1
|
Tahir S, Hassan SS, Yang L, Ma M, Li C. Detection Methods for Pine Wilt Disease: A Comprehensive Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:2876. [PMID: 39458823 PMCID: PMC11511408 DOI: 10.3390/plants13202876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/12/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
Pine wilt disease (PWD), caused by the nematode Bursaphelenchus xylophilus, is a highly destructive forest disease that necessitates rapid and precise identification for effective management and control. This study evaluates various detection methods for PWD, including morphological diagnosis, molecular techniques, and remote sensing. While traditional methods are economical, they are limited by their inability to detect subtle or early changes and require considerable time and expertise. To overcome these challenges, this study emphasizes advanced molecular approaches such as real-time polymerase chain reaction (RT-PCR), droplet digital PCR (ddPCR), and loop-mediated isothermal amplification (LAMP) coupled with CRISPR/Cas12a, which offer fast and accurate pathogen detection. Additionally, DNA barcoding and microarrays facilitate species identification, and proteomics can provide insights into infection-specific protein signatures. The study also highlights remote sensing technologies, including satellite imagery and unmanned aerial vehicle (UAV)-based hyperspectral analysis, for their capability to monitor PWD by detecting asymptomatic diseases through changes in the spectral signatures of trees. Future research should focus on combining traditional and innovative techniques, refining visual inspection processes, developing rapid and portable diagnostic tools for field application, and exploring the potential of volatile organic compound analysis and machine learning algorithms for early disease detection. Integrating diverse methods and adopting innovative technologies are crucial to effectively control this lethal forest disease.
Collapse
Affiliation(s)
- Sana Tahir
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (S.T.); (L.Y.); (M.M.)
| | - Syed Shaheer Hassan
- Heilongjiang Province Key Laboratory of Sustainable Forest Ecosystem Management—Ministry of Education, School of Forestry, Northeast Forestry University, Xiang Fang District, Harbin 150040, China;
| | - Lu Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (S.T.); (L.Y.); (M.M.)
| | - Miaomiao Ma
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (S.T.); (L.Y.); (M.M.)
| | - Chenghao Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (S.T.); (L.Y.); (M.M.)
| |
Collapse
|
2
|
Cao Y, Yang N, Gu J, Zhang X, Ye J, Chen J, Li H. Distinct biogeographic patterns for bacteria and fungi in association with Bursaphelenchus xylophilus nematodes and infested pinewood. Microbiol Spectr 2024; 12:e0077824. [PMID: 39162557 PMCID: PMC11448397 DOI: 10.1128/spectrum.00778-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/15/2024] [Indexed: 08/21/2024] Open
Abstract
Pinewood nematodes (PWN, Bursaphelenchus xylophilus) are destructive plant parasitic nematodes that cause pine wilt disease (PWD) by attacking the vascular systems of pine trees, resulting in widespread tree mortality. Research has shown that there are connections between nematode-associated microbes and PWD. Yet the variations in microbial communities across different geographic regions are not well-understood. In this study, we examined the bacterial and fungal communities associated with nematodes and infested wood collected from 34 sites across three vegetation zones in China, as well as samples from the United States, using 16S rRNA and internal transcribed spacer (ITS) gene amplicon sequencing. The predominant genera Pseudomonas and Rhodococcus were found in nematodes, and Acinetobacter was present in the wood of PWD-infected pine trees across China. Network analysis revealed that core bacterial taxa belonged to the Pseudomonadota and Actinomycetota phyla for the nematodes, whereas the Pseudomonadota and Bacteroidota phyla were dominant in the infested wood. Identification of enriched key microbial taxa in nematodes and infested wood across vegetation zones indicates distinct biogeographic microbial community structures and key bacterial species. Although the nematode-associated bacterial community showed consistency across geographic distances, the similarity of the PWD pine trees' bacterial community decreased with distance, suggesting a spatial correlation with environmental variables. Our findings enhance our understanding of the microbiota associated with pinewood nematode (PWN) and offer valuable insights into PWD management. IMPORTANCE Our research uncovered specific bacteria and fungi linked to pinewood nematode (PWN) and infested wood in three different vegetation zones in China, as well as samples from the United States. This sheds light on the critical roles of certain microbial groups, such as Pseudomonas, Acinetobacter, and Stenotrophomonas, in influencing PWN fitness. Understanding these patterns provides valuable insights into the dynamics of PWN-associated microbiomes, offering potential strategies for managing pine wilt disease (PWD). We found significant correlations between geographic distance and similarity in bacterial communities in the infested wood, indicating a spatial influence on wood-associated microbial communities due to limited dispersal and localized environmental conditions. Further investigations of these spatial patterns and driving forces are crucial for understanding the ecological processes that shape microbial communities in complex ecosystems and, ultimately, for mitigating the transmission of PWN in forests.
