1
|
Gigli M, Stolfo D, Merlo M, Sinagra G, Taylor MRG, Mestroni L. Pathophysiology of dilated cardiomyopathy: from mechanisms to precision medicine. Nat Rev Cardiol 2025; 22:183-198. [PMID: 39394525 DOI: 10.1038/s41569-024-01074-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 10/13/2024]
Abstract
Dilated cardiomyopathy (DCM) is a complex disease with multiple causes and various pathogenic mechanisms. Despite improvements in the prognosis of patients with DCM in the past decade, this condition remains a leading cause of heart failure and premature death. Conventional treatment for DCM is based on the foundational therapies for heart failure with reduced ejection fraction. However, increasingly, attention is being directed towards individualized treatments and precision medicine. The ability to confirm genetic causality is gradually being complemented by an increased understanding of genotype-phenotype correlations. Non-genetic factors also influence the onset of DCM, and growing evidence links genetic background with concomitant non-genetic triggers or precipitating factors, increasing the extreme complexity of the pathophysiology of DCM. This Review covers the spectrum of pathophysiological mechanisms in DCM, from monogenic causes to the coexistence of genetic abnormalities and triggering environmental factors (the 'two-hit' hypothesis). The roles of common genetic variants in the general population and of gene modifiers in disease onset and progression are also discussed. Finally, areas for future research are highlighted, particularly novel therapies, such as small molecules, RNA and gene therapy, and measures for the prevention of arrhythmic death.
Collapse
Affiliation(s)
- Marta Gigli
- Cardiothoracovascular Department, Centre for Diagnosis and Treatment of Cardiomyopathies, European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI) and University of Trieste, Trieste, Italy
| | - Davide Stolfo
- Cardiothoracovascular Department, Centre for Diagnosis and Treatment of Cardiomyopathies, European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI) and University of Trieste, Trieste, Italy
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marco Merlo
- Cardiothoracovascular Department, Centre for Diagnosis and Treatment of Cardiomyopathies, European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI) and University of Trieste, Trieste, Italy
| | - Gianfranco Sinagra
- Cardiothoracovascular Department, Centre for Diagnosis and Treatment of Cardiomyopathies, European Reference Network for Rare, Low Prevalence and Complex Diseases of the Heart (ERN GUARD-Heart), Azienda Sanitaria Universitaria Giuliano-Isontina (ASUGI) and University of Trieste, Trieste, Italy
| | - Matthew R G Taylor
- Adult Medical Genetics Program, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Luisa Mestroni
- Molecular Genetics Program, Cardiovascular Institute, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
2
|
Chen L, Hao Y, Zhai T, Yang F, Chen S, Lin X, Li J. Single-cell Analysis Highlights Anti-apoptotic Subpopulation Promoting Malignant Progression and Predicting Prognosis in Bladder Cancer. Cancer Inform 2025; 24:11769351251323569. [PMID: 40018511 PMCID: PMC11866393 DOI: 10.1177/11769351251323569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 02/06/2025] [Indexed: 03/01/2025] Open
Abstract
Backgrounds Bladder cancer (BLCA) has a high degree of intratumor heterogeneity, which significantly affects patient prognosis. We performed single-cell analysis of BLCA tumors and organoids to elucidate the underlying mechanisms. Methods Single-cell RNA sequencing (scRNA-seq) data of BLCA samples were analyzed using Seurat, harmony, and infercnv for quality control, batch correction, and identification of malignant epithelial cells. Gene set enrichment analysis (GSEA), cell trajectory analysis, cell cycle analysis, and single-cell regulatory network inference and clustering (SCENIC) analysis explored the functional heterogeneity between malignant epithelial cell subpopulations. Cellchat was used to infer intercellular communication patterns. Co-expression analysis identified co-expression modules of the anti-apoptotic subpopulation. A prognostic model was constructed using hub genes and Cox regression, and nomogram analysis was performed. The tumor immune dysfunction and exclusion (TIDE) algorithm was applied to predict immunotherapy response. Results Organoids recapitulated the cellular and mutational landscape of the parent tumor. BLCA progression was characterized by mesenchymal features, epithelial-mesenchymal transition (EMT), immune microenvironment remodeling, and metabolic reprograming. An anti-apoptotic tumor subpopulation was identified, characterized by aberrant gene expression, transcriptional instability, and a high mutational burden. Key regulators of this subpopulation included CEBPB, EGR1, ELF3, and EZH2. This subpopulation interacted with immune and stromal cells through signaling pathways such as FGF, CXCL, and VEGF to promote tumor progression. Myofibroblast cancer-associated fibroblasts (mCAFs) and inflammatory cancer-associated fibroblasts (iCAFs) differentially contributed to metastasis. Protein-protein interaction (PPI) network analysis identified functional modules related to apoptosis, proliferation, and metabolism in the anti-apoptotic subpopulation. A 5-gene risk model was developed to predict patient prognosis, which was significantly associated with immune checkpoint gene expression, suggesting potential implications for immunotherapy. Conclusions We identified a distinct anti-apoptotic tumor subpopulation as a key driver of tumor progression with prognostic significance, laying the foundation for the development of new therapeutic strategies to improve patient outcomes.
Collapse
Affiliation(s)
- Linhuan Chen
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Yangyang Hao
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Tianzhang Zhai
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Fan Yang
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Shuqiu Chen
- Department of Urology, Southeast University Zhongda Hospital, Nanjing, China
| | - Xue Lin
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Jian Li
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| |
Collapse
|
3
|
Vicenzetto C, Giordani AS, Menghi C, Baritussio A, Scognamiglio F, Pontara E, Bison E, Peloso-Cattini MG, Marcolongo R, Caforio ALP. Cellular Immunology of Myocarditis: Lights and Shades-A Literature Review. Cells 2024; 13:2082. [PMID: 39768171 PMCID: PMC11674465 DOI: 10.3390/cells13242082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Myocarditis is an inflammatory disease of the myocardium with heterogeneous etiology, clinical presentation, and prognosis; when it is associated with myocardial dysfunction, this identifies the entity of inflammatory cardiomyopathy. In the last few decades, the relevance of the immune system in myocarditis onset and progression has become evident, thus having crucial clinical relevance in terms of treatment and prognostic stratification. In fact, the advances in cardiac immunology have led to a better characterization of the cellular subtypes involved in the pathogenesis of inflammatory cardiomyopathy, whether the etiology is infectious or autoimmune/immune-mediated. The difference in the clinical course between spontaneous recovery to acute, subacute, or chronic progression to end-stage heart failure may be explained not only by classical prognostic markers but also through immune-pathological mechanisms at a cellular level. Nevertheless, much still needs to be clarified in terms of immune characterization and molecular mechanisms especially in biopsy-proven myocarditis. The aims of this review are to (1) describe inflammatory cardiomyopathy etiology, especially immune-mediated/autoimmune forms, (2) analyze recent findings on the role of different immune cells subtypes in myocarditis, (3) illustrate the potential clinical relevance of such findings, and (4) highlight the need of further studies in pivotal areas of myocarditis cellular immunology.
Collapse
Affiliation(s)
- Cristina Vicenzetto
- Cardiology, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Cardioimmunology Laboratory, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Andrea Silvio Giordani
- Cardiology, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Caterina Menghi
- Cardiology, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Anna Baritussio
- Cardiology, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Federico Scognamiglio
- Cardiology, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Elena Pontara
- Cardiology, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Cardioimmunology Laboratory, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Elisa Bison
- Cardiology, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Cardioimmunology Laboratory, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Maria Grazia Peloso-Cattini
- Cardiology, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Cardioimmunology Laboratory, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Renzo Marcolongo
- Cardiology, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Alida Linda Patrizia Caforio
- Cardiology, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
- Cardioimmunology Laboratory, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Via Giustiniani 2, 35128 Padova, Italy
| |
Collapse
|
4
|
Sun P, Li Y, Li Y, Ji H, Mang G, Fu S, Jiang S, Choi S, Wang X, Tong Z, Wang C, Gao F, Wan P, Chen S, Li Y, Zhao P, Leng X, Zhang M, Tian J. Low-intensity pulsed ultrasound protects from inflammatory dilated cardiomyopathy through inciting extracellular vesicles. Cardiovasc Res 2024; 120:1177-1190. [PMID: 38696702 DOI: 10.1093/cvr/cvae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/30/2023] [Accepted: 02/14/2024] [Indexed: 05/04/2024] Open
Abstract
AIMS CD4+ T cells are activated during inflammatory dilated cardiomyopathy (iDCM) development to induce immunogenic responses that damage the myocardium. Low-intensity pulsed ultrasound (LIPUS), a novel physiotherapy for cardiovascular diseases, has recently been shown to modulate inflammatory responses. However, its efficacy in iDCM remains unknown. Here, we investigated whether LIPUS could improve the severity of iDCM by orchestrating immune responses and explored its therapeutic mechanisms. METHODS AND RESULTS In iDCM mice, LIPUS treatment reduced cardiac remodelling and dysfunction. Additionally, CD4+ T-cell inflammatory responses were suppressed. LIPUS increased Treg cells while decreasing Th17 cells. LIPUS mechanically stimulates endothelial cells, resulting in increased secretion of extracellular vesicles (EVs), which are taken up by CD4+ T cells and alter their differentiation and metabolic patterns. Moreover, EVs selectively loaded with microRNA (miR)-99a are responsible for the therapeutic effects of LIPUS. The hnRNPA2B1 translocation from the nucleus to the cytoplasm and binding to caveolin-1 and miR-99a confirmed the upstream mechanism of miR-99a transport. This complex is loaded into EVs and taken up by CD4+ T cells, which further suppress mTOR and TRIB2 expression to modulate cellular differentiation. CONCLUSION Our findings revealed that LIPUS uses an EVs-dependent molecular mechanism to protect against iDCM progression. Therefore, LIPUS is a promising new treatment option for iDCM.
Collapse
MESH Headings
- Animals
- Extracellular Vesicles/metabolism
- Extracellular Vesicles/transplantation
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/therapy
- Cardiomyopathy, Dilated/pathology
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/immunology
- Cardiomyopathy, Dilated/physiopathology
- Disease Models, Animal
- MicroRNAs/metabolism
- MicroRNAs/genetics
- Mice, Inbred C57BL
- Signal Transduction
- Ultrasonic Therapy
- Ventricular Function, Left
- Ultrasonic Waves
- Ventricular Remodeling
- Male
- Th17 Cells/immunology
- Th17 Cells/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Caveolin 1/metabolism
- Caveolin 1/genetics
- TOR Serine-Threonine Kinases/metabolism
- Cells, Cultured
- Humans
- Mice
Collapse
Affiliation(s)
- Ping Sun
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Road, Nan Gang Dist., Harbin, 150086, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
| | - Yi Li
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Road, Nan Gang Dist., Harbin, 150086, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
| | - Yifei Li
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Road, Nan Gang Dist., Harbin, 150086, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
| | - Huan Ji
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Road, Nan Gang Dist., Harbin, 150086, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
| | - Ge Mang
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
| | - Shuai Fu
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Road, Nan Gang Dist., Harbin, 150086, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
| | - Shuangquan Jiang
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Road, Nan Gang Dist., Harbin, 150086, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
| | - Stephen Choi
- SXULTRASONIC (Shenzhen) Ltd. Kerry Rehabilitation Medicine Research Institute, 126 Zhongkang Road, Shang Mei LinFutian, Shenzhen, 518000, Guangdong Province, China
| | - Xiaoqi Wang
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
| | - Zhonghua Tong
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
| | - Chao Wang
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Road, Nan Gang Dist., Harbin, 150086, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
| | - Fei Gao
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Road, Nan Gang Dist., Harbin, 150086, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
| | - Pingping Wan
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
| | - Shuang Chen
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Road, Nan Gang Dist., Harbin, 150086, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
| | - You Li
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Road, Nan Gang Dist., Harbin, 150086, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
| | - Peng Zhao
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Road, Nan Gang Dist., Harbin, 150086, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
| | - Xiaoping Leng
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Road, Nan Gang Dist., Harbin, 150086, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
| | - Maomao Zhang
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
| | - Jiawei Tian
- Department of Ultrasound, Second Affiliated Hospital of Harbin Medical University, No. 246 XueFu Road, Nan Gang Dist., Harbin, 150086, Heilongjiang Province, China
- Ultrasound Molecular Imaging Joint Laboratory of Heilongjiang Province, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, No. 246 XueFu Road, Nan Gang Dist, Harbin, 150086, Heilongjiang Province, China
| |
Collapse
|
5
|
Kumar V, Narisawa M, Cheng XW. Overview of multifunctional Tregs in cardiovascular disease: From insights into cellular functions to clinical implications. FASEB J 2024; 38:e23786. [PMID: 38979903 DOI: 10.1096/fj.202400839r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/21/2024] [Indexed: 07/10/2024]
Abstract
Regulatory T cells (Tregs) are crucial in regulating T-cell-mediated immune responses. Numerous studies have shown that dysfunction or decreased numbers of Tregs may be involved in inflammatory cardiovascular diseases (CVDs) such as atherosclerosis, hypertension, myocardial infarction, myocarditis, cardiomyopathy, valvular heart diseases, heart failure, and abdominal aortic aneurysm. Tregs can help to ameliorate CVDs by suppressing excessive inflammation through various mechanisms, including inhibition of T cells and B cells, inhibition of macrophage-induced inflammation, inhibition of dendritic cells and foam cell formation, and induction of anti-inflammatory macrophages. Enhancing or restoring the immunosuppressive activity of Tregs may thus serve as a fundamental immunotherapy to treat hypertension and CVDs. However, the precise molecular mechanisms underlying the Tregs-induced protection against hypertension and CVDs remain to be investigated. This review focuses on recent advances in our understanding of Tregs subsets and function in CVDs. In addition, we discuss promising strategies for using Tregs through various pharmacological approaches to treat hypertension and CVDs.
