1
|
Zhang ZB, Cheng YW, Xu L, Li JQ, Pan X, Zhu M, Chen XH, Sun AJ, Lin JR, Gao PJ. Activation of β3-adrenergic receptor by mirabegron prevents aortic dissection/aneurysm by promoting lymphangiogenesis in perivascular adipose tissue. Cardiovasc Res 2024; 120:2307-2319. [PMID: 39288197 DOI: 10.1093/cvr/cvae213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/06/2024] [Accepted: 07/23/2024] [Indexed: 09/19/2024] Open
Abstract
AIMS β3-Adrenergic receptor (β3-AR) is essential for cardiovascular homoeostasis through regulating adipose tissue function. Perivascular adipose tissue (PVAT) has been implicated in the pathogenesis of aortic dissection and aneurysm (AD/AA). Here, we aim to investigate β3-AR activation-mediated PVAT function in AD/AA. METHODS AND RESULTS Aortas from patients with thoracic aortic dissection (TAD) were collected to detect β3-AR expression in PVAT. ApoE-/- and β-aminopropionitrile monofumarate (BAPN)-treated C57BL/6 mice were induced with Angiotensin II (AngII) to simulate AD/AA and subsequently received either placebo or mirabegron, a β3-AR agonist. The results demonstrated an up-regulation of β3-AR in PVAT of TAD patients and AD/AA mice. Moreover, activation of β3-AR by mirabegron significantly prevented AngII-induced AD/AA formation in mice. RNA-sequencing analysis of adipocytes from PVAT revealed a notable increase of the lymphangiogenic factor, vascular endothelial growth factor C (VEGF-C), in mirabegron-treated mice. Consistently, enhanced lymphangiogenesis was found in PVAT with mirabegron treatment. Mechanistically, the number of CD4+/CD8+ T cells and CD11c+ cells was reduced in PVAT but increased in adjacent draining lymph nodes of mirabegron-treated mice, indicating the improved draining and clearance of inflammatory cells in PVAT by lymphangiogenesis. Importantly, adipocyte-specific VEGF-C knockdown by the adeno-associated virus system restrained lymphangiogenesis and exacerbated inflammatory cell infiltration in PVAT, which ultimately abolished the protection of mirabegron on AD/AA. In addition, the conditional medium derived from mirabegron-treated adipocytes activated the proliferation and tube formation of LECs, which was abrogated by the silencing of VEGF-C in adipocytes. CONCLUSION Our findings illustrated the therapeutic potential of β3-AR activation by mirabegron on AD/AA, which promoted lymphangiogenesis by increasing adipocyte-derived VEGF-C and, therefore, ameliorated PVAT inflammation.
Collapse
MESH Headings
- Animals
- Aortic Dissection/metabolism
- Aortic Dissection/pathology
- Aortic Dissection/prevention & control
- Aortic Dissection/chemically induced
- Aortic Dissection/physiopathology
- Aortic Dissection/genetics
- Lymphangiogenesis/drug effects
- Adrenergic beta-3 Receptor Agonists/pharmacology
- Mice, Inbred C57BL
- Receptors, Adrenergic, beta-3/metabolism
- Receptors, Adrenergic, beta-3/genetics
- Acetanilides/pharmacology
- Vascular Endothelial Growth Factor C/metabolism
- Vascular Endothelial Growth Factor C/genetics
- Humans
- Male
- Disease Models, Animal
- Adipose Tissue/metabolism
- Adipose Tissue/drug effects
- Adipose Tissue/pathology
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/prevention & control
- Aortic Aneurysm, Thoracic/physiopathology
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/chemically induced
- Aortic Aneurysm, Thoracic/drug therapy
- Mice, Knockout, ApoE
- Thiazoles/pharmacology
- Signal Transduction
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Aorta, Thoracic/drug effects
- Angiotensin II
- Adipocytes/metabolism
- Adipocytes/pathology
- Adipocytes/drug effects
- Cells, Cultured
- Mice
- Lymphatic Vessels/metabolism
- Lymphatic Vessels/drug effects
- Lymphatic Vessels/pathology
- Lymphatic Vessels/physiopathology
- Female
- Middle Aged
Collapse
Affiliation(s)
- Ze-Bei Zhang
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin, 2 Road, Shanghai 200025, China
| | - Yu-Wen Cheng
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin, 2 Road, Shanghai 200025, China
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lian Xu
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin, 2 Road, Shanghai 200025, China
| | - Jia-Qi Li
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin, 2 Road, Shanghai 200025, China
| | - Xin Pan
- Department of Gerontology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Min Zhu
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin, 2 Road, Shanghai 200025, China
| | - Xiao-Hui Chen
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin, 2 Road, Shanghai 200025, China
| | - Ai-Jun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Jing-Rong Lin
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin, 2 Road, Shanghai 200025, China
| | - Ping-Jin Gao
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin, 2 Road, Shanghai 200025, China
| |
Collapse
|
2
|
Mazuryk O, Gurgul I, Oszajca M, Polaczek J, Kieca K, Bieszczad-Żak E, Martyka T, Stochel G. Nitric Oxide Signaling and Sensing in Age-Related Diseases. Antioxidants (Basel) 2024; 13:1213. [PMID: 39456466 PMCID: PMC11504650 DOI: 10.3390/antiox13101213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/28/2024] Open
Abstract
Nitric oxide (NO) is a key signaling molecule involved in numerous physiological and pathological processes within the human body. This review specifically examines the involvement of NO in age-related diseases, focusing on the cardiovascular, nervous, and immune systems. The discussion delves into the mechanisms of NO signaling in these diseases, emphasizing the post-translational modifications of involved proteins, such as S-nitrosation and nitration. The review also covers the dual nature of NO, highlighting both its protective and harmful effects, determined by concentration, location, and timing. Additionally, potential therapies that modulate NO signaling, including the use of NO donors and nitric oxide synthases (NOSs) inhibitors in the treatment of cardiovascular, neurodegenerative, and oncological diseases, are analyzed. Particular attention is paid to the methods for the determination of NO and its derivatives in the context of illness diagnosis and monitoring. The review underscores the complexity and dual role of NO in maintaining cellular balance and suggests areas for future research in developing new therapeutic strategies.
Collapse
Affiliation(s)
- Olga Mazuryk
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
| | - Ilona Gurgul
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
| | - Maria Oszajca
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
| | - Justyna Polaczek
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
| | - Konrad Kieca
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
- Doctoral School of Science and Life Sciences, Jagiellonian University, 30-348 Krakow, Poland
| | - Ewelina Bieszczad-Żak
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
- Doctoral School of Science and Life Sciences, Jagiellonian University, 30-348 Krakow, Poland
| | - Tobiasz Martyka
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
- Doctoral School of Science and Life Sciences, Jagiellonian University, 30-348 Krakow, Poland
| | - Grażyna Stochel
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; (O.M.); (I.G.); (J.P.); (K.K.); (E.B.-Ż.); (T.M.)
| |
Collapse
|
3
|
Diaz A, Sang L, Garcia S, Wague A, Davies M, Youn A, Liu X, Feeley BT. Age-dependent decline of B3AR agonist-mediated activation of FAP UCP-1 expression in murine models of chronic rotator cuff repair. J Orthop Res 2024; 42:2307-2317. [PMID: 38796742 DOI: 10.1002/jor.25905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/28/2024]
Abstract
Amibegron, a β3-adrenergic receptor (B3AR) agonist, has recently been shown to provide therapeutic effects for chronic rotator cuff (RC) tears by inducing the expression of uncoupling protein 1 (UCP-1), a marker of brown fat, in fibroadipogenic progenitors (FAPs). However, it remains to be seen if these beneficial effects hold true with age and in older, more clinically relevant populations. This study seeks to understand the impacts of aging on the efficacy of amibegron to treat chronic RC tears. Young (4-month-old) and aged (33-month-old) C57BL/6 mice underwent a RC injury procedure with delayed repair (DR). Mice were equally randomized to receive amibegron or dimethyl sulfoxide (DMSO) treatments after repair. Functional ability was measured at baseline and 6-weeks after DR. Wet muscle weight and histology of injured and contralateral supraspinatus were also analyzed 6-weeks post-DR. For in vitro histology and real-time quantitative PCR experiments, FAPs were isolated from young and aged mice via fluorescence-activated cell sorting. Young and aged FAPs were treated with amibegron or DMSO either immediately after seeding (early exposure) or 8-days after seeding (late exposure). In vitro results showed that amibegron-mediated FAP UCP-1 expression decreases with age. In vivo data demonstrated that aged mice have a decreased responsiveness to amibegron and decreased propensity for intramuscular FAP UCP-1 expression. Further, delayed amibegron treatment with RC repair did not lead to improvements in muscle atrophy and functional outcomes. Our findings demonstrate that age and the timing of interventions play a critical role in FAP-targeted therapeutics for chronic injuries.
Collapse
Affiliation(s)
- Agustin Diaz
- School of Medicine, University of California, San Francisco, California, USA
| | - Luke Sang
- School of Medicine, University of California, San Francisco, California, USA
| | - Steven Garcia
- Department of Orthopedic Surgery, University of California, San Francisco, California, USA
| | - Aboubacar Wague
- School of Medicine, University of California, San Francisco, California, USA
| | - Michael Davies
- Department of Orthopedic Surgery, University of California, San Francisco, California, USA
| | - Alex Youn
- School of Medicine, University of California, San Francisco, California, USA
| | - Xuhui Liu
- Department of Orthopedic Surgery, University of California, San Francisco, California, USA
- San Francisco Veteran Affairs Health Care System, San Francisco, California, USA
| | - Brian T Feeley
- Department of Orthopedic Surgery, University of California, San Francisco, California, USA
- San Francisco Veteran Affairs Health Care System, San Francisco, California, USA
| |
Collapse
|
4
|
Fernández-Tocino M, Pun-Garcia A, Gómez M, Clemente-Moragón A, Oliver E, Villena-Gutierrez R, Trigo-Anca S, Díaz-Guerra A, Sanz-Rosa D, Prados B, Del Campo L, Andrés V, Fuster V, de la Pompa JL, Cádiz L, Ibañez B. β3-Adrenergic receptor overexpression in cardiomyocytes preconditions mitochondria to withstand ischemia-reperfusion injury. Basic Res Cardiol 2024; 119:773-794. [PMID: 39134663 PMCID: PMC11461581 DOI: 10.1007/s00395-024-01072-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 07/14/2024] [Accepted: 07/23/2024] [Indexed: 10/09/2024]
Abstract
β3-Adrenergic receptor (β3AR) agonists have been shown to protect against ischemia-reperfusion injury (IRI). Since β3ARs are present both in cardiomyocytes and in endothelial cells, the cellular compartment responsible for this protection has remained unknown. Using transgenic mice constitutively expressing the human β3AR (hβ3AR) in cardiomyocytes or in the endothelium on a genetic background of null endogenous β3AR expression, we show that only cardiomyocyte expression protects against IRI (45 min ischemia followed by reperfusion over 24 h). Infarct size was also limited after ischemia-reperfusion in mice with cardiomyocyte hβ3AR overexpression on top of endogenous β3AR expression. hβ3AR overexpression in these mice reduced IRI-induced cardiac fibrosis and improved long-term left ventricular systolic function. Cardiomyocyte-specific β3AR overexpression resulted in a baseline remodeling of the mitochondrial network, characterized by upregulated mitochondrial biogenesis and a downregulation of mitochondrial quality control (mitophagy), resulting in elevated numbers of small mitochondria with a depressed capacity for the generation of reactive oxygen species but improved capacity for ATP generation. These processes precondition cardiomyocyte mitochondria to be more resistant to IRI. Upon reperfusion, hearts with hβ3AR overexpression display a restoration in the mitochondrial quality control and a rapid activation of antioxidant responses. Strong protection against IRI was also observed in mice infected with an adeno-associated virus (AAV) encoding hβ3AR under a cardiomyocyte-specific promoter. These results confirm the translational potential of increased cardiomyocyte β3AR expression, achieved either naturally through exercise or artificially through gene therapy approaches, to precondition the cardiomyocyte mitochondrial network to withstand future insults.
Collapse
MESH Headings
- Animals
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Receptors, Adrenergic, beta-3/metabolism
- Receptors, Adrenergic, beta-3/genetics
- Mice, Transgenic
- Myocardial Reperfusion Injury/metabolism
- Myocardial Reperfusion Injury/pathology
- Myocardial Reperfusion Injury/prevention & control
- Myocardial Reperfusion Injury/genetics
- Mice
- Humans
- Mitochondria, Heart/metabolism
- Mitochondria, Heart/pathology
- Reactive Oxygen Species/metabolism
- Male
- Disease Models, Animal
Collapse
Affiliation(s)
- Miguel Fernández-Tocino
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
| | - Andrés Pun-Garcia
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
| | - Mónica Gómez
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Agustín Clemente-Moragón
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
| | - Eduardo Oliver
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain
| | - Rocío Villena-Gutierrez
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain
| | - Sofía Trigo-Anca
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain
| | - Anabel Díaz-Guerra
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
| | - David Sanz-Rosa
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
- Universidad Europea de Madrid (UEM), Madrid, Spain
| | - Belén Prados
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain
| | - Lara Del Campo
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
- Universidad Complutense Madrid (UCM), Madrid, Spain
| | - Vicente Andrés
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
| | - Valentín Fuster
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - José Luis de la Pompa
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
| | - Laura Cádiz
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain
| | - Borja Ibañez
- Clinical Research Department, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), C/ Melchor Fernandez Almagro 3, 28029, Madrid, Spain.
- CIBERCV, Madrid, Spain.
- IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain.
| |
Collapse
|
5
|
Underwood L, Jiang CS, Oh JY, Sato PY. Unheralded Adrenergic Receptor Signaling in Cellular Oxidative Stress and Death. CURRENT OPINION IN PHYSIOLOGY 2024; 40:100766. [PMID: 39070968 PMCID: PMC11271747 DOI: 10.1016/j.cophys.2024.100766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Catecholamines (CAs) bind and activate adrenergic receptors (ARs), thus exuding a key role in cardiac adaptations to global physiological queues. Prolonged exposure to high levels of CAs promotes deleterious effects on the cardiovascular system, leading to organ dysfunction and heart failure (HF). In addition to the prominent role of ARs in inotropic and chronotropic responses, recent studies have delved into elucidating mechanisms contributing to CA toxicity and cell death. Central to this process is understanding the involvement of α1AR and βAR in cardiac remodeling and mechanisms of cellular survival. Here, we highlight the complexity of AR signaling and the fundamental need for a better understanding of its contribution to oxidative stress and cell death. This crucial informational nexus remains a barrier to the development of new therapeutic strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Lilly Underwood
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL
| | - Chun-Sun Jiang
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL
| | - Joo-Yeun Oh
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL
| | - Priscila Y Sato
- Department of Medicine, Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
6
|
Wu HH, Du JM, Liu P, Meng FL, Li YY, Li WJ, Wang SX, Du NL, Zheng Y, Zhang L, Wang HY, Liu YR, Song CH, Ni X, Li Y, Su GH. LDHA contributes to nicotine induced cardiac fibrosis through autophagy flux impairment. Int Immunopharmacol 2024; 136:112338. [PMID: 38850787 DOI: 10.1016/j.intimp.2024.112338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/10/2024]
Abstract
Cardiac fibrosis is a typical feature of cardiac pathological remodeling, which is associated with adverse clinical outcomes and has no effective therapy. Nicotine is an important risk factor for cardiac fibrosis, yet its underlying molecular mechanism remains poorly understood. This study aimed to identify its potential molecular mechanism in nicotine-induced cardiac fibrosis. Our results showed nicotine exposure led to the proliferation and transformation of cardiac fibroblasts (CFs) into myofibroblasts (MFs) by impairing autophagy flux. Through the use of drug affinity responsive target stability (DARTS) assay, cellular thermal shift assay (CETSA), and surface plasmon resonance (SPR) technology, it was discovered that nicotine directly increased the stability and protein levels of lactate dehydrogenase A (LDHA) by binding to it. Nicotine treatment impaired autophagy flux by regulating the AMPK/mTOR signaling pathway, impeding the nuclear translocation of transcription factor EB (TFEB), and reducing the activity of cathepsin B (CTSB). In vivo, nicotine treatment exacerbated cardiac fibrosis induced in spontaneously hypertensive rats (SHR) and worsened cardiac function. Interestingly, the absence of LDHA reversed these effects both in vitro and in vivo. Our study identified LDHA as a novel nicotine-binding protein that plays a crucial role in mediating cardiac fibrosis by blocking autophagy flux. The findings suggest that LDHA could potentially serve as a promising target for the treatment of cardiac fibrosis.