Collapse
Affiliation(s)
- Yuyu Cao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| | - Nan Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| | - Jianfeng Gu
- Ningbo Key Laboratory of Port Biological and Food Safety Testing (Technical Centre of Ningbo Customs/Ningbo Inspection and Quarantine Science Technology Academy), No. 8, Huikang Road, Ningbo, Zhejiang 315100, China
| | - Xingyao Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
| | - Jianren Ye
- Co-Innovation Centre for Sustainable Forestry in Southern China, Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| | - Hongjie Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
3
|
Pereira TJ, De Santiago A, Bik HM. Soil properties predict below-ground community structure, but not nematode microbiome patterns in semi-arid habitats. Mol Ecol 2024; 33:e17501. [PMID: 39175265 DOI: 10.1111/mec.17501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/02/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024]
Abstract
Microbial and microeukaryotic communities are extremely abundant and diverse in soil habitats where they play critical roles in ecosystem functioning and services that are essential to soil health. Soil biodiversity is influenced by above-ground (vegetation) and below-ground factors (soil properties), which together create habitat-specific conditions. However, the compound effects of vegetation and soil properties on soil communities are less studied or often focused on one component of the soil biota. Here, we integrate metabarcoding (16S and 18S rRNA genes) and nematode morphology to assess the effects of habitat and soil properties shaping microbial and microeukaryotic communities as well as nematode-associated microbiomes. We show that both vegetation and soil properties (soil bulk density) were major factors structuring microbial and microeukaryotic communities in semi-arid soil habitats. Despite having lower nutrients and lower pH, denser soils displayed significantly higher alpha diversity than less dense soils across datasets. Nematode-associated microbiomes have lower microbial diversity, strongly differ from soil microbes and are more likely to respond to microscale variations among samples than to vegetation or soil bulk density. Consequently, different nematode lineages and trophic groups are likely to display similar associated microbiomes when sharing the same microhabitat. Different microbiome taxa were enriched within specific nematode lineages (e.g. Mycobacterium, Candidatus Cardinium) highlighting potentially new species-specific associations that may confer benefits to their soil nematode hosts. Our findings highlight the importance of exploring above- and below-ground effects to assess community structure in terrestrial habitats, and how fine-scale analyses are critical for understanding patterns of host-associated microbiomes.
Collapse
Affiliation(s)
- Tiago José Pereira
- Department of Marine Sciences, University of Georgia, Athens, Georgia, USA
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - Alejandro De Santiago
- Department of Marine Sciences, University of Georgia, Athens, Georgia, USA
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| | - Holly M Bik
- Department of Marine Sciences, University of Georgia, Athens, Georgia, USA
- Institute of Bioinformatics, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
4
|
Peng Y, Tang Y, Li D, Ye J. The Growth-Promoting and Colonization of the Pine Endophytic Pseudomonas abietaniphila for Pine Wilt Disease Control. Microorganisms 2024; 12:1089. [PMID: 38930471 PMCID: PMC11206076 DOI: 10.3390/microorganisms12061089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/28/2024] Open
Abstract
In this study, we focused on evaluating the impact of Pseudomonas abietaniphila BHJ04 on the growth of Pinus massoniana seedlings and its biocontrol efficacy against pine wilt disease (PWD). Additionally, the colonization dynamics of P. abietaniphila BHJ04 on P. massoniana were examined. The growth promotion experiment showed that P. abietaniphila BHJ04 significantly promoted the growth of the branches and roots of P. massoniana. Pot control experiments indicated that strain BHJ04 significantly inhibited the spread of PWD. There were significant changes in the expression of several genes related to pine wood nematode defense in P. massoniana, including chitinase, nicotinamide synthetase, and triangular tetrapeptide-like superfamily protein isoform 9. Furthermore, our results revealed significant upregulation of genes associated with the water stress response (dehydration-responsive proteins), genetic material replication (DNA/RNA polymerase superfamily proteins), cell wall hydrolase, and detoxification (cytochrome P450 and cytochrome P450 monooxygenase superfamily genes) in the self-regulation of P. massoniana. Colonization experiments demonstrated that strain BHJ04 can colonize the roots, shoots, and leaves of P. massoniana, and the colonization amount on the leaves was the greatest, reaching 160,000 on the 15th day. However, colonization of the stems lasted longer, with the highest level of colonization observed after 45 d. This study provides a preliminary exploration of the growth-promoting and disease-preventing mechanisms of P. abietaniphila BHJ04 and its ability to colonize pines, thus providing a new biocontrol microbial resource for the biological control of plant diseases.
Collapse
Affiliation(s)
- Yueyuan Peng
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.P.); (Y.T.); (D.L.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Yuwei Tang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.P.); (Y.T.); (D.L.)
| | - Da Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.P.); (Y.T.); (D.L.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| | - Jianren Ye
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.P.); (Y.T.); (D.L.)
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
5
|
López-Villamor A, Nunes da Silva M, Vasconcelos MW. Evaluation of plant elicitation with methyl-jasmonate, salicylic acid and benzo (1,2,3)-thiadiazole-7-carbothioic acid-S-methyl ester for the sustainable management of the pine wilt disease. TREE PHYSIOLOGY 2022; 42:2596-2613. [PMID: 35867422 PMCID: PMC11648887 DOI: 10.1093/treephys/tpac088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Treatment with plant elicitors can be a promising method to induce Pinus pinaster tolerance against the pinewood nematode (PWN), Bursaphelenchus xylophilus, by promoting plant antioxidant system, micronutrient accumulation and by modulating plant-associated bacterial populations. To test this hypothesis, plants were sprayed with methyl jasmonate (MeJA), salicylic acid (SA) or benzo (1,2,3)-thiadiazole-7-carbothioic acid-S-methyl ester (BTH), and evaluated until 35 days after-inoculation (dai) for: i) extent of foliar symptoms; ii) nematode density inside stem tissues; iii) proxies for oxidative damage and antioxidant activity, iv) micronutrient concentration and v) bacterial diversity. Compared with non-elicited plants, plant elicitation, particularly with BTH, significantly decreased nematodes density inside stem tissues (by 0.63-fold). Concordantly, without elicitation plant mortality reached 12.5% while no mortality was observed in elicited plants. BTH-elicited plants had significantly higher concentrations of anthocyanins and carotenoids at the end of the assay than SA-elicited and MeJA-elicited plants, which possibly contributed to the lower PWN colonization and degree of foliar symptoms observed. Accordingly, MeJA and SA led to increased lipid peroxidation at 28 dai (by 2.64- and 2.52-fold, respectively) in comparison with BTH (by 1.10-fold), corroborating its higher potential in increasing plant antioxidative response during infection. Moreover, carotenoids showed a negative correlation with nematode migration, whereas polyphenols showed a positive correlation. Elicitors also induced changes in the bacterial community of infected P. pinaster plants, increasing the diversity of specific populations. Finally, elicitors induced significant changes in micronutrients accumulation in plant tissues, namely a decrease in the concentration of B, Mn and Ni in plants treated with BTH compared to those treated with the other elicitors. Altogether, results suggest that elicitation with MeJA, SA and, particularly, BTH, increases tolerance against B. xylophilus by promoting plant antioxidant system, changing the accumulation of essential micronutrients and modulating plant-associated bacterial diversity.
