1
|
Bogdanova O, Krause K, Pietschmann S, Kothe E. Drivers of fungal and bacterial communities in ectomycorrhizospheres of birch, oak, and pine in a former uranium mining site, Ronneburg, Germany. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:10786-10799. [PMID: 40172807 PMCID: PMC12014720 DOI: 10.1007/s11356-025-36330-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 03/23/2025] [Indexed: 04/04/2025]
Abstract
The impact of soil and tree species on fungal and bacterial communities was investigated in a former uranium mining area with field and pot studies of the mycorrhizospheres of birch (Betula pendula), oak (Quercus robur), and pine (Pinus sylvestris). At the initial stages of succession re-created in the pot experiment, tree-species-specific microbial communities were detected. The pot microbiomes showed lower diversity and evenness of fungi and bacteria as compared to field-grown trees. In the natural field setting, the fungal community both in bulk and rhizosphere soil consisted of mainly Thelephoraceae, Inocybaceae and Russulaceae. They contributed with Leotiaceae and Herpotrichiellaceae to 52-85% of overall abundances, showing the soil hyphae impact of ectomycorrhiza in the tree stand. The fungal communities and their distribution patterns reflected host tree specificity and successional stage of the ectomycorrhizosphere. In the bacterial community, the most abundant bacterial classes were Alphaproteobacteria, Acidobacteria, Ktedonobacteria, Bacteroidia, Gammaproteobacteria, and Phycisphaerae representing about 59-80% of all bacterial sequences. The bacterial communities correlated with soil chemical parameters, particularly the content of toxic metals, total nitrogen and C/N ratio. This study allowed to identify drivers for microbial community composition, which might be helpful to develop afforestation strategies in post-mining landscapes.
Collapse
Affiliation(s)
- Olga Bogdanova
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University Jena, Neugasse 25, 07743, Jena, Germany
| | - Katrin Krause
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University Jena, Neugasse 25, 07743, Jena, Germany.
| | - Sebastian Pietschmann
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University Jena, Neugasse 25, 07743, Jena, Germany
| | - Erika Kothe
- Institute of Microbiology, Microbial Communication, Friedrich Schiller University Jena, Neugasse 25, 07743, Jena, Germany
| |
Collapse
|
2
|
Contreras F, Rivero K, Rivas-Pardo JA, Liendo F, Segura R, Neira N, Arenas-Salinas M, Cortez-San Martín M, Arenas F. Biosynthesis of Gold Nanostructures and Their Virucidal Activity Against Influenza A Virus. Int J Mol Sci 2025; 26:1934. [PMID: 40076560 PMCID: PMC11899802 DOI: 10.3390/ijms26051934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Bacteria in natural environments often encounter high concentrations of metal ions, leading to the development of defense mechanisms such as chemical reduction. This process can result in the formation of nanostructures (NS) ranging from 1-100 nm, which have valuable properties for various applications, including as virucidal agents. Currently, metallic NS with virucidal activity are used in disinfectants and surface protection products. However, their production mainly relies on physical and chemical methods, which are often complex, toxic, and energy-intensive. A sustainable alternative is the biosynthesis of nanostructures. Our research focuses on the biosynthesis of gold nanostructures (AuNS) using environmental bacteria and their proteins, with the aim of exploring their potential as agents to destroy the influenza A virus. We screened bacteria under conditions with HAuCl4, identifying eight microorganisms capable of growing in high gold concentrations. Staphylococcus haemolyticus BNF01 showed the highest resistance and Au(III) reduction, growing up to 0.25 mM in HAuCl4. Bioinformatic analysis revealed five proteins with potential Au(III)-reductase activity, which were cloned and expressed in Escherichia coli. These proteins reduced gold to form AuNPs, which were purified, characterized for size, shape, and surface charge, and tested against influenza A, showing significant virucidal effects, likely due to interactions with viral proteins.
Collapse
Affiliation(s)
- Fernanda Contreras
- Laboratorio de Microbiología Molecular, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile; (F.C.); (K.R.); (N.N.)
| | - Katherine Rivero
- Laboratorio de Microbiología Molecular, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile; (F.C.); (K.R.); (N.N.)
| | - Jaime Andrés Rivas-Pardo
- Laboratorio de Genómica Microbiana, Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile;
| | - Fabiana Liendo
- Laboratorio de Electroanálisis, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile; (F.L.); (R.S.)
| | - Rodrigo Segura
- Laboratorio de Electroanálisis, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile; (F.L.); (R.S.)
| | - Nicole Neira
- Laboratorio de Microbiología Molecular, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile; (F.C.); (K.R.); (N.N.)
| | - Mauricio Arenas-Salinas
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca 3460000, Chile;
| | - Marcelo Cortez-San Martín
- Laboratorio de Virología Molecular y Control de Patógenos, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| | - Felipe Arenas
- Laboratorio de Microbiología Molecular, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile; (F.C.); (K.R.); (N.N.)
| |
Collapse
|
3
|
Heisi HD, Nkuna R, Matambo T. Rhizosphere microbial community structure and PICRUSt2 predicted metagenomes function in heavy metal contaminated sites: A case study of the Blesbokspruit wetland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178147. [PMID: 39733577 DOI: 10.1016/j.scitotenv.2024.178147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 11/17/2024] [Accepted: 12/14/2024] [Indexed: 12/31/2024]
Abstract
This study investigated the microbial diversity inhabiting the roots (rhizosphere) of macrophytes thriving along the Blesbokspruit wetland, South Africa's least conserved Ramsar site. The wetland suffers from decades of pollution from mining wastewater, agriculture, and sewage. The current study focused on three macrophytes: Phragmites australis (common reed), Typha capensis (bulrush), and Eichhornia crassipes (water hyacinth). The results revealed a greater abundance and diversity of microbes (Bacteria and Fungi) associated with the free-floating E. crassipes compared to P. australis and T. capensis. Furthermore, the correlation between microbial abundance and metals, showed a strong correlation between fungal communities and metals such as nickel (Ni) and arsenic (As), while bacterial communities correlated more with lead (Pb) and chromium (Cr). The functional analysis predicted by PICRUSt2 identified genes related to xenobiotic degradation, suggesting the potential of these microbes to break down pollutants. Moreover, specific bacterial groups - Proteobacteria, Verrucomicrobia, Cyanobacteria, and Bacteroidetes - were linked to this degradation pathway. These findings suggest a promising avenue for microbe-assisted phytoremediation, a technique that utilizes plants and their associated microbes to decontaminate polluted environments.
Collapse
Affiliation(s)
- Hlalele D Heisi
- Centre for Competence in Environmental Biotechnology, College of Sciences, Environment and Technology, University of South Africa, Florida Science Campus, South Africa.
| | - Rosina Nkuna
- Centre for Competence in Environmental Biotechnology, College of Sciences, Environment and Technology, University of South Africa, Florida Science Campus, South Africa
| | - Tonderayi Matambo
- Centre for Competence in Environmental Biotechnology, College of Sciences, Environment and Technology, University of South Africa, Florida Science Campus, South Africa
| |
Collapse
|
4
|
Xu LL, McIlroy SE, Ni Y, Guibert I, Chen J, Rocha U, Baker DM, Panagiotou G. Chemical pollution drives taxonomic and functional shifts in marine sediment microbiome, influencing benthic metazoans. ISME COMMUNICATIONS 2025; 5:ycae141. [PMID: 40008244 PMCID: PMC11851482 DOI: 10.1093/ismeco/ycae141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/17/2024] [Accepted: 02/12/2025] [Indexed: 02/27/2025]
Abstract
Microbial communities in marine sediments contribute significantly to the overall health and resiliency of marine ecosystems. However, increased human disturbance undermines biodiversity and, hence, natural functionality provided by marine sediments. Here, through a deep shotgun metagenomics sequencing of the sediment microbiome and COI metabarcoding of benthic metazoans, we demonstrate that >50% of the microorganisms' and metazoan's taxonomic variation can be explained by specific chemical pollution indices. Interestingly, there was a significant correlation between the similarity in microbiome communities' taxonomical and functional attributes and the similarity of benthic metazoans community composition. Furthermore, mediation analysis was conducted to evaluate the microbiome-mediated indirect effect, suggesting that microbial species and functions accounted for 36% and 26%, respectively, of the total effect of pollution on the benthic metazoans. Our study introduces a multi-level perspective for future studies in urbanized coastal areas to explore marine ecosystems, revealing the impact of pollution stress on microbiome communities and their critical biogeochemical functions, which in turn may influence macrofaunal composition.
Collapse
Affiliation(s)
- Lin-Lin Xu
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Adolf-Reichwein-Strasse 23, Jena, Thuringia, 07745, Germany
| | - Shelby E McIlroy
- The Swire Institute of Marine Science, The University of Hong Kong, Cape D’Aguilar Road, Shek O, Hong Kong SAR, P.R. China
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, P.R. China
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, P.R. China
| | - Yueqiong Ni
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Adolf-Reichwein-Strasse 23, Jena, Thuringia, 07745, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Fürstengraben 1, Jena, Thuringia, 07743, Germany
- Shanghai Key Laboratory of Diabetes Mellitus, Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 227 South Chongqing Road, Shanghai, 200025, P.R. China
| | - Isis Guibert
- The Swire Institute of Marine Science, The University of Hong Kong, Cape D’Aguilar Road, Shek O, Hong Kong SAR, P.R. China
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, P.R. China
| | - Jiarui Chen
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-Sen University, Zhongshaner Rd 74, Guangdong, Guangzhou, 510080, P.R. China
| | - Ulisses Rocha
- Department of Applied Microbial Ecology, Helmholtz Centre for Environmental Research—UFZ GmbH, Permoserstrasse 15, Leipzig, Saxony, 04318, Germany
| | - David M Baker
- The Swire Institute of Marine Science, The University of Hong Kong, Cape D’Aguilar Road, Shek O, Hong Kong SAR, P.R. China
- School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong SAR, P.R. China
| | - Gianni Panagiotou
- Microbiome Dynamics, Leibniz Institute for Natural Product Research and Infection Biology—Hans Knöll Institute, Adolf-Reichwein-Strasse 23, Jena, Thuringia, 07745, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Fürstengraben 1, Jena, Thuringia, 07743, Germany
- Faculty of Biological Sciences, Friedrich Schiller University, Fürstengraben 1, Jena, Thuringia, 07743, Germany
| |
Collapse
|
5
|
Hao W, Wang D, Yu M, Cai Y, Wang Y. Analysis of changes and influencing factors of stablization treatment effects and bioavailability after freeze-thaw: a case study of Pb-contaminated soil in a non-ferrous metal factory in Northeast China. Front Microbiol 2024; 15:1512899. [PMID: 39741591 PMCID: PMC11685109 DOI: 10.3389/fmicb.2024.1512899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/22/2024] [Indexed: 01/03/2025] Open
Abstract
Introduction Solidification/Stabilization techniques are commonly used for the containment and isolation of Pb-contaminated soil, but they cannot reduce the amount of contaminants. Freeze - thaw after stabilization may affect Pb's environmental behavior and increase the uncertainty of environmental risk. Methods In vitro experiments can simulate the bioavailability of heavy metals to the human body, accurately assessing their environmental health risks. In this study, soil samples from Pbcontaminated site are collected from a non-ferrous metal plant in Northeastern China. Through the results of stabilization and freeze-thaw after stabilization experiments, analyzing the changes of physicochemical property, Pb treatment effects (total concentration, leaching concentration, and occurrence forms) and microbial communities, and studying the influencing factors of Pb's bioavailability. Result and discussion The results show that stabilization and freeze - thaw after stabilization directly alter soil physicochemical property, thereby affecting the leaching and occurrence form of Pb and microbial communities, and closely related to changes in bioavailability of Pb. Both stabilization and freeze-thaw treatment reduced the leaching concentration of Pb, decreased the proportion of available Pb (acid-soluble state, oxidation state and reduction state), increased the bioavailability of Pb in the gastric phase, but decreased in the intestinal phase; And the dominant bacterial phylum in the soil changed to Firmicutes, the dominant bacterial genus changed to Bacillus; The analysis of the results shows that the bioavailability of Pb is related to soil pH, cation exchange capacity (CEC), soil organic matter (SOM), soil moisture content (SMC), Pb (leaching, acid soluble state, oxidation state, residual state), types of microorganisms in soil.
Collapse
Affiliation(s)
- Wangwang Hao
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun, China
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, China
| | - Dongdong Wang
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, China
| | - Miao Yu
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, China
| | - Yun Cai
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, China
| | - Yu Wang
- Technical Centre for Soil, Agricultural and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, China
| |
Collapse
|
6
|
Braga Martins Gonçalves EC, Gomes de Oliveira Paranhos A, Rezende Pereira A, de Queiroz Silva S, de Aquino SF. Dynamics of antibiotic resistance agents during sludge alkalinization treatment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125130. [PMID: 39414064 DOI: 10.1016/j.envpol.2024.125130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/04/2024] [Accepted: 10/13/2024] [Indexed: 10/18/2024]
Abstract
This study aimed to assess the removal of antimicrobial resistance agents (antibiotics, antibiotic-resistant bacteria - ARB, and antimicrobial resistance genes - ARGs) from aerobic and anaerobic sludges treated with quicklime (chemical alkalinization). Different mixing ratios (25%, 35%, and 45%) and contact times (2 h and 72 h) were evaluated. The findings revealed that anaerobic sludge responded more effectively to alkaline treatment, achieving better removal rates of antibiotics, ARB, and ARGs compared to aerobic sludge. The 45% lime treatment yielded the highest antibiotic removal rates, with average reductions of 19% in aerobic sludge and 28% in anaerobic sludge. The 35% lime treatment was the most effective in reducing ARGs across both types of sludge (average removal of 2 logs). The 25% lime treatment proved most efficient for removing ARB, with average reductions of 4 logs (aerobic) and 5 logs (anaerobic). The contact time between the sludge and quicklime also influenced the removal of resistance agents. An increase in the proportion of antibiotics and the absolute concentration of ARB and ARGs was observed after 72 h compared to the samples analyzed after 2 h of contact. This increase was more pronounced in aerobic sludge samples treated with 35% and 45% lime. Despite the overall reduction, none of the monitored resistant genes or bacteria were completely eradicated in both sludge samples, raising concerns about their potential dissemination into the environment.