Collapse
Affiliation(s)
- Hui-Hui Wu
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Jia-Min Du
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Peng Liu
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Fan-Liang Meng
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yue-Yan Li
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China
| | - Wen-Jing Li
- Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shuang-Xi Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Nai-Li Du
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yan Zheng
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Liang Zhang
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hui-Yun Wang
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yi-Ran Liu
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Chun-Hong Song
- Department of Laboratory Animal Center, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xi Ni
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Ying Li
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| | - Guo-Hai Su
- Department of Cardiology, Jinan Central Hospital, Shandong University, Jinan, China; Research Center for Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
7
|
van Veen FEE, Schotman M, 't Hoen LA, Blok BFM, Scheepe JR. Long-term beneficial effects of mirabegron in pediatric patients with therapy-refractory neurogenic lower urinary tract dysfunction. J Pediatr Urol 2023; 19:753.e1-753.e8. [PMID: 37658014 DOI: 10.1016/j.jpurol.2023.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 09/03/2023]
Abstract
INTRODUCTION Neurogenic lower urinary tract dysfunction (NLUTD) in children can cause renal failure and urinary incontinence if not treated sufficiently. Antimuscarinics (AM) and intradetrusor botulinum toxin injections (BoNT-A) with clean intermittent catheterization (CIC) are widely used treatment options for children with NLUTD. However, a considerable number will become refractory to these treatment options. This study aimed to evaluate the efficacy and long-term outcomes of mirabegron in children with NLUTD as an add-on and as a stand-alone treatment. MATERIAL AND METHODS Patients under 18 years of age with NLUTD who were refractory to AM and/or BoNT-A and were treated with mirabegron 50 mg were retrospectively studied. Mirabegron was either used as monotherapy or in addition to AM and/or BoNT-A. Video-urodynamic studies (VUDSs) were performed before and after treatment with mirabegron. Changes in video-urodynamic parameters, the need for other NLUTD therapy during follow-up, patient-reported side effects, and urinary incontinence were outcomes of interest. RESULTS A total of 34 patients with NLUTD were included. All patients were on CIC and the median age was 13.1 years (IQR 15.9-10.3). Median follow-up was 31.4 months (IQR 57.4-11.4). Bladder compliance improved by 89.9%, from 14.9 to 28.3 ml/cm H2O (p-value<0.001). Maximum cystometric capacity, end-filling detrusor pressure, volume at first detrusor overactivity, vesicoureteral reflux, and urinary incontinence significantly improved after mirabegron. The add-on therapy group showed more significant improvements in video-urodynamic outcomes compared to the monotherapy group. The median time of requiring other NLUTD therapy was 25.5 months (IQR 39.8-14.8). None of the included patients reported side effects. CONCLUSIONS Mirabegron is an effective treatment for children with therapy-refractory NLUTD with an average efficacy of 2 years after which additional therapy is required. Despite the retrospective character of this study, our results confirm the beneficial effect of mirabegron in children with therapy-refractory NLUTD, in particular when mirabegron is used as add-on therapy in those with low-compliance bladders.
Collapse
Affiliation(s)
- Felice E E van Veen
- Department of Urology and Pediatric Urology, Sophia Children's Hospital, Erasmus MC, Rotterdam, the Netherlands.
| | - Martje Schotman
- Department of Urology and Pediatric Urology, Sophia Children's Hospital, Erasmus MC, Rotterdam, the Netherlands
| | - Lisette A 't Hoen
- Department of Urology and Pediatric Urology, Sophia Children's Hospital, Erasmus MC, Rotterdam, the Netherlands
| | - Bertil F M Blok
- Department of Urology and Pediatric Urology, Sophia Children's Hospital, Erasmus MC, Rotterdam, the Netherlands
| | - Jeroen R Scheepe
- Department of Urology and Pediatric Urology, Sophia Children's Hospital, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
8
|
Marvanova A, Kasik P, Elsnicova B, Tibenska V, Galatik F, Hornikova D, Zvolska V, Vebr P, Vodicka P, Hejnova L, Matous P, Szeiff Bacova B, Sykora M, Novotny J, Neuzil J, Kolar F, Novakova O, Zurmanova JM. Continuous short-term acclimation to moderate cold elicits cardioprotection in rats, and alters β-adrenergic signaling and immune status. Sci Rep 2023; 13:18287. [PMID: 37880253 PMCID: PMC10600221 DOI: 10.1038/s41598-023-44205-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/04/2023] [Indexed: 10/27/2023] Open
Abstract
Moderate cold acclimation (MCA) is a non-invasive intervention mitigating effects of various pathological conditions including myocardial infarction. We aim to determine the shortest cardioprotective regimen of MCA and the response of β1/2/3-adrenoceptors (β-AR), its downstream signaling, and inflammatory status, which play a role in cell-survival during myocardial infarction. Adult male Wistar rats were acclimated (9 °C, 1-3-10 days). Infarct size, echocardiography, western blotting, ELISA, mitochondrial respirometry, receptor binding assay, and quantitative immunofluorescence microscopy were carried out on left ventricular myocardium and brown adipose tissue (BAT). MultiPlex analysis of cytokines and chemokines in serum was accomplished. We found that short-term MCA reduced myocardial infarction, improved resistance of mitochondria to Ca2+-overload, and downregulated β1-ARs. The β2-ARs/protein kinase B/Akt were attenuated while β3-ARs translocated on the T-tubular system suggesting its activation. Protein kinase G (PKG) translocated to sarcoplasmic reticulum and phosphorylation of AMPKThr172 increased after 10 days. Principal component analysis revealed a significant shift in cytokine/chemokine serum levels on day 10 of acclimation, which corresponds to maturation of BAT. In conclusion, short-term MCA increases heart resilience to ischemia without any negative side effects such as hypertension or hypertrophy. Cold-elicited cardioprotection is accompanied by β1/2-AR desensitization, activation of the β3-AR/PKG/AMPK pathways, and an immunomodulatory effect.
Collapse
Affiliation(s)
- Aneta Marvanova
- Faculty of Science, Department of Physiology, Charles University, Vinicna 7, 128 00, Prague 2, Czech Republic
| | - Petr Kasik
- Faculty of Science, Department of Physiology, Charles University, Vinicna 7, 128 00, Prague 2, Czech Republic
| | - Barbara Elsnicova
- Faculty of Science, Department of Physiology, Charles University, Vinicna 7, 128 00, Prague 2, Czech Republic
| | - Veronika Tibenska
- Faculty of Science, Department of Physiology, Charles University, Vinicna 7, 128 00, Prague 2, Czech Republic
| | - František Galatik
- Faculty of Science, Department of Physiology, Charles University, Vinicna 7, 128 00, Prague 2, Czech Republic
| | - Daniela Hornikova
- Faculty of Science, Department of Physiology, Charles University, Vinicna 7, 128 00, Prague 2, Czech Republic
| | - Veronika Zvolska
- Faculty of Science, Department of Physiology, Charles University, Vinicna 7, 128 00, Prague 2, Czech Republic
| | - Pavel Vebr
- Faculty of Science, Department of Physiology, Charles University, Vinicna 7, 128 00, Prague 2, Czech Republic
| | - Petr Vodicka
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
| | - Lucie Hejnova
- Faculty of Science, Department of Physiology, Charles University, Vinicna 7, 128 00, Prague 2, Czech Republic
| | - Petr Matous
- First Faculty of Medicine, Center for Advanced Preclinical Imaging (CAPI), Charles University, Prague, Czech Republic
| | - Barbara Szeiff Bacova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Matus Sykora
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Jiri Novotny
- Faculty of Science, Department of Physiology, Charles University, Vinicna 7, 128 00, Prague 2, Czech Republic
| | - Jiri Neuzil
- Faculty of Science, Department of Physiology, Charles University, Vinicna 7, 128 00, Prague 2, Czech Republic
- Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic
- School of Pharmacy and Medical Science, Griffith University, Southport, QLD, Australia
| | - Frantisek Kolar
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Olga Novakova
- Faculty of Science, Department of Physiology, Charles University, Vinicna 7, 128 00, Prague 2, Czech Republic
- Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jitka M Zurmanova
- Faculty of Science, Department of Physiology, Charles University, Vinicna 7, 128 00, Prague 2, Czech Republic.
| |
Collapse
|
9
|
Mollace R, Scarano F, Bava I, Carresi C, Maiuolo J, Tavernese A, Gliozzi M, Musolino V, Muscoli S, Palma E, Muscoli C, Salvemini D, Federici M, Macrì R, Mollace V. Modulation of the nitric oxide/cGMP pathway in cardiac contraction and relaxation: Potential role in heart failure treatment. Pharmacol Res 2023; 196:106931. [PMID: 37722519 DOI: 10.1016/j.phrs.2023.106931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/09/2023] [Accepted: 09/15/2023] [Indexed: 09/20/2023]
Abstract
Evidence exists that heart failure (HF) has an overall impact of 1-2 % in the global population being often associated with comorbidities that contribute to increased disease prevalence, hospitalization, and mortality. Recent advances in pharmacological approaches have significantly improved clinical outcomes for patients with vascular injury and HF. Nevertheless, there remains an unmet need to clarify the crucial role of nitric oxide/cyclic guanosine 3',5'-monophosphate (NO/cGMP) signalling in cardiac contraction and relaxation, to better identify the key mechanisms involved in the pathophysiology of myocardial dysfunction both with reduced (HFrEF) as well as preserved ejection fraction (HFpEF). Indeed, NO signalling plays a crucial role in cardiovascular homeostasis and its dysregulation induces a significant increase in oxidative and nitrosative stress, producing anatomical and physiological cardiac alterations that can lead to heart failure. The present review aims to examine the molecular mechanisms involved in the bioavailability of NO and its modulation of downstream pathways. In particular, we focus on the main therapeutic targets and emphasize the recent evidence of preclinical and clinical studies, describing the different emerging therapeutic strategies developed to counteract NO impaired signalling and cardiovascular disease (CVD) development.
Collapse
Affiliation(s)
- Rocco Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy; Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Federica Scarano
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Irene Bava
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Cristina Carresi
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Jessica Maiuolo
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Annamaria Tavernese
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Micaela Gliozzi
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Vincenzo Musolino
- Pharmaceutical Biology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Saverio Muscoli
- Division of Cardiology, Foundation PTV Polyclinic Tor Vergata, Rome 00133, Italy
| | - Ernesto Palma
- Veterinary Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Carolina Muscoli
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Massimo Federici
- Department of Systems Medicine, University of Rome Tor Vergata, Italy
| | - Roberta Macrì
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy.
| | - Vincenzo Mollace
- Pharmacology Laboratory, Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro 88100, Italy; Renato Dulbecco Institute, Lamezia Terme, Catanzaro 88046, Italy.
| |
Collapse
|
10
|
Majid A, Hassan FO, Hoque MM, Gbadegoye JO, Lebeche D. Bioactive Compounds and Cardiac Fibrosis: Current Insight and Future Prospect. J Cardiovasc Dev Dis 2023; 10:313. [PMID: 37504569 PMCID: PMC10380727 DOI: 10.3390/jcdd10070313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Cardiac fibrosis is a pathological condition characterized by excessive deposition of collagen and other extracellular matrix components in the heart. It is recognized as a major contributor to the development and progression of heart failure. Despite significant research efforts in characterizing and identifying key molecular mechanisms associated with myocardial fibrosis, effective treatment for this condition is still out of sight. In this regard, bioactive compounds have emerged as potential therapeutic antifibrotic agents due to their anti-inflammatory and antioxidant properties. These compounds exhibit the ability to modulate fibrogenic processes by inhibiting the production of extracellular matrix proteins involved in fibroblast to myofibroblast differentiation, or by promoting their breakdown. Extensive investigation of these bioactive compounds offers new possibilities for preventing or reducing cardiac fibrosis and its detrimental consequences. This comprehensive review aims to provide a thorough overview of the mechanisms underlying cardiac fibrosis, address the limitations of current treatment strategies, and specifically explore the potential of bioactive compounds as therapeutic interventions for the treatment and/or prevention of cardiac fibrosis.
Collapse
Affiliation(s)
- Abdul Majid
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Translational Research Building, Room 318H, 71 S. Manassas, Memphis, TN 38163, USA
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Fasilat Oluwakemi Hassan
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Translational Research Building, Room 318H, 71 S. Manassas, Memphis, TN 38163, USA
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Md Monirul Hoque
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Translational Research Building, Room 318H, 71 S. Manassas, Memphis, TN 38163, USA
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Joy Olaoluwa Gbadegoye
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Translational Research Building, Room 318H, 71 S. Manassas, Memphis, TN 38163, USA
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Djamel Lebeche
- Department of Physiology, College of Medicine, The University of Tennessee Health Science Center, Translational Research Building, Room 318H, 71 S. Manassas, Memphis, TN 38163, USA
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
11
|
Balligand JL, Michel LYM. Clinical pharmacology of β-3 adrenergic receptor agonists for cardiovascular diseases. Expert Rev Clin Pharmacol 2023; 16:1073-1084. [PMID: 37728503 DOI: 10.1080/17512433.2023.2193681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/17/2023] [Indexed: 09/21/2023]
Abstract
INTRODUCTION Few agonists of the third isotype of beta-adrenergic receptors, the β3-adrenoreceptor, are currently used clinically, and new agonists are under development for the treatment of overactive bladder disease. As the receptor is expressed in human cardiac and vascular tissues, it is important to understand their beneficial (or adverse) effect(s) on these targets. AREAS COVERED We discuss the most recent results of clinical trials testing the benefit and safety of β3-adrenoreceptor activation on cardiovascular outcomes in light of current knowledge on the receptor biology, genetic polymorphisms, and agonist pharmacology. EXPERT OPINION While evidence from small clinical trials is limited so far, the β3-agonist, mirabegron seems to be safe in patients at high cardiovascular risk but produces benefits on selected cardiovascular outcomes only at higher than standard doses. Activation of cardiovascular β3-adrenoreceptors deserves to be tested with more potent agonists, such as vibegron.
Collapse
Affiliation(s)
- Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics, Institut de Recherche Experimentale et Clinique (IREC) and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | - Lauriane Y M Michel
- Pole of Pharmacology and Therapeutics, Institut de Recherche Experimentale et Clinique (IREC) and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| |
Collapse
|
12
|
Claridge B, Drack A, Pinto AR, Greening DW. Defining cardiac fibrosis complexity and regulation towards therapeutic development. CLINICAL AND TRANSLATIONAL DISCOVERY 2023; 3. [DOI: 10.1002/ctd2.163] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2025]
Abstract
AbstractCardiac fibrosis is insidious, accelerating cardiovascular diseases, heart failure, and death. With a notable lack of effective therapies, advances in both understanding and targeted treatment of fibrosis are urgently needed. Remodelling of the extracellular matrix alters the biomechanical and biochemical cardiac structure and function, disrupting cell‐matrix interactions and exacerbating pathogenesis to ultimately impair cardiac function. Attempts at clinical fibrotic reduction have been fruitless, constrained by an understanding which severely underestimates its dynamic complexity and regulation. Integration of single‐cell sequencing and quantitative proteomics has provided new insights into cardiac fibrosis, including reparative or maladaptive processes, spatiotemporal changes and fibroblast heterogeneity. Further studies have revealed microenvironmental and intercellular signalling mechanisms (including soluble mediators and extracellular vesicles), and intracellular regulators including post‐translational/epigenetic modifications, RNA binding proteins, and non‐coding RNAs. This understanding of novel disease processes and molecular targets has supported the development of innovative therapeutic strategies. Indeed, targeted modulation of cellular heterogeneity, microenvironmental signalling, and intracellular regulation offer promising pre‐clinical therapeutic leads. Clinical development will require further advances in our mechanistic understanding of cardiac fibrosis and dissection of the molecular basis for fibrotic remodelling. This review provides an overview of the complexities of cardiac fibrosis, emerging regulatory mechanisms and therapeutic strategies, and highlights knowledge gaps and opportunities for further investigation towards therapeutic/clinical translation.