Collapse
Affiliation(s)
- Adrián López-Villamor
- Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química
Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua de
Diogo Botelho 1327, 4169-005 Porto, Portugal
- Misión Biológica de Galicia (CSIC), Grupo de Genética y
Ecología Forestal, Apdo. 28, 36080 Pontevedra, Spain
| | - Marta Nunes da Silva
- Universidade Católica Portuguesa, CBQF – Centro de
Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia,
Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Marta W Vasconcelos
- Universidade Católica Portuguesa, CBQF – Centro de
Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia,
Rua de Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
6
|
Zhang W, Wang X, Li Y, Wei P, Sun N, Wen X, Liu Z, Li D, Feng Y, Zhang X. Differences Between Microbial Communities of Pinus Species Having Differing Level of Resistance to the Pine Wood Nematode. MICROBIAL ECOLOGY 2022; 84:1245-1255. [PMID: 34757460 DOI: 10.1007/s00248-021-01907-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
The pine wood nematode (PWN), Bursaphelenchus xylophilus, is a destructive invasive species that exerts devastating effects on most native pines in invaded regions, while many of the non-native pines have resistance to PWN. Recently, increasingly more research is focused on how microbial communities can improve host resistance against pathogens. However, the relationship between the microbial community structures and varying levels of pathogen resistance observed in different pine tree species remains unclear. Here, the bacterial and fungal communities of introduced resistant pines Pinus elliottii, P. caribaea, and P. taeda and native susceptible pines healthy and wilted P. massoniana infected by PWN were analyzed. The results showed that 6057 bacterial and 3931 fungal OTUs were annotated. The pine samples shared 944 bacterial OTUs primarily in the phyla Proteobacteria, Acidobacteria, Firmicutes, Bacteroidetes, and Chloroflexi and 111 fungal OTUs primarily in phyla Ascomycota and Basidiomycota, though different pines had unique OTUs. There were significant differences in microbial community diversity between different pines, especially between the bacterial communities of resistant and susceptible pines, and fungal communities between healthy pines (resistant pines included) and the wilted P. massoniana. Resistant pines had a greater abundance of bacteria in the genera Acidothermus (class unidentified_Actinobacteria) and Prevotellaceae (class Alphaproteobacteria), but a lower abundance of Erwinia (class Gammaproteobacteria). Healthy pines had a higher fungal abundance of Cladosporium (class Dothideomycetes) and class Eurotiomycetes, but a lower abundance of Graphilbum, Sporothrix, Geosmithia (class Sordariomycetes), and Cryptoporus (classes Agaricomycetes and Saccharomycetes). These differences in microbial abundance between resistant and healthy pines might be associated with pathogen resistance of the pines, and the results of this study contribute to the studies exploring microbial-based control of PWN.
Collapse
Affiliation(s)
- Wei Zhang
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xuan Wang
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yongxia Li
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Pengfei Wei
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Ningning Sun
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, China
| | - Xiaojian Wen
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhenkai Liu
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Dongzhen Li
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuqian Feng
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xingyao Zhang
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
7
|
An Y, Li Y, Ma L, Li D, Zhang W, Feng Y, Liu Z, Wang X, Wen X, Zhang X. The Changes of Microbial Communities and Key Metabolites after Early Bursaphelenchus xylophilus Invasion of Pinus massoniana. PLANTS (BASEL, SWITZERLAND) 2022; 11:2849. [PMID: 36365304 PMCID: PMC9653782 DOI: 10.3390/plants11212849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Pine wood nematode, Bursaphelenchus xylophilus, is a worldwide pest of pine trees, spreading at an alarming rate and with great ecological adaptability. In the process of causing disease, the nematode causes metabolic disorders and changes in the endophytic microbial community of the pine tree. However, the changes at the pine nidus during early nematode invasion have not been well studied, especially the differential metabolites, in Pinus massoniana, the main host of B. xylophilus in China. In this study, we analyzed the endophytic bacterial and fungal communities associated with healthy and B. xylophilus-caused wilted pine trees. The results show that 1333 bacterial OTUs and 502 fungal OTUs were annotated from P. massoniana stem samples. The abundance of bacterial communities in pine trees varies more following infection by B. xylophilus, but the abundance changes of fungal communities are less visible. There were significant differences in endophytic microbial diversity between wilted and healthy P. massoniana. In wilted pine trees, Actinobacteria and Bacteroidia were differential indicators of bacterial communities, whereas, in healthy pine trees, Rhizobiales in the Proteobacteria phylum were the major markers of bacterial communities. Meanwhile, the differential markers of fungal communities in healthy pines are Malasseziales, Tremellales, Sordariales, and Fusarium, whereas Pleosporaceae is the key marker of fungal communities in wilted pines. Our study examines the effect of changes in the endophytic microbial community on the health of pine trees that may be caused by B. xylophilus infection. In parallel, a non-targeted metabolomic study based on liquid mass spectrometry (LC-MS) technology was conducted on pine trees inoculated with pine nematodes and healthy pine trees with a view to identifying key compounds affecting early pine lesions. Ultimately, 307 distinctly different metabolites were identified. Among them, the riboflavin metabolic pathway in pine trees may play a key role in the early pathogenesis of pine wood nematode disease.