Collapse
Affiliation(s)
- Eliane Cristina Braga Martins Gonçalves
- Graduate Program in Environmental Engineering, School of Mines, Federal University of Ouro Preto, University Campus Morro do Cruzeiro, s/n, 35400-000, Ouro Preto, MG, Brazil
| | - Aline Gomes de Oliveira Paranhos
- Department of Chemistry, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, University Campus Morro do Cruzeiro, s/n, 35400-000, Ouro Preto, MG, Brazil
| | - Andressa Rezende Pereira
- Graduate Program in Environmental Engineering, School of Mines, Federal University of Ouro Preto, University Campus Morro do Cruzeiro, s/n, 35400-000, Ouro Preto, MG, Brazil
| | - Silvana de Queiroz Silva
- Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, University Campus Morro do Cruzeiro, s/n, 35400-000, Ouro Preto, MG, Brazil
| | - Sérgio Francisco de Aquino
- Department of Chemistry, Institute of Exact and Biological Sciences, Federal University of Ouro Preto, University Campus Morro do Cruzeiro, s/n, 35400-000, Ouro Preto, MG, Brazil.
| |
Collapse
|
7
|
He Z, Xiong J, Yu X, Wang Y, Cheng Y, Zhou Y, Kang H, Zeng J. Community dynamics in rhizosphere bacteria affected the adaptive growth of wheat in cadmium-contaminated soils. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1841-1852. [PMID: 39687698 PMCID: PMC11646259 DOI: 10.1007/s12298-024-01532-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/23/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024]
Abstract
Soil cadmium (Cd) contamination in agriculture has intensified due to industrial development and human activities, which seriously affected the safety production in wheat. There are increasing evidences that rhizosphere bacteria contributed to alleviating Cd stress in plants, but the mechanism of how rhizosphere bacteria affecting the adaptive growth of wheat exposed to Cd contamination has not been extensively explored. Therefore, the rhizosphere bacterial community dynamics and plant growth for wheat were investigated under different levels of soil Cd contamination in accordance with risk control standard for soil contamination of agricultural land. The results showed that there was no significant difference in transport coefficient of Cd in wheat plants grown in different levels of soil Cd contamination conditions. Soil Cd contamination led to a decrease in soil pH value and an increase in exchangeable Cd content in rhizosphere soil. Although rhizosphere bacterial richness and diversity had no significant difference between soil Cd contamination conditions, as its community composition changed significantly. Under Cd contamination of risk screening value, Actinobacteria, Chloroflexi, and Nitrospira showed higher abundance, but Bacteroidetes, Patescibacteria, Sphingomonas, ADurbBin063-1 and Bryobacter were more prevalent under Cd contamination of risk intervention value. The enrichment of Patescibacteria, Proteobacteria and Acidobacteria was beneficial for Cd fixation, while Nitrospira enhanced nutrient uptake and utilization. Furthermore, Cd contamination with risk screening value enhanced the relationship among rhizosphere bacterial communities, and Cd contamination with risk intervention value increased the cooperative relationship among rhizosphere bacterial species. Additionally, soil Cd content showed a significantly positive correlation with Patescibacteria and ADurbBin063-1, and a significantly negative correlation with pH. Altogether, the shift in the community structures of rhizosphere bacterial was crucial for farmland protection and food safety in Cd polluted soil. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01532-8.
Collapse
Affiliation(s)
- Zaimei He
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130 Sichuan China
| | - Ji Xiong
- College of Resources, Sichuan Agricultural University, Wenjiang, 611130 Sichuan China
| | - Xianghai Yu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130 Sichuan China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130 Sichuan China
| | - Yiran Cheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Wenjiang, 611130 Sichuan China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130 Sichuan China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130 Sichuan China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Wenjiang, 611130 Sichuan China
| |
Collapse
|
8
|
Jin J, Zhao D, Wang J, Wang Y, Zhu H, Wu Y, Fang L, Bing H. Fungal community determines soil multifunctionality during vegetation restoration in metallic tailing reservoir. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135438. [PMID: 39116750 DOI: 10.1016/j.jhazmat.2024.135438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Microorganisms are pivotal in sustaining soil functions, yet the specific contributions of bacterial and fungal succession on the functions during vegetation restoration in metallic tailing reservoirs remains elusive. Here, we explored bacterial and fungal succession and their impacts on soil multifunctionality along a ∼50-year vegetation restoration chronosequence in China's largest vanadium titano-magnetite tailing reservoir. We found a significant increase in soil multifunctionality, an index comprising factors pertinent to soil fertility and microbially mediated nutrient cycling, along the chronosequence. Despite increasing heavy metal levels, both bacterial and fungal communities exhibited significant increase in richness and network complexity over time. However, fungi demonstrated a slower succession rate and more consistent composition than bacteria, indicating their relatively higher resilience to environmental changes. Soil multifunctionality was intimately linked to bacterial and fungal richness or complexity. Nevertheless, when scrutinizing both richness and complexity concurrently, the correlations disappeared for bacteria but remained robust for fungi. This persistence reveals the critical role of the fungal community resilience in sustaining soil multifunctionality, particularly through their stable interactions with powerful core taxa. Our findings highlight the importance of fungal succession in enhancing soil multifunctionality during vegetation restoration in metallic tailing reservoirs, and manipulating fungal community may expedite ecological recovery of areas polluted with heavy metals.
Collapse
Affiliation(s)
- Jiyuan Jin
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China; School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing 210093, China
| | - Dongyan Zhao
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Jipeng Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yuhan Wang
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China; Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wuhan 430070, China
| | - He Zhu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China
| | - Yanhong Wu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China
| | - Linchuan Fang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wuhan 430070, China
| | - Haijian Bing
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610299, China.
| |
Collapse
|
9
|
Zhang H, Nie M, Du X, Chen S, Liu H, Wu C, Tang Y, Lei Z, Shi G, Zhao X. Selenium and Bacillus proteolyticus SES increased Cu-Cd-Cr uptake by ryegrass: highlighting the significance of key taxa and soil enzyme activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29113-29131. [PMID: 38568308 DOI: 10.1007/s11356-024-32959-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/13/2024] [Indexed: 04/24/2024]
Abstract
Many studies have focused their attention on strategies to improve soil phytoremediation efficiency. In this study, a pot experiment was carried out to investigate whether Se and Bacillus proteolyticus SES promote Cu-Cd-Cr uptake by ryegrass. To explore the effect mechanism of Se and Bacillus proteolyticus SES, rhizosphere soil physiochemical properties and rhizosphere soil bacterial properties were determined further. The findings showed that Se and Bacillus proteolyticus SES reduced 23.04% Cu, 36.85% Cd, and 9.85% Cr from the rhizosphere soil of ryegrass. Further analysis revealed that soil pH, organic matter, soil enzyme activities, and soil microbial properties were changed with Se and Bacillus proteolyticus SES application. Notably, rhizosphere key taxa (Bacteroidetes, Actinobacteria, Firmicutes, Patescibacteria, Verrucomicrobia, Chloroflexi, etc.) were significantly enriched in rhizosphere soil of ryegrass, and those taxa abundance were positively correlated with soil heavy metal contents (P < 0.01). Our study also demonstrated that in terms of explaining variations of soil Cu-Cd-Cr content under Se and Bacillus proteolyticus SES treatment, soil enzyme activities (catalase and acid phosphatase) and soil microbe properties showed 42.5% and 12.2% contributions value, respectively. Overall, our study provided solid evidence again that Se and Bacillus proteolyticus SES facilitated phytoextraction of soil Cu-Cd-Cr, and elucidated the effect of soil key microorganism and chemical factor.
Collapse
Affiliation(s)
- Huan Zhang
- College of Resources and Environment, Huazhong Agricultural University / Research Center of Trace Elements, Wuhan, 430070, China
- Key Laboratory of Se-Enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs/ National-Local Joint Engineering Laboratory of Se-Enriched Food Development, Ankang, 725000, China
| | - Min Nie
- College of Resources and Environment, Huazhong Agricultural University / Research Center of Trace Elements, Wuhan, 430070, China
| | - Xiaoping Du
- Key Laboratory of Se-Enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs/ National-Local Joint Engineering Laboratory of Se-Enriched Food Development, Ankang, 725000, China
| | - Suhua Chen
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization (Nanchang Hangkong University), Nanchang, 330063, China
| | - Hanliang Liu
- Key Laboratory of Geochemical Exploration, Institute of Geophysical and Geochemical Exploration, CAGS, Langfang, 065000, Hebei, China
| | - Chihhung Wu
- Fujian Provincial Key Laboratory of Resources and Environment Monitoring & Sustainable Management and Utilization, Sanming University, Sanming, 365004, China
| | - Yanni Tang
- College of Resources and Environment, Huazhong Agricultural University / Research Center of Trace Elements, Wuhan, 430070, China
| | - Zheng Lei
- College of Resources and Environment, Huazhong Agricultural University / Research Center of Trace Elements, Wuhan, 430070, China
| | - Guangyu Shi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xiaohu Zhao
- College of Resources and Environment, Huazhong Agricultural University / Research Center of Trace Elements, Wuhan, 430070, China.
- Key Laboratory of Se-Enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs/ National-Local Joint Engineering Laboratory of Se-Enriched Food Development, Ankang, 725000, China.
| |
Collapse
|
10
|
Lear L, Padfield D, Hesse E, Kay S, Buckling A, Vos M. Copper reduces the virulence of bacterial communities at environmentally relevant concentrations. ENVIRONMENT INTERNATIONAL 2023; 182:108295. [PMID: 37980880 DOI: 10.1016/j.envint.2023.108295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/13/2023] [Accepted: 10/27/2023] [Indexed: 11/21/2023]
Abstract
Increasing environmental concentrations of metals as a result of anthropogenic pollution are significantly changing many microbial communities. While there is evidence metal pollution can result in increased antibiotic resistance, the effects of metal pollution on the virulence of bacterial communities remains largely undetermined. Here, we experimentally test whether metal stress alters the virulence of bacterial communities. We do this by incubating three wastewater influent communities under different environmentally relevant copper concentrations for three days. We then quantify the virulence of the community phenotypically using the Galleria mellonella infection model, and test if differences are due to changes in the rate of biomass accumulation (productivity), copper resistance, or community composition (quantified using 16S amplicon sequencing). The virulence of the communities was found to be reduced by the highest copper concentration, but not to be affected by the lower concentration. As well as reduced virulence, communities exposed to the highest copper concentration were less diverse and had lower productivity. This work highlights that metal pollution may decrease virulence in bacterial communities, but at a cost to diversity and productivity.
Collapse
Affiliation(s)
- Luke Lear
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, United Kingdom.
| | - Dan Padfield
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, United Kingdom
| | - Elze Hesse
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, United Kingdom
| | - Suzanne Kay
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, United Kingdom
| | - Angus Buckling
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, United Kingdom
| | - Michiel Vos
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall TR10 9FE, United Kingdom
| |
Collapse
|
11
|
Conteville LC, Oliveira-Ferreira J, Vicente ACP. Heavy metal resistance in the Yanomami and Tunapuco microbiome. Mem Inst Oswaldo Cruz 2023; 118:e230086. [PMID: 37971084 PMCID: PMC10641926 DOI: 10.1590/0074-02760230086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 10/05/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND The Amazon Region hosts invaluable and unique biodiversity as well as mineral resources. Consequently, large illegal and artisanal gold mining areas exist in indigenous territories. Mercury has been used in gold mining, and some has been released into the environment and atmosphere, primarily affecting indigenous people such as the Yanomami. In addition, other heavy metals have been associated with gold mining and other metal-dispersing activities in the region. OBJECTIVE Investigate the gut microbiome of two semi-isolated groups from the Amazon, focusing on metal resistance. METHODS Metagenomic data from the Yanomami and Tunapuco gut microbiome were assembled into contigs, and their putative proteins were searched against a database of metal resistance proteins. FINDINGS Proteins associated with mercury resistance were exclusive in the Yanomami, while proteins associated with silver resistance were exclusive in the Tunapuco. Both groups share 77 non-redundant metal resistance (MR) proteins, mostly associated with multi-MR and operons with potential resistance to arsenic, nickel, zinc, copper, copper/silver, and cobalt/nickel. Although both groups harbour operons related to copper resistance, only the Tunapuco group had the pco operon. CONCLUSION The Yanomami and Tunapuco gut microbiome shows that these people have been exposed directly or indirectly to distinct scenarios concerning heavy metals.