Collapse
Affiliation(s)
- Bethany Claridge
- Baker Heart and Diabetes Institute Melbourne Australia
- Baker Department of Cardiovascular Research Translation and Implementation La Trobe University Melbourne Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment La Trobe University Melbourne Australia
| | - Auriane Drack
- Baker Heart and Diabetes Institute Melbourne Australia
- Baker Department of Cardiovascular Research Translation and Implementation La Trobe University Melbourne Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment La Trobe University Melbourne Australia
| | - Alexander R. Pinto
- Baker Heart and Diabetes Institute Melbourne Australia
- Baker Department of Cardiovascular Research Translation and Implementation La Trobe University Melbourne Australia
| | - David W. Greening
- Baker Heart and Diabetes Institute Melbourne Australia
- Baker Department of Cardiovascular Research Translation and Implementation La Trobe University Melbourne Australia
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment La Trobe University Melbourne Australia
- Baker Department of Cardiometabolic Health University of Melbourne Melbourne Australia
- Central Clinical School Monash University Melbourne Australia
| |
Collapse
|
13
|
Karimi Galougahi K, Zhang Y, Kienzle V, Liu C, Quek L, Patel S, Lau E, Cordina R, Figtree GA, Celermajer DS. β3 adrenergic agonism: A novel pathway which improves right ventricular-pulmonary arterial hemodynamics in pulmonary arterial hypertension. Physiol Rep 2023; 11:e15549. [PMID: 36597221 PMCID: PMC9810839 DOI: 10.14814/phy2.15549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023] Open
Abstract
Efficacy of therapies that target the downstream nitric oxide (NO) pathway in pulmonary arterial hypertension (PAH) depends on the bioavailability of NO. Reduced NO level in PAH is secondary to "uncoupling" of endothelial nitric oxide synthase (eNOS). Stimulation of β3 adrenergic receptors (β3 ARs) may lead to the recoupling of NOS and therefore be beneficial in PAH. We aimed to examine the efficacy of β3 AR agonism as a novel pathway in experimental PAH. In hypoxia (5 weeks) and Sugen hypoxia (hypoxia for 5 weeks + SU5416 injection) models of PAH, we examined the effects of the selective β3 AR agonist CL316243. We measured echocardiographic indices and invasive right ventricular (RV)-pulmonary arterial (PA) hemodynamics and compared CL316243 with riociguat and sildenafil. We assessed treatment effects on RV-PA remodeling, oxidative stress, and eNOS glutathionylation, an oxidative modification that uncouples eNOS. Compared with normoxic mice, RV systolic pressure was increased in the control hypoxic mice (p < 0.0001) and Sugen hypoxic mice (p < 0.0001). CL316243 reduced RV systolic pressure, to a similar degree to riociguat and sildenafil, in both hypoxia (p < 0.0001) and Sugen hypoxia models (p < 0.03). CL316243 reversed pulmonary vascular remodeling, decreased RV afterload, improved RV-PA coupling efficiency and reduced RV stiffness, hypertrophy, and fibrosis. Although all treatments decreased oxidative stress, CL316243 significantly reduced eNOS glutathionylation. β3 AR stimulation improved RV hemodynamics and led to beneficial RV-PA remodeling in experimental models of PAH. β3 AR agonists may be effective therapies in PAH.
Collapse
Affiliation(s)
- Keyvan Karimi Galougahi
- Heart Research InstituteSydneyAustralia
- Royal Prince Alfred HospitalSydneyAustralia
- Sydney Medical SchoolFaculty of Medicine and HealthUniversity of SydneySydneyAustralia
| | | | | | - Chia‐Chi Liu
- Heart Research InstituteSydneyAustralia
- Sydney Medical SchoolFaculty of Medicine and HealthUniversity of SydneySydneyAustralia
- Kolling Institute for Medical ResearchSydneyAustralia
| | - Lake‐Ee Quek
- Charles Perkins CenterUniversity of SydneySydneyAustralia
| | - Sanjay Patel
- Heart Research InstituteSydneyAustralia
- Royal Prince Alfred HospitalSydneyAustralia
- Sydney Medical SchoolFaculty of Medicine and HealthUniversity of SydneySydneyAustralia
| | - Edmund Lau
- Sydney Medical SchoolFaculty of Medicine and HealthUniversity of SydneySydneyAustralia
- Department of Respiratory MedicineRoyal Prince Alfred HospitalSydneyAustralia
| | - Rachael L. Cordina
- Royal Prince Alfred HospitalSydneyAustralia
- Sydney Medical SchoolFaculty of Medicine and HealthUniversity of SydneySydneyAustralia
| | - Gemma A. Figtree
- Sydney Medical SchoolFaculty of Medicine and HealthUniversity of SydneySydneyAustralia
- Kolling Institute for Medical ResearchSydneyAustralia
- Department of CardiologyRoyal North Shore HospitalSydneyAustralia
| | - David S. Celermajer
- Heart Research InstituteSydneyAustralia
- Royal Prince Alfred HospitalSydneyAustralia
- Sydney Medical SchoolFaculty of Medicine and HealthUniversity of SydneySydneyAustralia
| |
Collapse
|
14
|
Pun-García A, Clemente-Moragón A, Villena-Gutierrez R, Gómez M, Sanz-Rosa D, Díaz-Guerra A, Prados B, Medina JP, Montó F, Ivorra MD, Márquez-López C, Cannavo A, Bernal JA, Koch WJ, Fuster V, de la Pompa JL, Oliver E, Ibanez B. Beta-3 adrenergic receptor overexpression reverses aortic stenosis-induced heart failure and restores balanced mitochondrial dynamics. Basic Res Cardiol 2022; 117:62. [PMID: 36445563 PMCID: PMC9708808 DOI: 10.1007/s00395-022-00966-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/30/2022]
Abstract
Aortic stenosis (AS) is associated with left ventricular (LV) hypertrophy and heart failure (HF). There is a lack of therapies able to prevent/revert AS-induced HF. Beta3 adrenergic receptor (β3AR) signaling is beneficial in several forms of HF. Here, we studied the potential beneficial effect of β3AR overexpression on AS-induced HF. Selective β3AR stimulation had a positive inotropic effect. Transgenic mice constitutively overexpressing human β3AR in the heart (c-hβ3tg) were protected from the development of HF in response to induced AS, and against cardiomyocyte mitochondrial dysfunction (fragmented mitochondria with remodeled cristae and metabolic reprogramming featuring altered substrate use). Similar beneficial effects were observed in wild-type mice inoculated with adeno-associated virus (AAV9) inducing cardiac-specific overexpression of human β3AR before AS induction. Moreover, AAV9-hβ3AR injection into wild-type mice at late disease stages, when cardiac hypertrophy and metabolic reprogramming are already advanced, reversed the HF phenotype and restored balanced mitochondrial dynamics, demonstrating the potential of gene-therapy-mediated β3AR overexpression in AS. Mice with cardiac specific ablation of Yme1l (cYKO), characterized by fragmented mitochondria, showed an increased mortality upon AS challenge. AAV9-hβ3AR injection in these mice before AS induction reverted the fragmented mitochondria phenotype and rescued them from death. In conclusion, our results step out that β3AR overexpression might have translational potential as a therapeutic strategy in AS-induced HF.
Collapse
Affiliation(s)
- Andrés Pun-García
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
| | - Agustín Clemente-Moragón
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
| | - Rocio Villena-Gutierrez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
| | - Monica Gómez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
| | - David Sanz-Rosa
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
- Universidad Europea de Madrid, Madrid, Spain
| | - Anabel Díaz-Guerra
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
| | - Belén Prados
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, CNIC, Madrid, Spain
| | - Juan Pablo Medina
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
- Cardiology Department, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain
| | - Fermí Montó
- Departamento de Farmacología, Facultad de Farmacia, ERI BIOTECMED, Universitat de València, Burjassot, Spain
| | - Maria Dolores Ivorra
- Departamento de Farmacología, Facultad de Farmacia, ERI BIOTECMED, Universitat de València, Burjassot, Spain
| | - Cristina Márquez-López
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
| | - Alessandro Cannavo
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
- Department of Translational Medical Sciences, Federico II University of Naples, Naples, Italy
| | - Juan A Bernal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
| | - Walter J Koch
- Center for Translational Medicine and Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Valentin Fuster
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - José Luis de la Pompa
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
- Intercellular Signalling in Cardiovascular Development and Disease Laboratory, CNIC, Madrid, Spain
| | - Eduardo Oliver
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain
- CIBERCV, Madrid, Spain
- Centro de Investigaciones Biológicas Margarita Salas (CIB), CSIC, Madrid, Spain
| | - Borja Ibanez
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), IIS-Fundación Jiménez Díaz University Hospital, Melchor Fernandez Almagro, 3, 28029, Madrid, Spain.
- CIBERCV, Madrid, Spain.
- Cardiology Department, IIS-Fundación Jiménez Díaz University Hospital, Madrid, Spain.
| |
Collapse
|
15
|
Targeting Myocardial Fibrosis—A Magic Pill in Cardiovascular Medicine? Pharmaceutics 2022; 14:pharmaceutics14081599. [PMID: 36015225 PMCID: PMC9414721 DOI: 10.3390/pharmaceutics14081599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Fibrosis, characterized by an excessive accumulation of extracellular matrix, has long been seen as an adaptive process that contributes to tissue healing and regeneration. More recently, however, cardiac fibrosis has been shown to be a central element in many cardiovascular diseases (CVDs), contributing to the alteration of cardiac electrical and mechanical functions in a wide range of clinical settings. This paper aims to provide a comprehensive review of cardiac fibrosis, with a focus on the main pathophysiological pathways involved in its onset and progression, its role in various cardiovascular conditions, and on the potential of currently available and emerging therapeutic strategies to counteract the development and/or progression of fibrosis in CVDs. We also emphasize a number of questions that remain to be answered, and we identify hotspots for future research.
Collapse
|
16
|
Cardiac Cx43 Signaling Is Enhanced and TGF-β1/SMAD2/3 Suppressed in Response to Cold Acclimation and Modulated by Thyroid Status in Hairless SHRM. Biomedicines 2022; 10:biomedicines10071707. [PMID: 35885012 PMCID: PMC9313296 DOI: 10.3390/biomedicines10071707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 12/04/2022] Open
Abstract
The hearts of spontaneously hypertensive rats (SHR) are prone to malignant arrhythmias, mainly due to disorders of electrical coupling protein Cx43 and the extracellular matrix. Cold acclimation may induce cardio-protection, but the underlying mechanisms remain to be elucidated. We aimed to explore whether the adaptation of 9-month-old hairless SHRM to cold impacts the fundamental cardiac pro-arrhythmia factors, as well as the response to the thyroid status. There were no significant differences in the registered biometric, redox and blood lipids parameters between hairless (SHRM) and wild type SHR. Prominent findings revealed that myocardial Cx43 and its variant phosphorylated at serine 368 were increased, while an abnormal cardiomyocyte Cx43 distribution was attenuated in hairless SHRM vs. wild type SHR males and females. Moreover, the level of β-catenin, ensuring mechanoelectrical coupling, was increased as well, while extracellular matrix collagen-1 and hydroxyproline were lower and the TGF-β1 and SMAD2/3 pathway was suppressed in hairless SHRM males compared to the wild type strain. Of interest, the extracellular matrix remodeling was less pronounced in females of both hypertensive strains. There were no apparent differences in response to the hypothyroid or hyperthyroid status between SHR strains concerning the examined markers. Our findings imply that hairless SHRM benefit from cold acclimation due to the attenuation of the hypertension-induced adverse downregulation of Cx43 and upregulation of extracellular matrix proteins.
Collapse
|
17
|
Zhang X, Zhang Y, Sun A, Ge J. The effects of nicotinamide adenine dinucleotide in cardiovascular diseases: Molecular mechanisms, roles and therapeutic potential. Genes Dis 2022; 9:959-972. [PMID: 35685463 PMCID: PMC9170600 DOI: 10.1016/j.gendis.2021.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/29/2021] [Accepted: 04/02/2021] [Indexed: 12/23/2022] Open
Abstract
Recently, cardiovascular diseases (CVDs) were identified as the leading cause of mortality, imposing a heavy burden on health care systems and the social economy. Nicotinamide adenine dinucleotide (NAD+), as a pivotal co-substrate for a range of different enzymes, is involved in many signal transduction pathways activated in CVDs. Emerging evidence has shown that NAD+ can exert remediating effects on CVDs by regulating metabolism, maintaining redox homeostasis and modulating the immune response. In fact, NAD+ might delay ageing through sirtuin and non-sirtuin pathways and thus contribute to interventions for age-related diseases such as CVDs. Considering that robust clinical studies of NAD+ are ongoing, we discuss current challenges and the future translational potential of NAD+ based on existing studies and our understanding. Despite some remaining gaps in its clinical application, NAD+ has been shown to have broad prospects and pan-effects, making it a suitable prophylactic drug for CVDs.
Collapse
Affiliation(s)
- Xiaokai Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, PR China
| | - Yang Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, PR China
| | - Aijun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, PR China.,Institute of Biomedical Sciences, Fudan University, Shanghai 200032, PR China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, PR China.,Institute of Biomedical Sciences, Fudan University, Shanghai 200032, PR China
| |
Collapse
|
18
|
Lin JR, Ding LLQ, Xu L, Huang J, Zhang ZB, Chen XH, Cheng YW, Ruan CC, Gao PJ. Brown Adipocyte ADRB3 Mediates Cardioprotection via Suppressing Exosomal iNOS. Circ Res 2022; 131:133-147. [PMID: 35652349 DOI: 10.1161/circresaha.121.320470] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The ADRB3 (β3-adrenergic receptors), which is predominantly expressed in brown adipose tissue (BAT), can activate BAT and improve metabolic health. Previous studies indicate that the endocrine function of BAT is associated with cardiac homeostasis and diseases. Here, we investigate the role of ADRB3 activation-mediated BAT function in cardiac remodeling. METHODS BKO (brown adipocyte-specific ADRB3 knockout) and littermate control mice were subjected to Ang II (angiotensin II) for 28 days. Exosomes from ADRB3 antagonist SR59230A (SR-exo) or agonist mirabegron (MR-exo) treated brown adipocytes were intravenously injected to Ang II-infused mice. RESULTS BKO markedly accelerated cardiac hypertrophy and fibrosis compared with control mice after Ang II infusion. In vitro, ADRB3 KO rather than control brown adipocytes aggravated expression of fibrotic genes in cardiac fibroblasts, and this difference was not detected after exosome inhibitor treatment. Consistently, BKO brown adipocyte-derived exosomes accelerated Ang II-induced cardiac fibroblast dysfunction compared with control exosomes. Furthermore, SR-exo significantly aggravated Ang II-induced cardiac remodeling, whereas MR-exo attenuated cardiac dysfunction. Mechanistically, ADRB3 KO or SR59230A treatment in brown adipocytes resulted an increase of iNOS (inducible nitric oxide synthase) in exosomes. Knockdown of iNOS in brown adipocytes reversed SR-exo-aggravated cardiac remodeling. CONCLUSIONS Our data illustrated a new endocrine pattern of BAT in regulating cardiac remodeling, suggesting that activation of ADRB3 in brown adipocytes offers cardiac protection through suppressing exosomal iNOS.
