1
|
Martak D, Henriot CP, Hocquet D. Environment, animals, and food as reservoirs of antibiotic-resistant bacteria for humans: One health or more? Infect Dis Now 2024; 54:104895. [PMID: 38548016 DOI: 10.1016/j.idnow.2024.104895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/15/2024]
Abstract
Antimicrobial resistance (AMR) is a major public health challenge. For several years, AMR has been addressed through a One Health approach that links human health, animal health, and environmental quality. In this review, we discuss AMR in different reservoirs with a focus on the environment. Anthropogenic activities produce effluents (sewage, manure, and industrial wastes) that contaminate soils and aquatic environments with antibiotic-resistant bacteria (ARB), antibiotic-resistant genes (ARGs), and selective agents such as antibiotics, biocides, and heavy metals. Livestock treated with antibiotics can also contaminate food with ARB. In high-income countries (HICs), effective sanitation infrastructure and limited pharmaceutical industries result in more controlled discharges associated with human activities. Hence, studies using genome-based typing methods have revealed that, although rare inter-reservoir transmission events have been reported, human acquisition in HICs occurs primarily through person-to-person transmission. The situation is different in low- and middle-income countries (LMICs) where high population density, poorer sanitation and animal farming practices are more conducive to inter-reservoir transmissions. In addition, environmental bacteria can be a source of ARGs that, when transferred to pathogenic species under antibiotic selection pressure in environmental hotspots, produce new antibiotic-resistant strains that can potentially spread in the human community through human-to-human transmission. The keys to reducing AMR in the environment are (i) better treatment of human waste by improving wastewater treatment plants (WWTPs) in HICs and improving sanitation infrastructure in LMICs, (ii) reducing the use of antibiotics by humans and animals, (iii) prioritizing the use of less environmentally harmful antibiotics, and (iv) better control of pharmaceutical industry waste.
Collapse
Affiliation(s)
- Daniel Martak
- Université de Franche-Comté, UMR 6249 Chrono-environnement, F-25000 Besançon, France.
| | - Charles P Henriot
- Université de Franche-Comté, UMR 6249 Chrono-environnement, F-25000 Besançon, France
| | - Didier Hocquet
- Université de Franche-Comté, UMR 6249 Chrono-environnement, F-25000 Besançon, France; CHU de Besançon, Hygiène Hospitalière, F-25000 Besançon, France
| |
Collapse
|
2
|
Savin M, Sib E, Heinemann C, Eichel VM, Nurjadi D, Klose M, Andre Hammerl J, Binsker U, Mutters NT. Tracing clinically-relevant antimicrobial resistances in Acinetobacter baumannii-calcoaceticus complex across diverse environments: A study spanning clinical, livestock, and wastewater treatment settings. ENVIRONMENT INTERNATIONAL 2024; 186:108603. [PMID: 38547543 DOI: 10.1016/j.envint.2024.108603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/13/2024] [Accepted: 03/23/2024] [Indexed: 04/26/2024]
Abstract
Acinetobacter baumannii has become a prominent nosocomial pathogen, primarily owing to its remarkable ability to rapidly acquire resistance to a wide range of antimicrobial agents and its ability to persist in diverse environments. However, there is a lack of data on the molecular epidemiology and its potential implications for public health of A. baumannii strains exhibiting clinically significant resistances that originate from non-clinical environments. Therefore, the genetic characteristics and resistance mechanisms of 80 A. baumannii-calcoaceticus (ABC) complex isolates, sourced from environments associated with poultry and pig production, municipal wastewater treatment plants (WWTPs), and clinical settings, were investigated. In total, our study classified 54 isolates into 29 previously described sequence types (STs), while 26 isolates exhibited as-yet-unassigned STs. We identified a broad range of A. baumannii STs originating from poultry and pig production environments (e.g., ST10, ST238, ST240, ST267, ST345, ST370, ST372, ST1112 according to Pasteur scheme). These STs have also been documented in clinical settings worldwide, highlighting their clinical significance. These findings also raise concerns about the potential zoonotic transmission of certain STs associated with livestock environments. Furthermore, we observed that clinical isolates exhibited the highest diversity of antimicrobial resistance genes (ARGs). In contrast to non-clinical isolates, clinical isolates typically carried a significantly higher number of ARGs, ranging from 10 to 15. They were also the exclusive carriers of biocide resistance genes and acquired carbapenemases (blaOXA-23, blaOXA-58, blaOXA-72, blaGIM-1, blaNDM-1). Additionally, we observed that clinical strains displayed an increased capacity for carrying plasmids and undergoing genetic transformation. This heightened capability could be linked to the intense selective pressures commonly found within clinical settings. Our study provides comprehensive insights into essential aspects of ABC isolates originating from livestock-associated environments and clinical settings. We explored their resistance mechanisms and potential implications for public health, providing valuable knowledge for addressing these critical issues.
Collapse
Affiliation(s)
- Mykhailo Savin
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany.
| | - Esther Sib
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | | | - Vanessa M Eichel
- Section for Hospital Hygiene and Environmental Health, Center for Infectious Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Dennis Nurjadi
- Department of Infectious Diseases and Microbiology, University of Lübeck and University Medical Center Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - Marian Klose
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Jens Andre Hammerl
- Department for Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Ulrike Binsker
- Department for Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Nico T Mutters
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
3
|
Stelmaszyk L, Stange C, Hügler M, Sidhu JP, Horn H, Tiehm A. Quantification of β-lactamase producing bacteria in German surface waters with subsequent MALDI-TOF MS-based identification and β-lactamase activity assay. Heliyon 2024; 10:e27384. [PMID: 38486766 PMCID: PMC10937694 DOI: 10.1016/j.heliyon.2024.e27384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Environmental oligotrophic bacteria are suspected to be highly relevant carriers of antimicrobial resistance (AMR). However, there is a lack of validated methods for monitoring in the aquatic environment. Since extended-spectrum β-lactamases (ESBLs) play a particularly important role in the clinical sector, a culturing method based on R2A-medium spiked with different combinations of β-lactams was applied to quantify β-lactamase-producing environmental bacteria from surface waters. In German surface water samples (n = 28), oligotrophic bacteria ranging from 4.0 × 103 to 1.7 × 104 CFU per 100 mL were detected on the nutrient-poor medium spiked with 3rd generation cephalosporins and carbapenems. These numbers were 3 log10 higher compared to ESBL-producing Enterobacteriales of clinical relevance from the same water samples. A MALDI-TOF MS identification of the isolates demonstrated, that the method leads to the isolation of environmentally relevant strains with Pseudomonas, Flavobacterium, and Janthinobacterium being predominant β-lactam resistant genera. Subsequent micro-dilution antibiotic susceptibility tests (Micronaut-S test) confirmed the expression of β-lactamases. The qPCR analysis of surface waters DNA extracts showed the presence of β-lactamase genes (blaTEM, blaCMY-2, blaOXA-48, blaVIM-2, blaSHV, and blaNDM-1) at concentrations of 3.7 (±1.2) to 1.0 (±1.9) log10 gene copies per 100 mL. Overall, the results demonstrate a widespread distribution of cephalosporinase and carbapenemase enzymes in oligotrophic environmental bacteria that have to be considered as a reservoir of ARGs and contribute to the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Lara Stelmaszyk
- TZW: DVGW Technologiezentrum Wasser, Department of Water Microbiology, Karlsruher Straße 84, Karlsruhe, Germany
| | - Claudia Stange
- TZW: DVGW Technologiezentrum Wasser, Department of Water Microbiology, Karlsruher Straße 84, Karlsruhe, Germany
| | - Michael Hügler
- TZW: DVGW Technologiezentrum Wasser, Department of Water Microbiology, Karlsruher Straße 84, Karlsruhe, Germany
| | - Jatinder P.S. Sidhu
- CSIRO Oceans and Atmosphere, Ecosciences Precinct, 41 Boggo Road, Brisbane, Australia
| | - Harald Horn
- Karlsruher Institut für Technologie, Engler-Bunte Institute, Wasserchemie und Wassertechnologie, Engler-Bunte-Ring 9a, Karlsruhe, Germany
| | - Andreas Tiehm
- TZW: DVGW Technologiezentrum Wasser, Department of Water Microbiology, Karlsruher Straße 84, Karlsruhe, Germany
| |
Collapse
|
4
|
Perez-Bou L, Gonzalez-Martinez A, Gonzalez-Lopez J, Correa-Galeote D. Promising bioprocesses for the efficient removal of antibiotics and antibiotic-resistance genes from urban and hospital wastewaters: Potentialities of aerobic granular systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123115. [PMID: 38086508 DOI: 10.1016/j.envpol.2023.123115] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 11/07/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
The use, overuse, and improper use of antibiotics have resulted in higher levels of antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs), which have profoundly disturbed the equilibrium of the environment. Furthermore, once antibiotic agents are excreted in urine and feces, these substances often can reach wastewater treatment plants (WWTPs), in which improper treatments have been highlighted as the main reason for stronger dissemination of antibiotics, ARB, and ARGs to the receiving bodies. Hence, achieving better antibiotic removal capacities in WWTPs is proposed as an adequate approach to limit the spread of antibiotics, ARB, and ARGs into the environment. In this review, we highlight hospital wastewater (WW) as a critical hotspot for the dissemination of antibiotic resistance due to its high level of antibiotics and pathogens. Hence, monitoring the composition and structure of the bacterial communities related to hospital WW is a key factor in controlling the spread of ARGs. In addition, we discuss the advantages and drawbacks of the current biological WW treatments regarding the antibiotic-resistance phenomenon. Widely used conventional activated sludge technology has proved to be ineffective in mitigating the dissemination of ARB and ARGs to the environment. However, aerobic granular sludge (AGS) technology is a promising technology-with broad adaptability and excellent performance-that could successfully reduce antibiotics, ARB, and ARGs in the generated effluents. We also outline the main operational parameters involved in mitigating antibiotics, ARB, and ARGs in WWTPs. In this regard, WW operation under long hydraulic and solid retention times allows better removal of antibiotics, ARB, and ARGs independently of the WW technology employed. Finally, we address the current knowledge of the adsorption and degradation of antibiotics and their importance in removing ARB and ARGs. Notably, AGS can enhance the removal of antibiotics, ARB, and ARGs due to the complex microbial metabolism within the granular biomass.
Collapse
Affiliation(s)
- Lizandra Perez-Bou
- Microbiology Department, Faculty of Pharmacy, University of Granada, Granada, Andalucía, Spain; Microbiology and Environmental Technology Section, Institute of Water Research, University of Granada, Granada, Andalucía, Spain; Microbial Biotechnology Group, Microbiology and Virology Department, Faculty of Biology, University of Havana, Cuba
| | - Alejandro Gonzalez-Martinez
- Microbiology Department, Faculty of Pharmacy, University of Granada, Granada, Andalucía, Spain; Microbiology and Environmental Technology Section, Institute of Water Research, University of Granada, Granada, Andalucía, Spain
| | - Jesus Gonzalez-Lopez
- Microbiology Department, Faculty of Pharmacy, University of Granada, Granada, Andalucía, Spain; Microbiology and Environmental Technology Section, Institute of Water Research, University of Granada, Granada, Andalucía, Spain
| | - David Correa-Galeote
- Microbiology Department, Faculty of Pharmacy, University of Granada, Granada, Andalucía, Spain; Microbiology and Environmental Technology Section, Institute of Water Research, University of Granada, Granada, Andalucía, Spain.
| |
Collapse
|
5
|
Carlsen L, Grottker M, Heim M, Knobling B, Schlauß S, Wellbrock K, Knobloch JK. High Genetic Diversity in Third-Generation Cephalosporin-Resistant Escherichia coli in Wastewater Systems of Schleswig-Holstein. Pathogens 2024; 13:90. [PMID: 38276163 PMCID: PMC10820474 DOI: 10.3390/pathogens13010090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
The spread of multidrug-resistant bacteria from humans or livestock is a critical issue. However, the epidemiology of resistant pathogens across wastewater pathways is poorly understood. Therefore, we performed a detailed comparison of third-generation cephalosporin-resistant Escherichia coli (3GCREC) from wastewater treatment plants (WWTPs) to analyze dissemination pathways. A total of 172 3GCREC isolated from four WWTPs were characterized via whole genome sequencing. Clonal relatedness was determined using multi-locus sequence typing (MLST) and core genome MLST. Resistance genotypes and plasmid replicons were determined. A total of 68 MLST sequence types were observed with 28 closely related clusters. Resistance genes to eight antibiotic classes were detected. In fluoroquinolone-resistant isolates, resistance was associated with three-or-more point mutations in target genes. Typing revealed high genetic diversity with only a few clonal lineages present in all WWTPs. The distribution paths of individual lines could only be traced in exceptional cases with a lack of enrichment of certain lineages. Varying resistance genes and plasmids, as well as fluoroquinolone resistance-associated point mutations in individual isolates, further corroborated the high diversity of 3GCREC in WWTPs. In total, we observed high diversity of 3GCREC inside the tested WWTPs with proof of resistant strains being released into the environment even after treatment processes.
Collapse
Affiliation(s)
- Laura Carlsen
- Institute of Medical Microbiology, Virology, and Hygiene, Department for Infection Prevention and Control, University Medical Center Hamburg–Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; (L.C.); (B.K.)
| | - Matthias Grottker
- Laboratory for Urban Water and Waste Management, Technische Hochschule Lübeck, University of Applied Sciences, Mönkhofer Weg 239, 23562 Lübeck, Germany; (M.G.); (S.S.); (K.W.)
| | - Malika Heim
- Laboratory for Urban Water and Waste Management, Technische Hochschule Lübeck, University of Applied Sciences, Mönkhofer Weg 239, 23562 Lübeck, Germany; (M.G.); (S.S.); (K.W.)
| | - Birte Knobling
- Institute of Medical Microbiology, Virology, and Hygiene, Department for Infection Prevention and Control, University Medical Center Hamburg–Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; (L.C.); (B.K.)
| | - Sebastian Schlauß
- Laboratory for Urban Water and Waste Management, Technische Hochschule Lübeck, University of Applied Sciences, Mönkhofer Weg 239, 23562 Lübeck, Germany; (M.G.); (S.S.); (K.W.)
| | - Kai Wellbrock
- Laboratory for Urban Water and Waste Management, Technische Hochschule Lübeck, University of Applied Sciences, Mönkhofer Weg 239, 23562 Lübeck, Germany; (M.G.); (S.S.); (K.W.)
| | - Johannes K. Knobloch
- Institute of Medical Microbiology, Virology, and Hygiene, Department for Infection Prevention and Control, University Medical Center Hamburg–Eppendorf, Martinistraße 52, 20246 Hamburg, Germany; (L.C.); (B.K.)
| |
Collapse
|
6
|
Odih EE, Sunmonu GT, Okeke IN, Dalsgaard A. NDM-1- and OXA-23-producing Acinetobacter baumannii in wastewater of a Nigerian hospital. Microbiol Spectr 2023; 11:e0238123. [PMID: 37796014 PMCID: PMC10714947 DOI: 10.1128/spectrum.02381-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/22/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE Acinetobacter baumannii is a leading cause of hospital-associated infections globally. A. baumannii reservoirs outside hospital settings are still unknown, and their occurrence in the environment is linked to clinical and anthropogenic activities. Although the risk of transmission of A. baumannii from environmental sources to humans is not fully understood, these sources pose significant risks for the continued dissemination of A. baumannii and their resistance traits. This study provides evidence that diverse and clinically relevant A. baumannii strains, many of which are resistant to carbapenems, are constantly being discharged into the environment through inadequately treated hospital wastewater. We further elucidate potential transmission routes between the environment and clinical infections and demonstrate the high prevalence of carbapenem resistance genes on highly mobile transposons among these strains. Our findings highlight the pressing need to address hospital wastewater as a crucial factor in curtailing the spread of carbapenem-resistant A. baumannii.
