ, West NX. High resolution 16S rRNA gene Next Generation Sequencing study of brain areas associated with Alzheimer's and Parkinson's disease. Front Aging Neurosci 2022; 14:1026260. [PMID: 36570533 PMCID: PMC9780557 DOI: 10.3389/fnagi.2022.1026260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/02/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Alzheimer's (AD) and Parkinson's disease (PD) are neurodegenerative conditions characterized by incremental deposition of β-amyloid (Aβ) and α-synuclein in AD and PD brain, respectively, in relatively conserved patterns. Both are associated with neuroinflammation, with a proposed microbial component for disease initiation and/or progression. Notably, Aβ and α-synuclein have been shown to possess antimicrobial properties. There is evidence for bacterial presence within the brain, including the oral pathobiont Porphyromonas gingivalis, with cognitive impairment and brain pathology being linked to periodontal (gum) disease and gut dysbiosis. Methods Here, we use high resolution 16S rRNA PCR-based Next Generation Sequencing (16SNGS) to characterize bacterial composition in brain areas associated with the early, intermediate and late-stage of the diseases. Results and discussion This study reveals the widespread presence of bacteria in areas of the brain associated with AD and PD pathology, with distinctly different bacterial profiles in blood and brain. Brain area profiles were overall somewhat similar, predominantly oral, with some bacteria subgingival and oronasal in origin, and relatively comparable profiles in AD and PD brain. However, brain areas associated with early disease development, such as the locus coeruleus, were substantially different in bacterial DNA content compared to areas affected later in disease etiology.
Collapse
Affiliation(s)
| | | | | | | | - Mae Hazell
- Translational Health Sciences, Learning and Research, Bristol Medical School, Southmead Hospital, Bristol, United Kingdom
| | - Alex Paterson
- School of Biological Sciences, University of Bristol Genomics Facility, Bristol, United Kingdom
| | - Shelley J. Allen-Birt
- Translational Health Sciences, Learning and Research, Bristol Medical School, Southmead Hospital, Bristol, United Kingdom
| | - Nicola X. West
- Bristol Dental School, Bristol, United Kingdom,*Correspondence: Nicola X. West,
| |
Collapse
|
23
|
Khairan P, Shirai K, Shobugawa Y, Cadar D, Saito T, Kondo K, Sobue T, Iso H. Pneumonia and subsequent risk of dementia: Evidence from the Japan Gerontological evaluation study. Int J Geriatr Psychiatry 2022; 37. [PMID: 36286595 DOI: 10.1002/gps.5825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/29/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Recently, several studies reported that pneumonia might increase the risk of cognitive decline and dementia due to increased frailty. OBJECTIVES This study aims to examine the association between a history of pneumonia and subsequent dementia risk. METHODS Participants were 9952 aged 65 years or older Japanese men and women from the Japan Gerontological Evaluation Study prospective cohort study, followed up from 2013 to 2019. Dementia was identified by public long-term care insurance registration. A history of pneumonia contracted 1 year before the baseline questionnaire in 2013. A cox regression model was used to calculate hazard ratios (HRs) and 95% confidence intervals (CIs) for dementia risk, adjusted for potential confounding variables. We conducted competing risk analyses using a cause-specific hazard model. RESULTS During the follow-up period of 6 years, 939 persons developed dementia. There was no association between having a prior history of pneumonia with dementia risk (HR 1.20, 95% CI:0.81-1.78). However, we observed an increased risk of dementia in persons with pre-frailty and frailty; the multivariable HR (95% CI) was 1.75 (1.48-2.07) and 2.42 (2.00-2.93) for pre-frailty and frailty, respectively. When pneumonia and frailty were combined, the risk of dementia was the highest for the persons with a history of pneumonia and frailty; the multivariable HR (95% CI) was 2.30 (1.47-3.62). The multivariable HR (95% CI) for those without pneumonia with frailty was 1.95 (1.66-2.28). Meanwhile, the multivariable HR (95% CI) for those with pneumonia without frailty was 1.64 (0.68-3.99). CONCLUSION Our findings imply that a prior history of pre-frailty and frailty with or without pneumonia, but not a history of pneumonia per se, was associated with an increased risk of dementia among population-based-cohort of older Japanese people.
Collapse
Affiliation(s)
- Paramita Khairan
- Department of Social and Environmental Medicine, Environmental and Population Sciences, Osaka University Graduate School of Medicine, Suita Osaka, Japan.,Department of Internal Medicine, Faculty of Medicine, Universitas Muhammadiyah Jakarta, Jakarta, Indonesia
| | - Kokoro Shirai
- Department of Social Medicine, Public Health, Osaka University Graduate School of Medicine, Suita Osaka, Japan
| | - Yugo Shobugawa
- Department of Active Ageing, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Dorina Cadar
- Department of Neuroscience, Centre for Dementia Studies, Brighton and Sussex Medical School, Brighton, UK.,Department of Behavioural Science and Health, University College London, London, UK
| | - Tami Saito
- Department of Gerontological Evaluation, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Katsunori Kondo
- Department of Gerontological Evaluation, Center for Gerontology and Social Science, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan.,Department of Social Preventive Medical Sciences, Center for Preventive Medical Sciences, Chiba University, Chiba, Japan
| | - Tomotaka Sobue
- Department of Social and Environmental Medicine, Environmental and Population Sciences, Osaka University Graduate School of Medicine, Suita Osaka, Japan
| | - Hiroyasu Iso
- Department of Social Medicine, Public Health, Osaka University Graduate School of Medicine, Suita Osaka, Japan
| |
Collapse
|
24
|
Human antimicrobial peptide LL-37 contributes to Alzheimer's disease progression. Mol Psychiatry 2022; 27:4790-4799. [PMID: 36138130 DOI: 10.1038/s41380-022-01790-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 12/29/2022]
Abstract
As a prime mover in Alzheimer's disease (AD), microglial activation requires membrane translocation, integration, and activation of the metamorphic protein chloride intracellular channel 1 (CLIC1), which is primarily cytoplasmic under physiological conditions. However, the formation and activation mechanisms of functional CLIC1 are unknown. Here, we found that the human antimicrobial peptide (AMP) LL-37 promoted CLIC1 membrane translocation and integration. It also activates CLIC1 to cause microglial hyperactivation, neuroinflammation, and excitotoxicity. In mouse and monkey models, LL-37 caused significant pathological phenotypes linked to AD, including elevated amyloid-β, increased neurofibrillary tangles, enhanced neuronal death and brain atrophy, enlargement of lateral ventricles, and impairment of synaptic plasticity and cognition, while Clic1 knockout and blockade of LL-37-CLIC1 interactions inhibited these phenotypes. Given AD's association with infection and that overloading AMP may exacerbate AD, this study suggests that LL-37, which is up-regulated upon infection, may be a driving force behind AD by acting as an endogenous agonist of CLIC1.
Collapse
|
25
|
Zhu X, Zhang Z, Yang X, Qi L, Guo Y, Tang X, Xie Y, Chen D. RETRACTED: Improvement of extraction from Hericium erinaceus on the gut-brain axis in AD-like mice. Brain Res 2022; 1793:148038. [PMID: 35934088 DOI: 10.1016/j.brainres.2022.148038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 06/21/2022] [Accepted: 07/30/2022] [Indexed: 12/20/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the lead author, Dr. Diling Chen. Dr. Chen alerted the Editor-in-Chief that data previously published in Aging (Albany NY). 2020 Jan 6; 12:260-287 https://doi.org/10.18632/aging.102614 were accidently reused in the above-referenced Brain Research article. Dr. Chen is a co-author on both articles. The reused content pertains to the fecal transplantation data of the model group, represented by Figure 2 in the Aging article and Figure 5 in the Brain Research article. Dr. Chen did not carefully check the data published by the team before the final submission, resulting in repeated use. The lead author states further that it was an honest mistake, and the team had no intention to plagiarize previously published material. All authors were notified and all are in agreement with the retraction. The authors apologize to the scientific community for any inconvenience or challenges resulting from the publication and retraction of this article.