Collapse
Affiliation(s)
- Jing-Rong Lin
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.-R.L., L.-L.-Q.D., L.X., J.H., Z.-B.Z., X.-H.C., Y.-W.C., P.-J.G.)
| | - Li-Li-Qiang Ding
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.-R.L., L.-L.-Q.D., L.X., J.H., Z.-B.Z., X.-H.C., Y.-W.C., P.-J.G.)
| | - Lian Xu
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.-R.L., L.-L.-Q.D., L.X., J.H., Z.-B.Z., X.-H.C., Y.-W.C., P.-J.G.)
| | - Jun Huang
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.-R.L., L.-L.-Q.D., L.X., J.H., Z.-B.Z., X.-H.C., Y.-W.C., P.-J.G.)
| | - Ze-Bei Zhang
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.-R.L., L.-L.-Q.D., L.X., J.H., Z.-B.Z., X.-H.C., Y.-W.C., P.-J.G.)
| | - Xiao-Hui Chen
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.-R.L., L.-L.-Q.D., L.X., J.H., Z.-B.Z., X.-H.C., Y.-W.C., P.-J.G.)
| | - Yu-Wen Cheng
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.-R.L., L.-L.-Q.D., L.X., J.H., Z.-B.Z., X.-H.C., Y.-W.C., P.-J.G.)
| | - Cheng-Chao Ruan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Bioactive Small Molecules, Fudan University, China (C.-C.R.)
| | - Ping-Jin Gao
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (J.-R.L., L.-L.-Q.D., L.X., J.H., Z.-B.Z., X.-H.C., Y.-W.C., P.-J.G.)
| |
Collapse
|
19
|
The Endothelial Dysfunction Could Be a Cause of Heart Failure with Preserved Ejection Fraction Development in a Rat Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7377877. [PMID: 35633883 PMCID: PMC9132705 DOI: 10.1155/2022/7377877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022]
Abstract
50% of patients with heart failure have a preserved ejection fraction (HFpEF). Numerous studies have investigated the pathophysiological mechanisms of HFpEF and have shown that endothelial dysfunction plays an important role in HFpEF. Yet no studies answered whether endothelial dysfunction could be the cause or is the consequence of HFpEF. Recently, we have shown that the endothelial overexpression of human β3-adrenoreceptor (Tgβ3) in rats leads to the slow development of diastolic dysfunction over ageing. The aim of the study is to decipher the involvement of endothelial dysfunction in the HFpEF development. For that, we investigated endothelial and cardiac function in 15-, 30-, and 45-week-old wild-type (WT) and Tgβ3 rats. The aortic expression of •NO synthase (NOS) isoforms was evaluated by Western blot. Finally, electron paramagnetic resonance measurements were performed on aortas to evaluate •NO and O2•- production. Vascular reactivity was altered as early as 15 weeks of age in response to isoproterenol in Tgβ3 aortas and mesenteric arteries. NOS1 (neuronal NOS) expression was higher in the Tgβ3 aorta at 30 and 45 weeks of age (30 weeks: WT:
; Tgβ3:
; 45 weeks: WT:
; Tgβ3:
;
). Interestingly, the endothelial NOS (NOS3) monomer form is increased in Tgβ3 rats at 45 weeks of age (ratio NOS3 dimer/NOS3 monomer; WT:
; Tgβ3:
;
). Aortic •NO production was increased by NOS2 (inducible NOS) at 15 weeks of age in Tgβ3 rats (+52% vs. WT). Aortic O2•- production was increased in Tgβ3 rats at 30 and 45 weeks of age (+75% and+76%, respectively, vs. WT,
). We have shown that endothelial dysfunction and oxidative stress are present as early as 15 weeks of age and therefore conclude that endothelial dysfunction could be a cause of HFpEF development.
Collapse
|
20
|
Investigation of the Antiremodeling Effects of Losartan, Mirabegron and Their Combination on the Development of Doxorubicin-Induced Chronic Cardiotoxicity in a Rat Model. Int J Mol Sci 2022; 23:ijms23042201. [PMID: 35216317 PMCID: PMC8877618 DOI: 10.3390/ijms23042201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 12/16/2022] Open
Abstract
Despite the effectiveness of doxorubicin (DOXO) as a chemotherapeutic agent, dose-dependent development of chronic cardiotoxicity limits its application. The angiotensin-II receptor blocker losartan is commonly used to treat cardiac remodeling of various etiologies. The beta-3 adrenergic receptor agonist mirabegron was reported to improve chronic heart failure. Here we investigated the effects of losartan, mirabegron and their combination on the development of DOXO-induced chronic cardiotoxicity. Male Wistar rats were divided into five groups: (i) control; (ii) DOXO-only; (iii) losartan-treated DOXO; (iv) mirabegron-treated DOXO; (v) losartan plus mirabegron-treated DOXO groups. The treatments started 5 weeks after DOXO administration. At week 8, echocardiography was performed. At week 9, left ventricles were prepared for histology, qRT-PCR, and Western blot measurements. Losartan improved diastolic but not systolic dysfunction and ameliorated SERCA2a repression in our DOXO-induced cardiotoxicity model. The DOXO-induced overexpression of Il1 and Il6 was markedly decreased by losartan and mirabegron. Mirabegron and the combination treatment improved systolic and diastolic dysfunction and significantly decreased overexpression of Smad2 and Smad3 in our DOXO-induced cardiotoxicity model. Only mirabegron reduced DOXO-induced cardiac fibrosis significantly. Mirabegron and its combination with losartan seem to be promising therapeutic tools against DOXO-induced chronic cardiotoxicity.
Collapse
|
21
|
Zozina VI, Shikh EV, Kondratenko SN, Melnikov ES, Kukes VG. The Effect of Coenzyme Q10 as a Part of Standard Therapy on Plasma Concentrations of Ubiquinol, Ubiquinone, Total CoQ10 and its Redox State in Patients with Ischemic Heart Disease. Curr Drug Metab 2022; 23:991-999. [PMID: 36420876 DOI: 10.2174/1389200224666221123092256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/25/2022] [Accepted: 09/21/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Despite CoQ10 being a powerful antioxidant and its redox state that may characterize the body's antioxidant system, the latter remains unstudied in patients with cardiovascular diseases. OBJECTIVE This prospective case-control study aimed to investigate the concentrations of ubiquinol, ubiquinone, total CoQ10 and its redox state in patients with ischemic heart disease (IHD) and arterial hypertension (AH) during standard therapy and with the additional prescription of CoQ10. METHODS The study included 54 healthy individuals and 26 patients, who were divided into a control group receiving standard therapy and a test group receiving CoQ10 in addition to standard therapy. Quantitative determination of COQ10, ubiquinone and ubiquinol was carried out by HPLC-MS/MS. RESULTS It was found that the CoQ10 level in patients was significantly lower than in healthy individuals (on average -32Δ%). In the test group, after treatment, the concentrations of ubiquinol (+53 Δ%), ubiquinone (-28 Δ%), total CoQ10 (+27 Δ%) and redox state (+112 Δ%) were significantly different from the baseline, while in the control group no significant differences were noticed. In the test group after treatment, the levels of total CoQ10 (+25 Δ%), ubiquinol (+43 Δ%), and redox state (+86 Δ%) were statistically significantly higher than in the control group and total CoQ10 concentration did not significantly differ from that in healthy individuals (-12 Δ%). CONCLUSION The additional prescription of CoQ10 for patients with IHD significantly increases the level of total CoQ10, which leads to the increase of body antioxidant potential.
Collapse
Affiliation(s)
- Vladlena I Zozina
- Department of Clinical Pharmacology and Propaedeutics of Internal Diseases, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Evgenia Valerievna Shikh
- Department of Clinical Pharmacology and Propaedeutics of Internal Diseases, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Svetlana Nikolaevna Kondratenko
- Department of Clinical Pharmacology and Propaedeutics of Internal Diseases, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Evgeny Sergeyevich Melnikov
- A.P. Arzamastsev Department of Pharmaceutical and Toxicological Chemistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Vladimir Grigorievich Kukes
- Department of Clinical Pharmacology and Propaedeutics of Internal Diseases, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
22
|
Bernak-Oliveira Â, Guizoni DM, Chiavegatto S, Davel AP, Rossoni LV. The protective role of neuronal nitric oxide synthase in endothelial vasodilation in chronic β-adrenoceptor overstimulation. Life Sci 2021; 285:119939. [PMID: 34506836 DOI: 10.1016/j.lfs.2021.119939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/27/2021] [Accepted: 09/02/2021] [Indexed: 01/12/2023]
Abstract
AIMS Nitric oxide synthases (NOSs) are key enzymes regulating vascular function. Previously, we reported that β-adrenergic (β-AR) overstimulation, a common feature of cardiovascular diseases, did not impair endothelium-dependent vasodilation, although it resulted in endothelial NOS (eNOS) uncoupling and reduced NO bioavailability. In addition to NO, neuronal NOS (nNOS) produces H2O2, which contributes to vasodilation. However, there is limited information regarding vascular β-AR signaling and nNOS. In the present study, we assessed the possible role of nNOS-derived H2O2 and caveolins on endothelial vasodilation function following β-AR overstimulation. MAIN METHODS Male C57BL/6 wild-type and nNOS knockout mice (nNOS-/-) were treated with the β-AR agonist isoproterenol (ISO, 15 mg·kg-1·day-1, s.c.) or vehicle (VHE) for seven days. Relaxation responses of aortic rings were evaluated using wire myograph and H2O2 by Amplex Red. KEY FINDINGS Acetylcholine- or calcium ionophore A23187-induced endothelium-dependent relaxation was similar in aortic rings from VHE and ISO. However, this relaxation was significantly reduced in aortas from ISO compared to VHE when (1) caveolae were disrupted, (2) nNOS was pharmacologically inhibited or genetically suppressed and (3) H2O2 was scavenged. NOS-derived H2O2 production was higher in the aortas of ISO mice than in those of VHE mice. Aortas from ISO-treated mice showed increased expression of caveolin-1, nNOS and catalase, while caveolin-3 expression did not change. SIGNIFICANCE The results suggest a role of caveolin-1 and the nNOS/H2O2 vasodilatory pathway in endothelium-dependent relaxation following β-AR overstimulation and reinforce the protective role of nNOS in cardiovascular diseases associated with high adrenergic tone.
Collapse
Affiliation(s)
- Ângelo Bernak-Oliveira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences (ICB), University of Sao Paulo (USP), Brazil
| | - Daniele M Guizoni
- Department of Structural and Functional Biology, Institute of Biology (IB), University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil
| | - Silvana Chiavegatto
- Department of Pharmacology, Institute of Biomedical Sciences (ICB), University of Sao Paulo (USP), Brazil; Department of Psychiatry, Institute of Psychiatry (IPq), University of Sao Paulo Medical School (FMUSP), Sao Paulo, Brazil
| | - Ana P Davel
- Department of Structural and Functional Biology, Institute of Biology (IB), University of Campinas (UNICAMP), Campinas, Sao Paulo, Brazil.
| | - Luciana V Rossoni
- Department of Physiology and Biophysics, Institute of Biomedical Sciences (ICB), University of Sao Paulo (USP), Brazil.
| |
Collapse
|
23
|
Affiliation(s)
- Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC) and Cliniques Universitaires Saint-Luc, University of Louvain Medical School, Brussels, Belgium
| | - Lauriane Y M Michel
- Pole of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC) and Cliniques Universitaires Saint-Luc, University of Louvain Medical School, Brussels, Belgium
| |
Collapse
|
24
|
Du Y, Demillard LJ, Ren J. Catecholamine-induced cardiotoxicity: A critical element in the pathophysiology of stroke-induced heart injury. Life Sci 2021; 287:120106. [PMID: 34756930 DOI: 10.1016/j.lfs.2021.120106] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 01/20/2023]
Abstract
Cerebrovascular diseases such as ischemic stroke, brain hemorrhage, and subarachnoid hemorrhage provoke cardiac complications such as heart failure, neurogenic stress-related cardiomyopathy and Takotsubo cardiomyopathy. With regards to the pathophysiology of stroke-induced heart injury, several mechanisms have been postulated to contribute to this complex interaction between brain and heart, including damage from gut dysbiosis, immune and systematic inflammatory responses, microvesicle- and microRNA-mediated vascular injury and damage from a surge of catecholamines. All these cerebrovascular diseases may trigger pronounced catecholamine surges through diverse ways, including stimulation of hypothalamic-pituitary adrenal axis, dysregulation of autonomic system, and secretion of adrenocorticotropic hormone. Primary catecholamines involved in this pathophysiological response include norepinephrine (NE) and epinephrine. Both are important neurotransmitters that connect the nervous system with the heart, leading to cardiac damage via myocardial ischemia, calcium (Ca2+) overload, oxidative stress, and mitochondrial dysfunction. In this review, we will aim to summarize the molecular mechanisms behind catecholamine-induced cardiotoxicity including Ca2+ overload, oxidative stress, apoptosis, cardiac hypertrophy, interstitial fibrosis, and inflammation. In addition, we will focus on how synchronization among these pathways evokes cardiotoxicity.
Collapse
Affiliation(s)
- Yuxin Du
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China
| | - Laurie J Demillard
- School of Pharmacy, University of Wyoming College of Health Sciences, Laramie, WY 82071, USA
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
25
|
Chen X, Wan W, Guo Y, Ye T, Fo Y, Sun Y, Qu C, Yang B, Zhang C. Pinocembrin ameliorates post-infarct heart failure through activation of Nrf2/HO-1 signaling pathway. Mol Med 2021; 27:100. [PMID: 34488618 PMCID: PMC8422663 DOI: 10.1186/s10020-021-00363-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/24/2021] [Indexed: 12/31/2022] Open
Abstract
Background Oxidative stress is an important factor involved in the progress of heart failure. The current study was performed to investigate whether pinocembrin was able to ameliorate post-infarct heart failure (PIHF) and the underlying mechanisms. Methods Rats were carried out left anterior descending artery ligation to induce myocardial infarction and subsequently raised for 6 weeks to produce chronic heart failure. Then pinocembrin was administrated every other day for 2 weeks. The effects were evaluated by echocardiography, western blot, Masson’s staining, biochemical examinations, immunohistochemistry, and fluorescence. In vitro we also cultured H9c2 cardiomyocytes and cardiac myofibroblasts to further testify the mechanisms. Results We found that PIHF-induced deteriorations of cardiac functions were significantly ameliorated by administrating pinocembrin. In addition, the pinocembrin treatment also attenuated collagen deposition and augmented vascular endothelial growth factor receptor 2 in infarct border zone along with an attenuated apoptosis, which were related to an amelioration of oxidative stress evidenced by reduction of reactive oxygen species (ROS) in heart tissue and malondialdehyde (MDA) in serum, and increase of superoxide dismutase (SOD). This were accompanied by upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2)/ heme oxygenase-1 (HO-1) pathway. In vitro experiments we found that specific Nrf2 inhibitor significantly reversed the effects resulted from pinocembrin including antioxidant, anti-apoptosis, anti-fibrosis and neovascularization, which further indicated the amelioration of PIHF by pinocembrin was in a Nrf2/HO-1 pathway-dependent manner. Conclusion Pinocembrin ameliorated cardiac functions and remodeling resulted from PIHF by ROS scavenging and Nrf2/HO-1 pathway activation which further attenuated collagen fibers deposition and apoptosis, and facilitated angiogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s10020-021-00363-7.
