1
|
Cedeño-Muñoz JS, Aransiola SA, Reddy KV, Ranjit P, Victor-Ekwebelem MO, Oyedele OJ, Pérez-Almeida IB, Maddela NR, Rodríguez-Díaz JM. Antibiotic resistant bacteria and antibiotic resistance genes as contaminants of emerging concern: Occurrences, impacts, mitigations and future guidelines. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175906. [PMID: 39226958 DOI: 10.1016/j.scitotenv.2024.175906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
Antibiotic resistance, driven by the proliferation of antibiotic resistance genes (ARGs) and antibiotic resistance bacteria (ARBs), has emerged as a pressing global health concern. Antimicrobial resistance is exacerbated by the widespread use of antibiotics in agriculture, aquaculture, and human medicine, leading to their accumulation in various environmental compartments such as soil, water, and sediments. The presence of ARGs in the environment, particularly in municipal water, animal husbandry, and hospital environments, poses significant risks to human health, as they can be transferred to potential human pathogens. Current remediation strategies, including the use of pyroligneous acid, coagulants, advanced oxidation, and bioelectrochemical systems, have shown promising results in reducing ARGs and ARBs from soil and water. However, these methods come with their own set of challenges, such as the need for elevated base levels in UV-activated persulfate and the long residence period required for photocatalysts. The future of combating antibiotic resistance lies in the development of standardized monitoring techniques, global collaboration, and the exploration of innovative remediation methods. Emphasis on combination therapies, advanced oxidation processes, and monitoring horizontal gene transfer can pave the way for a comprehensive approach to mitigate the spread of antibiotic resistance in the environment.
Collapse
Affiliation(s)
- Jeffrey Saúl Cedeño-Muñoz
- Departamento de Procesos Químicos, Biotecnología y Alimentos, Facultad de Ingenierías y Ciencias Aplicadas, Universidad Técnica de Manabí, Portoviejo, Ecuador
| | - Sesan Abiodun Aransiola
- Department of Microbiology, Faculty of Science, University of Abuja, PMB 117, Abuja, Nigeria
| | - Kondakindi Venkateswar Reddy
- Center for Biotechnology, University College of Engineering Science and Technology, Hyderabad, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad 500085, Telangana, India
| | - Pabbati Ranjit
- Center for Biotechnology, University College of Engineering Science and Technology, Hyderabad, Jawaharlal Nehru Technological University Hyderabad, Kukatpally, Hyderabad 500085, Telangana, India
| | | | - Olusegun Julius Oyedele
- Bioresources Development Centre, National Biotechnology Development Agency, Ogbomoso, Nigeria
| | - Iris B Pérez-Almeida
- Center for Sustainable Development Studies (CEDS), Ecotec University, Samborondón, Ecuador.
| | - Naga Raju Maddela
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo 130105, Ecuador.
| | - Joan Manuel Rodríguez-Díaz
- Departamento de Procesos Químicos, Biotecnología y Alimentos, Facultad de Ingenierías y Ciencias Aplicadas, Universidad Técnica de Manabí, Portoviejo, Ecuador.
| |
Collapse
|
2
|
Siri Y, Sresung M, Paisantham P, Mongkolsuk S, Sirikanchana K, Honda R, Precha N, Makkaew P. Antibiotic resistance genes and crAssphage in hospital wastewater and a canal receiving the treatment effluent. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124771. [PMID: 39168435 DOI: 10.1016/j.envpol.2024.124771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/26/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Hospital wastewater is a major hotspot for the spread of antimicrobial resistance (AMR) in aquatic ecosystems. This study aimed to investigate the prevalence of antibiotic resistance genes (ARGs) and their correlation with crAssphage in a hospital wastewater treatment plant (HWWTP) and a receiving canal. Water samples were analyzed for 94 ARGs and crAssphage relative to the 16S rRNA using high-throughput quantitative polymerase chain reaction (HT-qPCR). Subsequently, 7 ARGs and crAssphage were selected and quantified using qPCR. The results showed that the detected genes ranged from 79 to 93 out of 95 genes. The raw wastewater (WW) samples had the highest gene diversity compared to the upstream canal, which had less diversity than downstream samples, as determined by HT-qPCR. The blaGES was the most abundant in WW samples, while qacEΔ1, merA, IS6100, tnpA, and IS26 showed high prevalence throughout the treatment processes. The concentrations of intI1, sul1, blaTEM,blaNDM,blaVIM,tetQ, mcr-1, crAssphage, and 16S rRNA, measured using qPCR, were the highest in WW and significantly reduced in treated water samples. Although some water quality parameters, such as total suspended solids and dissolved oxygen, did not significantly differ before and after treatment, removal efficiency ranged from 0.60 to 3.23 log reduction values (LRV). The highest LRV was observed for the tetQ, whereas the mcr-1 had the lowest LRV. Strong positive correlations among the absolute concentrations of ARGs and crAssphage were observed (Spearman's rho = 0.6-1.0), and biochemical oxygen demand correlated with blaTEM and blaVIM (Spearman's rho = 0.6). These results indicate that crAssphage and water quality could reflect the distribution of other ARGs throughout the HWWTP. Further studies are needed to underscore the importance of monitoring ARGs and genetic markers such as crAssphage in HWWTPs and their receiving waters to enhance our understanding of ARG distribution.
Collapse
Affiliation(s)
- Yadpiroon Siri
- Environmental, Safety Technology and Health Program, School of Public Health, Walailak University, Thaiburi, Thasala, Nakhon Si Thammarat, 80160, Thailand
| | - Montakarn Sresung
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Phongsawat Paisantham
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, 10400, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, 10400, Thailand
| | - Ryo Honda
- Faculty of Geosciences and Civil Engineering, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa, 920-1192, Japan
| | - Nopadol Precha
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat, 80160, Thailand; Excellent Center for Dengue and Community Public Health (EC for DACH), Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Prasert Makkaew
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat, 80160, Thailand; Excellent Center for Dengue and Community Public Health (EC for DACH), Walailak University, Nakhon Si Thammarat, 80160, Thailand.
| |
Collapse
|
3
|
Jin Q, Tang J, Zhang L, Yang R, Hou B, Gong Q, Sun D. Bacterial community and antibiotic resistance genes assembly processes were shaped by different mechanisms in the deep-sea basins of the Western Pacific Ocean. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125214. [PMID: 39481517 DOI: 10.1016/j.envpol.2024.125214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/22/2024] [Accepted: 10/27/2024] [Indexed: 11/02/2024]
Abstract
As the intrinsic property of microorganisms, antibiotic resistance genes (ARGs) are fundamentally coupled to microbially-linked biogeochemical processes within ecosystems. However, human activities often obscure the natural distribution of ARGs through deterministic selective pressures. The deep-sea basin of the western Pacific Ocean is one of the least disturbed areas globally by human activities, providing a natural laboratory to investigate the intrinsic mechanisms governing ARGs in natural environments. In this study, we analyzed bacterial community and ARG diversity in 15 surface sediment samples from three deep-sea basins in the western Pacific Ocean. The relative abundance of ARGs in the surface sediments ranged from 3.10 × 10-3 to 5.37 × 10-2 copies/16S rRNA copies, with multidrug and β-lactam resistance genes dominated in all samples (49.06%-100%). The bacteria were mainly dominated by the Proteobacteria. The principal coordinate analysis (PCoA) showed significant spatial heterogeneity of ARGs and bacteria among the three basins. Null model, neutral community models (NCM), and normalized stochasticity ratio (NST) indicated that bacterial community was dominated by stochastic assembly, driven by geographic barriers leading to independent evolution. Conversely, the NST revealed that the ARGs profile was mainly shaped by deterministic processes. Environmental factors are more crucial than geographical factors and bacterial community for ARG occurrence among the selected factors. Meanwhile, we found that the spread of ARGs was mainly through vertical gene transfer in the pre-antibiotic era. The disparity between the assembly processes of bacterial community and ARGs may be attributed to the fact that ARG hosts were not the dominant bacteria in the community. This study first reported the distribution and assembly processes of ARGs and bacterial community in surface sediments of the western Pacific.
Collapse
Affiliation(s)
- Qianyi Jin
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Jialin Tang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Lilan Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| | - Rui Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Bowen Hou
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Qijun Gong
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Dong Sun
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China.
| |
Collapse
|
4
|
Mazur-Marzec H, Andersson AF, Błaszczyk A, Dąbek P, Górecka E, Grabski M, Jankowska K, Jurczak-Kurek A, Kaczorowska AK, Kaczorowski T, Karlson B, Kataržytė M, Kobos J, Kotlarska E, Krawczyk B, Łuczkiewicz A, Piwosz K, Rybak B, Rychert K, Sjöqvist C, Surosz W, Szymczycha B, Toruńska-Sitarz A, Węgrzyn G, Witkowski A, Węgrzyn A. Biodiversity of microorganisms in the Baltic Sea: the power of novel methods in the identification of marine microbes. FEMS Microbiol Rev 2024; 48:fuae024. [PMID: 39366767 PMCID: PMC11500664 DOI: 10.1093/femsre/fuae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/21/2024] [Accepted: 10/03/2024] [Indexed: 10/06/2024] Open
Abstract
Until recently, the data on the diversity of the entire microbial community from the Baltic Sea were relatively rare and very scarce. However, modern molecular methods have provided new insights into this field with interesting results. They can be summarized as follows. (i) Although low salinity causes a reduction in the biodiversity of multicellular species relative to the populations of the North-East Atlantic, no such reduction occurs in bacterial diversity. (ii) Among cyanobacteria, the picocyanobacterial group dominates when considering gene abundance, while filamentous cyanobacteria dominate in means of biomass. (iii) The diversity of diatoms and dinoflagellates is significantly larger than described a few decades ago; however, molecular studies on these groups are still scarce. (iv) Knowledge gaps in other protistan communities are evident. (v) Salinity is the main limiting parameter of pelagic fungal community composition, while the benthic fungal diversity is shaped by water depth, salinity, and sediment C and N availability. (vi) Bacteriophages are the predominant group of viruses, while among viruses infecting eukaryotic hosts, Phycodnaviridae are the most abundant; the Baltic Sea virome is contaminated with viruses originating from urban and/or industrial habitats. These features make the Baltic Sea microbiome specific and unique among other marine environments.
Collapse
Affiliation(s)
- Hanna Mazur-Marzec
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Anders F Andersson
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Tomtebodavägen 23A, SE-171 65 Solna, Stockholm, Sweden
| | - Agata Błaszczyk
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Przemysław Dąbek
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, PL-70-383 Szczecin, Poland
| | - Ewa Górecka
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, PL-70-383 Szczecin, Poland
| | - Michał Grabski
- International Centre for Cancer Vaccine Science, University of Gdansk, Kładki 24, 80-822 Gdansk, Poland
| | - Katarzyna Jankowska
- Department of Environmental Engineering Technology, Gdansk University of Technology, Narutowicza 11/12, PL-80-233 Gdansk, Poland
| | - Agata Jurczak-Kurek
- Department of Evolutionary Genetics and Biosystematics, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Anna K Kaczorowska
- Collection of Plasmids and Microorganisms, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Tadeusz Kaczorowski
- Laboratory of Extremophiles Biology, Department of Microbiology, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Bengt Karlson
- Swedish Meteorological and Hydrological Institute
, Research and Development, Oceanography, Göteborgseskaderns plats 3, Västra Frölunda SE-426 71, Sweden
| | - Marija Kataržytė
- Marine Research Institute, Klaipėda University, Universiteto ave. 17, LT-92294 Klaipeda, Lithuania
| | - Justyna Kobos
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Ewa Kotlarska
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland
| | - Beata Krawczyk
- Department of Biotechnology and Microbiology, Gdansk University of Technology, Narutowicza 11/12, PL-80-233 Gdansk, Poland
| | - Aneta Łuczkiewicz
- Department of Environmental Engineering Technology, Gdansk University of Technology, Narutowicza 11/12, PL-80-233 Gdansk, Poland
| | - Kasia Piwosz
- National Marine Fisheries Research Institute, Kołłątaja 1, PL-81-332 Gdynia, Poland
| | - Bartosz Rybak
- Department of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Dębowa 23A, PL-80-204 Gdansk, Poland
| | - Krzysztof Rychert
- Pomeranian University in Słupsk, Arciszewskiego 22a, PL-76-200 Słupsk, Poland
| | - Conny Sjöqvist
- Environmental and Marine Biology, Åbo Akademi University, Henriksgatan 2, FI-20500 Åbo, Finland
| | - Waldemar Surosz
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Beata Szymczycha
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland
| | - Anna Toruńska-Sitarz
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Andrzej Witkowski
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, PL-70-383 Szczecin, Poland
| | - Alicja Węgrzyn
- University Center for Applied and Interdisciplinary Research, University of Gdansk, Kładki 24, 80-822 Gdansk, Poland
| |
Collapse
|
5
|
Mitchell TM, Ho T, Salinas L, VanderYacht T, Walas N, Trueba G, Graham JP. Analysis of Antibiotic Resistance Genes (ARGs) across Diverse Bacterial Species in Shrimp Aquaculture. Antibiotics (Basel) 2024; 13:825. [PMID: 39334999 PMCID: PMC11429446 DOI: 10.3390/antibiotics13090825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
There is little information available on antibiotic resistance (ABR) within shrimp aquaculture environments. The aim of this study was to investigate the presence of antibiotic resistance genes (ARGs) in shrimp farming operations in Atacames, Ecuador. Water samples (n = 162) and shrimp samples (n = 54) were collected from three shrimp farming operations. Samples were cultured and a subset of isolates that grew in the presence of ceftriaxone, a third-generation cephalosporin, were analyzed using whole-genome sequencing (WGS). Among the sequenced isolates (n = 44), 73% of the isolates contained at least one ARG and the average number of ARGs per isolate was two, with a median of 3.5 ARGs. Antibiotic resistance genes that confer resistance to the β-lactam class of antibiotics were observed in 65% of the sequenced isolates from water (20/31) and 54% of the isolates from shrimp (7/13). We identified 61 different ARGs across the 44 sequenced isolates, which conferred resistance to nine antibiotic classes. Over half of all sequenced isolates (59%, n = 26) carried ARGs that confer resistance to more than one class of antibiotics. ARGs for certain antibiotic classes were more common, including beta-lactams (26 ARGs); aminoglycosides (11 ARGs); chloramphenicol (three ARGs); and trimethoprim (four ARGs). Sequenced isolates consisted of a diverse array of bacterial orders and species, including Escherichia coli (48%), Klebsiella pneumoniae (7%), Aeromonadales (7%), Pseudomonadales (16%), Enterobacter cloacae (2%), and Citrobacter freundii (2%). Many ARGs were shared across diverse species, underscoring the risk of horizontal gene transfer in these environments. This study indicated the widespread presence of extended-spectrum β-lactamase (ESBL) genes in shrimp aquaculture, including blaCTX-M, blaSHV, and blaTEM genes. Increased antibiotic resistance surveillance of shrimp farms and identification of aquaculture operation-level risk factors, such as antibiotic use, will likely be important for mitigating the spread of ARGs of clinical significance.