Collapse
Affiliation(s)
- Erkison Ewomazino Odih
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Global Health Research Unit for the Genomic Surveillance of Antimicrobial Resistance, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Gabriel Temitope Sunmonu
- Global Health Research Unit for the Genomic Surveillance of Antimicrobial Resistance, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Iruka N. Okeke
- Global Health Research Unit for the Genomic Surveillance of Antimicrobial Resistance, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Anders Dalsgaard
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Cimen C, Noster J, Stelzer Y, Rump A, Sattler J, Berends M, Voss A, Hamprecht A. Surface water in Lower Saxony: A reservoir for multidrug-resistant Enterobacterales. One Health 2023; 17:100606. [PMID: 37583366 PMCID: PMC10424258 DOI: 10.1016/j.onehlt.2023.100606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/17/2023] Open
Abstract
The emergence of extended-spectrum β-lactamase and carbapenemase-producing Enterobacterales (ESBL-E and CPE, respectively) is a threat to modern medicine, as infections become increasingly difficult to treat. These bacteria have been detected in aquatic environments, which raises concerns about the potential spread of antibiotic resistance through water. Therefore, we investigated the occurrence of ESBL-E and CPE in surface water in Lower Saxony, Germany, using phenotypic and genotypic methods. Water samples were collected from two rivers, five water canals near farms, and 18 swimming lakes. ESBL-E and CPE were isolated from these samples using filters and selective agars. All isolates were analyzed by whole genome sequencing. Multidrug-resistant Enterobacterales were detected in 4/25 (16%) water bodies, including 1/2 rivers, 2/5 water canals and 1/18 lakes. Among all samples, isolates belonging to five different species/species complexes were detected: Escherichia coli (n = 10), Enterobacter cloacae complex (n = 4), Citrobacter freundii (n = 3), Citrobacter braakii (n = 2), and Klebsiella pneumoniae (n = 2). Of the 21 isolates, 13 (62%) were resistant at least to 3rd generation cephalosporins and eight (38%) additionally to carbapenems. CPE isolates harbored blaKPC-2 (n = 5), blaKPC-2 and blaVIM-1 (n = 2), or blaOXA-181 (n = 1); additionally, mcr-9 was detected in one isolate. Two out of eight CPE isolates were resistant to cefiderocol and two to colistin. Resistance to 3rd generation cephalosporins was mediated by ESBL (n = 10) or AmpC (n = 3). The presence of AmpC-producing Enterobacterales, ESBL-E and CPE in northern German surface water samples is alarming and highlights the importance of aquatic environments as a potential source of MDR bacteria.
Collapse
Affiliation(s)
- Cansu Cimen
- Institute for Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany
- University of Groningen, Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, the Netherlands
| | - Janina Noster
- Institute for Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany
| | - Yvonne Stelzer
- Institute for Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany
| | - Andreas Rump
- University Institute for Medical Genetics, Klinikum Oldenburg, Oldenburg, Germany
| | - Janko Sattler
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Matthijs Berends
- University of Groningen, Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, the Netherlands
- Certe Medical Diagnostics and Advice Foundation, Department of Medical Epidemiology, Groningen, the Netherlands
| | - Andreas Voss
- University of Groningen, Department of Medical Microbiology and Infection Prevention, University Medical Center Groningen, Groningen, the Netherlands
| | - Axel Hamprecht
- Institute for Medical Microbiology and Virology, University of Oldenburg, Oldenburg, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne and Faculty of Medicine, University of Cologne, Cologne, Germany
| |
Collapse
|
8
|
Savin M, Hammerl JA, Hassa J, Hembach N, Kalinowski J, Schwartz T, Droop F, Mutters NT. Free-floating extracellular DNA (exDNA) in different wastewaters: Status quo on exDNA-associated antimicrobial resistance genes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122560. [PMID: 37716694 DOI: 10.1016/j.envpol.2023.122560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/28/2023] [Accepted: 09/13/2023] [Indexed: 09/18/2023]
Abstract
Wastewater treatment plants (WWTPs) have been reported as major anthropogenic reservoirs for the spread of antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) into the environment, worldwide. While most studies mainly focus on the intracellular DNA (iDNA), extracellular DNA (exDNA) accounting for a significant proportion of the total DNA in wastewater, was usually neglected. Following the One Health approach, this study focuses on wastewaters of municipal, clinical, and livestock origins (n = 45) that undergo different treatment processes (i.e., conventional activated sludge, ultrafiltration, and ozonation). Water samples were analysed for 12 ARGs as indicators of the different compartments associated with iDNA and exDNA by quantitative real-time PCR (qPCR). Taxonomic profiling of exDNA-fractions, obtained using nucleic acid adsorption particles, was conducted by sequencing the V3-V4 hypervariable regions of the 16S rRNA gene. Notified exDNA concentrations varied between on-site WWTPs and treatment stages, and ranged from 314.0 ± 70.2 ng/mL in untreated livestock wastewater down to 0.7 ± 0.1 ng/mL in effluents after ultrafiltration. In general, influents exhibited higher concentrations compared to effluents, while wastewater treated by advanced treatment processes (i.e., ultrafiltration and ozonation) showed the lowest exDNA concentrations. Despite the lower concentrations, free-floating exDNA accounted for up to 80.0 ± 5.8% of the total DNA in effluents. Target ARGs were more common in the iDNA (100%, n = 45/45), compared to the exDNA-fractions (51.1%, n = 23/45), whereas exDNA-ARGs were mostly detected in clinical and slaughterhouse wastewaters as well as in the municipal influents. Compared to the iDNA-ARGs, the concentrations of exDNA-ARGs were in general lower. Nevertheless, significant higher concentrations for exDNA-associated genes were measured in clinical wastewaters for blaNDM (4.07 ± 0.15 log gene copies (GC)/L) and blaVIM-2 (6.0 ± 0.2 log GC/L). Overall, our results suggest that depending on the origin of wastewater and its treatment methods, exDNA represents an important reservoir for ARGs, particularly in clinical wastewater.
Collapse
Affiliation(s)
- Mykhailo Savin
- Institute of Hygiene and Public Health, University Hospital Bonn, Venusberg-Campus 1, D-53127, Bonn, Germany.
| | - Jens Andre Hammerl
- Department for Biological Safety, German Federal Institute for Risk Assessment, Diedersdorfer Weg, D-12277, Berlin, Germany
| | - Julia Hassa
- Center for Biotechnology (CeBiTec), Bielefeld University, Universitätsstrasse 27, D-33615, Bielefeld, Germany
| | - Norman Hembach
- Department of Microbiology/Molecular Biology, Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Jörn Kalinowski
- Department for Biological Safety, German Federal Institute for Risk Assessment, Diedersdorfer Weg, D-12277, Berlin, Germany
| | - Thomas Schwartz
- Department of Microbiology/Molecular Biology, Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz 1, D-76344, Eggenstein-Leopoldshafen, Germany
| | - Felix Droop
- Institute of Hygiene and Public Health, University Hospital Bonn, Venusberg-Campus 1, D-53127, Bonn, Germany
| | - Nico T Mutters
- Institute of Hygiene and Public Health, University Hospital Bonn, Venusberg-Campus 1, D-53127, Bonn, Germany
| |
Collapse
|
9
|
Kagambèga AB, Dembélé R, Bientz L, M’Zali F, Mayonnove L, Mohamed AH, Coulibaly H, Barro N, Dubois V. Detection and Characterization of Carbapenemase-Producing Escherichia coli and Klebsiella pneumoniae from Hospital Effluents of Ouagadougou, Burkina Faso. Antibiotics (Basel) 2023; 12:1494. [PMID: 37887195 PMCID: PMC10603891 DOI: 10.3390/antibiotics12101494] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/06/2023] [Accepted: 09/22/2023] [Indexed: 10/28/2023] Open
Abstract
Hospital wastewater is a recognized reservoir for resistant Gram-negative bacteria. This study aimed to screen for carbapenemase-producing Escherichia coli and Klebsiella pneumoniae and their resistance determinants in two hospital effluents of Ouagadougou. Carbapenem-resistant E. coli and K. pneumoniae were selectively isolated from wastewater collected from two public hospitals in Ouagadougou, Burkina Faso. Bacterial species were identified via MALDI-TOF mass spectrometry. Carbapenemase production was studied phenotypically using antibiotic susceptibility testing via the disk diffusion method. The presence of carbapenemases was further characterized by PCR. A total of 14 E. coli (13.59%) and 19 K. pneumoniae (17.92%) carbapenemase-producing isolates were identified with different distributions. They were, respectively, blaNDM (71.43%), blaVIM (42.86%), blaIMP (28.57%), blaKPC (14.29%), blaOXA-48 (14.29%); and blaKPC (68.42%), blaNDM (68.42%), blaIMP (10.53%), blaVIM (10.53%), and blaOXA-48 (5.26%). In addition, eight (57.14%) E. coli and eleven (57.89%) K. pneumoniae isolates exhibited more than one carbapenemase, KPC and NDM being the most prevalent combination. Our results highlight the presence of clinically relevant carbapenemase-producing isolates in hospital effluents, suggesting their presence also in hospitals. Their spread into the environment via hospital effluents calls for intensive antimicrobial resistance (AMR) surveillance.
Collapse
Affiliation(s)
- Alix Bénédicte Kagambèga
- Laboratory of Molecular Biology, Epidemiology and Surveillance of Foodborne Bacteria and Viruses, University Joseph KI-ZERBO of Ouagadougou, Ouagadougou 03 BP 7021, Burkina Faso; (A.H.M.); (H.C.); (N.B.)
| | - René Dembélé
- Laboratory of Molecular Biology, Epidemiology and Surveillance of Foodborne Bacteria and Viruses, University Joseph KI-ZERBO of Ouagadougou, Ouagadougou 03 BP 7021, Burkina Faso; (A.H.M.); (H.C.); (N.B.)
- Training and Research Unit in Applied Sciences and Technologies, University of Dedougou, Dedougou 03 BP 176, Burkina Faso
| | - Léa Bientz
- UMR 5234, CNRS, Fundamental Microbiology and Pathogenicity, University of Bordeaux, 33000 Bordeaux, France; (L.B.); (F.M.); (L.M.); (V.D.)
| | - Fatima M’Zali
- UMR 5234, CNRS, Fundamental Microbiology and Pathogenicity, University of Bordeaux, 33000 Bordeaux, France; (L.B.); (F.M.); (L.M.); (V.D.)
| | - Laure Mayonnove
- UMR 5234, CNRS, Fundamental Microbiology and Pathogenicity, University of Bordeaux, 33000 Bordeaux, France; (L.B.); (F.M.); (L.M.); (V.D.)
| | - Alassane Halawen Mohamed
- Laboratory of Molecular Biology, Epidemiology and Surveillance of Foodborne Bacteria and Viruses, University Joseph KI-ZERBO of Ouagadougou, Ouagadougou 03 BP 7021, Burkina Faso; (A.H.M.); (H.C.); (N.B.)
- Microbiology Laboratory of the General Reference Hospital (GRH), Niamey BP 12674, Niger
| | - Hiliassa Coulibaly
- Laboratory of Molecular Biology, Epidemiology and Surveillance of Foodborne Bacteria and Viruses, University Joseph KI-ZERBO of Ouagadougou, Ouagadougou 03 BP 7021, Burkina Faso; (A.H.M.); (H.C.); (N.B.)
| | - Nicolas Barro
- Laboratory of Molecular Biology, Epidemiology and Surveillance of Foodborne Bacteria and Viruses, University Joseph KI-ZERBO of Ouagadougou, Ouagadougou 03 BP 7021, Burkina Faso; (A.H.M.); (H.C.); (N.B.)
| | - Véronique Dubois
- UMR 5234, CNRS, Fundamental Microbiology and Pathogenicity, University of Bordeaux, 33000 Bordeaux, France; (L.B.); (F.M.); (L.M.); (V.D.)
| |
Collapse
|
10
|
Marutescu LG, Popa M, Gheorghe-Barbu I, Barbu IC, Rodríguez-Molina D, Berglund F, Blaak H, Flach CF, Kemper MA, Spießberger B, Wengenroth L, Larsson DGJ, Nowak D, Radon K, de Roda Husman AM, Wieser A, Schmitt H, Pircalabioru Gradisteanu G, Vrancianu CO, Chifiriuc MC. Wastewater treatment plants, an "escape gate" for ESCAPE pathogens. Front Microbiol 2023; 14:1193907. [PMID: 37293232 PMCID: PMC10244645 DOI: 10.3389/fmicb.2023.1193907] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
Antibiotics are an essential tool of modern medicine, contributing to significantly decreasing mortality and morbidity rates from infectious diseases. However, persistent misuse of these drugs has accelerated the evolution of antibiotic resistance, negatively impacting clinical practice. The environment contributes to both the evolution and transmission of resistance. From all anthropically polluted aquatic environments, wastewater treatment plants (WWTPs) are probably the main reservoirs of resistant pathogens. They should be regarded as critical control points for preventing or reducing the release of antibiotics, antibiotic-resistant bacteria (ARB), and antibiotic-resistance genes (ARGs) into the natural environment. This review focuses on the fate of the pathogens Enterococcus faecium, Staphylococcus aureus, Clostridium difficile, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae spp. (ESCAPE) in WWTPs. All ESCAPE pathogen species, including high-risk clones and resistance determinants to last-resort antibiotics such as carbapenems, colistin, and multi-drug resistance platforms, were detected in wastewater. The whole genome sequencing studies demonstrate the clonal relationships and dissemination of Gram-negative ESCAPE species into the wastewater via hospital effluents and the enrichment of virulence and resistance determinants of S. aureus and enterococci in WWTPs. Therefore, the efficiency of different wastewater treatment processes regarding the removal of clinically relevant ARB species and ARGs, as well as the influence of water quality factors on their performance, should be explored and monitored, along with the development of more effective treatments and appropriate indicators (ESCAPE bacteria and/or ARGs). This knowledge will allow the development of quality standards for point sources and effluents to consolidate the WWTP barrier role against the environmental and public health AR threats.
Collapse
Affiliation(s)
- Luminita Gabriela Marutescu
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Marcela Popa
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Irina Gheorghe-Barbu
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Ilda Czobor Barbu
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Daloha Rodríguez-Molina
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
- Institute for Medical Information Processing, Biometry, and Epidemiology – IBE, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Fanny Berglund
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Hetty Blaak
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Carl-Fredrik Flach
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Merel Aurora Kemper
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Beate Spießberger
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Munich, Germany
- Department of Infectious Diseases and Tropical Medicine, LMU University Hospital Munich, Munich, Germany
| | - Laura Wengenroth
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - D. G. Joakim Larsson
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Dennis Nowak
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research (DZL), Munich, Germany
| | - Katja Radon
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Ana Maria de Roda Husman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Andreas Wieser
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Munich, Germany
- Department of Infectious Diseases and Tropical Medicine, LMU University Hospital Munich, Munich, Germany
| | - Heike Schmitt
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Gratiela Pircalabioru Gradisteanu
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Romanian Academy of Sciences, Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- The Romanian Academy, Bucharest, Romania
| |
Collapse
|
11
|
Werner G, Abu Sin M, Bahrs C, Brogden S, Feßler AT, Hagel S, Kaspar H, Köck R, Kreienbrock L, Krüger-Haker H, Maechler F, Noll I, Pletz MW, Tenhagen BA, Schwarz S, Walther B, Mielke M. [Therapy-relevant antibiotic resistances in a One Health context]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2023:10.1007/s00103-023-03713-4. [PMID: 37184673 DOI: 10.1007/s00103-023-03713-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/28/2023] [Indexed: 05/16/2023]
Abstract
One Health refers to a concept that links human, animal, and environmental health. In Germany, there is extensive data on antibiotic resistance (AMR) and multidrug-resistant (micro)organisms (MDRO) in human and veterinary medicine, as well as from studies in various environmental compartments (soil, water, wastewater). All these activities are conducted according to different specifications and standards, which makes it difficult to compare data. A focus on AMR and MDRO of human therapeutic importance is helpful to provide some guidance. Most data are available across sectors on methicillin-resistant Staphylococcus aureus (MRSA) and multiresistant Enterobacterales such as Escherichia coli and Klebsiella pneumoniae. Here, the trends of resistance are heterogeneous. Antibiotic use leads to MRE selection, which is well documented. Success in minimizing antibiotic use has also been demonstrated in recent years in several sectors and could be correlated with success in containing AMR and MDRO (e.g., decrease in MRSA in human medicine). Sector-specific measures to reduce the burden of MDRO and AMR are also necessary, as not all resistance problems are linked to other sectors. Carbapenem resistance is still rare, but most apparent in human pathogens. Colistin resistance occurs in different sectors but shows different mechanisms in each. Resistance to antibiotics of last resort such as linezolid is rare in Germany, but shows a specific One Health correlation. Efforts to harmonize methods, for example in the field of antimicrobial susceptibility testing and genome-based pathogen and AMR surveillance, are an important first step towards a better comparability of the different data collections.
Collapse
Affiliation(s)
- Guido Werner
- Robert Koch Institut, Berlin, Deutschland.