Collapse
Affiliation(s)
- Liliane Costa Conteville
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genética Molecular de Microrganismos, Rio de Janeiro, RJ, Brasil
- Embrapa Pecuária Sudeste, São Carlos, SP, Brasil
| | - Joseli Oliveira-Ferreira
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Imunoparasitologia, Rio de Janeiro, RJ, Brasil
| | - Ana Carolina P Vicente
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Genética Molecular de Microrganismos, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
12
|
Lu C, Zhang Z, Guo P, Wang R, Liu T, Luo J, Hao B, Wang Y, Guo W. Synergistic mechanisms of bioorganic fertilizer and AMF driving rhizosphere bacterial community to improve phytoremediation efficiency of multiple HMs-contaminated saline soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163708. [PMID: 37105481 DOI: 10.1016/j.scitotenv.2023.163708] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/28/2023] [Accepted: 04/20/2023] [Indexed: 06/03/2023]
Abstract
The addition of Arbuscular mycorrhizal fungi (AMF) or bioorganic fertilizer (BOF) alone has been reported to enhance plant tolerance to heavy metals and salt stress and promote plant growth, while their synergistic effects on plant growth and rhizosphere microorganism are largely unknown. This study explored the effects of AMF (Rhizophagus intraradices), BOF and BOF + RI assisted phytoremediation on heavy metals contaminated saline soil improvement and revealed the microbial mechanism. For this purpose, a pot trial consisting of four treatments (CK, RI, BOF and BOF + RI) was carried out. The results showed that the biomass, nutrient element contents, the accumulation of heavy metals and Na of Astragalus adsurgens and soil properties were most significantly improved by BOF + RI. BOF + RI significantly impacted rhizosphere microbial diversity, abundance and community composition. Chloroflexi and Patescibacteria at the phylum level and Actinomadura, Iamia, and Desulfosporosinus at the genus level were significantly enriched in BOF + RI. Network analysis revealed that BOF + RI significantly changed the keystone and enhanced complexity and interaction. Most of the keystones had roles in promoting plant growth and stress resistance. This study suggested that phytoremediation assisted by BOF and AMF is an attractive approach to ameliorate heavy metals contaminated saline soil.
Collapse
Affiliation(s)
- Chengyan Lu
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Zhechao Zhang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Peiran Guo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Run Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Tai Liu
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Junqing Luo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Baihui Hao
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Yuchen Wang
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Wei Guo
- Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
13
|
Shu W, Li F, Zhang Q, Li Z, Qiao Y, Audet J, Chen G. Pollution caused by mining reshaped the structure and function of bacterial communities in China's largest ion-adsorption rare earth mine watershed. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131221. [PMID: 36934702 DOI: 10.1016/j.jhazmat.2023.131221] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/21/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Ion-adsorption rare earth mining results in the production of high levels of nitrogen, multiple metals, and strong acidic mine drainage (AMD), the impacts of which on microbial assembly and ecological functions remain unclear. To address this knowledge gap, we collected river sediments from the watershed of China's largest ion-adsorption rare earth mine and analyzed the bacterial community's structure, function, and assembly mechanisms. Results showed that bacterial community assembly was weakly affected by spatial dispersion, and dispersal limitation and homogeneous selection were the dominant ecological processes, with the latter increasing with pollution gradients. Bacterial alpha diversity decreased with pollution, which was mainly influenced by lead (Pb), pH, rare earth elements (REEs), and electrical conductivity (EC). However, bacteria developed survival strategies (i.e., enhanced acid tolerance and interspecific competition) to adapt to extreme environments, sustaining species diversity and community stability. Community structure and function showed a consistent response to the polluted environment (r = 0.662, P = 0.001). Enhanced environmental selection reshaped key microbial-mediated biogeochemical processes in the mining area, in particular weakening the potential for microbial denitrification. These findings provide new insights into the ecological response of microbes to compound pollution and offer theoretical support for proposing effective remediation and management strategies for polluted areas.
Collapse
Affiliation(s)
- Wang Shu
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101 Beijing, China; Sino-Danish College of University of Chinese Academy of Sciences, 101408 Beijing, China; Sino-Danish Centre for Education and Research, 101408 Beijing, China
| | - Fadong Li
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101 Beijing, China; Sino-Danish College of University of Chinese Academy of Sciences, 101408 Beijing, China
| | - Qiuying Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 100012 Beijing, China.
| | - Zhao Li
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101 Beijing, China
| | - Yunfeng Qiao
- Shandong Yucheng Agro-Ecosystem National Observation and Research Station, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 100101 Beijing, China
| | - Joachim Audet
- Department of Ecoscience, Aarhus University, C.F. Møllers Allé, 8000 Aarhus, Denmark
| | - Gang Chen
- Department of Civil and Environmental Engineering, Florida A&M University (FAMU)-Florida State University (FSU) Joint College of Engineering, 32310, United States
| |
Collapse
|
14
|
Bogdanova O, Kothe E, Krause K. Ectomycorrhizal Community Shifts at a Former Uranium Mining Site. J Fungi (Basel) 2023; 9:jof9040483. [PMID: 37108937 PMCID: PMC10144560 DOI: 10.3390/jof9040483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Ectomycorrhizal communities at young oak, pine, and birch stands in a former uranium mining site showed a low diversity of morphotypes with a preference for contact and short-distance exploration strategies formed by the fungi Russulaceae, Inocybaceae, Cortinariaceae, Thelephoraceae, Rhizopogonaceae, Tricholomataceae, as well as abundant Meliniomyces bicolor. In order to have better control over abiotic conditions, we established pot experiments with re-potted trees taken from the sites of direct investigation. This more standardized cultivation resulted in a lower diversity and decreased prominence of M. bicolor. In addition, the exploration strategies shifted to include long-distance exploration types. To mimic secondary succession with a high prevalence of fungal propagules present in the soil, inoculation of re-potted trees observed under standardized conditions for two years was used. The super-inoculation increased the effect of lower abundance and diversity of morphotypes. The contact morphotypes correlated with high Al, Cu, Fe, Sr, and U soil contents, the dark-colored short-distance exploration type did not show a specific preference for soil characteristics, and the medium fringe type with rhizomorphs on oaks correlated with total nitrogen. Thus, we could demonstrate that field trees, in a species-dependent manner, selected for ectomycorrhizal fungi with exploration types are likely to improve the plant's tolerance to specific abiotic conditions.
Collapse
Affiliation(s)
- Olga Bogdanova
- Microbial Communication, Institute of Microbiology, Friedrich Schiller University Jena, D-07743 Jena, Germany
| | - Erika Kothe
- Microbial Communication, Institute of Microbiology, Friedrich Schiller University Jena, D-07743 Jena, Germany
| | - Katrin Krause
- Microbial Communication, Institute of Microbiology, Friedrich Schiller University Jena, D-07743 Jena, Germany
| |
Collapse
|
15
|
Nagar S, Bharti M, Negi RK. Genome-resolved metagenomics revealed metal-resistance, geochemical cycles in a Himalayan hot spring. Appl Microbiol Biotechnol 2023; 107:3273-3289. [PMID: 37052633 DOI: 10.1007/s00253-023-12503-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/18/2023] [Accepted: 03/25/2023] [Indexed: 04/14/2023]
Abstract
The hot spring microbiome is a complex assemblage of micro- and macro-organisms; however, the understanding and projection of enzymatic repertoire that access earth's integral ecosystem processes remains ambivalent. Here, the Khirganga hot spring characterized with white microbial mat and ions rich in sulfate, chlorine, sodium, and magnesium ions is investigated and displayed the examination of 41 high and medium qualified metagenome-assembled genomes (MAGs) belonged to at least 12 bacterial and 2 archaeal phyla which aids to drive sulfur, oxygen, iron, and nitrogen cycles with metabolic mechanisms involved in heavy metal tolerance. These MAGs possess over 1749 genes putatively involved in crucial metabolism of elements viz. nitrogen, phosphorus, and sulfur and 598 genes encoding enzymes for czc efflux system, chromium, arsenic, and copper heavy metals resistance. The MAGs also constitute 229 biosynthetic gene clusters classified abundantly as bacteriocins and terpenes. The metabolic roles possibly involved in altering linkages in nitrogen biogeochemical cycles and explored a discerned rate of carbon fixation exclusively in archaeal member Methanospirillum hungatei inhabited in microbial mat. Higher Pfam entropy scores of biogeochemical cycling in Proteobacteria members assuring their major contribution in assimilation of ammonia and sequestration of nitrate and sulfate components as electron acceptors. This study will readily improve the understanding of the composite relationship between bacterial species owning metal resistance genes (MRGs) and underline the exploration of adaptive mechanism of these MAGs in multi-metal contaminated environment. KEY POINTS: • Identification of 41 novel bacterial and archaeal species in habitats of hot spring • Genome-resolved metagenomics revealed MRGs (n = 598) against Cr, Co, Zn, Cd, As, and Cu • Highest entropies of N (0.48) and Fe (0.44) cycles were detected within the MAGs.
Collapse
Affiliation(s)
- Shekhar Nagar
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
- Department of Zoology, Deshbandhu College, Kalkaji, New Delhi, India
| | - Meghali Bharti
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India
| | - Ram Krishan Negi
- Fish Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
16
|
Goswami A, Adkins-Jablonsky SJ, Barreto Filho MM, Shilling MD, Dawson A, Heiser S, O’Connor A, Walker M, Roberts Q, Morris JJ. Heavy Metal Pollution Impacts Soil Bacterial Community Structure and Antimicrobial Resistance at the Birmingham 35th Avenue Superfund Site. Microbiol Spectr 2023; 11:e0242622. [PMID: 36951567 PMCID: PMC10101053 DOI: 10.1128/spectrum.02426-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 02/23/2023] [Indexed: 03/24/2023] Open
Abstract
Heavy metals (HMs) are known to modify bacterial communities both in the laboratory and in situ. Consequently, soils in HM-contaminated sites such as the U.S. Environmental Protection Agency (EPA) Superfund sites are predicted to have altered ecosystem functioning, with potential ramifications for the health of organisms, including humans, that live nearby. Further, several studies have shown that heavy metal-resistant (HMR) bacteria often also display antimicrobial resistance (AMR), and therefore HM-contaminated soils could potentially act as reservoirs that could disseminate AMR genes into human-associated pathogenic bacteria. To explore this possibility, topsoil samples were collected from six public locations in the zip code 35207 (the home of the North Birmingham 35th Avenue Superfund Site) and in six public areas in the neighboring zip code, 35214. 35027 soils had significantly elevated levels of the HMs As, Mn, Pb, and Zn, and sequencing of the V4 region of the bacterial 16S rRNA gene revealed that elevated HM concentrations correlated with reduced microbial diversity and altered community structure. While there was no difference between zip codes in the proportion of total culturable HMR bacteria, bacterial isolates with HMR almost always also exhibited AMR. Metagenomes inferred using PICRUSt2 also predicted significantly higher mean relative frequencies in 35207 for several AMR genes related to both specific and broad-spectrum AMR phenotypes. Together, these results support the hypothesis that chronic HM pollution alters the soil bacterial community structure in ecologically meaningful ways and may also select for bacteria with increased potential to contribute to AMR in human disease. IMPORTANCE Heavy metals cross-select for antimicrobial resistance in laboratory experiments, but few studies have documented this effect in polluted soils. Moreover, despite decades of awareness of heavy metal contamination at the EPA Superfund site in North Birmingham, Alabama, this is the first analysis of the impact of this pollution on the soil microbiome. Specifically, this work advances the understanding of the relationship between heavy metals, microbial diversity, and patterns of antibiotic resistance in North Birmingham soils. Our results suggest that polluted soils carry a risk of increased exposure to antibiotic-resistant infections in addition to the direct health consequences of heavy metals. Our work provides important information relevant to both political and scientific efforts to advance environmental justice for the communities that call Superfund neighborhoods home.
Collapse
Affiliation(s)
- Anuradha Goswami
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sarah J. Adkins-Jablonsky
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Alabama College of Osteopathic Medicine, Dothan, Alabama, USA
| | | | - Michelle D. Shilling
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Alex Dawson
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sabrina Heiser
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Aisha O’Connor
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Melissa Walker
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Qutia Roberts
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - J. Jeffrey Morris
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
17
|
Engin AB, Engin ED, Engin A. Effects of co-selection of antibiotic-resistance and metal-resistance genes on antibiotic-resistance potency of environmental bacteria and related ecological risk factors. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 98:104081. [PMID: 36805463 DOI: 10.1016/j.etap.2023.104081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/23/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
The inadequate elimination of micropollutants in wastewater treatment plants (WWTP), cause to increase in the incidence of antibiotic resistant bacterial strains. Growth of microbial pathogens in WWTP is one of the serious public health problems. The widespread and simultaneous emergence of antibiotic resistance genes (ARGs) and heavy metal resistance genes (HMRGs) in the environment with heavy metals create persistent and selective pressure for co-selection of both genes on environmental microorganisms. Co-localization of ARGs and HMRGs on the same horizontal mobile genetic elements (MGEs) allows the spreading of numerous antibiotic-resistant strains of bacteria in aquatic and terrestrial environment. The biofilm formation and colonization potential of environmental bacteria leads to the co-selection of multi-antibiotic resistance and multi-metal tolerance. Horizontal gene transfer (HGT), co-localization of both ARGs and HMRGs on the same MGEs, and the shared resistomes are important bacteria-associated ecological risks factors, which reduce the effectiveness of antibiotics against bacterial infections.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Gazi University, Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey.
| | - Evren Doruk Engin
- Ankara University, Biotechnology Institute, Gumusdere Campus, Kecioren, Ankara, Turkey
| | - Atilla Engin
- Gazi University, Faculty of Medicine, Department of General Surgery, Ankara, Turkey
| |
Collapse
|
18
|
Yin Y, Wang X, Hu Y, Li F, Cheng H. Soil bacterial community structure in the habitats with different levels of heavy metal pollution at an abandoned polymetallic mine. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130063. [PMID: 36182879 DOI: 10.1016/j.jhazmat.2022.130063] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Heavy metal pollution caused by mining activities can be harmful to soil microbiota, which are highly sensitive to heavy metal stress. This study aimed to investigate the response of soil bacterial communities to varying levels of heavy metal pollution in four types of habitats (i.e., tailing, remediation, natural recovery, and undisturbed areas) at an abandoned polymetallic mine by high-throughput 16 S rRNA gene sequencing, and to determine the dominant ecological processes and major factors driving the variations in bacterial community composition. The diversity and composition of bacterial communities varied significantly between soil habitats (p < 0.05). Heterogeneous selection played a crucial role in shaping the difference of bacterial community composition between distinct soil habitats. Redundancy analysis and Pearson correlation analysis revealed that the total contents of Cu and Zn were key factors causing the difference in bacterial community composition in the tailing and remediation areas, whereas bioavailable Mn and Cd, total nitrogen, available nitrogen, soil organic carbon, vegetation coverage, and plant diversity were key factors shaping the soil bacterial structure in the undisturbed and natural recovery areas. These findings provide insights into the distribution patterns of bacterial communities in soil habitats with different levels of heavy metal pollution, and the dominant ecological processes and the corresponding environmental drivers, and expand knowledge in bacterial assembly mechanisms in mining regions.