Collapse
Affiliation(s)
- Yibo An
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Yongxia Li
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Ling Ma
- College of Forestry, Northeast Forestry University, Harbin 150040, China
| | - Dongzhen Li
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Zhang
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yuqian Feng
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zhenkai Liu
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xuan Wang
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaojian Wen
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xingyao Zhang
- Key Laboratory of Forest Protection, National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
8
|
Qu ZL, Braima A, Liu B, Ma Y, Sun H. Soil Fungal Community Structure and Function Shift during a Disease-Driven Forest Succession. Microbiol Spectr 2022; 10:e0079522. [PMID: 36073819 PMCID: PMC9602832 DOI: 10.1128/spectrum.00795-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/05/2022] [Indexed: 12/30/2022] Open
Abstract
Forest succession is important for sustainable forest management in terrestrial ecosystems. However, knowledge about the response of soil microbes to forest disease-driven succession is limited. In this study, we investigated the soil fungal biomass, soil enzyme activity, and fungal community structure and function in forests suffering succession processes produced by pine wilt disease from conifer to broadleaved forests using Illumina Miseq sequencing coupled with FUNGuild analysis. The results showed that the broadleaved forest had the highest fungal biomass and soil enzyme activities in C, N, and S cycles, whereas the conifer forest had the highest enzyme activity in the P cycle. Along the succession, the fungal diversity and richness significantly increased (P < 0.05). The fungal communities were dominated by Ascomycota (42.0%), Basidiomycota (38.0%), and Mortierellomycota (9.5%), among which the abundance of Ascomycota significantly increased (P < 0.05), whereas that of Basidiomycota and Mortierellomycota decreased (P < 0.05). The abundance of species Mortierella humilis, Lactarius salmonicolor, and Russula sanguinea decreased, whereas that of Mortierella minutissima increased (P < 0.05). The forests in different succession stages formed distinct fungal communities and functional structures (P < 0.05). Functionally, the saprotrophs, symbiotrophs, and pathotrophs were the dominant groups in the conifer, mixed, and broadleaved forests, respectively. Soil pH and soil organic carbon were the key factors influencing the fungal community and functional structures during the succession. These findings provide useful information for better understanding the plant-microbe interaction during forest succession caused by forest disease. IMPORTANCE The studies on soil fungal communities in disease-driven forest succession are rare. This study showed that during the disease-driven forest succession, the soil enzyme activity, soil fungal diversity, and biomass increased along succession. The disease-driven forest succession changed the soil fungal community structure and function, in which the symbiotrophs were the most dominant group along the succession. These findings provide useful information for better understanding the plant-microbe interaction during forest succession caused by forest disease.
Collapse
Affiliation(s)
- Zhao-lei Qu
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Ahmed Braima
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Bing Liu
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Yangzhou Polytechnic College, Yangzhou, China
| | - Yang Ma
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Hui Sun
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
9
|
Lasa AV, Guevara MÁ, Villadas PJ, Vélez MD, Fernández-González AJ, de María N, López-Hinojosa M, Díaz L, Cervera MT, Fernández-López M. Correlating the above- and belowground genotype of Pinus pinaster trees and rhizosphere bacterial communities under drought conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:155007. [PMID: 35381249 DOI: 10.1016/j.scitotenv.2022.155007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Increasing temperatures along with severe droughts are factors that may jeopardize the survival of the forests in the Mediterranean basin. In this region, Pinus pinaster is a common conifer species, that has been used as a model species in evolutionary studies due to its adaptive response to changing environments. Although its drought tolerance mechanisms are already known, knowledge about the dynamics of its root microbiota is still scarce. We aimed to decipher the structural (bacterial abundance), compositional, functional and associative changes of the P. pinaster rhizosphere bacterial communities in spring and summer, at DNA and RNA level (environmental DNA, live and dead cells, and those synthesizing proteins). A fundamental aspect of root microbiome-based approaches is to guarantee the correct origin of the samples. Thus, we assessed the genotype of host needles and roots from which rhizosphere samples were obtained. For more than 50% of the selected trees, genotype discrepancies were found and in three cases the plant species could not be determined. Rhizosphere bacterial communities were homogeneous with respect to diversity and structural levels regardless of the host genotype in both seasons. Nonetheless, significant changes were seen in the taxonomic profiles depending on the season. Seasonal changes were also evident in the bacterial co-occurrence patterns, both in DNA and RNA libraries. While spring communities switched to more complex networks, summer populations resulted in more compartmentalized networks, suggesting that these communities were facing a disturbance. These results may mirror the future status of bacterial communities in a context of climate change. A keystone hub was ascribed to the genus Phenylobacterium in the functional network calculated for summer. Overall, it is important to validate the origin and identity of plant samples in any plant-microbiota study so that more reliable ecological analyses are performed.