Collapse
Affiliation(s)
- Xiangxiang Zhu
- Academy of Life Sciences, Jinan University, Guangdong Province, Guangzhou 510000, China; State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Zilei Zhang
- Academy of Life Sciences, Jinan University, Guangdong Province, Guangzhou 510000, China
| | - Xin Yang
- The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou 510700, China
| | - Longkai Qi
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Yinrui Guo
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Xiaocui Tang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangzhou Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China
| | - Yizhen Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Diling Chen
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China; Guangzhou Laboratory, No. 9 XingDaoHuanBei Road, Guangzhou International Bio Island, Guangzhou 510005, Guangdong Province, China.
| |
Collapse
|
26
|
Implications of Microorganisms in Alzheimer's Disease. Curr Issues Mol Biol 2022; 44:4584-4615. [PMID: 36286029 PMCID: PMC9600878 DOI: 10.3390/cimb44100314] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022] Open
Abstract
Alzheimer’s disease (AD) is a deadly brain degenerative disorder that leads to brain shrinkage and dementia. AD is manifested with hyperphosphorylated tau protein levels and amyloid beta (Aβ) peptide buildup in the hippocampus and cortex regions of the brain. The nervous tissue of AD patients also contains fungal proteins and DNA which are linked to bacterial infections, suggesting that polymicrobial infections also occur in the brains of those with AD. Both immunohistochemistry and next-generation sequencing (NGS) techniques were employed to assess fungal and bacterial infections in the brain tissue of AD patients and non-AD controls, with the most prevalent fungus genera detected in AD patients being Alternaria, Botrytis, Candida, and Malassezia. Interestingly, Fusarium was the most common genus detected in the control group. Both AD patients and controls were also detectable for Proteobacteria, followed by Firmicutes, Actinobacteria, and Bacteroides for bacterial infection. At the family level, Burkholderiaceae and Staphylococcaceae exhibited higher levels in the brains of those with AD than the brains of the control group. Accordingly, there is thought to be a viscous cycle of uncontrolled neuroinflammation and neurodegeneration in the brain, caused by agents such as the herpes simplex virus type 1 (HSV1), Chlamydophilapneumonia, and Spirochetes, and the presence of apolipoprotein E4 (APOE4), which is associated with an increased proinflammatory response in the immune system. Systemic proinflammatory cytokines are produced by microorganisms such as Cytomegalovirus, Helicobacter pylori, and those related to periodontal infections. These can then cross the blood–brain barrier (BBB) and lead to the onset of dementia. Here, we reviewed the relationship between the etiology of AD and microorganisms (such as bacterial pathogens, Herpesviridae viruses, and periodontal pathogens) according to the evidence available to understand the pathogenesis of AD. These findings might guide a targeted anti-inflammatory therapeutic approach to AD.
Collapse
|
27
|
James LM, Georgopoulos AP. High Correlations Among Worldwide Prevalences of Dementias, Parkinson's Disease, Multiple Sclerosis, and Motor Neuron Diseases Indicate Common Causative Factors. Neurosci Insights 2022; 17:26331055221117598. [PMID: 35965966 PMCID: PMC9364200 DOI: 10.1177/26331055221117598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Dementia, Parkinson's disease, multiple sclerosis, and motor neuron diseases cause significant disability and mortality worldwide. Although the etiology of these diseases is unknown, highly correlated disease prevalences would indicate the involvement of common etiologic factors. Here we used published epidemiological data in 195 countries worldwide to investigate the possible intercorrelations among the prevalences of these diseases. All analyses were carried out using nonparametric statistics on rank-transformed data to assure the robustness of the results. We found that all 6 pairwise correlations among the prevalences of the 4 diseases were very high (>.9, P < .001). A factor analysis (FA) yielded only a single component which comprised all 4 disease prevalences and explained 96.3% of the variance. These findings indicate common etiologic factor(s). Next, we quantified the contribution of 3 country-specific factors (population size, life expectancy, latitude) to the common grouping of prevalences by estimating the reduction in total FA variance explained when the effect of these factors was eliminated by using the prevalence residuals from a linear regression where theses factor were covariates. FA of these residuals yielded again only a single component comprising all 4 diseases which explained 71.5% of the variance, indicating that the combined contribution of population size, life expectancy and latitude accounted for 96.3% - 71.5% = 24.8% of the FA variance explained. The fact that the 3 country-specific factors above accounted for only 24.8% of the FA variance explained by the original (ranked) disease prevalences, in the presence still of a single grouping factor, strongly indicates the operation of other unknown factors jointly contributing to the pathogenesis of the 4 diseases. We discuss various possible factors involved, with an emphasis on biologic pathogens (viruses, bacteria) which have been implicated in the pathogenesis of these diseases in previous studies.
Collapse
Affiliation(s)
- Lisa M James
- Brain Sciences Center, Department of
Veterans Affairs Health Care System, Minneapolis, MN, USA
- Department of Neuroscience, University
of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, University of
Minnesota Medical School, Minneapolis, MN, USA
- Center for Cognitive Sciences,
University of Minnesota, Minneapolis, MN, USA
| | - Apostolos P Georgopoulos
- Brain Sciences Center, Department of
Veterans Affairs Health Care System, Minneapolis, MN, USA
- Department of Neuroscience, University
of Minnesota Medical School, Minneapolis, MN, USA
- Department of Psychiatry, University of
Minnesota Medical School, Minneapolis, MN, USA
- Center for Cognitive Sciences,
University of Minnesota, Minneapolis, MN, USA
- Department of Neurology, University of
Minnesota Medical School, Minneapolis, MN, USA
| |
Collapse
|
28
|
Contini C, Serrao S, Manconi B, Olianas A, Iavarone F, Bizzarro A, Masullo C, Castagnola M, Messana I, Diaz G, Cabras T. Salivary Proteomics Reveals Significant Changes in Relation to Alzheimer's Disease and Aging. J Alzheimers Dis 2022; 89:605-622. [PMID: 35912740 DOI: 10.3233/jad-220246] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Aging is a risk factor for several pathologies as Alzheimer's disease (AD). Great interest exists, therefore, in discovering diagnostic biomarkers and indicators discriminating biological aging and health status. To this aim, omic investigations of biological matrices, as saliva, whose sampling is easy and non-invasive, offer great potential. OBJECTIVE Investigate the salivary proteome through a statistical comparison of the proteomic data by several approaches to highlight quali-/quantitative variations associated specifically either to aging or to AD occurrence, and, thus, able to classify the subjects. METHODS Salivary proteomic data of healthy controls under-70 (adults) and over-70 (elderly) years old, and over-70 AD patients, obtained by liquid chromatography/mass spectrometry, were analyzed by multiple Mann-Whitney test, Kendall correlation, and Random-Forest (RF) analysis. RESULTS Almost all the investigated proteins/peptides significantly decreased in relation to aging in elderly subjects, with or without AD, in comparison with adults. AD subjects exhibited the highest levels of α-defensins, thymosin β4, cystatin B, S100A8 and A9. Correlation tests also highlighted age/disease associated differences. RF analysis individuated quali-/quantitative variations in 20 components, as oxidized S100A8 and S100A9, α-defensin 3, P-B peptide, able to classify with great accuracy the subjects into the three groups. CONCLUSION The findings demonstrated a strong change of the salivary protein profile in relation to the aging. Potential biomarkers candidates of AD were individuated in peptides/proteins involved in antimicrobial defense, innate immune system, inflammation, and in oxidative stress. RF analysis revealed the feasibility of the salivary proteome to discriminate groups of subjects based on age and health status.
Collapse
Affiliation(s)
- Cristina Contini
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Simone Serrao
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Barbara Manconi
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Alessandra Olianas
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| | - Federica Iavarone
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Catholic University of the Sacred Heart, Rome, Italy.,Policlinico Universitario "A. Gemelli" Foundation -IRCCS, Rome, Italy
| | | | - Carlo Masullo
- Department of Neuroscience, Section Neurology, Catholic University of the Sacred Heart, Rome, Italy
| | - Massimo Castagnola
- Proteomics laboratory, European Centre for Research on the Brain, "Santa Lucia" Foundation -IRCCS, Rome, Italy
| | - Irene Messana
- Institute of Chemical Sciences and Technologies "Giulio Natta", National Research Council, Rome, Italy
| | - Giacomo Diaz
- Department of Biomedical Sciences University of Cagliari Cagliari, Italy
| | - Tiziana Cabras
- Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
29
|
Parker A, James SA, Purse C, Brion A, Goldson A, Telatin A, Baker D, Carding SR. Absence of Bacteria Permits Fungal Gut-To-Brain Translocation and Invasion in Germfree Mice but Ageing Alone Does Not Drive Pathobiont Expansion in Conventionally Raised Mice. Front Aging Neurosci 2022; 14:828429. [PMID: 35923548 PMCID: PMC9339909 DOI: 10.3389/fnagi.2022.828429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Age-associated changes in the structure of the intestinal microbiome and in its interaction with the brain via the gut-brain axis are increasingly being implicated in neurological and neurodegenerative diseases. Intestinal microbial dysbiosis and translocation of microbes and microbial products including fungal species into the brain have been implicated in the development of dementias such as Alzheimer's disease. Using germ-free mice, we investigated if the fungal gut commensal, Candida albicans, an opportunistic pathogen in humans, can traverse the gastrointestinal barrier and disseminate to brain tissue and whether ageing impacts on the gut mycobiome as a pre-disposing factor in fungal brain infection. C. albicans was detected in different regions of the brain of colonised germ-free mice in both yeast and hyphal cell forms, often in close association with activated (Iba-1+) microglial cells. Using high-throughput ITS1 amplicon sequencing to characterise the faecal gut fungal composition of aged and young SPF mice, we identified several putative gut commensal fungal species with pathobiont potential although their abundance was not significantly different between young and aged mice. Collectively, these results suggest that although some fungal species can travel from the gut to brain where they can induce an inflammatory response, ageing alone is not correlated with significant changes in gut mycobiota composition which could predispose to these events. These results are consistent with a scenario in which significant disruptions to the gut microbiota or intestinal barrier, beyond those which occur with natural ageing, are required to allow fungal escape and brain infection.