Collapse
Affiliation(s)
- Vipin Kumar
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, P.R. China
| | - Megumi Narisawa
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Xian Wu Cheng
- Department of Cardiology and Hypertension, Jilin Provincial Key Laboratory of Stress and Cardiovascular Disease, Yanbian University Hospital, Yanji, Jilin, P.R. China
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
6
|
Yan P, Liu Y, Zhang M, Liu N, Zheng Y, Zhang H, Zhou H, Sun M. Reconstitution of peripheral blood T cell receptor β immune repertoire in immune checkpoint inhibitors associated myocarditis. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2024; 10:35. [PMID: 38863010 PMCID: PMC11165862 DOI: 10.1186/s40959-024-00230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/15/2024] [Indexed: 06/13/2024]
Abstract
PURPOSE Immune checkpoint inhibitors (ICIs)-associated myocarditis was a rare yet severe complication observed in individuals undergoing immunotherapy. This study investigated the immune status and characteristics of patients diagnosed with ICIs- associated myocarditis. METHODS A total of seven patients diagnosed with ICIs-associated myocarditis were included in the study, while five tumor patients without myocarditis were recruited as reference controls. Additionally, 30 healthy individuals were recruited as blank controls. Biochemical indices, electrocardiogram, and echocardiography measurements were obtained both prior to and following the occurrence of myocarditis. High-throughput sequencing of T cell receptor (TCR) was employed to assess the diversity and distribution characteristics of TCR CDR3 length, as well as the diversity of variable (V) and joining (J) genes of T lymphocytes in peripheral blood. RESULTS In the seven patients with ICIs-associated myocarditis, Troponin T (TNT) levels exhibited a significant increase following myocarditis, while other parameters such as brain natriuretic peptide (BNP), QTc interval, and left ventricular ejection fraction (LVEF) did not show any significant differences. Through sequencing, it was observed that the diversity and uniformity of CDR3 in the ICIs-associated myocarditis patients were significantly diminished. Additionally, the distribution of CDR3 nucleotides deviated from normality, and variations in the utilization of V and J gene segments. CONCLUSION The reconstitution of the TCR immune repertoire may play a pivotal role in the recognition of antigens in patients with ICIs-associated myocarditis.
Collapse
Affiliation(s)
- Peng Yan
- Department of Oncology, Jinan Central Hospital, Shandong First Medical University, Jinan, China
| | - Yanan Liu
- Department of Oncology, Jinan Central Hospital, Shandong First Medical University, Jinan, China
| | - Mingyan Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ning Liu
- Department of Oncology, Jinan Central Hospital, Shandong First Medical University, Jinan, China
| | - Yawen Zheng
- Department of Oncology, Jinan Central Hospital, Shandong First Medical University, Jinan, China
| | - Haiqin Zhang
- Department of Oncology, Jinan Central Hospital, Shandong First Medical University, Jinan, China
| | - Hao Zhou
- Graduate School, Shandong First Medical University, Jinan, China
| | - Meili Sun
- Department of Oncology, Jinan Central Hospital, Shandong First Medical University, Jinan, China.
| |
Collapse
|
7
|
Lu Y, Chen D, Wang B, Chai W, Yan M, Chen Y, Zhan Y, Yang R, Zhou E, Dai S, Li Y, Dong R, Zheng B. Single-cell landscape of undifferentiated pleomorphic sarcoma. Oncogene 2024; 43:1353-1368. [PMID: 38459120 DOI: 10.1038/s41388-024-03001-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
Undifferentiated pleomorphic sarcoma (UPS) is a highly aggressive malignant soft tissue tumor with a poor prognosis; however, the identity and heterogeneity of tumor populations remain elusive. Here, eight major cell clusters were identified through the RNA sequencing of 79,569 individual cells of UPS. UPS originates from mesenchymal stem cells (MSCs) and features undifferentiated subclusters. UPS subclusters were predicted to exist in two bulk RNA datasets, and had a prognostic value in The Cancer Genome Atlas (TCGA) dataset. The functional heterogeneity of malignant UPS cells and the immune microenvironment were characterized. Additionally, the fused cells were innovatively detected by expressing both monocyte/macrophage markers and other subcluster-associated genes. Based on the ligand-receptor interaction analysis, cellular interactions with epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) were abundant. Furthermore, 73% of patients with UPS (48/66) showed positive EGFR expression, which was associated with a poor prognosis. EGFR blockade with cetuximab inhibited tumor growth in a patient-derived xenograft model. Our transcriptomic studies delineate the landscape of UPS intratumor heterogeneity and serve as a foundational resource for further discovery and therapeutic exploration.
Collapse
Affiliation(s)
- Yifei Lu
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China
| | - Deqian Chen
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China
| | - Bingnan Wang
- Department of Musculoskeletal Oncology, Shanghai Cancer Center, and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wenjun Chai
- Department of Animal Experimental Center, Fudan University Shanghai Cancer Center, Shanghai, 201102, China
| | - Mingxia Yan
- Department of Animal Experimental Center, Fudan University Shanghai Cancer Center, Shanghai, 201102, China
| | - Yong Chen
- Department of Musculoskeletal Oncology, Shanghai Cancer Center, and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yong Zhan
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China
| | - Ran Yang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China
| | - Enqing Zhou
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China
| | - Shuyang Dai
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China
| | - Yi Li
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China
| | - Rui Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, and Shanghai Key Laboratory of Birth Defects, Shanghai, 201102, China.
| | - Biqiang Zheng
- Department of Musculoskeletal Oncology, Shanghai Cancer Center, and Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
8
|
Xu S, Wu Z, Chen H. Construction and evaluation of immune-related diagnostic model in patients with heart failure caused by idiopathic dilated cardiomyopathy. BMC Cardiovasc Disord 2024; 24:92. [PMID: 38321374 PMCID: PMC10845749 DOI: 10.1186/s12872-023-03666-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/09/2023] [Indexed: 02/08/2024] Open
Abstract
OBJECTIVE The purpose of the study was to construct the potential diagnostic model of immune-related genes during the development of heart failure caused by idiopathic dilated cardiomyopathy. METHOD GSE5406 and GSE57338 were downloaded from the GEO website ( https://www.ncbi.nlm.nih.gov/geo/ ). CIBERSORT was used for the evaluation of immune infiltration in idiopathic dilated cardiomyopathy (DCM) of GSE5406. Differently expressed genes were calculated by the limma R package and visualized by the volcano plot. The immune-related genes were downloaded from Immport, TISIDB, and InnateDB. Then the immune-related differential genes (IRDGs) were acquired from the intersection. Protein-protein interaction network (PPI) and Cytoscape were used to visualize the hub genes. Three machine learning methods such as random forest, logical regression, and elastic network regression model were adopted to construct the prediction model. The diagnostic value was also validated in GSE57338. RESULTS Our study demonstrated the obvious different ratio of T cell CD4 memory activated, T cell regulatory Tregs, and neutrophils between DCM and control donors. As many as 2139 differential genes and 274 immune-related different genes were identified. These genes were mainly enriched in lipid and atherosclerosis, human cytomegalovirus infection, and cytokine-cytokine receptor interaction. At the same time, as many as fifteen hub genes were identified as the IRDGs (IFITM3, IFITM2, IFITM1, IFIT3, IFIT1, HLA-A, HLA-B, HLA-C, ADAR, STAT1, SAMHD1, RSAD2, MX1, ISG20, IRF2). Moreover, we also discovered that the elastic network and logistic regression models had a higher diagnostic value than that of random forest models based on these hub genes. CONCLUSION Our study demonstrated the pivotal role of immune function during the development of heart failure caused by DCM. This study may offer new opportunities for the detection and intervention of immune-related DCM.
Collapse
Affiliation(s)
- Sichi Xu
- Department of Cardiology, The Central Hospital of Wuhan, Tong Ji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, China
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tong Ji Medica College, Huazhong University of Science and Technology, Wuhan, 430014, China
| | - Zhaogui Wu
- Department of Cardiology, Xiangyang No.1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei, China
| | - Haihua Chen
- Emergency Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
- Hubei Clinical Research Center for Emergency and Resuscitation, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China.
| |
Collapse
|
9
|
Zhang J, Cheng L, Li Z, Li H, Liu Y, Zhan H, Xu H, Huang Y, Feng F, Li Y. Immune cells and related cytokines in dilated cardiomyopathy. Biomed Pharmacother 2024; 171:116159. [PMID: 38242041 DOI: 10.1016/j.biopha.2024.116159] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/23/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024] Open
Abstract
Dilated cardiomyopathy (DCM) is a non-ischemic cardiomyopathy involving one or more underlying etiologies. It is characterized by structural and functional dysfunction of the myocardium, potentially leading to fibrosis and ventricular remodeling, and an elevated risk of heart failure (HF). Although the pathogenesis of DCM remains unknown, compelling evidence suggests that DCM-triggered immune cells and inflammatory cascades play a crucial role in the occurrence and development of DCM. Various factors are linked to myocardial damage, inducing aberrant activation of the immune system and sustained inflammatory responses in DCM. The investigation of the immunopathogenesis of DCM also contributes to discovering new biomarkers and therapeutic targets. This review examines the roles of immune cells and related cytokines in DCM pathogenesis and explores immunotherapy strategies in DCM.
Collapse
Affiliation(s)
- Jingdi Zhang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Linlin Cheng
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhan Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haolong Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yongmei Liu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haoting Zhan
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Honglin Xu
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yuan Huang
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Futai Feng
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yongzhe Li
- Department of Clinical Laboratory, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| |
Collapse
|
10
|
Uccello G, Bonacchi G, Rossi VA, Montrasio G, Beltrami M. Myocarditis and Chronic Inflammatory Cardiomyopathy, from Acute Inflammation to Chronic Inflammatory Damage: An Update on Pathophysiology and Diagnosis. J Clin Med 2023; 13:150. [PMID: 38202158 PMCID: PMC10780032 DOI: 10.3390/jcm13010150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Acute myocarditis covers a wide spectrum of clinical presentations, from uncomplicated myocarditis to severe forms complicated by hemodynamic instability and ventricular arrhythmias; however, all these forms are characterized by acute myocardial inflammation. The term "chronic inflammatory cardiomyopathy" describes a persistent/chronic inflammatory condition with a clinical phenotype of dilated and/or hypokinetic cardiomyopathy associated with symptoms of heart failure and increased risk for arrhythmias. A continuum can be identified between these two conditions. The importance of early diagnosis has grown markedly in the contemporary era with various diagnostic tools available. While cardiac magnetic resonance (CMR) is valid for diagnosis and follow-up, endomyocardial biopsy (EMB) should be considered as a first-line diagnostic modality in all unexplained acute cardiomyopathies complicated by hemodynamic instability and ventricular arrhythmias, considering the local expertise. Genetic counseling should be recommended in those cases where a genotype-phenotype association is suspected, as this has significant implications for patients' and their family members' prognoses. Recognition of the pathophysiological pathway and clinical "red flags" and an early diagnosis may help us understand mechanisms of progression, tailor long-term preventive and therapeutic strategies for this complex disease, and ultimately improve clinical outcomes.
Collapse
Affiliation(s)
- Giuseppe Uccello
- Division of Cardiology, Alessandro Manzoni Hospital—ASST Lecco, 23900 Lecco, Italy;
| | - Giacomo Bonacchi
- Division of Cardiology, Tor Vergata University Hospital, 00133 Rome, Italy;
| | | | - Giulia Montrasio
- Inherited Cardiovascular Diseases Unit, Barts Heart Centre, St. Bartholomew’s Hospital, London EC1A 7BS, UK;
| | - Matteo Beltrami
- Cardiomyopathy Unit, Careggi University Hospital, 50134 Florence, Italy
- Arrhythmia and Electrophysiology Unit, Careggi University Hospital, 50134 Florence, Italy
| |
Collapse
|
11
|
Zhang Y, Zhou X, Chen S, Sun X, Zhou C. Immune mechanisms of group B coxsackievirus induced viral myocarditis. Virulence 2023; 14:2180951. [PMID: 36827455 PMCID: PMC9980623 DOI: 10.1080/21505594.2023.2180951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Abstract
Viral myocarditis is known to be a primary cause of dilated cardiomyopathy (DCM) that can lead to heart failure and sudden cardiac death and is invariably caused by myocardial viral infection following active inflammatory destruction of the myocardium. Although acute viral myocarditis frequently recovers on its own, current chronic myocarditis therapies are unsatisfactory, where the persistence of viral or immunological insults to the heart may play a role. Cellular and mouse experimental models that utilized the most prevalent Coxsackievirus group B type 3 (CVB3) virus infection causing myocarditis have illustrated the pathophysiology of viral myocarditis. In this review, immunological insights into the different stages of development of viral myocarditis were discussed, concentrating on the mechanisms of innate and adaptive immunity in the development of CVB3-induced myocarditis.
Collapse
Affiliation(s)
- Yue Zhang
- Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China,School of public health, Nantong University, Nantong, China
| | - Xiaobin Zhou
- Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Shuyi Chen
- Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Xinchen Sun
- Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Chenglin Zhou
- Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China,CONTACT Chenglin Zhou Clinical Medical Laboratory Center, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| |
Collapse
|
12
|
Xu H, Wang Z, Wang Y, Pan S, Zhao W, Chen M, Chen X, Tao T, Ma L, Ni Y, Li W. GSTM2 alleviates heart failure by inhibiting DNA damage in cardiomyocytes. Cell Biosci 2023; 13:220. [PMID: 38037116 PMCID: PMC10688053 DOI: 10.1186/s13578-023-01168-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Heart failure (HF) seriously threatens human health worldwide. However, the pathological mechanisms underlying HF are still not fully clear. RESULTS In this study, we performed proteomics and transcriptomics analyses on samples from human HF patients and healthy donors to obtain an overview of the detailed changes in protein and mRNA expression that occur during HF. We found substantial differences in protein expression changes between the atria and ventricles of myocardial tissues from patients with HF. Interestingly, the metabolic state of ventricular tissues was altered in HF samples, and inflammatory pathways were activated in atrial tissues. Through analysis of differentially expressed genes in HF samples, we found that several glutathione S-transferase (GST) family members, especially glutathione S-transferase M2-2 (GSTM2), were decreased in all the ventricular samples. Furthermore, GSTM2 overexpression effectively relieved the progression of cardiac hypertrophy in a transverse aortic constriction (TAC) surgery-induced HF mouse model. Moreover, we found that GSTM2 attenuated DNA damage and extrachromosomal circular DNA (eccDNA) production in cardiomyocytes, thereby ameliorating interferon-I-stimulated macrophage inflammation in heart tissues. CONCLUSIONS Our study establishes a proteomic and transcriptomic map of human HF tissues, highlights the functional importance of GSTM2 in HF progression, and provides a novel therapeutic target for HF.