Collapse
Affiliation(s)
- Ana V Lasa
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain.
| | - M Ángeles Guevara
- Dept. Forest Ecology and Genetics, Centro de Investigación Forestal, INIA-CSIC, Carretera de La Coruña Km 7,5, 28040 Madrid, Spain; Mixed Unit of Forest Genomics and Ecophysiology, INIA/UPM, Spain.
| | - Pablo J Villadas
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain.
| | - María Dolores Vélez
- Dept. Forest Ecology and Genetics, Centro de Investigación Forestal, INIA-CSIC, Carretera de La Coruña Km 7,5, 28040 Madrid, Spain; Mixed Unit of Forest Genomics and Ecophysiology, INIA/UPM, Spain.
| | - Antonio J Fernández-González
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain.
| | - Nuria de María
- Dept. Forest Ecology and Genetics, Centro de Investigación Forestal, INIA-CSIC, Carretera de La Coruña Km 7,5, 28040 Madrid, Spain; Mixed Unit of Forest Genomics and Ecophysiology, INIA/UPM, Spain.
| | - Miriam López-Hinojosa
- Dept. Forest Ecology and Genetics, Centro de Investigación Forestal, INIA-CSIC, Carretera de La Coruña Km 7,5, 28040 Madrid, Spain; Mixed Unit of Forest Genomics and Ecophysiology, INIA/UPM, Spain
| | - Luis Díaz
- Dept. Forest Ecology and Genetics, Centro de Investigación Forestal, INIA-CSIC, Carretera de La Coruña Km 7,5, 28040 Madrid, Spain; Mixed Unit of Forest Genomics and Ecophysiology, INIA/UPM, Spain.
| | - María Teresa Cervera
- Dept. Forest Ecology and Genetics, Centro de Investigación Forestal, INIA-CSIC, Carretera de La Coruña Km 7,5, 28040 Madrid, Spain; Mixed Unit of Forest Genomics and Ecophysiology, INIA/UPM, Spain.
| | - Manuel Fernández-López
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, Profesor Albareda 1, 18008 Granada, Spain.
| |
Collapse
|
10
|
Deng J, Yu D, Zhou W, Zhou L, Zhu W. Variations of Phyllosphere and Rhizosphere Microbial Communities of Pinus koraiensis Infected by Bursaphelenchus xylophilus. MICROBIAL ECOLOGY 2022; 84:285-301. [PMID: 34487211 DOI: 10.1007/s00248-021-01850-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Pine wood nematode, Bursaphelenchus xylophilus, as one of the greatest threats to pine trees, is spreading all over the world. Plant microorganisms play an important role in the pathogenesis of nematodes. The phyllosphere and rhizosphere bacterial and fungal communities associated with healthy Pinus koraiensis (PKa) and P. koraiensis infected by B. xylophilus at the early (PKb) and last (PKc) stages were analyzed. Our results demonstrated that pine wood nematode (PWD) could increase the phyllosphere bacterial Pielou_e, Shannon, and Simpson index; phyllosphere fungal Chao 1 index, as well as rhizosphere bacterial Pielou_e, Shannon, and Simpson index; and rhizosphere fungal Pielou_e, Shannon, and Simpson index. What's more, slight shifts of the microbial diversity were observed at the early stage of infection, and the microbial diversity increased significantly as the symptoms of infection worsened. With the infection of B. xylophilus in P. koraiensis, Bradyrhizobium (rhizosphere bacteria), Massilia (phyllosphere bacteria), and Phaeosphaeriaceae (phyllosphere fungi) were the major contributors to the differences in community compositions among different treatments. With the infection of PWD, most of the bacterial groups tended to be co-excluding rather than co-occurring. These changes would correlate with microbial ability to suppress plant pathogen, enhancing the understanding of disease development and providing guidelines to pave the way for its possible management.
Collapse
Affiliation(s)
- Jiaojiao Deng
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Dapao Yu
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Wangming Zhou
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Li Zhou
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Wenxu Zhu
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
11
|
Microhabitat Governs the Microbiota of the Pinewood Nematode and Its Vector Beetle: Implication for the Prevalence of Pine Wilt Disease. Microbiol Spectr 2022; 10:e0078322. [PMID: 35758726 PMCID: PMC9430308 DOI: 10.1128/spectrum.00783-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Our understanding of environmental acquisition of microbes and migration-related alteration of microbiota across habitats has rapidly increased. However, in complex life cycles, such as for many parasites, exactly how these microbes are transmitted across multiple environments, such as hosts and habitats, is unknown. Pinewood nematode, the causal agent of the globally devastating pine wilt disease, provides an ideal model to study the role of microbiota in multispecies interactions because its successful host invasion depends on the interactions among its vector insects, pine hosts, and associated microbes. Here, we studied the role of bacterial and fungal communities involved in the nematode’s life cycle across different micro- (pupal chamber, vector beetle, and dispersal nematodes) and macrohabitats (geographical locations). We identified the potential sources, selection processes, and keystone taxa involved in the host pine-nematode-vector beetle microbiota interactions. Nearly 50% of the microbiota in vector beetle tracheae and ~60% that of third-stage dispersal juveniles were derived from the host pine (pupal chambers), whereas 90% of bacteria of fourth-stage dispersal juveniles originated from vector beetle tracheae. Our results also suggest that vector beetles’ tracheae selectively acquire some key taxa from the microbial community of the pupal chambers. These taxa will be then enriched in the dispersal nematodes traveling in the tracheae and hence likely transported to new host trees. Taken together, our findings contribute to the critical information toward a better understanding of the role of microbiota in pine wilt disease, therefore aiding the knowledge for the development of future biological control agents. IMPORTANCE Our understanding of animal microbiota acquisition and dispersal-mediated variation has rapidly increased. In this study, using the model of host pine-pinewood nematode-vector beetle (Monochamus sp.) complex, we disentangled the routes of microbial community assembly and transmission mechanisms among these different participants responsible for highly destructive pine wilt disease. We provide evidence that the microhabitat is the driving force shaping the microbial community of these participants. The microbiota of third-stage dispersal juveniles (LIII) of the nematodes collected around pupal chambers and of vector beetles were mainly derived from the host pine (pupal chambers), whereas the vector-entering fourth-stage dispersal juveniles (LIV) of the nematodes had the simplest microbiota community, not influencing vector’s microbiota. These findings enhanced our understanding of the variation in the microbiota of plants and animals and shed light on microbiota acquisition in complex life cycles.