Collapse
Affiliation(s)
- Aimée Parker
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich, United Kingdom
| | - Steve A. James
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich, United Kingdom
| | - Catherine Purse
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich, United Kingdom
| | - Arlaine Brion
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich, United Kingdom
| | - Andrew Goldson
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich, United Kingdom
| | - Andrea Telatin
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich, United Kingdom
| | - David Baker
- Gut Microbes and Health Research Programme, Quadram Institute, Norwich, United Kingdom
| | - Simon R. Carding
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
30
|
Doherty MT, Aris E, Servotte N, Beck E. Capturing the value of vaccination: impact of vaccine-preventable disease on hospitalization. Aging Clin Exp Res 2022; 34:1551-1561. [PMID: 35633477 PMCID: PMC9142834 DOI: 10.1007/s40520-022-02110-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/06/2022] [Indexed: 11/24/2022]
Abstract
Evidence from epidemiological studies suggests that vaccine-preventable disease (VPD) such as influenza or herpes zoster contribute significantly to the increased risk of older adults for cardiovascular, cerebrovascular, neurological, and renal complications in the period after illnesses. However, since the period of elevated risk can persist well beyond the duration of the acute illness, the connection is not always recognized. To obtain insights into the relationship between diagnoses for vaccine-preventable disease and for other conditions, we analyzed principal and secondary diagnoses for 3,127,768 inpatient admissions of adults 50 years and older in the United States, using medical insurance claims drawn from the IBM® MarketScan® Research Databases (Marketscan). The Marketscan data indicated that overall, 3.1% of these hospitalizations had a principal diagnosis of VPD with variation by month of admission, and age. However, hospitalizations with a principal non-VPD diagnosis but secondary VPD diagnoses were 2.8 times more frequent, with particularly high rates in those whose principal diagnoses were non-VPD respiratory or circulatory disease. Hospitalized patients with a secondary VPD diagnosis tended to have poorer discharge outcomes, and longer length of stay in comparison to hospitalized patients without a secondary VPD diagnosis. In total, these data are consistent with suggestions that VPDs play a significant and potentially under-estimated role in hospitalization and outcomes, which may be potentially preventable by improved vaccination coverage.
Collapse
Affiliation(s)
- Mark T Doherty
- GSK, Building W23, 20 Avenue Fleming, 1300, Wavre, Belgium.
| | - Emmanuel Aris
- GSK, Building W23, 20 Avenue Fleming, 1300, Wavre, Belgium
| | | | - Ekkehard Beck
- GSK, Building W23, 20 Avenue Fleming, 1300, Wavre, Belgium
| |
Collapse
|
31
|
Wang Y, Li M, Kazis LE, Xia W. Clinical outcomes of COVID-19 infection among patients with Alzheimer's disease or mild cognitive impairment. Alzheimers Dement 2022; 18:911-923. [PMID: 35377523 PMCID: PMC9073985 DOI: 10.1002/alz.12665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/23/2022] [Accepted: 02/28/2022] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) and COVID-19 share common risk factors including hypertension. Angiotensin converting enzyme inhibitors (ACEI) and angiotensin II receptor blockers (ARB) are frequently prescribed antihypertension medications. METHODS This study analyzed 436,823 veterans tested for SARS-CoV-2 infection. We conducted both classical and propensity score weighted logistic models to compare COVID-19 outcomes between patients with AD or mild cognitive impairment (MCI) to those without cognitive impairment, and examined effect of ACEI/ARB prescription. RESULTS There was a statistically significant association between AD and increased odds of infection and mortality. MCI was not found to be a risk factor for infection. Subjects with MCI exhibited poor clinical outcomes. Prescribing ARBs but not ACEIs was significantly associated with a lower risk of COVID-19 occurrence among AD and MCI patients. DISCUSSION Exploring beneficial effects of existing medications to reduce the impact of COVID-19 on patients with AD or MCI is highly significant. HIGHLIGHTS There is significant association between Alzheimer's disease (AD) and increased risk of COVID-19 infection and odds of mortality. Subjects with mild cognitive impairment (MCI) defined by claims data exhibit poor clinical outcomes, but MCI was not found to be a risk factor for severe acute respiratory syndrome coronavirus 2 infection. Prescribing angiotensin II receptor blockers was significantly associated with a lower risk of COVID-19 occurrence among AD/MCI patients.
Collapse
Affiliation(s)
- Ying Wang
- Geriatric Research Education and Clinical CenterBedford VA Healthcare SystemBedfordMassachusettsUSA
- Department of Mathematical SciencesBentley UniversityWalthamMassachusettsUSA
| | - Mingfei Li
- Department of Mathematical SciencesBentley UniversityWalthamMassachusettsUSA
- Center for Healthcare Organization and Implementation ResearchBedford VA Healthcare SystemBedfordMassachusettsUSA
| | - Lewis E. Kazis
- Center for Healthcare Organization and Implementation ResearchBedford VA Healthcare SystemBedfordMassachusettsUSA
- Department of Health Law, Policy and ManagementBoston University School of Public HealthBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
- Spaulding Rehabilitation HospitalCharlestownMassachusettsUSA
| | - Weiming Xia
- Geriatric Research Education and Clinical CenterBedford VA Healthcare SystemBedfordMassachusettsUSA
- Department of Pharmacology and Experimental TherapeuticsBoston University School of MedicineBostonMassachusettsUSA
| |
Collapse
|
32
|
Jeong S, Huang LK, Tsai MJ, Liao YT, Lin YS, Hu CJ, Hsu YH. Cognitive Function Associated with Gut Microbial Abundance in Sucrose and S-Adenosyl-L-Methionine (SAMe) Metabolic Pathways. J Alzheimers Dis 2022; 87:1115-1130. [DOI: 10.3233/jad-215090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background: Differential abundance of gut microbiota has found to be associated with Alzheimer’s disease (AD). However, the relative abundance of gut microbiota between dementia and mild cognitive impairment (MCI) in AD is not well studied. Objective: We attempted to identify differentially enriched gut microbes and their metabolic pathways in AD patients with dementia comparing to AD patients with MCI. Methods: Fecal samples were collected at Shuang Ho Hospital, Taipei Medical University, Taiwan and analyzed by whole metagenomic sequencing technique. For normal controls without AD (NC), 16S rRNA sequencing was obtained from the Taiwan Microbiome Database. A total of 48 AD (38 dementia and 10 MCI defined by cognitive function scores) and 50 NC were included. Microbiome alpha and beta diversities were estimated. Differentially enriched microbes were identified with HAllA, MaAsLin, DESeq2, and LEfSe statistical modeling approaches. Results: We found significantly increased abundance of Firmicutes but decreased abundance of Bacteroidetes at phylum level in AD compared to NC. In AD patients, cognitive function scores were negatively associated with abundance of Blautia hydrogenotrophica (Firmicutes), Anaerotruncus colihominis (Firmicutes), and Gordonibacter pamelaeae (Actinobacteria). In addition, microbial abundance in the sucrose and S-Adenosyl-L-methionine (SAMe) metabolic pathways were more enriched in MCI AD than dementia AD; and significantly associated with higher cognitive function scores. Conclusion: Gut microbe community diversity was similar in AD patients regardless of MCI or dementia status. However, differential analyses probed in lower-level taxa and metabolic pathways suggested that specific gut microbes in Firmicutes and Actinobacteria might involve in cognitive decline.