Collapse
Affiliation(s)
- Hongfei Xu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, School of Medicine, Number 79 Qingchun Road, Hangzhou, China
| | - Zhen Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, School of Medicine, Number 79 Qingchun Road, Hangzhou, China
| | - Yalin Wang
- Department of Operation Room, The First Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Shaobo Pan
- Department of Operation Room, The First Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Wenting Zhao
- Department of Cardiology, The First Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Miao Chen
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, School of Medicine, Number 79 Qingchun Road, Hangzhou, China
| | - Xiaofan Chen
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, School of Medicine, Number 79 Qingchun Road, Hangzhou, China
| | - Tingting Tao
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, School of Medicine, Number 79 Qingchun Road, Hangzhou, China
| | - Liang Ma
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, School of Medicine, Number 79 Qingchun Road, Hangzhou, China
| | - Yiming Ni
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, School of Medicine, Number 79 Qingchun Road, Hangzhou, China.
| | - Weidong Li
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhejiang University, School of Medicine, Number 79 Qingchun Road, Hangzhou, China.
| |
Collapse
|
13
|
Wang Y, Jia H, Song J. Accurate Classification of Non-ischemic Cardiomyopathy. Curr Cardiol Rep 2023; 25:1299-1317. [PMID: 37721634 PMCID: PMC10651539 DOI: 10.1007/s11886-023-01944-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 09/19/2023]
Abstract
PURPOSE OF REVIEW This article aims to review the accurate classification of non-ischemic cardiomyopathy, including the methods, basis, subtype characteristics, and prognosis, especially the similarities and differences between different classifications. RECENT FINDINGS Non-ischemic cardiomyopathy refers to a myocardial disease that excludes coronary artery disease or ischemic injury and has a variety of etiologies and high incidence. Recent studies suggest that traditional classification methods based on primary/mixed/acquired or genetic/non-genetic cannot meet the precise needs of contemporary clinical management. This article systematically describes the history of classifications of cardiomyopathy and presents etiological and genetic differences between cardiomyopathies. The accurate classification is described from the perspective of morphology, function, and genomics in hypertrophic cardiomyopathy, dilated cardiomyopathy, restrictive cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, left ventricular noncompaction, and partially acquired cardiomyopathy. The different clinical characteristics and treatment needs of these cardiomyopathies are elaborated. Some single-gene mutant cardiomyopathies have unique phenotypes, and some cardiomyopathies have mixed phenotypes. These special classifications require personalized precision treatment, which is worthy of independent research. This article describes recent advances in the accurate classification of non-ischemic cardiomyopathy from clinical phenotypes and causative genes, discusses the advantages and usage scenarios of each classification, compares the differences in prognosis and patient management needs of different subtypes, and summarizes common methods and new exploration directions for accurate classification.
Collapse
Affiliation(s)
- Yifan Wang
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Hao Jia
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Jiangping Song
- Beijing Key Laboratory of Preclinical Research and Evaluation for Cardiovascular Implant Materials, Animal Experimental Centre, National Centre for Cardiovascular Disease, Department of Cardiac Surgery, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
14
|
Tian Z, Yang S. Integrating the characteristic genes of macrophage pseudotime analysis in single-cell RNA-seq to construct a prediction model of atherosclerosis. Aging (Albany NY) 2023; 15:6361-6379. [PMID: 37421595 PMCID: PMC10373969 DOI: 10.18632/aging.204856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/19/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND Macrophages play an important role in the occurrence and development of atherosclerosis. However, few existing studies have deliberately analyzed the changes in characteristic genes in the process of macrophage phenotype transformation. METHOD Carotid atherosclerotic plaque single-cell RNA (scRNA) sequencing data were analyzed to define the cells involved and determine their transcriptomic characteristics. KEGG enrichment analysis, CIBERSORT, ESTIMATE, support vector machine (SVM), random forest (RF), and weighted correlation network analysis (WGCNA) were applied to bulk sequencing data. All data were downloaded from Gene Expression Omnibus (GEO). RESULT Nine cell clusters were identified. M1 macrophages, M2 macrophages, and M2/M1 macrophages were identified as three clusters within the macrophages. According to pseudotime analysis, M2/M1 macrophages and M2 macrophages can be transformed into M1 macrophages. The ROC curve values of the six genes in the test group were statistically significant (AUC (IL1RN): 0.899, 95% CI: 0.764-0.990; AUC (NRP1): 0.817, 95% CI: 0.620-0.971; AUC (TAGLN): 0.846, 95% CI: 0.678-0.971; AUC (SPARCL1): 0.825, 95% CI: 0.620-0.988; AUC (EMP2): 0.808, 95% CI: 0.630-0.947; AUC (ACTA2): 0.784, 95% CI: 0.591-0.938). The atherosclerosis prediction model showed significant statistical significance in both the train group (AUC: 0.909, 95% CI: 0.842-0.967) and the test group (AUC: 0.812, 95% CI: 0.630-0.966). CONCLUSIONS IL1RNHigh M1, NRP1High M2, ACTA2High M2/M1, EMP2High M1/M1, SPACL1High M2/M1 and TAGLNHigh M2/M1 macrophages play key roles in the occurrence and development of arterial atherosclerosis. These marker genes of macrophage phenotypic transformation can also be used to establish a model to predict the occurrence of atherosclerosis.
Collapse
Affiliation(s)
- Zemin Tian
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| | - Shize Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, Liaoning, China
| |
Collapse
|
15
|
Zhang M, Wang X, Chen W, Liu W, Xin J, Yang D, Zhang Z, Zheng X. Integrated bioinformatics analysis for identifying key genes and pathways in female and male patients with dilated cardiomyopathy. Sci Rep 2023; 13:8977. [PMID: 37268658 DOI: 10.1038/s41598-023-36117-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/30/2023] [Indexed: 06/04/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a common cause of heart failure, and males are more likely to suffer from DCM than females. This research aimed at exploring possible DCM-associated genes and their latent regulatory effects in female and male patients. WGCNA analysis found that in the yellow module, 341 and 367 key DEGs were identified in females and males, respectively. A total of 22 hub genes in females and 17 hub genes in males were identified from the PPI networks of the key DEGs based on Metascape database. And twelve and eight potential TFs of the key DEGs were also identified in females and males, respectively. Eight miRNAs of 15 key DEGs were screened in both females and males, which may be differentially expressed in females and males. Dual-luciferase reporter assay demonstrated that miR-21-5P could directly target the key gene MATN2. Furthermore, Sex differences in KEGG pathways were identified. Both KOBAS and GSEA analysis identified 19 significantly enriched pathways related to immune response in both females and males, and the TGF-β signaling pathway was exclusively identified in males. Network pharmacology analysis revealed that seven key DEGs were potential targets for the treatment of DCM, of which the OLR1 gene was only identified in males, the expression levels of the seven genes were verified by RT-PCR. The above results could offer a novel understanding of sex differences in key genes and pathways in DCM progression.
Collapse
Affiliation(s)
- Min Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xinzhou Wang
- The Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Wenbo Chen
- School of Medicine, Henan Polytechnic University, Jiaozuo, 454000, Henan, China
| | - Wei Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jile Xin
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Debao Yang
- The Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Zhongyuan Zhang
- The Second School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou, 450002, China
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| |
Collapse
|
16
|
Tian Z, Li X, Jiang D. Analysis of immunogenic cell death in atherosclerosis based on scRNA-seq and bulk RNA-seq data. Int Immunopharmacol 2023; 119:110130. [PMID: 37075670 DOI: 10.1016/j.intimp.2023.110130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND Regulated cell death plays a very important role in atherosclerosis (AS). Despite a large number of studies, there is a lack of literature on immunogenic cell death (ICD) in AS. METHOD Carotid atherosclerotic plaque single-cell RNA (scRNA) sequencing data were analyzed to define involved cells and determine their transcriptomic characteristics. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, CIBERSORT, ESTIMATE and ssGSEA (Gene Set Enrichment Analysis), consensus clustering analysis, random forest (RF), Decision Curve Analysis (DCA), and the Drug-Gene Interaction and DrugBank databases were applied for bulk sequencing data. All data were downloaded from Gene Expression Omnibus (GEO). RESULT mDCs and CTLs correlated obviously with AS occurrence and development (k2(mDCs) = 48.333, P < 0.001; k2(CTL) = 130.56, P < 0.001). In total, 21 differentially expressed genes were obtained for the bulk transcriptome; KEGG enrichment analysis results were similar to those for differentially expressed genes in endothelial cells. Eleven genes with a gene importance score > 1.5 were obtained in the training set and validated in the test set, resulting in 8 differentially expressed genes for ICD. A model to predict occurrence of AS and 56 drugs that may be used to treat AS were obtained with these 8 genes. CONCLUSION Immunogenic cell death occurs mainly in endothelial cells in AS. ICD maintains chronic inflammation in AS and plays a crucial role in its occurrence and development. ICD related genes may become drug-targeted genes for AS treatment.
Collapse
Affiliation(s)
- Zemin Tian
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Xinyang Li
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Delong Jiang
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, China.
| |
Collapse
|
17
|
Zavarella M, Villatore A, Rocca MA, Peretto G, Filippi M. The Heart–Brain Interplay in Multiple Sclerosis from Pathophysiology to Clinical Practice: A Narrative Review. J Cardiovasc Dev Dis 2023; 10:jcdd10040153. [PMID: 37103032 PMCID: PMC10144916 DOI: 10.3390/jcdd10040153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/06/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic neurological disorder characterized by inflammation in the central nervous system (CNS) that leads to neurodegeneration. The clinical course is highly variable, but its prevalence is rising worldwide, partly thanks to novel disease-modifying therapies. Additionally, the lifespan of people with MS is increasing, and for this reason, it is fundamental to have a multidisciplinary approach to MS. MS may be associated with cardiovascular diseases (CVD), but there is scarce attention on this issue. In particular, CNS is essential in regulating the autonomic system and heart activity. Moreover, cardiovascular risk factors show a higher prevalence in MS patients. On the other hand, conditions like Takotsubo syndrome are rare complications of MS. The parallelism between MS and myocarditis is also interesting. Finally, cardiac toxicity represents a not infrequent adverse reaction to MS drugs. This narrative review aims to provide an overview of cardiovascular complications in MS and their management to prompt further clinical and pre-clinical research on this topic.
Collapse
Affiliation(s)
- Matteo Zavarella
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milan, Italy
| | - Andrea Villatore
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Department of Cardiac Electrophysiology and Arrhythmology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Myocarditis Disease Unit, IRCCS San Raffaele Scientific Institute, 20019 Milan, Italy
| | - Maria Assunta Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giovanni Peretto
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Department of Cardiac Electrophysiology and Arrhythmology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Myocarditis Disease Unit, IRCCS San Raffaele Scientific Institute, 20019 Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Faculty of Medicine and Surgery, Vita-Salute San Raffaele University, 20132 Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
18
|
Li XL, Adi D, Zhao Q, Aizezi A, Keremu M, Li YP, Liu F, Ma X, Li XM, Azhati A, Ma YT. Development and validation of nomogram for unplanned ICU admission in patients with dilated cardiomyopathy. Front Cardiovasc Med 2023; 10:1043274. [PMID: 37008312 PMCID: PMC10060526 DOI: 10.3389/fcvm.2023.1043274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
Objective Unplanned admission to the intensive care unit (ICU) is the major in-hospital adverse event for patients with dilated cardiomyopathy (DCM). We aimed to establish a nomogram of individualized risk prediction for unplanned ICU admission in DCM patients. Methods A total of 2,214 patients diagnosed with DCM from the First Affiliated Hospital of Xinjiang Medical University from January 01, 2010, to December 31, 2020, were retrospectively analyzed. Patients were randomly divided into training and validation groups at a 7:3 ratio. The least absolute shrinkage and selection operator and multivariable logistic regression analysis were used for nomogram model development. The area under the receiver operating characteristic curve, calibration curves, and decision curve analysis (DCA) were used to evaluate the model. The primary outcome was defined as unplanned ICU admission. Results A total of 209 (9.44%) patients experienced unplanned ICU admission. The variables in our final nomogram included emergency admission, previous stroke, New York Heart Association Class, heart rate, neutrophil count, and levels of N-terminal pro b-type natriuretic peptide. In the training group, the nomogram showed good calibration (Hosmer-Lemeshow χ 2 = 14.40, P = 0.07) and good discrimination, with an optimal-corrected C-index of 0.76 (95% confidence interval: 0.72-0.80). DCA confirmed the clinical net benefit of the nomogram model, and the nomogram maintained excellent performances in the validation group. Conclusion This is the first risk prediction model for predicting unplanned ICU admission in patients with DCM by simply collecting clinical information. This model may assist physicians in identifying individuals at a high risk of unplanned ICU admission for DCM inpatients.