Collapse
Affiliation(s)
- Tilden M Mitchell
- School of Public Health, University of California, Berkeley, CA 94704, USA
| | - Tin Ho
- School of Public Health, University of California, Berkeley, CA 94704, USA
| | - Liseth Salinas
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito 170901, Pichincha, Ecuador
| | - Thomas VanderYacht
- School of Public Health, University of California, Berkeley, CA 94704, USA
| | - Nikolina Walas
- School of Public Health, University of California, Berkeley, CA 94704, USA
| | - Gabriel Trueba
- Instituto de Microbiología, Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito 170901, Pichincha, Ecuador
| | - Jay P Graham
- School of Public Health, University of California, Berkeley, CA 94704, USA
| |
Collapse
|
6
|
Milijasevic M, Veskovic-Moracanin S, Babic Milijasevic J, Petrovic J, Nastasijevic I. Antimicrobial Resistance in Aquaculture: Risk Mitigation within the One Health Context. Foods 2024; 13:2448. [PMID: 39123639 PMCID: PMC11311770 DOI: 10.3390/foods13152448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
The application of antimicrobials in aquaculture primarily aims to prevent and treat bacterial infections in fish, but their inappropriate use may result in the emergence of zoonotic antibiotic-resistant bacteria and the subsequent transmission of resistant strains to humans via food consumption. The aquatic environment serves as a potential reservoir for resistant bacteria, providing an ideal breeding ground for development of antimicrobial resistance (AMR). The mutual inter-connection of intensive fish-farming systems with terrestrial environments, the food processing industry and human population creates pathways for the transmission of resistant bacteria, exacerbating the problem further. The aim of this study was to provide an overview of the most effective and available risk mitigation strategies to tackle AMR in aquaculture, based on the One Health (OH) concept. The stringent antimicrobial use guidelines, promoting disease control methods like enhanced farm biosecurity measures and vaccinations, alternatives to antibiotics (ABs) (prebiotics, probiotics, immunostimulants, essential oils (EOs), peptides and phage therapy), feeding practices, genetics, monitoring water quality, and improving wastewater treatment, rather than applying excessive use of antimicrobials, can effectively prevent the development of AMR and release of resistant bacteria into the environment and food. The contribution of the environment to AMR development traditionally receives less attention, and, therefore, environmental aspects should be included more prominently in OH efforts to predict, detect and prevent the risks to health. This is of particular importance for low and middle-income countries with a lack of integration of the national AMR action plans (NAPs) with the aquaculture-producing environment. Integrated control of AMR in fisheries based on the OH approach can contribute to substantial decrease in resistance, and such is the case in Asia, where in aquaculture, the percentage of antimicrobial compounds with resistance exceeding 50% (P50) decreased from 52% to 22% within the period of the previous two decades.
Collapse
Affiliation(s)
- Milan Milijasevic
- Institute of Meat Hygiene and Technology, 11000 Belgrade, Serbia; (M.M.); (S.V.-M.); (J.B.M.)
| | | | | | - Jelena Petrovic
- Scientific Veterinary Institute ‘Novi Sad’, 21113 Novi Sad, Serbia;
| | - Ivan Nastasijevic
- Institute of Meat Hygiene and Technology, 11000 Belgrade, Serbia; (M.M.); (S.V.-M.); (J.B.M.)
| |
Collapse
|
7
|
Drane K, Sheehan M, Whelan A, Ariel E, Kinobe R. The Role of Wastewater Treatment Plants in Dissemination of Antibiotic Resistance: Source, Measurement, Removal and Risk Assessment. Antibiotics (Basel) 2024; 13:668. [PMID: 39061350 PMCID: PMC11274174 DOI: 10.3390/antibiotics13070668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/05/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Antibiotic Resistance Genes (ARGs) are contaminants of emerging concern with marked potential to impact public and environmental health. This review focusses on factors that influence the presence, abundance, and dissemination of ARGs within Wastewater Treatment Plants (WWTPs) and associated effluents. Antibiotic-Resistant Bacteria (ARB) and ARGs have been detected in the influent and the effluent of WWTPs worldwide. Different levels of wastewater treatment (primary, secondary, and tertiary) show different degrees of removal efficiency of ARGs, with further differences being observed when ARGs are captured as intracellular or extracellular forms. Furthermore, routinely used molecular methodologies such as quantitative polymerase chain reaction or whole genome sequencing may also vary in resistome identification and in quantifying ARG removal efficiencies from WWTP effluents. Additionally, we provide an overview of the One Health risk assessment framework, as well as future strategies on how WWTPs can be assessed for environmental and public health impact.
Collapse
Affiliation(s)
- Kezia Drane
- College of Public Health Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia;
| | - Madoc Sheehan
- College of Science, Technology, and Engineering, James Cook University, Townsville, QLD 4811, Australia;
| | - Anna Whelan
- Townsville Water and Waste, Wastewater Operations, Townsville, QLD 4810, Australia;
| | - Ellen Ariel
- College of Public Health Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia;
| | - Robert Kinobe
- College of Public Health Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia;
| |
Collapse
|
8
|
Lubis AR, Sumon MAA, Dinh-Hung N, Dhar AK, Delamare-Deboutteville J, Kim DH, Shinn AP, Kanjanasopa D, Permpoonpattana P, Doan HV, Linh NV, Brown CL. Review of quorum-quenching probiotics: A promising non-antibiotic-based strategy for sustainable aquaculture. JOURNAL OF FISH DISEASES 2024; 47:e13941. [PMID: 38523339 DOI: 10.1111/jfd.13941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/25/2024] [Accepted: 03/01/2024] [Indexed: 03/26/2024]
Abstract
The emergence of antibiotic-resistant bacteria (ARBs) and genes (ARGs) in aquaculture underscores the urgent need for alternative veterinary strategies to combat antimicrobial resistance (AMR). These measures are vital to reduce the likelihood of entering a post-antibiotic era. Identifying environmentally friendly biotechnological solutions to prevent and treat bacterial diseases is crucial for the sustainability of aquaculture and for minimizing the use of antimicrobials, especially antibiotics. The development of probiotics with quorum-quenching (QQ) capabilities presents a promising non-antibiotic strategy for sustainable aquaculture. Recent research has demonstrated the effectiveness of QQ probiotics (QQPs) against a range of significant fish pathogens in aquaculture. QQ disrupts microbial communication (quorum sensing, QS) by inhibiting the production, replication, and detection of signalling molecules, thereby reducing bacterial virulence factors. With their targeted anti-virulence approach, QQPs have substantial promise as a potential alternative to antibiotics. The application of QQPs in aquaculture, however, is still in its early stages and requires additional research. Key challenges include determining the optimal dosage and treatment regimens, understanding the long-term effects, and integrating QQPs with other disease control methods in diverse aquaculture systems. This review scrutinizes the current literature on antibiotic usage, AMR prevalence in aquaculture, QQ mechanisms and the application of QQPs as a sustainable alternative to antibiotics.
Collapse
Affiliation(s)
- Anisa Rilla Lubis
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Md Afsar Ahmed Sumon
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Nguyen Dinh-Hung
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, USA
| | - Arun K Dhar
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, USA
| | | | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, Republic of Korea
| | | | - Duangkhaetita Kanjanasopa
- Agricultural Science and Technology Program, Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Surat Thani, Thailand
| | - Patima Permpoonpattana
- Agricultural Science and Technology Program, Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Surat Thani, Thailand
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Functional Feed Innovation Center (FuncFeed), Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Nguyen Vu Linh
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Functional Feed Innovation Center (FuncFeed), Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Christopher L Brown
- FAO World Fisheries University Pilot Programme, Pukyong National University, Busan, South Korea
| |
Collapse
|
9
|
Gong W, Guo L, Huang C, Xie B, Jiang M, Zhao Y, Zhang H, Wu Y, Liang H. A systematic review of antibiotics and antibiotic resistance genes (ARGs) in mariculture wastewater: Antibiotics removal by microalgal-bacterial symbiotic system (MBSS), ARGs characterization on the metagenomic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172601. [PMID: 38657817 DOI: 10.1016/j.scitotenv.2024.172601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Antibiotic residues in mariculture wastewater seriously affect the aquatic environment. Antibiotic Resistance Genes (ARGs) produced under antibiotic stress flow through the environment and eventually enter the human body, seriously affecting human health. Microalgal-bacterial symbiotic system (MBSS) can remove antibiotics from mariculture and reduce the flow of ARGs into the environment. This review encapsulates the present scenario of mariculture wastewater, the removal mechanism of MBSS for antibiotics, and the biomolecular information under metagenomic assay. When confronted with antibiotics, there was a notable augmentation in the extracellular polymeric substances (EPS) content within MBSS, along with a concurrent elevation in the proportion of protein (PN) constituents within the EPS, which limits the entry of antibiotics into the cellular interior. Quorum sensing stimulates the microorganisms to produce biological responses (DNA synthesis - for adhesion) through signaling. Oxidative stress promotes gene expression (coupling, conjugation) to enhance horizontal gene transfer (HGT) in MBSS. The microbial community under metagenomic detection is dominated by aerobic bacteria in the bacterial-microalgal system. Compared to aerobic bacteria, anaerobic bacteria had the significant advantage of decreasing the distribution of ARGs. Overall, MBSS exhibits remarkable efficacy in mitigating the challenges posed by antibiotics and resistant genes from mariculture wastewater.
Collapse
Affiliation(s)
- Weijia Gong
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China; State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China.
| | - Lin Guo
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Chenxin Huang
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Binghan Xie
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, PR China.
| | - Mengmeng Jiang
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Yuzhou Zhao
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Haotian Zhang
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - YuXuan Wu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Weihai 264209, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| |
Collapse
|
10
|
Liu Y, Chu K, Hua Z, Li Q, Lu Y, Ye F, Dong Y, Li X. Dynamics of antibiotic resistance genes in the sediments of a water-diversion lake and its human exposure risk behaviour. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172563. [PMID: 38641096 DOI: 10.1016/j.scitotenv.2024.172563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
The dynamics and exposure risk behaviours of antibiotic resistance genes (ARGs) in the sediments of water-diversion lakes remain poorly understood. In this study, spatiotemporal investigations of ARG profiles in sediments targeting non-water (NWDP) and water diversion periods (WDP) were conducted in Luoma Lake, a typical water-diversion lake, and an innovative dynamics-based risk assessment framework was constructed to evaluate ARG exposure risks to local residents. ARGs in sediments were significantly more abundant in the WDP than in the NWDP, but there was no significant variation in their spatial distribution in either period. Moreover, the pattern of ARG dissemination in sediments was unchanged between the WDP and NWDP, with horizontal gene transfer (HGT) and vertical gene transfer (VGT) contributing to ARG dissemination in both periods. However, water diversion altered the pattern in lake water, with HGT and VGT in the NWDP but only HGT in the WDP, which were critical pathways for the dissemination of ARGs. The significantly lower ARG sediment-water partition coefficient in the WDP indicated that water diversion could shift the fate of ARGs and facilitate their aqueous partitioning. Risk assessment showed that all age groups faced a higher human exposure risk of ARGs (HERA) in the WDP than in the NWDP, with the 45-59 age group having the highest risk. Furthermore, HERA increased overall with the bacterial carrying capacity in the local environment and peaked when the carrying capacity reached three (NWDP) or four (WDP) orders of magnitude higher than the observed bacterial population. HGT and VGT promoted, whereas ODF covering gene mutation and loss mainly reduced HERA in the lake. As the carrying capacity increased, the relative contribution of ODF to HERA remained relatively stable, whereas the dominant mechanism of HERA development shifted from HGT to VGT.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China
| | - Kejian Chu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China.
| | - Zulin Hua
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China
| | - Qiming Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China
| | - Ying Lu
- Institute for Smart City of Chongqing University in Liyang, Liyang 213300, PR China
| | - Fuzhu Ye
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China
| | - Yueyang Dong
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China
| | - Xiaoqing Li
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
11
|
Liu X, Wei H, Wang H, Zhang Y, Song HL, Zhang S. A review of spatial distribution of typical antibiotic resistance genes in marine environment surrounding China. MARINE POLLUTION BULLETIN 2024; 203:116482. [PMID: 38776644 DOI: 10.1016/j.marpolbul.2024.116482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
Antibiotic resistance genes (ARGs) have been steadily increasing due to the extensive overuse of antibiotics in the marine environment. Currently, the research considering ARGs distribution in marine ecosystems gains more interest. As the coastal sea has been regarded as one of the most polluted areas by antibiotic contaminants in China. However, no comprehensive review of the spatial distribution of ARGs in marine environment surrounding China. The main objective of this review is to investigate the level, characteristic, and spatial distribution of ARGs in the marine environment (seawater and sediments) surrounding China. Key sea areas, such as Bohai Sea, Yellow Sea, East China Sea, and South China Sea were selected in this review. The marine environment was the reservoir of ARGs, and ARGs in seawater were generally 1 to 2 orders of magnitude higher than that in sediments. Total ARGs were more abundant in the Yellow Sea, followed by the Bohai Sea, the East China Sea, and the South China Sea. This study raises questions regarding the spread and distribution for antibiotic resistance in marine environments.
Collapse
Affiliation(s)
- Xingxiang Liu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science &Technology, Nanjing 210044, PR China
| | - Hong Wei
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China
| | - Hui Wang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China
| | - Yu Zhang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science &Technology, Nanjing 210044, PR China
| | - Hai-Liang Song
- School of Environment, Nanjing Normal University, Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, Jiangsu Engineering Lab of Water and Soil Eco-Remediation, Nanjing 210023, PR China.
| | - Shuai Zhang
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, PR China; Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CIC-AEET), Nanjing University of Information Science &Technology, Nanjing 210044, PR China.
| |
Collapse
|
12
|
Gupta SS, Hamza Kh M, Sones CL, Zhang X, Sivaraman GK. The CRISPR/Cas system as an antimicrobial resistance strategy in aquatic ecosystems. Funct Integr Genomics 2024; 24:110. [PMID: 38806846 DOI: 10.1007/s10142-024-01362-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/22/2024] [Accepted: 04/27/2024] [Indexed: 05/30/2024]
Abstract
With the growing population, demand for food has dramatically increased, and fisheries, including aquaculture, are expected to play an essential role in sustaining demand with adequate quantities of protein and essential vitamin supplements, employment generation, and GDP growth. Unfortunately, the incidence of emerging/re-emerging AMR pathogens annually occurs because of anthropogenic activities and the frequent use of antibiotics in aquaculture. These AMR pathogens include the WHO's top 6 prioritized ESKAPE pathogens (nosocomial pathogens: Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.), extended-spectrum beta lactases (ESBLs) and carbapenemase-producing E. coli, which pose major challenges to the biomagnification of both nonnative and native antibiotic-resistant bacteria in capture and cultured fishes. Although implementing the rational use of antibiotics represents a promising mitigation measure, this approach is practically impossible due to the lack of awareness among farmers about the interplay between antimicrobial use and the emergence of antimicrobial resistance (AMR). Nevertheless, to eradicate these 'superbugs,' CRISPR/Cas (clustered regularly interspersed short palindromic repeats/CRISPR associate protein) has turned out to be a novel approach owing to its ability to perform precise site-directed targeting/knockdown/reversal of specific antimicrobial resistance genes in vitro and to distinguish AMR-resistant bacteria from a plethora of commensal aquatic bacteria. Along with highlighting the importance of virulent multidrug resistance genes in bacteria, this article aims to provide a holistic picture of CRISPR/Cas9-mediated genome editing for combating antimicrobial-resistant bacteria isolated from various aquaculture and marine systems, as well as insights into different types of CRISPR/Cas systems, delivery methods, and challenges associated with developing CRISPR/Cas9 antimicrobial agents.