Collapse
Affiliation(s)
- Yue Yin
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Xiaojie Wang
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Yuanan Hu
- MOE Laboratory of Groundwater Circulation and Evolution, School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Fadong Li
- State Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
19
|
Bacterial, Archaeal, and Eukaryote Diversity in Planktonic and Sessile Communities Inside an Abandoned and Flooded Iron Mine (Quebec, Canada). Appl Microbiol 2023. [DOI: 10.3390/applmicrobiol3010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Abandoned and flooded ore mines are examples of hostile environments (cold, dark, oligotrophic, trace metal) with a potential vast diversity of microbial communities rarely characterized. This study aimed to understand the effects of depth, the source of water (surface or groundwater), and abiotic factors on the communities present in the old Forsyth iron mine in Quebec (Canada). Water and biofilm samples from the mine were sampled by a team of technical divers who followed a depth gradient (0 to 183 m deep) to study the planktonic and sessile communities’ diversity and structure. We used 16S/18S rRNA amplicon to characterize the taxonomic diversity of Bacteria, Archaea, and Eukaryotes. Our results show that depth was not a significant factor explaining the difference in community composition observed, but lifestyle (planktonic/sessile) was. We discovered a vast diversity of microbial taxa, with taxa involved in carbon- and sulfur-cycling. Sessile communities seem to be centered on C1-cycling with fungi and heterotrophs likely adapted to heavy-metal stress. Planktonic communities were dominated by ultra-small archaeal and bacterial taxa, highlighting harsh conditions in the mine waters. Microbial source tracking indicated sources of communities from surface to deeper layers and vice versa, suggesting the dispersion of organisms in the mine, although water connectivity remains unknown.
Collapse
|
20
|
Meena M, Yadav G, Sonigra P, Nagda A, Mehta T, Swapnil P, Marwal A, Zehra A. Advantageous features of plant growth-promoting microorganisms to improve plant growth in difficult conditions. PLANT-MICROBE INTERACTION - RECENT ADVANCES IN MOLECULAR AND BIOCHEMICAL APPROACHES 2023:279-296. [DOI: 10.1016/b978-0-323-91876-3.00019-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|
21
|
Lin Y, Mei L, Wei Q, Li B, Zhang P, Sun S, Cui G. Leymus chinensis resists degraded soil stress by modulating root exudate components to attract beneficial microorganisms. Front Microbiol 2022; 13:951838. [PMID: 36569063 PMCID: PMC9780673 DOI: 10.3389/fmicb.2022.951838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022] Open
Abstract
Phytoremediation is an effective means to improve degraded soil nutrients and soil structure. Here, we investigated the remediation effects of Leymus chinensis on the physicochemical properties and structure of degraded soil after 3 years of cultivation and explored the bacterial and fungal drivers in root exudates by metabolomics and high-throughput sequencing. The results showed that root exudates increased soil organic matter (SOM), total nitrogen (TN), total phosphorus (TP) and soil aggregates, and organic acids in root exudates reduced pH and activated insoluble nutrients into forms that are available to plants, such as available nitrogen (NH4 +-N), nitrate nitrogen (NO3 --N), and available phosphorus (AP). The cultivation of L. chinensis restored the diversity and richness of soil microorganisms and recruited potential beneficial bacteria and fungi to resist degraded soil stress, and L. chinensis also regulated the abundances of organic acids, amino acids and fatty acids in root exudates to remediate degraded soils. Spearman correlation analysis indicated that glutaric acid, 3-hydroxybutyric acid and 4-methylcatechol in root exudates attracted Haliangium, Nitrospira and Mortierella to the rhizosphere and dispersed the relative abundance of the harmful microorganisms Fusicolla and Fusarium. Our results demonstrate that L. chinensis enhances soil fertility, improves soil structure, promotes microbial diversity and abundance, and recruits potentially beneficial microorganisms by modulating root exudate components.
Collapse
|
22
|
Sun C, Wu P, Wang G, Kong X. Heavy Metals Contained Within a Pb-Zn Waste Heap Exhibit Selective Association with Microbial Modules as Revealed by Network Analysis. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:1067-1074. [PMID: 35338370 DOI: 10.1007/s00128-022-03499-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Heavy metal contamination is a global environmental concern due to its persistence and toxicity. To explore soil microbial interaction mechanisms and their association with heavy metals on a Pb-Zn waste heap, ecological network analysis tools were used to analyze high-throughput data in microbiology. The microbial network was divided into several modules, but heavy metals were associated with specific modules. The heavy metal-tolerant module (M2) had a more negative than positive relationship with the heavy metal-mid-tolerant modules (M1 and M3). Tight coupling between fungal and bacterial operational taxonomic units (OTUs) within M2 was critical for module stability and heavy metal bioremediation. Additionally, members within M2 needed to form a positive relationship to cope with heavy metal contamination (As, Pb, Zn, Cu, and Cd). The study provides fundamental information for a deeper understanding of heavy metal bioremediation mechanisms in the Pb-Zn waste heap.
Collapse
Affiliation(s)
- Caili Sun
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Pan Wu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China.
| | - Guanghao Wang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Xingjie Kong
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
23
|
Wang C, Jia Y, Wang Q, Yan F, Wu M, Li X, Fang W, Xu F, Liu H, Qiu Z. Responsive change of crop-specific soil bacterial community to cadmium in farmlands surrounding mine area of Southeast China. ENVIRONMENTAL RESEARCH 2022; 214:113748. [PMID: 35750128 DOI: 10.1016/j.envres.2022.113748] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 06/14/2022] [Accepted: 06/19/2022] [Indexed: 05/27/2023]
Abstract
In arable soils co-influenced by mining and farming, soil bacteria significantly affect metal (Cadmium, Cd) bioavailability and accumulation. To reveal the soil microecology response under this co-influence, three intersection areas (cornfield, vegetable field, and paddy field) were investigated. With a similar nutrient condition, the soils showed varied Cd levels (0.31-7.70 mg/kg), which was negatively related to the distance from mining water flow. Different soils showed varied microbial community structures, which were dominated by Chloroflexi (19.64-24.82%), Actinobacteria (15.49-31.96%), Acidobacteriota (9.46-20.31%), and Proteobacteria (11.88-14.57%) phyla. A strong correlation was observed between functional microbial taxon (e. g. Acidobacteriota), soil physicochemical properties, and Cd contents. The relative abundance of tolerant bacteria including Vicinamibacteraceae, Knoellia, Ardenticatenales, Lysobacter, etc. elevated with the increase of Cd, which contributed to the enrichment of heavy metal resistance genes (HRGs) and integration genes (intlI), thus enhancing the resistance to heavy metal pollution. Cd content rather than crop species was identified as the dominant factor that influenced the bacterial community. Nevertheless, the peculiar agrotype of the paddy field contributed to its higher HRGs and intlI abundance. These results provided fundamental information about the crop-specific physiochemical-bacterial interaction, which was helpful to evaluate agricultural environmental risk around the intersection of farmland and pollution sources.
Collapse
Affiliation(s)
- Can Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil&Water Pollution, PR China
| | - Yinxue Jia
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China
| | - Qiqi Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China
| | - Fangfang Yan
- Panzhihua City Company, Sichuan Tobacco Company, China National Tobacco Corporation, Panzhihua, 617000, Sichuan, PR China
| | - Minghui Wu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China
| | - Xing Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China
| | - Weizhen Fang
- Analysis & Testing Center, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China
| | - Fei Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Huakang Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China.
| | - Zhongping Qiu
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, PR China.
| |
Collapse
|
24
|
Yang T, Tang G, Li L, Ma L, Zhao Y, Guo Z. Interactions between bacteria and eukaryotic microorganisms and their response to soil properties and heavy metal exchangeability nearby a coal-fired power plant. CHEMOSPHERE 2022; 302:134829. [PMID: 35523290 DOI: 10.1016/j.chemosphere.2022.134829] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
Persistent heavy metal (HM) contaminated soil provides special habitat for microorganisms, HM stress and complex abiotic factors bring great uncertainty for the development of bacteria and eukaryotic microbes. Despite numerous studies about HMs' effect on soil microorganisms, the key factors affecting microbial communities in severe HM contaminated soil and their interactions are still not definite. In this study, the effect of HM fractions and soil properties on the interaction between bacterial communities and eukaryotic microorganisms was studied by high-throughput Illumina sequencing and simplified continuous extraction of HM in severe HM contaminated soil. Based on amplification and sequencing of the 18S rRNA gene, this study revealed that protists and algae were the most predominant eukaryotic microorganisms, and the dominant phyla were SAR, Opisthokonta and Archaeplastida in HM seriously polluted soil. These results also showed that exchangeable As was negatively correlated with bacterial Shannon and Simpson indexes, while exchangeable Zn was positively correlated with Shannon and Simpson indexes of eukaryotic microbes. Moreover, the structural equation model illustrated that pH, moisture content, available potassium and phosphorus, and exchangeable Cd, As and Zn were the dominant factors shaping bacterial communities, while total organic carbon and exchangeable Zn made the predominant contributions to variations in eukaryotic microbes. In addition, eukaryotic microbes were intensely affected by the bacterial communities, with a standardized regression weight of 0.53, which exceeded the influence of other abiotic factors. It was suggested that community-level adaptions through cooperative interactions under serious HM stress in soil.
Collapse
Affiliation(s)
- Tongyi Yang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China.
| | - Guoteng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Ling Li
- Zhenjiang Customs District, Integrated Technology Center, Zhenjiang 212000, PR China
| | - Liuchang Ma
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Yuyuan Zhao
- Zhenjiang Key Laboratory of Functional Chemistry, Institute of Medicine & Chemical Engineering, Zhenjiang College, Zhenjiang 212000, China
| | - Zechong Guo
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| |
Collapse
|
25
|
Kimeklis A, Gladkov G, Tembotov R, Kichko A, Pinaev A, Hosid S, Andronov E, Abakumov E. Microbiome composition of disturbed soils from sandy-gravel mining complexes with different reclamation approaches. ONE ECOSYSTEM 2022. [DOI: 10.3897/oneeco.7.e83756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Activities connected to mineral mining disrupt the soil layer and bring parent rock material to the surface. It leads to altering the environmental conditions and leaves behind vast areas of disturbed lands. Returning these lands to natural ecosystems is an important contemporary challenge, which can be acquired by reclamation practices. Soil microbiome composition reflects changes happening to disturbed lands; thus, its analysis is a powerful tool for evaluating the disturbance degree and estimating the effect of the implementation of reclamation techniques. Additionally, factors connected to the characteristics of a particular geographical region have a certain impact on the microbiome and should be taken into account. Thereby, studies of soil microbiomes of disturbed soils of different origins are essential in understanding the dynamics of soil restoration. Here, we focus on soil microbiomes from two sandy-gravel mining complexes in mountainous areas with a moderate continental climate of the Central Caucasus. These quarries share the same parent rock material, but differ in benchmark soil type and reclamation approach - one was left for passive recovery and the other was technically reclaimed with overburden material. Comparative analysis of microbiome composition, based on sequencing of 16S rRNA gene libraries, showed that region and disturbance are the key factors explaining microbiome variation, which surpass the influence of local factors. However, the application of reclamation techniques greatly reduces the dissimilarity of soil microbiomes caused by disturbance. Linking of soil chemical parameters to microbiome composition showed that the disturbance factor correlates with a lack of organic carbon. Other chemical parameters, like pH, ammonium, nitrates and total carbon explain microbiome variability on a smaller scale between sampling sites. Thus, while regional and disturbance factors reflected differentiation of soil microbiomes, soil chemical parameters explained local variation of certain groups of microorganisms.
Collapse
|
26
|
Wan Y, Devereux R, George SE, Chen J, Gao B, Noerpel M, Scheckel K. Interactive effects of biochar amendment and lead toxicity on soil microbial community. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127921. [PMID: 34986562 PMCID: PMC9815664 DOI: 10.1016/j.jhazmat.2021.127921] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 05/29/2023]
Abstract
This study determined the interactive effects of biochar and lead toxicity on the soil microbial community in a phytoextraction experiment. Arranged with a completely randomized design in a greenhouse, banana liners were planted singly in a sandy soil spiked with Pb(NO3)2 at 0, 400 and 1200 mg kg-1 and amended with bamboo biochar (pyrolyzing at 600 °C) at 0, 1, 3%. Soil samples were taken from triplicated pots five months after planting and measured for (i) content of lead and organic carbon; (ii) lead speciation; and (iii) microbial community composition through 16S rRNA gene sequencing. DNA sequencing results showed that lead and biochar treatments had significant individual and interactive effects on soil microbial dissimilarities from taxonomic levels of phyla to genera. While some specific taxa were lead resistant, biochar addition apparently alleviated lead toxicity and increased their richness (e.g., Alkanibacter, Muciaginibacter, Burkholderiaceae, and Beggiatoaceae). Soil analysis data indicated that biochar not only helped retain more lead in the soil matrix but created a soil environment inducive for transformation of lead into highly insoluble pyromorphite. This study highlights the effectiveness of biochar for lead remediation and the sensitivity of soil microorganisms in sensing changes in soil environment and lead bioavailability.