Collapse
Affiliation(s)
- Xiuhuan Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Weiguo Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Yan Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Tianxin Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Yuhong Fo
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Yazhou Sun
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Chuan Qu
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China.,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China.,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China
| | - Bo Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China. .,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China. .,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China.
| | - Cui Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China. .,Cardiovascular Research Institute, Wuhan University, 238 Jiefang Road, Wuchang, Wuhan, 430060, Hubei, People's Republic of China. .,Hubei Key Laboratory of Cardiology, Wuhan, 430060, People's Republic of China.
| |
Collapse
|
26
|
Yu B, Chen H, Guo XQ, Hua H, Guan Y, Cui F, Tian YM, Zhang HX, Zhang XJ, Zhang Y, Ma HJ. CIHH protects the heart against left ventricular remodelling and myocardial fibrosis by balancing the renin-angiotensin system in SHR. Life Sci 2021; 278:119540. [PMID: 33930369 DOI: 10.1016/j.lfs.2021.119540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/08/2021] [Accepted: 04/20/2021] [Indexed: 01/19/2023]
Abstract
AIM The aim of our study was to clarify the cardioprotection of chronic intermittent hypobaric hypoxia (CIHH) and the underlying mechanism in spontaneously hypertensive rats (SHR). MAIN METHODS Adult male rats were divided into normal blood pressure Wistar-Kyoto rats (WKY) control (WKY-CON), WKY rats with CIHH treatment (WKY-CIHH), SHR control (SHR-CON) and SHR with CIHH treatment (SHR-CIHH) groups. SHR-CIHH and WKY-CIHH rats were subjected to hypobaric hypoxia simulating 4000-m altitude for 35 days, 5 h per day. Arterial blood pressure and cardiac function parameters, including ejection fraction, fractional shortening and left ventricular (LV) wall thickness, were evaluated. Cardiac pathomorphology and myocardial fibrosis were determined. The expression of angiotensin-converting enzyme (ACE), ACE2, Ang II, Ang1-7, AT1 receptor, Mas receptor, IL-6, TNF-α,IL-10, SOD and MDA were assayed in myocardium. KEY FINDINGS CIHH significantly decreased arterial blood pressure, alleviated LV hypertrophy, and improved cardiovascular function in SHR (P < 0.05-0.01). Also, CIHH protected SHR heart against morphological changes and fibrosis. In addition, CIHH significantly down-regulated the ACE/Ang II/AT1 receptor axis and up-regulated the ACE2/Ang1-7/Mas axis of renin-angiotensin system (RAS) in SHR (P < 0.05-0.01). CIHH significantly reduced IL-6, TNF-α, and MDA levels, but increased IL-10 and SOD in SHR myocardium (P < 0.05-0.01). SIGNIFICANCE The CIHH treatment protected the heart of SHR against LV remodelling and myocardial fibrosis, which might be carried out through a balance in the ACE/Ang II/AT1 axis and the ACE2/Ang1-7/Mas axis of the RAS to reduce inflammation, and inhibit oxidative stress.
Collapse
Affiliation(s)
- Bin Yu
- Department of Physiology, Hebei Medical University, 361, Zhongshan East Road, Shijiazhuang, Hebei Province 050017, China; Department of Emergency, The Fourth Hospital of Hebei Medical University, 12 Health Road, Shijiazhuang, Hebei Province 050011, China
| | - Hua Chen
- Department of Coronary Care Unit, The Hebei General Hospital, Shijiazhuang, No.348, HepingWest Road, Hebei Province 050051, China
| | - Xin-Qi Guo
- Department of Physiology, Hebei Medical University, 361, Zhongshan East Road, Shijiazhuang, Hebei Province 050017, China
| | - Hong Hua
- Department of Physiology, Hebei Medical University, 361, Zhongshan East Road, Shijiazhuang, Hebei Province 050017, China
| | - Yue Guan
- Department of Physiology, Hebei Medical University, 361, Zhongshan East Road, Shijiazhuang, Hebei Province 050017, China
| | - Fang Cui
- Department of Electron Microscope Laboratory Centre, Hebei Medical University, 361, Zhongshan East Road, Shijiazhuang 050017, China
| | - Yan-Ming Tian
- Department of Physiology, Hebei Medical University, 361, Zhongshan East Road, Shijiazhuang, Hebei Province 050017, China
| | - Hua-Xing Zhang
- Core Facilities and Centers, Hebei Medical University, 361, Zhongshan East Road, Shijiazhuang 050017, China
| | - Xiang-Jian Zhang
- Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang 050000, China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, 361, Zhongshan East Road, Shijiazhuang, Hebei Province 050017, China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang 050000, China.
| | - Hui-Jie Ma
- Department of Physiology, Hebei Medical University, 361, Zhongshan East Road, Shijiazhuang, Hebei Province 050017, China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang 050000, China.
| |
Collapse
|
27
|
Yang CM, Yang CC, Hsiao LD, Yu CY, Tseng HC, Hsu CK, Situmorang JH. Upregulation of COX-2 and PGE 2 Induced by TNF-α Mediated Through TNFR1/MitoROS/PKCα/P38 MAPK, JNK1/2/FoxO1 Cascade in Human Cardiac Fibroblasts. J Inflamm Res 2021; 14:2807-2824. [PMID: 34234507 PMCID: PMC8254141 DOI: 10.2147/jir.s313665] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/28/2021] [Indexed: 12/25/2022] Open
Abstract
Purpose Tumor necrosis factor-α (TNF-α) has been shown to exert as a pathogenic factor in cardiac fibrosis and heart failure which were associated with the up-regulation of cyclooxygenase (COX)-2/prostaglandin E2 (PGE2) axis. However, whether TNF-α-induced COX-2/PGE2 upregulation mediated through ROS-dependent cascade remains elusive in human cardiac fibroblasts (HCFs). This study aims to address the underlying mechanisms of TNF-α-induced COX-2/PGE2 expression. Methods Here, we used TNF receptor neutralizing antibody (TNFR nAb), pharmacologic inhibitors, and siRNAs to dissect the involvement of signaling components examined by Western blot and ELISA in TNF-α-mediated responses in HCFs. MitoSOX Red was used to measure mitoROS generation. Isolation of subcellular fractions was performed to determine membrane translocation of PKCα. Promoter luciferase assay and chromatin immunoprecipitation (ChIP) assay were used to determine the role of transcription factor. Results We found that TNF-α time- and concentration-dependently upregulated COX-2 protein and mRNA expression as well as PGE2 synthesis which was attenuated by TNFR1 nAb, the inhibitor of mitochondrial ROS scavenger (MitoTEMPO), protein kinase C [(PKC)α, Gö6976], p38 MAPK [p38 inhibitor VIII, (p38i VIII)], JNK1/2 (SP600125), or forkhead box protein O1 [(FoxO1), AS1842856], and transfection with their respective siRNAs in HCFs. TNF-α-stimulated PKCα phosphorylation was inhibited by TNFR1 nAb, MitoTEMPO, or Gö6976. TNF-α stimulated phosphorylation of p38 MAPK and JNK1/2 was attenuated by TNFR1 nAb, MitoTEMPO, Gö6976, and their inhibitors p38i VIII and SP600125. Moreover, TNF-α-triggered FoxO1 phosphorylation was abolished by AS1842856, TNFR1 nAb, and its upstream inhibitors MitoTEMPO, Gö6976, p38i VIII, and SP600125. Phosphorylation of FoxO1 could enhance its interaction with the COX-2 promoter element revealed by ChIP assay, which was attenuated by AS1842856. Conclusion Our results suggested that TNF-α-induced COX-2/PGE2 upregulation is mediated through TNFR1-dependent MitoROS/PKCα/p38 MAPK and JNK1/2 cascade to activate FoxO1 binding with the COX-2 promoter in HCFs.
Collapse
Affiliation(s)
- Chuen-Mao Yang
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, 40402, Taiwan.,Ph.D. Program for Biotech Pharmaceutical Industry, China Medical University, Taichung, 40402, Taiwan.,Department of Post-Baccalaureate Veterinary Medicine, College of Medical and Health Science, Asia University, Wufeng, Taichung, 41354, Taiwan
| | - Chien-Chung Yang
- Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital at Tao-Yuan, Kwei-San, Tao-Yuan, 33302, Taiwan.,School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, 33302, Taiwan
| | - Li-Der Hsiao
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Chia-Ying Yu
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Hui-Ching Tseng
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Chih-Kai Hsu
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Jiro Hasegawa Situmorang
- Department of Pharmacology, College of Medicine, China Medical University, Taichung, 40402, Taiwan
| |
Collapse
|
28
|
Montiel V, Bella R, Michel LYM, Esfahani H, De Mulder D, Robinson EL, Deglasse JP, Tiburcy M, Chow PH, Jonas JC, Gilon P, Steinhorn B, Michel T, Beauloye C, Bertrand L, Farah C, Dei Zotti F, Debaix H, Bouzin C, Brusa D, Horman S, Vanoverschelde JL, Bergmann O, Gilis D, Rooman M, Ghigo A, Geninatti-Crich S, Yool A, Zimmermann WH, Roderick HL, Devuyst O, Balligand JL. Inhibition of aquaporin-1 prevents myocardial remodeling by blocking the transmembrane transport of hydrogen peroxide. Sci Transl Med 2021; 12:12/564/eaay2176. [PMID: 33028705 DOI: 10.1126/scitranslmed.aay2176] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 12/24/2019] [Accepted: 08/31/2020] [Indexed: 12/31/2022]
Abstract
Pathological remodeling of the myocardium has long been known to involve oxidant signaling, but strategies using systemic antioxidants have generally failed to prevent it. We sought to identify key regulators of oxidant-mediated cardiac hypertrophy amenable to targeted pharmacological therapy. Specific isoforms of the aquaporin water channels have been implicated in oxidant sensing, but their role in heart muscle is unknown. RNA sequencing from human cardiac myocytes revealed that the archetypal AQP1 is a major isoform. AQP1 expression correlates with the severity of hypertrophic remodeling in patients with aortic stenosis. The AQP1 channel was detected at the plasma membrane of human and mouse cardiac myocytes from hypertrophic hearts, where it colocalized with NADPH oxidase-2 and caveolin-3. We show that hydrogen peroxide (H2O2), produced extracellularly, is necessary for the hypertrophic response of isolated cardiac myocytes and that AQP1 facilitates the transmembrane transport of H2O2 through its water pore, resulting in activation of oxidant-sensitive kinases in cardiac myocytes. Structural analysis of the amino acid residues lining the water pore of AQP1 supports its permeation by H2O2 Deletion of Aqp1 or selective blockade of the AQP1 intrasubunit pore inhibited H2O2 transport in mouse and human cells and rescued the myocyte hypertrophy in human induced pluripotent stem cell-derived engineered heart muscle. Treatment of mice with a clinically approved AQP1 inhibitor, Bacopaside, attenuated cardiac hypertrophy. We conclude that cardiac hypertrophy is mediated by the transmembrane transport of H2O2 by the water channel AQP1 and that inhibitors of AQP1 represent new possibilities for treating hypertrophic cardiomyopathies.
Collapse
Affiliation(s)
- Virginie Montiel
- Institute of Experimental and Clinical Research (IREC), Pharmacology and Therapeutics (FATH), Cliniques Universitaires St Luc and Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Ramona Bella
- Institute of Experimental and Clinical Research (IREC), Pharmacology and Therapeutics (FATH), Cliniques Universitaires St Luc and Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Lauriane Y M Michel
- Institute of Experimental and Clinical Research (IREC), Pharmacology and Therapeutics (FATH), Cliniques Universitaires St Luc and Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Hrag Esfahani
- Institute of Experimental and Clinical Research (IREC), Pharmacology and Therapeutics (FATH), Cliniques Universitaires St Luc and Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Delphine De Mulder
- Institute of Experimental and Clinical Research (IREC), Pharmacology and Therapeutics (FATH), Cliniques Universitaires St Luc and Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Emma L Robinson
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KULeuven, 3000 Leuven, Belgium
| | - Jean-Philippe Deglasse
- Institute of Experimental and Clinical Research (IREC), Endocrinology, Diabetes and Nutrition (EDIN), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Malte Tiburcy
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, 37075 Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Pak Hin Chow
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Jean-Christophe Jonas
- Institute of Experimental and Clinical Research (IREC), Endocrinology, Diabetes and Nutrition (EDIN), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Patrick Gilon
- Institute of Experimental and Clinical Research (IREC), Endocrinology, Diabetes and Nutrition (EDIN), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Benjamin Steinhorn
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 2115, USA
| | - Thomas Michel
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 2115, USA
| | - Christophe Beauloye
- Institute of Experimental and Clinical Research (IREC), Pole of Cardiovascular Research (CARD), Cliniques Universitaires St Luc and Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Luc Bertrand
- Institute of Experimental and Clinical Research (IREC), Pole of Cardiovascular Research (CARD), Cliniques Universitaires St Luc and Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Charlotte Farah
- Institute of Experimental and Clinical Research (IREC), Pharmacology and Therapeutics (FATH), Cliniques Universitaires St Luc and Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Flavia Dei Zotti
- Institute of Experimental and Clinical Research (IREC), Pharmacology and Therapeutics (FATH), Cliniques Universitaires St Luc and Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Huguette Debaix
- Institute of Experimental and Clinical Research (IREC), Nephrology (NEFR), Cliniques Universitaires St Luc and Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.,Institute of Physiology, University of Zürich, CH 8057 Zürich, Switzerland
| | - Caroline Bouzin
- 2IP-IREC Imaging Platform, Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Davide Brusa
- Flow Cytometry Platform, Institute of Experimental and Clinical Research (IREC), Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Sandrine Horman
- Institute of Experimental and Clinical Research (IREC), Pole of Cardiovascular Research (CARD), Cliniques Universitaires St Luc and Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Jean-Louis Vanoverschelde
- Institute of Experimental and Clinical Research (IREC), Pole of Cardiovascular Research (CARD), Cliniques Universitaires St Luc and Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium
| | - Olaf Bergmann
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, 01062 Dresden, Germany.,Department of Cell and Molecular Biology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Dimitri Gilis
- Computational Biology and Bioinformatics (3BIO-BioInfo), Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium
| | - Marianne Rooman
- Computational Biology and Bioinformatics (3BIO-BioInfo), Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium
| | - Alessandra Ghigo
- Molecular Biotechnology Center, Università di Torino, 10124 Torino, Italy
| | | | - Andrea Yool
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Wolfram H Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Göttingen, 37075 Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, 37075 Göttingen, Germany.,Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37075 Göttingen, Germany
| | - H Llewelyn Roderick
- Laboratory of Experimental Cardiology, Department of Cardiovascular Sciences, KULeuven, 3000 Leuven, Belgium
| | - Olivier Devuyst
- Institute of Experimental and Clinical Research (IREC), Nephrology (NEFR), Cliniques Universitaires St Luc and Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.,Institute of Physiology, University of Zürich, CH 8057 Zürich, Switzerland
| | - Jean-Luc Balligand
- Institute of Experimental and Clinical Research (IREC), Pharmacology and Therapeutics (FATH), Cliniques Universitaires St Luc and Université Catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
| |
Collapse
|
29
|
Lymperopoulos A, Cora N, Maning J, Brill AR, Sizova A. Signaling and function of cardiac autonomic nervous system receptors: Insights from the GPCR signalling universe. FEBS J 2021; 288:2645-2659. [PMID: 33599081 DOI: 10.1111/febs.15771] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 02/02/2021] [Accepted: 02/16/2021] [Indexed: 12/16/2022]
Affiliation(s)
- Anastasios Lymperopoulos
- Laboratory for the Study of Neurohormonal Control of the Circulation Department of Pharmaceutical Sciences Nova Southeastern University Fort Lauderdale FL USA
| | - Natalie Cora
- Laboratory for the Study of Neurohormonal Control of the Circulation Department of Pharmaceutical Sciences Nova Southeastern University Fort Lauderdale FL USA
| | - Jennifer Maning
- Laboratory for the Study of Neurohormonal Control of the Circulation Department of Pharmaceutical Sciences Nova Southeastern University Fort Lauderdale FL USA
| | - Ava R. Brill
- Laboratory for the Study of Neurohormonal Control of the Circulation Department of Pharmaceutical Sciences Nova Southeastern University Fort Lauderdale FL USA
| | - Anastasiya Sizova
- Laboratory for the Study of Neurohormonal Control of the Circulation Department of Pharmaceutical Sciences Nova Southeastern University Fort Lauderdale FL USA
| |
Collapse
|
30
|
Wen Z, Zhan J, Li H, Xu G, Ma S, Zhang J, Li Z, Ou C, Yang Z, Cai Y, Chen M. Dual-ligand supramolecular nanofibers inspired by the renin-angiotensin system for the targeting and synergistic therapy of myocardial infarction. Theranostics 2021; 11:3725-3741. [PMID: 33664858 PMCID: PMC7914367 DOI: 10.7150/thno.53644] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/07/2021] [Indexed: 02/07/2023] Open
Abstract
Rationale: The compensatory activation of the renin-angiotensin system (RAS) after myocardial infarction (MI) plays a crucial role in the pathogenesis of heart failure. Most existing studies on this subject focus on mono- or dual-therapy of blocking the RAS, which exhibit limited efficacy and often causes serious adverse reactions. Few studies have been conducted on targeted therapy based on the activated RAS post-MI. Thus, the development of multiple-functional nanomedicine with concurrent targeting ability and synergistic therapeutic effect against RAS may show great promise in improving cardiac function post-MI. Methods: We utilized a cooperative self-assembly strategy constructing supramolecular nanofibers— telmisartan-doped co-assembly nanofibers (TDCNfs) to counter-regulate RAS through targeted delivery and combined therapy. TDCNfs were prepared through serial steps of solvent exchange, heating incubation, gelation, centrifugation, and lyophilization, in which the telmisartan was doped in the self-assembly process of Ang1-7 to obtain the co-assembly nanofibers wherein they act as both therapeutic agents and target-guide agents. Results: TDCNfs exhibited the desired binding affinity to the two different receptors, AT1R and MasR. Through the dual ligand-receptor interactions to mediate the coincident downstream pathways, TDCNfs not only displayed favorably targeted properties to hypoxic cardiomyocytes, but also exerted synergistic therapeutic effects in apoptosis reduction, inflammatory response alleviation, and fibrosis inhibition in vitro and in vivo, significantly protecting cardiac function and mitigating post-MI adverse outcomes. Conclusion: A dual-ligand nanoplatform was successfully developed to achieve targeted and synergistic therapy against cardiac deterioration post-MI. We envision that the integration of multiple therapeutic agents through supramolecular self-assembly would offer new insight for the systematic and targeted treatment of cardiovascular diseases.