Collapse
|
12
|
Tian H, Koski TM, Zhao L, Liu Z, Sun J. Invasion History of the Pinewood Nematode Bursaphelenchus xylophilus Influences the Abundance of Serratia sp. in Pupal Chambers and Tracheae of Insect-Vector Monochamus alternatus. FRONTIERS IN PLANT SCIENCE 2022; 13:856841. [PMID: 35668811 PMCID: PMC9164154 DOI: 10.3389/fpls.2022.856841] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/30/2022] [Indexed: 06/01/2023]
Abstract
Pine wilt disease (PWD) has caused extensive mortality in pine forests worldwide. This disease is a result of a multi-species interaction among an invasive pinewood nematode (PWN) Bursaphelenchus xylophilus, its vector Monochamus sp. beetle, and the host pine tree (Pinus sp.). In other systems, microbes have been shown to attenuate negative impacts on invasive species after the invasion has reached a certain time point. Despite that the role of PWD associated microbes involved in the PWD system has been widely studied, it is not known whether similar antagonistic "hidden microbial players" exist in this system due to the lack of knowledge about the potential temporal changes in the composition of associated microbiota. In this study, we investigated the bacteria-to-fungi ratio and isolated culturable bacterial isolates from pupal chambers and vector beetle tracheae across five sampling sites in China differing in the duration of PWN invasion. We also tested the pathogenicity of two candidate bacteria strains against the PWN-vector beetle complex. A total of 118 bacterial species belonging to 4 phyla, 30 families, and 54 genera were classified based on 16S sequencing. The relative abundance of the genus Serratia was lower in pupal chambers and tracheae in newly PWN invaded sites (<10 years) compared to the sites that had been invaded for more than 20 years. Serratia marcescens strain AHPC29 was widely distributed across all sites and showed nematicidal activity against PWN. The insecticidal activity of this strain was dependent on the life stage of the vector beetle Monochamus alternatus: no insecticidal activity was observed against final-instar larvae, whereas S. marcescens was highly virulent against pupae. Our findings improved the understanding of the temporal variation in the microbial community associated with the PWN-vector beetle complex and the progress of PWD and can therefore facilitate the development of biological control agents against PWN and its vector beetle.
Collapse
Affiliation(s)
- Haokai Tian
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Tuuli-Marjaana Koski
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Lilin Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Ziying Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding, China
| |
Collapse
|
13
|
Ajilogba CF, Olanrewaju OS, Babalola OO. Plant Growth Stage Drives the Temporal and Spatial Dynamics of the Bacterial Microbiome in the Rhizosphere of Vigna subterranea. Front Microbiol 2022; 13:825377. [PMID: 35250941 PMCID: PMC8891599 DOI: 10.3389/fmicb.2022.825377] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/10/2022] [Indexed: 11/23/2022] Open
Abstract
Bambara groundnut (BGN) is an underutilized legume commonly found in sub-Saharan Africa. It thrives in marginal soils and is resistant to drought stress. Several studies have been carried out on the nutritional properties of BGN, but very little is known about the effects of plant growth changes and development on rhizosphere bacterial dynamics and function. This study reports on the bacterial dynamics and function in the bulk and rhizosphere soils of BGN at different growth stages (vegetative, flowering, pod-filling, and maturation stages). Aside from the maturation stage that shows distinct community structure from the other growth stages, results obtained showed no significant differences in bacterial community structure among the other growth stages. At a closer level, Actinobacteria, Proteobacteria, and Acidobacteria were dominant in rhizosphere soils at all growth stages. The bulk soil had the least average phyla abundance, while the maturity stage was characterized by the highest average phyla abundance. Rubrobacter, Acidobacterium, and Skermanella were the most predominant genus. It was observed from the analysis of operational taxonomic units that there was significant change in the bacterial structure of the rhizosphere with a higher abundance of potential plant growth-promoting rhizobacteria, at the different growth stages, which include the genera Bacillus and Acidobacterium. Biomarker analysis revealed 7 and 4 highly significant bacterial biomarkers by linear discriminant analysis effect size and random forest analysis at the maturation stage, respectively. The results obtained in this study demonstrated that the bacterial communities of BGN rhizosphere microbiome dynamics and function are influenced by the plant’s growth stages.