Collapse
Affiliation(s)
- Xiao-Lei Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Cardiovascular Disease, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Dilare Adi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Cardiovascular Disease, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Qian Zhao
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Cardiovascular Disease, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Aibibanmu Aizezi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Cardiovascular Disease, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Munawaer Keremu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Cardiovascular Disease, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yan-Peng Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Cardiovascular Disease, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Fen Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Cardiovascular Disease, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiang Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Cardiovascular Disease, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xiao-Mei Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Cardiovascular Disease, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Adila Azhati
- The Emergency Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yi-Tong Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Cardiovascular Disease, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
19
|
Gan T, Hu J, Aledan AKO, Liu W, Li C, Lu S, Wang Y, Xu Q, Wang Y, Wang Z. Exploring the pathogenesis and immune infiltration in dilated cardiomyopathy complicated with atrial fibrillation by bioinformatics analysis. Front Immunol 2023; 14:1049351. [PMID: 36733486 PMCID: PMC9888493 DOI: 10.3389/fimmu.2023.1049351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
Background Atrial fibrillation (AF) is a serious complication of dilated cardiomyopathy (DCM), which increases the risk of thromboembolic events and sudden death in DCM patients. However, the common mechanism of DCM combined with AF remains unclear. This study aims to explore the molecular mechanism and analyze immune infiltration in DCM complicated with AF through comprehensive bioinformatics analysis. Methods The gene expression datasets of DCM (GSE141910) and AF (GSE41177 and GSE79768) were obtained from the Gene Expression Omnibus database. Gene enrichment analyses were performed after screening the common differentially expressed genes (DEGs) of DCM and AF. Protein-protein interaction network was constructed in the STRING database and visualized in Cytoscape software, which helped to further screen the central functional modules of DEGs and hub genes. In addition, ImmuCellAI algorithm was performed to estimate immune infiltration patterns, and Spearman correlation was conducted to investigate the correlation between the abundance of multiple immune cells and the expression levels of hub immune-related genes after obtaining hub immune-related genes from the ImmPort database. The hub immune-related genes expression and immune infiltration patterns were additionally verified in the validation datasets (GSE57338, GSE115574, and GSE31821). The diagnostic effectiveness of hub immune-related genes was evaluated through Receiver Operator Characteristic Curve analysis. Results A total of 184 common DEGs in DCM and AF were identified for subsequent analyses. The functions of hub genes were significantly associated with immune responses. We identified 7 hub immune-related genes (HLA-DRA, LCK, ITK, CD48, CD247, CD3D, and IL2RG) and a spectrum of immune cell subsets including Monocyte, Neutrophil, and follicular helper T (Tfh) cells were found to be concurrently dysregulated in both DCM and AF. 7 hub immune-related genes were predominantly favorably correlated with Tfh cells and were primarily negatively correlated with Neutrophil infiltrations in DCM and AF. CD48+CD3D were verified to diagnose DCM and AF with excellent sensitivity and specificity, showing favorable diagnostic value. Conclusions Our study reveals that immune cells (Tfh cells) disorders caused by hub immune-related genes (CD48 and CD3D) may be the common pathogenesis of DCM combined with AF, which lays a foundation for further immune mechanism research.
Collapse
Affiliation(s)
- Ting Gan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Hu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anwer Khalid Okab Aledan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenhu Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cui Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Lu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Xu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Zhaohui Wang, ; Yan Wang,
| | - Zhaohui Wang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Zhaohui Wang, ; Yan Wang,
| |
Collapse
|
20
|
Qian H, Qian Y, Liu Y, Cao J, Wang Y, Yang A, Zhao W, Lu Y, Liu H, Zhu W. Identification of novel biomarkers involved in doxorubicin-induced acute and chronic cardiotoxicity, respectively, by integrated bioinformatics. Front Cardiovasc Med 2023; 9:996809. [PMID: 36712272 PMCID: PMC9874088 DOI: 10.3389/fcvm.2022.996809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/19/2022] [Indexed: 01/13/2023] Open
Abstract
Background The mechanisms of doxorubicin (DOX) cardiotoxicity were complex and controversial, with various contradictions between experimental and clinical data. Understanding the differences in the molecular mechanism between DOX-induced acute and chronic cardiotoxicity may be an ideal entry point to solve this dilemma. Methods Mice were injected intraperitoneally with DOX [(20 mg/kg, once) or (5 mg/kg/week, three times)] to construct acute and chronic cardiotoxicity models, respectively. Survival record and ultrasound monitored the cardiac function. The corresponding left ventricular (LV) myocardium tissues were analyzed by RNA-seq to identify differentially expressed genes (DEGs). Gene Ontology (GO), Kyoto Encyclopedia of Gene and Genome (KEGG), and Gene Set Enrichment Analysis (GSEA) found the key biological processes and signaling pathways. DOX cardiotoxicity datasets from the Gene expression omnibus (GEO) database were combined with RNA-seq to identify the common genes. Cytoscape analyzed the hub genes, which were validated by quantitative real-time PCR. ImmuCo and ImmGen databases analyzed the correlations between hub genes and immunity-relative markers in immune cells. Cibersort analyzed the immune infiltration and correlations between the hub genes and the immune cells. Logistic regression, receiver operator characteristic curve, and artificial neural network analysis evaluated the diagnosis ability of hub genes for clinical data in the GEO dataset. Results The survival curves and ultrasound monitoring demonstrated that cardiotoxicity models were constructed successfully. In the acute model, 788 DEGs were enriched in the activated metabolism and the suppressed immunity-associated signaling pathways. Three hub genes (Alas1, Atp5g1, and Ptgds) were upregulated and were negatively correlated with a colony of immune-activating cells. However, in the chronic model, 281 DEGs showed that G protein-coupled receptor (GPCR)-related signaling pathways were the critical events. Three hub genes (Hsph1, Abcb1a, and Vegfa) were increased in the chronic model. Furthermore, Hsph1 combined with Vegfa was positively correlated with dilated cardiomyopathy (DCM)-induced heart failure (HF) and had high accuracy in the diagnosis of DCM-induced HF (AUC = 0.898, P = 0.000). Conclusion Alas1, Atp5g1, and Ptgds were ideal biomarkers in DOX acute cardiotoxicity. However, Hsph1 and Vegfa were potential biomarkers in the myocardium in the chronic model. Our research, first, provided bioinformatics and clinical evidence for the discovery of the differences in mechanism and potential biomarkers of DOX-induced acute and chronic cardiotoxicity to find a therapeutic strategy precisely.
Collapse
Affiliation(s)
- Hongyan Qian
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, China,Cancer Research Center Nantong, Nantong Tumor Hospital and Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Yi Qian
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, China
| | - Yi Liu
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, China
| | - Jiaxin Cao
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, China
| | - Yuhang Wang
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, China
| | - Aihua Yang
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, China
| | - Wenjing Zhao
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, China
| | - Yingnan Lu
- School of Overseas Education, Changzhou University, Changzhou, China
| | - Huanxin Liu
- Shanghai Labway Medical Laboratory, Shanghai, China
| | - Weizhong Zhu
- Department of Pharmacology, School of Medicine and School of Pharmacy Nantong University, Nantong, China,*Correspondence: Weizhong Zhu, ; orcid.org/0000-0002-8740-3210
| |
Collapse
|
21
|
Harding D, Chong MHA, Lahoti N, Bigogno CM, Prema R, Mohiddin SA, Marelli-Berg F. Dilated cardiomyopathy and chronic cardiac inflammation: Pathogenesis, diagnosis and therapy. J Intern Med 2023; 293:23-47. [PMID: 36030368 DOI: 10.1111/joim.13556] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dilated cardiomyopathy (DCM) is typically defined by left ventricular dilation and systolic dysfunction in the absence of a clear precipitant. Idiopathic disease is common; up to 50% of patients with DCM have no cause found despite imaging, genetic and biopsy assessments. Treatment remains focused on managing symptoms, reducing the risk of sudden cardiac death and ameliorating the structural and electrical complications of disease progression. In the absence of aetiology-specific treatments, the condition remains associated with a poor prognosis; mortality is approximately 40% at 10 years. The role of immune-mediated inflammatory injury in the development and progression of DCM was first proposed over 30 years ago. Despite the subsequent failures of three large clinical trials of immunosuppressive treatment (ATTACH, RENEWAL and the Myocarditis Treatment Trial), evidence for an abnormal adaptive immune response in DCM remains significant. In this review, we summarise and discuss available evidence supporting immune dysfunction in DCM, with a specific focus on cellular immunity. We also highlight current clinical and experimental treatments. We propose that the success of future immunosuppressive treatment trials in DCM will be dependent on the deep immunophenotyping of patients, to identify those with active inflammation and/or an abnormal immune response who are most likely to respond to therapy.
Collapse
Affiliation(s)
- Daniel Harding
- Centre for Biochemical Pharmacology, William Harvey Research Institute, London, UK
| | - Ming H A Chong
- Barts and The London School of Medicine and Dentistry, London, UK
| | - Nishant Lahoti
- Conquest Hospital, East Sussex Healthcare NHS Trust, St Leonards-on-Sea, UK
| | - Carola M Bigogno
- Barts and The London School of Medicine and Dentistry, London, UK
| | - Roshni Prema
- University Hospital, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | | | | |
Collapse
|
22
|
Zhang J, Luo Q, Hou J, Xiao W, Long P, Hu Y, Chen X, Wang H. Fatty acids and risk of dilated cardiomyopathy: A two-sample Mendelian randomization study. Front Nutr 2023; 10:1068050. [PMID: 36875854 PMCID: PMC9980906 DOI: 10.3389/fnut.2023.1068050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Background Previous observational studies have shown intimate associations between fatty acids (FAs) and dilated cardiomyopathy (DCM). However, due to the confounding factors and reverse causal association found in observational epidemiological studies, the etiological explanation is not credible. Objective To exclude possible confounding factors and reverse causal associations found in observational epidemiological studies, we used the two-sample Mendelian randomization (MR) analysis to verify the causal relationship between FAs and DCM risk. Method All data of 54 FAs were downloaded from the genome-wide association studies (GWAS) catalog, and the summary statistics of DCM were extracted from the HF Molecular Epidemiology for Therapeutic Targets Consortium GWAS. Two-sample MR analysis was conducted to evaluate the causal effect of FAs on DCM risk through several analytical methods, including MR-Egger, inverse variance weighting (IVW), maximum likelihood, weighted median estimator (WME), and the MR pleiotropy residual sum and outlier test (MRPRESSO). Directionality tests using MR-Steiger to assess the possibility of reverse causation. Results Our analysis identified two FAs, oleic acid and fatty acid (18:1)-OH, that may have a significant causal effect on DCM. MR analyses indicated that oleic acid was suggestively associated with a heightened risk of DCM (OR = 1.291, 95%CI: 1.044-1.595, P = 0.018). As a probable metabolite of oleic acid, fatty acid (18:1)-OH has a suggestive association with a lower risk of DCM (OR = 0.402, 95%CI: 0.167-0.966, P = 0.041). The results of the directionality test suggested that there was no reverse causality between exposure and outcome (P < 0.001). In contrast, the other 52 available FAs were discovered to have no significant causal relationships with DCM (P > 0.05). Conclusion Our findings propose that oleic acid and fatty acid (18:1)-OH may have causal relationships with DCM, indicating that the risk of DCM from oleic acid may be decreased by encouraging the conversion of oleic acid to fatty acid (18:1)-OH.
Collapse
Affiliation(s)
- Jiexin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China.,Central Laboratory, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Qiang Luo
- Department of Laboratory Medicine, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Jun Hou
- Department of Laboratory Medicine, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Wenjing Xiao
- Central Laboratory, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Pan Long
- Central Laboratory, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Yonghe Hu
- Central Laboratory, The General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Xin Chen
- Department of Laboratory Medicine, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Han Wang
- Department of Cardiology, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China
| |
Collapse
|
23
|
Tian Z, Zhang P, Li X, Jiang D. Analysis of immunogenic cell death in ascending thoracic aortic aneurysms based on single-cell sequencing data. Front Immunol 2023; 14:1087978. [PMID: 37207221 PMCID: PMC10191229 DOI: 10.3389/fimmu.2023.1087978] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
Background At present, research on immunogenic cell death (ICD) is mainly associated with cancer therapy. Little is known about the role of ICD in cardiovascular disease, especially in ascending thoracic aortic aneurysms (ATAA). Method ATAA single-cell RNA (scRNA) sequencing data were analyzed to identify the involved cell types and determine their transcriptomic characteristics. The chi-square test, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, Gene Set Enrichment Analysis (GSEA), and CellChat for cell-to-cell communication analysis from the Gene Expression Omnibus (GEO) database were used. Result A total of 10 cell types were identified, namely, monocytes, macrophages, CD4 T/NK (CD4+ T cells and natural killer T cells), mast cells, B/Plasma B cells, fibroblasts, endothelial cells, cytotoxic T cells (CD8+ T cells, CTLs), vascular smooth muscle cells (vSMCs), and mature dendritic cells (mDCs). A large number of inflammation-related pathways were present in the GSEA results. A large number of ICD-related pathways were found in the KEGG enrichment analysis of differentially expressed genes in endothelial cells. The number of mDCs and CTLs in the ATAA group was significantly different from that in the control group. A total of 44 pathway networks were obtained, of which 9 were associated with ICD in endothelial cells (CCL, CXCL, ANNEXIN, CD40, IL1, IL6, TNF, IFN-II, GALECTIN). The most important ligand-receptor pair by which endothelial cells act on CD4 T/NK cells, CTLs and mDCs is CXCL12-CXCR4. The most important ligand-receptor pair by which endothelial cells act on monocytes and macrophages is ANXA1-FPR1. The most important ligand-receptor pair by which CD4 T/NK cells and CTLs act on endothelial cells is CCL5-ACKR1. The most important ligand-receptor pair that myeloid cells (macrophages, monocytes and mDCs) act on endothelial cells is CXCL8-ACKR1. Moreover, vSMCs and fibroblasts mainly promote inflammatory responses through the MIF signaling pathway. Conclusion ICD is present in ATAA and plays an important role in the development of ATAA. The target cells of ICD may be mainly endothelial cells, in which the aortic endothelial cell ACKR1 receptor can not only promote T-cell infiltration through the CCL5 ligand but also promote myeloid cell infiltration through the CXCL8 ligand. ACKR1 and CXCL12 may become target genes for ATAA drug therapy in the future.
Collapse
Affiliation(s)
- Zemin Tian
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Peng Zhang
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xinyang Li
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
- *Correspondence: Delong Jiang, ; Xinyang Li,
| | - Delong Jiang
- Department of Vascular and Thyroid Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
- *Correspondence: Delong Jiang, ; Xinyang Li,
| |
Collapse
|
24
|
Wienecke LM, Leid JM, Leuschner F, Lavine KJ. Imaging Targets to Visualize the Cardiac Immune Landscape in Heart Failure. Circ Cardiovasc Imaging 2023; 16:e014071. [PMID: 36649453 PMCID: PMC9858350 DOI: 10.1161/circimaging.122.014071] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Heart failure involves a complex interplay between diverse populations of immune cells that dynamically shift across the natural history of disease. Within this context, the character of the immune response is a key determinant of clinical outcomes. Recent technological advances in single-cell transcriptomic, spatial, and proteomic technologies have fueled an explosion of new and clinically relevant insights into distinct immune cell populations that reside within the diseased heart including potential targets for molecular imaging and therapy. In this review, we will discuss the immune cell types and their respective functions with respect to myocardial infarction remodeling, dilated cardiomyopathy, and heart failure with preserved ejection fraction. In addition, we give a brief overview regarding myocarditis and cardiac sarcoidosis as inflammatory heart failure etiologies. We will highlight markers and cell populations as targets for molecular imaging to visualize inflammation and tissue healing and discuss clinical implications including the development and implementation of precision medicine approaches.