Collapse
Affiliation(s)
- Sohyun Jeong
- Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Li-Kai Huang
- Dementia Center and Department of Neurology, Shuang Ho Hospital, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City, Taiwan
| | - Ming-Ju Tsai
- Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Yi-Tyng Liao
- Development Center for Biotechnology, Taipei, Taiwan
| | - Yow-Sien Lin
- Development Center for Biotechnology, Taipei, Taiwan
| | - Chaur-Jong Hu
- Dementia Center and Department of Neurology, Shuang Ho Hospital, School of Medicine, College of Medicine, Taipei Medical University, New Taipei City, Taiwan
| | - Yi-Hsiang Hsu
- Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, USA
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
33
|
Sorboni SG, Moghaddam HS, Jafarzadeh-Esfehani R, Soleimanpour S. A Comprehensive Review on the Role of the Gut Microbiome in Human Neurological Disorders. Clin Microbiol Rev 2022; 35:e0033820. [PMID: 34985325 PMCID: PMC8729913 DOI: 10.1128/cmr.00338-20] [Citation(s) in RCA: 200] [Impact Index Per Article: 66.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The human body is full of an extensive number of commensal microbes, consisting of bacteria, viruses, and fungi, collectively termed the human microbiome. The initial acquisition of microbiota occurs from both the external and maternal environments, and the vast majority of them colonize the gastrointestinal tract (GIT). These microbial communities play a central role in the maturation and development of the immune system, the central nervous system, and the GIT system and are also responsible for essential metabolic pathways. Various factors, including host genetic predisposition, environmental factors, lifestyle, diet, antibiotic or nonantibiotic drug use, etc., affect the composition of the gut microbiota. Recent publications have highlighted that an imbalance in the gut microflora, known as dysbiosis, is associated with the onset and progression of neurological disorders. Moreover, characterization of the microbiome-host cross talk pathways provides insight into novel therapeutic strategies. Novel preclinical and clinical research on interventions related to the gut microbiome for treating neurological conditions, including autism spectrum disorders, Parkinson's disease, schizophrenia, multiple sclerosis, Alzheimer's disease, epilepsy, and stroke, hold significant promise. This review aims to present a comprehensive overview of the potential involvement of the human gut microbiome in the pathogenesis of neurological disorders, with a particular emphasis on the potential of microbe-based therapies and/or diagnostic microbial biomarkers. This review also discusses the potential health benefits of the administration of probiotics, prebiotics, postbiotics, and synbiotics and fecal microbiota transplantation in neurological disorders.
Collapse
Affiliation(s)
| | | | - Reza Jafarzadeh-Esfehani
- Blood Borne Infectious Research Center, Academic Center for Education, Culture and Research (ACECR)-Khorasan Razavi, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Centre, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
34
|
Human herpesvirus 6A U4 inhibits proteasomal degradation of amyloid precursor protein. J Virol 2021; 96:e0168821. [PMID: 34878807 DOI: 10.1128/jvi.01688-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human herpesvirus 6 (HHV-6) belongs to the betaherpesvirus subfamily and is divided into two distinct species, HHV-6A and HHV-6B. HHV-6 can infect nerve cells and is associated with a variety of nervous system diseases. Recently, the association of HHV-6A infection with Alzheimer's disease (AD) has been suggested. The main pathological phenomena of AD are the accumulation of β-amyloid (Aβ), neurofibrillary tangles, and neuroinflammation, however, the specific molecular mechanism of pathogenesis of AD is not fully clear. In this study, we focused on the effect of HHV-6A U4 gene function on Aβ expression. Co-expression of HHV-6A U4 with APP resulted in inhibition of ubiquitin-mediated proteasomal degradation of amyloid precursor protein (APP). Consequently, accumulation of β-amyloid peptide (Aβ), insoluble neurofibrillary tangles, and loss of neural cells may occur. Immunoprecipitation coupled to mass spectrometry (IP-MS) showed that HHV-6A U4 protein interacts with E3 ubiquitin ligase composed of DDB1 and Cullin 4B which is also responsible for APP degradation. We hypothesize that HHV-6A U4 protein competes with APP for binding to E3 ubiquitin ligase, resulting in inhibition of APP ubiquitin modification and clearance. Finally, this is leading to the increase of APP expression and Aβ deposition, which is the hallmark of AD. These findings provide novel evidence for the etiological hypothesis of AD that can contribute to the further analysis of HHV-6A role in AD. IMPORTANCE The association of HHV-6A infection with Alzheimer's disease has attracted increasing attention, although its role and molecular mechanism remain to be established. Our results here indicate that HHV-6A U4 inhibits APP (amyloid precursor protein) degradation. U4 protein interacts with CRLs (Cullin-RING E3 ubiquitin-protein ligases) which is also responsible for APP degradation. We propose a model that U4 competitively binds to CRLs with APP, resulting in APP accumulation and Aβ generation. Our findings provide new insights into the etiological hypothesis of HHV-6A in AD that can help further analyses.
Collapse
|
35
|
Kim HS, Kim S, Shin SJ, Park YH, Nam Y, Kim CW, Lee KW, Kim SM, Jung ID, Yang HD, Park YM, Moon M. Gram-negative bacteria and their lipopolysaccharides in Alzheimer's disease: pathologic roles and therapeutic implications. Transl Neurodegener 2021; 10:49. [PMID: 34876226 PMCID: PMC8650380 DOI: 10.1186/s40035-021-00273-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is the most serious age-related neurodegenerative disease and causes destructive and irreversible cognitive decline. Failures in the development of therapeutics targeting amyloid-β (Aβ) and tau, principal proteins inducing pathology in AD, suggest a paradigm shift towards the development of new therapeutic targets. The gram-negative bacteria and lipopolysaccharides (LPS) are attractive new targets for AD treatment. Surprisingly, an altered distribution of gram-negative bacteria and their LPS has been reported in AD patients. Moreover, gram-negative bacteria and their LPS have been shown to affect a variety of AD-related pathologies, such as Aβ homeostasis, tau pathology, neuroinflammation, and neurodegeneration. Moreover, therapeutic approaches targeting gram-negative bacteria or gram-negative bacterial molecules have significantly alleviated AD-related pathology and cognitive dysfunction. Despite multiple evidence showing that the gram-negative bacteria and their LPS play a crucial role in AD pathogenesis, the pathogenic mechanisms of gram-negative bacteria and their LPS have not been clarified. Here, we summarize the roles and pathomechanisms of gram-negative bacteria and LPS in AD. Furthermore, we discuss the possibility of using gram-negative bacteria and gram-negative bacterial molecules as novel therapeutic targets and new pathological characteristics for AD.
Collapse
Affiliation(s)
- Hyeon Soo Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
- Research Institute for Dementia Science, Konyang University, Daejeon, 35365, Republic of Korea
| | - Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Yong Ho Park
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Chae Won Kim
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Kang Won Lee
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Sung-Min Kim
- Dandi Bioscience Inc, 6th Floor of Real Company Building, 66, Achasan-ro, Sungdong-gu, Seoul, Republic of Korea
| | - In Duk Jung
- Dandi Bioscience Inc, 6th Floor of Real Company Building, 66, Achasan-ro, Sungdong-gu, Seoul, Republic of Korea
| | - Hyun Duk Yang
- Harvard Neurology Clinic, 294 Gwanggyojungang-ro, Suji-gu, Yongin, 16943, Republic of Korea.
| | - Yeong-Min Park
- Dandi Bioscience Inc, 6th Floor of Real Company Building, 66, Achasan-ro, Sungdong-gu, Seoul, Republic of Korea.
- Department of Immunology, School of Medicine, Konkuk University, 268, Chungwondaero, Chungju-si, Chungcheongbuk-do, Republic of Korea.
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea.
- Research Institute for Dementia Science, Konyang University, Daejeon, 35365, Republic of Korea.
| |
Collapse
|
36
|
Wormser GP, Marques A, Pavia CS, Schwartz I, Feder HM, Pachner AR. Lack of Convincing Evidence that Borrelia burgdorferi Infection Causes Either Alzheimer's Disease or Lewy Body Dementia. Clin Infect Dis 2021; 75:342-346. [PMID: 34849631 DOI: 10.1093/cid/ciab993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Indexed: 11/13/2022] Open
Abstract
The role that microorganisms might have in the development of Alzheimer's disease is a topic of considerable interest. In this article we discuss whether there is credible evidence that Lyme disease is a cause of Alzheimer's disease and critically review a recent publication claiming that Borrelia burgdorferi sensu stricto infection, the primary cause of Lyme disease in the United States, may cause Lewy body dementia. We conclude that no convincing evidence exists that Lyme disease is a cause of either Alzheimer's disease or Lewy body dementia.