Collapse
Affiliation(s)
- Caroline Fadeke Ajilogba
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- Agricultural Research Council, Natural Resources and Engineering, Division of Agrometeorology, Pretoria, South Africa
| | - Oluwaseyi Samuel Olanrewaju
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- *Correspondence: Olubukola Oluranti Babalola,
| |
Collapse
|
14
|
The Role of Serratomolide-like Amino Lipids Produced by Bacteria of Genus Serratia in Nematicidal Activity. Pathogens 2022; 11:pathogens11020198. [PMID: 35215141 PMCID: PMC8880026 DOI: 10.3390/pathogens11020198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/13/2022] [Accepted: 01/29/2022] [Indexed: 02/04/2023] Open
Abstract
Bursaphelenchus xylophilus, also known as pinewood nematode (PWN), is the pathogenic agent of pine wilt disease (PWD), which affects pine trees around the world. Infection spread globally through international wood commerce and locally by vector beetles, threatening the wood world economy. As climate changes, more countries are becoming susceptible to PWD and, to prevent disease spread and limit economic and ecological losses, better knowledge about this pathogenic agent is needed. Serratia strains, present in the endophytic community of pine trees and carried by PWN, may play an important role in PWD. This work aimed to better understand the interaction between Serratia strains and B. xylophilus and to assess the nematicidal potential of serratomolide-like molecules produced by Serratia strains. Serrawettin gene presence was evaluated in selected Serratia strains. Mortality tests were performed with bacteria supernatants, and extracted amino lipids, against Caenorhabditis elegans (model organism) and B. xylophilus to determine their nematicidal potential. Attraction tests were performed with C. elegans. Concentrated supernatants of Serratia strains with serratamolide-like lipopeptides were able to kill more than 77% of B. xylophilus after 72 h. Eight specific amino lipids showed a high nematicidal activity against B. xylophilus. We conclude that, for some Serratia strains, their supernatants and specific amino lipids showed nematicidal activity against B. xylophilus.
Collapse
|
15
|
Zhang C, Wickham JD, Zhao L, Sun J. A new bacteria-free strategy induced by MaGal2 facilitates pinewood nematode escape immune response from its vector beetle. INSECT SCIENCE 2021; 28:1087-1102. [PMID: 32443173 DOI: 10.1111/1744-7917.12823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/24/2020] [Accepted: 05/04/2020] [Indexed: 05/17/2023]
Abstract
Symbiotic microbes play a crucial role in regulating parasite-host interactions; however, the role of bacterial associates in parasite-host interactions requires elucidation. In this study, we showed that, instead of introducing numerous symbiotic bacteria, dispersal of 4th-stage juvenile (JIV ) pinewood nematodes (PWNs), Bursaphelenchus xylophilus, only introduced few bacteria to its vector beetle, Monochamus alternatus (Ma). JIV showed weak binding ability to five dominant bacteria species isolated from the beetles' pupal chamber. This was especially the case for binding to the opportunistic pathogenic species Serratia marcescens; the nematodes' bacteria binding ability at this critical stage when it infiltrates Ma for dispersal was much weaker compared with Caenorhabditis elegans, Diplogasteroides asiaticus, and propagative-stage PWN. The associated bacterium S. marcescens, which was isolated from the beetles' pupal chambers, was unfavorable to Ma, because it caused a higher mortality rate upon injection into tracheae. In addition, S. marcescens in the tracheae caused more immune effector disorders compared with PWN alone. Ma_Galectin2 (MaGal2), a pattern-recognition receptor, was up-regulated following PWN loading. Recombinant MaGal2 protein formed aggregates with five dominant associated bacteria in vitro. Moreover, MaGal2 knockdown beetles had up-regulated prophenoloxidase gene expression, increased phenoloxidase activity, and decreased PWN loading. Our study revealed a previously unknown strategy for immune evasion of this plant pathogen inside its vector, and provides novel insights into the role of bacteria in parasite-host interactions.
Collapse
Affiliation(s)
- Chi Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jacob D Wickham
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lilin Zhao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jianghua Sun
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Zhang W, Wang X, Li Y, Liu Z, Li D, Wen X, Feng Y, Zhang X. Pinewood Nematode Alters the Endophytic and Rhizospheric Microbial Communities of Pinus massoniana. MICROBIAL ECOLOGY 2021; 81:807-817. [PMID: 33051738 DOI: 10.1007/s00248-020-01619-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/08/2020] [Indexed: 05/17/2023]
Abstract
Pinewood nematode, Bursaphelenchus xylophilus, is one of the greatest threats to pine trees and is spreading all over the world. During the nematode's pathogenesis, plant microorganisms play important roles. However, many microbial communities, such as that in Pinus massoniana, a major host of B. xylophilus that is widely distributed in China, are not well studied, especially the fungal communities. Here, the endophytic and rhizospheric bacterial and fungal communities associated with healthy and B. xylophilus-infected P. massoniana were analyzed. The results showed that 7639 bacterial and 3108 fungal OTUs were annotated from samples of P. massoniana, the rhizosphere, and B. xylophilus. There were significant diversity differences of endophytic microbes between healthy and infected P. massoniana. The abundances of endophytic bacteria Paenibacillus, unidentified_Burkholderiaceae, Serratia, Erwinia, and Pseudoxanthomonas and fungi Penicillifer, Zygoascus, Kirschsteiniothelia, Cyberlindnera, and Sporothrix in infected pines were greater than those in healthy pines, suggesting an association of particular microbial abundances with the pathogenesis of B. xylophilus in pines. Meanwhile, the abundances of microbes of unidentified_Burkholderiaceae, Saitozyma, and Pestalotiopsis were greater and Acidothermus and Trichoderma were lower in the rhizosphere under infected pines than those under healthy pines and the differences might be caused by B. xylophilus-induced weakening of the health of pines. Our study explored the endophytic and rhizospheric microbial community changes potentially caused by B. xylophilus infection of pines.