- Abt. Infektionskrankheiten, Fachgebiet Nosokomiale Infektionserreger und Antibiotikaresistenzen, Robert Koch-Institut, Außenstelle Wernigerode, Burgstr. 37, 38855, Wernigerode, Deutschland.
| | - Muna Abu Sin
- Robert Koch Institut, Berlin, Deutschland
- WHO Collaborating Centre for Antimicrobial Resistance, Consumption and Healthcare-Associated Infections, Berlin, Deutschland
| | - Christina Bahrs
- Institut für Infektionsmedizin und Krankenhaushygiene, Universitätsklinikum Jena, Jena, Deutschland
| | - Sandra Brogden
- Institut für Biometrie, Epidemiologie und Informationsverarbeitung, Stiftung Tierärztliche Hochschule Hannover, Hannover, Deutschland
- WHO Collaborating Centre for Research and Training for Health at the Human-Animal-Environment Interface, Hannover, Deutschland
| | - Andrea T Feßler
- Institut für Mikrobiologie und Tierseuchen, Fachbereich Veterinärmedizin, Freie Universität Berlin, Berlin, Deutschland
- Tiermedizinisches Zentrum für Resistenzforschung (TZR), Fachbereich Veterinärmedizin, Freie Universität Berlin, Berlin, Deutschland
| | - Stefan Hagel
- Institut für Infektionsmedizin und Krankenhaushygiene, Universitätsklinikum Jena, Jena, Deutschland
| | - Heike Kaspar
- Bundesamt für Verbraucherschutz und Lebensmittelsicherheit, Berlin, Deutschland
| | - Robin Köck
- Bereich Hygiene und Umweltmedizin, Universitätsmedizin Essen, Essen, Deutschland
- Institut für Hygiene, Universitätsklinikum Münster, Münster, Deutschland
| | - Lothar Kreienbrock
- Institut für Biometrie, Epidemiologie und Informationsverarbeitung, Stiftung Tierärztliche Hochschule Hannover, Hannover, Deutschland
- WHO Collaborating Centre for Research and Training for Health at the Human-Animal-Environment Interface, Hannover, Deutschland
| | - Henrike Krüger-Haker
- Institut für Mikrobiologie und Tierseuchen, Fachbereich Veterinärmedizin, Freie Universität Berlin, Berlin, Deutschland
- Tiermedizinisches Zentrum für Resistenzforschung (TZR), Fachbereich Veterinärmedizin, Freie Universität Berlin, Berlin, Deutschland
| | - Frederike Maechler
- Institut für Hygiene und Umweltmedizin, Charité - Universitätsmedizin Berlin, Berlin, Deutschland
| | - Ines Noll
- Robert Koch Institut, Berlin, Deutschland
- WHO Collaborating Centre for Antimicrobial Resistance, Consumption and Healthcare-Associated Infections, Berlin, Deutschland
| | - Mathias W Pletz
- Institut für Infektionsmedizin und Krankenhaushygiene, Universitätsklinikum Jena, Jena, Deutschland
| | - Bernd-Alois Tenhagen
- Fachbereich Epidemiologie, Zoonosen und Antibiotikaresistenz, Abteilung Biologische Sicherheit, Bundesinstitut für Risikobewertung BfR, Berlin, Deutschland
| | - Stefan Schwarz
- Institut für Mikrobiologie und Tierseuchen, Fachbereich Veterinärmedizin, Freie Universität Berlin, Berlin, Deutschland
- Tiermedizinisches Zentrum für Resistenzforschung (TZR), Fachbereich Veterinärmedizin, Freie Universität Berlin, Berlin, Deutschland
| | - Birgit Walther
- Robert Koch Institut, Berlin, Deutschland
- Fachgebiet Mikrobiologische Risiken, Abteilung Umwelthygiene, Umweltbundesamt, Berlin, Deutschland
| | | |
Collapse
|
12
|
Pulami D, Kämpfer P, Glaeser SP. High diversity of the emerging pathogen Acinetobacter baumannii and other Acinetobacter spp. in raw manure, biogas plants digestates, and rural and urban wastewater treatment plants with system specific antimicrobial resistance profiles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160182. [PMID: 36395844 DOI: 10.1016/j.scitotenv.2022.160182] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Carbapenem-resistant Acinetobacter baumannii causing immense treatment problems in hospitals. There is still a knowledge gap on the abundance and stability of acquired resistances and the diversity of resistant Acinetobacter in the environment. The aim of the study was to investigate the diversity and antimicrobial resistances of Acinetobacter spp. released from livestock and human wastewater into the environment. Raw and digested manure of small scale on farm biogas plants as well as untreated and treated wastewater and sewage sludge of rural and urban wastewater treatment plants (WWTPs) were studied comparatively. A total of 132 Acinetobacter isolates were phylogenetically identified (16S rRNA gene and rpoB sequence analyses) and 14 different phylotypes were detected. Fiftytwo isolates represented A. baumannii which were cultured from raw and digested manure of different biogas plants, and most stages of the rural WWTP (no hospital wastewater receiving) and the two studied urban WWTPs receiving veterinarian and human hospital wastewater. Multi-locus sequence typing (Pasteur_MLST) identified 23 novel and 12 known STs of A. baumannii. Most novel STs (18/23) were cultured from livestock samples and the rural WWTP. A. baumannii isolates from livestock and the rural WWTP were susceptible to carbapenems, colistin, ciprofloxacin, ceftazidime, and piperacillin. In contrast, A. baumannii isolates from the two urban WWTPs showed clinical linkage with respect to MLST and were multi-drug resistant (MDR). The presence of viable A. baumannii in digested manure and sewage sludge confirmed the survival of the strict aerobic bacteria during anoxic conditions. The study indicated the spread of diverse Acinetobacter from anthropogenic sources into the environment with a strong linkage of clinial associated MDR A. baumannii strains to the inflow of hospital wastewater to WWTPs. A more frequent detection of Acinetobacter in sewage sludge than effluent waters indicated that particle-attachment of Acinetobacter must be considered by the risk assessment of these bacteria.
Collapse
Affiliation(s)
- Dipen Pulami
- Institut for Applied Microbiology, Justus-Liebig-University Giessen, Germany
| | - Peter Kämpfer
- Institut for Applied Microbiology, Justus-Liebig-University Giessen, Germany
| | - Stefanie P Glaeser
- Institut for Applied Microbiology, Justus-Liebig-University Giessen, Germany.
| |
Collapse
|
13
|
Schuster D, Axtmann K, Holstein N, Felder C, Voigt A, Färber H, Ciorba P, Szekat C, Schallenberg A, Böckmann M, Zarfl C, Neidhöfer C, Smalla K, Exner M, Bierbaum G. Antibiotic concentrations in raw hospital wastewater surpass minimal selective and minimum inhibitory concentrations of resistant Acinetobacter baylyi strains. Environ Microbiol 2022; 24:5721-5733. [PMID: 36094736 DOI: 10.1111/1462-2920.16206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/10/2022] [Indexed: 01/12/2023]
Abstract
Antibiotics are essential for modern medicine, they are employed frequently in hospitals and, therefore, present in hospital wastewater. Even in concentrations, that are lower than the minimum inhibitory concentrations (MICs) of susceptible bacteria, antibiotics may exert an influence and select resistant bacteria, if they exceed the MSCs (minimal selective concentrations) of resistant strains. Here, we compare the MSCs of fluorescently labelled Acinetobacter baylyi strains harboring spontaneous resistance mutations or a resistance plasmid with antibiotic concentrations determined in hospital wastewater. Low MSCs in the μg/L range were measured for the quinolone ciprofloxacin (17 μg/L) and for the carbapenem meropenem (30 μg/L). A 24 h continuous analysis of hospital wastewater showed daily fluctuations of the concentrations of these antibiotics with distinctive peaks at 7-8 p.m. and 5-6 a.m. The meropenem concentrations were always above the MSC and MIC values of A. baylyi. In addition, the ciprofloxacin concentrations were in the range of the lowest MSC for about half the time. These results explain the abundance of strains with meropenem and ciprofloxacin resistance in hospital wastewater and drains.
Collapse
Affiliation(s)
- Dominik Schuster
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Katharina Axtmann
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Niklas Holstein
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Carsten Felder
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Alex Voigt
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Harald Färber
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Patrick Ciorba
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Christiane Szekat
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Anna Schallenberg
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Matthias Böckmann
- Environmental Systems Analysis, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Christiane Zarfl
- Environmental Systems Analysis, Eberhard Karls University of Tuebingen, Tuebingen, Germany
| | - Claudio Neidhöfer
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Kornelia Smalla
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Martin Exner
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
14
|
Waśko I, Kozińska A, Kotlarska E, Baraniak A. Clinically Relevant β-Lactam Resistance Genes in Wastewater Treatment Plants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192113829. [PMID: 36360709 PMCID: PMC9657204 DOI: 10.3390/ijerph192113829] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 05/17/2023]
Abstract
Antimicrobial resistance (AMR) is one of the largest global concerns due to its influence in multiple areas, which is consistent with One Health's concept of close interconnections between people, animals, plants, and their shared environments. Antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) circulate constantly in various niches, sediments, water sources, soil, and wastes of the animal and plant sectors, and is linked to human activities. Sewage of different origins gets to the wastewater treatment plants (WWTPs), where ARB and ARG removal efficiency is still insufficient, leading to their transmission to discharge points and further dissemination. Thus, WWTPs are believed to be reservoirs of ARGs and the source of spreading AMR. According to a World Health Organization report, the most critical pathogens for public health include Gram-negative bacteria resistant to third-generation cephalosporins and carbapenems (last-choice drugs), which represent β-lactams, the most widely used antibiotics. Therefore, this paper aimed to present the available research data for ARGs in WWTPs that confer resistance to β-lactam antibiotics, with a particular emphasis on clinically important life-threatening mechanisms of resistance, including extended-spectrum β-lactamases (ESBLs) and carbapenemases (KPC, NDM).
Collapse
Affiliation(s)
- Izabela Waśko
- Department of Biomedical Research, National Medicines Institute, Chelmska 30/34, 00-725 Warsaw, Poland
- Correspondence: ; Tel.: +48-228-410-623
| | - Aleksandra Kozińska
- Department of Biomedical Research, National Medicines Institute, Chelmska 30/34, 00-725 Warsaw, Poland
| | - Ewa Kotlarska
- Genetics and Marine Biotechnology Department, Institute of Oceanology of the Polish Academy of Sciences, Powstancow Warszawy 55, 81-712 Sopot, Poland
| | - Anna Baraniak
- Department of Biomedical Research, National Medicines Institute, Chelmska 30/34, 00-725 Warsaw, Poland
| |
Collapse
|
15
|
Addae-Nuku DS, Kotey FCN, Dayie NTKD, Osei MM, Tette EMA, Debrah P, Donkor ES. Multidrug-Resistant Bacteria in Hospital Wastewater of the Korle Bu Teaching Hospital in Accra, Ghana. ENVIRONMENTAL HEALTH INSIGHTS 2022; 16:11786302221130613. [PMID: 36311334 PMCID: PMC9597020 DOI: 10.1177/11786302221130613] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 09/15/2022] [Indexed: 06/10/2023]
Abstract
BACKGROUND Antimicrobial resistance (AMR) is one of the top 10 public health threats. One approach to tackling the AMR menace could involve expanding the range of AMR surveillance domains to include hospital wastewater (HWW), a domain that has largely been overlooked by researchers. AIM To evaluate the occurrence of multidrug-resistant bacteria in hospital wastewater of the Korle Bu Teaching Hospital (KBTH). METHODOLOGY This was a longitudinal study involving 288 HWW samples consecutively collected across 12 weeks from the pool of wastewater emanating from 2 critical care units of KBTH-The Child Health Unit and the Maternity Unit-on Mondays and Thursdays, each week. The samples were cultured for bacteria, which were identified using the Matrix-Assisted Laser Desorption/Ionization-Time of Flight (MALDI-TOF) technique and subjected to antimicrobial susceptibility testing via the Kirby-Bauer method. RESULTS In total, 294 bacteria of 23 different types, all being Gram-negative, were isolated from the 288 samples. The predominant ones were Escherichia coli (30.6%, n = 90), Klebsiella pneumoniae (11.2%, n = 33), Citrobacter freundii (10.9%, n = 32), Alcaligenes faecalis (5.8%, n = 17), and Pseudomonas mendocina (5.4%, n = 16). The prevalence of multidrug resistance among the isolates was 55.4% (n = 163). Moreover, the prevalence of extended-spectrum beta-lactamase (ESBL) producers was 15.6% (n = 46). E. coli accounted for the most ESBL-producing organisms (28.9%, n = 26). CONCLUSION The wastewater generated by the Maternity and Child Health Units of KBTH harbored a wide range of multidrug resistant bacteria, with a good proportion of these being ESBL producers, and the predominant one being E. coli. The study thus identifies the wastewater of KBTH as an important source of multidrug resistant organisms, and underscores the significance of appropriate treatment of wastewater of the hospital and other clinical, and related settings prior to its discharge.
Collapse
Affiliation(s)
- Daisy S Addae-Nuku
- Department of Medical Microbiology,
University of Ghana Medical School, Accra, Ghana
| | - Fleischer CN Kotey
- Department of Medical Microbiology,
University of Ghana Medical School, Accra, Ghana
- FleRhoLife Research Consult, Teshie,
Accra, Ghana
| | - Nicholas TKD Dayie
- Department of Medical Microbiology,
University of Ghana Medical School, Accra, Ghana
| | - Mary-Magdalene Osei
- Department of Medical Microbiology,
University of Ghana Medical School, Accra, Ghana
- FleRhoLife Research Consult, Teshie,
Accra, Ghana
| | - Edem MA Tette
- Department of Community Health,
University of Ghana Medical School, Accra, Ghana
| | - Philip Debrah
- Department of Pharmaceutics and
Microbiology, School of Pharmacy, College of Health Sciences, University of Ghana,
Legon, Accra, Ghana
| | - Eric S Donkor
- Department of Medical Microbiology,
University of Ghana Medical School, Accra, Ghana
| |
Collapse
|
16
|
Hoffmann M, Kiesewetter K, Hoffmann I, Herbarth O, Lübbert C. Gram-Negative Bacteria With 3MRGN Resistance Phenotype in Hospital Wastewater, Receiving Water Channels, and Sewage Plant Outlets in the Leipzig Metropolitan Area. DEUTSCHES ARZTEBLATT INTERNATIONAL 2022; 119:679-680. [PMID: 36594337 PMCID: PMC9830386 DOI: 10.3238/arztebl.m2022.0278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/09/2022] [Accepted: 07/11/2022] [Indexed: 01/14/2023]
Affiliation(s)
| | | | - Ines Hoffmann
- Department of Microbiology and Hygiene, Medical Care Center Dr. Reising-Ackermann & Colleagues, Leipzig
| | | | - Christoph Lübbert
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine II, Leipzig University Hospital ,Interdisciplinary Center for Infectious Diseases (ZINF), Leipzig University Hospital,Department of Infectious Diseases and Tropical Medicine, St. Georg Hospital gGmbH, Leipzig
| |
Collapse
|
17
|
Sung GH, Kim SH, Park EH, Hwang SN, Kim JD, Kim GR, Kim EY, Jeong J, Kim S, Shin JH. Association of Carbapenemase-Producing Enterobacterales Detected in Stream and Clinical Samples. Front Microbiol 2022; 13:923979. [PMID: 35756058 PMCID: PMC9218686 DOI: 10.3389/fmicb.2022.923979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background The spread of carbapenem-resistant Enterobacterales (CRE) strains has caused treatment failure and is a worldwide threat to public health. However, there are limited reports on the prevalence of carbapenemase-producing Enterobacterales (CPE) in aquatic environments and its association with clinical isolates. This study aimed to investigate the prevalence of CPE in a stream environment and its genetic relationship with clinical isolates in Korea. Methods A total of 4,582 water samples were collected from 94 streams. Multiplex PCR and sequencing were used to detect and identify six carbapenemase genes. Multi-locus sequence typing (MLST) was performed to investigate the genetic relatedness between the environmental strains and clinical isolates. Results A total of 133 CRE strains were isolated from the streams. Klebsiella pneumoniae was the most common CRE (45.9%), followed by Enterobacter cloacae complex (29.3%), Escherichia coli (13.5%), Raoultella ornithinolytica (5.3%), and Citrobacter freundii (2.3%). Ninety (67.7%) isolates carried carbapenemase genes. K. pneumoniae carbapenemase-2 (36.7%) and New Delhi metallo-β-lactamase-5 (32.2%) were the common carbapenemases detected. Sequence type (ST)307 and ST11 K. pneumoniae strains harboring the blaKPC-2 gene were the most prevalent in stream and patient samples. Conclusion CPE was highly prevalent in streams and closely related to the isolates obtained from patients. Therefore, continuous monitoring of stream environments is required to control the spread of carbapenem resistance.