Collapse
Affiliation(s)
- Gary P Wormser
- Division of Infectious Diseases, New York Medical College, Valhalla, NY, USA
| | - Adriana Marques
- Laboratory of Clinical Microbiology and Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Charles S Pavia
- Division of Infectious Diseases, New York Medical College, Valhalla, NY, USA.,Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, Old Westbury, NY, USA
| | - Ira Schwartz
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - Henry M Feder
- University of Connecticut Medical Center and Connecticut Children's Medical Center, Farmington, CT, USA and Hartford, CT, USA
| | - Andrew R Pachner
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| |
Collapse
|
37
|
Scherrer JF, Salas J, Wiemken TL, Hoft DF, Jacobs C, Morley JE. Impact of herpes zoster vaccination on incident dementia: A retrospective study in two patient cohorts. PLoS One 2021; 16:e0257405. [PMID: 34788293 PMCID: PMC8597989 DOI: 10.1371/journal.pone.0257405] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/31/2021] [Indexed: 12/31/2022] Open
Abstract
Background Herpes zoster (HZ) infection increases dementia risk, but it is not known if herpes zoster vaccination is associated with lower risk for dementia. We determined if HZ vaccination, compared to no HZ vaccination, is associated with lower risk for incident dementia. Methods and findings Data was obtained from Veterans Health Affairs (VHA) medical records (10/1/2008–9/30/2019) with replication in MarketScan® commercial and Medicare claims (1/1/2009-12/31/2018). Eligible patients were ≥65 years of age and free of dementia for two years prior to baseline (VHA n = 136,016; MarketScan n = 172,790). Two index periods (either start of 2011 or 2012) were defined, where patients either had or did not have a HZ vaccination. Confounding was controlled with propensity scores and inverse probability of treatment weighting. Competing risk (VHA) and Cox proportional hazard (MarketScan) models estimated the association between HZ vaccination and incident dementia in all patients and in age (65–69, 70–74, ≥75) and race (White, Black, Other) sub-groups. Sensitivity analysis measured the association between HZ vaccination and incident Alzheimer’s dementia (AD). HZ vaccination at index versus no HZ vaccination throughout follow-up. VHA patients mean age was 75.7 (SD±7.4) years, 4.0% were female, 91.2% white and 20.2% had HZ vaccination. MarketScan patients mean age was 69.9 (SD±5.7) years, 65.0% were female and 14.2% had HZ vaccination. In both cohorts, HZ vaccination compared with no vaccination, was significantly associated with lower dementia risk (VHA HR = 0.69; 95%CI: 0.67–0.72; MarketScan HR = 0.65; 95%CI:0.57–0.74). HZ vaccination was not related to dementia risk in MarketScan patients aged 65–69 years. No difference in HZ vaccination to dementia effects were found by race. HZ vaccination was associated with lower risk for AD. Conclusions HZ vaccination is associated with reduced risk of dementia. Vaccination may provide nonspecific neuroprotection by training the immune system to limit damaging inflammation, or specific neuroprotection that prevents viral cytopathic effects.
Collapse
Affiliation(s)
- Jeffrey F. Scherrer
- Department of Family and Community Medicine, Saint Louis University School of Medicine, St. Louis, MO, United States of America
- Harry S. Truman Veterans Administration Medical Center, Columbia, MO, United States of America
- The AHEAD Institute, Saint Louis University School of Medicine, St. Louis, MO, United States of America
- * E-mail:
| | - Joanne Salas
- Department of Family and Community Medicine, Saint Louis University School of Medicine, St. Louis, MO, United States of America
- Harry S. Truman Veterans Administration Medical Center, Columbia, MO, United States of America
- The AHEAD Institute, Saint Louis University School of Medicine, St. Louis, MO, United States of America
| | - Timothy L. Wiemken
- The AHEAD Institute, Saint Louis University School of Medicine, St. Louis, MO, United States of America
- Department of Health and Clinical Outcomes Research, School of Medicine, Saint Louis University, Saint Louis, MO, United States of America
- Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, Department of Medicine, School of Medicine, Saint Louis University, Saint Louis, MO, United States of America
- Saint Louis University Systems Infection Prevention Center, Center for Specialized Medicine, St. Louis, MO, United States of America
| | - Daniel F. Hoft
- Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, Department of Medicine, School of Medicine, Saint Louis University, Saint Louis, MO, United States of America
- Saint Louis University Systems Infection Prevention Center, Center for Specialized Medicine, St. Louis, MO, United States of America
- Department of Molecular Microbiology & Immunology, Saint Louis University, Saint Louis, MO, United States of America
| | - Christine Jacobs
- Department of Family and Community Medicine, Saint Louis University School of Medicine, St. Louis, MO, United States of America
- The AHEAD Institute, Saint Louis University School of Medicine, St. Louis, MO, United States of America
| | - John E. Morley
- Division of Geriatric Medicine, Saint Louis University School of Medicine, St. Louis, MO, United States of America
| |
Collapse
|
38
|
Katz J, Gao H. The Alzheimer-E. coli Axis: What Can We Learn from an Electronic Health Record Platform. J Alzheimers Dis 2021; 84:717-721. [PMID: 34569963 DOI: 10.3233/jad-215004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease with unclear etiology. Recent studies have demonstrated a potential role for gut microbiome. There is, however, a significant dearth in epidemiological correlation between gut bacteria and AD. OBJECTIVE To investigate the association between Escherichia coli (E. coli) infection and AD. METHODS Counts of patients with ICD 10 diagnoses of AD, E. coli, urinary tract infection, and comorbidities were retrieved from the electronic health records at the University of Florida Health Center. RESULTS The relative risk for AD with a previous event of E. coli was 5.17 (95%CI 4.0786 to 6.5446, p < 0.0001). In the unadjusted association, patients with E. coli infection had odds ratio (OR) of 20.83 to have AD (95%CI, 17.7-24.34; p < 0.0001); after adjusting for gender (OR = 12.71; 95%CI, 10.82-14.83; p < 0.0001), race (OR = 13.97; 95%CI, 11.84-16.36; p < 0.0001), age group (OR = 11.51; 95%CI, 9.73-13.54; p < 0.0001), diabetes (OR = 9.23; 95%CI, 7.79-10.87; p < 0.0001), stroke (OR = 5.31; 95%CI, 4.47-6.28; p < 0.0001), and hypertension (OR = 4.55; 95%CI, 3.86-5.32; p < 0.0001). CONCLUSION These results should be taken cautiously. This retrospective cross-sectional study cannot infer causality and had used aggregate data that did not allow simultaneous adjustments of covariates. Future studies are warranted to investigate the link between gut bacteria and AD.
Collapse
Affiliation(s)
- Joseph Katz
- Department of Oral Diagnostic Sciences, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Hanzhi Gao
- Department of Biostatistics, University of Florida College of Public Health and Health Professions, Gainesville, FL, USA
| |
Collapse
|
39
|
Ou H, Chien WC, Chung CH, Chang HA, Kao YC, Wu PC, Tzeng NS. Association Between Antibiotic Treatment of Chlamydia pneumoniae and Reduced Risk of Alzheimer Dementia: A Nationwide Cohort Study in Taiwan. Front Aging Neurosci 2021; 13:701899. [PMID: 34489674 PMCID: PMC8416516 DOI: 10.3389/fnagi.2021.701899] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/13/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Chlamydia pneumoniae (CPn) is a common community-acquired pneumonia. In the literature, CPn infection is demonstrated to exhibit an association with Alzheimer dementia (AD). We executed the present nationwide, population-based research with the goal of probing the association of CPn infection and antibiotic therapy with AD risk. Methods: We conducted a cohort study using a database extracted from Taiwan's National Health Insurance Research Database (NHIRD). All medical conditions for each enrolled individuals were categorized using the International Classification of Diseases, ninth Revision classifications. Hazard ratios (HRs) and 95% confidence intervals (CIs) for associations between CPn pneumonia-associated hospitalizations and AD were estimated using Fine and Gray's survival analysis and adjusted for comorbidities. The effects of the antibiotics on the HRs for AD in the patients with CPn pneumonia-associated hospitalization were also analyzed. Results: Our analyses included 6,628 individuals, including 1,657 CPn-infected patients, as well as 4,971 controls matched by age, index date, and sex (1:3). In this study, patients hospitalized for CPn pneumonia exhibited a significantly higher AD risk (adjusted HR = 1.599, 95% CI = 1.284-1.971, p < 0.001). We also noted an association of macrolide use (≥15 days) and fluoroquinolone use (≥15 days) with decreased AD risk. Conclusions: We determined CPn pneumonia to be associated with a relatively high AD risk. The result in this study confirmed the findings from previous literatures, by using a large, nationwide, population-based database. Appropriate macrolide and fluoroquinolone treatment may attenuate this risk.