Collapse
Affiliation(s)
- Sobin Sonu Gupta
- Founder & CEO at Times of Biotech, Navelim Bicholim, Goa-403505, India
- Microbiology, Fermentation & Biotechnology Division, ICAR- Central Institute of Fisheries Technology, Cochin-29, Kerala, India
| | - Muneeb Hamza Kh
- Microbiology, Fermentation & Biotechnology Division, ICAR- Central Institute of Fisheries Technology, Cochin-29, Kerala, India
| | - Collin L Sones
- Founder and CTO of Highfield Diagnostics, Zepler Institute of Photonics and Nanoelectronics, University of Southampton, SO17 1BJ, Southampton, UK
| | - Xunli Zhang
- School of Engineering & Institute for Life Sciences, University of Southampton, SO17 1BJ, Southampton, UK
| | - Gopalan Krishnan Sivaraman
- Microbiology, Fermentation & Biotechnology Division, ICAR- Central Institute of Fisheries Technology, Cochin-29, Kerala, India.
| |
Collapse
|
13
|
Watson E, Hamilton S, Silva N, Moss S, Watkins C, Baily J, Forster T, Hall AJ, Dagleish MP. Variations in antimicrobial resistance genes present in the rectal faeces of seals in Scottish and Liverpool Bay coastal waters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123936. [PMID: 38588972 DOI: 10.1016/j.envpol.2024.123936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/04/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
Antibiotic resistance genes originating from human activity are considered important environmental pollutants. Wildlife species can act as sentinels for coastal environmental contamination and in this study we used qPCR array technology to investigate the variety and abundance of antimicrobial resistance genes (ARGs), mobile genetic elements (MGEs) and integrons circulating within seal populations both near to and far from large human populations located around the Scottish and northwest English coast. Rectal swabs were taken from 50 live grey seals and nine live harbour seals. Nucleic acids were stabilised upon collection, enabling extraction of sufficient quality and quantity DNA for downstream analysis. 78 ARG targets, including genes of clinical significance, four MGE targets and three integron targets were used to monitor genes within 22 sample pools. 30 ARGs were detected, as well as the integrons intl1 and intl2 and tnpA transposase. Four β-lactam, nine tetracycline, two phenicol, one trimethoprim, three aminoglycoside and ten multidrug resistance genes were detected as well as mcr-1 which confers resistance to colistin, an important drug of last resort. No sulphonamide, vancomycin, macrolide, lincosamide or streptogramin B (MLSB) resistance genes were detected. Resistance genes were detected in all sites but the highest number of ARGs (n = 29) was detected in samples derived from grey seals on the Isle of May, Scotland during the breeding season, and these genes also had the highest average abundance in relation to the 16S rRNA gene. This pilot study demonstrates the effectiveness of a culture-independent workflow for global analysis of ARGs within the microbiota of live, free-ranging, wild animals from habitats close to and remote from human habitation, and highlights seals as a valuable indicator species for monitoring the presence, abundance and land-sea transference of resistance genes within and between ecosystems.
Collapse
Affiliation(s)
- Eleanor Watson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, Scotland, EH26 0PZ, UK.
| | - Scott Hamilton
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, Scotland, EH26 0PZ, UK
| | - Nuno Silva
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, Scotland, EH26 0PZ, UK
| | - Simon Moss
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife, KY16 8LB, Scotland, UK
| | - Craig Watkins
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, Scotland, EH26 0PZ, UK
| | - Johanna Baily
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, Scotland, EH26 0PZ, UK
| | - Thorsten Forster
- LifeArc, Bioquarter, 9 Little France Road, Edinburgh, EH16 4UX, Scotland, UK
| | - Ailsa J Hall
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife, KY16 8LB, Scotland, UK
| | - Mark P Dagleish
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Edinburgh, Scotland, EH26 0PZ, UK
| |
Collapse
|
14
|
Contente D, Díaz-Formoso L, Feito J, Gómez-Sala B, Costas D, Hernández PE, Muñoz-Atienza E, Borrero J, Poeta P, Cintas LM. Antimicrobial Activity, Genetic Relatedness, and Safety Assessment of Potential Probiotic Lactic Acid Bacteria Isolated from a Rearing Tank of Rotifers ( Brachionus plicatilis) Used as Live Feed in Fish Larviculture. Animals (Basel) 2024; 14:1415. [PMID: 38791633 PMCID: PMC11117289 DOI: 10.3390/ani14101415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/29/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Aquaculture is a rapidly expanding agri-food industry that faces substantial economic losses due to infectious disease outbreaks, such as bacterial infections. These outbreaks cause disruptions and high mortalities at various stages of the rearing process, especially in the larval stages. Probiotic bacteria are emerging as promising and sustainable alternative or complementary strategies to vaccination and the use of antibiotics in aquaculture. In this study, potential probiotic candidates for larviculture were isolated from a rotifer-rearing tank used as the first live feed for turbot larvae. Two Lacticaseibacillus paracasei and two Lactiplantibacillus plantarum isolates were selected for further characterization due to their wide and strong antimicrobial activity against several ichthyopathogens, both Gram-positive and Gram-negative. An extensive in vitro safety assessment of these four isolates revealed the absence of harmful traits, such as acquired antimicrobial resistance and other virulence factors (i.e., hemolytic and gelatinase activities, bile salt deconjugation, and mucin degradation, as well as PCR detection of biogenic amine production). Moreover, Enterobacterial Repetitive Intergenic Consensus-PCR (ERIC-PCR) analyses unveiled their genetic relatedness, revealing two divergent clusters within each species. To our knowledge, this work reports for the first time the isolation and characterization of Lactic Acid Bacteria (LAB) with potential use as probiotics in aquaculture from rotifer-rearing tanks, which have the potential to optimize turbot larviculture and to introduce novel microbial management approaches for a sustainable aquaculture.
Collapse
Affiliation(s)
- Diogo Contente
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGA-BALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.)
| | - Lara Díaz-Formoso
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGA-BALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.)
| | - Javier Feito
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGA-BALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.)
| | - Beatriz Gómez-Sala
- APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland;
- Teagasc Food Research Centre, Moorepark, R93 XE12 Cork, Ireland
| | - Damián Costas
- Centro de Investigación Mariña, Universidade de Vigo, Centro de Investigación Mariña (ECIMAT), 36331 Vigo, Spain;
| | - Pablo E. Hernández
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGA-BALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.)
| | - Estefanía Muñoz-Atienza
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGA-BALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.)
| | - Juan Borrero
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGA-BALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.)
| | - Patrícia Poeta
- Microbiology and Antibiotic Resistance Team (MicroART), Department of Veterinary Sciences, Universidade de Trás-os-Montes e Alto Douro (UTAD), 5000-801 Vila Real, Portugal;
- CECAV-Veterinary and Animal Research Centre, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Science (AL4AnimalS), University of Trás-os-Montes and Alto Douro (UTAD), 5000-801 Vila Real, Portugal
| | - Luis M. Cintas
- Grupo de Seguridad y Calidad de los Alimentos por Bacterias Lácticas, Bacteriocinas y Probióticos (SEGA-BALBP), Sección Departamental de Nutrición y Ciencia de los Alimentos, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (D.C.); (L.D.-F.); (P.E.H.); (E.M.-A.); (J.B.)
| |
Collapse
|
15
|
Daw Elbait G, Daou M, Abuoudah M, Elmekawy A, Hasan SW, Everett DB, Alsafar H, Henschel A, Yousef AF. Comparison of qPCR and metagenomic sequencing methods for quantifying antibiotic resistance genes in wastewater. PLoS One 2024; 19:e0298325. [PMID: 38578803 PMCID: PMC10997137 DOI: 10.1371/journal.pone.0298325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 01/18/2024] [Indexed: 04/07/2024] Open
Abstract
Surveillance methods of circulating antibiotic resistance genes (ARGs) are of utmost importance in order to tackle what has been described as one of the greatest threats to humanity in the 21st century. In order to be effective, these methods have to be accurate, quickly deployable, and scalable. In this study, we compare metagenomic shotgun sequencing (TruSeq DNA sequencing) of wastewater samples with a state-of-the-art PCR-based method (Resistomap HT-qPCR) on four wastewater samples that were taken from hospital, industrial, urban and rural areas. ARGs that confer resistance to 11 antibiotic classes have been identified in these wastewater samples using both methods, with the most abundant observed classes of ARGs conferring resistance to aminoglycoside, multidrug-resistance (MDR), macrolide-lincosamide-streptogramin B (MLSB), tetracycline and beta-lactams. In comparing the methods, we observed a strong correlation of relative abundance of ARGs obtained by the two tested methods for the majority of antibiotic classes. Finally, we investigated the source of discrepancies in the results obtained by the two methods. This analysis revealed that false negatives were more likely to occur in qPCR due to mutated primer target sites, whereas ARGs with incomplete or low coverage were not detected by the sequencing method due to the parameters set in the bioinformatics pipeline. Indeed, despite the good correlation between the methods, each has its advantages and disadvantages which are also discussed here. By using both methods together, a more robust ARG surveillance program can be established. Overall, the work described here can aid wastewater treatment plants that plan on implementing an ARG surveillance program.
Collapse
Affiliation(s)
- Gihan Daw Elbait
- Department of Biological Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Mariane Daou
- Department of Biological Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Miral Abuoudah
- Department of Biological Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ahmed Elmekawy
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Shadi W. Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Chemical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Dean B. Everett
- Department of Pathology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology (BTC), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Infection Research Unit, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Habiba Alsafar
- Center for Biotechnology (BTC), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Emirates Bio-research Center, Ministry of Interior, Abu Dhabi, United Arab Emirates
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Andreas Henschel
- Department of Electrical Engineering and Computer Science, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Ahmed F. Yousef
- Department of Biological Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Center for Biotechnology (BTC), Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| |
Collapse
|
16
|
Yan D, Han Y, Zhong M, Wen H, An Z, Capo E. Historical trajectories of antibiotics resistance genes assessed through sedimentary DNA analysis of a subtropical eutrophic lake. ENVIRONMENT INTERNATIONAL 2024; 186:108654. [PMID: 38621322 DOI: 10.1016/j.envint.2024.108654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/13/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Investigating the occurrence of antibiotic-resistance genes (ARGs) in sedimentary archives provides opportunities for reconstructing the distribution and dissemination of historical (i.e., non-anthropogenic origin) ARGs. Although ARGs in freshwater environments have attracted great attention, historical variations in the diversity and abundance of ARGs over centuries to millennia remain largely unknown. In this study, we investigated the vertical change patterns of bacterial communities, ARGs and mobile genetic elements (MGEs) found in sediments of Lake Chenghai spanning the past 600 years. Within resistome preserved in sediments, 177 ARGs subtypes were found with aminoglycosides and multidrug resistance being the most abundant. The ARG abundance in the upper sediment layers (equivalent to the post-antibiotic era since the 1940s) was lower than those during the pre-antibiotic era, whereas the ARG diversity was higher during the post-antibiotic era, possibly because human-induced lake eutrophication over the recent decades facilitated the spread and proliferation of drug-resistant bacteria. Statistical analysis suggested that MGEs abundance and the bacterial community structure were significantly correlated with the abundance and diversity of ARGs, suggesting that the occurrence and distribution of ARGs may be transferred between different bacteria by MGEs. Our results provide new perspectives on the natural history of ARGs in freshwater environments and are essential for understanding the temporal dynamics and dissemination of ARGs.
Collapse
Affiliation(s)
- Dongna Yan
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi 710061, China
| | - Yongming Han
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi 710061, China; National Observation and Research Station of Regional Ecological Environment Change and Comprehensive Management in the Guanzhong Plain, Xi'an, Shaanxi 710061, China.
| | - Meifang Zhong
- Department of Ecology and Environmental Science, Umeå University, Linnaeus väg 4-6, 907 36 Umeå, Sweden
| | - Hanfeng Wen
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi 710061, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhisheng An
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, Shaanxi 710061, China
| | - Eric Capo
- Department of Ecology and Environmental Science, Umeå University, Linnaeus väg 4-6, 907 36 Umeå, Sweden.
| |
Collapse
|
17
|
Itzhari D, Shuai W, Hartmann EM, Ronen Z. Heterogeneous Antibiotic Resistance Gene Removal Impedes Evaluation of Constructed Wetlands for Effective Greywater Treatment. Antibiotics (Basel) 2024; 13:315. [PMID: 38666991 PMCID: PMC11047525 DOI: 10.3390/antibiotics13040315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/29/2024] Open
Abstract
Microorganisms carrying antimicrobial resistance genes are often found in greywater. As the reuse of greywater becomes increasingly needed, it is imperative to determine how greywater treatment impacts antimicrobial resistance genes (ARGs). Using qPCR and SmartChip™ qPCR, we characterized ARG patterns in greywater microbial communities before, during, and after treatment by a recirculating vertical flow constructed wetland. In parallel, we examined the impact of greywater-treated irrigation on soil, including the occurrence of emerging micropollutants and the taxonomic and ARG compositions of microbial communities. Most ARGs in raw greywater are removed efficiently during the winter season, while some ARGs in the effluents increase in summer. SmartChip™ qPCR revealed the presence of ARGs, such as tetracycline and beta-lactam resistance genes, in both raw and treated greywater, but most abundantly in the filter bed. It also showed that aminoglycoside and vancomycin gene abundances significantly increased after treatment. In the irrigated soil, the type of water (potable or treated greywater) had no specific impact on the total bacterial abundance (16S rRNA gene). No overlapping ARGs were found between treated greywater and greywater-irrigated soil. This study indicates ARG abundance and richness increased after treatment, possibly due to the concentration effects of the filter beds.
Collapse
Affiliation(s)
- Daniella Itzhari
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Beersheba 8499000, Israel;
| | - Weitao Shuai
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA; (W.S.); (E.M.H.)
| | - Erica M. Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA; (W.S.); (E.M.H.)
- Center for Synthetic Biology, Northwestern University, Evanston, IL 60208, USA
- Division of Pulmonary Medicine, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Zeev Ronen
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Beersheba 8499000, Israel;
| |
Collapse
|
18
|
Burch TR, Stokdyk JP, Durso LM, Borchardt MA. Quantitative microbial risk assessment for ingestion of antibiotic resistance genes from private wells contaminated by human and livestock fecal sources. Appl Environ Microbiol 2024; 90:e0162923. [PMID: 38335112 PMCID: PMC10952444 DOI: 10.1128/aem.01629-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/16/2024] [Indexed: 02/12/2024] Open
Abstract
We used quantitative microbial risk assessment to estimate ingestion risk for intI1, erm(B), sul1, tet(A), tet(W), and tet(X) in private wells contaminated by human and/or livestock feces. Genes were quantified with five human-specific and six bovine-specific microbial source-tracking (MST) markers in 138 well-water samples from a rural Wisconsin county. Daily ingestion risk (probability of swallowing ≥1 gene) was based on daily water consumption and a Poisson exposure model. Calculations were stratified by MST source and soil depth over the aquifer where wells were drilled. Relative ingestion risk was estimated using wells with no MST detections and >6.1 m soil depth as a referent category. Daily ingestion risk varied from 0 to 8.8 × 10-1 by gene and fecal source (i.e., human or bovine). The estimated number of residents ingesting target genes from private wells varied from 910 (tet(A)) to 1,500 (intI1 and tet(X)) per day out of 12,000 total. Relative risk of tet(A) ingestion was significantly higher in wells with MST markers detected, including wells with ≤6.1 m soil depth contaminated by bovine markers (2.2 [90% CI: 1.1-4.7]), wells with >6.1 m soil depth contaminated by bovine markers (1.8 [1.002-3.9]), and wells with ≤6.1 m soil depth contaminated by bovine and human markers simultaneously (3.1 [1.7-6.5]). Antibiotic resistance genes (ARGs) were not necessarily present in viable microorganisms, and ingestion is not directly associated with infection. However, results illustrate relative contributions of human and livestock fecal sources to ARG exposure and highlight rural groundwater as a significant point of exposure.IMPORTANCEAntibiotic resistance is a global public health challenge with well-known environmental dimensions, but quantitative analyses of the roles played by various natural environments in transmission of antibiotic resistance are lacking, particularly for drinking water. This study assesses risk of ingestion for several antibiotic resistance genes (ARGs) and the class 1 integron gene (intI1) in drinking water from private wells in a rural area of northeast Wisconsin, United States. Results allow comparison of drinking water as an exposure route for antibiotic resistance relative to other routes like food and recreational water. They also enable a comparison of the importance of human versus livestock fecal sources in the study area. Our study demonstrates the previously unrecognized importance of untreated rural drinking water as an exposure route for antibiotic resistance and identifies bovine fecal material as an important exposure factor in the study setting.