Collapse
Affiliation(s)
- Gyung-Hye Sung
- Busan Institute of Health and Environment, Busan, South Korea
| | - Si Hyun Kim
- Department of Clinical Laboratory Science, Semyung University, Jecheon, South Korea
| | - Eun Hee Park
- Busan Institute of Health and Environment, Busan, South Korea
| | - Suk Nam Hwang
- Ulsan Health and Environment Research Institute, Ulsan, South Korea
| | - Jea-Dong Kim
- Gyeongsangnam-do Provincial Government Health and Environment Institute, Jinju, South Korea
| | - Gyu Ri Kim
- Department of Laboratory Medicine and Paik Institute for Clinical Research, Inje University College of Medicine, Busan, South Korea
| | - Eun-Young Kim
- Department of Laboratory Medicine and Paik Institute for Clinical Research, Inje University College of Medicine, Busan, South Korea
| | - Joseph Jeong
- Department of Laboratory Medicine, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan, South Korea
| | - Sunjoo Kim
- Department of Laboratory Medicine, Gyeongsang National University College of Medicine, Jinju, South Korea
| | - Jeong Hwan Shin
- Department of Laboratory Medicine and Paik Institute for Clinical Research, Inje University College of Medicine, Busan, South Korea
| |
Collapse
|
18
|
Döhla M, Schulte B, Wilbring G, Kümmerer BM, Döhla C, Sib E, Richter E, Ottensmeyer PF, Haag A, Engelhart S, Eis-Hübinger AM, Exner M, Mutters NT, Schmithausen RM, Streeck H. SARS-CoV-2 in Environmental Samples of Quarantined Households. Viruses 2022; 14:1075. [PMID: 35632816 PMCID: PMC9147922 DOI: 10.3390/v14051075] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 02/01/2023] Open
Abstract
The role of environmental transmission of SARS-CoV-2 remains unclear. Thus, the aim of this study was to investigate whether viral contamination of air, wastewater, and surfaces in quarantined households result in a higher risk for exposed persons. For this study, a source population of 21 households under quarantine conditions with at least one person who tested positive for SARS-CoV-2 RNA were randomly selected from a community in North Rhine-Westphalia in March 2020. All individuals living in these households participated in this study and provided throat swabs for analysis. Air and wastewater samples and surface swabs were obtained from each household and analysed using qRT-PCR. Positive swabs were further cultured to analyse for viral infectivity. Out of all the 43 tested adults, 26 (60.47%) tested positive using qRT-PCR. All 15 air samples were qRT-PCR-negative. In total, 10 out of 66 wastewater samples were positive for SARS-CoV-2 (15.15%) and 4 out of 119 surface samples (3.36%). No statistically significant correlation between qRT-PCR-positive environmental samples and the extent of the spread of infection between household members was observed. No infectious virus could be propagated under cell culture conditions. Taken together, our study demonstrates a low likelihood of transmission via surfaces. However, to definitively assess the importance of hygienic behavioural measures in the reduction of SARS-CoV-2 transmission, larger studies should be designed to determine the proportionate contribution of smear vs. droplet transmission.
Collapse
Affiliation(s)
- Manuel Döhla
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, Rübenacher Straße 170, 56072 Koblenz, Germany
| | - Bianca Schulte
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (B.S.); (B.M.K.); (E.R.); (P.F.O.); (A.M.E.-H.)
| | - Gero Wilbring
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Beate Mareike Kümmerer
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (B.S.); (B.M.K.); (E.R.); (P.F.O.); (A.M.E.-H.)
| | - Christin Döhla
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Esther Sib
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Enrico Richter
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (B.S.); (B.M.K.); (E.R.); (P.F.O.); (A.M.E.-H.)
| | - Patrick Frank Ottensmeyer
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (B.S.); (B.M.K.); (E.R.); (P.F.O.); (A.M.E.-H.)
| | - Alexandra Haag
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Steffen Engelhart
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Anna Maria Eis-Hübinger
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (B.S.); (B.M.K.); (E.R.); (P.F.O.); (A.M.E.-H.)
| | - Martin Exner
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Nico Tom Mutters
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Ricarda Maria Schmithausen
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (M.D.); (G.W.); (C.D.); (E.S.); (A.H.); (S.E.); (M.E.); (N.T.M.); (R.M.S.)
| | - Hendrik Streeck
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (B.S.); (B.M.K.); (E.R.); (P.F.O.); (A.M.E.-H.)
| |
Collapse
|
19
|
Döhla M, Schulte B, Wilbring G, Kümmerer BM, Döhla C, Sib E, Richter E, Ottensmeyer PF, Haag A, Engelhart S, Eis-Hübinger AM, Exner M, Mutters NT, Schmithausen RM, Streeck H. SARS-CoV-2 in Environmental Samples of Quarantined Households. Viruses 2022. [PMID: 35632816 DOI: 10.1101/2020.05.28.20114041] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The role of environmental transmission of SARS-CoV-2 remains unclear. Thus, the aim of this study was to investigate whether viral contamination of air, wastewater, and surfaces in quarantined households result in a higher risk for exposed persons. For this study, a source population of 21 households under quarantine conditions with at least one person who tested positive for SARS-CoV-2 RNA were randomly selected from a community in North Rhine-Westphalia in March 2020. All individuals living in these households participated in this study and provided throat swabs for analysis. Air and wastewater samples and surface swabs were obtained from each household and analysed using qRT-PCR. Positive swabs were further cultured to analyse for viral infectivity. Out of all the 43 tested adults, 26 (60.47%) tested positive using qRT-PCR. All 15 air samples were qRT-PCR-negative. In total, 10 out of 66 wastewater samples were positive for SARS-CoV-2 (15.15%) and 4 out of 119 surface samples (3.36%). No statistically significant correlation between qRT-PCR-positive environmental samples and the extent of the spread of infection between household members was observed. No infectious virus could be propagated under cell culture conditions. Taken together, our study demonstrates a low likelihood of transmission via surfaces. However, to definitively assess the importance of hygienic behavioural measures in the reduction of SARS-CoV-2 transmission, larger studies should be designed to determine the proportionate contribution of smear vs. droplet transmission.
Collapse
Affiliation(s)
- Manuel Döhla
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, Rübenacher Straße 170, 56072 Koblenz, Germany
| | - Bianca Schulte
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Gero Wilbring
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Beate Mareike Kümmerer
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Christin Döhla
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Esther Sib
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Enrico Richter
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | | | - Alexandra Haag
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Steffen Engelhart
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Anna Maria Eis-Hübinger
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Martin Exner
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Nico Tom Mutters
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Ricarda Maria Schmithausen
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Hendrik Streeck
- Institute of Virology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
20
|
Treskova M, Kuhlmann A, Freise F, Kreienbrock L, Brogden S. Occurrence of Antimicrobial Resistance in the Environment in Germany, Austria, and Switzerland: A Narrative Review of Existing Evidence. Microorganisms 2022; 10:microorganisms10040728. [PMID: 35456779 PMCID: PMC9027620 DOI: 10.3390/microorganisms10040728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 12/15/2022] Open
Abstract
(1) Background: This study summarizes the current research on antibiotic resistance (AR) in the environment conducted in Austria, Germany, and Switzerland; (2) Methods: A narrative systematic literature review of epidemiological studies based on searches in EMBASE and CAB abstracts (up to 16 June2021) was conducted. Environmental reservoirs included water sources, wastewater, animal husbandry, wildlife, soil, and sediment; (3) Results: Four hundred and four records were screened, and 52 studies were included. Thirteen studies examined aquatic environments, and eleven investigated wastewater. Eight studies investigated both wildlife and animal husbandry. Less evidence was available for sediments, soil, and air. Considerable heterogeneity in research focus, study design, sampling, and measurement of resistance was observed. Resistance to all categories of antimicrobials in the WHO CIA list was identified. Resistance to critically important and highly important substances was reported most frequently; (4) Conclusions: The current research scope presents data-gathering efforts. Usage of a unified protocol for isolate collection, selecting sampling sites, and susceptibility testing is required to provide results that can be compared between the studies and reservoirs. Epidemiological, environmental, and ecological factors should be considered in surveys of the environmental dissemination of AR. Systematic epidemiological studies investigating AR at the interface of human, animal, and environmental health are needed.
Collapse
Affiliation(s)
- Marina Treskova
- Department of Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (M.T.); (F.F.); (L.K.)
- Heidelberg Institute of Global Health, Faculty of Medicine, University Heidelberg, 69120 Heidelberg, Germany
| | - Alexander Kuhlmann
- Faculty of Medicine, Martin Luther University of Halle Wittenberg, 06108 Halle (Saale), Germany;
| | - Fritjof Freise
- Department of Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (M.T.); (F.F.); (L.K.)
| | - Lothar Kreienbrock
- Department of Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (M.T.); (F.F.); (L.K.)
| | - Sandra Brogden
- Department of Biometry, Epidemiology and Information Processing, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (M.T.); (F.F.); (L.K.)
- Correspondence:
| |
Collapse
|
21
|
Savin M, Bierbaum G, Mutters NT, Schmithausen RM, Kreyenschmidt J, García-Meniño I, Schmoger S, Käsbohrer A, Hammerl JA. Genetic Characterization of Carbapenem-Resistant Klebsiella spp. from Municipal and Slaughterhouse Wastewater. Antibiotics (Basel) 2022; 11:antibiotics11040435. [PMID: 35453187 PMCID: PMC9027467 DOI: 10.3390/antibiotics11040435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 12/18/2022] Open
Abstract
Currently, human and veterinary medicine are threatened worldwide by an increasing resistance to carbapenems, particularly present in opportunistic Enterobacterales pathogens (e.g., Klebsiella spp.). However, there is a lack of comprehensive and comparable data on their occurrence in wastewater, as well as on the phenotypic and genotypic characteristics for various countries including Germany. Thus, this study aims to characterize carbapenem-resistant Klebsiella spp. isolated from municipal wastewater treatment plants (mWWTPs) and their receiving water bodies, as well as from wastewater and process waters from poultry and pig slaughterhouses. After isolation using selective media and determination of carbapenem (i.e., ertapenem) resistance using broth microdilution to apply epidemiological breakpoints, the selected isolates (n = 30) were subjected to WGS. The vast majority of the isolates (80.0%) originated from the mWWTPs and their receiving water bodies. In addition to ertapenem, Klebsiella spp. isolates exhibited resistance to meropenem (40.0%) and imipenem (16.7%), as well as to piperacillin-tazobactam (50.0%) and ceftolozan-tazobactam (50.0%). A high diversity of antibiotic-resistance genes (n = 68), in particular those encoding β-lactamases, was revealed. However, with the exception of blaGES-5-like, no acquired carbapenemase-resistance genes were detected. Virulence factors such as siderophores (e.g., enterobactin) and fimbriae type 1 were present in almost all isolates. A wide genetic diversity was indicated by assigning 66.7% of the isolates to 12 different sequence types (STs), including clinically relevant ones (e.g., ST16, ST252, ST219, ST268, ST307, ST789, ST873, and ST2459). Our study provides information on the occurrence of carbapenem-resistant, ESBL-producing Klebsiella spp., which is of clinical importance in wastewater and surface water in Germany. These findings indicate their possible dissemination in the environment and the potential risk of colonization and/or infection of humans, livestock and wildlife associated with exposure to contaminated water sources.
Collapse
Affiliation(s)
- Mykhailo Savin
- Institute for Hygiene and Public Health, University Hospital Bonn, 53127 Bonn, Germany;
- Institute of Animal Sciences, University of Bonn, 53115 Bonn, Germany;
- Correspondence: (M.S.); (J.A.H.)
| | - Gabriele Bierbaum
- Institute for Medical Microbiology, Immunology and Parasitology, Medical Faculty, University of Bonn, 53115 Bonn, Germany;
| | - Nico T. Mutters
- Institute for Hygiene and Public Health, University Hospital Bonn, 53127 Bonn, Germany;
| | - Ricarda Maria Schmithausen
- Department of Hygiene and Environmental Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Judith Kreyenschmidt
- Institute of Animal Sciences, University of Bonn, 53115 Bonn, Germany;
- Department of Fresh Produce Logistics, Hochschule Geisenheim University, 65366 Geisenheim, Germany
| | - Isidro García-Meniño
- Department for Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (I.G.-M.); (S.S.); (A.K.)
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain
| | - Silvia Schmoger
- Department for Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (I.G.-M.); (S.S.); (A.K.)
| | - Annemarie Käsbohrer
- Department for Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (I.G.-M.); (S.S.); (A.K.)
- Unit for Veterinary Public Health and Epidemiology, University of Veterinary Medicine, AT-1210 Vienna, Austria
| | - Jens Andre Hammerl
- Department for Biological Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (I.G.-M.); (S.S.); (A.K.)
- Correspondence: (M.S.); (J.A.H.)
| |
Collapse
|
22
|
Ribeirinho-Soares S, Moreira NFF, Graça C, Pereira MFR, Silva AMT, Nunes OC. Overgrowth control of potentially hazardous bacteria during storage of ozone treated wastewater through natural competition. WATER RESEARCH 2022; 209:117932. [PMID: 34902759 DOI: 10.1016/j.watres.2021.117932] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/10/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Improving the chemical and biological quality of treated wastewater is particularly important in world regions under water stress. In these regions, reutilization of wastewater is seen as an alternative to reduce water demand, particularly for agriculture irrigation. In a reuse scenario, the treated wastewater must have enough quality to avoid chemical and biological contamination of the receiving environment. Ozonation is among the technologies available to efficiently remove organic micropollutants and disinfect secondary effluents, being implemented in full-scale urban wastewater treatment plants worldwide. However, previous studies demonstrated that storage of ozone treated wastewater promoted the overgrowth of potentially harmful bacteria, putting at risk its reutilization, given for instance the possibility of contaminating the food-chain. Therefore, this study was designed to assess the potential beneficial role of inoculation of ozone treated wastewater with a diverse bacterial community during storage, for the control of the overgrowth of potentially hazardous bacteria, through bacterial competition. To achieve this goal, ozone treated wastewater (TWW) was diluted with river water (RW) in the same proportion, and the resulting bacterial community (RW+TWW) was compared to that of undiluted TWW over 7 days storage. As hypothesized, in contrast to TWW, where dominance of Beta- and Gammaproteobacteria, namely Pseudomonas spp. and Acinetobacter spp., was observed upon storage for 7 days, the bacterial communities of the diluted samples (RW+TWW) were diverse, resembling those of RW. Moreover, given the high abundance of antibiotic resistance genes in RW, the concentration of these genes in RW+TWW did not differ from that of the non-ozonated controls (WW, RW and RW+WW) over the storage period. These results highlight the necessity of finding a suitable pristine diverse bacterial community to be used in the future to compete with bacteria surviving ozonation, to prevent reactivation of undesirable bacteria during storage of treated wastewater.
Collapse
Affiliation(s)
- Sara Ribeirinho-Soares
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| | - Nuno F F Moreira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal; Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| | - Cátia Graça
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| | - M Fernando R Pereira
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| | - Adrián M T Silva
- Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal
| | - Olga C Nunes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, Porto 4200-465, Portugal.
| |
Collapse
|
23
|
Kehl K, Schallenberg A, Szekat C, Albert C, Sib E, Exner M, Zacharias N, Schreiber C, Parčina M, Bierbaum G. Dissemination of carbapenem resistant bacteria from hospital wastewater into the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151339. [PMID: 34740643 DOI: 10.1016/j.scitotenv.2021.151339] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Infections with antibiotic resistant pathogens threaten lives and cause substantial costs. For effective interventions, knowledge of the transmission paths of resistant bacteria to humans is essential. In this study, carbapenem resistant bacteria were isolated from the wastewater of a maximum care hospital during a period of two years, starting in the patient rooms and following the sewer system to the effluent of the wastewater treatment plant (WWTP). The bacteria belonged to six different species and 44 different sequence types (STs). The most frequent STs, ST147 K. pneumoniae (blaNDM/blaOXA-48) and ST235 P. aeruginosa (blaVIM) strains, were present at nearly all sampling sites from the hospital to the WWTP effluent. After core genome multi-locus sequence typing (cgMLST), all ST147 K. pneumoniae strains presented a single epidemiological cluster. In contrast, ST235 P. aeruginosa formed five cgMLST clusters and the largest cluster contained the strain from the WWTP effluent, indicating without doubt, a direct dissemination of both high-risk clones into the environment. Thus, there are - at least two - possible transmission pathways to humans, (i) within the hospital by contact with the drains of the sanitary installations and (ii) by recreational or irrigation use of surface waters that have received WWTP effluent. In conclusion, remediation measures must be installed at both ends of the wastewater system, targeting the drains of the hospital as well as at the effluent of the WWTP.
Collapse
Affiliation(s)
- Katja Kehl
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | - Anja Schallenberg
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | - Christiane Szekat
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | - Cathrin Albert
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | - Esther Sib
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | - Martin Exner
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Nicole Zacharias
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Christiane Schreiber
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Marjio Parčina
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Germany.
| |
Collapse
|
24
|
Rocha J, Ferreira C, Mil-Homens D, Busquets A, Fialho AM, Henriques I, Gomila M, Manaia CM. Third generation cephalosporin-resistant Klebsiella pneumoniae thriving in patients and in wastewater: what do they have in common? BMC Genomics 2022; 23:72. [PMID: 35065607 PMCID: PMC8783465 DOI: 10.1186/s12864-021-08279-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/22/2021] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Klebsiella pneumoniae are ubiquitous bacteria and recognized multidrug-resistant opportunistic pathogens that can be released into the environment, mainly through sewage, where they can survive even after wastewater treatment. A major question is if once released into wastewater, the selection of lineages missing clinically-relevant traits may occur. Wastewater (n = 25) and clinical (n = 34) 3rd generation cephalosporin-resistant K. pneumoniae isolates were compared based on phenotypic, genotypic and genomic analyses. RESULTS Clinical and wastewater isolates were indistinguishable based on phenotypic and genotypic characterization. The analysis of whole genome sequences of 22 isolates showed that antibiotic and metal resistance or virulence genes, were associated with mobile genetic elements, mostly transposons, insertion sequences or integrative and conjugative elements. These features were variable among isolates, according to the respective genetic lineage rather than the origin. CONCLUSIONS It is suggested that once acquired, clinically relevant features of K. pneumoniae may be preserved in wastewater, even after treatment. This evidence highlights the high capacity of K. pneumoniae for spreading through wastewater, enhancing the risks of transmission back to humans.