Collapse
Affiliation(s)
- Hsun Ou
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Wu-Chien Chien
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,School of Public Health, National Defense Medical Center, Taipei, Taiwan.,Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan.,Taiwanese Injury Prevention and Safety Promotion Association, Taipei, Taiwan
| | - Chi-Hsiang Chung
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.,School of Public Health, National Defense Medical Center, Taipei, Taiwan.,Taiwanese Injury Prevention and Safety Promotion Association, Taipei, Taiwan
| | - Hsin-An Chang
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan.,Student Counseling Center, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Chen Kao
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan.,Department of Psychiatry, Tri-Service General Hospital, Song-Shan Branch, National Defense Medical Center, Taipei, Taiwan
| | - Pei-Chuan Wu
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan.,Department of Psychiatry, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Nian-Sheng Tzeng
- Department of Psychiatry, Tri-Service General Hospital, School of Medicine, National Defense Medical Center, Taipei, Taiwan.,Student Counseling Center, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
40
|
Lee YJ, Yeo IJ, Choi DY, Yun J, Son DJ, Han SB, Hong JT. Amyloidogenic, neuroinflammatory and memory dysfunction effects of HIV-1 gp120. Arch Pharm Res 2021; 44:689-701. [PMID: 34302237 PMCID: PMC8300079 DOI: 10.1007/s12272-021-01340-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/30/2021] [Indexed: 01/05/2023]
Abstract
Human immunodeficiency virus 1 (HIV-1) infection can cause several HIV-associated neurocognitive disorders a variety of neurological impairments characterized by the loss of cortical and subcortical neurons and decreased cognitive and motor function. HIV-1 gp120, the major envelope glycoprotein on viral particles, acts as a binding protein for viral entry and is known to be an agent of neuronal cell death. To determine the mechanism of HIV-1 gp120-induced memory dysfunction, we performed mouse intracerebroventricular (i.c.v.) infusion with HIV-1 gp120 protein (300 ng per mouse) and investigated memory impairment and amyloidogenesis. Infusion of the HIV-1 gp120 protein induced memory dysfunction, which was evaluated using passive avoidance and water maze tests. Infusion of HIV-1 gp120 induced neuroinflammation, such as the release of iNOS and COX-2 and the activation of astrocytes and microglia and increased the mRNA and protein levels of IL-6, ICAM-1, M-CSF, TIM, and IL-2. In particular, we found that the infusion of HIV-1 gp120 induced the accumulation of amyloid plaques and signs of elevated amyloidogenesis, such as increased expression of amyloid precursor protein and BACE1 and increased β-secretase activity. Therefore, these studies suggest that HIV-1 gp120 may induce memory impairment through Aβ accumulation and neuroinflammation.
Collapse
Affiliation(s)
- Young-Jung Lee
- Department of Equine Resources Science, School of Equine and Horticultural, Cheju Halla University, 38 Halladaehak-ro, Jeju-si, Jeju Special Self-Governing Province, 63092, Republic of Korea
| | - In Jun Yeo
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Dong Young Choi
- College of Pharmacy, Yeungnam University, 280 Daehak Road, Gyeonsan, Gyeongbuk, 38541, Republic of Korea
| | - Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Dong Ju Son
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Sang-Bae Han
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea
| | - Jin Tae Hong
- College of Pharmacy and Medical Research Center, Chungbuk National University, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju, Chungbuk, 28160, Republic of Korea.
| |
Collapse
|
41
|
Nayeri T, Sarvi S, Sharif M, Daryani A. Toxoplasma gondii: A possible etiologic agent for Alzheimer's disease. Heliyon 2021; 7:e07151. [PMID: 34141920 PMCID: PMC8187970 DOI: 10.1016/j.heliyon.2021.e07151] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/03/2021] [Accepted: 05/24/2021] [Indexed: 01/03/2023] Open
Abstract
Toxoplasma gondii (T. gondii) is one of the most pervasive neurotropic pathogens causing different lesions in a wide variety of mammals as intermediate hosts, including humans. It is estimated that one-third of the world population is infected with T. gondii; however, for a long time, there has been much interest in the examination of the possible role of this parasite in the development of mental disorders, such as Alzheimer's disease (AD). T. gondii may play a role in the progression of AD using mechanisms, such as the induction of the host's immune responses, inflammation of the central nervous system (CNS), alteration in the levels of neurotransmitters, and activation of indoleamine-2,3-dyoxigenase. This paper presents an appraisal of the literature, reports, and studies that seek to the possible role of T. gondii in the development of AD. For achieving the purpose of the current study, a search of six English databases (PubMed, ScienceDirect, Web of Science, Scopus, ProQuest, and Google Scholar) was performed. The results support the involvement of T. gondii in the induction and development of AD. Indeed, T. gondii can be considered a risk factor for the development of AD and requires the special attention of specialists and patients. Furthermore, the results of this study may contribute to prevent or delay the progress of AD worldwide. Therefore, it is required to carry out further studies in order to better perceive the parasitic mechanisms in the progression of AD.
Collapse
Affiliation(s)
- Tooran Nayeri
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahabeddin Sarvi
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehdi Sharif
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
42
|
Contini C, Olianas A, Serrao S, Deriu C, Iavarone F, Boroumand M, Bizzarro A, Lauria A, Faa G, Castagnola M, Messana I, Manconi B, Masullo C, Cabras T. Top-Down Proteomics of Human Saliva Highlights Anti-inflammatory, Antioxidant, and Antimicrobial Defense Responses in Alzheimer Disease. Front Neurosci 2021; 15:668852. [PMID: 34121996 PMCID: PMC8189262 DOI: 10.3389/fnins.2021.668852] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Alzheimer disease (AD) is the most prevalent neurodegenerative disease in the elderly, characterized by accumulation in the brain of misfolded proteins, inflammation, and oxidative damage leading to neuronal cell death. By considering the viewpoint that AD onset and worsening may be influenced by environmental factors causing infection, oxidative stress, and inflammatory reaction, we investigated the changes of the salivary proteome in a population of patients with respect to that in healthy controls (HCs). Indeed, the possible use of saliva as a diagnostic tool has been explored in several oral and systemic diseases. Moreover, the oral cavity continuously established adaptative and protective processes toward exogenous stimuli. In the present study, qualitative/quantitative variations of 56 salivary proteoforms, including post-translationally modified derivatives, have been analyzed by RP-HPLC-ESI-IT-MS and MS/MS analyses, and immunological methods were applied to validate MS results. The salivary protein profile of AD patients was characterized by significantly higher levels of some multifaceted proteins and peptides that were either specific to the oral cavity or also expressed in other body districts: (i) peptides involved in the homeostasis of the oral cavity; (ii) proteins acting as ROS/RNS scavengers and with a neuroprotective role, such as S100A8, S100A9, and their glutathionylated and nitrosylated proteoforms; cystatin B and glutathionylated and dimeric derivatives; (iii) proteins with antimicrobial activity, such as α-defensins, cystatins A and B, histatin 1, statherin, and thymosin β4, this last with a neuroprotective role at the level of microglia. These results suggested that, in response to injured conditions, Alzheimer patients established defensive mechanisms detectable at the oral level. Data are available via ProteomeXchange with identifier PXD021538.