Collapse
Affiliation(s)
- Yongshan Wan
- US EPA Center for Environmental Measurement and Modeling, Gulf Breeze, FL 32561, USA.
| | - Richard Devereux
- US EPA Center for Environmental Measurement and Modeling, Gulf Breeze, FL 32561, USA
| | - S Elizabeth George
- US EPA Center for Environmental Measurement and Modeling, Gulf Breeze, FL 32561, USA
| | - Jianjun Chen
- Environmental Horticulture Department and Mid-Florida Research & Education Center, University of Florida, Apopka, FL 32703, USA
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Matthew Noerpel
- US EPA Center for Environmental Solutions and Emergency Response, Cincinnati, OH 45224, USA
| | - Kirk Scheckel
- US EPA Center for Environmental Solutions and Emergency Response, Cincinnati, OH 45224, USA
| |
Collapse
|
27
|
Kavehei A, Gore DB, Chariton AA, Hose GC. Characterizing the spatial distributions of soil biota at a legacy base metal mine using environmental DNA. CHEMOSPHERE 2022; 286:131899. [PMID: 34426292 DOI: 10.1016/j.chemosphere.2021.131899] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 05/20/2023]
Abstract
Characterizing the distribution of biota in response to contaminants is a critical element of site risk assessments. In this study we investigated the spatial distributions of biota and soil chemistry data in surface soil from Sunny Corner, a legacy base metal sulfide mine, Australia. Our results showed that copper (Cu), zinc (Zn), arsenic (As) and lead (Pb) in the surface soil exceeded Australian national soil quality guidelines and posed risks to the environment. Environmental (e)DNA metabarcoding of prokaryote and eukaryote composition confirmed the suggestion of environmental risk posed by these elements collectively explaining 72.9 % and 60.5 % of the total variation in the composition of soil prokaryotes and eukaryotes, respectively. Prokaryotic taxa from the phyla Gemmatimonadetes, Verrucomicrobia and Deinococcus-Thermus showed similar spatial patterns to As and Pb, and were positively correlated. Eukaryotic taxa from the phylum Chlorophyta had similar positive correlations with As and Pb in the soil. In contrast, Amoebozoa and Cercozoa, were sensitive to metals and metalloids, having higher relative abundances in soils with lower concentrations of contaminants. Our study shows that metabarcoding is a promising ecological approach for rapid, large scale assessment of contaminated and potentially impacted sites.
Collapse
Affiliation(s)
- Armin Kavehei
- Department of Earth and Environmental Sciences, Macquarie University, Sydney, 2109, Australia.
| | - Damian B Gore
- Department of Earth and Environmental Sciences, Macquarie University, Sydney, 2109, Australia
| | - Anthony A Chariton
- Department of Biological Sciences, Macquarie University, Sydney, 2109, Australia
| | - Grant C Hose
- Department of Biological Sciences, Macquarie University, Sydney, 2109, Australia
| |
Collapse
|
28
|
Zheng X, Zou M, Zhang B, Lai W, Zeng X, Chen S, Wang M, Yi X, Tao X, Lu G. Remediation of Cd-, Pb-, Cu-, and Zn-contaminated soil using cow bone meal and oyster shell meal. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113073. [PMID: 34923330 DOI: 10.1016/j.ecoenv.2021.113073] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
To understand the environmental friendliness and high efficiency of organic materials during remediating soil polluted by heavy metals by assessing the feedback of soil ecosystems after organic materials were put into polluted soil. Incubation research was undertaken to examine the impact of amendments ranging from 0.1% to 3.0% (w/w), including single cow bone meal (BM), single oyster shell meal (OS), and a composite of 50% BM mixed with 50% OS (BO) on soil biochemical properties. The findings revealed that the implementation of BM and OS increased soil pH, the content of certain nutrients, and the activities of catalase (S-CAT), and urease (S-UE) while decreasing the availability of Cd, Pb, Cu, and Zn. Overall, the immobilization effect on Cd and Zn after a 108-day incubation was ranked as follows: BM group > OS group ≥ BO group, and the order of the immobilization effect of Pb and Cu was OS group > BO group > BM group. In addition, the dominant bacterial community flora shifted toward alleviating the re-dissolution of metal ions from the soil and promoting nutrient recycling in soil within 108 days of cultivation. RNA analyses showed that the strongest determinants for microbial communities between BM application and OS application at the genus level were soil pH, CEC, and heavy metal (Cd, Pb). These results increase our understanding of the leaching performance of Cd, Pb, Cu and Zn and the evolution trend of microorganisms when organic amendments remediate heavy metal contaminated soil.
Collapse
Affiliation(s)
- Xiongkai Zheng
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China; Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China
| | - Mengyao Zou
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China; Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China
| | - Bowen Zhang
- Guangzhou Urban Planning & Design Survey Research Institute, Guangzhou 510060, PR China
| | - Weibin Lai
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China; Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China
| | - Xianming Zeng
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China
| | - Siyuan Chen
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Mengting Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Xiaoyun Yi
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Xueqin Tao
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China; Engineering and Technology Research Center for Agricultural Land Pollution Prevention and Control of Guangdong Higher Education Institutes, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China.
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
29
|
Zieliński W, Korzeniewska E, Harnisz M, Drzymała J, Felis E, Bajkacz S. Wastewater treatment plants as a reservoir of integrase and antibiotic resistance genes - An epidemiological threat to workers and environment. ENVIRONMENT INTERNATIONAL 2021; 156:106641. [PMID: 34015664 DOI: 10.1016/j.envint.2021.106641] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/30/2021] [Accepted: 05/09/2021] [Indexed: 05/23/2023]
Abstract
Conventional mechanical and biological wastewater treatment is unable to completely eliminate all pollutants, which can therefore enter surface water bodies together with treated wastewater. In addition, bioaerosols produced during wastewater treatment can pose a threat to the health of the wastewater treatment plant staff. In order to control the impact of a wastewater treatment plant (WWTP) on the surrounding environment, including its employees, samples of wastewater and water from a river which received treated wastewater were analysed in terms of their content of antibiotics and heavy metals, levels of selected physiochemical parameters, concentrations of antibiotic-resistance genes (ARGs) and genes of integrases. Furthermore, a quantitative analysis of ARGs in the metagenomic DNA from nasal and throat swabs collected from the WWPT employees was made. Both untreated and treated wastewater samples were dominated by genes of resistance to sulphonamides (sul1, sul2), MLS group of drugs (ermF, ermB) and beta-lactams (blaOXA). A significant increase in the quantities of ARGs and concentrations of antibiotics was observed in the river following the discharge of treated wastewater in comparison to their amounts in the river water upstream from the point of discharge. Moreover, a higher concentration of ARGs was detected in the DNA from swabs obtained from the wastewater treatment plant employees than from ones collected from the control group. Many statistically significant (p < 0.05) correlations between the concentration of the gene of resistance to heavy metals cnrA versus ARGs, and between the ARGs content and the concentrations of heavy metals in both wastewater and river water samples were observed. The study has demonstrated that the mechanical and biological methods of wastewater treatment are not efficient and may affect the transmission of hazardous pollutants to the aquatic environment and to the atmospheric air. It has been shown that an activated sludge bioreactor can be a potential source of the presence of multi-drug resistant microorganisms in the air, which is a health risk to persons working in WWTPs. It has also been found that an environment polluted with heavy metals is where co-selection of antibiotic resistance may occur, in the development of which integrase genes play an essential role.
Collapse
Affiliation(s)
- Wiktor Zieliński
- Department of Water Protection Engineering and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-719 Olsztyn, Poland
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-719 Olsztyn, Poland.
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, The Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1 Str., 10-719 Olsztyn, Poland
| | - Justyna Drzymała
- The Biotechnology Centre, Silesian University of Technology, Krzywoustego 8 Str., 44-100 Gliwice, Poland
| | - Ewa Felis
- The Biotechnology Centre, Silesian University of Technology, Krzywoustego 8 Str., 44-100 Gliwice, Poland; Environmental Biotechnology Department, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Akademicka 2 Str., 44-100 Gliwice, Poland
| | - Sylwia Bajkacz
- The Biotechnology Centre, Silesian University of Technology, Krzywoustego 8 Str., 44-100 Gliwice, Poland; Department of Inorganic, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, Krzywoustego 6 Str., 44-100 Gliwice, Poland
| |
Collapse
|
30
|
Zhao H, Lin J, Wang X, Shi J, Dahlgren RA, Xu J. Dynamics of Soil Microbial N-Cycling Strategies in Response to Cadmium Stress. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14305-14315. [PMID: 34617741 DOI: 10.1021/acs.est.1c04409] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Globally increasing trace metal contamination of soils requires a better mechanistic understanding of metal-stress impacts on microbially mediated nutrient cycling. Herein, a 5-month laboratory experiment was employed to assess the effects of cadmium (Cd) on soil microbial N-cycling processes and associated functional gene abundance, with and without urea amendment. In non-N-amended soils, Cd progressively stimulated microbial populations for N acquisition from initial dissolved organic N (DON) to later recalcitrant organic N. The acceleration of N catabolism was synchronously coupled with C catabolism resulting in increased CO2/N2O fluxes and adenosine triphosphate (ATP) contents. The abundance of microbes deemed inefficient in N catabolism was gradually repressed after an initial stimulation period. We posit that enhanced exergonic N processes diminished the need for endergonic activities as a survival strategy for N communities experiencing metal stress. With urea amendment, Cd exhibited an initial stimulation effect on soil nitrification and a later a promotion effect on mineralization, along with an increase in the associated microbial populations. In N-amended soils, Cd accelerated N/C transformation processes, but decreased N2O and CO2 fluxes by 19 and 14%, respectively. This implies that under eutrophic conditions, Cd synchronously altered microbial C/N metabolism from a dominance of catabolic to anabolic processes. These results infer a nutrient-based adjustment of microbial N-cycling strategies to enhance their metal resistance.
Collapse
Affiliation(s)
- Haochun Zhao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jiahui Lin
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xuehua Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jiachun Shi
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, California 95616, United States
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
31
|
The soil microbial food web revisited: Predatory myxobacteria as keystone taxa? THE ISME JOURNAL 2021; 15:2665-2675. [PMID: 33746204 PMCID: PMC8397742 DOI: 10.1038/s41396-021-00958-2] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/24/2021] [Accepted: 03/04/2021] [Indexed: 02/07/2023]
Abstract
Trophic interactions are crucial for carbon cycling in food webs. Traditionally, eukaryotic micropredators are considered the major micropredators of bacteria in soils, although bacteria like myxobacteria and Bdellovibrio are also known bacterivores. Until recently, it was impossible to assess the abundance of prokaryotes and eukaryotes in soil food webs simultaneously. Using metatranscriptomic three-domain community profiling we identified pro- and eukaryotic micropredators in 11 European mineral and organic soils from different climes. Myxobacteria comprised 1.5-9.7% of all obtained SSU rRNA transcripts and more than 60% of all identified potential bacterivores in most soils. The name-giving and well-characterized predatory bacteria affiliated with the Myxococcaceae were barely present, while Haliangiaceae and Polyangiaceae dominated. In predation assays, representatives of the latter showed prey spectra as broad as the Myxococcaceae. 18S rRNA transcripts from eukaryotic micropredators, like amoeba and nematodes, were generally less abundant than myxobacterial 16S rRNA transcripts, especially in mineral soils. Although SSU rRNA does not directly reflect organismic abundance, our findings indicate that myxobacteria could be keystone taxa in the soil microbial food web, with potential impact on prokaryotic community composition. Further, they suggest an overlooked, yet ecologically relevant food web module, independent of eukaryotic micropredators and subject to separate environmental and evolutionary pressures.
Collapse
|
32
|
Xu H, Zhao P, Ran Q, Li W, Wang P, Luo Y, Huang C, Yang X, Yin J, Zhang R. Enhanced electrokinetic remediation for Cd-contaminated clay soil by addition of nitric acid, acetic acid, and EDTA: Effects on soil micro-ecology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145029. [PMID: 33770863 DOI: 10.1016/j.scitotenv.2021.145029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/15/2020] [Accepted: 01/04/2021] [Indexed: 05/09/2023]
Abstract
Enhanced electrokinetic remediation (EKR) allows the rapid remediation of heavy metal-contaminated clay, but the impacts of this process on soil micro-ecology have rarely been evaluated. In this study, nitric acid, acetic acid, and EDTA were applied for enhancement of EKR and the effects on Cd removal, soil enzyme activity, and soil bacterial communities (SBCs) were determined. Nitric acid and acetic acid allowed 93.2% and 91.8% Cd removal, respectively, and EDTA treatment resulted in 40.4% removal due to the formation of negatively charged EDTA-Cd complexes, resulting in opposing directions of Cd electromigration and electroosmosis flow and slow electromigration rate caused by low voltage drop. Activities of soil beta-glucosidase, acid phosphatase, and urease, were all reduced by enhanced EKR treatment, especially nitric acid treatment, by 46.2%, 58.8% and 57.7%, respectively. The SBCs were analyzed by high-throughput sequencing and revealed significantly increased diversity for acetic acid treatment, no effect for EDTA treatment, and reduced diversity for nitric acid treatment. Compared with nitric acid and EDTA, acetic acid treatment enhanced EKR for higher Cd removal and improved biodiversity.
Collapse
Affiliation(s)
- Haiyin Xu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Peiling Zhao
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qiyang Ran
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Hengkai Environmental Protection Science & Technology Investment Co. Ltd, Changsha 410205, China
| | - Wenjuan Li
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Yuanling Luo
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Changsha Environmental Protection College, Changsha 410004, China.
| | - Chao Huang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiong Yang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jingxuan Yin
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ruiqi Zhang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
33
|
Sonthiphand P, Kraidech S, Polart S, Chotpantarat S, Kusonmano K, Uthaipaisanwong P, Rangsiwutisak C, Luepromchai E. Arsenic speciation, the abundance of arsenite-oxidizing bacteria and microbial community structures in groundwater, surface water, and soil from a gold mine. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:769-785. [PMID: 34038319 DOI: 10.1080/10934529.2021.1927421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 04/26/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
The arsenic speciation, the abundance of arsenite-oxidizing bacteria, and microbial community structures in the groundwater, surface water, and soil from a gold mining area were explored using the PHREEQC model, cloning-ddPCR of the aioA gene, and high-throughput sequencing of the 16S rRNA gene, respectively. The analysis of the aioA gene showed that arsenite-oxidizing bacteria retrieved from groundwater, surface water, and soil were associated with Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. In groundwaters from the mining area, there were relatively high ratios of aioA/total 16S rRNA gene copies and the dominance of As5+, which suggested the presence and activity of arsenite-oxidizing bacteria. Metagenomic analysis revealed that the majority of the soil and surface water microbiomes were Proteobacteria, Actinobacteria, Bacteroidetes, and Chloroflexi, whereas the groundwater microbiomes were dominated exclusively by Betaproteobacteria and Alphaproteobacteria. Geochemical factors influencing the microbial structure in the groundwater were As, residence time, and groundwater flowrate, while those showing a positive correlation to the microbial structure in the surface water were TOC, ORP, and DO. This study provides insights into the groundwater, surface water, and soil microbiomes from a gold mine and expands the current understanding of the diversity and abundance of arsenite-oxidizing bacteria, playing a vital role in global As cycling.