Collapse
Affiliation(s)
- Jaqueline Rocha
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Catarina Ferreira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Dalila Mil-Homens
- iBB-Institute of Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Antonio Busquets
- Microbiologia, Departament de Biologia, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Arsénio M Fialho
- iBB-Institute of Bioengineering and Biosciences and i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Lisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Isabel Henriques
- University of Coimbra, Department of Life Sciences, Faculty of Science and Technology, Coimbra, Portugal
- CESAM, University of Aveiro, Aveiro, Portugal
| | - Margarita Gomila
- Microbiologia, Departament de Biologia, Universitat de les Illes Balears, Palma de Mallorca, Spain
| | - Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal.
| |
Collapse
|
25
|
Savin M, Bierbaum G, Schmithausen RM, Heinemann C, Kreyenschmidt J, Schmoger S, Akbaba I, Käsbohrer A, Hammerl JA. Slaughterhouse wastewater as a reservoir for extended-spectrum β-lactamase (ESBL)-producing, and colistin-resistant Klebsiella spp. and their impact in a "One Health" perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150000. [PMID: 34517324 DOI: 10.1016/j.scitotenv.2021.150000] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 05/28/2023]
Abstract
Klebsiella spp. are ubiquitous bacteria capable of colonizing humans and animals, and sometimes leading to severe infections in both. Due to their high adaptability against environmental/synthetic conditions as well as their potential in aquiring antimicrobial/metal/biocide resistance determinants, Klebsiella spp. are recognized as an emerging threat to public health, worldwide. Currently, scarce information on the impact of livestock for the spread of pathogenic Klebsiella spp. is available. Thus, the phenotypic and genotypic properties of extended-spectrum β-lactamase-producing, and colistin-resistant Klebsiella strains (n = 185) from process- and wastewater of two poultry and pig slaughterhouses as well as their receiving municipal wastewater treatment plants (mWWTPs) were studied to determine the diversity of isolates that might be introduced into the food-production chain or that are released into the environment by surviving the wastewater treatment. Selectively-isolated Klebsiella spp. from slaughterhouses including effluents and receiving waterbodies of mWWTPs were assigned to various lineages, including high-risk clones involved in human outbreaks, and exhibited highly heterogeneous antibiotic-resistance patterns. While isolates originating from poultry slaughterhouses showed the highest rate of colistin resistance (32.4%, 23/71), carbapenem-resistant Klebsiella spp. were only detected in mWWTP samples (n = 76). The highest diversity of resistance genes (n = 77) was detected in Klebsiella spp. from mWWTPs, followed by isolates from pig (n = 56) and poultry slaughterhouses (n = 52). Interestingly, no carbapenemase-encoding genes were detected and mobile colistin resistance genes were only obeserved in isolates from poultry and pig slaughterhouses. Our study provides in-depth information into the clonality of livestock-associated Klebsiella spp. and their determinants involved in antimicrobial resistance and virulence development. On the basis of their pathogenic potential and clinical importance there is a potential risk of colonization and/or infection of wildlife, livestock and humans exposed to contaminated food and/or surface waters.
Collapse
Affiliation(s)
- Mykhailo Savin
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Germany; Institute of Animal Sciences, University of Bonn, Bonn, Germany
| | - Gabriele Bierbaum
- Institute for Medical Microbiology, Immunology and Parasitology, Medical Faculty, University of Bonn, Bonn, Germany
| | | | | | - Judith Kreyenschmidt
- Institute of Animal Sciences, University of Bonn, Bonn, Germany; Hochschule Geisenheim University, Department of Fresh Produce Logistics, Geisenheim, Germany
| | - Silvia Schmoger
- Department for Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Inna Akbaba
- Department for Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Annemarie Käsbohrer
- Department for Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany; Unit for Veterinary Public Health and Epidemiology, University of Veterinary Medicine, AT-1210 Vienna, Austria
| | - Jens Andre Hammerl
- Department for Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany.
| |
Collapse
|
26
|
Hassoun-Kheir N, Stabholz Y, Kreft JU, de la Cruz R, Dechesne A, Smets BF, Romalde JL, Lema A, Balboa S, García-Riestra C, Torres-Sangiao E, Neuberger A, Graham D, Quintela-Baluja M, Stekel DJ, Graham J, Pruden A, Nesme J, Sørensen SJ, Hough R, Paul M. EMBRACE-WATERS statement: Recommendations for reporting of studies on antimicrobial resistance in wastewater and related aquatic environments. One Health 2021; 13:100339. [PMID: 34746357 PMCID: PMC8554267 DOI: 10.1016/j.onehlt.2021.100339] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 10/17/2021] [Accepted: 10/17/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND A One Health approach requires integrative research to elucidate antimicrobial resistance (AMR) in the environment and the risks it poses to human health. Research on this topic involves experts from diverse backgrounds and professions. Shortcomings exist in terms of consistent, complete, and transparent reporting in many environmental studies. Standardized reporting will improve the quality of scientific papers, enable meta-analyses and enhance the communication among different experts. In this study, we aimed to generate a consensus of reporting standards for AMR research in wastewater and related aquatic environments. METHODS Based on a risk of bias assessment of the literature in a systematic review, we proposed a set of study quality indicators. We then used a multistep modified Delphi consensus to develop the EMBRACE-WATERS statement (rEporting antiMicroBial ResistAnCE in WATERS), a checklist of recommendations for reporting in studies of AMR in wastewater and related aquatic environments. FINDINGS Consensus was achieved among a multidisciplinary panel of twenty-one experts in three steps. The developed EMBRACE-WATERS statement incorporates 21 items. Each item contains essential elements of high-quality reporting and is followed by an explanation of their rationale and a reporting-example. The EMBRACE-WATERS statement is primarily intended to be used by investigators to ensure transparent and comprehensive reporting of their studies. It can also guide peer-reviewers and editors in evaluation of manuscripts on AMR in the aquatic environment. This statement is not intended to be used to guide investigators on the methodology of their research. INTERPRETATION We are hopeful that this statement will improve the reporting quality of future studies of AMR in wastewater and related aquatic environments. Its uptake would generate a common language to be used among researchers from different disciplines, thus advancing the One Health approach towards understanding AMR spread across aquatic environments. Similar initiatives are needed in other areas of One Health research.
Collapse
Affiliation(s)
- Nasreen Hassoun-Kheir
- Infectious Diseases Institute, Rambam Health Care Campus, HaAliya HaShniya St 8, Haifa 3109601, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Efron St 1, Haifa 3109601, Israel
| | - Yoav Stabholz
- Infectious Diseases Institute, Rambam Health Care Campus, HaAliya HaShniya St 8, Haifa 3109601, Israel
| | - Jan-Ulrich Kreft
- School of Biosciences, Institute of Microbiology and Infection (IMI), Centre for Computational Biology (CCB), University of Birmingham, Birmingham, UK
| | - Roberto de la Cruz
- School of Biosciences, Institute of Microbiology and Infection (IMI), Centre for Computational Biology (CCB), University of Birmingham, Birmingham, UK
| | - Arnaud Dechesne
- Technical University of Denmark, Department of Environmental Engineering, bygning 115, Bygningstorvet, 2800 Kongens Lyngby, Denmark
| | - Barth F. Smets
- Technical University of Denmark, Department of Environmental Engineering, bygning 115, Bygningstorvet, 2800 Kongens Lyngby, Denmark
| | - Jesús L. Romalde
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
- CRETUS, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Alberto Lema
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Sabela Balboa
- CRETUS, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Carlos García-Riestra
- Department of Microbiology and Parasitology, University Hospital Complex of Santiago (CHUS), Spain
| | - Eva Torres-Sangiao
- Escherichia coli Group, Research Foundation Institute (FIDIS), University Hospital Complex (CHUS), Santiago de Compostela, ES, Spain
| | - Ami Neuberger
- Infectious Diseases Institute, Rambam Health Care Campus, HaAliya HaShniya St 8, Haifa 3109601, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Efron St 1, Haifa 3109601, Israel
| | - David Graham
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| | | | - Dov J. Stekel
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, College Road, Loughborough LE12 5RD, UK
| | - Jay Graham
- University of California, Berkeley School of Public Health, Berkeley, CA, USA
| | - Amy Pruden
- The Charles Edward Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Joseph Nesme
- Section of Microbiology, Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Søren Johannes Sørensen
- Section of Microbiology, Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Rupert Hough
- Information and Computational Sciences, The James Hutton Institute, Aberdeen AB15 8QH, Scotland, UK
| | - Mical Paul
- Infectious Diseases Institute, Rambam Health Care Campus, HaAliya HaShniya St 8, Haifa 3109601, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Efron St 1, Haifa 3109601, Israel
| |
Collapse
|
27
|
Stachurová T, Piková H, Bartas M, Semerád J, Svobodová K, Malachová K. Beta-lactam resistance development during the treatment processes of municipal wastewater treatment plants. CHEMOSPHERE 2021; 280:130749. [PMID: 33971421 DOI: 10.1016/j.chemosphere.2021.130749] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 04/05/2021] [Accepted: 04/29/2021] [Indexed: 05/29/2023]
Abstract
This work monitored the effect of a municipal and a village wastewater treatment plant (WWTP) technology on the fate of beta-lactam resistance genes in bacterial populations in different phases of the wastewater treatment process. In case of the municipal WWTP1, the bacteria possessing a high ampicillin resistance (minimal inhibitory concentration (MIC) values of 20 mg/mL) accumulated in the sedimentation tank, which was accompanied with a higher concentration of ampicillin in the wastewater samples (28.09 ng/L) and an increase in the relative abundance of the blaTEM gene in the bacterial population. However, an opposite trend was revealed with the blaNDM-1 gene, making the sedimentation processes of WWTP1 crucial only for the accumulation of the blaTEM gene. Similarly, the comparison with the WWTP2 showed that the accumulation of the ampicillin resistance in bacterial population probably depended on the WWTP technology and wastewater composition. Out of the four tested resistance genes (blaTEM, blaKPC, blaNDM-1, and blaOXA-48), blaTEM and blaNDM-1 genes were the only two detected in this study. According to NGS analysis of bacterial 16 S rRNA gene, Gammaproteobacteria dominated the ampicillin-resistant bacteria of the WWTP sedimentation tanks. Their relative abundance in the bacterial population also increased during the sedimentation processes in WWTP1. It could indicate the role of the bacterial taxon in ampicillin resistance accumulation in this WWTP and show that only 9.29% of the original bacterial population from the nitrification tank is involved in the documented shifts in beta-lactam resistance of the bacterial population.
Collapse
Affiliation(s)
- Tereza Stachurová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, CZ-710 00, Ostrava, Czech Republic.
| | - Hana Piková
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, CZ-710 00, Ostrava, Czech Republic
| | - Martin Bartas
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, CZ-710 00, Ostrava, Czech Republic
| | - Jaroslav Semerád
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague, Czech Republic
| | - Kateřina Svobodová
- Institute of Medical Biochemistry and Laboratory Diagnostics, Clinical Microbiology and ATB Center, General University Hospital in Prague, U Nemocnice 2, CZ-128 08, Prague, Czech Republic
| | - Kateřina Malachová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Chittussiho 10, CZ-710 00, Ostrava, Czech Republic
| |
Collapse
|
28
|
Evaluation of Antibiotic Resistance in Bacterial Strains Isolated from Sewage of Slaughterhouses Located in Sicily (Italy). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189611. [PMID: 34574535 PMCID: PMC8467622 DOI: 10.3390/ijerph18189611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/17/2022]
Abstract
Antimicrobial resistance is presently one of the most public health critical concerns. The frequent and often incorrect use of antibiotics in animal husbandry has led to the spread of antimicrobial resistance in this setting. Wastewater from slaughterhouses can be contaminated with multidrug-resistant bacteria, representing a possible cross-contamination route. We evaluated the presence of antibiotic-resistant bacteria in wastewater samples from slaughterhouses located in an Italian region. Specifically, 18 slaughterhouses were included in the study. Of the tested samples, 40 bacterial strains were chosen, identified, and tested for antibiotic susceptibility. Pseudomonas spp., Proteus spp., Enterobacter spp., Aeromonas spp., and Citrobacter spp. were the most detected genera. The most resistant strains were on average those belonging to Enterobacter spp. The highest resistance rate was recorded for macrolides. Among β-lactams, penicillins and cephalosporins were by far the molecules towards which the highest resistance was detected. A very interesting finding is the difference found in strains detected in wastewater from poultry slaughterhouses, in which higher levels for almost all the considered drugs were detected compared to those from ungulates slaughterhouses. Our results indicate wastewater from slaughterhouses as a potential vehicle of resistant bacteria and highlight the importance of correct management of these kinds of waters.
Collapse
|
29
|
Schmiege D, Zacharias N, Sib E, Falkenberg T, Moebus S, Evers M, Kistemann T. Prevalence of multidrug-resistant and extended-spectrum beta-lactamase-producing Escherichia coli in urban community wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147269. [PMID: 33932656 DOI: 10.1016/j.scitotenv.2021.147269] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 05/28/2023]
Abstract
Antibiotic resistance (ABR) and the spread of multidrug-resistant and extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli via wastewater to environmental compartments are of rapidly growing global health concern. Health care facilities, industries and slaughterhouses discharge high loads of ABR bacteria with their wastewater. However, the general community is often the biggest indirect discharger. Yet, research focusing explicitly on this important diffuse source is rather scarce raising questions about variations in the occurrence of ESBL-producing E. coli in wastewater from different communities and over time. Between April 2019 and March 2020, wastewater from three socio-spatially different districts in the Ruhr Metropolis, Germany, and the receiving wastewater treatment plant was sampled monthly and analysed for the occurrence of ESBL-producing E. coli via culture-based methods. Isolates were validated with matrix assisted laser desorption ionization time of flight mass spectrometry and antibiotic resistance profiles were analysed via microdilution. Results were interpreted using the European Committee on Antimicrobial Susceptibility Testing criteria. The German Commission for Hospital Hygiene and Infection Prevention criteria were used for multidrug-resistance categorization. Phenotypic ESBL-producing E. coli could be isolated from every wastewater sample demonstrating that the general community is an important indirect discharger. The socio-spatially disadvantaged area displayed higher absolute loads of ESBL-producing E. coli compared to the other two areas, as well as higher adjusted loads for domestic discharge and inhabitants, particularly during winter, indicating a higher ABR burden. Thirty-two isolates (28.6%) were characterized as multidrug-resistant Gram-negative bacteria (3MRGN). Resistance profiles varied only for those antibiotics, which can be administered in outpatient care. Resistance levels tended to be around 10% lower in the socio-spatially advantaged area. This study shows that spatial and seasonal influences regarding the occurrence of ESBL-producing E. coli in wastewater from socio-spatially different communities are identifiable.
Collapse
Affiliation(s)
- Dennis Schmiege
- Department of Geography, University of Bonn, Meckenheimer Allee 166, 53115 Bonn, Germany; Institute for Hygiene and Public Health, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; Center for Development Research, University of Bonn, Genscherallee 3, 53113 Bonn, Germany; Institute for Urban Public Health, Essen University Hospital, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany.
| | - Nicole Zacharias
- Institute for Hygiene and Public Health, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| | - Esther Sib
- Institute for Hygiene and Public Health, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| | - Timo Falkenberg
- Institute for Hygiene and Public Health, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; Center for Development Research, University of Bonn, Genscherallee 3, 53113 Bonn, Germany.
| | - Susanne Moebus
- Institute for Urban Public Health, Essen University Hospital, University of Duisburg-Essen, Hufelandstraße 55, 45147 Essen, Germany.
| | - Mariele Evers
- Department of Geography, University of Bonn, Meckenheimer Allee 166, 53115 Bonn, Germany.
| | - Thomas Kistemann
- Department of Geography, University of Bonn, Meckenheimer Allee 166, 53115 Bonn, Germany; Institute for Hygiene and Public Health, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; Center for Development Research, University of Bonn, Genscherallee 3, 53113 Bonn, Germany.
| |
Collapse
|
30
|
Antibiotic-resistant bacteria, antibiotic resistance genes, and antibiotic residues in wastewater from a poultry slaughterhouse after conventional and advanced treatments. Sci Rep 2021; 11:16622. [PMID: 34404868 PMCID: PMC8371126 DOI: 10.1038/s41598-021-96169-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Slaughterhouse wastewater is considered a reservoir for antibiotic-resistant bacteria and antibiotic residues, which are not sufficiently removed by conventional treatment processes. This study focuses on the occurrence of ESKAPE bacteria (Enterococcus spp., S. aureus, K. pneumoniae, A. baumannii, P. aeruginosa, Enterobacter spp.), ESBL (extended-spectrum β-lactamase)-producing E. coli, antibiotic resistance genes (ARGs) and antibiotic residues in wastewater from a poultry slaughterhouse. The efficacy of conventional and advanced treatments (i.e., ozonation) of the in-house wastewater treatment plant regarding their removal was also evaluated. Target culturable bacteria were detected only in the influent and effluent after conventional treatment. High abundances of genes (e.g., blaTEM, blaCTX-M-15, blaCTX-M-32, blaOXA-48, blaCMY and mcr-1) of up to 1.48 × 106 copies/100 mL were detected in raw influent. All of them were already significantly reduced by 1–4.2 log units after conventional treatment. Following ozonation, mcr-1 and blaCTX-M-32 were further reduced below the limit of detection. Antibiotic residues were detected in 55.6% (n = 10/18) of the wastewater samples. Despite the significant reduction through conventional and advanced treatments, effluents still exhibited high concentrations of some ARGs (e.g., sul1, ermB and blaOXA-48), ranging from 1.75 × 102 to 3.44 × 103 copies/100 mL. Thus, a combination of oxidative, adsorptive and membrane-based technologies should be considered.