Collapse
Affiliation(s)
- Tucker R. Burch
- U.S. Department of Agriculture-Agricultural Research Service, Environmentally Integrated Dairy Management Research Unit, Marshfield, Wisconsin, USA
- U.S. Geological Survey and U.S. Department of Agriculture-Agricultural Research Service, Laboratory for Infectious Disease and the Environment, Marshfield, Wisconsin, USA
| | - Joel P. Stokdyk
- U.S. Geological Survey and U.S. Department of Agriculture-Agricultural Research Service, Laboratory for Infectious Disease and the Environment, Marshfield, Wisconsin, USA
- U.S. Geological Survey, Upper Midwest Water Science Center, Marshfield, Wisconsin, USA
| | - Lisa M. Durso
- U.S. Department of Agriculture-Agricultural Research Service, Agroecosystem Management Research Unit, Lincoln, Nebraska, USA
| | - Mark A. Borchardt
- U.S. Department of Agriculture-Agricultural Research Service, Environmentally Integrated Dairy Management Research Unit, Marshfield, Wisconsin, USA
- U.S. Geological Survey and U.S. Department of Agriculture-Agricultural Research Service, Laboratory for Infectious Disease and the Environment, Marshfield, Wisconsin, USA
| |
Collapse
|
19
|
Sacristán-Soriano O, Jarma D, Sánchez MI, Romero N, Alonso E, Green AJ, Sànchez-Melsió A, Hortas F, Balcázar JL, Peralta-Sánchez JM, Borrego CM. Winged resistance: Storks and gulls increase carriage of antibiotic resistance by shifting from paddy fields to landfills. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169946. [PMID: 38199372 DOI: 10.1016/j.scitotenv.2024.169946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Waterbirds are vectors for the dissemination of antimicrobial resistance across environments, with some species increasingly reliant on highly anthropized habitats for feeding. However, data on the impact of their feeding habits on the carriage of antibiotic resistance genes (ARGs) are still scarce. To fill this gap, we examined the microbiota (16S rRNA amplicon gene sequencing) and the prevalence of ARG (high-throughput qPCR of 47 genes) in faeces from white storks (Ciconia ciconia) and lesser black-backed gulls (Larus fuscus) feeding in highly (landfill) and less (paddy fields) polluted habitats. Faecal bacterial richness and diversity were higher in gulls feeding upon landfills and showed a greater abundance of potential pathogens, such as Staphylococcus. In contrast, faecal bacterial communities from storks were similar regardless of habitat preferences, maybe due to a less intense habitat use compared to gulls. In addition, birds feeding in the landfill carried a higher burden of ARGs compared to the surrounding soil and surface waters. Network analysis revealed strong correlations between ARGs and potential pathogens, particularly between tetM (resistance to tetracyclines), blaCMY (beta-lactam resistance), sul1 (sulfonamide resistance) and members of the genera Streptococcus, Peptostreptococcus, and Peptoclostridium. Our work demonstrates how transitioning from paddy fields to landfills fosters the carriage of ARGs and potential pathogens in the bird gut, shedding light on the ecological role of these avian vectors in antimicrobial resistance dissemination.
Collapse
Affiliation(s)
| | - Dayana Jarma
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana EBD-CSIC, Avda. Américo Vespucio 26, 41092, Sevilla, Spain; Departamento de Biología, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Avda. República Saharaui, s/n, 11510, Puerto Real, Cádiz, Spain.
| | - Marta I Sánchez
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana EBD-CSIC, Avda. Américo Vespucio 26, 41092, Sevilla, Spain
| | - Noelia Romero
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/Virgen de África, 7, 41011 Sevilla, Spain
| | - Andy J Green
- Departamento de Biología de la Conservación y Cambio Global, Estación Biológica de Doñana EBD-CSIC, Avda. Américo Vespucio 26, 41092, Sevilla, Spain
| | | | - Francisco Hortas
- Departamento de Biología, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Avda. República Saharaui, s/n, 11510, Puerto Real, Cádiz, Spain
| | - José Luis Balcázar
- Institut Català de Recerca de l'Aigua (ICRA), Emili Grahit 101, E-17003 Girona, Spain
| | - Juan Manuel Peralta-Sánchez
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain; Departamento de Zoología, Universidad de Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
| | - Carles M Borrego
- Institut Català de Recerca de l'Aigua (ICRA), Emili Grahit 101, E-17003 Girona, Spain; Grup d'Ecologia Microbiana Molecular, Institut d'Ecologia Aquàtica, Universitat de Girona, Campus de Montilivi, E-17003 Girona, Spain
| |
Collapse
|
20
|
Magalhães EA, de Jesus HE, Pereira PHF, Gomes AS, Santos HFD. Beach sand plastispheres are hotspots for antibiotic resistance genes and potentially pathogenic bacteria even in beaches with good water quality. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123237. [PMID: 38159625 DOI: 10.1016/j.envpol.2023.123237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 12/06/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Massive amounts of microplastics are transported daily from the oceans and rivers onto beaches. The ocean plastisphere is a hotspot and a vector for antibiotic resistance genes (ARGs) and potentially pathogenic bacteria. However, very little is known about the plastisphere in beach sand. Thus, to describe whether the microplastics from beach sand represent a risk to human health, we evaluated the bacteriome and abundance of ARGs on microplastic and sand sampled at the drift line and supralittoral zones of four beaches of poor and good water quality. The bacteriome was evaluated by sequencing of 16S rRNA gene, and the ARGs and bacterial abundances were evaluated by high-throughput real-time PCR. The results revealed that the microplastic harbored a bacterial community that is more abundant and distinct from that of beach sand, as well as a greater abundance of potential human and marine pathogens, especially the microplastics deposited closer to seawater. Microplastics also harbored a greater number and abundance of ARGs. All antibiotic classes evaluated were found in the microplastic samples, but not in the beach sand ones. Additionally, 16 ARGs were found on the microplastic alone, including genes related to multidrug resistance (blaKPC, blaCTX-M, tetM, mdtE and acrB_1), genes that have the potential to rapidly and horizontally spread (blaKPC, blaCTX-M, and tetM), and the gene that confers resistance to antibiotics that are typically regarded as the ultimate line of defense against severe multi-resistant bacterial infections (blaKPC). Lastly, microplastic harbored a similar bacterial community and ARGs regardless of beach water quality. Our findings suggest that the accumulation of microplastics in beach sand worldwide may constitute a potential threat to human health, even in beaches where the water quality is deemed satisfactory. This phenomenon may facilitate the emergence and dissemination of bacteria that are resistant to multiple drugs.
Collapse
Affiliation(s)
- Emily Amorim Magalhães
- Department of Marine Biology, Fluminense Federal University - UFF. St. Professor Marcos Waldemar de Freitas Reis, Niterói, RJ, 24210-201, Brazil
| | - Hugo Emiliano de Jesus
- Department of Marine Biology, Fluminense Federal University - UFF. St. Professor Marcos Waldemar de Freitas Reis, Niterói, RJ, 24210-201, Brazil
| | - Pedro Henrique Freitas Pereira
- Department of Marine Biology, Fluminense Federal University - UFF. St. Professor Marcos Waldemar de Freitas Reis, Niterói, RJ, 24210-201, Brazil
| | - Abílio Soares Gomes
- Department of Marine Biology, Fluminense Federal University - UFF. St. Professor Marcos Waldemar de Freitas Reis, Niterói, RJ, 24210-201, Brazil
| | - Henrique Fragoso Dos Santos
- Department of Marine Biology, Fluminense Federal University - UFF. St. Professor Marcos Waldemar de Freitas Reis, Niterói, RJ, 24210-201, Brazil.
| |
Collapse
|
21
|
Srathongneam T, Sresung M, Paisantham P, Ruksakul P, Singer AC, Sukchawalit R, Satayavivad J, Mongkolsuk S, Sirikanchana K. High throughput qPCR unveils shared antibiotic resistance genes in tropical wastewater and river water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:167867. [PMID: 37879484 DOI: 10.1016/j.scitotenv.2023.167867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023]
Abstract
The global challenge posed by rising antimicrobial resistance, and the adoption of a One Health approach, has led to the prioritisation of surveillance for antibiotic resistance genes (ARGs) in various environments. Herein lies an information gap, particularly in the context of Thailand, where there is scarce data on ARG prevalence across diverse environmental matrices and throughout different seasons. This study aimed to fill this void, analysing ARG prevalence by high-throughput qPCR in influent (n = 12) and effluent wastewater (n = 12) and river water (n = 12). The study reveals a substantial and largely uniform presence of ARGs across all water sample types (87 % similarity). Intriguingly, no ARGs were exclusive to specific water types, indicating an extensive circulation of resistance determinants across the aquatic environment. The genes intI1, tnpA, and intI3, part of the integrons and mobile genetic elements group, were detected in high relative abundance in both wastewater and river water samples, suggesting widespread pollution of rivers with wastewater. Additional high-prevalence ARGs across all water types included qepA, aadA2, merA, sul1, qacF/H, sul2, aadB, and ereA. More alarmingly, several ARGs (e.g., blaVIM, intI3, mcr-1, mexB, qepA, vanA, and vanB) showed higher relative abundance in effluent and river water than in influents, which suggests malfunctioning or inadequate wastewater treatment works and implicates this as a possible mechanism for environmental contamination. Nine genes (i.e., blaCTX-M, blaVIM, emrD, ermX, intI1, mphA, qepA, vanA, and vanB) were recovered in greater relative abundance during the dry season in river water samples as compared to the wet season, suggesting there are seasonal impacts on the efficacy of wastewater treatment practices and pollution patterns into receiving waters. This study highlights the urgency for more effective measures to reduce antibiotic resistance dissemination in water systems.
Collapse
Affiliation(s)
- Thitima Srathongneam
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Montakarn Sresung
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Phongsawat Paisantham
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Pacharaporn Ruksakul
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Andrew C Singer
- U.K. Centre for Ecology & Hydrology, Benson Lane, Wallingford, United Kingdom
| | - Rojana Sukchawalit
- Program in Applied Biological Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand; Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Jutamaad Satayavivad
- Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand; Research Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Program in Environmental Toxicology, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok, Thailand.
| |
Collapse
|
22
|
Memesh R, Yasir M, Ledder RG, Zowawi H, McBain AJ, Azhar EI. An update on the prevalence of colistin and carbapenem-resistant Gram-negative bacteria in aquaculture: an emerging threat to public health. J Appl Microbiol 2024; 135:lxad288. [PMID: 38059867 DOI: 10.1093/jambio/lxad288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 09/22/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023]
Abstract
Aquaculture has been recognized as a hotspot for the emergence and spread of antimicrobial resistance genes conferring resistance to clinically important antibiotics. This review gives insights into studies investigating the prevalence of colistin and carbapenem resistance (CCR) among Gram-negative bacilli in aquaculture. Overall, a high incidence of CCR has been reported in aquatic farms in several countries, with CCR being more prevalent among opportunistic human pathogens such as Acinetobacter nosocomialis, Shewanella algae, Photobacterium damselae, Vibrio spp., Aeromonas spp., as well as members of Enterobacteriaceae family. A high proportion of isolates in these studies exhibited wide-spectrum profiles of antimicrobial resistance, highlighting their multidrug-resistance properties (MDR). Several mobile colistin resistance genes (including, mcr-1, mcr-1.1, mcr-2, mcr-2.1, mcr-3, mcr-3.1, mcr-4.1, mcr-4.3, mcr-5.1, mcr-6.1, mcr-7.1, mcr-8.1, and mcr-10.1) and carbapenemase encoding genes (including, blaOXA-48, blaOXA-55, blaNDM, blaKPC, blaIMI, blaAIM, blaVIM, and blaIMP) have been detected in aquatic farms in different countries. The majority of these were carried on MDR Incompatibility (Inc) plasmids including IncA/C, and IncX4, which have been associated with a wide host range of different sources. Thus, there is a risk for the possible spread of resistance genes between fish, their environments, and humans. These findings highlight the need to monitor and regulate the usage of antimicrobials in aquaculture. A multisectoral and transdisciplinary (One Health) approach is urgently needed to reduce the spread of resistant bacteria and/or resistance genes originating in aquaculture and avoid their global reach.
Collapse
Affiliation(s)
- Roa Memesh
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Special Infectious Agents Unit, King Fahd Medical Research Center and Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Yasir
- Special Infectious Agents Unit, King Fahd Medical Research Center and Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ruth G Ledder
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Hosam Zowawi
- College of Medicine, King Saud bin Abdul-Aziz University for Health Science (KSAU-HS), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Centre (KAIMRC), Riyadh, Saudi Arabia
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew J McBain
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Esam I Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center and Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
23
|
Soku YK, Mohamed A, Samuel T, Dessai U, Walls I, Rockwell C, Fortenberry G, Berutti T, Nieves-Miranda S, Nawrocki EM, Fu Y, Dudley E, Mamber SW, Hicks J. A Comparative Study on Antimicrobial Resistance in Escherichia coli Isolated from Channel Catfish and Related Freshwater Fish Species. J Food Prot 2024; 87:100192. [PMID: 37949412 DOI: 10.1016/j.jfp.2023.100192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/12/2023]
Abstract
Antimicrobial resistance (AMR) trends in 114 generic Escherichia coli isolated from channel catfish and related fish species were investigated in this study. Of these, 45 isolates were from commercial-sized channel catfish harvested from fishponds in Alabama, while 69 isolates were from Siluriformes products, accessed from the U.S. Department of Agriculture Food Safety and Inspection Service' (FSIS) National Antimicrobial Resistance Monitoring System (NARMS) program. Antibiotic susceptibility testing and whole genome sequencing were performed using the GenomeTrakr protocol. Upon analysis, the fishpond isolates showed resistance to ampicillin (44%), meropenem (7%) and azithromycin (4%). The FSIS NARMS isolates showed resistance to tetracycline (31.9%), chloramphenicol (20.3%), sulfisoxazole (17.4%), ampicillin (5.8%) and trimethoprim-sulfamethoxazole, nalidixic acid, amoxicillin-clavulanic acid, azithromycin and cefoxitin below 5% each. There was no correlation between genotypic and phenotypic resistance in the fishpond isolates, however, there was in NARMS isolates for folate pathway antagonists: Sulfisoxazole vs. sul1 and sul2 (p = 0.0042 and p < 0.0001, respectively) and trimethoprim-sulfamethoxazole vs. dfrA16 and sul1 (p = 0.0290 and p = 0.013, respectively). Furthermore, correlations were found for tetracyclines: Tetracycline vs. tet(A) and tet(B) (p < 0.0001 each), macrolides: Azithromycin vs. mph(E) and msr(E) (p = 0.0145 each), phenicols: Chloramphenicol vs. mdtM (p < 0.0001), quinolones: Nalidixic acid vs. gyrA_S83L=POINT (p = 0.0004), and β-lactams: Ampicillin vs. blaTEM-1 (p < 0.0001). Overall, we recorded differences in antimicrobial susceptibility testing profiles, phenotypic-genotypic concordance, and resistance to critically important antimicrobials, which may be a public health concern.