Collapse
Affiliation(s)
- Prinpida Sonthiphand
- Faculty of Science, Department of Biology, Mahidol University, Bangkok, Ratchathewi, Thailand
| | - Supeerapat Kraidech
- International Postgraduate Program in Hazardous Substance and Environmental Management, Chulalongkorn University, Bangkok, Thailand
| | - Saowarod Polart
- Faculty of Science, Department of Biology, Mahidol University, Bangkok, Ratchathewi, Thailand
| | - Srilert Chotpantarat
- Faculty of Science, Department of Geology, Chulalongkorn University, Thailand
- Research Program on Controls of Hazardous Contaminants in Raw Water Resources for Water Scarcity Resilience, Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Thailand
- Research Unit of Site Remediation on Metals Management from Industry and Mining (Site Rem), Chulalongkorn University, Bangkok, Thailand
| | - Kanthida Kusonmano
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
- Systems Biology and Bioinformatics Research Laboratory, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Pichahpuk Uthaipaisanwong
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Chalida Rangsiwutisak
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Ekawan Luepromchai
- Research Program on Remediation Technologies for Petroleum Contamination, Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, Thailand
- Microbial Technology for Marine Pollution Treatment Research Unit, Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
34
|
The Response of the Soil Microbiome to Contamination with Cadmium, Cobalt and Nickel in Soil Sown with Brassica napus. MINERALS 2021. [DOI: 10.3390/min11050498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Soil fertility is determined by biological diversity at all levels of life, from genes to entire biocenoses. The aim of this study was to evaluate bacterial diversity in soil contaminated with Cd2+, Co2+ and Ni2+ and sown with Brassica napus. This is an important consideration because soil-dwelling microorganisms support phytoremediation and minimize the adverse effects of heavy metals on the environment. Microbial counts, the influence (IFHM) of Cd2+, Co2+ and Ni2+ on microorganisms, the colony development (CD) index, the ecophysiological diversity (EP) index and genetic diversity of bacteria were determined under controlled conditions. Soil contamination with Cd2+, Co2+ and Ni2+ significantly influenced microbial diversity and increased the values of CD and EP indices. The tested heavy metals decreased the genetic diversity of bacteria, in particular in the phyla Actinobacteria and Proteobacteria. Bacteria of the genera Arthrobacter, Devosia, Kaistobacter, Paenibacillus, Phycicoccus, Rhodoplanes and Thermomonas were identified in both contaminated and non-contaminated soil. These bacteria are highly resistant to soil contamination with Cd2+, Co2+ and Ni2+.
Collapse
|
35
|
Hazrati S, Farahbakhsh M, Cerdà A, Heydarpoor G. Functionalization of ultrasound enhanced sewage sludge-derived biochar: Physicochemical improvement and its effects on soil enzyme activities and heavy metals availability. CHEMOSPHERE 2021; 269:128767. [PMID: 33131739 DOI: 10.1016/j.chemosphere.2020.128767] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
Poor physicochemical characteristics and high heavy metals content are main limitations of applying sludge-based biochars in remediation studies. The present study attempts to combine two practical approaches of ultrasound pre-treatment with low-time and low-frequency and chemical functionalization using citric acid. The aims of this study are enhancement physicochemical characteristics and environmental applicability of sludge-derived biochar. The characteristics of obtained ultrasound-treated functionalized biochar (UFB), sludge-derived biochar (SDB) and sewage sludge (SS) were evaluated. Then, the effects of these additives on soil heavy metals availability, soil enzyme activities and soil physicochemical characteristics were investigated during a 2-month stabilization process. The results indicated that ultrasound pre-treatment and functionalization considerably increased pore volume, surface area, and surface functional groups of the biochar, but significantly decreased total heavy metals concentration and metals ecological risk index (Er). The results of soil amending showed that application of UFB decreased Pb, Zn and Cd availability in soil by 85.3, 82.9 and 30.6%, respectively. In all cases, except for Cd, the Pb and Zn availability decreased by UFB was two times greater than the availability decreased by SDB and SS. Compared to SDB, the UFB potentially enhanced the positive effect of additive on soil enzyme activities. The obtained results revealed that the feasible, uncomplicated physical and chemical techniques can be used as a valuable approach for enhancing the environmental applicability of sludge-derived biochar and management of the excessively produced sewage sludge in the world.
Collapse
Affiliation(s)
- Sajjad Hazrati
- Department of Soil Science, Faculty of Agricultural Engineering and Technology, University of Tehran, Iran.
| | - Mohsen Farahbakhsh
- Department of Soil Science, Faculty of Agricultural Engineering and Technology, University of Tehran, Iran.
| | - Artemi Cerdà
- Soil Erosion and Degradation Research Group, Department of Geography, University of Valencia, Valencia, Spain.
| | - Ghasem Heydarpoor
- Department of Reclamation of Arid and Mountainous Regions, Faculty of Natural Resources, University of Tehran, Iran.
| |
Collapse
|
36
|
Chen Y, Guo J, Chen C, Shi D, Fang D, Ji F, Li L. Characterization of the Gastric Mucosal Microbiota in Patients with Liver Cirrhosis and Its Associations with Gastrointestinal Symptoms. ENGINEERING 2021; 7:507-514. [DOI: 10.1016/j.eng.2020.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
37
|
Niu H, Leng Y, Li X, Yu Q, Wu H, Gong J, Li H, Chen K. Behaviors of cadmium in rhizosphere soils and its interaction with microbiome communities in phytoremediation. CHEMOSPHERE 2021; 269:128765. [PMID: 33143888 DOI: 10.1016/j.chemosphere.2020.128765] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/12/2020] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
Phytoremediation of cadmium (Cd) contaminated soils by accumulators or hyperaccumulators has received considerable attention. However, there is still limited information about its migration, dynamic characteristics, and interaction with microbial communities in rhizosphere. In this study, the behaviors of Cd in rhizosphere soils in phytoremediation were carefully studied and illustrated. We find that the migration rate of Cd in rhizosphere is higher than the absorption rate of Cd by roots of plants, and Cd in near-rhizosphere moves sluggishly, and near-rhizosphere soils forms a mass pool of Cd for absorption by plants. Additionally, in tall fescue and Indian mustard treatments, shoot biomasses, total extracted Cd and migration rate of Cd in near-rhizosphere soils were comparable. It suggests that shoot biomasses of plants significantly affect their extraction of heavy metals from rhizosphere soils. Biomasses of bacteria significantly increased after phytoremediation, and structures of microbiome communities of soils after phytoremediation reassembled significantly. Furthermore, Indian mustard, even with relative lower root biomasses, could better reassembled the microbiome communities in rhizosphere than tall fescue which possesses a higher developed root system. In the end, analyses of functional microorganisms in rhizosphere soils provide new insights into biological and physiochemical roles of these populations in phytoremediation.
Collapse
Affiliation(s)
- Hong Niu
- College of Resources and Environmental Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, PR China
| | - YiFei Leng
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, 430068, PR China
| | - Xuecheng Li
- College of Resources and Environmental Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, PR China
| | - Qian Yu
- College of Resources and Environmental Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, PR China
| | - Hang Wu
- College of Resources and Environmental Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, PR China
| | - Junchao Gong
- College of Resources and Environmental Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, PR China
| | - HaoLin Li
- College of Resources and Environmental Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, PR China
| | - Ke Chen
- College of Resources and Environmental Science, Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, PR China.
| |
Collapse
|
38
|
Oleńska E, Małek W, Kotowska U, Wydrych J, Polińska W, Swiecicka I, Thijs S, Vangronsveld J. Exopolysaccharide Carbohydrate Structure and Biofilm Formation by Rhizobium leguminosarum bv. trifolii Strains Inhabiting Nodules of Trifoliumrepens Growing on an Old Zn-Pb-Cd-Polluted Waste Heap Area. Int J Mol Sci 2021; 22:ijms22062808. [PMID: 33802057 PMCID: PMC7998805 DOI: 10.3390/ijms22062808] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/04/2021] [Accepted: 03/06/2021] [Indexed: 12/03/2022] Open
Abstract
Heavy metals polluting the 100-year-old waste heap in Bolesław (Poland) are acting as a natural selection factor and may contribute to adaptations of organisms living in this area, including Trifolium repens and its root nodule microsymbionts—rhizobia. Exopolysaccharides (EPS), exuded extracellularly and associated with bacterial cell walls, possess variable structures depending on environmental conditions; they can bind metals and are involved in biofilm formation. In order to examine the effects of long-term exposure to metal pollution on EPS structure and biofilm formation of rhizobia, Rhizobium leguminosarum bv. trifolii strains originating from the waste heap area and a non-polluted reference site were investigated for the characteristics of the sugar fraction of their EPS using gas chromatography mass-spectrometry and also for biofilm formation and structural characteristics using confocal laser scanning microscopy under control conditions as well as when exposed to toxic concentrations of zinc, lead, and cadmium. Significant differences in EPS structure, biofilm thickness, and ratio of living/dead bacteria in the biofilm were found between strains originating from the waste heap and from the reference site, both without exposure to metals and under metal exposure. Received results indicate that studied rhizobia can be assumed as potentially useful in remediation processes.
Collapse
Affiliation(s)
- Ewa Oleńska
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Białystok, 1J Ciołkowski, 15-245 Białystok, Poland;
- Correspondence: ; Tel.: +48-8-5738-8366
| | - Wanda Małek
- Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, 19 Akademicka, 20-033 Lublin, Poland;
| | - Urszula Kotowska
- Division of Environmental Chemistry, Department of Analytic and Inorganic Chemistry, Faculty of Chemistry, University of Białystok, 1K Ciołkowski, 15-245 Białystok, Poland;
| | - Jerzy Wydrych
- Department of Functional Anatomy and Cytobiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, 19 Akademicka, 20-033 Lublin, Poland;
| | - Weronika Polińska
- Doctoral School of Exact and Natural Sciences, University of Białystok, 1K Ciołkowski, 15-245 Białystok, Poland;
| | - Izabela Swiecicka
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Białystok, 1J Ciołkowski, 15-245 Białystok, Poland;
- Laboratory of Applied Microbiology, Faculty of Biology, University of Białystok, 1J Ciołkowski, 15-245 Białystok, Poland
| | - Sofie Thijs
- Centre for Environmental Sciences, Faculty of Sciences, Hasselt University, Agoralaan D, B-3590 Diepenbeek, Belgium; (S.T.); (J.V.)
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Faculty of Sciences, Hasselt University, Agoralaan D, B-3590 Diepenbeek, Belgium; (S.T.); (J.V.)
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, 19 Akademicka, 20-033 Lublin, Poland
| |
Collapse
|
39
|
Lee J, Kim HS, Jo HY, Kwon MJ. Revisiting soil bacterial counting methods: Optimal soil storage and pretreatment methods and comparison of culture-dependent and -independent methods. PLoS One 2021; 16:e0246142. [PMID: 33566842 PMCID: PMC7875414 DOI: 10.1371/journal.pone.0246142] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/13/2021] [Indexed: 11/19/2022] Open
Abstract
Although a number of different methods have been used to quantify soil bacteria, identifying the optimal method(s) for soil bacterial abundance is still in question. No single method exists for undertaking an absolute microbial count using culture-dependent methods (CDMs) or even culture-independent methods (CIMs). This study investigated soil storage and pretreatment methods for optimal bacterial counts. Appropriate storage temperature (4°C) and optimal pretreatment methods (sonication time for 3 min and centrifugation at 1400 g) were necessary to preserve bacterial cell viability and eliminate interference from soil particles. To better estimate soil bacterial numbers under various cellular state and respiration, this study also evaluated three CDMs (i.e., colony forming unit, spotting, and most probable number (MPN) and three CIMs (i.e., flow cytometry (FCM), epifluorescence microscopy (EM) count, and DNA quantitation). Each counting method was tested using 72 soil samples collected from a local arable farm site at three different depths (i.e., 10-20, 90-100, and 180-190 cm). Among all CDMs, MPN was found to be rapid, simple, and reliable. However, the number of bacteria quantified by MPN was 1-2 orders lower than that quantified by CIMs, likely due to the inability of MPN to count anaerobic bacteria. The DNA quantitation method appeared to overestimate soil bacterial numbers, which may be attributed to DNA from dead bacteria and free DNA in the soil matrix. FCM was found to be ineffective in counting soil bacteria as it was difficult to separate the bacterial cells from the soil particles. Dyes used in FCM stained the bacterial DNA and clay particles. The EM count was deemed a highly effective method as it provided information on soil mineral particles, live bacteria, and dead bacteria; however, it was a time-consuming and labor-intensive process. Combining both types of methods was considered the best approach to acquire better information on the characteristics of indigenous soil microorganisms (aerobic versus anaerobic, live versus dead).