Collapse
|
31
|
Hoorzook KB, Pieterse A, Heine L, Barnard TG, van Rensburg NJ. Soul of the Jukskei River: The Extent of Bacterial Contamination in the Jukskei River in Gauteng Province, South Africa. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:8537. [PMID: 34444286 PMCID: PMC8392637 DOI: 10.3390/ijerph18168537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/18/2023]
Abstract
River water quality is an important health issue as the water is utilised for drinking, domestic and agricultural use in developing countries. This study aimed to investigate the effect water from a major city has on the water quality of the Jukskei River that daylights in Johannesburg, South Africa. The river water samples were analysed for physio-chemical properties, microbiology, antibiotic resistance of bacterial isolates, genetic markers, and potentially toxic metals. Data analysis revealed increased electrical conductivity, total dissolved solids, and turbidity since 2010. Total Coliform and Escherichia coli detected were above the South African water quality guidelines for domestic, recreational, and irrigation purposes. Additionally, sodium, zinc, nickel, lithium, and lead exceeded the guidelines in domestic, recreational, and irrigation water. Pathogenic strains of E. coli (aEPEC, EHEC, EIEC, and EAEC) were isolated from the water. Various other potentially pathogenic organisms that have been implicated as causes of gastro-intestinal, and a wide range of other diseases, were also detected and demonstrated multiple levels of resistance to antibiotics tested. The results show that the river water is a potential health threat to downstream users. These results will feed into the environmental management action plan for Water for the Future (NGO group).
Collapse
Affiliation(s)
- Kousar Banu Hoorzook
- Process Energy Environment Technology Station (PEETS), Faculty of Engineering and Built Environment, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa;
- Water and Health Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa; (A.P.); (L.H.); (T.G.B.)
| | - Anton Pieterse
- Water and Health Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa; (A.P.); (L.H.); (T.G.B.)
| | - Lee Heine
- Water and Health Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa; (A.P.); (L.H.); (T.G.B.)
| | - Tobias George Barnard
- Water and Health Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa; (A.P.); (L.H.); (T.G.B.)
| | - Nickey Janse van Rensburg
- Process Energy Environment Technology Station (PEETS), Faculty of Engineering and Built Environment, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa;
| |
Collapse
|
32
|
Diversity of Multidrug-Resistant Bacteria in an Urbanized River: A Case Study of the Potential Risks from Combined Sewage Overflows. WATER 2021. [DOI: 10.3390/w13152122] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Wastewater contamination and urbanization contribute to the spread of antibiotic resistance in aquatic environments. This is a particular concern in areas receiving chronic pollution of untreated waste via combined sewer overflow (CSO) events. The goal of this study was to expand knowledge of CSO impacts, with a specific focus on multidrug resistance. We sampled a CSO-impacted segment of the James River (Virginia, USA) during both clear weather and an active overflow event and compared it to an unimpacted upstream site. Bacteria resistant to ampicillin, streptomycin, and tetracycline were isolated from all samples. Ampicillin resistance was particularly abundant, especially during the CSO event, so these isolates were studied further using disk susceptibility tests to assess multidrug resistance. During a CSO overflow event, 82% of these isolates were resistant to five or more antibiotics, and 44% were resistant to seven or more. The latter statistic contrasts starkly with the upstream reference site, where only 4% of isolates displayed resistance to more than seven antibiotics. DNA sequencing (16S rRNA gene) revealed that ~35% of our isolates were opportunistic pathogens, comprised primarily of the genera Stenotrophomonas, Pseudomonas, and Chryseobacterium. Together, these results demonstrate that CSOs can be a significant source of viable clinically-relevant bacteria to the natural environment and that multidrug resistance is an important understudied component of the environmental spread of antibiotic resistance.
Collapse
|
33
|
Cherak Z, Loucif L, Moussi A, Bendjama E, Benbouza A, Rolain JM. Emergence of Metallo-β-Lactamases and OXA-48 Carbapenemase Producing Gram-Negative Bacteria in Hospital Wastewater in Algeria: A Potential Dissemination Pathway Into the Environment. Microb Drug Resist 2021; 28:23-30. [PMID: 34314638 DOI: 10.1089/mdr.2020.0617] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Antibiotic-resistant bacteria can leave hospitals and therefore contaminate the environment and, most likely, humans and animals, through different routes, among which wastewater discharge is of great importance. This study aims to assess the possible role of hospital sewage as reservoir and dissemination pathway of carbapenem-resistant Gram-negative bacilli (GNB). Carbapenem-resistant GNB were selectively isolated from wastewater collected from a public hospital in Batna, Algeria. Species identification was carried out using matrix-assisted laser desorption and ionization time-of-flight mass spectrometry, and antibiotic susceptibility was evaluated by the disc diffusion method. β-Lactamase production was investigated phenotypically using the double-disk synergy assay and the modified CarbaNP test, then the molecular mechanisms of β-lactam-resistance were studied by PCR and sequencing. Ten Enterobacteriaceae and 14 glucose-nonfermenting GNB isolates were obtained. All Enterobacteriaceae isolates were positive for OXA-48 and TEM-1D β-lactamases, where seven of them coproduced an extended-spectrum β-lactamase. VIM-2 carbapenemase was detected in six glucose-nonfermenting GNB isolates. However, three Pseudomonas aeruginosa, one Comamonas jiangduensis and one Acinetobacter baumannii isolates were positive for VIM-4 variant. In addition, NDM-1 enzyme was detected in four A. baumannii isolates. Our findings highlight the potential impact of hospital wastewater in the spread of drug resistance mechanisms outside of hospitals.
Collapse
Affiliation(s)
- Zineb Cherak
- Laboratoire de Génétique, Biotechnologie et Valorisation des Bio-ressources (GBVB), Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie, Université Mohamed Khider, Biskra, Algérie
| | - Lotfi Loucif
- Laboratoire de Biotechnologie des Molécules Bioactives et de la Physiopathologie Cellulaire (LBMBPC), Faculté des Sciences de la Nature et de la Vie, Université de Batna 2, Batna, Algérie
| | - Abdelhamid Moussi
- Laboratoire de Génétique, Biotechnologie et Valorisation des Bio-ressources (GBVB), Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie, Université Mohamed Khider, Biskra, Algérie
| | - Esma Bendjama
- Laboratoire de Biotechnologie des Molécules Bioactives et de la Physiopathologie Cellulaire (LBMBPC), Faculté des Sciences de la Nature et de la Vie, Université de Batna 2, Batna, Algérie
| | - Amel Benbouza
- Faculté de Médecine, Université de Batna 2, Batna, Algeria
| | - Jean-Marc Rolain
- Aix Marseille Univ, IRD, MEPHI, Faculté de Médecine et de Pharmacie, Marseille, France.,IHU Méditerranée Infection, Marseille, France.,Assistance Publique des Hôpitaux de Marseille, Marseille, France
| |
Collapse
|
34
|
Zacharias N, Löckener I, Essert SM, Sib E, Bierbaum G, Kistemann T, Schreiber C. Antibiotic-Resistant Bacteria in Clams-A Study on Mussels in the River Rhine. Antibiotics (Basel) 2021; 10:antibiotics10050571. [PMID: 34066054 PMCID: PMC8150577 DOI: 10.3390/antibiotics10050571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/08/2021] [Indexed: 11/30/2022] Open
Abstract
Bacterial infections have been treated effectively by antibiotics since the discovery of penicillin in 1928. A worldwide increase in the use of antibiotics led to the emergence of antibiotic resistant strains in almost all bacterial pathogens, which complicates the treatment of infectious diseases. Antibiotic-resistant bacteria play an important role in increasing the risk associated with the usage of surface waters (e.g., irrigation, recreation) and the spread of the resistance genes. Many studies show that important pathogenic antibiotic-resistant bacteria can enter the environment by the discharge of sewage treatment plants and combined sewage overflow events. Mussels have successfully been used as bio-indicators of heavy metals, chemicals and parasites; they may also be efficient bio-indicators for viruses and bacteria. In this study an influence of the discharge of a sewage treatment plant could be shown in regard to the presence of E. coli in higher concentrations in the mussels downstream the treatment plant. Antibiotic-resistant bacteria, resistant against one or two classes of antibiotics and relevance for human health could be detected in the mussels at different sampling sites of the river Rhine. No multidrug-resistant bacteria could be isolated from the mussels, although they were found in samples of the surrounding water body.
Collapse
Affiliation(s)
- Nicole Zacharias
- Institute for Hygiene and Public Health, University Hospital Bonn, Medical Faculty University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (S.M.E.); (E.S.); (T.K.); (C.S.)
- Correspondence: ; Tel.: +49-(0)228-287-19874
| | - Iris Löckener
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, Meckenheimer Allee 168, 53115 Bonn, Germany;
| | - Sarah M. Essert
- Institute for Hygiene and Public Health, University Hospital Bonn, Medical Faculty University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (S.M.E.); (E.S.); (T.K.); (C.S.)
| | - Esther Sib
- Institute for Hygiene and Public Health, University Hospital Bonn, Medical Faculty University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (S.M.E.); (E.S.); (T.K.); (C.S.)
| | - Gabriele Bierbaum
- Institute of Immunology, Medical Microbiology and Parasitology, University Hospital Bonn, Medical Faculty University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany;
| | - Thomas Kistemann
- Institute for Hygiene and Public Health, University Hospital Bonn, Medical Faculty University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (S.M.E.); (E.S.); (T.K.); (C.S.)
- Department of Geography, University of Bonn, Meckenheimer Allee 166, 53115 Bonn, Germany
| | - Christiane Schreiber
- Institute for Hygiene and Public Health, University Hospital Bonn, Medical Faculty University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (S.M.E.); (E.S.); (T.K.); (C.S.)
| |
Collapse
|
35
|
Cherak Z, Loucif L, Moussi A, Rolain JM. Carbapenemase-producing Gram-negative bacteria in aquatic environments: a review. J Glob Antimicrob Resist 2021; 25:287-309. [PMID: 33895415 DOI: 10.1016/j.jgar.2021.03.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/04/2021] [Accepted: 03/20/2021] [Indexed: 01/05/2023] Open
Abstract
Antibiotic resistance is one of the greatest public-health challenges worldwide, especially with regard to Gram-negative bacteria (GNB). Carbapenems are the β-lactam antibiotics of choice with the broadest spectrum of activity and, in many cases, are the last-resort treatment for several bacterial infections. Carbapenemase-encoding genes, mainly carried by mobile genetic elements, are the main mechanism of resistance against carbapenems in GNB. These enzymes exhibit a versatile hydrolytic capacity and confer resistance to most β-lactam antibiotics. After being considered a clinical issue, increasing attention is being giving to the dissemination of such resistance mechanisms in the environment and especially through water. Aquatic environments are among the most significant microbial habitats on our planet, known as a favourable medium for antibiotic gene transfer, and they play a crucial role in the huge spread of drug resistance in the environment and the community. In this review, we present current knowledge regarding the spread of carbapenemase-producing isolates in different aquatic environments, which may help the implementation of control and prevention strategies against the spread of such dangerous resistant agents in the environment.
Collapse
Affiliation(s)
- Zineb Cherak
- Laboratoire de Génétique, Biotechnologie et Valorisation des Bio-ressources (GBVB), Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie, Université Mohamed Khider, Biskra, Algeria
| | - Lotfi Loucif
- Laboratoire de Biotechnologie des Molécules Bioactives et de la Physiopathologie Cellulaire (LBMBPC), Département de Microbiologie et de Biochimie, Faculté des Sciences de la Nature et de la Vie, Université de Batna 2, Batna, Algeria.
| | - Abdelhamid Moussi
- Laboratoire de Génétique, Biotechnologie et Valorisation des Bio-ressources (GBVB), Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie, Université Mohamed Khider, Biskra, Algeria
| | - Jean-Marc Rolain
- Aix-Marseille Université, IRD, MEPHI, Faculté de Médecine et de Pharmacie, Marseille, France; IHU Méditerranée Infection, Marseille, France; and Assistance Publique des Hôpitaux de Marseille, Marseille, France
| |
Collapse
|
36
|
Wastewaters, with or without Hospital Contribution, Harbour MDR, Carbapenemase-Producing, but Not Hypervirulent Klebsiella pneumoniae. Antibiotics (Basel) 2021; 10:antibiotics10040361. [PMID: 33805405 PMCID: PMC8065489 DOI: 10.3390/antibiotics10040361] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
Carbapenemase-producing Klebsiella pneumoniae (CPKP) isolated from influent (I) and effluent (E) of two wastewater treatment plants, with (S1) or without (S2) hospital contribution, were investigated. The strains belonged to the Kp1 phylogroup, their highest frequency being observed in S1, followed by S2. The phenotypic and genotypic hypervirulence tests were negative for all the strains tested. At least one carbapenemase gene (CRG), belonging to the blaKPC, blaOXA-48, blaNDM and blaVIM families, was observed in 63% of CPKP, and more than half co-harboured two to four CRGs, in different combinations. Only five CRG variants were observed, regardless of wastewater type: blaKPC-2, blaNDM-1, blaNDM-6, blaVIM-2, and blaOXA-48. Sequence types ST258, ST101 and ST744 were common for both S1 and S2, while ST147, ST525 and ST2502 were found only in S1 and ST418 only in S2. The strains tested were multi-drug resistant (MDR), all being resistant to beta-lactams, cephalosporins, carbapenems, monobactams and fluoroquinolones, followed by various resistance profiles to aminoglycosides, trimethoprim-sulphamethoxazole, tigecycline, chloramphenicol and tetracycline. After principal component analysis, the isolates in S1 and S2 groups did not cluster independently, confirming that the antibiotic susceptibility patterns and gene-type profiles were both similar in the K. pneumoniae investigated, regardless of hospital contribution to the wastewater type.
Collapse
|
37
|
Ecke A, Schneider RJ. Pitfalls in the Immunochemical Determination of β-Lactam Antibiotics in Water. Antibiotics (Basel) 2021; 10:antibiotics10030298. [PMID: 33809371 PMCID: PMC8001000 DOI: 10.3390/antibiotics10030298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/09/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022] Open
Abstract
Contamination of waters with pharmaceuticals is an alarming problem as it may support the evolution of antimicrobial resistance. Therefore, fast and cost-effective analytical methods for potential on-site analysis are desired in order to control the water quality and assure the safety of its use as a source of drinking water. Antibody-based methods, such as the enzyme-linked immunosorbent assay (ELISA), can be helpful in this regard but can also have certain pitfalls in store, depending on the analyte. As shown here for the class of β-lactam antibiotics, hydrolysis of the β-lactam ring is a key factor in the immunochemical analysis as it influences antibody recognition. With the antibody used in this study, the limit of detection (LOD) in the immunoassay could be significantly reduced by hydrolysis for the five tested penicillins, with the lowest LOD for carbenicillin (0.2 nmol/L) and the greatest impact on penicillins G and V (reduction by 85%). In addition to enhanced quantification, our strategy also provides access to information about the degree of hydrolysis in water samples as shown for the most abundant penicillin amoxicillin.