Collapse
Affiliation(s)
- Yesutor K Soku
- Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, USA
| | - Abdelrahman Mohamed
- Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, USA.
| | - Temesgen Samuel
- Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, AL, USA
| | - Uday Dessai
- Office of Public Health Science, Food Safety and Inspection Service, U.S. Department of Agriculture, Washington, DC, USA
| | - Isabel Walls
- Office of Public Health Science, Food Safety and Inspection Service, U.S. Department of Agriculture, Washington, DC, USA
| | - Catherine Rockwell
- Office of Public Health Science, Food Safety and Inspection Service, U.S. Department of Agriculture, Washington, DC, USA
| | - Gamola Fortenberry
- Office of Public Health Science, Food Safety and Inspection Service, U.S. Department of Agriculture, Washington, DC, USA
| | - Tracy Berutti
- Eastern Laboratory, Food Safety and Inspection Service, U.S. Department of Agriculture, Athens, GA, USA
| | - Sharon Nieves-Miranda
- E. coli Reference Center, Department of Food Science, Pennsylvania State University, University Park, PA, USA
| | - Erin M Nawrocki
- E. coli Reference Center, Department of Food Science, Pennsylvania State University, University Park, PA, USA
| | - Yezhi Fu
- E. coli Reference Center, Department of Food Science, Pennsylvania State University, University Park, PA, USA
| | - Edward Dudley
- E. coli Reference Center, Department of Food Science, Pennsylvania State University, University Park, PA, USA
| | - Stephen W Mamber
- Office of Planning, Analysis and Risk Management, Food Safety and Inspection Service, U.S. Department of Agriculture, USA
| | - John Hicks
- Office of Policy and Program Development, Food Safety and Inspection Service, U.S. Department of Agriculture, Washington, DC, USA
| |
Collapse
|
24
|
Salgueiro V, Manageiro V, Rosado T, Bandarra NM, Botelho MJ, Dias E, Caniça M. Snapshot of resistome, virulome and mobilome in aquaculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166351. [PMID: 37604365 DOI: 10.1016/j.scitotenv.2023.166351] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/28/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
Aquaculture environments can be hotspots for resistance genes through the surrounding environment. Our objective was to study the resistome, virulome and mobilome of Gram-negative bacteria isolated in seabream and bivalve molluscs, using a WGS approach. Sixty-six Gram-negative strains (Aeromonadaceae, Enterobacteriaceae, Hafniaceae, Morganellaceae, Pseudomonadaceae, Shewanellaceae, Vibrionaceae, and Yersiniaceae families) were selected for genomic characterization. The species and MLST were determined, and antibiotic/disinfectants/heavy metals resistance genes, virulence determinants, MGE, and pathogenicity to humans were investigated. Our study revealed new sequence-types (e.g. Aeromonas spp. ST879, ST880, ST881, ST882, ST883, ST887, ST888; Shewanella spp. ST40, ST57, ST58, ST60, ST61, ST62; Vibrio spp. ST206, ST205). >140 different genes were identified in the resistome of seabream and bivalve molluscs, encompassing genes associated with β-lactams, tetracyclines, aminoglycosides, quinolones, sulfonamides, trimethoprim, phenicols, macrolides and fosfomycin resistance. Disinfectant resistance genes qacE-type, sitABCD-type and formA-type were found. Heavy metals resistance genes mdt, acr and sil stood out as the most frequent. Most resistance genes were associated with antibiotics/disinfectants/heavy metals commonly used in aquaculture settings. We also identified 25 different genes related with increased virulence, namely associated with adherence, colonization, toxins production, red blood cell lysis, iron metabolism, escape from the immune system of the host. Furthermore, 74.2 % of the strains analysed were considered pathogenic to humans. We investigated the genetic environment of several antibiotic resistance genes, including blaTEM-1B, blaFOX-18, aph(3″)-Ib, dfrA-type, aadA1, catA1-type, tet(A)/(E), qnrB19 and sul1/2. Our analysis also focused on identifying MGE in proximity to these genes (e.g. IntI1, plasmids and TnAs), which could potentially facilitate the spread of resistance among bacteria across different environments. This study provides a comprehensive examination of the diversity of resistance genes that can be transferred to both humans and the environment, with the recognition that aquaculture and the broader environment play crucial roles as intermediaries within this complex transmission network.
Collapse
Affiliation(s)
- Vanessa Salgueiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal; AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal
| | - Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal; AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal
| | - Tânia Rosado
- Laboratory of Biology and Ecotoxicology, Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Narcisa M Bandarra
- Division of Aquaculture, Upgrading and Bioprospecting, Portuguese Institute for the Sea and Atmosphere, IPMA, Lisbon, Portugal; CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Matosinhos, Portugal
| | - Maria João Botelho
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Matosinhos, Portugal; Division of Oceanography and Marine Environment, Portuguese Institute for the Sea and Atmosphere, Lisbon, Portugal
| | - Elsa Dias
- Laboratory of Biology and Ecotoxicology, Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal; Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, Porto, Portugal; AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, Portugal; CIISA, Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal.
| |
Collapse
|
25
|
Palaniyappan S, Sridhar A, Kari ZA, Téllez-Isaías G, Ramasamy T. Potentials of Aloe barbadensis inclusion in fish feeds on resilience to Aeromonas hydrophila infection in freshwater fish Labeo rohita. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:1435-1459. [PMID: 37996691 DOI: 10.1007/s10695-023-01266-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023]
Abstract
Aquatic bacterial pathogens can cause severe economic loss in aquaculture industry. An opportunistic pathogen, Aeromonas hydrophila is responsible for Motile Aeromonas Septicemia, leading to high mortality rates in fish. The present study was focused on the efficacy of Aloe barbadensis replacing fishmeal diets on hematological, serum biochemical, antioxidant, histopathological parameters, and disease resistance against A. hydrophila infection in Labeo rohita. Isonitrogenous fishmeal replaced diets (FMR) were prepared with varying levels of A. barbadensis at D1 (0%) (control), D2 (25%), D3 (50%), D4 (75%) and D5 (100%) then fed to L. rohita. After 60 days of post-feeding, the experimental fish were challenged with A. hydrophila. Blood and organs were collected and examined at 1- and 15-days post infection (dpi). The results demonstrated that on 1 dpi, white blood cells (WBC), total protein, cholesterol and low-density lipoprotein (LDL) levels were significantly increased in D3 diet fed groups. The D2 and D3 diet fed group showed decreasing trends of serum glutamic pyruvic transaminase (SGPT) and antioxidant enzymes activity on 15 dpi. The histopathological architecture results clearly illustrated that the D3 diet fed group had given a higher protective effect by reducing the pathological changes associated with A. hydrophila infection in liver, intestine and muscle. Higher percentage of survival rate was also observed in D3 diet fed group. Therefore, the present study suggested that the dietary administration of A. barbadensis up to 50% fishmeal replacement (D3 diet) can elicit earlier antioxidant activity, innate immune response and improve survival rate in L. rohita against A. hydrophila infection.
Collapse
Affiliation(s)
- Sivagaami Palaniyappan
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Arun Sridhar
- Immunology-Vaccinology, Department of Infectious and Parasitic Diseases, Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000, Liège, Belgium
| | - Zulhisyam Abdul Kari
- Department of Agricultural Sciences, Advanced Livestock and Aquaculture Research Group, Faculty of Agro-Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600, Jeli, Malaysia
| | | | - Thirumurugan Ramasamy
- Laboratory of Aquabiotics/Nanoscience, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| |
Collapse
|
26
|
Johnson LA, Dufour SC, Smith DDN, Manning AJ, Ahmed B, Binette S, Hamoutene D. Descriptive analyses of bacterial communities in marine sediment microcosms spiked with fish wastes, emamectin benzoate, and oxytetracycline. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115683. [PMID: 37976931 DOI: 10.1016/j.ecoenv.2023.115683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/24/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
In marine sediments surrounding salmon aquaculture sites, organic matter (OM) enrichment has been shown to influence resident bacterial community composition; however, additional effects on these communities due to combined use of the sea-lice therapeutant emamectin benzoate (EMB) and the widely used antibiotic oxytetracycline (OTC) are unknown. Here, we use sediment microcosms to assess the influence of OM, EMB, and OTC on benthic bacterial communities. Microcosms consisted of mud or sand sediments enriched with OM (fish and feed wastes) and spiked with EMB and OTC at environmentally-relevant concentrations. Samples were collected from initial matrices at the initiation of the trial and after 110 days for 16 S rRNA gene sequencing of the V3-V4 region and microbiome profiling. The addition of OM in both mud and sand sediments reduced alpha diversities; for example, an average of 1106 amplicon sequence variants (ASVs) were detected in mud with no OM addition, while only 729 and 596 ASVs were detected in mud with low OM and high OM, respectively. Sediments enriched with OM had higher relative abundances of Spirochaetota, Firmicutes, and Bacteroidota. For instance, Spirochaetota were detected in sediments with no OM with a relative abundance range of 0.01-1.2%, while in sediments enriched with OM relative abundance varied from 0.16% to 26.1%. In contrast, the addition of EMB (60 ng/g) or OTC (150 ng/g) did not result in distinct taxonomic shifts in the bacterial communities compared to un-spiked sediments during the timeline of this experiment. EMB and OTC concentrations may have been below effective inhibitor concentrations for taxa in these communities; further work should explore gene content and the presence of antibiotic resistance genes (ARGs) in sediment-dwelling bacteria.
Collapse
Affiliation(s)
- Lisa A Johnson
- St. Andrews Biological Station, Fisheries and Oceans Canada, St. Andrews, NB E5B 0E4, Canada
| | - Suzanne C Dufour
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Derek D N Smith
- Environment and Climate Change Canada, 335 River Road, Ottawa, ON K1V 1C7, Canada
| | - Anthony J Manning
- Research & Productivity Council (RPC), Fredericton, NB E3B 6Z9, Canada
| | - Bulbul Ahmed
- Research & Productivity Council (RPC), Fredericton, NB E3B 6Z9, Canada
| | - Sherry Binette
- Research & Productivity Council (RPC), Fredericton, NB E3B 6Z9, Canada
| | - Dounia Hamoutene
- St. Andrews Biological Station, Fisheries and Oceans Canada, St. Andrews, NB E5B 0E4, Canada.
| |
Collapse
|
27
|
Dinev T, Velichkova K, Stoyanova A, Sirakov I. Microbial Pathogens in Aquaponics Potentially Hazardous for Human Health. Microorganisms 2023; 11:2824. [PMID: 38137969 PMCID: PMC10745371 DOI: 10.3390/microorganisms11122824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/24/2023] Open
Abstract
The union of aquaculture and hydroponics is named aquaponics-a system where microorganisms, fish and plants coexist in a water environment. Bacteria are essential in processes which are fundamental for the functioning and equilibrium of aquaponic systems. Such processes are nitrification, extraction of various macro- and micronutrients from the feed leftovers and feces, etc. However, in aquaponics there are not only beneficial, but also potentially hazardous microorganisms of fish, human, and plant origin. It is important to establish the presence of human pathogens, their way of entering the aforementioned systems, and their control in order to assess the risk to human health when consuming plants and fish grown in aquaponics. Literature analysis shows that aquaponic bacteria and yeasts are mainly pathogenic to fish and humans but rarely to plants, while most of the molds are pathogenic to humans, plants, and fish. Since the various human pathogenic bacteria and fungi found in aquaponics enter the water when proper hygiene practices are not applied and followed, if these requirements are met, aquaponic systems are a good choice for growing healthy fish and plants safe for human consumption. However, many of the aquaponic pathogens are listed in the WHO list of drug-resistant bacteria for which new antibiotics are urgently needed, making disease control by antibiotics a real challenge. Because pathogen control by conventional physical methods, chemical methods, and antibiotic treatment is potentially harmful to humans, fish, plants, and beneficial microorganisms, a biological control with antagonistic microorganisms, phytotherapy, bacteriophage therapy, and nanomedicine are potential alternatives to these methods.
Collapse
Affiliation(s)
- Toncho Dinev
- Department of Biological Sciences, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Katya Velichkova
- Department of Biological Sciences, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Antoniya Stoyanova
- Department of Plant Production, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Ivaylo Sirakov
- Department of Animal Husbandry–Non-Ruminant Animals and Special Branches, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria;
| |
Collapse
|
28
|
Szekeres E, Baricz A, Cristea A, Levei EA, Stupar Z, Brad T, Kenesz M, Moldovan OT, Banciu HL. Karst spring microbiome: Diversity, core taxa, and community response to pathogens and antibiotic resistance gene contamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 895:165133. [PMID: 37364839 DOI: 10.1016/j.scitotenv.2023.165133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/19/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Karst aquifers are important water resources for drinking water supplies worldwide. Although they are susceptible to anthropogenic contamination due to their high permeability, there is a lack of detailed knowledge on the stable core microbiome and how contamination may affect these communities. In this study, eight karst springs (distributed across three different regions in Romania) were sampled seasonally for one year. The core microbiota was analysed by 16S rRNA gene amplicon sequencing. To identify bacteria carrying antibiotic resistance genes and mobile genetic elements, an innovative method was applied, consisting of high-throughput antibiotic resistance gene quantification performed on potential pathogen colonies cultivated on Compact Dry™ plates. A taxonomically stable bacterial community consisting of Pseudomonadota, Bacteroidota, and Actinomycetota was revealed. Core analysis reaffirmed these results and revealed primarily freshwater-dwelling, psychrophilic/psychrotolerant species affiliated to Rhodoferax, Flavobacterium, and Pseudomonas genera. Both sequencing and cultivation methods indicated that more than half of the springs were contaminated with faecal bacteria and pathogens. These samples contained high levels of sulfonamide, macrolide, lincosamide and streptogramins B, and trimethoprim resistance genes spread primarily by transposase and insertion sequences. Differential abundance analysis found Synergistota, Mycoplasmatota, and Chlamydiota as suitable candidates for pollution monitoring in karst springs. This is the first study highlighting the applicability of a combined approach based on high-throughput SmartChip™ antibiotic resistance gene quantification and Compact Dry™ pathogen cultivation for estimating microbial contaminants in karst springs and other challenging low biomass environments.