Collapse
Affiliation(s)
- Jeonggil Lee
- KU-KIST Green School, Korea University, Seoul, Republic of Korea
| | - Han-Suk Kim
- Department of Earth and Environmental Sciences, Korea University, Seoul, Republic of Korea
| | - Ho Young Jo
- Department of Earth and Environmental Sciences, Korea University, Seoul, Republic of Korea
| | - Man Jae Kwon
- KU-KIST Green School, Korea University, Seoul, Republic of Korea
- Department of Earth and Environmental Sciences, Korea University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
40
|
Massello FL, Donati E. Effect of heavy metal-induced stress on two extremophilic microbial communities from Caviahue-Copahue, Argentina. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115709. [PMID: 33010675 DOI: 10.1016/j.envpol.2020.115709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/03/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
Metal pollution is a great concern worldwide and the development of new technologies for more sustainable extraction methods as well as for the remediation of polluted sites is essential. Extremophilic microorganisms are attractive for this purpose since they have poly-resistance mechanisms which make them versatile. In this work, we sampled an acidic river and a hot spring of Caviahue-Copahue volcanic environment. The indigenous microbial communities were exposed to five heavy metals (Cd, Co, Cu, Ni and Zn) in batch-cultures favouring different metabolisms of biotechnological interest. Remarkably, high tolerance values were reached in all the cultures, even though most of the metals studied were not present in the environmental sample. Particularly, outstanding tolerances were exhibited by acidophiles, which grew at concentrations as high as 400 mM of Zn and Ni. High-throughput amplicon sequencing of 16S rRNA gene was used to study the indigenous communities and the resistant consortia. We took three approaches for the analysis: phylotypes, OTUs and amplicon sequence variants (ASVs). Interestingly, similar conclusions were drawn in all three cases. Analysing the phylogenetic structure and functional potential of the adapted consortia, we found that the strongest selection was exerted by the culture media. Notably, there was a poor correlation between alpha diversity and metal stress; furthermore, metal stress did not seem to harm the functional potential of the consortia. All these results reveal a great adaptability and versatility. At the end, 25 metal-resistant extremophilic consortia with potential uses in bioremediation, bioleaching or biomonitoring processes were obtained.
Collapse
Affiliation(s)
- Francisco L Massello
- CINDEFI (CONICET, UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.
| | - Edgardo Donati
- CINDEFI (CONICET, UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Buenos Aires, Argentina.
| |
Collapse
|
41
|
Bang-Andreasen T, Anwar MZ, Lanzén A, Kjøller R, Rønn R, Ekelund F, Jacobsen CS. Total RNA sequencing reveals multilevel microbial community changes and functional responses to wood ash application in agricultural and forest soil. FEMS Microbiol Ecol 2020; 96:5721238. [PMID: 32009159 PMCID: PMC7028008 DOI: 10.1093/femsec/fiaa016] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/31/2020] [Indexed: 11/15/2022] Open
Abstract
Recycling of wood ash from energy production may counteract soil acidification and return essential nutrients to soils. However, wood ash amendment affects soil physicochemical parameters that control composition and functional expression of the soil microbial community. Here, we applied total RNA sequencing to simultaneously assess the impact of wood ash amendment on the active soil microbial communities and the expression of functional genes from all microbial taxa. Wood ash significantly affected the taxonomic (rRNA) as well as functional (mRNA) profiles of both agricultural and forest soil. Increase in pH, electrical conductivity, dissolved organic carbon and phosphate were the most important physicochemical drivers for the observed changes. Wood ash amendment increased the relative abundance of the copiotrophic groups Chitinonophagaceae (Bacteroidetes) and Rhizobiales (Alphaproteobacteria) and resulted in higher expression of genes involved in metabolism and cell growth. Finally, total RNA sequencing allowed us to show that some groups of bacterial feeding protozoa increased concomitantly to the enhanced bacterial growth, which shows their pivotal role in the regulation of bacterial abundance in soil.
Collapse
Affiliation(s)
- Toke Bang-Andreasen
- Department of Environmental Science, Aarhus University, RISØ Campus, Roskilde, 4000, Denmark.,Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Muhammad Zohaib Anwar
- Department of Environmental Science, Aarhus University, RISØ Campus, Roskilde, 4000, Denmark
| | - Anders Lanzén
- Department of Conservation of Natural Resources, NEIKER-Tecnalia, Bizkaia Technology Park, E-48160, Derio, Spain.,AZTI-Tecnalia, Herrera Kaia, E-20110, Pasaia, Spain.,Ikerbasque, Basque Foundation for Science, E-48013, Bilbao, Spain
| | - Rasmus Kjøller
- Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Regin Rønn
- Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark.,Arctic Station, University of Copenhagen, 3953, Qeqertarsuaq, Greenland
| | - Flemming Ekelund
- Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Carsten Suhr Jacobsen
- Department of Environmental Science, Aarhus University, RISØ Campus, Roskilde, 4000, Denmark
| |
Collapse
|
42
|
Oleńska E, Małek W, Wójcik M, Swiecicka I, Thijs S, Vangronsveld J. Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: A methodical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140682. [PMID: 32758827 DOI: 10.1016/j.scitotenv.2020.140682] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/31/2020] [Accepted: 06/30/2020] [Indexed: 05/08/2023]
Abstract
New eco-friendly approaches are required to improve plant biomass production. Beneficial plant growth-promoting (PGP) bacteria may be exploited as excellent and efficient biotechnological tools to improve plant growth in various - including stressful - environments. We present an overview of bacterial mechanisms which contribute to plant health, growth, and development. Plant growth promoting rhizobacteria (PGPR) can interact with plants directly by increasing the availability of essential nutrients (e.g. nitrogen, phosphorus, iron), production and regulation of compounds involved in plant growth (e.g. phytohormones), and stress hormonal status (e.g. ethylene levels by ACC-deaminase). They can also indirectly affect plants by protecting them against diseases via competition with pathogens for highly limited nutrients, biocontrol of pathogens through production of aseptic-activity compounds, synthesis of fungal cell wall lysing enzymes, and induction of systemic responses in host plants. The potential of PGPR to facilitate plant growth is of fundamental importance, especially in case of abiotic stress, where bacteria can support plant fitness, stress tolerance, and/or even assist in remediation of pollutants. Providing additional evidence and better understanding of bacterial traits underlying plant growth-promotion can inspire and stir up the development of innovative solutions exploiting PGPR in times of highly variable environmental and climatological conditions.
Collapse
Affiliation(s)
- Ewa Oleńska
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland.
| | - Wanda Małek
- Department of Genetics and Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Małgorzata Wójcik
- Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland.
| | - Izabela Swiecicka
- Department of Microbiology and Biotechnology, Faculty of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland.
| | - Sofie Thijs
- Faculty of Sciences, Centre for Environmental Sciences, Hasselt University, Agoralaan D, B-3590, Belgium.
| | - Jaco Vangronsveld
- Faculty of Sciences, Centre for Environmental Sciences, Hasselt University, Agoralaan D, B-3590, Belgium.
| |
Collapse
|
43
|
Shabbir Z, Sardar A, Shabbir A, Abbas G, Shamshad S, Khalid S, Murtaza G, Dumat C, Shahid M. Copper uptake, essentiality, toxicity, detoxification and risk assessment in soil-plant environment. CHEMOSPHERE 2020; 259:127436. [PMID: 32599387 DOI: 10.1016/j.chemosphere.2020.127436] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 06/08/2020] [Accepted: 06/14/2020] [Indexed: 05/27/2023]
Abstract
Copper (Cu) is an essential metal for human, animals and plants, although it is also potentially toxic above supra-optimal levels. In plants, Cu is an essential cofactor of numerous metalloproteins and is involved in several biochemical and physiological processes. However, excess of Cu induces oxidative stress inside plants via enhanced production of reactive oxygen species (ROS). Owing to its dual nature (essential and a potential toxicity), this metal involves a complex network of uptake, sequestration and transport, essentiality, toxicity and detoxification inside the plants. Therefore, it is vital to monitor the biogeo-physiochemical behavior of Cu in soil-plant-human systems keeping in view its possible essential and toxic roles. This review critically highlights the latest understanding of (i) Cu adsorption/desorption in soil (ii) accumulation in plants, (iii) phytotoxicity, (iv) tolerance mechanisms inside plants and (v) health risk assessment. The Cu-mediated oxidative stress and resulting up-regulation of several enzymatic and non-enzymatic antioxidants have been deliberated at molecular and cellular levels. Moreover, the role of various transporter proteins in Cu uptake and its proper transportation to target metalloproteins is critically discussed. The review also delineates Cu build-up in plant food and accompanying health disorders. Finally, this review proposes some future perspectives regarding Cu biochemistry inside plants. The review, to a large extent, presents a complete picture of the biogeo-physiochemical behavior of Cu in soil-plant-human systems supported with up-to-date 10 tables and 5 figures. It can be of great interest for post-graduate level students, scientists, industrialists, policymakers and regulatory authorities.
Collapse
Affiliation(s)
- Zunaira Shabbir
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Aneeza Sardar
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Abrar Shabbir
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Ghulam Abbas
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Saliha Shamshad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Sana Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Ghulam Murtaza
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Camille Dumat
- Centre d'Etude et de Recherche Travail Organisation Pouvoir (CERTOP), UMR5044, Université J. Jaurès - Toulouse II, 5 allée Machado A., 31058, Toulouse, Cedex 9, France; Université de Toulouse, INP-ENSAT, Avenue de l'Agrobiopole, 31326, Auzeville-Tolosane, France; Association Réseau-Agriville, France
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan. http://reseau-agriville.com/
| |
Collapse
|
44
|
Fagnano M, Agrelli D, Pascale A, Adamo P, Fiorentino N, Rocco C, Pepe O, Ventorino V. Copper accumulation in agricultural soils: Risks for the food chain and soil microbial populations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139434. [PMID: 32454337 DOI: 10.1016/j.scitotenv.2020.139434] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/28/2020] [Accepted: 05/12/2020] [Indexed: 05/25/2023]
Abstract
The long-term use of Cu-based fungicides at doses of several kilograms per hectare stimulated a wide debate about the human health and environmental risks of the progressive accumulation of Cu in agricultural soils. Here, the health risks due to copper accumulation in agricultural soils were evaluated with a survey in intensive agricultural land of the Campania region (Italy), aiming to evaluate Cu accumulation in food crops. The health risk due to dietary exposure was estimated by using the Hazard Quotient (HQ), calculated as the ratio between the average daily dose and the reference dose of copper, suggesting that when HQ > 1 there is a potential risk for consumers. According to a survey of soils with a Cu content up to 217 mg kg-1, no foodstuffs showed dietary risks. Nevertheless, the contribution of Cu contained in these foodstuffs to the overall intake of Cu by consumers could increase health risks since such risks must be evaluated on the basis of the whole standard diet by quantifying the Cu content not only in vegetables and fruits but also in other sources, such as cereals, not cultivated in the study area and thus not considered in this paper. The environmental risks due to copper accumulation in agricultural soils were then evaluated with a field experiment in a soil characterized by a very high Cu concentration (up to 1700 mg kg-1), aiming to study the impacts of Cu on native soil microorganisms. The study of the microbiota highlighted that the presence of Cu in soil did not reduce the total richness and diversity of microorganisms, which were not related to increasing concentrations of Cu in the soil. Nevertheless, Cu contamination was found to exert significant selection pressure on the soil microbiota, as shown by beta diversity and correlation analysis between taxa and Cu content.
Collapse
Affiliation(s)
- Massimo Fagnano
- Department of Agricultural Sciences, Division of Plant Biology and Crop Science, University of Naples Federico II, Via Università 100, Portici 80055, Naples, Italy
| | - Diana Agrelli
- Department of Agricultural Sciences, Division of Agricultural Chemistry and Pedology, University of Naples Federico II, Via Università 100, Portici 80055, Naples, Italy
| | - Alberto Pascale
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Via Università 100, Portici 80055, Naples, Italy
| | - Paola Adamo
- Department of Agricultural Sciences, Division of Agricultural Chemistry and Pedology, University of Naples Federico II, Via Università 100, Portici 80055, Naples, Italy
| | - Nunzio Fiorentino
- Department of Agricultural Sciences, Division of Plant Biology and Crop Science, University of Naples Federico II, Via Università 100, Portici 80055, Naples, Italy
| | - Claudia Rocco
- Department of Agricultural Sciences, Division of Agricultural Chemistry and Pedology, University of Naples Federico II, Via Università 100, Portici 80055, Naples, Italy
| | - Olimpia Pepe
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Via Università 100, Portici 80055, Naples, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Valeria Ventorino
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Via Università 100, Portici 80055, Naples, Italy; Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
45
|
Jia X, Zhang N, Zhao Y, Wang L, Zhang C, Li X, Cao K, Gao Y. A consecutive 4-year elevated air temperature shaped soil bacterial community structure and metabolic functional groups in the rhizosphere of black locust seedlings exposed to lead pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139273. [PMID: 32428772 DOI: 10.1016/j.scitotenv.2020.139273] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/03/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
Global warming may influence the bioavailability and mobility of heavy metals by stimulating or inhibiting plant growth, thereby influencing rhizosphere soil chemistry and microbial characteristics. Black locust has been widely planted in China as a promising species for afforestation programs, farmland shelterbelt projects, and soil restoration in mined areas because of its rapid growth and adaptability to environmental stressors. Here, we examined soil bacterial community structure and predicted bacterial metabolic function in the rhizosphere of black locust exposed to elevated temperature (+1.99 °C) and Pb for 4 years. Elevated temperature significantly (p < 0.05) reduced total carbon (TC), total nitrogen (TN), and total sulfur (TS) contents in above-ground parts but increased TC and TN contents in roots and seedling height under Pb exposure. Elevated temperature significantly (p < 0.05) increased Pb availability and raised pH, TC, TN, TS and water-soluble organic carbon (WSOC) contents, and the C:H ratio in rhizosphere soils under Pb exposure. The interactive effects between Pb and temperature on pH, TC, TH, TS, WSOC, and the C:H ratio were significant (p < 0.05). Elevated temperature significantly (p < 0.05) reduced the diversity and the richness of bacterial community, altered genus-level bacterial community composition, and improved (p < 0.05) the relative abundances of some bacteria involving in terpenoids and polyketides and xenobiotics biodegradation metabolism under Pb exposure. Canonical correspondence analysis indicated that pH, WSOC, C:N ratio, and soluble Pb were significant (p < 0.05) factors on the relative abundance of bacterial genera, such as Ochrobactrum and Sphingomnas. Overall, long-term elevated temperature resulted in changes in rhizosphere soil characteristics and Pb availability, thus affecting the bacterial community structure and metabolic functional groups. The conclusion helps us understand the response mechanism of soil bacteria in the rhizosphere to heavy metals under global warming scenarios.