Collapse
Affiliation(s)
- Laura M. Wienecke
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
| | - Jamison M. Leid
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Florian Leuschner
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
| | - Kory J. Lavine
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Regenerative Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
25
|
Wang X, Zhou H, Liu Q, Cheng P, Zhao T, Yang T, Zhao Y, Sha W, Zhao Y, Qu H. Targeting regulatory T cells for cardiovascular diseases. Front Immunol 2023; 14:1126761. [PMID: 36911741 PMCID: PMC9995594 DOI: 10.3389/fimmu.2023.1126761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death and disability worldwide. The CVDs are accompanied by inflammatory progression, resulting in innate and adaptive immune responses. Regulatory T cells (Tregs) have an immunosuppressive function and are one of the subsets of CD4+T cells that play a crucial role in inflammatory diseases. Whether using Tregs as a biomarker for CVDs or targeting Tregs to exert cardioprotective functions by regulating immune balance, suppressing inflammation, suppressing cardiac and vascular remodeling, mediating immune tolerance, and promoting cardiac regeneration in the treatment of CVDs has become an emerging research focus. However, Tregs have plasticity, and this plastic Tregs lose immunosuppressive function and produce toxic effects on target organs in some diseases. This review aims to provide an overview of Tregs' role and related mechanisms in CVDs, and reports on the research of plasticity Tregs in CVDs, to lay a foundation for further studies targeting Tregs in the prevention and treatment of CVDs.
Collapse
Affiliation(s)
- Xinting Wang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qian Liu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peipei Cheng
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tingyao Zhao
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianshu Yang
- Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Zhao
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wanjing Sha
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanyan Zhao
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huiyan Qu
- Department of Cardiovascular Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
26
|
Lin L, Liu S, Chen Z, Xia Y, Xie J, Fu M, Lu D, Wu Y, Shen H, Yang P, Qian J. Anatomically resolved transcriptome and proteome landscapes reveal disease‐relevant molecular signatures and systematic changes in heart function of end‐stage dilated cardiomyopathy. VIEW 2022. [DOI: 10.1002/viw.20220040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Ling Lin
- Institutes of Biomedical Sciences of Shanghai Medical School & Minhang Hospital Fudan University Shanghai China
- Department of Cardiology Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan University Shanghai China
| | - Shanshan Liu
- Institutes of Biomedical Sciences of Shanghai Medical School & Minhang Hospital Fudan University Shanghai China
| | - Zhangwei Chen
- Department of Cardiology Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan University Shanghai China
| | - Yan Xia
- Department of Cardiology Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan University Shanghai China
| | - Juanjuan Xie
- Institutes of Biomedical Sciences of Shanghai Medical School & Minhang Hospital Fudan University Shanghai China
| | - Mingqiang Fu
- Department of Cardiology Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan University Shanghai China
| | - Danbo Lu
- Department of Cardiology Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan University Shanghai China
| | - Yuan Wu
- Department of Cardiology Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan University Shanghai China
| | - Huali Shen
- Institutes of Biomedical Sciences of Shanghai Medical School & Minhang Hospital Fudan University Shanghai China
| | - Pengyuan Yang
- Institutes of Biomedical Sciences of Shanghai Medical School & Minhang Hospital Fudan University Shanghai China
- Department of chemistry Fudan University Shanghai China
| | - Juying Qian
- Department of Cardiology Shanghai Institute of Cardiovascular Diseases Zhongshan Hospital Fudan University Shanghai China
| |
Collapse
|
27
|
Zheng A, Chen Q, Zhang L. The Hippo-YAP pathway in various cardiovascular diseases: Focusing on the inflammatory response. Front Immunol 2022; 13:971416. [PMID: 36059522 PMCID: PMC9433876 DOI: 10.3389/fimmu.2022.971416] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022] Open
Abstract
The Hippo pathway was initially discovered in Drosophila melanogaster and mammals as a key regulator of tissue growth both in physiological and pathological states. Numerous studies depict the vital role of the Hippo pathway in cardiovascular development, heart regeneration, organ size and vascular remodeling through the regulation of YAP (yes-associated protein) translocation. Recently, an increasing number of studies have focused on the Hippo-YAP pathway in inflammation and immunology. Although the Hippo-YAP pathway has been revealed to play controversial roles in different contexts and cell types in the cardiovascular system, the mechanisms regulating tissue inflammation and the immune response remain to be clarified. In this review, we summarize findings from the past decade on the function and mechanism of the Hippo-YAP pathway in CVDs (cardiovascular diseases) such as myocardial infarction, cardiomyopathy and atherosclerosis. In particular, we emphasize the role of the Hippo-YAP pathway in regulating inflammatory cell infiltration and inflammatory cytokine activation.
Collapse
Affiliation(s)
| | | | - Li Zhang
- *Correspondence: Li Zhang, ; Qishan Chen,
| |
Collapse
|
28
|
Liang L, Sun J, Teng T, Chen L, Li Z, Zhang Z, Gao Y, Zhang W. Expression Profile of Inflammation Response Genes and Potential Regulatory Mechanisms in Dilated Cardiomyopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1051652. [PMID: 36035223 PMCID: PMC9402291 DOI: 10.1155/2022/1051652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022]
Abstract
Background The inflammatory response is important in dilated cardiomyopathy (DCM). However, the expression of inflammatory response genes (IRGs) and regulatory mechanisms in DCM has not been well characterized. Methods We analyzed 27,665 cells of single-cell RNA sequencing dataset of four DCM samples and two healthy controls (HC). IRGs among differentially expressed genes (DEGs) of active cell clusters were screened from the Molecular Signatures Database (MSigDB). The bulk sequencing dataset of 166 DCM patients and 166 HC was analyzed to explore the common IRGs. The biological functions of the IRGs were analyzed according to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. IRG-related transcription factors (TFs) were determined using the TRRUST database. The protein-protein interaction (PPI) network was constructed using the STRING database. Then, we established the noncoding RNA (ncRNA) regulatory network based on the StarBase database. Finally, the potential drugs that target IRGs were explored using the Drug Gene Interaction Database (DGIdb). Results The proportions of dendritic cells (DCs), B cells, NK cells, and T cells were increased in DCM patients, whereas monocytes were decreased. DCs expressed more IRGs in DCM. The GO and KEGG analyses indicated that the functional characteristics of active cells mainly focused on the immune response. Thirty-nine IRGs were commonly expressed among active cell cluster DEGs, bulk RNA DEGs, and inflammatory response-related genes. ETS1 plays an important role in regulation of IRG expression. The competing endogenous RNA regulatory network showed the relationship between ncRNA and IRGs. Sankey diagram showed that arachidonate 5-lipoxygenase (ALOX5) played a major role in regulation between TFs and potential drugs. Conclusion DCs infiltrate into the myocardium and contribute to the immune response in DCM. The transcription factor ETS1 plays an important role in regulation of IRGs. Moreover, ALOX5 may be a potential therapeutic target for DCM.
Collapse
Affiliation(s)
- Lifeng Liang
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiayi Sun
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Tianming Teng
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Lizhu Chen
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zejian Li
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhen Zhang
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yannan Gao
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenjuan Zhang
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
29
|
Schulz LP, Vischer AS. Cardiomyopathies in the Clinical Practice - an Overview. PRAXIS 2022; 111:623-631. [PMID: 35975415 DOI: 10.1024/1661-8157/a003912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cardiomyopathies are myocardial disorders with a structurally and functionally abnormal heart muscle. In this review, we describe pathophysiological aspects, clinical presentation, diagnosis, risk stratification and therapeutical concepts of the three most common forms of cardiomyopathy: hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM), and arrhythmogenic cardiomyopathy (ACM).
Collapse
Affiliation(s)
- Lukas P Schulz
- Department of Cardiology, University Hospital Basel, Basel, Switzerland
| | - Annina S Vischer
- Medical Outpatient Department, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
30
|
Sun S, Lu J, Lai C, Feng Z, Sheng X, Liu X, Wang Y, Huang C, Shen Z, Lv Q, Fu G, Shang M. Transcriptome analysis uncovers the autophagy-mediated regulatory patterns of the immune microenvironment in dilated cardiomyopathy. J Cell Mol Med 2022; 26:4101-4112. [PMID: 35752958 PMCID: PMC9279601 DOI: 10.1111/jcmm.17455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/04/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022] Open
Abstract
The relationship between autophagy and immunity has been well studied. However, little is known about the role of autophagy in the immune microenvironment during the progression of dilated cardiomyopathy (DCM). Therefore, this study aims to uncover the effect of autophagy on the immune microenvironment in the context of DCM. By investigating the autophagy gene expression differences between healthy donors and DCM samples, 23 dysregulated autophagy genes were identified. Using a series of bioinformatics methods, 13 DCM‐related autophagy genes were screened and used to construct a risk prediction model, which can well distinguish DCM and healthy samples. Then, the connections between autophagy and immune responses including infiltrated immunocytes, immune reaction gene‐sets and human leukocyte antigen (HLA) genes were systematically evaluated. In addition, two autophagy‐mediated expression patterns in DCM were determined via the unsupervised consensus clustering analysis, and the immune characteristics of different patterns were revealed. In conclusion, our study revealed the strong effect of autophagy on the DCM immune microenvironment and provided new insights to understand the pathogenesis and treatment of DCM.
Collapse
Affiliation(s)
- Shuo Sun
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Jiangting Lu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Chaojie Lai
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Zhaojin Feng
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Xia Sheng
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Xianglan Liu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Yao Wang
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Chengchen Huang
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Zhida Shen
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Qingbo Lv
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Guosheng Fu
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| | - Min Shang
- Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, Hangzhou, China
| |
Collapse
|
31
|
Liu Z, Song YN, Chen KY, Gao WL, Chen HJ, Liang GY. Bioinformatics prediction of potential mechanisms and biomarkers underlying dilated cardiomyopathy. World J Cardiol 2022; 14:282-296. [PMID: 35702326 PMCID: PMC9157606 DOI: 10.4330/wjc.v14.i5.282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/19/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Heart failure is a health burden responsible for high morbidity and mortality worldwide, and dilated cardiomyopathy (DCM) is one of the most common causes of heart failure. DCM is a disease of the heart muscle and is characterized by enlargement and dilation of at least one ventricle alongside impaired contractility with left ventricular ejection fraction < 40%. It is also associated with abnormalities in cytoskeletal proteins, mitochondrial ATP transporter, microvasculature, and fibrosis. However, the pathogenesis and potential biomarkers of DCM remain to be investigated. AIM To investigate the candidate genes and pathways involved in DCM patients. METHODS Two expression datasets (GSE3585 and GSE5406) were downloaded from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) between the DCM patients and healthy individuals were identified using the R package "linear models for microarray data." The pathways with common DEGs were analyzed via Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene set enrichment analyses. Moreover, a protein-protein interaction network (PPI) was constructed to identify the hub genes and modules. The MicroRNA Database was applied to predict the microRNAs (miRNAs) targeting the hub genes. Additionally, immune cell infiltration in DCM was analyzed using CIBERSORT. RESULTS In total, 97 DEGs (47 upregulated and 50 downregulated) were identified. GO analysis showed that the DEGs were mainly enriched in "response to growth factor," "extracellular matrix," and "extracellular matrix structural constituent." KEGG pathway analysis indicated that the DEGs were mainly enriched in "protein digestion and absorption" and "interleukin 17 (IL-17) signaling pathway." The PPI network suggested that collagen type III alpha 1 chain (COL3A1) and COL1A2 contribute to the pathogenesis of DCM. Additionally, visualization of the interactions between miRNAs and the hub genes revealed that hsa-miR-5682 and hsa-miR-4500 interacted with both COL3A1 and COL1A2, and thus these miRNAs might play roles in DCM. Immune cell infiltration analysis revealed that DCM patients had more infiltrated plasma cells and fewer infiltrated B memory cells, T follicular helper cells, and resting dendritic cells. CONCLUSION COL1A2 and COL3A1 and their targeting miRNAs, hsa-miR-5682 and hsa-miR-4500, may play critical roles in the pathogenesis of DCM, which are closely related to the IL-17 signaling pathway and acute inflammatory response. These results may provide useful clues for the diagnosis and treatment of DCM.
Collapse
Affiliation(s)
- Zhou Liu
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Ying-Nan Song
- Translational Medicine Research Center, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
- Department of Cardiovascular Surgery, the Affiliated Hospital of Guizhou Medical University, Guiyang 510000, Guizhou Province, China
| | - Kai-Yuan Chen
- Translational Medicine Research Center, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Wei-Long Gao
- Translational Medicine Research Center, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
| | - Hong-Jin Chen
- Translational Medicine Research Center, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
- Department of Cardiovascular Surgery, the Affiliated Hospital of Guizhou Medical University, Guiyang 510000, Guizhou Province, China
| | - Gui-You Liang
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang 550025, Guizhou Province, China
- Department of Cardiovascular Surgery, the Affiliated Hospital of Guizhou Medical University, Guiyang 510000, Guizhou Province, China.
| |
Collapse
|
32
|
Lu Y, Xia N, Cheng X. Regulatory T Cells in Chronic Heart Failure. Front Immunol 2021; 12:732794. [PMID: 34630414 PMCID: PMC8493934 DOI: 10.3389/fimmu.2021.732794] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/02/2021] [Indexed: 12/21/2022] Open
Abstract
Heart failure is a global problem with high hospitalization and mortality rates. Inflammation and immune dysfunction are involved in this disease. Owing to their unique function, regulatory T cells (Tregs) have reacquired attention recently. They participate in immunoregulation and tissue repair in the pathophysiology of heart failure. Tregs are beneficial in heart by suppressing excessive inflammatory responses and promoting stable scar formation in the early stage of heart injury. However, in chronic heart failure, the phenotypes and functions of Tregs changed. They transformed into an antiangiogenic and profibrotic cell type. In this review, we summarized the functions of Tregs in the development of chronic heart failure first. Then, we focused on the interactions between Tregs and their target cells. The target cells of Tregs include immune cells (such as monocytes/macrophages, dendritic cells, T cells, and B cells) and parenchymal cells (such as cardiomyocytes, fibroblasts, and endothelial cells). Next-generation sequencing and gene editing technology make immunotherapy of heart failure possible. So, prospective therapeutic approaches based on Tregs in chronic heart failure had also been evaluated.