Collapse
|
31
|
Endothelial ERG alleviates cardiac fibrosis via blocking endothelin-1-dependent paracrine mechanism. Cell Biol Toxicol 2021; 37:873-890. [PMID: 33469864 DOI: 10.1007/s10565-021-09581-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 01/07/2021] [Indexed: 12/12/2022]
Abstract
Cardiac endothelium communicates closely with adjacent cardiac cells by multiple cytokines and plays critical roles in regulating fibroblasts proliferation, activation, and collagen synthesis during cardiac fibrosis. E26 transformation-specific (ETS)-related gene (ERG) belongs to the ETS transcriptional factor family and is required for endothelial cells (ECs) homeostasis and cardiac development. This study aims at investigating the potential role and molecular basis of ERG in fibrotic remodeling within the adult heart. We observed that ERG was abundant in murine hearts, especially in cardiac ECs, but decreased during cardiac fibrosis. ERG knockdown within murine hearts caused spontaneously cardiac fibrosis and dysfunction, accompanied by the activation of multiple Smad-dependent and independent pathways. However, the direct silence of ERG in cardiac fibroblasts did not affect the expression of fibrotic markers. Intriguingly, ERG knockdown in human umbilical vein endothelial cells (HUVECs) promoted the secretion of endothelin-1 (ET-1), which subsequently accelerated the proliferation, phenotypic transition, and collagen synthesis of cardiac fibroblasts in a paracrine manner. Suppressing ET-1 with either a neutralizing antibody or a receptor blocker abolished ERG knockdown-mediated deleterious effect in vivo and in vitro. This pro-fibrotic effect was also negated by RGD (Arg-Gly-Asp)-peptide magnetic nanoparticles target delivery of ET-1 small interfering RNA to ECs in mice. More importantly, we proved that endothelial ERG overexpression notably prevented pressure overload-induced cardiac fibrosis. Collectively, endothelial ERG alleviates cardiac fibrosis via blocking ET-1-dependent paracrine mechanism and it functions as a candidate for treating cardiac fibrosis. • ERG is abundant in murine hearts, especially in cardiac ECs, but decreased during fibrotic remodeling. • ERG knockdown causes spontaneously cardiac fibrosis and dysfunction. • ERG silence in HUVECs promotes the secretion of endothelin-1, which in turn activates cardiac fibroblasts in a paracrine manner. • Endothelial ERG overexpression prevents pressure overload-induced cardiac fibrosis.
Collapse
|
32
|
Kamiya M, Asai K, Maejima Y, Shirakabe A, Murai K, Noma S, Komiyama H, Sato N, Mizuno K, Shimizu W. β 3-Adrenergic Receptor Agonist Prevents Diastolic Dysfunction in an Angiotensin II-Induced Cardiomyopathy Mouse Model. J Pharmacol Exp Ther 2020; 376:473-481. [PMID: 33318077 DOI: 10.1124/jpet.120.000140] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 11/11/2020] [Indexed: 01/01/2023] Open
Abstract
β3-Adrenergic receptor expression is enhanced in the failing heart, but its functional effects are unclear. We tested the hypothesis that a β3-agonist improves left ventricular (LV) performance in heart failure. We examined the chronic effects of a β3-agonist in the angiotensin II (Ang II)-induced cardiomyopathy mouse model. C57BL/6J mice were treated with Ang II alone or Ang II + BRL 37344 (β3-agonist, BRL) for 4 weeks. Systolic blood pressure in conscious mice was significantly elevated in Ang II and Ang II + BRL mice compared with control mice. Heart rate was not different among the three groups. Systolic performance parameters that were measured by echocardiography and an LV catheter were similar among the groups. LV end-diastolic pressure and end-diastolic pressure-volume relationships were higher in Ang II mice compared with control mice. However, the increase in these parameters was prevented in Ang II + BRL mice, which suggested improvement in myocardial stiffness by BRL. Pathologic analysis showed that LV hypertrophy was induced in Ang II mice and failed to be prevented by BRL. However, increased collagen I/III synthesis, cardiac fibrosis, and lung congestion observed in Ang II mice were inhibited by BRL treatment. The cardioprotective benefits of BRL were associated with downregulation of transforming growth factor-β1 expression and phosphorylated-Smad2/3. Chronic infusion of a β3-agonist has a beneficial effect on LV diastolic function independent of blood pressure in the Ang II-induced cardiomyopathy mouse model. SIGNIFICANCE STATEMENT: Chronic infusion of a β3-adrenergic receptor agonist attenuates cardiac fibrosis and improves diastolic dysfunction independently of blood pressure in an angiotensin II-induced hypertensive mouse model. This drug might be an effective treatment of heart failure with preserved ejection fraction.
Collapse
Affiliation(s)
- Masataka Kamiya
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan (M.K., K.M., S.N., H.K., N.S., W.S.); Intensive Care Unit, Nippon Medical School Chiba-Hokusou Hospital, Chiba, Japan (K.A., A.S.); and Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan (Y.M.); Mitsukoshi Health and Welfare Foundation, Tokyo, Japan (K.M.)
| | - Kuniya Asai
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan (M.K., K.M., S.N., H.K., N.S., W.S.); Intensive Care Unit, Nippon Medical School Chiba-Hokusou Hospital, Chiba, Japan (K.A., A.S.); and Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan (Y.M.); Mitsukoshi Health and Welfare Foundation, Tokyo, Japan (K.M.)
| | - Yasuhiro Maejima
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan (M.K., K.M., S.N., H.K., N.S., W.S.); Intensive Care Unit, Nippon Medical School Chiba-Hokusou Hospital, Chiba, Japan (K.A., A.S.); and Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan (Y.M.); Mitsukoshi Health and Welfare Foundation, Tokyo, Japan (K.M.)
| | - Akihiro Shirakabe
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan (M.K., K.M., S.N., H.K., N.S., W.S.); Intensive Care Unit, Nippon Medical School Chiba-Hokusou Hospital, Chiba, Japan (K.A., A.S.); and Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan (Y.M.); Mitsukoshi Health and Welfare Foundation, Tokyo, Japan (K.M.)
| | - Koji Murai
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan (M.K., K.M., S.N., H.K., N.S., W.S.); Intensive Care Unit, Nippon Medical School Chiba-Hokusou Hospital, Chiba, Japan (K.A., A.S.); and Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan (Y.M.); Mitsukoshi Health and Welfare Foundation, Tokyo, Japan (K.M.)
| | - Satsuki Noma
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan (M.K., K.M., S.N., H.K., N.S., W.S.); Intensive Care Unit, Nippon Medical School Chiba-Hokusou Hospital, Chiba, Japan (K.A., A.S.); and Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan (Y.M.); Mitsukoshi Health and Welfare Foundation, Tokyo, Japan (K.M.)
| | - Hidenori Komiyama
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan (M.K., K.M., S.N., H.K., N.S., W.S.); Intensive Care Unit, Nippon Medical School Chiba-Hokusou Hospital, Chiba, Japan (K.A., A.S.); and Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan (Y.M.); Mitsukoshi Health and Welfare Foundation, Tokyo, Japan (K.M.)
| | - Naoki Sato
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan (M.K., K.M., S.N., H.K., N.S., W.S.); Intensive Care Unit, Nippon Medical School Chiba-Hokusou Hospital, Chiba, Japan (K.A., A.S.); and Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan (Y.M.); Mitsukoshi Health and Welfare Foundation, Tokyo, Japan (K.M.)
| | - Kyoichi Mizuno
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan (M.K., K.M., S.N., H.K., N.S., W.S.); Intensive Care Unit, Nippon Medical School Chiba-Hokusou Hospital, Chiba, Japan (K.A., A.S.); and Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan (Y.M.); Mitsukoshi Health and Welfare Foundation, Tokyo, Japan (K.M.)
| | - Wataru Shimizu
- Department of Cardiovascular Medicine, Nippon Medical School, Tokyo, Japan (M.K., K.M., S.N., H.K., N.S., W.S.); Intensive Care Unit, Nippon Medical School Chiba-Hokusou Hospital, Chiba, Japan (K.A., A.S.); and Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan (Y.M.); Mitsukoshi Health and Welfare Foundation, Tokyo, Japan (K.M.)
| |
Collapse
|
33
|
Michel LYM, Farah C, Balligand JL. The Beta3 Adrenergic Receptor in Healthy and Pathological Cardiovascular Tissues. Cells 2020; 9:cells9122584. [PMID: 33276630 PMCID: PMC7761574 DOI: 10.3390/cells9122584] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/27/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022] Open
Abstract
The third isotype of beta-adrenoreceptors (β3-AR) has recently come (back) into focus after the observation of its expression in white and beige human adipocytes and its implication in metabolic regulation. This coincides with the recent development and marketing of agonists at the human receptor with superior specificity. Twenty years ago, however, we and others described the expression of β3-AR in human myocardium and its regulation of contractility and cardiac remodeling. Subsequent work from many laboratories has since expanded the characterization of β3-AR involvement in many aspects of cardiovascular physio(patho)logy, justifying the present effort to update current paradigms under the light of the most recent evidence.
Collapse
Affiliation(s)
- Lauriane Y. M. Michel
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC), Université Catholique de Louvain, B1.57.04, 57 Avenue Hippocrate, 1200 Brussels, Belgium; (L.Y.M.M.); (C.F.)
| | - Charlotte Farah
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC), Université Catholique de Louvain, B1.57.04, 57 Avenue Hippocrate, 1200 Brussels, Belgium; (L.Y.M.M.); (C.F.)
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics (FATH), Institut de Recherche Experimentale et Clinique (IREC), Université Catholique de Louvain, B1.57.04, 57 Avenue Hippocrate, 1200 Brussels, Belgium; (L.Y.M.M.); (C.F.)
- Department of Medicine, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, 10 Avenue Hippocrate, 1200 Brussels, Belgium
- Correspondence: ; Tel.: +32-27645262
| |
Collapse
|
34
|
Neurohormonal Modulation as a Therapeutic Target in Pulmonary Hypertension. Cells 2020; 9:cells9112521. [PMID: 33266371 PMCID: PMC7700466 DOI: 10.3390/cells9112521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022] Open
Abstract
The autonomic nervous system (ANS) and renin-angiotensin-aldosterone system (RAAS) are involved in many cardiovascular disorders, including pulmonary hypertension (PH). The current review focuses on the role of the ANS and RAAS activation in PH and updated evidence of potential therapies targeting both systems in this condition, particularly in Groups 1 and 2. State of the art knowledge in preclinical and clinical use of pharmacologic drugs (beta-blockers, beta-three adrenoceptor agonists, or renin-angiotensin-aldosterone signaling drugs) and invasive procedures, such as pulmonary artery denervation, is provided.
Collapse
|
35
|
Abstract
Myocardial fibrosis, the expansion of the cardiac interstitium through deposition of extracellular matrix proteins, is a common pathophysiologic companion of many different myocardial conditions. Fibrosis may reflect activation of reparative or maladaptive processes. Activated fibroblasts and myofibroblasts are the central cellular effectors in cardiac fibrosis, serving as the main source of matrix proteins. Immune cells, vascular cells and cardiomyocytes may also acquire a fibrogenic phenotype under conditions of stress, activating fibroblast populations. Fibrogenic growth factors (such as transforming growth factor-β and platelet-derived growth factors), cytokines [including tumour necrosis factor-α, interleukin (IL)-1, IL-6, IL-10, and IL-4], and neurohumoral pathways trigger fibrogenic signalling cascades through binding to surface receptors, and activation of downstream signalling cascades. In addition, matricellular macromolecules are deposited in the remodelling myocardium and regulate matrix assembly, while modulating signal transduction cascades and protease or growth factor activity. Cardiac fibroblasts can also sense mechanical stress through mechanosensitive receptors, ion channels and integrins, activating intracellular fibrogenic cascades that contribute to fibrosis in response to pressure overload. Although subpopulations of fibroblast-like cells may exert important protective actions in both reparative and interstitial/perivascular fibrosis, ultimately fibrotic changes perturb systolic and diastolic function, and may play an important role in the pathogenesis of arrhythmias. This review article discusses the molecular mechanisms involved in the pathogenesis of cardiac fibrosis in various myocardial diseases, including myocardial infarction, heart failure with reduced or preserved ejection fraction, genetic cardiomyopathies, and diabetic heart disease. Development of fibrosis-targeting therapies for patients with myocardial diseases will require not only understanding of the functional pluralism of cardiac fibroblasts and dissection of the molecular basis for fibrotic remodelling, but also appreciation of the pathophysiologic heterogeneity of fibrosis-associated myocardial disease.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- Department of Medicine (Cardiology), The Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, 1300 Morris Park Avenue Forchheimer G46B, Bronx, NY 10461, USA
| |
Collapse
|
36
|
Oxidative Stress in Cardiovascular Diseases. Antioxidants (Basel) 2020; 9:antiox9090864. [PMID: 32937950 PMCID: PMC7554855 DOI: 10.3390/antiox9090864] [Citation(s) in RCA: 270] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 02/07/2023] Open
Abstract
Reactive oxygen species (ROS) are subcellular messengers in signal transductions pathways with both beneficial and deleterious roles. ROS are generated as a by-product of mitochondrial respiration or metabolism or by specific enzymes such as superoxide dismutases, glutathione peroxidase, catalase, peroxiredoxins, and myeloperoxidases. Under physiological conditions, the low levels of ROS production are equivalent to their detoxification, playing a major role in cellular signaling and function. In pathological situations, particularly atherosclerosis or hypertension, the release of ROS exceeds endogenous antioxidant capacity, leading to cell death. At cardiovascular levels, oxidative stress is highly implicated in myocardial infarction, ischemia/reperfusion, or heart failure. Here, we will first detail the physiological role of low ROS production in the heart and the vessels. Indeed, ROS are able to regulate multiple cardiovascular functions, such as cell proliferation, migration, and death. Second, we will investigate the implication of oxidative stress in cardiovascular diseases. Then, we will focus on ROS produced by NAPDH oxidase or during endothelial or mitochondrial dysfunction. Given the importance of oxidative stress at the cardiovascular level, antioxidant therapies could be a real benefit. In the last part of this review, we will detail the new therapeutic strategies potentially involved in cardiovascular protection and currently under study.