Collapse
Affiliation(s)
- Xia Jia
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, Xi'an 710054, PR China.
| | - Ningjing Zhang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, Xi'an 710054, PR China
| | - Yonghua Zhao
- School of Land Engineering, Chang'an University, Xi'an 710054, PR China
| | - Lu Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, Xi'an 710054, PR China
| | - ChunYan Zhang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, Xi'an 710054, PR China
| | - Xiaodi Li
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, Xi'an 710054, PR China
| | - Kemeng Cao
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of Ministry of Education, Shaanxi Key Laboratory of Land Consolidation, School of Water and Environment, Chang'an University, Xi'an 710054, PR China
| | - Yunfen Gao
- School of Land Engineering, Chang'an University, Xi'an 710054, PR China
| |
Collapse
|
46
|
Pei Y, Mamtimin T, Ji J, Khan A, Kakade A, Zhou T, Yu Z, Zain H, Yang W, Ling Z, Zhang W, Zhang Y, Li X. The guanidine thiocyanate-high EDTA method for total microbial RNA extraction from severely heavy metal-contaminated soils. Microb Biotechnol 2020; 14:465-478. [PMID: 32578381 PMCID: PMC7936289 DOI: 10.1111/1751-7915.13615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/19/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
Molecular analyses relying on RNA, as a direct way to unravel active microbes and their functional genes, have received increasing attention from environmental researchers recently. However, extracting sufficient and high‐quality total microbial RNA from seriously heavy metal‐contaminated soils is still a challenge. In this study, the guanidine thiocyanate‐high EDTA (GTHE) method was established and optimized for recovering high quantity and quality of RNA from long‐term heavy metal‐contaminated soils. Due to the low microbial biomass in the soils, we combined multiple strong denaturants and intense mechanical lysis to break cells for increasing RNA yields. To minimize RNAase and heavy metals interference on RNA integrity, the concentrations of guanidine thiocyanate and EDTA were increased from 0.5 to 0.625 ml g−1 soil and 10 to 100 mM, respectively. This optimized GTHE method was applied to seven severely contaminated soils, and the RNA recovery efficiencies were 2.80 ~ 59.41 μg g−1 soil. The total microbial RNA of non‐Cr(VI) (NT) and Cr(VI)‐treated (CT) samples was utilized for molecular analyses. The result of qRT‐PCR demonstrated that the expressions of two tested genes, chrA and yieF, were respectively upregulated 4.12‐ and 62.43‐fold after Cr(VI) treatment. The total microbial RNA extracted from NT and CT samples, respectively, reached to 26.70 μg and 30.75 μg, which were much higher than the required amount (5 μg) for metatranscriptomic library construction. Besides, ratios of mRNA read were more than 86%, which indicated the high‐quality libraries constructed for metatranscriptomic analysis. In summary, the GTHE method is useful to study microbes of contaminated habitats.
Collapse
Affiliation(s)
- Yaxin Pei
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu, 730000, China.,Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu, 730000, China
| | - Tursunay Mamtimin
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu, 730000, China.,Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu, 730000, China
| | - Jing Ji
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu, 730000, China.,Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou, Gansu, 730000, China
| | - Aman Khan
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu, 730000, China.,Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou, Gansu, 730000, China
| | - Apurva Kakade
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu, 730000, China.,Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu, 730000, China
| | - Tuoyu Zhou
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu, 730000, China.,Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou, Gansu, 730000, China
| | - Zhengsheng Yu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu, 730000, China.,Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou, Gansu, 730000, China
| | - Hajira Zain
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu, 730000, China.,Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou, Gansu, 730000, China
| | - Wenzhi Yang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu, 730000, China
| | - Zhenmin Ling
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu, 730000, China.,Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu, 730000, China.,Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou, Gansu, 730000, China
| | - Wenya Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu, 730000, China
| | - Yingmei Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu, 730000, China
| | - Xiangkai Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environment Pollution, School of Life Science, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu, 730000, China.,Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Tianshuinanlu #222, Lanzhou, Gansu, 730000, China.,Key Laboratory for Resources Utilization Technology of Unconventional Water of Gansu Province, Gansu Academy of Membrane Science and Technology, Duanjiatanlu #1272, Lanzhou, Gansu, 730000, China
| |
Collapse
|
47
|
Cyriaque V, Jacquiod S, Riber L, Abu Al-Soud W, Gillan DC, Sørensen SJ, Wattiez R. Selection and propagation of IncP conjugative plasmids following long-term anthropogenic metal pollution in river sediments. JOURNAL OF HAZARDOUS MATERIALS 2020; 382:121173. [PMID: 31563088 DOI: 10.1016/j.jhazmat.2019.121173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/14/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
For a century, the MetalEurop foundry released metals into the river "La Deûle". Previous work revealed higher microbial diversity in metal impacted sediments, and horizontal gene transfer mediated by conjugative plasmids was suggested to drive the community adaptation to metals. We used an integrative state-of-the-art molecular approach coupling quantitative PCR, conjugation assays, flow cytometry, fluorescence activated cell sorting and 16S rRNA gene amplicon sequencing to investigate the presence of conjugative plasmids and their propagation patterns in sediment microbiomes. We highlighted the existence of a native broad-host range IncP conjugative plasmid population in polluted sediments, confirming their ecological importance for microbial adaptation. However, despite incompatibilities and decreased transfer frequencies with our own alien IncP plasmid, we evidenced that a wide diversity of bacterial members was still prone to uptake the plasmid, indicating that sediment microbial communities are still inclined to receive conjugative plasmids from the same group. We observed that metal pollution favoured exogenous plasmid transfer to specific metal-selected bacteria, which are likely coming from upstream sources (e.g. wastewater treatment plant, farms…). Altogether, our results suggest that MetalEurop sediments are hotspots for gene transfer via plasmids, acting as an "environmental reservoir" for microbes and mobile elements released by human activities.
Collapse
Affiliation(s)
- Valentine Cyriaque
- Proteomics and Microbiology Laboratory, Research Institute for Biosciences, UMONS, 20 place du parc, Mons, Belgium; Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, 1, Bygning, 1-1-215, Denmark.
| | - Samuel Jacquiod
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, 1, Bygning, 1-1-215, Denmark; Agroécologie, UMR 1347, INRA Centre Dijon, Dijon, France
| | - Leise Riber
- Section of Functional Genomics, Department of Biology, University of Copenhagen, Ole Maaløesvej 5, 2200 Copenhagen N, Denmark
| | - Waleed Abu Al-Soud
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, 1, Bygning, 1-1-215, Denmark; Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, Jouf University, Qurayyat, Saudi Arabia
| | - David C Gillan
- Proteomics and Microbiology Laboratory, Research Institute for Biosciences, UMONS, 20 place du parc, Mons, Belgium
| | - Søren J Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, 1, Bygning, 1-1-215, Denmark
| | - Ruddy Wattiez
- Proteomics and Microbiology Laboratory, Research Institute for Biosciences, UMONS, 20 place du parc, Mons, Belgium
| |
Collapse
|
48
|
Burges A, Fievet V, Oustriere N, Epelde L, Garbisu C, Becerril JM, Mench M. Long-term phytomanagement with compost and a sunflower - Tobacco rotation influences the structural microbial diversity of a Cu-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 700:134529. [PMID: 31693956 DOI: 10.1016/j.scitotenv.2019.134529] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
At a former wood preservation site contaminated with Cu, various phytomanagement options have been assessed in the last decade through physicochemical, ecotoxicological and biological assays. In a field trial at this site, phytomanagement with a crop rotation based on tobacco and sunflower, combined with the incorporation of compost and dolomitic limestone, has proved to be efficient in Cu-associated risk mitigation, ecological soil functions recovery and net gain of economic and social benefits. To demonstrate the long-term effectiveness and sustainability of phytomanagement, we assessed here the influence of this remediation option on the diversity, composition and structure of microbial communities over time, through a metabarcoding approach. After 9 years of phytomanagement, no overall effect was identified on microbial diversity; the soil amendments, notably the repeated compost application, led to shifts in soil microbial populations. This phytomanagement option induced changes in the composition of soil microbial communities, promoting the growth of microbial groups belonging to Alphaproteobacteria, many being involved in N cycling. Populations of Nitrososphaeria, which are crucial in nitrification, as well as taxa from phyla Planctomycetacia, Chloroflexi and Gemmatimonadetes, which are tolerant to metal contamination and adapted to oligotrophic soil conditions, decreased in amended phytomanaged plots. Our study provides an insight into population dynamics within soil microbial communities under long-term phytomanagement, in line with the assessment of soil ecological functions and their recovery.
Collapse
Affiliation(s)
- Aritz Burges
- UMR BIOGECO INRA 1202, University of Bordeaux, Bât. B2, allée Geoffroy St-Hilaire, F-33615 Pessac Cedex, France; University of the Basque Country (UPV/EHU), Department of Plant Biology and Ecology, P.O. Box 644, E-48080 Bilbao, Spain.
| | - Virgil Fievet
- UMR BIOGECO INRA 1202, University of Bordeaux, Bât. B2, allée Geoffroy St-Hilaire, F-33615 Pessac Cedex, France
| | - Nadège Oustriere
- Laboratoire Génie Civil et Géoenvironnement (LGCGE), Yncréa Hauts-de-France, Institut Supérieur d'Agriculture, 48 Bld Vauban, 59046 Lille Cedex, France
| | - Lur Epelde
- NEIKER-Tecnalia, Department of Ecology and Natural Resources, Soil Microbial Ecology Group, c/ Berreaga 1, E-48160 Derio, Spain
| | - Carlos Garbisu
- NEIKER-Tecnalia, Department of Ecology and Natural Resources, Soil Microbial Ecology Group, c/ Berreaga 1, E-48160 Derio, Spain
| | - Jose María Becerril
- University of the Basque Country (UPV/EHU), Department of Plant Biology and Ecology, P.O. Box 644, E-48080 Bilbao, Spain
| | - Michel Mench
- UMR BIOGECO INRA 1202, University of Bordeaux, Bât. B2, allée Geoffroy St-Hilaire, F-33615 Pessac Cedex, France
| |
Collapse
|
49
|
Elizabeth George S, Wan Y. Advances in characterizing microbial community change and resistance upon exposure to lead contamination: Implications for ecological risk assessment. CRITICAL REVIEWS IN ENVIRONMENTAL SCIENCE AND TECHNOLOGY 2019; 50:2223-2270. [PMID: 34326626 PMCID: PMC8318135 DOI: 10.1080/10643389.2019.1698260] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Recent advancement in molecular techniques has spurred waves of studies on responses of microorganisms to lead contamination exposure, leveraging detailed phylogenetic analyses and functional gene identification to discern the effects of lead toxicity on microbial communities. This work provides a comprehensive review of recent research on (1) microbial community changes in contaminated aquatic sediments and terrestrial soils; (2) lead resistance mechanisms; and (3) using lead resistance genes for lead biosensor development. Sufficient evidence in the literature, including both in vitro and in situ studies, indicates that exposure to lead contamination inhibits microbial activity resulting in reduced respiration, suppressed metabolism, and reduced biomass as well as altered microbial community structure. Even at sites where microbial communities do not vary compositionally with contamination levels due to extremely long periods of exposure, functional differences between microbial communities are evident, indicating that some microorganisms are susceptible to lead toxicity as others develop resistance mechanisms to survive in lead contaminated environments. The main mechanisms of lead resistance involve extracellular and intracellular biosorption, precipitation, complexation, and/or efflux pumps. These lead resistance mechanisms are associated with suites of genes responsible for specific lead resistance mechanisms and may serving as indicators of lead contamination in association with dominance of certain phyla. This allows for development of several lead biosensors in environmental biotechnology. To promote applications of these advanced understandings, molecular techniques, and lead biosensor technology, perspectives of future work on using microbial indicators for site ecological assessment is presented.
Collapse
Affiliation(s)
- S. Elizabeth George
- US EPA Office of Research and Development, National Health and Environmental Effects Laboratory, Gulf Ecology Division, Sabine Island Drive, Gulf Breeze, FL 32561
| | - Yongshan Wan
- US EPA Office of Research and Development, National Health and Environmental Effects Laboratory, Gulf Ecology Division, Sabine Island Drive, Gulf Breeze, FL 32561
| |
Collapse
|
50
|
Extreme Environments and High-Level Bacterial Tellurite Resistance. Microorganisms 2019; 7:microorganisms7120601. [PMID: 31766694 PMCID: PMC6955997 DOI: 10.3390/microorganisms7120601] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 01/10/2023] Open
Abstract
Bacteria have long been known to possess resistance to the highly toxic oxyanion tellurite, most commonly though reduction to elemental tellurium. However, the majority of research has focused on the impact of this compound on microbes, namely E. coli, which have a very low level of resistance. Very little has been done regarding bacteria on the other end of the spectrum, with three to four orders of magnitude greater resistance than E. coli. With more focus on ecologically-friendly methods of pollutant removal, the use of bacteria for tellurite remediation, and possibly recovery, further highlights the importance of better understanding the effect on microbes, and approaches for resistance/reduction. The goal of this review is to compile current research on bacterial tellurite resistance, with a focus on high-level resistance by bacteria inhabiting extreme environments.
Collapse
|