Collapse
Affiliation(s)
- Yuzhi Lu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ni Xia
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
33
|
Sex Differences, Genetic and Environmental Influences on Dilated Cardiomyopathy. J Clin Med 2021; 10:jcm10112289. [PMID: 34070351 PMCID: PMC8197492 DOI: 10.3390/jcm10112289] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is characterized by dilatation of the left ventricle and impaired systolic function and is the second most common cause of heart failure after coronary heart disease. The etiology of DCM is diverse including genetic pathogenic variants, infection, inflammation, autoimmune diseases, exposure to chemicals/toxins as well as endocrine and neuromuscular causes. DCM is inherited in 20–50% of cases where more than 30 genes have been implicated in the development of DCM with pathogenic variants in TTN (Titin) most frequently associated with disease. Even though male sex is a risk factor for heart failure, few studies have examined sex differences in the pathogenesis of DCM. We searched the literature for studies examining idiopathic or familial/genetic DCM that reported data by sex in order to determine the sex ratio of disease. We found 31 studies that reported data by sex for non-genetic DCM with an average overall sex ratio of 2.5:1 male to female and 7 studies for familial/genetic DCM with an overall average sex ratio of 1.7:1 male to female. No manuscripts that we found had more females than males in their studies. We describe basic and clinical research findings that may explain the increase in DCM in males over females based on sex differences in basic physiology and the immune and fibrotic response to damage caused by mutations, infections, chemotherapy agents and autoimmune responses.
Collapse
|
34
|
Wang J, Han B. Dysregulated CD4+ T Cells and microRNAs in Myocarditis. Front Immunol 2020; 11:539. [PMID: 32269577 PMCID: PMC7109299 DOI: 10.3389/fimmu.2020.00539] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 03/09/2020] [Indexed: 12/14/2022] Open
Abstract
Myocarditis is a polymorphic disease complicated with indeterminate etiology and pathogenesis, and represents one of the most challenging clinical problems lacking specific diagnosis and effective therapy. It is caused by a complex interplay of environmental and genetic factors, and causal links between dysregulated microribonucleic acids (miRNAs) and myocarditis have also been supported by recent epigenetic researches. Both dysregulated CD4+ T cells and miRNAs play critical roles in the pathogenesis of myocarditis, and the classic triphasic model of its pathogenesis consists of the acute infectious, subacute immune, and recovery/chronic myopathic phase. CD4+ T cells are key pathogenic factors underlying the development and progression of myocarditis, and the effector and regulatory subsets, respectively, promote and inhibit autoimmune responses. Furthermore, the reciprocal interplay of these subsets influences the pathogenesis as well. Dysregulated miRNAs along with their mRNA and protein targets have been identified in heart biopsies (intracellular miRNAs) and body fluids (circulating miRNAs) during myocarditis. These miRNAs show phase-dependent changes, and correlate with viral infection, immune status, fibrosis, destruction of cardiomyocytes, arrhythmias, cardiac functions, and outcomes. Thus, miRNAs are promising diagnostic markers and therapeutic targets in myocarditis. In this review, we review myocarditis with an emphasis on its pathogenesis, and present a summary of current knowledge of dysregulated CD4+ T cells and miRNAs in myocarditis.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Bo Han
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
35
|
Ye J, Wang Y, Wang Z, Liu L, Yang Z, Wang M, Xu Y, Ye D, Zhang J, Lin Y, Ji Q, Wan J. Roles and Mechanisms of Interleukin-12 Family Members in Cardiovascular Diseases: Opportunities and Challenges. Front Pharmacol 2020; 11:129. [PMID: 32194399 PMCID: PMC7064549 DOI: 10.3389/fphar.2020.00129] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/30/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular diseases represent a complex group of clinical syndromes caused by a variety of interacting pathological factors. They include the most extensive disease population and rank first in all-cause mortality worldwide. Accumulating evidence demonstrates that cytokines play critical roles in the presence and development of cardiovascular diseases. Interleukin-12 family members, including IL-12, IL-23, IL-27 and IL-35, are a class of cytokines that regulate a variety of biological effects; they are closely related to the progression of various cardiovascular diseases, including atherosclerosis, hypertension, aortic dissection, cardiac hypertrophy, myocardial infarction, and acute cardiac injury. This paper mainly discusses the role of IL-12 family members in cardiovascular diseases, and the molecular and cellular mechanisms potentially involved in their action in order to identify possible intervention targets for the prevention and clinical treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Jing Ye
- Hubei Key Laboratory of Cardiology, Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Yuan Wang
- Department of Thyroid Breast Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhen Wang
- Hubei Key Laboratory of Cardiology, Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Ling Liu
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zicong Yang
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Menglong Wang
- Hubei Key Laboratory of Cardiology, Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Yao Xu
- Hubei Key Laboratory of Cardiology, Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Di Ye
- Hubei Key Laboratory of Cardiology, Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Jishou Zhang
- Hubei Key Laboratory of Cardiology, Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Yingzhong Lin
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qingwei Ji
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jun Wan
- Hubei Key Laboratory of Cardiology, Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| |
Collapse
|
36
|
Fani M, Zandi M, Rezayi M, Khodadad N, Langari H, Amiri I. The Role of microRNAs in the Viral Infections. Curr Pharm Des 2019; 24:4659-4667. [PMID: 30636585 DOI: 10.2174/1381612825666190110161034] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/24/2018] [Accepted: 12/31/2018] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are non-coding RNAs with 19 to 24 nucleotides which are evolutionally conserved. MicroRNAs play a regulatory role in many cellular functions such as immune mechanisms, apoptosis, and tumorigenesis. The main function of miRNAs is the post-transcriptional regulation of gene expression via mRNA degradation or inhibition of translation. In fact, many of them act as an oncogene or tumor suppressor. These molecular structures participate in many physiological and pathological processes of the cell. The virus can also produce them for developing its pathogenic processes. It was initially thought that viruses without nuclear replication cycle such as Poxviridae and RNA viruses can not code miRNA, but recently, it has been proven that RNA viruses can also produce miRNA. The aim of this articles is to describe viral miRNAs biogenesis and their effects on cellular and viral genes.
Collapse
Affiliation(s)
- Mona Fani
- Virology Department, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Milad Zandi
- Department of Virology, School of Public Health, Tehran University of Medical Science, Tehran, Iran
| | - Majid Rezayi
- Metabolic Syndrome Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Modern Sciences and Technologies, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nastaran Khodadad
- Virology Department, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hadis Langari
- Metabolic Syndrome Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Iraj Amiri
- Computational Optics Research Group, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam.,Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
37
|
Wu J, Sun P, Chen Q, Sun Y, Shi M, Mang G, Yu S, Zheng Y, Li Z, Sun M, Fang S, Zhang Y, Tian J, Mingyan E, Zhang M, Yu B. Metabolic reprogramming orchestrates CD4 + T-cell immunological status and restores cardiac dysfunction in autoimmune induced-dilated cardiomyopathy mice. J Mol Cell Cardiol 2019; 135:134-148. [PMID: 31398346 DOI: 10.1016/j.yjmcc.2019.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 07/31/2019] [Accepted: 08/03/2019] [Indexed: 12/18/2022]
Abstract
Cellular autoimmune responses, especially those mediated by T-cells, play vital roles in the immunopathogenesis of dilated cardiomyopathy (DCM). Metabolic reprogramming directly controls T-cell function, imprinting distinct functional fates. However, its contribution to T-cell dysfunction and the immunopathogenesis of DCM is unknown. Here, we found that in DCM patients, CD4+ T-cells exhibited immune dysfunction and glycolytic metabolic reprogramming based on extracellular acidification and oxygen consumption rates. Similar results were observed in splenic and cardiac CD4+ T-cells from autoimmune-induced DCM mice. In vitro, the glycolysis inhibitor 2-deoxy-d-glucose (2-DG) reversed T-cell dysfunction; thus, heightened metabolic activity directly controls CD4+ T-cell immunological status. Adoptive transfer of CD4+ T-cells from DCM mice to normal recipients induced cardiac remodeling and cardiac T-cell dysfunction. Strikingly, these effects were abolished by preconditioning cells with 2-DG, indicating that CD4+ T-cell dysfunction partially induced by metabolic reprogramming contributes to cardiac remodeling. Moreover, the microRNA let-7i modulated the metabolism and function of T-cells from DCM mice by directly targeting Myc. Collectively, our results show that metabolic reprogramming occurs in T-cells of autoimmune-induced DCM mice and patients. Further, our findings highlight that glycolytic metabolism is a critical contributor to T-cell dysfunction and DCM immunopathogenesis. Our data position the modulation of the metabolism as a central integrator for T-cell function, representing a promising strategy against autoimmune-mediated DCM progression.
Collapse
Affiliation(s)
- Jian Wu
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Ping Sun
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China; Department of Ultrasound, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Qi Chen
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Yong Sun
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Ming Shi
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang Province, China
| | - Ge Mang
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Shan Yu
- Department of Pathology, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yang Zheng
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Zhaoying Li
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Meng Sun
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Shaohong Fang
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - Yongxiang Zhang
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jinwei Tian
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| | - E Mingyan
- Department of Radiotherapy, the Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province, China
| | - Maomao Zhang
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China.
| | - Bo Yu
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin, Heilongjiang Province, China
| |
Collapse
|
38
|
Peng J, Sun BF, Chen CY, Zhou JY, Chen YS, Chen H, Liu L, Huang D, Jiang J, Cui GS, Yang Y, Wang W, Guo D, Dai M, Guo J, Zhang T, Liao Q, Liu Y, Zhao YL, Han DL, Zhao Y, Yang YG, Wu W. Single-cell RNA-seq highlights intra-tumoral heterogeneity and malignant progression in pancreatic ductal adenocarcinoma. Cell Res 2019; 29:725-738. [PMID: 31273297 DOI: 10.1038/s41422-019-0195-y] [Citation(s) in RCA: 700] [Impact Index Per Article: 116.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/10/2019] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer featured with high intra-tumoral heterogeneity and poor prognosis. To comprehensively delineate the PDAC intra-tumoral heterogeneity and the underlying mechanism for PDAC progression, we employed single-cell RNA-seq (scRNA-seq) to acquire the transcriptomic atlas of 57,530 individual pancreatic cells from primary PDAC tumors and control pancreases, and identified diverse malignant and stromal cell types, including two ductal subtypes with abnormal and malignant gene expression profiles respectively, in PDAC. We found that the heterogenous malignant subtype was composed of several subpopulations with differential proliferative and migratory potentials. Cell trajectory analysis revealed that components of multiple tumor-related pathways and transcription factors (TFs) were differentially expressed along PDAC progression. Furthermore, we found a subset of ductal cells with unique proliferative features were associated with an inactivation state in tumor-infiltrating T cells, providing novel markers for the prediction of antitumor immune response. Together, our findings provide a valuable resource for deciphering the intra-tumoral heterogeneity in PDAC and uncover a connection between tumor intrinsic transcriptional state and T cell activation, suggesting potential biomarkers for anticancer treatment such as targeted therapy and immunotherapy.
Collapse
Affiliation(s)
- Junya Peng
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, 100730, Beijing, China
| | - Bao-Fa Sun
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Chuan-Yuan Chen
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jia-Yi Zhou
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yu-Sheng Chen
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Hao Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, 100730, Beijing, China
| | - Lulu Liu
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, 100730, Beijing, China
| | - Dan Huang
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, 100730, Beijing, China
| | - Jialin Jiang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, 100730, Beijing, China
| | - Guan-Shen Cui
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Ying Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Wenze Wang
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, 100730, Beijing, China
| | - Dan Guo
- Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, 100730, Beijing, China.,Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, 100730, Beijing, China
| | - Menghua Dai
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, 100730, Beijing, China
| | - Junchao Guo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, 100730, Beijing, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, 100730, Beijing, China
| | - Quan Liao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, 100730, Beijing, China
| | - Yi Liu
- Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Yong-Liang Zhao
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Da-Li Han
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China.,University of Chinese Academy of Sciences, 100049, Beijing, China.,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, 100730, Beijing, China. .,Tsinghua University-Peking University Joint Center for Life Sciences, School of Medicine, Tsinghua University, 100084, Beijing, China.
| | - Yun-Gui Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, 100101, Beijing, China. .,University of Chinese Academy of Sciences, 100049, Beijing, China. .,Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Wenming Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, 100730, Beijing, China.
| |
Collapse
|
39
|
Schultheiss HP, Fairweather D, Caforio ALP, Escher F, Hershberger RE, Lipshultz SE, Liu PP, Matsumori A, Mazzanti A, McMurray J, Priori SG. Dilated cardiomyopathy. Nat Rev Dis Primers 2019; 5:32. [PMID: 31073128 PMCID: PMC7096917 DOI: 10.1038/s41572-019-0084-1] [Citation(s) in RCA: 392] [Impact Index Per Article: 65.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Dilated cardiomyopathy (DCM) is a clinical diagnosis characterized by left ventricular or biventricular dilation and impaired contraction that is not explained by abnormal loading conditions (for example, hypertension and valvular heart disease) or coronary artery disease. Mutations in several genes can cause DCM, including genes encoding structural components of the sarcomere and desmosome. Nongenetic forms of DCM can result from different aetiologies, including inflammation of the myocardium due to an infection (mostly viral); exposure to drugs, toxins or allergens; and systemic endocrine or autoimmune diseases. The heterogeneous aetiology and clinical presentation of DCM make a correct and timely diagnosis challenging. Echocardiography and other imaging techniques are required to assess ventricular dysfunction and adverse myocardial remodelling, and immunological and histological analyses of an endomyocardial biopsy sample are indicated when inflammation or infection is suspected. As DCM eventually leads to impaired contractility, standard approaches to prevent or treat heart failure are the first-line treatment for patients with DCM. Cardiac resynchronization therapy and implantable cardioverter-defibrillators may be required to prevent life-threatening arrhythmias. In addition, identifying the probable cause of DCM helps tailor specific therapies to improve prognosis. An improved aetiology-driven personalized approach to clinical care will benefit patients with DCM, as will new diagnostic tools, such as serum biomarkers, that enable early diagnosis and treatment.