Collapse
Affiliation(s)
- Cristina Contini
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cagliari, Italy
| | - Alessandra Olianas
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cagliari, Italy
| | - Simone Serrao
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cagliari, Italy
| | - Carla Deriu
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cagliari, Italy
| | - Federica Iavarone
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario "A. Gemelli" - IRCCS, Rome, Italy
| | - Mozhgan Boroumand
- Laboratorio di Proteomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Alessandra Bizzarro
- UOC Continuità Assistenziale, Fondazione Policlinico Universitario "A. Gemelli" - IRCCS, Rome, Italy
| | - Alessandra Lauria
- UOC Continuità Assistenziale, Fondazione Policlinico Universitario "A. Gemelli" - IRCCS, Rome, Italy
| | - Gavino Faa
- Dipartimento di Scienze Mediche e Sanità Pubblica, University of Cagliari, Cagliari, Italy
| | - Massimo Castagnola
- Laboratorio di Proteomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Irene Messana
- Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Consiglio Nazionale delle Ricerche, Rome, Italy
| | - Barbara Manconi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cagliari, Italy
| | - Carlo Masullo
- Dipartimento di Neuroscienze, Sez. Neurologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Tiziana Cabras
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cagliari, Italy
| |
Collapse
|
43
|
Scherrer JF, Salas J, Wiemken TL, Jacobs C, Morley JE, Hoft DF. Lower Risk for Dementia Following Adult Tetanus, Diphtheria, and Pertussis (Tdap) Vaccination. J Gerontol A Biol Sci Med Sci 2021; 76:1436-1443. [PMID: 33856020 DOI: 10.1093/gerona/glab115] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Adult vaccinations may reduce risk for dementia. However, it has not been established whether tetanus, diphtheria, pertussis (Tdap) vaccination is associated with incident dementia. METHODS Hypotheses were tested in a Veterans Health Affairs (VHA) cohort and replicated in a MarketScan medical claims cohort. Patients were at least 65 years of age and free of dementia for 2 years prior to index date. Patients either had or did not have a Tdap vaccination by the start of either of the 2 index periods (2011 or 2012). Follow-up continued through 2018. Controls had no Tdap vaccination for the duration of follow-up. Confounding was controlled using entropy balancing. Competing risk (VHA) and Cox proportional hazard (MarketScan) models estimated the association between Tdap vaccination and incident dementia in all patients and age subgroups (65-69, 70-74, and ≥75 years). RESULTS VHA patients were, on average, 75.6 (SD ± 7.5) years of age, 4% female, and 91.2% were White. MarketScan patients were 69.8 (SD ± 5.6) years of age, on average and 65.4% were female. After controlling for confounding, patients with, compared to without, Tdap vaccination had a significantly lower risk for dementia in both cohorts (VHA: hazard ratio [HR] = 0.58; 95% confidence interval [CI]:0.54-0.63 and MarketScan: HR = 0.58; 95% CI:0.48-0.70). CONCLUSIONS Tdap vaccination was associated with a 42% lower dementia risk in 2 cohorts with different clinical and sociodemographic characteristics. Several vaccine types are linked to decreased dementia risk, suggesting that these associations are due to nonspecific effects on inflammation rather than vaccine-induced pathogen-specific protective effects.
Collapse
Affiliation(s)
- Jeffrey F Scherrer
- Department of Family and Community Medicine, Saint Louis University School of Medicine, Missouri, USA.,Harry S. Truman Veterans Administration Medical Center, Columbia, Missouri, USA.,The AHEAD Institute, Saint Louis University School of Medicine, Missouri, USA
| | - Joanne Salas
- Department of Family and Community Medicine, Saint Louis University School of Medicine, Missouri, USA.,Harry S. Truman Veterans Administration Medical Center, Columbia, Missouri, USA.,The AHEAD Institute, Saint Louis University School of Medicine, Missouri, USA
| | - Timothy L Wiemken
- The AHEAD Institute, Saint Louis University School of Medicine, Missouri, USA.,Department of Health and Clinical Outcomes Research, Saint Louis University School of Medicine, Missouri, USA.,Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Missouri, USA.,Saint Louis University Systems Infection Prevention Center, Center for Specialized Medicine, Missouri, USA
| | - Christine Jacobs
- Department of Family and Community Medicine, Saint Louis University School of Medicine, Missouri, USA.,The AHEAD Institute, Saint Louis University School of Medicine, Missouri, USA
| | - John E Morley
- Division of Geriatric Medicine, Saint Louis University School of Medicine, Missouri, USA
| | - Daniel F Hoft
- Division of Infectious Diseases, Allergy, and Immunology, Department of Internal Medicine, Saint Louis University School of Medicine, Missouri, USA.,Saint Louis University Systems Infection Prevention Center, Center for Specialized Medicine, Missouri, USA.,Departments of Internal Medicine and Molecular Microbiology and Immunology, Saint Louis University, Missouri, USA
| |
Collapse
|
44
|
Michiels E, Rousseau F, Schymkowitz J. Mechanisms and therapeutic potential of interactions between human amyloids and viruses. Cell Mol Life Sci 2021; 78:2485-2501. [PMID: 33244624 PMCID: PMC7690653 DOI: 10.1007/s00018-020-03711-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/21/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022]
Abstract
The aggregation of specific proteins and their amyloid deposition in affected tissue in disease has been studied for decades assuming a sole pathogenic role of amyloids. It is now clear that amyloids can also encode important cellular functions, one of which involves the interaction potential of amyloids with microbial pathogens, including viruses. Human expressed amyloids have been shown to act both as innate restriction molecules against viruses as well as promoting agents for viral infectivity. The underlying molecular driving forces of such amyloid-virus interactions are not completely understood. Starting from the well-described molecular mechanisms underlying amyloid formation, we here summarize three non-mutually exclusive hypotheses that have been proposed to drive amyloid-virus interactions. Viruses can indirectly drive amyloid depositions by affecting upstream molecular pathways or induce amyloid formation by a direct interaction with the viral surface or specific viral proteins. Finally, we highlight the potential of therapeutic interventions using the sequence specificity of amyloid interactions to drive viral interference.
Collapse
Affiliation(s)
- Emiel Michiels
- VIB Center for Brain and Disease Research, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Frederic Rousseau
- VIB Center for Brain and Disease Research, Leuven, Belgium.
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| | - Joost Schymkowitz
- VIB Center for Brain and Disease Research, Leuven, Belgium.
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
45
|
Scherrer JF, Hoft DF, Salas J, Wiemken T, Morley JE. Editorial: Common Adult Vaccinations May Reduce Risk for Dementia. J Nutr Health Aging 2021; 25:1138-1139. [PMID: 34866139 DOI: 10.1007/s12603-021-1695-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- J F Scherrer
- Jeffrey F. Scherrer, PhD, Saint Louis University School of Medicine, Family and Community Medicine, 1008 S. Spring, SLUCare Academic Pavilion, 3rd Floor St. Louis, MO 63110, , voice:314-977-8486
| | | | | | | | | |
Collapse
|
46
|
Khokale R, Kang A, Buchanan-Peart KAR, Nelson ML, Awolumate OJ, Cancarevic I. Alzheimer's Gone Viral: Could Herpes Simplex Virus Type-1 Be Stealing Your Memories? Cureus 2020; 12:e11726. [PMID: 33403161 PMCID: PMC7772174 DOI: 10.7759/cureus.11726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/26/2020] [Indexed: 11/25/2022] Open
Abstract
Alzheimer's disease (AD) is one of the principal causes of disability and morbidity. It is one of the most expensive illnesses. Despite this, there are no significant data regarding its etiology and optimal treatment. This review concentrates on the viral hypothesis of AD. After a comprehensive PubMed literature search, we analyzed the studies associating herpes simplex virus type-1 (HSV1) infection to AD from the previous 10 years. Molecular mechanisms whereby HSV1 induces AD-related pathophysiology, including neuronal production and accumulation of amyloid-beta (amyloid-β), abnormal phosphorylation of tau proteins, impaired calcium homeostasis, and autophagy, are addressed. The virus also imitates the disease in other ways, showing increased neuroinflammation, oxidative stress, synaptic dysfunction, and neuronal apoptosis. Serological studies correlate HSV1 infection with AD and cognitive impairment. A causal link between HSV1 and AD raises the concept of a simple, efficient, and preventive treatment alternative. Anti-viral agents impede brain degeneration by preventing HSV1 spread and its replication, decreasing hyperphosphorylated tau and amyloid-β; thus providing an efficacious treatment for AD. We also mention brown algae, intravenous immunoglobulin (IVIG), and a synthetic drug, BAY57-1293, with anti-viral properties, as options for treating AD. We want to recommend future researchers to look for more affordable, non-invasive, and swifter techniques to identify HSV1 in the brain and assist in the early detection and prevention of AD.