Collapse
|
37
|
Perry RJ, Lyu K, Rabin-Court A, Dong J, Li X, Yang Y, Qing H, Wang A, Yang X, Shulman GI. Leptin mediates postprandial increases in body temperature through hypothalamus-adrenal medulla-adipose tissue crosstalk. J Clin Invest 2020; 130:2001-2016. [PMID: 32149734 PMCID: PMC7108915 DOI: 10.1172/jci134699] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 01/14/2020] [Indexed: 02/03/2023] Open
Abstract
Meal ingestion increases body temperature in multiple species, an effect that is blunted by obesity. However, the mechanisms responsible for these phenomena remain incompletely understood. Here we show that refeeding increases plasma leptin concentrations approximately 8-fold in 48-hour-fasted lean rats, and this normalization of plasma leptin concentrations stimulates adrenomedullary catecholamine secretion. Increased adrenal medulla-derived plasma catecholamines were necessary and sufficient to increase body temperature postprandially, a process that required both fatty acids generated from adipose tissue lipolysis and β-adrenergic activation of brown adipose tissue (BAT). Diet-induced obese rats, which remained relatively hyperleptinemic while fasting, did not exhibit fasting-induced reductions in temperature. To examine the impact of feeding-induced increases in body temperature on energy balance, we compared rats fed chronically by either 2 carbohydrate-rich boluses daily or a continuous isocaloric intragastric infusion. Bolus feeding increased body temperature and reduced weight gain compared with continuous feeding, an effect abrogated by treatment with atenolol. In summary, these data demonstrate that leptin stimulates a hypothalamus-adrenal medulla-BAT axis, which is necessary and sufficient to induce lipolysis and, as a result, increase body temperature after refeeding.
Collapse
Affiliation(s)
- Rachel J. Perry
- Departments of Internal Medicine
- Cellular & Molecular Physiology
| | - Kun Lyu
- Departments of Internal Medicine
- Cellular & Molecular Physiology
| | | | | | - Xiruo Li
- Departments of Internal Medicine
- Cellular & Molecular Physiology
| | | | - Hua Qing
- Departments of Internal Medicine
- Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Andrew Wang
- Departments of Internal Medicine
- Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Xiaoyong Yang
- Cellular & Molecular Physiology
- Comparative Medicine, and
| | | |
Collapse
|
38
|
Tibenska V, Benesova A, Vebr P, Liptakova A, Hejnová L, Elsnicová B, Drahota Z, Hornikova D, Galatík F, Kolar D, Vybiral S, Alánová P, Novotný J, Kolar F, Novakova O, Zurmanova JM. Gradual cold acclimation induces cardioprotection without affecting β-adrenergic receptor-mediated adenylyl cyclase signaling. J Appl Physiol (1985) 2020; 128:1023-1032. [DOI: 10.1152/japplphysiol.00511.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Novel strategies are needed that can stimulate endogenous signaling pathways to protect the heart from myocardial infarction. The present study tested the hypothesis that appropriate regimen of cold acclimation (CA) may provide a promising approach for improving myocardial resistance to ischemia/reperfusion (I/R) injury without negative side effects. We evaluated myocardial I/R injury, mitochondrial swelling, and β-adrenergic receptor (β-AR)-adenylyl cyclase-mediated signaling. Male Wistar rats were exposed to CA (8°C, 8 h/day for a week, followed by 4 wk at 8°C for 24 h/day), while the recovery group (CAR) was kept at 24°C for an additional 2 wk. The myocardial infarction induced by coronary occlusion for 20 min followed by 3-h reperfusion was reduced from 56% in controls to 30% and 23% after CA and CAR, respectively. In line, the rate of mitochondrial swelling at 200 μM Ca2+ was decreased in both groups. Acute administration of metoprolol decreased infarction in control group and did not affect the CA-elicited cardiprotection. Accordingly, neither β1-AR-Gsα-adenylyl cyclase signaling, stimulated with specific ligands, nor p-PKA/PKA ratios were affected after CA or CAR. Importantly, Western blot and immunofluorescence analyses revealed β2- and β3-AR protein enrichment in membranes in both experimental groups. We conclude that gradual cold acclimation results in a persisting increase of myocardial resistance to I/R injury without hypertension and hypertrophy. The cardioprotective phenotype is associated with unaltered adenylyl cyclase signaling and increased mitochondrial resistance to Ca2+-overload. The potential role of upregulated β2/β3-AR pathways remains to be elucidated. NEW & NOTEWORTHY We present a new model of mild gradual cold acclimation increasing tolerance to myocardial ischemia/reperfusion injury without hypertension and hypertrophy. Cardioprotective phenotype is accompanied by unaltered adenylyl cyclase signaling and increased mitochondrial resistance to Ca2+-overload. The potential role of upregulated β2/β3-adrenoreceptor activation is considered. These findings may stimulate the development of novel preventive and therapeutic strategies against myocardial ischemia/reperfusion injury.
Collapse
Affiliation(s)
- V. Tibenska
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - A. Benesova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - P. Vebr
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - A. Liptakova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - L. Hejnová
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - B. Elsnicová
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Z. Drahota
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - D. Hornikova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - F. Galatík
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - D. Kolar
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - S. Vybiral
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - P. Alánová
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - J. Novotný
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - F. Kolar
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - O. Novakova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - J. M. Zurmanova
- Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
39
|
Dubois-Deruy E, Gelinas R, Beauloye C, Esfahani H, Michel LYM, Dessy C, Bertrand L, Balligand JL. Beta 3 adrenoreceptors protect from hypertrophic remodelling through AMP-activated protein kinase and autophagy. ESC Heart Fail 2020; 7:920-932. [PMID: 32154661 PMCID: PMC7261558 DOI: 10.1002/ehf2.12648] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/07/2020] [Accepted: 02/04/2020] [Indexed: 12/31/2022] Open
Abstract
Aims The abundance of beta 3‐adrenergic receptors (β3‐ARs) is upregulated in diseased human myocardium. We previously showed that cardiac‐specific expression of β3‐AR inhibits the hypertrophic response to neurohormonal stimulation. Here, we further analysed signalling pathways involved in the anti‐hypertrophic effect of β3‐AR. Methods and results In vitro hypertrophic responses to phenylephrine (PE) were analysed in neonatal rat ventricular myocytes (NRVM) infected with a recombinant adenovirus expressing the human β3‐AR (AdVhβ3). We confirmed results in mice with cardiomyocyte‐specific moderate expression of human β3‐AR (β3‐TG) and wild‐type (WT) littermates submitted to thoracic transverse aortic constriction (TAC) for 9 weeks. We observed a colocalization of β3‐AR with the AMP‐activated protein kinase (AMPK) both in neonatal rat and in adult mouse cardiomyocytes. Treatment of NRVM with PE induced hypertrophy and a decrease in phosphorylation of Thr172‐AMPK (/2, P = 0.0487) and phosphorylation of Ser79‐acetyl‐CoA carboxylase (ACC) (/2.6, P = 0.0317), inducing an increase in phosphorylated Ser235/236 S6 protein (×2.5, P = 0.0367) known to be involved in protein synthesis. These effects were reproduced by TAC in WT mice but restored to basal levels in β3‐AR expressing cells/mice. siRNA targeting of AMPK partly abrogated the anti‐hypertrophic effect of β3‐AR in response to PE in NRVM. Concomitant with hypertrophy, autophagy was decreased by PE, as measured by microtubule‐associated protein 1 light chain 3 (LC3)‐II/LC3‐I ratio (/2.6, P = 0.0010) and p62 abundance (×3, P = 0.0016) in NRVM or by TAC in WT mice (LC3‐II/LC3‐I ratio: /5.4, P = 0.0159), but preserved in human β3‐AR expressing cells and mice, together with reduced hypertrophy. Conclusions Cardiac‐specific moderate expression of β3‐AR inhibits the hypertrophic response in part through AMPK activation followed by inhibition of protein synthesis and preservation of autophagy. Activation of the cardiac β3‐AR pathway may provide future therapeutic avenues for the modulation of hypertrophic remodelling.
Collapse
Affiliation(s)
- Emilie Dubois-Deruy
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology and Therapeutics (FATH), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, B1.57.04, 57 Avenue Hippocrate, Brussels, 1200, Belgium
| | - Roselle Gelinas
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Cardiovascular Pathology (CARD), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Christophe Beauloye
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Cardiovascular Pathology (CARD), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, Brussels, Belgium.,Division of Cardiology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Hrag Esfahani
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology and Therapeutics (FATH), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, B1.57.04, 57 Avenue Hippocrate, Brussels, 1200, Belgium
| | - Lauriane Y M Michel
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology and Therapeutics (FATH), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, B1.57.04, 57 Avenue Hippocrate, Brussels, 1200, Belgium
| | - Chantal Dessy
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology and Therapeutics (FATH), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, B1.57.04, 57 Avenue Hippocrate, Brussels, 1200, Belgium
| | - Luc Bertrand
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Cardiovascular Pathology (CARD), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Jean-Luc Balligand
- Institut de Recherche Expérimentale et Clinique (IREC), Pole of Pharmacology and Therapeutics (FATH), Université Catholique de Louvain (UCLouvain) and Cliniques Universitaires Saint-Luc, B1.57.04, 57 Avenue Hippocrate, Brussels, 1200, Belgium
| |
Collapse
|
40
|
Kawaguchi S, Okada M, Ijiri E, Koga D, Watanabe T, Hayashi K, Kashiwagi Y, Fujita S, Hasebe N. β 3-Adrenergic receptor blockade reduces mortality in endotoxin-induced heart failure by suppressing induced nitric oxide synthase and saving cardiac metabolism. Am J Physiol Heart Circ Physiol 2019; 318:H283-H294. [PMID: 31834837 DOI: 10.1152/ajpheart.00108.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The β3-adrenergic receptor (β3AR) is related to myocardial fatty acid metabolism and its expression has been implicated in heart failure. In this study, we investigated the role of β3AR in sepsis-related myocardial dysfunction using lipopolysaccharide (LPS)-induced endotoxemia as a model of cardiac dysfunction. We placed mice into three treatment groups and treated each with intraperitoneal injections of the β3AR agonist CL316243 (CL group), the β3AR antagonist SR59230A (SR group), or normal saline (NS group). Survival rates were significantly improved in the SR group compared with the other treatment groups. Echocardiography analyses revealed cardiac dysfunction within 6-12 h of LPS injections, but the outcome was significantly better for the SR group. Myocardial ATP was preserved in the SR group but was decreased in the CL-treated mice. Additionally, quantitative PCR analysis revealed that expression levels of genes associated with fatty acid oxidation and glucose metabolism were significantly higher in the SR group. Furthermore, the expression levels of mitochondrial membrane protein complexes were preserved in the SR group. Electron microscope studies showed significant accumulation of lipid droplets in the CL group. Moreover, inducible nitric oxide synthase (iNOS) protein expression and nitric oxide were significantly reduced in the SR group. The in vitro study demonstrated that β3AR has an independent iNOS pathway that does not go through the nuclear factor-κB pathway. These results suggest that blockading β3AR improves impaired energy metabolism in myocardial tissues by suppressing iNOS expression and recovers cardiac function in animals with endotoxin-induced heart failure.NEW & NOTEWORTHY Nitric oxide production through stimulation of β3-adrenergic receptor (β3AR) may improve cardiac function in cases of chronic heart failure. We demonstrated that the blockade of β3AR improved mortality and cardiac function in endotoxin-induced heart failure. We also determined that LPS-induced inducible nitric oxide synthase has a pathway that is independent of nuclear factor-κB, which worsened cardiac metabolism and mortality in the acute phase of sepsis. Treatment with the β3AR antagonist had a favorable effect. Thus, the blockade of β3AR could offer a novel treatment for sepsis-related heart failure.
Collapse
Affiliation(s)
- Satoshi Kawaguchi
- Department of Emergency Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Motoi Okada
- Department of Emergency Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Eriko Ijiri
- Department of Emergency Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Daisuke Koga
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Tsuyoshi Watanabe
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Kentaro Hayashi
- Department of Anesthesiology and Critical Care Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Yuta Kashiwagi
- Department of Anesthesiology and Critical Care Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Satoshi Fujita
- Department of Emergency Medicine, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| | - Naoyuki Hasebe
- Respiratory and Neurology Division, Department of Internal Medicine, Cardiovascular, Asahikawa Medical University, Asahikawa, Hokkaido, Japan
| |
Collapse
|
41
|
Pterostilbene Attenuates Fructose-Induced Myocardial Fibrosis by Inhibiting ROS-Driven Pitx2c/miR-15b Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1243215. [PMID: 31871537 PMCID: PMC6913258 DOI: 10.1155/2019/1243215] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/04/2019] [Indexed: 12/26/2022]
Abstract
Excessive fructose consumption induces oxidative stress and myocardial fibrosis. Antioxidant compound pterostilbene has cardioprotective effect in experimental animals. This study is aimed at investigating how fructose drove fibrotic responses via oxidative stress in cardiomyocytes and explored the attenuation mechanisms of pterostilbene. We observed fructose-induced myocardial hypertrophy and fibrosis with ROS overproduction in rats. Paired-like homeodomain 2 (Pitx2c) increase, microRNA-15b (miR-15b) low expression, and p53 phosphorylation (p-p53) upregulation, as well as activation of transforming growth factor-β1 (TGF-β1)/drosophila mothers against DPP homolog (Smads) signaling and connective tissue growth factor (CTGF) induction, were also detected in fructose-fed rat hearts and fructose-exposed rat myocardial cell line H9c2 cells. The results from p53 siRNA or TGF-β1 siRNA transfection showed that TGF-β1-induced upregulation of CTGF expression and p-p53 activated TGF-β1/Smads signaling in fructose-exposed H9c2 cells. Of note, Pitx2c negatively modulated miR-15b expression via binding to the upstream of the miR-15b genetic loci by chromatin immunoprecipitation and transfection analysis with pEX1-Pitx2c plasmid and Pitx2c siRNA, respectively. In H9c2 cells pretreated with ROS scavenger N-acetylcysteine, or transfected with miR-15b mimic and inhibitor, fructose-induced cardiac ROS overload could drive Pitx2c-mediated miR-15b low expression, then cause p-p53-activated TGF-β1/Smads signaling and CTGF induction in myocardial fibrosis. We also found that pterostilbene significantly improved myocardial hypertrophy and fibrosis in fructose-fed rats and fructose-exposed H9c2 cells. Pterostilbene reduced cardiac ROS to block Pitx2c-mediated miR-15b low expression and p-p53-dependent TGF-β1/Smads signaling activation and CTGF induction in high fructose-induced myocardial fibrosis. These results firstly demonstrated that the ROS-driven Pitx2c/miR-15b pathway was required for p-p53-dependent TGF-β1/Smads signaling activation in fructose-induced myocardial fibrosis. Pterostilbene protected against high fructose-induced myocardial fibrosis through the inhibition of Pitx2c/miR-15b pathway to suppress p-p53-activated TGF-β1/Smads signaling, warranting the consideration of Pitx2c/miR-15b pathway as a therapeutic target in myocardial fibrosis.