Collapse
Affiliation(s)
- Heinz-Peter Schultheiss
- Institute for Cardiac Diagnostics and Therapy (IKDT), Berlin, Germany. .,Department of Cardiology, Charité-Universitaetsmedizin Berlin, Berlin, Germany.
| | - DeLisa Fairweather
- Mayo Clinic, Department of Cardiovascular Medicine, Jacksonville, FL, USA.
| | - Alida L. P. Caforio
- 0000 0004 1757 3470grid.5608.bDivision of Cardiology, Department of Cardiological Thoracic and Vascular Sciences and Public Health, University of Padua, Padova, Italy
| | - Felicitas Escher
- grid.486773.9Institute for Cardiac Diagnostics and Therapy (IKDT), Berlin, Germany ,0000 0001 2218 4662grid.6363.0Department of Cardiology, Charité–Universitaetsmedizin Berlin, Berlin, Germany ,0000 0004 5937 5237grid.452396.fDZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Ray E. Hershberger
- 0000 0001 2285 7943grid.261331.4Divisions of Human Genetics and Cardiovascular Medicine in the Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH USA
| | - Steven E. Lipshultz
- 0000 0004 1936 9887grid.273335.3Department of Pediatrics, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY USA ,0000 0000 9958 7286grid.413993.5Oishei Children’s Hospital, Buffalo, NY USA ,Roswell Park Comprehensive Cancer Center, Buffalo, NY USA
| | - Peter P. Liu
- 0000 0001 2182 2255grid.28046.38University of Ottawa Heart Institute, Ottawa, Ontario Canada
| | - Akira Matsumori
- grid.410835.bClinical Research Center, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Andrea Mazzanti
- 0000 0004 1762 5736grid.8982.bDepartment of Molecular Medicine, University of Pavia, Pavia, Italy ,Department of Molecular Cardiology, IRCCS ICS Maugeri, Pavia, Italy
| | - John McMurray
- 0000 0001 2193 314Xgrid.8756.cBritish Heart Foundation (BHF) Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Silvia G. Priori
- 0000 0004 1762 5736grid.8982.bDepartment of Molecular Medicine, University of Pavia, Pavia, Italy ,Department of Molecular Cardiology, IRCCS ICS Maugeri, Pavia, Italy
| |
Collapse
|
40
|
Saad NS, Elnakish MT, Ahmed AAE, Janssen PML. Protein Kinase A as a Promising Target for Heart Failure Drug Development. Arch Med Res 2018; 49:530-537. [PMID: 30642654 PMCID: PMC6451668 DOI: 10.1016/j.arcmed.2018.12.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/13/2018] [Indexed: 12/24/2022]
Abstract
Heart failure (HF) is a clinical syndrome characterized by impaired ability of the heart to fill or eject blood. HF is rather prevalent and it represents the foremost reason of hospitalization in the United States. The costs linked to HF overrun those of all other causes of disabilities, and death in the United States and all over the developed as well as the developing countries which amplify the supreme significance of its prevention. Protein kinase (PK) A plays multiple roles in heart functions including, contraction, metabolism, ion fluxes, and gene transcription. Altered PKA activity is likely to cause the progression to cardiomyopathy and HF. Thus, this review is intended to focus on the roles of PKA and PKA-mediated signal transduction in the healthy heart as well as during the development of HF. Furthermore, the impact of cardiac PKA inhibition/activation will be highlighted to identify PKA as a potential target for the HF drug development.
Collapse
Affiliation(s)
- Nancy S Saad
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Mohammad T Elnakish
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Amany A E Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Paul M L Janssen
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
41
|
Regulatory Role of CD4 + T Cells in Myocarditis. J Immunol Res 2018; 2018:4396351. [PMID: 30035131 PMCID: PMC6032977 DOI: 10.1155/2018/4396351] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/21/2018] [Accepted: 05/29/2018] [Indexed: 12/13/2022] Open
Abstract
Myocarditis is an important cause of heart failure in young patients. Autoreactive, most often, infection-triggered CD4+ T cells were confirmed to be critical for myocarditis induction. Due to a defect in clonal deletion of heart-reactive CD4+ T cells in the thymus of mice and humans, significant numbers of heart-specific autoreactive CD4+ T cells circulate in the blood. Normally, regulatory T cells maintain peripheral tolerance and prevent spontaneous myocarditis development. In the presence of tissue damage and innate immune activation, however, activated self-antigen-loaded dendritic cells promote CD4+ effector T cell expansion and myocarditis. So far, a direct pathogenic role has been described for both activated Th17 and Th1 effector CD4+ T cell subsets, though Th1 effector T cell-derived interferon-gamma was shown to limit myocarditis severity and prevent transition to inflammatory dilated cardiomyopathy. Interestingly, recent observations point out that various CD4+ T cell subsets demonstrate high plasticity in maintaining immune homeostasis and modulating disease phenotypes in myocarditis. These subsets include Th1 and Th17 effector cells and regulatory T cells, despite the fact that there are still sparse and controversial data on the specific role of FOXP3-expressing Treg in myocarditis. Understanding the specific roles of these T cell populations at different stages of the disease progression might provide a key for the development of successful therapeutic strategies.
Collapse
|
42
|
Demographic features and prevalence of myocarditis in patients undergoing transarterial endomyocardial biopsy for unexplained cardiomyopathy. Egypt Heart J 2018; 69:29-35. [PMID: 29622952 PMCID: PMC5839358 DOI: 10.1016/j.ehj.2016.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/24/2016] [Indexed: 11/21/2022] Open
Abstract
Background The diagnosis of myocarditis is still a challenge. The true incidence of the disease is unknown due to great variation in clinical manifestations. Objective The aim of this study was to identify the demographic features and in-hospital prevalence of myocarditis in patients undergoing transarterial endomyocardial biopsy (EMB) for unexplained cardiomyopathy. Patients and methods This was a prospective observational study. We recruited all patients with unexplained cardiomyopathy presented at Assiut University Hospital from January 2014 till December 2014. The inclusion criteria were namely acute symptoms of heart failure, worsening of ejection fraction (EF) despite optimized therapy, hemodynamically significant arrhythmias, heart failure with concurrent rash, fever, or peripheral eosinophilia and new-onset cardiomyopathy in the presence of known amyloidosis. We excluded patients with uncontrolled hypertension, diabetes mellitus, ischemic, congenital, rheumatic heart disease, peripartum cardiomyopathy, cardiotoxic exposure, alcoholic and familial cardiomyopathies. All patients were subjected to full examination with ECG, echocardiography and coronary angiography, and then 3 EMB samples via femoral artery were taken from the LV. The histopathological examination of all biopsies was done. Results Out of the 1100 patients admitted to our department, 15 patients (1.4%), who had unexplained cardiomyopathy were included in our study. Seventy-three percent were males with mean age 37.8 ± 17 y. 87% were from rural areas, and 73.3% presented with dyspnea grade III to IV for a duration period that varied from 2 to 8 weeks. 33% had an EF > 40%. 33 EMB samples from 11 patients were examined. 7 out of 11 patients (63.6%) proved to have myocarditis on pathological examination, 5 of them had active myocarditis, 1 had chronic myocarditis and 1 had borderline myocarditis. Three patients (27.3%) had no pathological evidence of inflammation and one patient (9.1%) had cardiac amyloidosis. Four out of 15 patients (26.7%) did not undergo EMB because of LV thrombus or bleeding tendency. None of our patients had any complication from EMB. Conclusion The in-hospital prevalence of myocarditis is high among patients with unexplained cardiomyopathy. EMB via femoral artery is safe and essential in confirming the diagnosis.
Collapse
|
43
|
Zeng Z, Wang K, Li Y, Xia N, Nie S, Lv B, Zhang M, Tu X, Li Q, Tang T, Cheng X. Down-regulation of microRNA-451a facilitates the activation and proliferation of CD4 + T cells by targeting Myc in patients with dilated cardiomyopathy. J Biol Chem 2016; 292:6004-6013. [PMID: 27974462 DOI: 10.1074/jbc.m116.765107] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/06/2016] [Indexed: 11/06/2022] Open
Abstract
CD4+ T cells are abnormally activated in patients with dilated cardiomyopathy (DCM) and might be associated with the immunopathogenesis of the disease. However, the underlying mechanisms of CD4+ T cell activation remain largely undefined. Our aim was to investigate whether the dysregulation of microRNAs (miRNAs) was associated with CD4+ T cell activation in DCM. CD4+ T cells from DCM patients showed increased expression levels of CD25 and CD69 and enhanced proliferation in response to anti-CD3/28, indicating an activated state. miRNA profiling analysis of magnetically sorted CD4+ T cells revealed a distinct pattern of miRNA expression in CD4+ T cells from DCM patients compared with controls. The level of miRNA-451a (miR-451a) was significantly decreased in the CD4+ T cells of DCM patients compared with that of the controls. The transfection of T cells with an miR-451a mimic inhibited their activation and proliferation, whereas an miR-451a inhibitor produced the opposite effects. Myc was directly inhibited by miR-451a via interaction with its 3'-UTR, thus identifying it as an miR-451a target in T cells. The knockdown of Myc suppressed the activation and proliferation of T cells, and the expression of Myc was significantly up-regulated at the mRNA level in CD4+ T cells from patients with DCM. A strong inverse correlation was observed between the Myc mRNA expression and miR-451a transcription level. Our data suggest that the down-regulation of miR-451a contributes to the activation and proliferation of CD4+ T cells by targeting the transcription factor Myc in DCM patients and may contribute to the immunopathogenesis of DCM.
Collapse
Affiliation(s)
- Zhipeng Zeng
- From the Laboratory of Cardiovascular Immunology, Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, 430022 Wuhan and
| | - Ke Wang
- From the Laboratory of Cardiovascular Immunology, Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, 430022 Wuhan and
| | - Yuanyuan Li
- From the Laboratory of Cardiovascular Immunology, Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, 430022 Wuhan and
| | - Ni Xia
- From the Laboratory of Cardiovascular Immunology, Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, 430022 Wuhan and
| | - Shaofang Nie
- From the Laboratory of Cardiovascular Immunology, Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, 430022 Wuhan and
| | - Bingjie Lv
- From the Laboratory of Cardiovascular Immunology, Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, 430022 Wuhan and
| | - Min Zhang
- From the Laboratory of Cardiovascular Immunology, Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, 430022 Wuhan and
| | - Xin Tu
- the Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Qianqian Li
- the Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Center, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, 430074 Wuhan, China
| | - Tingting Tang
- From the Laboratory of Cardiovascular Immunology, Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, 430022 Wuhan and
| | - Xiang Cheng
- From the Laboratory of Cardiovascular Immunology, Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Institute of Cardiology, Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, 430022 Wuhan and
| |
Collapse
|
44
|
Heymans S, Eriksson U, Lehtonen J, Cooper LT. The Quest for New Approaches in Myocarditis and Inflammatory Cardiomyopathy. J Am Coll Cardiol 2016; 68:2348-2364. [PMID: 27884253 DOI: 10.1016/j.jacc.2016.09.937] [Citation(s) in RCA: 228] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 12/15/2022]
Abstract
Myocarditis is a diverse group of heart-specific immune processes classified by clinical and histopathological manifestations. Up to 40% of dilated cardiomyopathy is associated with inflammation or viral infection. Recent experimental studies revealed complex regulatory roles for several microribonucleic acids and T-cell and macrophage subtypes. Although the prevalence of myocarditis remained stable between 1990 and 2013 at about 22 per 100,000 people, overall mortality from cardiomyopathy and myocarditis has decreased since 2005. The diagnostic and prognostic value of cardiac magnetic resonance has increased with new, higher-sensitivity sequences. Positron emission tomography has emerged as a useful tool for diagnosis of cardiac sarcoidosis. The sensitivity of endomyocardial biopsy may be increased, especially in suspected sarcoidosis, by the use of electrogram guidance to target regions of abnormal signal. Investigational treatments on the basis of mechanistic advances are entering clinical trials. Revised management recommendations regarding athletic participation after acute myocarditis have heightened the importance of early diagnosis.
Collapse
Affiliation(s)
- Stephane Heymans
- Department of Cardiology, CARIM, Maastricht University Medical Centre, Maastricht, the Netherlands
| | - Urs Eriksson
- GZO Regional Health Center, Wetzikon & Center for Molecular Cardiology, University of Zurich, Zurich, Switzerland
| | | | - Leslie T Cooper
- Cardiovascular Department, Mayo Clinic, Jacksonville, Florida.
| |
Collapse
|
45
|
Tsunoda I, Sato F, Omura S, Fujita M, Sakiyama N, Park AM. Three immune-mediated disease models induced by Theiler's virus: Multiple sclerosis, seizures and myocarditis. CLINICAL & EXPERIMENTAL NEUROIMMUNOLOGY 2016; 7:330-345. [PMID: 28603559 PMCID: PMC5464738 DOI: 10.1111/cen3.12341] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Theiler's murine encephalomyelitis virus (TMEV) infection has been used as a viral model for multiple sclerosis (MS), as TMEV can induce chronic inflammatory demyelinating lesions with viral persistence in the spinal cord of SJL/J mice. In contrast, when C57BL/6 mice are infected with TMEV, the mice can clear the virus from the central nervous system (CNS), without viral persistence or demyelination, but develop seizures and hippocampal sclerosis, which has been used as a viral model for seizures/epilepsy. In the two TMEV-induced CNS disease models, not only viral infection, but also immune responses contribute to the pathogenesis. Interestingly, acquired immunity plays an effector role in the MS model, whereas innate immunity appears to contribute to the development of seizures. Recently, we have established the third TMEV-induced disease model, a mouse model for viral myocarditis, using C3H mice. TMEV-induced myocarditis is a triphasic disease, which mimics human myocarditis; phase I, mediated by viral replication in the heart and innate immunity; phase II, mediated by acquired immunity; and phase III, resulted from cardiac fibrosis. The genetic susceptibility to the aforementioned three models (MS, seizures and myocarditis) differs among mouse strains. We have compared and contrasted the three models induced by one single pathogen, TMEV, particularly in regard to the roles of T helper cells and natural killer T cells, which will give an insight into how interactions between the immune system and the host's genetic background determine the tissue tropism of virus and the development of virus-induced organ-specific immunopathology.