Collapse
Affiliation(s)
- Rhutuja Khokale
- Neurology, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ayesha Kang
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | | | - Maxine L Nelson
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Oluwatayo J Awolumate
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Ivan Cancarevic
- Internal Medicine, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
47
|
Abstract
Aβ plaques are one of the two lesions in the brain that define the neuropathological diagnosis of Alzheimer's disease. Plaques are highly diverse structures; many of them include massed, fibrillar polymers of the Aβ protein referred to as Aβ-amyloid, but some lack the defining features of amyloid. Cellular elements in 'classical' plaques include abnormal neuronal processes and reactive glial cells, but these are not present in all plaques. Plaques have been given various names since their discovery in 1892, including senile plaques, amyloid plaques, and neuritic plaques. However, with the identification in the 1980s of Aβ as the obligatory and universal component of plaques, the term 'Aβ plaques' has become a unifying term for these heterogeneous formations. Tauopathy, the second essential lesion of the Alzheimer's disease diagnostic dyad, is downstream of Aβ-proteopathy, but it is critically important for the manifestation of dementia. The etiologic link between Aβ-proteopathy and tauopathy in Alzheimer's disease remains largely undefined. Aβ plaques develop and propagate via the misfolding, self-assembly and spread of Aβ by the prion-like mechanism of seeded protein aggregation. Partially overlapping sets of risk factors and sequelae, including inflammation, genetic variations, and various environmental triggers have been linked to plaque development and idiopathic Alzheimer's disease, but no single factor has emerged as a requisite cause. The value of Aβ plaques per se as therapeutic targets is uncertain; although some plaques are sites of focal gliosis and inflammation, the complexity of inflammatory biology presents challenges to glia-directed intervention. Small, soluble, oligomeric assemblies of Aβ are enriched in the vicinity of plaques, and these probably contribute to the toxic impact of Aβ aggregation on the brain. Measures designed to reduce the production or seeded self-assembly of Aβ can impede the formation of Aβ plaques and oligomers, along with their accompanying abnormalities; given the apparent long timecourse of the emergence, maturation and proliferation of Aβ plaques in humans, such therapies are likely to be most effective when begun early in the pathogenic process, before significant damage has been done to the brain. Since their discovery in the late 19th century, Aβ plaques have, time and again, illuminated fundamental mechanisms driving neurodegeneration, and they should remain at the forefront of efforts to understand, and therefore treat, Alzheimer's disease.
Collapse
Affiliation(s)
- Lary C. Walker
- Department of Neurology and Yerkes National Primate Research Center, Emory University
| |
Collapse
|
48
|
Loupy KM, Lee T, Zambrano CA, Elsayed AI, D'Angelo HM, Fonken LK, Frank MG, Maier SF, Lowry CA. Alzheimer's Disease: Protective Effects of Mycobacterium vaccae, a Soil-Derived Mycobacterium with Anti-Inflammatory and Anti-Tubercular Properties, on the Proteomic Profiles of Plasma and Cerebrospinal Fluid in Rats. J Alzheimers Dis 2020; 78:965-987. [PMID: 33074227 DOI: 10.3233/jad-200568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is an inflammatory neurodegenerative disease that may be associated with prior bacterial infections. Microbial "old friends" can suppress exaggerated inflammation in response to disease-causing infections or increase clearance of pathogens such as Mycobacterium tuberculosis, which causes tuberculosis (TB). One such "old friend" is Mycobacterium vaccae NCTC 11659, a soil-derived bacterium that has been proposed either as a vaccine for prevention of TB, or as immunotherapy for the treatment of TB when used alongside first line anti-TB drug treatment. OBJECTIVE The goal of this study was to use a hypothesis generating approach to explore the effects of M. vaccae on physiological changes in the plasma and cerebrospinal fluid (CSF). METHODS Liquid chromatography-tandem mass spectrometry-based proteomics were performed in plasma and CSF of adult male rats after immunization with a heat-killed preparation of M. vaccae NCTC 11659 or borate-buffered saline vehicle. Gene enrichment analysis and analysis of protein-protein interactions were performed to integrate physiological network changes in plasma and CSF. We used RT-qPCR to assess immune and metabolic gene expression changes in the hippocampus. RESULTS In both plasma and CSF, immunization with M. vaccae increased proteins associated with immune activation and downregulated proteins corresponding to lipid (including phospholipid and cholesterol) metabolism. Immunization with M. vaccae also increased hippocampal expression of interleukin-4 (IL-4) mRNA, implicating anti-inflammatory effects in the central nervous system. CONCLUSION M. vaccae alters host immune activity and lipid metabolism. These data are consistent with the hypothesis that microbe-host interactions may protect against possible infection-induced, inflammation-related cognitive impairments.
Collapse
Affiliation(s)
- Kelsey M Loupy
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Thomas Lee
- Central Analytical Laboratory and Mass Spectrometry Facility, Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Cristian A Zambrano
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Ahmed I Elsayed
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Heather M D'Angelo
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, University of Texas at Austin, Austin, TX, USA
| | - Matthew G Frank
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA.,Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Steven F Maier
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA.,Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA.,Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA.,Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO, USA.,Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.,Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center (MIRECC), Rocky Mountain Regional Veterans Affairs Medical Center (RMRVAMC), Aurora, CO, USA.,Military and Veteran Microbiome: Consortium for Research and Education (MVM-CoRE), Aurora, CO, USA.,Senior Fellow, inVIVO Planetary Health, of the Worldwide Universities Network (WUN), West New York, NJ, USA
| |
Collapse
|
49
|
Kwok MK, Schooling CM. Herpes simplex virus and Alzheimer's disease: a Mendelian randomization study. Neurobiol Aging 2020; 99:101.e11-101.e13. [PMID: 33139072 DOI: 10.1016/j.neurobiolaging.2020.09.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 09/07/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
Abstract
This study assessed if any herpes simplex virus (HSV) infection was a genetically valid target for late-onset Alzheimer's disease (AD) using 2-sample Mendelian randomization. We applied strong (p-value <5×10-6) and independent (r2 < 0.05) genetic variants for any HSV infection (n = 450,581) to genome wide association studies of cognitive function (n = 300,486), and late-onset AD (n = 455,258) to obtain estimates. Genetically predicted log odds of any HSV infection was not associated with cognitive function (mean difference 0.0004 per any HSV infection, 95% confidence interval (CI) -0.001 to 0.001), or late-onset AD (odds ratio (OR) 0.999, 95% CI 0.998-1.001). Different genetic variant selections produced similar results. Any HSV infection does not appear to be a genetically valid target of intervention in late-onset AD, suggesting a rethink of the relevance of any HSV infection to late-onset AD.
Collapse
Affiliation(s)
- Man Ki Kwok
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Catherine Mary Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China; City University of New York Graduate School of Public Health and Health Policy, New York, United States.
| |
Collapse
|
50
|
Wang ZX, Wan Q, Xing A. HLA in Alzheimer's Disease: Genetic Association and Possible Pathogenic Roles. Neuromolecular Med 2020; 22:464-473. [PMID: 32894413 DOI: 10.1007/s12017-020-08612-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 08/29/2020] [Indexed: 11/25/2022]
Abstract
Alzheimer's disease (AD) is commonly considered as the most prominent dementing disorder globally and is characterized by the deposition of misfolded amyloid-β (Aβ) peptide and the aggregation of neurofibrillary tangles. Immunological disturbances and neuroinflammation, which result from abnormal immunological reactivations, are believed to be the primary stimulating factors triggering AD-like neuropathy. It has been suggested by multiple previous studies that a bunch of AD key influencing factors might be attributed to genes encoding human leukocyte antigen (HLA), whose variety is an essential part of human adaptive immunity. A wide range of activities involved in immune responses may be determined by HLA genes, including inflammation mediated by the immune response, T-cell transendothelial migration, infection, brain development and plasticity in AD pathogenesis, and so on. The goal of this article is to review the recent epidemiological findings of HLA (mainly HLA class I and II) associated with AD and investigate to what extent the genetic variations of HLA were clinically significant as pathogenic factors for AD. Depending on the degree of contribution of HLA in AD pathogenesis, targeted research towards HLA may propel AD therapeutic strategies into a new era of development.
Collapse
Affiliation(s)
- Zi-Xuan Wang
- Department of Geriatrics, the Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, 266071, Shandong Province, China.
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, No.308 Ningxia Road, Qingdao, 266071, China.
| | - Qi Wan
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, No.308 Ningxia Road, Qingdao, 266071, China.
- Department of Neurosurgery, Qingdao University, Qingdao, 266071, China.
- Department of Pathophysiology, Qingdao University, Qingdao, 266071, China.
| | - Ang Xing
- Department of Geriatrics, the Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, 266071, Shandong Province, China
| |
Collapse
|