Collapse
Affiliation(s)
- Alexander Ecke
- BAM Federal Institute for Materials Research and Testing, 12205 Berlin, Germany;
- Department of Chemistry, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Rudolf J. Schneider
- BAM Federal Institute for Materials Research and Testing, 12205 Berlin, Germany;
- Faculty III Process Sciences, Technische Universität Berlin, 10623 Berlin, Germany
- Correspondence: ; Tel.: +49-30-8104-1151
| |
Collapse
|
38
|
Pulami D, Schauss T, Eisenberg T, Wilharm G, Blom J, Goesmann A, Kämpfer P, Glaeser SP. Acinetobacter baumannii in manure and anaerobic digestates of German biogas plants. FEMS Microbiol Ecol 2021; 96:5896450. [PMID: 32832994 DOI: 10.1093/femsec/fiaa176] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 08/20/2020] [Indexed: 12/19/2022] Open
Abstract
Studies considering environmental multidrug-resistant Acinetobacter spp. are scarce. The application of manure on agricultural fields is one source of multidrug-resistant bacteria from livestock into the environment. Here, Acinetobacter spp. were quantified by quantitative polymerase chain reaction in manure applied to biogas plants and in the output of the anaerobic digestion, and Acinetobacter spp. isolated from those samples were comprehensively characterized. The concentration of Acinetobacter 16S ribosomal ribonucleic acid (rRNA) gene copies per g fresh weight was in range of 106-108 in manure and decreased (partially significantly) to a still high concentration (105-106) in digestates. 16S rRNA, gyrB-rpoB and blaOXA51-like gene sequencing identified 17 different Acinetobacter spp., including six A. baumannii strains. Multilocus sequence typing showed no close relation of the six strains with globally relevant clonal complexes; however, they represented five novel sequence types. Comparative genomics and physiological tests gave an explanation how Acinetobacter could survive the anaerobic biogas process and indicated copper resistance and the presence of intrinsic beta-lactamases, efflux-pump and virulence genes. However, the A. baumannii strains lacked acquired resistance against carbapenems, colistin and quinolones. This study provided a detailed characterization of Acinetobacter spp. including A. baumannii released via manure through mesophilic or thermophilic biogas plants into the environment.
Collapse
Affiliation(s)
- Dipen Pulami
- Institute of Applied Microbiology, Justus Liebig University Giessen, D-35392 Giessen, Germany
| | - Thorsten Schauss
- Institute of Applied Microbiology, Justus Liebig University Giessen, D-35392 Giessen, Germany
| | - Tobias Eisenberg
- Department of Veterinary Medicine, Hessian State Laboratory (LHL), D-35392 Giessen, Germany; Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig-University Giessen, D-35392, Giessen, Germany
| | - Gottfried Wilharm
- Project Group P2, Robert Koch Institute, Wernigerode Branch, D-38855 Wernigerode, Germany
| | - Jochen Blom
- Institute for Bioinformatics and Systems Biology, D-35392 Giessen, Germany
| | - Alexander Goesmann
- Institute for Bioinformatics and Systems Biology, D-35392 Giessen, Germany
| | - Peter Kämpfer
- Institute of Applied Microbiology, Justus Liebig University Giessen, D-35392 Giessen, Germany
| | - Stefanie P Glaeser
- Institute of Applied Microbiology, Justus Liebig University Giessen, D-35392 Giessen, Germany
| |
Collapse
|
39
|
Schreiber C, Zacharias N, Essert SM, Wasser F, Müller H, Sib E, Precht T, Parcina M, Bierbaum G, Schmithausen RM, Kistemann T, Exner M. Clinically relevant antibiotic-resistant bacteria in aquatic environments - An optimized culture-based approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:142265. [PMID: 33182186 DOI: 10.1016/j.scitotenv.2020.142265] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/04/2020] [Accepted: 09/06/2020] [Indexed: 06/11/2023]
Abstract
The emergence of antibiotic-resistant clinically relevant facultative pathogenic bacteria in the environment has become one of the most important global health challenges. Antibiotic-resistant bacteria (ARB) have been found in surface waters and wastewater treatment plants. Drinking water guidelines and the EU bathing water directive 2006/7/EC include the surveillance of defined microbiological parameters on species level, while the monitoring of ARB is missing in all existing guidelines. However, standardized methods for the detection of ARB exist for clinical investigations of human materials only. They are based on cultivation on selective agar plates. These methods cannot be used directly for environmental samples, because of the high amount and diversity of bacterial background flora which interferes with the detection of human-relevant ARB. The aim of this study was to introduce a proposal for future normative standard operation procedures, with international relevance, for the culture-based detection of clinically-relevant antibiotic resistant bacteria in aquatic environmental samples like wastewater and surface water: gram-negative bacteria resistant against 3rd generation cephalosporins (ESBL) and against carbapenems (CARBA), gram-positive vancomycin-resistant enterococci (VRE) and methicillin-resistant Staphylococcus aureus (MRSA). The final adaptation of standardized cultivation methods included increasing the standard incubation temperature from 36 °C to 42 °C, which effectively inhibits the environmental background flora on agar plates while the desired target species survive. This enables the detection of target species in suitable sample volumes. Putative target colonies which belong to the remaining background flora had to be excluded by morphological and physiological differentiation. Therefore, a time and cost optimized testing scheme with good performance was developed, which allows an effective exclusion of non-target isolates in samples. Depending on the target species and sample type, sensitivity of up to 100% is achieved, and specificity ranges from 91.1% to 99.7%, while the positive predictive value, negative predicted value and accuracy rate are always >90%.
Collapse
Affiliation(s)
- Christiane Schreiber
- Institute for Hygiene and Public Health, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Nicole Zacharias
- Institute for Hygiene and Public Health, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany.
| | - Sarah M Essert
- Institute for Hygiene and Public Health, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Felix Wasser
- Institute for Hygiene and Public Health, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Heike Müller
- Institute for Hygiene and Public Health, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Esther Sib
- Institute for Hygiene and Public Health, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Tabea Precht
- Institute for Hygiene and Public Health, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Marijo Parcina
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Gabriele Bierbaum
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Ricarda M Schmithausen
- Institute for Hygiene and Public Health, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Thomas Kistemann
- Institute for Hygiene and Public Health, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Martin Exner
- Institute for Hygiene and Public Health, University Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
40
|
Sib E, Lenz-Plet F, Barabasch V, Klanke U, Savin M, Hembach N, Schallenberg A, Kehl K, Albert C, Gajdiss M, Zacharias N, Müller H, Schmithausen RM, Exner M, Kreyenschmidt J, Schreiber C, Schwartz T, Parčina M, Bierbaum G. Bacteria isolated from hospital, municipal and slaughterhouse wastewaters show characteristic, different resistance profiles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:140894. [PMID: 32763594 DOI: 10.1016/j.scitotenv.2020.140894] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Multidrug-resistant bacteria cause difficult-to-treat infections and pose a risk for modern medicine. Sources of multidrug-resistant bacteria include hospital, municipal and slaughterhouse wastewaters. In this study, bacteria with resistance to 3rd generation cephalosporins were isolated from all three wastewater biotopes, including a maximum care hospital, municipal wastewaters collected separately from a city and small rural towns and the wastewaters of two pig and two poultry slaughterhouses. The resistance profiles of all isolates against clinically relevant antibiotics (including β-lactams like carbapenems, the quinolone ciprofloxacin, colistin, and trimethoprim/sulfamethoxazole) were determined at the same laboratory. The bacteria were classified according to their risk to human health using clinical criteria, with an emphasis on producers of carbapenemases, since carbapenems are prescribed for hospitalized patients with infections with multi-drug resistant bacteria. The results showed that bacteria that pose the highest risk, i. e., bacteria resistant to all β-lactams including carbapenems and ciprofloxacin, were mainly disseminated by hospitals and were present only in low amounts in municipal wastewater. The isolates from hospital wastewater also showed the highest rates of resistance against antibiotics used for treatment of carbapenemase producers and some isolates were susceptible to only one antibiotic substance. In accordance with these results, qPCR of resistance genes showed that 90% of the daily load of carbapenemase genes entering the municipal wastewater treatment plant was supplied by the clinically influenced wastewater, which constituted approximately 6% of the wastewater at this sampling point. Likewise, the signature of the clinical wastewater was still visible in the resistance profiles of the bacteria isolated at the entry into the wastewater treatment plant. Carbapenemase producers were not detected in slaughterhouse wastewater, but strains harboring the colistin resistance gene mcr-1 could be isolated. Resistances against orally available antibiotics like ciprofloxacin and trimethoprim/sulfamethoxazole were widespread in strains from all three wastewaters.
Collapse
Affiliation(s)
- Esther Sib
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany; Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Franziska Lenz-Plet
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Vanessa Barabasch
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Ursula Klanke
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Mykhailo Savin
- Institute of Animal Sciences, University of Bonn, Bonn, Germany
| | - Norman Hembach
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Microbiology/Molecular Biology Department, Karlsruhe, Germany
| | - Anna Schallenberg
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Katja Kehl
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Cathrin Albert
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Mike Gajdiss
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Nicole Zacharias
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Heike Müller
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | | | - Martin Exner
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Judith Kreyenschmidt
- Institute of Animal Sciences, University of Bonn, Bonn, Germany; Department of Fresh Produce Logistics, Hochschule Geisenheim University, Geisenheim, Germany
| | - Christiane Schreiber
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Thomas Schwartz
- Karlsruhe Institute of Technology (KIT), Institute of Functional Interfaces (IFG), Microbiology/Molecular Biology Department, Karlsruhe, Germany
| | - Marijo Parčina
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Gabriele Bierbaum
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
41
|
Hassoun-Kheir N, Stabholz Y, Kreft JU, de la Cruz R, Romalde JL, Nesme J, Sørensen SJ, Smets BF, Graham D, Paul M. Comparison of antibiotic-resistant bacteria and antibiotic resistance genes abundance in hospital and community wastewater: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140804. [PMID: 32758846 DOI: 10.1016/j.scitotenv.2020.140804] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/04/2020] [Accepted: 07/05/2020] [Indexed: 05/10/2023]
Abstract
Antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) are constantly shed into the aquatic environment, with hospital wastewater potentially acting as an important source for resistance spread into the environment. A systematic review was conducted aiming to investigate the role of hospital wastewater on dissemination of antimicrobial resistance in the aquatic environment. Studies included in the review compared the prevalence of ARB and/or ARGs in hospital versus community wastewater. Data were extracted on ARB and/or ARG prevalence. Data on sampling techniques, microbiological methodology and risk of bias of included studies were recorded. Thirty-seven studies were included. Higher frequencies of antibiotic resistance determinants were found in hospital wastewater compared to community sources in 30/37 (81%) of included studies. However, trends for specific multi-drug-resistant bacteria differed. Antibiotic-resistant Gram-negative were more prevalent in hospital compared to community wastewaters, with higher concentrations of extended-spectrum-beta-lactamase-producing pathogens and carbapenemase-producing Enterobacteriaceae in hospital sources in 9/9 studies and 6/7 studies, respectively. Hospitals did not contribute consistently to the abundance of vancomycin-resistant Enterococci (VRE); 5/10 studies found higher abundance of VRE in hospital compared to community wastewaters. Reporting on sampling methods, wastewater treatment processes and statistical analysis were at high risk of bias. Extreme heterogeneity in study methods and outcome reporting precluded meta-analysis. Current evidence concurs that hospital wastewater is an important source for antibiotic resistance in aquatic environments, mainly multidrug-resistant Gram-negative bacteria. Future research is needed to assess the effect of wastewater treatment processes on overall antibiotic resistance in the aquatic environment.
Collapse
Affiliation(s)
- Nasreen Hassoun-Kheir
- Infectious Diseases Institute, Rambam Health Care Campus, Haifa, Israel, HaAliya HaShniya St 8, Haifa 3109601, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Efron St 1, Haifa 3109601, Israel.
| | - Yoav Stabholz
- Infectious Diseases Institute, Rambam Health Care Campus, Haifa, Israel, HaAliya HaShniya St 8, Haifa 3109601, Israel
| | - Jan-Ulrich Kreft
- Institute of Microbiology and Infection & Centre for Computational Biology & School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Roberto de la Cruz
- Institute of Microbiology and Infection & Centre for Computational Biology & School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Jesús L Romalde
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology & Institute CRETUS, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Joseph Nesme
- Department of Biology, Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Søren J Sørensen
- Department of Biology, Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Barth F Smets
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - David Graham
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Mical Paul
- Infectious Diseases Institute, Rambam Health Care Campus, Haifa, Israel, HaAliya HaShniya St 8, Haifa 3109601, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Efron St 1, Haifa 3109601, Israel
| |
Collapse
|
42
|
Kohler P, Tijet N, Kim HC, Johnstone J, Edge T, Patel SN, Seah C, Willey B, Coleman B, Green K, Armstrong I, Katz K, Muller MP, Powis J, Poutanen SM, Richardson D, Sarabia A, Simor A, McGeer A, Melano RG. Dissemination of Verona Integron-encoded Metallo-β-lactamase among clinical and environmental Enterobacteriaceae isolates in Ontario, Canada. Sci Rep 2020; 10:18580. [PMID: 33122675 PMCID: PMC7596063 DOI: 10.1038/s41598-020-75247-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
Surveillance data from Southern Ontario show that a majority of Verona Integron-encoded Metallo-β-lactamase (VIM)-producing Enterobacteriaceae are locally acquired. To better understand the local epidemiology, we analysed clinical and environmental blaVIM-positive Enterobacteriaceae from the area. Clinical samples were collected within the Toronto Invasive Bacterial Diseases Network (2010–2016); environmental water samples were collected in 2015. We gathered patient information on place of residence and hospital admissions prior to the diagnosis. Patients with and without plausible source of acquisition were compared regarding risk exposures. Microbiological isolates underwent whole-genome sequencing (WGS); blaVIM carrying plasmids were characterized. We identified 15 patients, thereof 11 with blaVIM-1-positive Enterobacter hormaechei within two genetic clusters based on WGS. Whereas no obvious epidemiologic link was identified among cluster I patients, those in cluster II were connected to a hospital outbreak. Except for patients with probable acquisition abroad, we did not identify any further risk exposures. Two blaVIM-1-positive E. hormaechei from environmental waters matched with the clinical clusters; plasmid sequencing suggested a common ancestor plasmid for the two clusters. These data show that both clonal spread and horizontal gene transfer are drivers of the dissemination of blaVIM-1-carrying Enterobacter hormaechei in hospitals and the aquatic environment in Southern Ontario, Canada.
Collapse
Affiliation(s)
| | | | - Hyunjin C Kim
- Sinai Health System, Toronto, ON, Canada.,University of Toronto, Toronto, ON, Canada
| | | | - Tom Edge
- Environment and Climate Change Canada, Burlington, ON, Canada.,McMaster University, Hamilton, ON, Canada
| | - Samir N Patel
- Public Health Ontario Laboratory, Toronto, ON, Canada.,University of Toronto, Toronto, ON, Canada
| | | | | | | | | | - Irene Armstrong
- Sinai Health System, Toronto, ON, Canada.,Toronto Public Health, Toronto, ON, Canada
| | - Kevin Katz
- University of Toronto, Toronto, ON, Canada.,North York General Hospital, Toronto, ON, Canada
| | | | - Jeff Powis
- Michael Garron Hospital, Toronto, ON, Canada
| | - Susan M Poutanen
- Sinai Health System, Toronto, ON, Canada.,University Health Network, Toronto, ON, Canada
| | | | | | - Andrew Simor
- University of Toronto, Toronto, ON, Canada.,Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Allison McGeer
- Sinai Health System, Toronto, ON, Canada.,University of Toronto, Toronto, ON, Canada
| | - Roberto G Melano
- Public Health Ontario Laboratory, Toronto, ON, Canada. .,University of Toronto, Toronto, ON, Canada.
| | | |
Collapse
|
43
|
Prevalence and Epidemiology of Multidrug-Resistant Pathogens in the Food Chain and the Urban Environment in Northwestern Germany. Antibiotics (Basel) 2020; 9:antibiotics9100708. [PMID: 33081274 PMCID: PMC7603066 DOI: 10.3390/antibiotics9100708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/08/2020] [Accepted: 10/15/2020] [Indexed: 12/17/2022] Open
Abstract
The surveillance of antimicrobial resistance among humans and food-producing animals is important to monitor the zoonotic transmission of multidrug-resistant bacteria (MDRB). We assessed the prevalence of four MDRB within the meat production chain, including extended-spectrum β-lactamase (ESBL)-producing, carbapenemase-producing Enterobacterales (CPE) and colistin-resistant Enterobacterales (Col-E), as well as vancomycin-resistant enterococci (VRE). In total, 505 samples from four stages of meat production, i.e., slaughterhouses, meat-processing plants, fresh food products and the urban environment, were collected in northwestern Germany in 2018/2019 and screened for the presence of MDRB using both culture-based and PCR-based techniques. We detected genes encoding for carbapenemases in 9–56% (blaOXA-48, blaKPC, blaNDM, blaVIM) and colistin resistance-encoding mcr genes in 9–26% of the samples from all stages. Culture-based analysis found CPE and VRE only in environmental samples (11% and 7%, respectively), but Col-E and ESBL-producers in 1–7% and 12–46% of samples from all stages, respectively. Overall, our results showed that ESBL-producers and mcr-carrying Col-E were common in food-producing animals at slaughterhouses, in meat-processing plants and in food items at retail, while CPE and VRE were only found in the environment. The discrepancy between detected carbapenemase genes and isolated CPE emphasizes the need for more sensitive detection methods for CPE monitoring.