Collapse
Affiliation(s)
- Ikuo Tsunoda
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Fumitaka Sato
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Seiichi Omura
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Mitsugu Fujita
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Namie Sakiyama
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Ah-Mee Park
- Department of Microbiology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| |
Collapse
|
46
|
Verdonschot J, Hazebroek M, Merken J, Debing Y, Dennert R, Brunner-La Rocca HP, Heymans S. Relevance of cardiac parvovirus B19 in myocarditis and dilated cardiomyopathy: review of the literature. Eur J Heart Fail 2016; 18:1430-1441. [PMID: 27748022 DOI: 10.1002/ejhf.665] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/24/2016] [Accepted: 08/29/2016] [Indexed: 12/24/2022] Open
Abstract
Over the last decade, parvovirus B19 (B19V) has frequently been linked to the pathogenesis of myocarditis (MC) and its progression towards dilated cardiomyopathy (DCM). The exact role of the presence of B19V and its load remains controversial, as this virus is also found in the heart of healthy subjects. Moreover, the prognostic relevance of B19V prevalence in endomyocardial biopsies still remains unclear. As a result, it is unclear whether the presence of B19V should be treated. This review provides an overview of recent literature investigating the presence of B19V and its pathophysiological relevance in MC and DCM, as well as in normal hearts. In brief, no difference in B19V prevalence is observed between MC/DCM and healthy control hearts. Therefore, the question remains open whether and how cardiac B19V may be of pathogenetic importance. Findings suggest that B19V is aetiologically relevant either in the presence of other cardiotropic viruses, or when B19V load is high and/or actively replicating, which both may maintain myocardial (low-grade) inflammation. Therefore, future studies should focus on the prognostic relevance of the viral load, replicative status and virus co-infections. In addition, the immunogenetic background of MC/DCM patients that makes them susceptible to develop heart failure upon presence of B19V should be more thoroughly investigated.
Collapse
Affiliation(s)
- Job Verdonschot
- Department of Cardiology, CARIM, Maastricht University Medical Centre, the Netherlands
| | - Mark Hazebroek
- Department of Cardiology, CARIM, Maastricht University Medical Centre, the Netherlands
| | - Jort Merken
- Department of Cardiology, CARIM, Maastricht University Medical Centre, the Netherlands
| | - Yannick Debing
- Department of Cardiology, CARIM, Maastricht University Medical Centre, the Netherlands
| | - Robert Dennert
- Department of Cardiology, CARIM, Maastricht University Medical Centre, the Netherlands
| | | | - Stephane Heymans
- Department of Cardiology, CARIM, Maastricht University Medical Centre, the Netherlands
| |
Collapse
|
47
|
Targeted Therapy for Acute Autoimmune Myocarditis with Nano-Sized Liposomal FK506 in Rats. PLoS One 2016; 11:e0160944. [PMID: 27501378 PMCID: PMC4976871 DOI: 10.1371/journal.pone.0160944] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2016] [Accepted: 07/27/2016] [Indexed: 11/19/2022] Open
Abstract
Immunosuppressive agents are used for the treatment of immune-mediated myocarditis; however, the need to develop a more effective therapeutic approach remains. Nano-sized liposomes may accumulate in and selectively deliver drugs to an inflammatory lesion with enhanced vascular permeability. The aims of this study were to investigate the distribution of liposomal FK506, an immunosuppressive drug encapsulated within liposomes, and the drug’s effects on cardiac function in a rat experimental autoimmune myocarditis (EAM) model. We prepared polyethylene glycol-modified liposomal FK506 (mean diameter: 109.5 ± 4.4 nm). We induced EAM by immunization with porcine myosin and assessed the tissue distribution of the nano-sized beads and liposomal FK506 in this model. After liposomal or free FK506 was administered on days 14 and 17 after immunization, the cytokine expression in the rat hearts along with the histological findings and hemodynamic parameters were determined on day 21. Ex vivo fluorescent imaging revealed that intravenously administered fluorescent-labeled nano-sized beads had accumulated in myocarditic but not normal hearts on day 14 after immunization and thereafter. Compared to the administration of free FK506, FK506 levels were increased in both the plasma and hearts of EAM rats when liposomal FK506 was administered. The administration of liposomal FK506 markedly suppressed the expression of cytokines, such as interferon-γ and tumor necrosis factor-α, and reduced inflammation and fibrosis in the myocardium on day 21 compared to free FK506. The administration of liposomal FK506 also markedly ameliorated cardiac dysfunction on day 21 compared to free FK506. Nano-sized liposomes may be a promising drug delivery system for targeting myocarditic hearts with cardioprotective agents.
Collapse
|
48
|
Abstract
Inflammation is essential in the initial development and progression of many cardiovascular diseases involving innate and adaptive immune responses. The role of CD4(+)CD25(+)FOXP3(+) regulatory T (TREG) cells in the modulation of inflammation and immunity has received increasing attention. Given the important role of TREG cells in the induction and maintenance of immune homeostasis and tolerance, dysregulation in the generation or function of TREG cells can trigger abnormal immune responses and lead to pathology. A wealth of evidence from experimental and clinical studies has indicated that TREG cells might have an important role in protecting against cardiovascular disease, in particular atherosclerosis and abdominal aortic aneurysm. In this Review, we provide an overview of the roles of TREG cells in the pathogenesis of a number of cardiovascular diseases, including atherosclerosis, hypertension, ischaemic stroke, abdominal aortic aneurysm, Kawasaki disease, pulmonary arterial hypertension, myocardial infarction and remodelling, postischaemic neovascularization, myocarditis and dilated cardiomyopathy, and heart failure. Although the exact molecular mechanisms underlying the cardioprotective effects of TREG cells are still to be elucidated, targeted therapies with TREG cells might provide a promising and novel future approach to the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Xiao Meng
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, 107 Wen Hua Xi Road, Jinan, Shandong 250012, China
| | - Jianmin Yang
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, 107 Wen Hua Xi Road, Jinan, Shandong 250012, China
| | - Mei Dong
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, 107 Wen Hua Xi Road, Jinan, Shandong 250012, China
| | - Kai Zhang
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, 107 Wen Hua Xi Road, Jinan, Shandong 250012, China
| | - Eric Tu
- Mucosal Immunology Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892, USA
| | - Qi Gao
- Department of Clinical Laboratory, Shandong Provincial Hospital affiliated to Shandong University, 324 Jingwu Weiqi Road, Jinan 250021, China
| | - Wanjun Chen
- Mucosal Immunology Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892, USA
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, 107 Wen Hua Xi Road, Jinan, Shandong 250012, China
| | - Yun Zhang
- The Key Laboratory of Cardiovascular Remodelling and Function Research, Chinese Ministry of Education and Chinese Ministry of Health, Qilu Hospital, Shandong University, 107 Wen Hua Xi Road, Jinan, Shandong 250012, China
| |
Collapse
|
49
|
Begieneman MPV, Emmens RW, Rijvers L, Kubat B, Paulus WJ, Vonk ABA, Rozendaal L, Biesbroek PS, Wouters D, Zeerleder S, van Ham M, Heymans S, van Rossum AC, Niessen HWM, Krijnen PAJ. Ventricular myocarditis coincides with atrial myocarditis in patients. Cardiovasc Pathol 2015; 25:141-8. [PMID: 26764148 DOI: 10.1016/j.carpath.2015.12.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/06/2015] [Accepted: 12/01/2015] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Atrial fibrillation (AF) is a common complication in myocarditis. Atrial inflammation has been suggested to play an important role in the pathophysiology of AF. However, little is known about the occurrence of atrial inflammation in myocarditis patients. Here, we analyzed inflammatory cell numbers in the atria of myocarditis patients without symptomatic AF. METHODS Cardiac tissue was obtained postmortem from lymphocytic myocarditis patients (n=6), catecholamine-induced myocarditis patients (n=5), and control patients without pathological evidence of heart disease (n=5). Tissue sections of left and right ventricle and left and right atrium were stained for myeloperoxidase (neutrophilic granulocytes), CD45 (lymphocytes), and CD68 (macrophages). These cells were subsequently quantified in atrial and ventricular myocardium and atrial adipose tissue. RESULTS In lymphocytic myocarditis patients, a significant increase was observed for lymphocytes in the left atrial adipose tissue. In catecholamine-induced myocarditis patients, significant increases were found in the atria for all three inflammatory cell types. Infiltrating inflammatory cell numbers in the atrial myocardium correlated positively with those in the ventricles, especially in catecholamine-induced myocarditis patients. CONCLUSIONS To a varying extent, atrial myocarditis occurs concurrently with ventricular myocarditis in patients diagnosed with myocarditis of different etiology. This provides a substrate that potentially predisposes myocarditis patients to the development of AF and subsequent complications such as sudden cardiac death and heart failure.
Collapse
Affiliation(s)
- Mark P V Begieneman
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands; ICaR-VU, VU University Medical Center, Amsterdam, the Netherlands; Dutch Forensic Institute, The Hague, the Netherlands
| | - Reindert W Emmens
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands; ICaR-VU, VU University Medical Center, Amsterdam, the Netherlands; Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands.
| | - Liza Rijvers
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands
| | - Bela Kubat
- Dutch Forensic Institute, The Hague, the Netherlands
| | - Walter J Paulus
- ICaR-VU, VU University Medical Center, Amsterdam, the Netherlands; Department of Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Alexander B A Vonk
- Department of Cardiac Surgery, VU University Medical Center, Amsterdam, the Netherlands
| | - Lawrence Rozendaal
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands; ICaR-VU, VU University Medical Center, Amsterdam, the Netherlands
| | - P Stefan Biesbroek
- Department of Cardiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Diana Wouters
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands
| | - Sacha Zeerleder
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands; Department of Hematology, Academic Medical Center, Amsterdam, the Netherlands
| | - Marieke van Ham
- Department of Immunopathology, Sanquin Research, Amsterdam, the Netherlands
| | - Stephane Heymans
- Department of Cardiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Albert C van Rossum
- ICaR-VU, VU University Medical Center, Amsterdam, the Netherlands; Department of Cardiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Hans W M Niessen
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands; ICaR-VU, VU University Medical Center, Amsterdam, the Netherlands; Department of Cardiac Surgery, VU University Medical Center, Amsterdam, the Netherlands
| | - Paul A J Krijnen
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands; ICaR-VU, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
50
|
Boivin V, Beyersdorf N, Palm D, Nikolaev VO, Schlipp A, Müller J, Schmidt D, Kocoski V, Kerkau T, Hünig T, Ertl G, Lohse MJ, Jahns R. Novel receptor-derived cyclopeptides to treat heart failure caused by anti-β1-adrenoceptor antibodies in a human-analogous rat model. PLoS One 2015; 10:e0117589. [PMID: 25700031 PMCID: PMC4336331 DOI: 10.1371/journal.pone.0117589] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 12/28/2014] [Indexed: 01/14/2023] Open
Abstract
Despite recent therapeutic advances the prognosis of heart failure remains poor. Recent research suggests that heart failure is a heterogeneous syndrome and that many patients have stimulating auto-antibodies directed against the second extracellular loop of the β1 adrenergic receptor (β1EC2). In a human-analogous rat model such antibodies cause myocyte damage and heart failure. Here we used this model to test a novel antibody-directed strategy aiming to prevent and/or treat antibody-induced cardiomyopathy. To generate heart failure, we immunised n = 76/114 rats with a fusion protein containing the human β1EC2 (amino-acids 195-225) every 4 weeks; n = 38/114 rats were control-injected with 0.9% NaCl. Intravenous application of a novel cyclic peptide mimicking β1EC2 (β1EC2-CP, 1.0 mg/kg every 4 weeks) or administration of the β1-blocker bisoprolol (15 mg/kg/day orally) was initiated either 6 weeks (cardiac function still normal, prevention-study, n = 24 (16 treated vs. 8 untreated)) or 8.5 months after the 1st immunisation (onset of cardiomyopathy, therapy-study, n = 52 (40 treated vs. 12 untreated)); n = 8/52 rats from the therapy-study received β1EC2-CP/bisoprolol co-treatment. We found that β1EC2-CP prevented and (alone or as add-on drug) treated antibody-induced cardiac damage in the rat, and that its efficacy was superior to mono-treatment with bisoprolol, a standard drug in heart failure. While bisoprolol mono-therapy was able to stop disease-progression, β1EC2-CP mono-therapy -or as an add-on to bisoprolol- almost fully reversed antibody-induced cardiac damage. The cyclo¬peptide acted both by scavenging free anti-β1EC2-antibodies and by targeting β1EC2-specific memory B-cells involved in antibody-production. Our model provides the basis for the clinical translation of a novel double-acting therapeutic strategy that scavenges harmful anti-β1EC2-antibodies and also selectively depletes memory B-cells involved in the production of such antibodies. Treatment with immuno-modulating cyclopeptides alone or as an add-on to β1-blockade represents a promising new therapeutic option in immune-mediated heart failure.
Collapse
Affiliation(s)
- Valérie Boivin
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Rudolf-Virchow-Center/DFG-Research-Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
- Comprehensive Heart Failure Centre (CHFC), University Hospital of Würzburg, Würzburg, Germany
| | - Niklas Beyersdorf
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Dieter Palm
- Rudolf-Virchow-Center/DFG-Research-Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
| | | | - Angela Schlipp
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Rudolf-Virchow-Center/DFG-Research-Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
- Lehrstuhl Anatomie I, University of München (LMU), München, Germany
| | - Justus Müller
- Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Doris Schmidt
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Vladimir Kocoski
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Thomas Kerkau
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Thomas Hünig
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Georg Ertl
- Comprehensive Heart Failure Centre (CHFC), University Hospital of Würzburg, Würzburg, Germany
| | - Martin J. Lohse
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Rudolf-Virchow-Center/DFG-Research-Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
- Comprehensive Heart Failure Centre (CHFC), University Hospital of Würzburg, Würzburg, Germany
| | - Roland Jahns
- Institute of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany
- Rudolf-Virchow-Center/DFG-Research-Center for Experimental Biomedicine, University of Würzburg, Würzburg, Germany
- Comprehensive Heart Failure Centre (CHFC), University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|