Collapse
Affiliation(s)
- Edina Szekeres
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania; Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, Cluj-Napoca, Romania; National Institute of Research and Development for Biological Sciences, Institute of Biological Research, Cluj-Napoca, Romania
| | - Andreea Baricz
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania; Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Adorján Cristea
- Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, Cluj-Napoca, Romania; Department of Taxonomy and Ecology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Erika Andrea Levei
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, Cluj-Napoca, Romania
| | - Zamfira Stupar
- INCDO-INOE 2000, Research Institute for Analytical Instrumentation, Cluj-Napoca, Romania
| | - Traian Brad
- Department of Cluj-Napoca, Emil Racovita Institute of Speleology, Cluj-Napoca, Romania
| | - Marius Kenesz
- Department of Cluj-Napoca, Emil Racovita Institute of Speleology, Cluj-Napoca, Romania
| | - Oana Teodora Moldovan
- Department of Cluj-Napoca, Emil Racovita Institute of Speleology, Cluj-Napoca, Romania
| | - Horia Leonard Banciu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeș-Bolyai University, Cluj-Napoca, Romania; Centre for Systems Biology, Biodiversity and Bioresources, Babeș-Bolyai University, Cluj-Napoca, Romania.
| |
Collapse
|
29
|
Luo G, Liang B, Cui H, Kang Y, Zhou X, Tao Y, Lu L, Fan L, Guo J, Wang A, Gao SH. Determining the Contribution of Micro/Nanoplastics to Antimicrobial Resistance: Challenges and Perspectives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12137-12152. [PMID: 37578142 DOI: 10.1021/acs.est.3c01128] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Microorganisms colonizing the surfaces of microplastics form a plastisphere in the environment, which captures miscellaneous substances. The plastisphere, owning to its inherently complex nature, may serve as a "Petri dish" for the development and dissemination of antibiotic resistance genes (ARGs), adding a layer of complexity in tackling the global challenge of both microplastics and ARGs. Increasing studies have drawn insights into the extent to which the proliferation of ARGs occurred in the presence of micro/nanoplastics, thereby increasing antimicrobial resistance (AMR). However, a comprehensive review is still lacking in consideration of the current increasingly scattered research focus and results. This review focuses on the spread of ARGs mediated by microplastics, especially on the challenges and perspectives on determining the contribution of microplastics to AMR. The plastisphere accumulates biotic and abiotic materials on the persistent surfaces, which, in turn, offers a preferred environment for gene exchange within and across the boundary of the plastisphere. Microplastics breaking down to smaller sizes, such as nanoscale, can possibly promote the horizontal gene transfer of ARGs as environmental stressors by inducing the overgeneration of reactive oxygen species. Additionally, we also discussed methods, especially quantitatively comparing ARG profiles among different environmental samples in this emerging field and the challenges that multidimensional parameters are in great necessity to systematically determine the antimicrobial dissemination risk in the plastisphere. Finally, based on the biological sequencing data, we offered a framework to assess the AMR risks of micro/nanoplastics and biocolonizable microparticles that leverage multidimensional AMR-associated messages, including the ARGs' abundance, mobility, and potential acquisition by pathogens.
Collapse
Affiliation(s)
- Gaoyang Luo
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Hanlin Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yuanyuan Kang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Xu Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Yu Tao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Lu Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Lu Fan
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Shu-Hong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| |
Collapse
|
30
|
Calderón-Franco D, Corbera-Rubio F, Cuesta-Sanz M, Pieterse B, de Ridder D, van Loosdrecht MCM, van Halem D, Laureni M, Weissbrodt DG. Microbiome, resistome and mobilome of chlorine-free drinking water treatment systems. WATER RESEARCH 2023; 235:119905. [PMID: 36989799 DOI: 10.1016/j.watres.2023.119905] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 06/19/2023]
Abstract
Drinking water treatment plants (DWTPs) are designed to remove physical, chemical, and biological contaminants. However, until recently, the role of DWTPs in minimizing the cycling of antibiotic resistance determinants has got limited attention. In particular, the risk of selecting antibiotic-resistant bacteria (ARB) is largely overlooked in chlorine-free DWTPs where biological processes are applied. Here, we combined high-throughput quantitative PCR and metagenomics to analyze the abundance and dynamics of microbial communities, antibiotic resistance genes (ARGs), and mobile genetic elements (MGEs) across the treatment trains of two chlorine-free DWTPs involving dune-based and reservoir-based systems. The microbial diversity of the water increased after all biological unit operations, namely rapid and slow sand filtration (SSF), and granular activated carbon filtration. Both DWTPs reduced the concentration of ARGs and MGEs in the water by circa 2.5 log gene copies mL-1, despite their relative increase in the disinfection sub-units (SSF in dune-based and UV treatment in reservoir-based DWTPs). The total microbial concentration was also reduced (2.5 log units), and none of the DWTPs enriched for bacteria containing genes linked to antibiotic resistance. Our findings highlight the effectiveness of chlorine-free DWTPs in supplying safe drinking water while reducing the concentration of antibiotic resistance determinants. To the best of our knowledge, this is the first study that monitors the presence and dynamics of antibiotic resistance determinants in chlorine-free DWTPs.
Collapse
Affiliation(s)
| | | | | | - Brent Pieterse
- Dunea, Utility for drinking water and nature conservancy, Plein van de Verenigde Naties 11-15, 2719 EG Zoetermeer, the Netherlands
| | - David de Ridder
- Evides Water Company N.V., Schaardijk 150, 3063 NH, Rotterdam, the Netherlands
| | | | | | | | - David G Weissbrodt
- Delft University of Technology, Delft, the Netherlands; Department of Biotechnology and Food Science, Division of Analysis and Control of Microbial Systems, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
31
|
Abstract
With the emergence of multidrug-resistant bacteria, infection-related death toll is on the rise. Overuse of antibiotics and their leakage into waterways have transformed the environment into a sink, resulting in bacterial resistance permeating through all tiers of the food cycle. As one of the primary sources of food, fish and fish products such as fish eggs must be studied for their ability to accumulate relevant antibiotics. While the accumulation of these pharmaceuticals has previously been studied, there remains a need to analyze these processes in real time. Electrochemical aptamer-based sensor technology allows for selective, real-time monitoring of small molecules. Herein, we report the first use of miniaturized electrochemical aptamer-based sensors for the analysis of the passive uptake of the aminoglycoside antibiotic, kanamycin, in single salmon eggs. We use pulled platinum microelectrodes and increase the surface area at the electrode tip through dendritic gold deposition. These electrodes showed a 100-fold increase in DNA immobilization on the electrode surface as compared to bare microelectrodes. Additionally, the sensors showed improved stability in complex biological media over an extended period of time when compared to the more widely used macrosensors (r = 1 mm). The sensor range was determined to extend from nanomolar to micromolar concentrations of kanamycin in fish egg lysate and when used in a single salmon egg the μ-aptasensors were able to monitor the passive uptake of kanamycin over time. The accumulation kinetics were simulated using COMSOL Multiphysics software. This research presents the first reported record of passive uptake of a small molecule in a single cell in real-time using electrochemistry.
Collapse
Affiliation(s)
- Vanshika Gupta
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| |
Collapse
|
32
|
Custodio M, Peñaloza R, Ordinola-Zapata A, Peralta-Ortiz T, Sánches-Suárez H, Vieyra-Peña E, De la Cruz H, Alvarado-Ibáñez J. Diversity of enterobacterales in sediments of lagoons with fish farming activity and analysis of antibiotic resistance. Toxicol Rep 2023; 10:235-244. [PMID: 36845256 PMCID: PMC9950807 DOI: 10.1016/j.toxrep.2023.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/29/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
The use of antibiotics in fish production can induce bacterial populations to develop resistance to multiple antibiotics and transfer antibiotic resistance genes to other bacteria, including clinically relevant bacteria. This study evaluated the diversity of Enterobacterales in sediment from lagoons with fish farming activity and analyzed antibiotic resistance in the central region of Peru. Sediment samples were collected from four fish-active ponds and transported to the laboratory for analysis. Bacterial diversity was analyzed using DNA sequencing and antibiotic resistance was tested using the disk diffusion method. The results showed variability of bacterial diversity in the ponds with fish farming activity. Simpson's index indicated that the Habascocha lagoon is the most diverse in bacterial species of the order Enterobacterales (0.8), but the least dominant. The Shannon-Wiener index revealed that it is the most diverse (2.93) and the Margalef index revealed that species richness in this lagoon is high (5.72). Similarity percentage analysis (SIMPER) allowed the identification of the main Enterobacterales with the highest percentage contribution in the frequencies of individuals. In general, the Enterobacterales species isolated showed multi-resistance to the antibiotics used and Escherichia coli was the most resistant.
Collapse
Affiliation(s)
- María Custodio
- Universidad Nacional del Centro del Perú, Facultad de Medicina Humana, Huancayo, Peru
| | - Richard Peñaloza
- Universidad Nacional del Centro del Perú, Facultad de Medicina Humana, Huancayo, Peru
| | | | | | | | | | - Heidi De la Cruz
- Universidad Nacional del Centro del Perú, Facultad de Medicina Humana, Huancayo, Peru
| | - Juan Alvarado-Ibáñez
- Universidad Nacional Intercultural “Fabiola Salazar Leguía” de Bagua, Bagua, Peru
| |
Collapse
|
33
|
Jauregi L, González A, Garbisu C, Epelde L. Organic amendment treatments for antimicrobial resistance and mobile element genes risk reduction in soil-crop systems. Sci Rep 2023; 13:863. [PMID: 36650207 PMCID: PMC9845208 DOI: 10.1038/s41598-023-27840-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 01/06/2023] [Indexed: 01/19/2023] Open
Abstract
Agricultural fertilization with organic amendments of animal origin often leads to antibiotic resistance dissemination. In this study, we evaluated the effect of different treatments (anaerobic digestion, biochar application, ozonation, zerovalent iron nanoparticle application, and spent mushroom substrate addition) on the resistome in dairy cow manure-derived amendments (slurry, manure, and compost). Anaerobic digestion and biochar application resulted in the highest reduction in antibiotic resistance gene (ARG) and mobile genetic element (MGE) gene abundance. These two treatments were applied to cow manure compost, which was then used to fertilize the soil for lettuce growth. After crop harvest, ARG and MGE gene absolute and relative abundances in the soil and lettuce samples were determined by droplet digital PCR and high-throughput qPCR, respectively. Prokaryotic diversity in cow manure-amended soils was determined using 16S rRNA metabarcoding. Compared to untreated compost, anaerobic digestion led to a 38% and 83% reduction in sul2 and intl1 absolute abundances in the soil, respectively, while biochar led to a 60% reduction in intl1 absolute abundance. No differences in lettuce gene abundances were observed among treatments. We conclude that amendment treatments can minimize the risk of antibiotic resistance in agroecosystems.
Collapse
Affiliation(s)
- Leire Jauregi
- NEIKER - Basque Institute of Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, 48160, Derio, Spain.
| | - Aitor González
- NEIKER - Basque Institute of Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, 48160, Derio, Spain
| | - Carlos Garbisu
- NEIKER - Basque Institute of Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, 48160, Derio, Spain
| | - Lur Epelde
- NEIKER - Basque Institute of Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, 48160, Derio, Spain
| |
Collapse
|
34
|
Li S, Wu Y, Zheng H, Li H, Zheng Y, Nan J, Ma J, Nagarajan D, Chang JS. Antibiotics degradation by advanced oxidation process (AOPs): Recent advances in ecotoxicity and antibiotic-resistance genes induction of degradation products. CHEMOSPHERE 2023; 311:136977. [PMID: 36309060 DOI: 10.1016/j.chemosphere.2022.136977] [Citation(s) in RCA: 36] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/09/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic contamination could cause serious risks of ecotoxicity and resistance gene induction. Advanced oxidation processes (AOPs) such as Fenton, photocatalysis, activated persulfate, electrochemistry and other AOPs technologies have been proven effective in the degradation of high-risk, refractory organic pollutants such as antibiotics. However, due to the limited mineralization ability, a large number of degradation intermediates will be produced in the oxidation process. The residual or undiscovered ecological risks of degradation products are potential safety hazards and problems necessitating comprehensive studies. In-depth investigations especially on the full assessments of ecotoxicity and resistance genes induction capability of antibiotic degradation products are important issues in reducing the environmental problems of antibiotics. Therefore, this review presents an overview of the current knowledge on the efficiency of different AOPs systems in reducing antibiotics toxicity and antibiotic resistance.
Collapse
Affiliation(s)
- Shuo Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China; Urban Water Resources Development and Northern National Engineering Research Center, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yanan Wu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Heshan Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China.
| | - Hongbin Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Yongjie Zheng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, 161006, China
| | - Jun Nan
- Urban Water Resources Development and Northern National Engineering Research Center, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Jun Ma
- Urban Water Resources Development and Northern National Engineering Research Center, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Dillirani Nagarajan
- Department of Chemical Engineering, National Cheng-Kung University, Tainan, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng-Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung, 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taiwan.
| |
Collapse
|
35
|
Nava AR, Daneshian L, Sarma H. Antibiotic resistant genes in the environment-exploring surveillance methods and sustainable remediation strategies of antibiotics and ARGs. ENVIRONMENTAL RESEARCH 2022; 215:114212. [PMID: 36037921 DOI: 10.1016/j.envres.2022.114212] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/05/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Antibiotic Resistant Genes (ARGs) are an emerging environmental health threat due to the potential change in the human microbiome and selection for the emergence of antibiotic resistant bacteria. The rise of antibiotic resistant bacteria has caused a global health burden. The WHO (world health organization) predicts a rise in deaths due to antibiotic resistant infections. Since bacteria can acquire ARGs through horizontal transmission, it is important to assess the dissemination of antibioticresistant genes from anthropogenic sources. There are several sources of antibiotics, antibiotic resistant bacteria and genes in the environment. These include wastewater treatment plants, landfill leachate, agricultural, animal industrial sources and estuaries. The use of antibiotics is a worldwide practice that has resulted in the evolution of resistance to antibiotics. Our review provides a more comprehensive look into multiple sources of ARG's and antibiotics rather than one. Moreover, we focus on effective surveillance methods of ARGs and antibiotics and sustainable abiotic and biotic remediation strategies for removal and reduction of antibiotics and ARGs from both terrestrial and aquatic environments. Further, we consider the impact on public health as this problem cannot be addressed without a global transdisciplinary effort.
Collapse
Affiliation(s)
- Amy R Nava
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA.
| | - Leily Daneshian
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, 94305, USA.
| | - Hemen Sarma
- Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, Kokrajhar (BTR), Assam, 783370, India.
| |
Collapse
|
36
|
Dias D, Fonseca C, Mendo S, Caetano T. First characterization of the faecal resistome of eurasian otter (Lutra lutra), a sentinel species for aquatic environments. CHEMOSPHERE 2022; 309:136644. [PMID: 36181859 DOI: 10.1016/j.chemosphere.2022.136644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 09/17/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Antimicrobial resistance (AMR) is a global health concern. Nowadays, antibiotic resistance genes (ARGs) are considered emerging pollutants. This study followed the One Health framework, in which AMR surveillance in the environment, including in wild animals, is advisable to mitigate this problem. Here we investigated AMR associated with Eurasian otter, a semi-aquatic mammal considered an indicator of freshwater health. To do so, otter's faecal resistome was characterized by a high-throughput qPCR array. This technique has a high-capacity of ARGs profiling. Additionally, we have assessed the antimicrobial susceptibility of two indicator bacteria, E. coli and Enterococcus spp, isolated from otter spraints and interpreted the results according to clinical and epidemiological cut-offs (ECOFFs).