Collapse
|
42
|
Beta-3 adrenoceptors: A potential therapeutic target for heart disease. Eur J Pharmacol 2019; 858:172468. [DOI: 10.1016/j.ejphar.2019.172468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/12/2019] [Accepted: 06/16/2019] [Indexed: 12/21/2022]
|
43
|
van der Velden J, Tocchetti CG, Varricchi G, Bianco A, Sequeira V, Hilfiker-Kleiner D, Hamdani N, Leite-Moreira AF, Mayr M, Falcão-Pires I, Thum T, Dawson DK, Balligand JL, Heymans S. Metabolic changes in hypertrophic cardiomyopathies: scientific update from the Working Group of Myocardial Function of the European Society of Cardiology. Cardiovasc Res 2019; 114:1273-1280. [PMID: 29912308 PMCID: PMC6054261 DOI: 10.1093/cvr/cvy147] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 06/13/2018] [Indexed: 12/20/2022] Open
Abstract
Disturbed metabolism as a consequence of obesity and diabetes may cause cardiac diseases (recently highlighted in the cardiovascular research spotlight issue on metabolic cardiomyopathies).1 In turn, the metabolism of the heart may also be disturbed in genetic and acquired forms of hypertrophic cardiac disease. Herein, we provide an overview of recent insights on metabolic changes in genetic hypertrophic cardiomyopathy and discuss several therapies, which may be explored to target disturbed metabolism and prevent onset of cardiac hypertrophy. This article is part of the Mini Review Series from the Varenna 2017 meeting of the Working Group of Myocardial Function of the European Society of Cardiology.
Collapse
Affiliation(s)
- Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.,Netherlands Heart Institute, Utrecht, The Netherlands
| | - Carlo G Tocchetti
- Department of Translational Medical Sciences, Federico II University, Naples, NA, Italy
| | - Gilda Varricchi
- Department of Translational Medical Sciences, Federico II University, Naples, NA, Italy
| | - Anna Bianco
- Department of Translational Medical Sciences, Federico II University, Naples, NA, Italy.,Department of Cardiology, Maastricht University Medical Center & CARIM, Maastricht University, Maastricht, The Netherlands
| | - Vasco Sequeira
- Amsterdam UMC, Vrije Universiteit Amsterdam, Physiology, Amsterdam Cardiovascular Sciences, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Denise Hilfiker-Kleiner
- Molecular Cardiology, Department of Cardiology and Angiology, Medical School Hannover, Germany
| | - Nazha Hamdani
- Department of Systems Physiology, Ruhr University Bochum, Bochum, Germany
| | - Adelino F Leite-Moreira
- Department of Surgery and Physiology, Faculty of Medicine, Cardiovascular Research Centre, University of Porto, Porto, Portugal
| | - Manuel Mayr
- The James Black Centre & King's British Heart Foundation Centre, King's College, University of London, London, UK
| | - Ines Falcão-Pires
- Department of Surgery and Physiology, Faculty of Medicine, Cardiovascular Research Centre, University of Porto, Porto, Portugal
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Hannover, Germany.,National Heart and Lung Institute, Imperial College London, London, UK.,REBIRTH Excellence Cluster, Hannover Medical School, Hannover, Germany
| | - Dana K Dawson
- School of Medicine & Dentistry, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Jean-Luc Balligand
- Pole of Pharmacology and Therapeutics, Institut de Recherche Experimentale et Clinique (IREC), and Clinique Universitaire Saint-Luc, Université catholique de Louvain, Brussels, Belgium
| | - Stephane Heymans
- Netherlands Heart Institute, Utrecht, The Netherlands.,Department of Cardiology, Maastricht University Medical Center & CARIM, Maastricht University, Maastricht, The Netherlands.,Department of Cardiovascular Sciences, Leuven University, Leuven, Belgium
| |
Collapse
|
44
|
Depletion of β3-adrenergic receptor induces left ventricular diastolic dysfunction via potential regulation of energy metabolism and cardiac contraction. Gene 2019; 697:1-10. [PMID: 30790654 DOI: 10.1016/j.gene.2019.02.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 02/06/2019] [Indexed: 02/07/2023]
Abstract
Left ventricular diastolic dysfunction (LVDD) is a central perturbation in heart failure with preserved ejection fraction, and there are currently no effective remedies to improve LVDD in clinical practice. The β3-adrenergic receptor (ADRB3) was reported to play protective effects on inhibiting myocardial fibrosis in response to hemodynamic stress. However, the effects of ADRB3 on LVDD and its underlying mechanisms are still undefined. In the current study, the role of ADRB3 in LVDD was identified in ADRB3-knockout mice. Echocardiography parameters showed that depletion of ADRB3 had little effect on cardiac systolic function but obviously led to cardiac diastolic dysfunction in vivo. Proteomics (including the global proteome, phosphorylated and acetylated proteome) and bioinformatics analysis (including GO analysis, KEGG pathway analysis, GO-Tree network, Pathway-Act network, and protein-protein interaction network) were performed on cardiac specimens of ADRB3-KO mice and wild-type mice. The results showed that the cardiac energy metabolism (especially the citrate cycle), actin cytoskeleton organization, and cardiac muscle contraction (related to mitogen-activated protein kinase, toll-like receptor, and ErbB signalling pathway) were potential core mechanisms underlying ADRB3-KO-induced LVDD. In addition, the protein-protein interaction network indicated that the core proteins associated with ADRB3-KO-induced LVDD were FGG, ALDH1A1, FGA, APOC3, SLC4A1, SERPINF2, HP, CTNNB1, and TKT. In conclusion, the absence of ADRB3 leads to LVDD, which is potentially associated with the regulation of cardiac energy metabolism, actin cytoskeleton organization, and cardiac muscle contraction.
Collapse
|
45
|
What if? Mouse proteomics after gene inactivation. J Proteomics 2019; 199:102-122. [DOI: 10.1016/j.jprot.2019.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/09/2019] [Accepted: 03/10/2019] [Indexed: 12/17/2022]
|
46
|
Arioglu-Inan E, Kayki-Mutlu G, Michel MC. Cardiac β 3 -adrenoceptors-A role in human pathophysiology? Br J Pharmacol 2019; 176:2482-2495. [PMID: 30801686 DOI: 10.1111/bph.14635] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/11/2019] [Accepted: 01/29/2019] [Indexed: 01/06/2023] Open
Abstract
As β3 -adrenoceptors were first demonstrated to be expressed in adipose tissue they have received much attention for their metabolic effects in obesity and diabetes. After the existence of this subtype had been suggested to be present in the heart, studies focused on its role in cardiac function. While the presence and functional role of β3 -adrenoceptors in the heart has not uniformly been detected, there is a broad consensus that they become up-regulated in pathological conditions associated with increased sympathetic activity such as heart failure and diabetes. When detected, the β3 -adrenceptor has been demonstrated to mediate negative inotropic effects in an inhibitory G protein-dependent manner through the NO-cGMP-PKG signalling pathway. Whether these negative inotropic effects provide protection from the adverse effects induced by overstimulation of β1 /β2 -adrenoceptors or in themselves are potentially harmful is controversial, but ongoing clinical studies in patients with congestive heart failure are testing the hypothesis that β3 -adrenceptor agonism has a beneficial effect. LINKED ARTICLES: This article is part of a themed section on Adrenoceptors-New Roles for Old Players. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.14/issuetoc.
Collapse
Affiliation(s)
- Ebru Arioglu-Inan
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Gizem Kayki-Mutlu
- Department of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
47
|
Everything You Always Wanted to Know about β 3-AR * (* But Were Afraid to Ask). Cells 2019; 8:cells8040357. [PMID: 30995798 PMCID: PMC6523418 DOI: 10.3390/cells8040357] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/26/2019] [Accepted: 04/12/2019] [Indexed: 12/22/2022] Open
Abstract
The beta-3 adrenergic receptor (β3-AR) is by far the least studied isotype of the beta-adrenergic sub-family. Despite its study being long hampered by the lack of suitable animal and cellular models and inter-species differences, a substantial body of literature on the subject has built up in the last three decades and the physiology of β3-AR is unraveling quickly. As will become evident in this work, β3-AR is emerging as an appealing target for novel pharmacological approaches in several clinical areas involving metabolic, cardiovascular, urinary, and ocular disease. In this review, we will discuss the most recent advances regarding β3-AR signaling and function and summarize how these findings translate, or may do so, into current clinical practice highlighting β3-AR’s great potential as a novel therapeutic target in a wide range of human conditions.
Collapse
|
48
|
Ni H, Li W, Zhuge Y, Xu S, Wang Y, Chen Y, Shen G, Wang F. Inhibition of circHIPK3 prevents angiotensin II-induced cardiac fibrosis by sponging miR-29b-3p. Int J Cardiol 2019; 292:188-196. [PMID: 30967276 DOI: 10.1016/j.ijcard.2019.04.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 02/28/2019] [Accepted: 04/01/2019] [Indexed: 02/09/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) are emerging as powerful regulators of cardiac development and disease. Nevertheless, detailed studies describing circRNA-mediated regulation of cardiac fibroblasts (CFs) biology and their role in cardiac fibrosis remain limited. METHODS PCR and Sanger sequencing were performed to identify the expression of circHIPK3 in CFs. Edu corporation assays, Transwell migration assays, and immunofluorescence staining assays were conducted to detect the function of circHIPK3 in CFs in vitro. Bioinformatics analysis, dual luciferase activity assays, RNA immunoprecipitation, and fluorescent in situ hybridization experiments were conducted to investigate the mechanism of circHIPK3-mediated cardiac fibrosis. Echocardiographic analysis, Sirius Red staining and immunofluorescence staining were performed to investigate the function of circHIPK3 in angiotensin II (Ang II) induced cardiac fibrosis in vivo. RESULTS circHIPK3 expression markedly increased in CFs and heart tissues after the treatment of Ang II. circHIPK3 silencing attenuates CFs proliferation, migration and the upregulation of a-SMA expression levels induced by Ang II in vitro. circHIPK3 acted as a miR-29b-3p sponge and overexpression of circHIPK3 effectively reverses miR-29b-3p-induced inhibition of CFs proliferation and migration and alters the expression levels of miR-29b-3p targeting genes (a-SMA, COL1A1, COL3A1) in vitro. Combination of circHIPK3 silencing and miR-29b-3p overexpression had a stronger effect on cardiac fibrosis suppression in vivo than did circHIPK3 silencing or miR-29b-3p overexpression alone. CONCLUSIONS Our data suggest that circHIPK3 serves as a miR-29b-3p sponge to regulate CF proliferation, migration and development of cardiac fibrosis, revealing a potential new target for the prevention of Ang II-induced cardiac fibrosis.
Collapse
Affiliation(s)
- Huaner Ni
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200800, People's Republic of China
| | - Weifeng Li
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200800, People's Republic of China
| | - Ying Zhuge
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200800, People's Republic of China
| | - Shuang Xu
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200800, People's Republic of China
| | - Yue Wang
- Department of Cardiology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200800, People's Republic of China
| | - Yang Chen
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200800, People's Republic of China
| | - Gu Shen
- Department of Cardiology, Shanghai General Hospital of Nanjing Medical University, Shanghai 200800, People's Republic of China
| | - Fang Wang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200800, People's Republic of China.
| |
Collapse
|
49
|
Inflammation and fibrosis in murine models of heart failure. Basic Res Cardiol 2019; 114:19. [PMID: 30887214 DOI: 10.1007/s00395-019-0722-5] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/12/2019] [Indexed: 02/07/2023]
Abstract
Heart failure is a consequence of various cardiovascular diseases and associated with poor prognosis. Despite progress in the treatment of heart failure in the past decades, prevalence and hospitalisation rates are still increasing. Heart failure is typically associated with cardiac remodelling. Here, inflammation and fibrosis are thought to play crucial roles. During cardiac inflammation, immune cells invade the cardiac tissue and modulate tissue-damaging responses. Cardiac fibrosis, however, is characterised by an increased amount and a disrupted composition of extracellular matrix proteins. As evidence exists that cardiac inflammation and fibrosis are potentially reversible in experimental and clinical set ups, they are interesting targets for innovative heart failure treatments. In this context, animal models are important as they mimic clinical conditions of heart failure patients. The advantages of mice in this respect are short generation times and genetic modifications. As numerous murine models of heart failure exist, the selection of a proper disease model for a distinct research question is demanding. To facilitate this selection, this review aims to provide an overview about the current understanding of the pathogenesis of cardiac inflammation and fibrosis in six frequently used murine models of heart failure. Hence, it compares the models of myocardial infarction with or without reperfusion, transverse aortic constriction, chronic subjection to angiotensin II or deoxycorticosterone acetate, and coxsackievirus B3-induced viral myocarditis in this context. It furthermore provides information about the clinical relevance and the limitations of each model, and, if applicable, about the recent advancements in their methodological proceedings.
Collapse
|
50
|
Ontoria-Oviedo I, Dorronsoro A, Sánchez R, Ciria M, Gómez-Ferrer M, Buigues M, Grueso E, Tejedor S, García-García F, González-King H, Garcia NA, Peiró-Molina E, Sepúlveda P. Extracellular Vesicles Secreted by Hypoxic AC10 Cardiomyocytes Modulate Fibroblast Cell Motility. Front Cardiovasc Med 2018; 5:152. [PMID: 30410918 PMCID: PMC6209632 DOI: 10.3389/fcvm.2018.00152] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/05/2018] [Indexed: 01/09/2023] Open
Abstract
Extracellular vesicles (EVs) are small membrane vesicles secreted by most cell types with important roles in cell-to-cell communication. To assess their relevance in the context of heart ischemia, EVs isolated from the AC10 ventricular cardiomyocyte cell line (CM-EVs), exposed to normoxia (Nx) or hypoxia (Hx), were incubated with fibroblasts (Fb) and endothelial cells (EC). CM-EVs were studied using electron microscopy, nanoparticle tracking analysis (NTA), western blotting and proteomic analysis. Results showed that EVs had a strong preference to be internalized by EC over fibroblasts, suggesting an active exosome-based communication mechanism between CM and EC in the heart. In Matrigel tube-formation assays, Hx CM-EVs were inferior to Nx CM-EVs in angiogenesis. By contrast, in a wound-healing assay, wound closure was faster in fibroblasts treated with Hx CM-EVs than with Nx CM-EVs, supporting a pro-fibrotic effect of Hx CM-EVs. Overall, these observations were consistent with the different protein cargoes detected by proteomic analysis under Nx and Hx conditions and the biological pathways identified. The paracrine crosstalk between CM-EVs, Fb, and EC in different physiological conditions could account for the contribution of CM-EVs to cardiac remodeling after an ischemic insult.
Collapse
Affiliation(s)
- Imelda Ontoria-Oviedo
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Associated Unit for Cardiovascular Repair, Instituto de Investigación Sanitaria La Fe-Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Akaitz Dorronsoro
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Associated Unit for Cardiovascular Repair, Instituto de Investigación Sanitaria La Fe-Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Rafael Sánchez
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Associated Unit for Cardiovascular Repair, Instituto de Investigación Sanitaria La Fe-Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Maria Ciria
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Associated Unit for Cardiovascular Repair, Instituto de Investigación Sanitaria La Fe-Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Marta Gómez-Ferrer
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Associated Unit for Cardiovascular Repair, Instituto de Investigación Sanitaria La Fe-Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Marc Buigues
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Elena Grueso
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Associated Unit for Cardiovascular Repair, Instituto de Investigación Sanitaria La Fe-Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Sandra Tejedor
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Associated Unit for Cardiovascular Repair, Instituto de Investigación Sanitaria La Fe-Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Francisco García-García
- Bioinformatics and Biostatistics Unit, Centro de Investigación Principe Felipe, Valencia, Spain
| | - Hernán González-King
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Associated Unit for Cardiovascular Repair, Instituto de Investigación Sanitaria La Fe-Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Nahuel A Garcia
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Esteban Peiró-Molina
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Pilar Sepúlveda
- Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación Sanitaria La Fe, Valencia, Spain.,Associated Unit for Cardiovascular Repair, Instituto de Investigación Sanitaria La Fe-Centro de Investigación Príncipe Felipe, Valencia, Spain
| |
Collapse
|