Collapse
|
44
|
Pérez-Etayo L, González D, Leiva J, Vitas AI. Multidrug-Resistant Bacteria Isolated from Different Aquatic Environments in the North of Spain and South of France. Microorganisms 2020; 8:E1425. [PMID: 32947947 PMCID: PMC7565385 DOI: 10.3390/microorganisms8091425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023] Open
Abstract
Due to the global progress of antimicrobial resistance, the World Health Organization (WHO) published the list of the antibiotic-resistant "priority pathogens" in order to promote research and development of new antibiotics to the families of bacteria that cause severe and often deadly infections. In the framework of the One Health approach, the surveillance of these pathogens in different environments should be implemented in order to analyze their spread and the potential risk of transmission of antibiotic resistances by food and water. Therefore, the objective of this work was to determine the presence of high and critical priority pathogens included in the aforementioned list in different aquatic environments in the POCTEFA area (North Spain-South France). In addition to these pathogens, detection of colistin-resistant Enterobacteriaceae was included due its relevance as being the antibiotic of choice to treat infections caused by multidrug resistant bacteria (MDR). From the total of 80 analyzed samples, 100% of the wastewater treatment plants (WWTPs) and collectors (from hospitals and slaughterhouses) and 96.4% of the rivers, carried antibiotic resistant bacteria (ARB) against the tested antibiotics. Fifty-five (17.7%) of the isolates were identified as target microorganisms (high and critical priority pathogens of WHO list) and 58.2% (n = 32) of them came from WWTPs and collectors. Phenotypic and genotypic characterization showed that 96.4% were MDR and resistance to penicillins/cephalosporins was the most widespread. The presence of bla genes, KPC-type carbapenemases, mcr-1 and vanB genes has been confirmed. In summary, the presence of clinically relevant MDR bacteria in the studied aquatic environments demonstrates the need to improve surveillance and treatments of wastewaters from slaughterhouses, hospitals and WWTPs, in order to minimize the dispersion of resistance through the effluents of these areas.
Collapse
Affiliation(s)
- Lara Pérez-Etayo
- Department of Microbiology and Parasitology, University of Navarra, 31008 Pamplona, Spain; (D.G.); (A.I.V.)
| | - David González
- Department of Microbiology and Parasitology, University of Navarra, 31008 Pamplona, Spain; (D.G.); (A.I.V.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - José Leiva
- Microbiology Service, Clínica Universidad de Navarra, University of Navarra, 31008 Pamplona, Spain;
| | - Ana Isabel Vitas
- Department of Microbiology and Parasitology, University of Navarra, 31008 Pamplona, Spain; (D.G.); (A.I.V.)
- IdiSNA, Navarra Institute for Health Research, 31008 Pamplona, Spain
| |
Collapse
|
45
|
Savin M, Bierbaum G, Hammerl JA, Heinemann C, Parcina M, Sib E, Voigt A, Kreyenschmidt J. Antibiotic-resistant bacteria and antimicrobial residues in wastewater and process water from German pig slaughterhouses and their receiving municipal wastewater treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138788. [PMID: 32498197 DOI: 10.1016/j.scitotenv.2020.138788] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/16/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Slaughterhouse process- and wastewater are considered as a hotspot for antibiotic-resistant bacteria and antimicrobial residues and may thus play an important role for their dissemination into the environment. In this study, we investigated occurrence and characteristics of ESKAPE bacteria (E. faecium, S. aureus, K. pneumoniae, A. baumannii, P. aeruginosa, Enterobacter spp.) and ESBL (extended spectrum β-lactamase) -producing E. coli in water samples of different processing stages of two German pig slaughterhouses (S1/S2) as well as their municipal wastewater treatment plants (mWWTPs). Furthermore, residues of various antimicrobials were determined. A total of 103 water samples were taken in delivery and dirty areas of the slaughterhouses S1/S2 (n = 37), their in-house WWTPs (n = 30) and mWWTPs including their receiving water bodies (n = 36). The recovered isolates (n = 886) were characterized for their antimicrobial resistance pattern and its genetic basis. Targeted species were ubiquitous along the slaughtering and wastewater chains. Phenotypic and genotypic analyses revealed a broad variety of resistance phenotypes and β-lactamase genes. Carbapenemase-producing Enterobacteriaceae (CPE), vancomycin-resistant enterococci (VRE) and healthcare-associated (HA) MRSA were recovered only from mWWTPs and their preflooders. In contrast, the mcr-1 gene was exclusively detected in E. coli from S1/S2. Residues of five antimicrobials were detected in 14.9% (10/67) of S1/S2 samples in low range concentrations (≤1.30 μg/L), whereas 91.7% (33/36) of mWWTPs samples exhibited residues of 22 different antibiotics in concentrations of up to 4.20 μg/L. Target bacteria from S1/S2 and mWWTPs exhibited differences in their abundances, resistance phenotypes and genotypes as well as clonal lineages. S1/S2 samples exhibited bacteria with zoonotic potential (e.g. MRSA of CC398, E. coli of significant clones), whereas ESKAPE bacteria exhibiting resistances of clinical importance were mainly detected in mWWTPs. Municipal WWTPs seem to fail to eliminate these bacteria leading to a discharge into the preflooder and a subsequent dissemination into the surface water.
Collapse
Affiliation(s)
- Mykhailo Savin
- Institute of Animal Sciences, University of Bonn, Bonn, Germany.
| | - Gabriele Bierbaum
- Institute for Medical Microbiology, Immunology and Parasitology, Medical Faculty, University of Bonn, Germany
| | - Jens Andre Hammerl
- Department for Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | | | - Marijo Parcina
- Institute for Medical Microbiology, Immunology and Parasitology, Medical Faculty, University of Bonn, Germany
| | - Esther Sib
- Institute for Medical Microbiology, Immunology and Parasitology, Medical Faculty, University of Bonn, Germany
| | - Alexander Voigt
- Institute for Hygiene and Public Health, Medical Faculty, University of Bonn, Germany
| | - Judith Kreyenschmidt
- Institute of Animal Sciences, University of Bonn, Bonn, Germany; Hochschule Geisenheim University, Department of Fresh Produce Logistics, Geisenheim, Germany
| |
Collapse
|
46
|
Evaluation of antibiotic resistance dissemination by wastewater treatment plant effluents with different catchment areas in Germany. Sci Rep 2020; 10:8952. [PMID: 32488142 PMCID: PMC7265433 DOI: 10.1038/s41598-020-65635-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/07/2020] [Indexed: 11/16/2022] Open
Abstract
The study quantified the abundances of antibiotic resistance genes (ARGs) and facultative pathogenic bacteria (FPB) as well as one mobile genetic element in genomic DNA via qPCR from 23 different wastewater treatment plant (WWTP) effluents in Germany. 12 clinically relevant ARGs were categorized into frequently, intermediately, and rarely occurring genetic parameters of communal wastewaters. Taxonomic PCR quantifications of five FPB targeting Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Acinetobacter baumannii, and enterococci were performed. The WWTPs differed in their catchment areas being impacted by hospitals, food processing companies, or housing areas only. The total discharges of the analyzed ARGs and FPB were found to cluster independently of the sizes of the WWTPs with a maximum difference of two log units within one cluster. Initially, quantitative data evaluations revealed no significant difference between ARG categories and WWTP catchment areas. More distinct correlations became obvious with a Pearson correlation approach, where each single taxonomic marker is compared to each ARG target. Here, increased correlation of FPB (i.e. E. coli, K. pneumoniae, P. aeruginosa, and enterococci) with clinically relevant ARGs of the category of rarely occurring resistance genes (blaNDM-1, vanA) was found in WWTP effluents being influenced by hospital wastewaters.
Collapse
|
47
|
Quantification and Characterization of Antimicrobial Resistance in Greywater Discharged to the Environment. WATER 2020. [DOI: 10.3390/w12051460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In disenfranchised communities, untreated greywater (wastewater without sewage) is often environmentally discharged, resulting in potential human exposure to antimicrobial-resistant bacteria (ARB), including extended-spectrum beta-lactamase (ESBL) producers. We sought to examine the abundance of ARB, specifically ESBLs, and antimicrobial resistance genes (ARGs) in greywater from off-grid, pastoral Bedouin villages in Southern Israel. Greywater samples (n = 21) collected from five villages were analyzed to enumerate fecal coliforms and Escherichia coli. ESBL producers were recovered on CHROMagar ESBL and confirmed by VITEK®2 (bioMerieux, Marcy l’Etoile, France) for identification and antimicrobial susceptibility testing. Total genomic DNA was extracted from greywater samples and quantitative PCR (qPCR) was used to determine relative abundance (gene copies/16S rRNA gene) of class 1 integron-integrase intI1, blaTEM, blaCTX-M-32, sul1, and qnrS. The mean count of presumptive ESBL-producing isolates was 4.5 × 106 CFU/100 mL. Of 81 presumptive isolates, 15 ESBL producers were recovered. Phenotypically, 86.7% of ESBL producers were multi-drug resistant. Results from qPCR revealed a high abundance of intI1 (1.4 × 10−1 gene copies/16S rRNA), sul1 (5.2 × 10−2 gene copies/16S rRNA), and qnrS (1.7 × 10−2 gene copies/16S rRNA) followed by blaTEM (3.5 × 10−3 gene copies/16S rRNA) and blaCTX-M-32 (2.2 × 10−5 gene copies/16S rRNA). Results from our study indicate that greywater can be a source of ARB, including ESBL producers, in settings characterized by low sanitary conditions and inadequate wastewater management.
Collapse
|
48
|
Ullrich T, Weirich S, Jeltsch A. Development of an epigenetic tetracycline sensor system based on DNA methylation. PLoS One 2020; 15:e0232701. [PMID: 32379807 PMCID: PMC7205209 DOI: 10.1371/journal.pone.0232701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/19/2020] [Indexed: 12/17/2022] Open
Abstract
Bacterial live cell sensors are potentially powerful tools for the detection of environmental toxins. In this work, we have established and validated a flow cytometry readout for an existing bacterial arabinose sensor system with DNA methylation based memory function (Maier et al., 2017, Nat. Comm., 8:15336). Flow cytometry readout is convenient and enables a multiparameter analysis providing information about single-cell variability, which is beneficial for further development of sensor systems of this type in the future. We then designed a tetracycline sensor system, because of the importance of antibiotics pollution in the light of multi-resistant pathogens. To this end, a tetracycline trigger plasmid was constructed by replacing the araC repressor gene and the ara operator of the arabinose trigger plasmid with the tetR gene coding for the tetracycline repressor and the tet operon. After combination with the memory plasmid, the tetracycline sensor system was shown to be functional in E. coli allowing to detect and memorize the presence of tetracycline. Due to a positive feedback between the trigger and memory systems, the combined whole-cell biosensor showed a very high sensitivity for tetracycline with a detection threshold at 0.1 ng/ml tetracycline, which may be a general property of sensors of this type. Moreover, acute presence of tetracycline and past exposure can be detected by this sensor using the dual readout of two reporter fluorophores.
Collapse
Affiliation(s)
- Timo Ullrich
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Sara Weirich
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany
- * E-mail:
| |
Collapse
|
49
|
Hofmann F, Heudorf U, Steul K, Wichelhaus TA, Besier S, Hogardt M, Hack D, Steinmann E, Kempf VAJ, Reinheimer C. Anamnestic risk factor evaluation of patients carrying carbapenem-resistant Enterobacterales and/or Acinetobacter baumannii - impact on infection control management at a German University Hospital. GMS HYGIENE AND INFECTION CONTROL 2020; 15:Doc05. [PMID: 32547905 PMCID: PMC7273331 DOI: 10.3205/dgkh000340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background: Carbapenem-resistant Enterobacterales and Acinetobacterbaumannii are of major concern in terms of infection prevention and control. This study evaluated factors that may increase the frequency of Enterobacterales and A. baumannii with carbapenem resistance (CR) in patients admitted to a German University Hospital for implementation of optimized infection control management. Methods: A five-year-retrospective epidemiological cohort analysis was conducted on anamnestic risk factors for carrying Enterobacterales and/or A. baumannii with CR in patients who were first tested positive for these species at University Hospital Frankfurt (UHF) between January 2013 and June 2018. Results: 364 patients were tested positive for Enterobacterales and/or A. baumannii with CR, resulting in n=400 bacterial isolates in total, with Klebsiella pneumoniae being the most frequently detected species (n=146/400; 36.5%; 95% confidence interval: 31.8–41.4). In patients who were tested positive for Enterobacterales and/or A. baumannii with CR, any hospital stay within the previous 12 months was the most frequently reported common factor (n=275/364; 75.5%; 70.8–79.9). Conclusion: A hospital stay within the previous 12 months, including hospitals in Germany and abroad, is a frequent characteristic of patients who tested positive for Enterobacterales and/or A. baumannii with CR. Upon admission, any previous hospital stay of the given patient within the previous 12 months should be determined. Infection control strategies such as screening measures need to be adapted to these patient groups in hospital settings. In order to reflect the varying determinants in “nosocomial” cases in greater detail, the existing criteria used to characterize “nosocomial detection” of gram-negative bacteria with CR should be reviewed.
Collapse
Affiliation(s)
- Franziska Hofmann
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Germany.,University Center for Infectious Diseases, University Hospital Frankfurt, Germany.,University Center of Competence for Infection Control, State of Hesse, Germany
| | - Ursel Heudorf
- Public Health Department of the City of Frankfurt/Main, Germany
| | - Katrin Steul
- Public Health Department of the City of Frankfurt/Main, Germany
| | - Thomas A Wichelhaus
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Germany.,University Center for Infectious Diseases, University Hospital Frankfurt, Germany.,University Center of Competence for Infection Control, State of Hesse, Germany
| | - Silke Besier
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Germany.,University Center for Infectious Diseases, University Hospital Frankfurt, Germany.,University Center of Competence for Infection Control, State of Hesse, Germany
| | - Michael Hogardt
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Germany.,University Center for Infectious Diseases, University Hospital Frankfurt, Germany.,University Center of Competence for Infection Control, State of Hesse, Germany
| | - Daniel Hack
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Germany.,University Center for Infectious Diseases, University Hospital Frankfurt, Germany.,University Center of Competence for Infection Control, State of Hesse, Germany
| | - Elvira Steinmann
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Germany.,University Center for Infectious Diseases, University Hospital Frankfurt, Germany.,University Center of Competence for Infection Control, State of Hesse, Germany
| | - Volkhard A J Kempf
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Germany.,University Center for Infectious Diseases, University Hospital Frankfurt, Germany.,University Center of Competence for Infection Control, State of Hesse, Germany
| | - Claudia Reinheimer
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Germany.,University Center for Infectious Diseases, University Hospital Frankfurt, Germany.,University Center of Competence for Infection Control, State of Hesse, Germany
| |
Collapse
|
50
|
Pérez-Etayo L, González D, Vitas AI. The Aquatic Ecosystem, a Good Environment for the Horizontal Transfer of Antimicrobial Resistance and Virulence-Associated Factors Among Extended Spectrum β-lactamases Producing E. coli. Microorganisms 2020; 8:microorganisms8040568. [PMID: 32326434 PMCID: PMC7232254 DOI: 10.3390/microorganisms8040568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 12/31/2022] Open
Abstract
One of the main public health problems nowadays is the increase of antimicrobial resistance, both in the hospital environment and outside it (animal environment, food and aquatic ecosystems, among others). It is necessary to investigate the virulence-associated factors and the ability of horizontal gene transfer among bacteria for a better understanding of the pathogenicity and the mechanisms of dissemination of resistant bacteria. Therefore, the objective of this work was to detect several virulence factors genes (fimA, papC, papG III, cnf1, hlyA and aer) and to determine the conjugative capacity in a wide collection of extended-spectrum β-lactamases-producing E. coli isolated from different sources (human, food, farms, rivers, and wastewater treatment plants). Regarding virulence genes, fimA, papC, and aer were distributed throughout all the studied environments, papG III was mostly related to clinical strains and wastewater is a route of dissemination for cnf1 and hlyA. Strains isolated from aquatic environments showed an average conjugation frequencies of 1.15 × 10−1 ± 5 × 10−1, being significantly higher than those observed in strains isolated from farms and food (p < 0.05), with frequencies of 1.53 × 10−4 ± 2.85 × 10−4 and 9.61 × 10−4 ± 1.96 × 10−3, respectively. The reported data suggest the importance that the aquatic environment (especially WWTPs) acquires for the exchange of genes and the dispersion of resistance. Therefore, specific surveillance programs of AMR indicators in wastewaters from animal or human origin are needed, in order to apply sanitation measures to reduce the burden of resistant bacteria arriving to risky environments as WWTPs.
Collapse
Affiliation(s)
- Lara Pérez-Etayo
- Department of Microbiology and Parasitology, University of Navarra, 31008 Pamplona, Spain; (D.G.); (A.I.V.)
- Correspondence: ; Tel.: +34-948-425-600
| | - David González
- Department of Microbiology and Parasitology, University of Navarra, 31008 Pamplona, Spain; (D.G.); (A.I.V.)
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain
| | - Ana Isabel Vitas
- Department of Microbiology and Parasitology, University of Navarra, 31008 Pamplona, Spain; (D.G.); (A.I.V.)
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain
| |
Collapse
|