Collapse
Affiliation(s)
- Diana Dias
- CESAM and Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Carlos Fonseca
- CESAM and Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal; ForestWISE - Collaborative Laboratory for Integrated Forest & Fire Management, Quinta de Prados, 5001-801, Vila Real, Portugal
| | - Sónia Mendo
- CESAM and Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal
| | - Tânia Caetano
- CESAM and Department of Biology, University of Aveiro, Campus de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
37
|
Meng R, Wu S, Chen J, Cao J, Li L, Feng C, Liu J, Luo Y, Huang Z. Alleviating effects of essential oil from Artemisia vulgaris on enteritis in zebrafish via modulating oxidative stress and inflammatory response. FISH & SHELLFISH IMMUNOLOGY 2022; 131:323-341. [PMID: 36228879 DOI: 10.1016/j.fsi.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/18/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Artemisia vulgaris (A. vulgaris) is a traditional Chinese medicine widely distributed in China and contains many bioactive compounds with pharmacological effects. However, the anti-inflammatory effects and mechanism of essential oil from A. vulgaris on enteritis in fish are still unclear. In this study, in order to elucidate the underlying mechanism of essential oil from A. vulgaris on zebrafish enteritis, zebrafish were used for establishing animal models to observe the histopathological changes of intestines, determine the activities of immune-related enzymes and oxidative stress indicators, and the mRNA expression of genes in MyD88/TRAF6/NF-KB signaling pathways. The results showed that different doses of A. vulgaris essential oil could effectively alleviate zebrafish enteritis in a dose- and time-dependent manner by improving the intestinal histopathological damage, decreasing the intestinal oxidative stress, repairing the intestinal immune ability, changing the expression levels of IL-1β, IL-10 and genes in MyD88/TRAF6/NF-κB pathway. In addition, co-treatment with oxazolone and MyD88 inhibitor could alleviate the morphological damage, the induction of oxidative stress, and the levels of immune-related enzymes and the mRNA expression of genes in MyD88/TRAF6/NF-κB signaling pathway. Moreover, essential oil from A. vulgaris had more significantly therapeutic effects on enteritis of male zebrafish than that of female zebrafish. This result will clarify the therapeutic effect and anti-inflammatory mechanism of essential oil from A. vulgaris on zebrafish enteritis, and provide a theoretical basis for further research on the rationality of A. vulgaris to replace feed antibiotics.
Collapse
Affiliation(s)
- Rui Meng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Shanshan Wu
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jianjie Chen
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| | - Jinling Cao
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| | - Lijuan Li
- College of Food and Environment, Jinzhong College of Information, Taigu, Shanxi, 030801, China
| | - Cuiping Feng
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Jingyu Liu
- College of Food Science and Technology, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Yongju Luo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Science, Nanning, Guangxi, 530021, China
| | - Zhibing Huang
- Key Laboratory of Fishery Drug Fevelopment, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, PR China
| |
Collapse
|
38
|
Khoo SC, Goh MS, Alias A, Luang-In V, Chin KW, Ling Michelle TH, Sonne C, Ma NL. Application of antimicrobial, potential hazard and mitigation plans. ENVIRONMENTAL RESEARCH 2022; 215:114218. [PMID: 36049514 PMCID: PMC9422339 DOI: 10.1016/j.envres.2022.114218] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/06/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
The tremendous rise in the consumption of antimicrobial products had aroused global concerns, especially in the midst of pandemic COVID-19. Antimicrobial resistance has been accelerated by widespread usage of antimicrobial products in response to the COVID-19 pandemic. Furthermore, the widespread use of antimicrobial products releases biohazardous substances into the environment, endangering the ecology and ecosystem. Therefore, several strategies or measurements are needed to tackle this problem. In this review, types of antimicrobial available, emerging nanotechnology in antimicrobial production and their advanced application have been discussed. The problem of antimicrobial resistance (AMR) due to antibiotic-resistant bacteria (ARB)and antimicrobial resistance genes (AMG) had become the biggest threat to public health. To deal with this problem, an in-depth discussion of the challenges faced in antimicrobial mitigations and potential alternatives was reviewed.
Collapse
Affiliation(s)
- Shing Ching Khoo
- Henan Province Engineering Research Centre for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; BIOSES Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Meng Shien Goh
- Henan Province Engineering Research Centre for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; BIOSES Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Amirah Alias
- Eco-Innovation Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Vijitra Luang-In
- Natural Antioxidant Innovation Research Unit, Department of Biotechnology, Faculty of Technology, Mahasarakham University, Khamriang, Kantarawichai, Maha Sarakham, 44150, Thailand
| | - Kah Wei Chin
- BIOSES Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Tiong Hui Ling Michelle
- BIOSES Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Christian Sonne
- Henan Province Engineering Research Centre for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark.
| | - Nyuk Ling Ma
- Henan Province Engineering Research Centre for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; BIOSES Research Interest Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
39
|
Raza S, Choi S, Lee M, Shin J, Son H, Wang J, Kim YM. Spatial and temporal effects of fish feed on antibiotic resistance in coastal aquaculture farms. ENVIRONMENTAL RESEARCH 2022; 212:113177. [PMID: 35346654 DOI: 10.1016/j.envres.2022.113177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
For the first time, both spatial and temporal effects of fish feed on changes in abundance of antibiotic resistance genes (ARGs) were investigated in South Korea via quantifying ARGs and analyzing physicochemical parameters in the influent (IN) and effluent before (BF) and 30 min after (AF) the fish feeding time of sixteen flow-through fish farms. The absolute abundance of ARGs in AF samples was 5 times higher than in BF and 12 times higher than in IN samples. Values of physicochemical parameters such as ammonia, total nitrogen, suspended solids and turbidity in the effluent significantly increased by 21.6, 4.2, 2.6 and 1.65 times, respectively, after fish feeding. Spatially, the fish farms on Jeju Island exhibited higher relative abundance (3.02 × 10-4 - 6.1 × 10-2) of ARGs compared to the farms in nearby Jeollanam-do (3.4 × 10-5 - 8.3 × 10-3). Seasonally, samples in summer and autumn showed a higher abundance of ARGs than in winter and spring. To assess risk to the food chain as well as public health, further studies are warranted to explore the pathogenic potential of these ARGs.
Collapse
Affiliation(s)
- Shahbaz Raza
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Sangki Choi
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Minjeong Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Jingyeong Shin
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Heejong Son
- Busan Water Quality Institute, Busan, 50804, Republic of Korea
| | - Jinhua Wang
- Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271018, China.
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
40
|
On-Farm Practices Associated with Multi-Drug-Resistant Escherichia coli and Vibrio parahaemolyticus Derived from Cultured Fish. Microorganisms 2022; 10:microorganisms10081520. [PMID: 36013938 PMCID: PMC9414622 DOI: 10.3390/microorganisms10081520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 02/05/2023] Open
Abstract
Aquaculture activities have been implicated as responsible for the emergence of antimicrobial resistance (AMR), leading to broad dissemination and transference of antibiotic resistance to pathogens that affect humans and animals. The current study investigates the on-farm practices and environmental risk factors that can potentially drive the development and emergence of multi-drug-resistant (MDR) Escherichia coli and Vibrio parahaemolyticus in the aquaculture system. A cross-sectional study was conducted on 19 red hybrid tilapia (Oreochromis spp.) and 13 Asian seabass (Lates calcarifer, Bloch 1970) farms on the west coast of peninsular Malaysia. Data were collected using a structured questionnaire pertaining to farm demography, on-farm management practices and environmental characteristics. Multi-drug-resistant E. coli (n = 249) and V. parahaemolyticus (n = 162) isolates were analyzed using multi-level binary logistic regression to identify important drivers for the occurrence and proliferation of the MDR bacteria. On-farm practices such as manuring the pond (OR = 4.5; 95% CI = 1.21–16.57) were significantly associated with the occurrence of MDR E. coli, while earthen ponds (OR = 8.2; 95% CI = 1.47–45.2) and human activity adjacent to the farm (OR = 4.6; 95% CI = 0.75–27.98) were associated with an increased likelihood of MDR V. parahaemolyticus. Considering the paucity of information on the drivers of AMR in the aquaculture production in this region, these findings indicate the targeted interventions implementable at aquaculture farms to efficiently abate the risk of MDR amongst bacteria that affect fish that are of public health importance.
Collapse
|
41
|
Bech TB, Badawi N, Rosenbom AE. Impact of surface-applied liquid manure on the drainage resistance profile of an agricultural tile-drained clay till field. JOURNAL OF ENVIRONMENTAL QUALITY 2022; 51:656-669. [PMID: 35435263 DOI: 10.1002/jeq2.20354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Dissemination of antibiotic resistance genes (ARGs) in aquatic environments is a concern due to human and animal health. Application of liquid manure on agricultural land is an important source of ARGs, where pathogens, antibiotic-resistant bacteria, and selective agents are released. To improve our understanding of ARGs spreading through soils, our main objective was to evaluate the effectiveness of the soil as a barrier protecting water resources. Over the course of a year, profiles and abundances of ARGs and mobile genetic elements in soil and drainage from an agricultural tile-drained clay till field were investigated upon liquid pig manure application by applying high-throughput quantitative polymerase chain reaction targeting 143 genes. The findings were as follows: (a) 97 genes were detected, where only the transposon gene tnpA-03/ IS6 was shared between the genes detected in drainage and those in acidified liquid manure or fertilized soils, indicating that liquid manure application had a limited impact on the drainage resistance profile; (b) intI1 gene was present in ∼60% of drainage samples in concentrations up to 1,634 intI1 ml-1 ; and (c) evapotranspiration from barley (Hordeum vulgare L., 'KWS Irina') and a low groundwater table appeared to reduce preferential transport to drainage during the first 3 mo of liquid manure application. Interestingly, the first preferential transport to drainage was observed immediately after the harvest of spring barley. Overall, during the monitoring year we found the soil to be an effective barrier against the spread of fecal ARGs even though the occurrence of the intI1 gene questions the barrier effect from previous years.
Collapse
Affiliation(s)
- Tina B Bech
- Dep. of Geochemistry, Geological Survey of Denmark and Greenland, Copenhagen, Denmark
| | - Nora Badawi
- Dep. of Geochemistry, Geological Survey of Denmark and Greenland, Copenhagen, Denmark
| | - Annette E Rosenbom
- Dep. of Geochemistry, Geological Survey of Denmark and Greenland, Copenhagen, Denmark
- Rambøll Danmark A/S, Hannemanns Allé 53, 2300 Copenhagen S, Copenhagen, Denmark
| |
Collapse
|
42
|
Samanta P, Horn H, Saravia F. Removal of Diverse and Abundant ARGs by MF-NF Process from Pig Manure and Digestate. MEMBRANES 2022; 12:membranes12070661. [PMID: 35877864 PMCID: PMC9317629 DOI: 10.3390/membranes12070661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023]
Abstract
Antimicrobial resistances are emerging as one main threat to worldwide human health and are expected to kill 10 million people by 2050. Intensive livestock husbandry, along with biogas digestate, are considered as one of the biggest ARG reservoirs. Despite major concerns, little information is available on the diversity and abundance of various ARGs in small to large scale pig farms and biogas digestate slurry in Germany, followed by their consequent removal using microfiltration (MF)-nanofiltration (NF) process. Here, we report the identification and quantification of 189 ARGs in raw manure and digestate samples, out of which 66 ARGs were shared among manures and 53 ARGs were shared among both manure and digestate samples. The highest reported total ARG copy numbers in a single manure sampling site was 1.15 × 108 copies/100 µL. In addition, we found the absolute concentrations of 37 ARGs were above 105 copies/100 μL. Filtration results showed that the highly concentrated ARGs (except aminoglycoside resistance ARGs) in feed presented high log retention value (LRV) from 3 to as high as 5 after the MF-NF process. Additionally, LRV below 2 was noticed where the initial absolute ARG concentrations were ≤103 copies/100 μL. Therefore, ARG removal was found to be directly proportional to its initial concentration in the raw manure and in digestate samples. Consequently, some ARGs (tetH, strB) can still be found within the permeate of NF with up to 104 copies/100 μL.
Collapse
Affiliation(s)
- Prantik Samanta
- DVGW-Research Center at the Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany; (H.H.); (F.S.)
- Karlsruhe Institute of Technology, Engler-Bunte-Institut, Water Chemistry and Water Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany
- Correspondence:
| | - Harald Horn
- DVGW-Research Center at the Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany; (H.H.); (F.S.)
- Karlsruhe Institute of Technology, Engler-Bunte-Institut, Water Chemistry and Water Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany
| | - Florencia Saravia
- DVGW-Research Center at the Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany; (H.H.); (F.S.)
| |
Collapse
|
43
|
Delannoy S, Hoffer C, Youf R, Dauvergne E, Webb HE, Brauge T, Tran ML, Midelet G, Granier SA, Haenni M, Fach P, Brisabois A. High Throughput Screening of Antimicrobial Resistance Genes in Gram-Negative Seafood Bacteria. Microorganisms 2022; 10:microorganisms10061225. [PMID: 35744743 PMCID: PMC9230514 DOI: 10.3390/microorganisms10061225] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/10/2022] [Accepted: 06/11/2022] [Indexed: 01/24/2023] Open
Abstract
From a global view of antimicrobial resistance over different sectors, seafood and the marine environment are often considered as potential reservoirs of antimicrobial resistance genes (ARGs) and mobile genetic elements (MGEs); however, there are few studies and sparse results on this sector. This study aims to provide new data and insights regarding the content of resistance markers in various seafood samples and sources, and therefore the potential exposure to humans in a global One Health approach. An innovative high throughput qPCR screening was developed and validated in order to simultaneously investigate the presence of 41 ARGs and 33 MGEs including plasmid replicons, integrons, and insertion sequences in Gram-negative bacteria. Analysis of 268 seafood isolates from the bacterial microflora of cod (n = 24), shellfish (n = 66), flat fishes (n = 53), shrimp (n = 10), and horse mackerel (n = 115) show the occurrence of sul-1, ant(3″)-Ia, aph(3')-Ia, strA, strB, dfrA1, qnrA, and blaCTX-M-9 genes in Pseudomonas spp., Providencia spp., Klebsiella spp., Proteus spp., and Shewanella spp. isolates and the presence of MGEs in all bacterial species investigated. We found that the occurrence of MGE may be associated with the seafood type and the environmental, farming, and harvest conditions. Moreover, even if MGE were detected in half of the seafood isolates investigated, association with ARG was only identified for twelve isolates. The results corroborate the hypothesis that the incidence of antimicrobial-resistant bacteria (ARB) and ARG decreases with increasing distance from potential sources of fecal contamination. This unique and original high throughput micro-array designed for the screening of ARG and MGE in Gram-negative bacteria could be easily implementable for monitoring antimicrobial resistance gene markers in diverse contexts.
Collapse
Affiliation(s)
- Sabine Delannoy
- COLiPATH Unit & Genomics Platform IdentyPath, Laboratory for Food Safety, ANSES, 94700 Maisons-Alfort, France; (C.H.); (R.Y.); (E.D.); (M.-L.T.); (P.F.)
- Correspondence:
| | - Corine Hoffer
- COLiPATH Unit & Genomics Platform IdentyPath, Laboratory for Food Safety, ANSES, 94700 Maisons-Alfort, France; (C.H.); (R.Y.); (E.D.); (M.-L.T.); (P.F.)
| | - Raphaëlle Youf
- COLiPATH Unit & Genomics Platform IdentyPath, Laboratory for Food Safety, ANSES, 94700 Maisons-Alfort, France; (C.H.); (R.Y.); (E.D.); (M.-L.T.); (P.F.)
| | - Emilie Dauvergne
- COLiPATH Unit & Genomics Platform IdentyPath, Laboratory for Food Safety, ANSES, 94700 Maisons-Alfort, France; (C.H.); (R.Y.); (E.D.); (M.-L.T.); (P.F.)
| | - Hattie E. Webb
- Department of Animal and Food Sciences, International Center for Food Safety Excellence, Texas Tech University, Lubbock, TX 79409, USA;
| | - Thomas Brauge
- Bacteriology and Parasitology of Fishery and Aquaculture Products Unit, Laboratory for Food Safety, ANSES, 62200 Boulogne-sur-Mer, France; (T.B.); (G.M.)
| | - Mai-Lan Tran
- COLiPATH Unit & Genomics Platform IdentyPath, Laboratory for Food Safety, ANSES, 94700 Maisons-Alfort, France; (C.H.); (R.Y.); (E.D.); (M.-L.T.); (P.F.)
| | - Graziella Midelet
- Bacteriology and Parasitology of Fishery and Aquaculture Products Unit, Laboratory for Food Safety, ANSES, 62200 Boulogne-sur-Mer, France; (T.B.); (G.M.)
| | - Sophie A. Granier
- Antibiotics, Biocides, Residues and Resistance Unit, Fougères Laboratory, ANSES, 35306 Fougères, France;
| | - Marisa Haenni
- Antimicrobial Resistance and Bacterial Virulence Unit, Lyon Laboratory, Université de Lyon, ANSES, 69364 Lyon, France;
| | - Patrick Fach
- COLiPATH Unit & Genomics Platform IdentyPath, Laboratory for Food Safety, ANSES, 94700 Maisons-Alfort, France; (C.H.); (R.Y.); (E.D.); (M.-L.T.); (P.F.)
| | - Anne Brisabois
- Strategy and Programs Department, ANSES, 94700 Maisons-Alfort, France;
| |
Collapse
|
44
|
Zheng D, Yin G, Liu M, Hou L, Yang Y, Liu X, Jiang Y, Chen C, Wu H. Metagenomics highlights the impact of climate and human activities on antibiotic resistance genes in China's estuaries. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:119015. [PMID: 35183662 DOI: 10.1016/j.envpol.2022.119015] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/28/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Estuarine environments faced with contaminations from coastal zones and the inland are vital sinks of antibiotic resistance genes (ARGs). However, little is known about the temporal-spatial pattern of ARGs and its predominant constraints in estuarine environments. Here, we leveraged metagenomics to investigate ARG profiles from 16 China's estuaries across 6 climate zones in dry and wet seasons, and disentangled their relationships with environmental constraints. Our results revealed that ARG abundance, richness, and diversity in dry season were higher than those in wet season, and ARG abundance exhibited an increasing trend with latitude. The prevalence of ARGs was significantly driven by human activities, mobile gene elements, microbial communities, antibiotic residuals, physicochemical properties, and climatic variables. Among which, climatic variables and human activities ranked the most important factors, contributing 44% and 36% of the total variance of observed ARGs, respectively. The most important climatic variable shaping ARGs is temperature, where increasing temperature is associated with decreased ARGs. Our results highlight that the prevalence of ARGs in estuarine environments would be co-driven by anthropogenic activities and climate, and suggest the dynamics of ARGs under future changing climate and socioeconomic development.
Collapse
Affiliation(s)
- Dongsheng Zheng
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Guoyu Yin
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China.
| | - Min Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Lijun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Yi Yang
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Xinran Liu
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Yinghui Jiang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Cheng Chen
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Han Wu
- Key Laboratory of Geographic Information Science (Ministry of Education), East China Normal University, Shanghai, 200241, China; School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
45
|
Meng M, Li Y, Yao H. Plasmid-Mediated Transfer of Antibiotic Resistance Genes in Soil. Antibiotics (Basel) 2022; 11:antibiotics11040525. [PMID: 35453275 PMCID: PMC9024699 DOI: 10.3390/antibiotics11040525] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/09/2022] [Accepted: 04/13/2022] [Indexed: 12/18/2022] Open
Abstract
Due to selective pressure from the widespread use of antibiotics, antibiotic resistance genes (ARGs) are found in human hosts, plants, and animals and virtually all natural environments. Their migration and transmission in different environmental media are often more harmful than antibiotics themselves. ARGs mainly move between different microorganisms through a variety of mobile genetic elements (MGEs), such as plasmids and phages. The soil environment is regarded as the most microbially active biosphere on the Earth’s surface and is closely related to human activities. With the increase in human activity, soils are becoming increasingly contaminated with antibiotics and ARGs. Soil plasmids play an important role in this process. This paper reviews the current scenario of plasmid-mediated migration and transmission of ARGs in natural environments and under different antibiotic selection pressures, summarizes the current methods of plasmid extraction and analysis, and briefly introduces the mechanism of plasmid splice transfer using the F factor as an example. However, as the global spread of drug-resistant bacteria has increased and the knowledge of MGEs improves, the contribution of soil plasmids to resistance gene transmission needs to be further investigated. The prevalence of multidrug-resistant bacteria has also made the effective prevention of the transmission of resistance genes through the plasmid-bacteria pathway a major research priority.
Collapse
Affiliation(s)
- Miaoling Meng
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, China;
| | - Yaying Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China;
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, China;
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China;
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, China
- Correspondence: ; Tel.: +86-0574-8678-4812
| |
Collapse
|
46
|
Yuan T, Lin ZB, Cheng S, Wang R, Lu P. Removal of Sulfonamide Resistance Genes in Fishery Reclamation Mining Subsidence Area by Zeolite. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074281. [PMID: 35409961 PMCID: PMC8998867 DOI: 10.3390/ijerph19074281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/03/2022]
Abstract
A majority of subsidence lakes were reclaimed as fish ponds, but the widespread use of antibiotics has caused the pollution of antibiotic resistance genes (ARGs). This paper uses zeolite as a filter material to construct a horizontal submersible wastewater treatment device and explores its effect on the removal of conventional pollutants and sulfonamide ARGs in wastewater. The results showed that the removal of total nitrogen and ammonia nitrogen by the zeolite filter media were 59.0% and 63.8%, respectively, which were higher than the removal of total phosphorus and COD. The absolute abundances of sul1 and sul2 in wastewater were 2.81 × 104 copies·L−1 and 2.42 × 103 copies·L−1. On average, 60.62% of sul1 and 75.84% of sul2 can be removed, and more than 90% of sul1 and sul2 can be removed. Experiments showed that the residence time of wastewater in the treatment device had a significant impact on removal. The microbial community structure of aquaculture wastewater was quite different before and after wastewater treatment. The abundance changes of Saccharimonadales and Mycobacterium affect the removal of sulfonamide ARGs.
Collapse
Affiliation(s)
- Tao Yuan
- School of Architectural Decoration, Jiangsu Vocational Institute of Architectural Technology, Xuzhou 221000, China;
| | - Zi-Bo Lin
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221000, China; (Z.-B.L.); (S.C.); (R.W.)
| | - Sen Cheng
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221000, China; (Z.-B.L.); (S.C.); (R.W.)
| | - Rui Wang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221000, China; (Z.-B.L.); (S.C.); (R.W.)
| | - Ping Lu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221000, China; (Z.-B.L.); (S.C.); (R.W.)
- Correspondence:
| |
Collapse
|
47
|
Abbasi A, Rahbar-Kelishami A, Seifollahi Z, Ghasemi MJ. Intensified decontamination of amoxicillin drug wastewater assisted by liquid-phase micro extraction method. ENVIRONMENTAL TECHNOLOGY 2022; 43:1551-1560. [PMID: 33108984 DOI: 10.1080/09593330.2020.1841830] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
The presence of pharmaceutical pollutants, including antibiotic contaminants in the environment is one of the most important issues in the world today. We focused on elimination of amoxicillin (AMX) from aqueous media in micro Channel Y-Y shaped. The kinetic studies showed that the reaction kinetic was very fast and extraction equilibrium is attained within 20 s. Key operational parameters such as feed concentration, pH of aqueous solution, and extractant concentration and residence time were optimized. The maximum rate of AMX removal was determined 98.2%. Overall volumetric mass transfer coefficient of amoxicillin kLα, is perused to specify the mass transfer performance. Much higher amoxicillin kLα values acquired in the micro process compare with conventional extraction approved the amoxicillin is easily extracted with a higher ratio at micro-flow. The studies demonstrated that the micro solvent extraction process has considerable potential for environmentally friendly and would be a promising method for wastewater treatment of complex systems.Highlights On-chip liquid-phase microextraction coupled with UV-VIS was introduced.Extraction percentage of 98.2% was obtained using MDEHPA under best conditions.Microfluidic shows the considerable potential for environmentally friendly and amoxicillin removal from aqueous media.
Collapse
Affiliation(s)
- Ali Abbasi
- Research Lab for Advanced Separation Processes, Department of Chemical, Petroleum and Gas Engineering, Iran University of Science & Technology (IUST), Narmak, Tehran, Iran
| | - Ahmad Rahbar-Kelishami
- Research Lab for Advanced Separation Processes, Department of Chemical, Petroleum and Gas Engineering, Iran University of Science & Technology (IUST), Narmak, Tehran, Iran
| | - Zahra Seifollahi
- Research Lab for Advanced Separation Processes, Department of Chemical, Petroleum and Gas Engineering, Iran University of Science & Technology (IUST), Narmak, Tehran, Iran
| | - Mohammad Javad Ghasemi
- Research Lab for Advanced Separation Processes, Department of Chemical, Petroleum and Gas Engineering, Iran University of Science & Technology (IUST), Narmak, Tehran, Iran
| |
Collapse
|
48
|
Lassen SB, Ahsan ME, Islam SR, Zhou XY, Razzak MA, Su JQ, Brandt KK. Prevalence of antibiotic resistance genes in Pangasianodon hypophthalmus and Oreochromis niloticus aquaculture production systems in Bangladesh. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:151915. [PMID: 34826462 DOI: 10.1016/j.scitotenv.2021.151915] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic resistance genes (ARGs) constitute emerging pollutants of significant public health concern. Antibiotics applied in aquaculture may stimulate the proliferation and dissemination of ARGs. This study investigated the prevalence and diversity of ARGs in Pangasianodon hypophthalmus (formerly Pangasius) and Oreochromis niloticus (formerly Tilapia) commercial aquaculture ponds from four economically important divisions (i.e. regions) of Bangladesh using a high-throughput qPCR ARG SmartChip and further aimed to explore effects of aquaculture pond management and water quality on the observed ARG prevalence patterns. A total of 160 ARGs and 10 mobile genetic elements (MGEs) were detected across all samples (n = 33), of which 76 ARGs and MGEs were shared between all regions. Multidrug resistance genes were the most frequently encountered ARGs, followed by ARGs conferring resistance to β-lactams, aminoglycosides, tetracyclines, and macrolide-lincosamide-streptogramin B (MLSB). Research ponds managed by the Bangladesh Agricultural University had the lowest abundance and diversity of ARGs, suggesting that proper management such as regular water quality monitoring, fortnightly water exchange and use of probiotics instead of antibiotics may mitigate the dissemination of antibiotic resistance from aquaculture ponds. The Adonis test (R2 = 0.35, p < 0.001) and distance decay relationships revealed that the ARGs composition displayed a significant biogeographical pattern (i.e., separation based on geographic origin). However, this effect could possibly be due to feed type as different feed types were used in different regions. In conclusion, our results indicate that there is a vast potential for improving aquaculture pond management practices in Bangladesh to mitigate the environmental dissemination of ARGs and their subsequent transmission to humans.
Collapse
Affiliation(s)
- Simon Bo Lassen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, 380 Huaibeizhuang, Beijing, China
| | - Md Emranul Ahsan
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark; Department of Aquaculture, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh; Department of Fisheries Management, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Salna, Gazipur 1706, Bangladesh
| | - Seikh Razibul Islam
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark; Department of Aquaculture, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Xin-Yuan Zhou
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Muhammad Abdur Razzak
- Department of Aquaculture, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Kristian Koefoed Brandt
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark; Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, 380 Huaibeizhuang, Beijing, China.
| |
Collapse
|
49
|
Bacteriophages in the Control of Aeromonas sp. in Aquaculture Systems: An Integrative View. Antibiotics (Basel) 2022; 11:antibiotics11020163. [PMID: 35203766 PMCID: PMC8868336 DOI: 10.3390/antibiotics11020163] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/23/2022] [Accepted: 01/24/2022] [Indexed: 11/17/2022] Open
Abstract
Aeromonas species often cause disease in farmed fish and are responsible for causing significant economic losses worldwide. Although vaccination is the ideal method to prevent infectious diseases, there are still very few vaccines commercially available in the aquaculture field. Currently, aquaculture production relies heavily on antibiotics, contributing to the global issue of the emergence of antimicrobial-resistant bacteria and resistance genes. Therefore, it is essential to develop effective alternatives to antibiotics to reduce their use in aquaculture systems. Bacteriophage (or phage) therapy is a promising approach to control pathogenic bacteria in farmed fish that requires a heavy understanding of certain factors such as the selection of phages, the multiplicity of infection that produces the best bacterial inactivation, bacterial resistance, safety, the host’s immune response, administration route, phage stability and influence. This review focuses on the need to advance phage therapy research in aquaculture, its efficiency as an antimicrobial strategy and the critical aspects to successfully apply this therapy to control Aeromonas infection in fish.
Collapse
|
50
|
Wang X, Lin Y, Zheng Y, Meng F. Antibiotics in mariculture systems: A review of occurrence, environmental behavior, and ecological effects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 293:118541. [PMID: 34800588 DOI: 10.1016/j.envpol.2021.118541] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Antibiotics are widely applied to prevent and treat diseases occurred in mariculture. The often-open nature of mariculture production systems has led to antibiotic residue accumulation in the culturing and adjacent environments, which can adversely affect aquatic ecosystems, and even human. This review summarizes the occurrence, environmental behavior, and ecological effects of antibiotics in mariculture systems based on peer-reviewed papers. Forty-five different antibiotics (categorized into ten groups) have been detected in mariculture systems around the world, which is far greater than the number officially allowed. Indiscriminate use of antibiotics is relatively high among major producing countries in Asia, which highlights the need for stricter enforcement of regulations and policies and effective antibiotic removal methods. Compared with other environmental systems, some environmental characteristics of mariculture systems, such as high salinity and dissolved organic matter (DOM) content, can affect the migration and transformation processes of antibiotics. Residues of antibiotics favor the proliferation of antibiotic resistance genes (ARGs). Antibiotics and ARGs alter microbial communities and biogeochemical cycles, as well as posing threats to marine organisms and human health. This review may provide a valuable summary of the effects of antibiotics on mariculture systems.
Collapse
Affiliation(s)
- Xiaotong Wang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Yufei Lin
- National Marine Hazard Mitigation Service, Ministry of Natural Resource of the People's Republic of China, Beijing, 100194, China
| | - Yang Zheng
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China; National Marine Hazard Mitigation Service, Ministry of Natural Resource of the People's Republic of China, Beijing, 100194, China
| | - Fanping Meng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|