Collapse
Affiliation(s)
- Wei Zhang
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xuan Wang
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yongxia Li
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, l00091, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Zhenkai Liu
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Dongzhen Li
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaojian Wen
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuqian Feng
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xingyao Zhang
- Lab. of Forest Pathogen Integrated Biology, Research Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, l00091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
17
|
Plants under the Attack of Allies: Moving towards the Plant Pathobiome Paradigm. PLANTS 2021; 10:plants10010125. [PMID: 33435275 PMCID: PMC7827841 DOI: 10.3390/plants10010125] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/03/2021] [Accepted: 01/07/2021] [Indexed: 12/28/2022]
Abstract
Plants are functional macrobes living in a close association with diverse communities of microbes and viruses as complex systems that continuously interact with the surrounding environment. The microbiota within the plant holobiont serves various essential and beneficial roles, such as in plant growth at different stages, starting from seed germination. Meanwhile, pathogenic microbes—differentiated from the rest of the plant microbiome based on their ability to damage the plant tissues through transient blooming under specific conditions—are also a part of the plant microbiome. Recent advances in multi-omics have furthered our understanding of the structure and functions of plant-associated microbes, and a pathobiome paradigm has emerged as a set of organisms (i.e., complex eukaryotic, microbial, and viral communities) within the plant’s biotic environment which interact with the host to deteriorate its health status. Recent studies have demonstrated that the one pathogen–one disease hypothesis is insufficient to describe the disease process in many cases, particularly when complex organismic communities are involved. The present review discusses the plant holobiont and covers the steady transition of plant pathology from the one pathogen–one disease hypothesis to the pathobiome paradigm. Moreover, previous reports on model plant diseases, in which more than one pathogen or co-operative interaction amongst pathogenic microbes is implicated, are reviewed and discussed.
Collapse
|
18
|
Bacterial Communities Associated with the Pine Wilt Disease Insect Vector Monochamus alternatus (Coleoptera: Cerambycidae) during the Larvae and Pupae Stages. INSECTS 2020; 11:insects11060376. [PMID: 32560536 PMCID: PMC7348839 DOI: 10.3390/insects11060376] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/30/2020] [Accepted: 06/15/2020] [Indexed: 01/18/2023]
Abstract
Monochamus alternatus is an important insect pest in pine forests of southern China and the dispersing vector of the pine wood nematode, Bursaphelenchus xylophilus, which leads to pine wilt disease (PWD). Microbiome of M. alternatus may contribute to survival of larvae in the host pine trees. In order to investigate the intestinal bacterial structure of M. alternatus during the larvae and pupae stages in host trees, and infer the function of symbiotic bacteria, we used 16S rRNA gene Illumina sequencing to obtain and compare the bacterial community composition in the foregut, midgut, and hindgut of larvae, pupal intestines, larval galleries, and pupal chambers of M. alternatus. The diversity of the bacterial community in larval intestines and pupal intestines were similar, as well as was significantly greater in larval galleries and pupal chambers. Although there were differences in bacterial compositions in different samples, similar components were also found. Proteobacteria and Firmicutes were the two most dominant phyla in all samples, and genera Enterobacter, Raoultella, Serratia, Lactococcus, and Pseudomonas were dominant in both the intestinal samples and plant tissue samples. Enterobacter was the most abundant genus in larval intestines, and Serratia was dominant in pupal intestine. The functions of these dominant and specific bacteria were also predicted through metagenomic analyses. These bacteria may help M. alternatus degrade cellulose and pinene. The specific role of symbiotic bacteria in the infection cycle of PWD also warrants further study in the future.
Collapse
|
19
|
Mannaa M, Han G, Jeon HW, Kim J, Kim N, Park AR, Kim JC, Seo YS. Influence of Resistance-Inducing Chemical Elicitors against Pine Wilt Disease on the Rhizosphere Microbiome. Microorganisms 2020; 8:microorganisms8060884. [PMID: 32545246 PMCID: PMC7356868 DOI: 10.3390/microorganisms8060884] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/24/2022] Open
Abstract
Pine wilt disease (PWD) caused by Bursaphelenchus xylophilus is a major threat to pine forests worldwide. Induction of resistance is a promising and safe management option that should be investigated in relation to its possible influence on the pine tree ecosystem, including the surrounding microbial communities. In this study, two main resistance-inducing chemical elicitors, methyl salicylic acid (MeSA) and acibenzolar-s-methyl (ASM), were tested for their control efficiency against PWD and their influence on the rhizosphere microbial composition. Foliar treatment of pine seedlings with the chemical elicitors resulted in a reduction in PWD severity, with ASM showing better control efficacy, reaching up to 73% compared to the untreated control. Moreover, bacterial community analysis of the rhizosphere revealed significant changes in several microbial taxa that were present at low relative abundance. In particular, ASM treatment resulted in a significant increase in specific microbial taxa, including members of the Rhodanobacter, Devosia, Bradyrhizobium, Acidibacter, Mesorhizobium, and Hyphomicrobium genera, which are known to play ecological and plant growth-promoting roles. Furthermore, chitinolytic bacteria were shown to be reduced in response to treatment with both MeSA and ASM. Altogether, the present findings demonstrate the occurrence of significant alterations in several ecologically important microbial taxa after treatment with resistance-inducing chemicals. As compared to MeSA treatment, ASM treatment was more effective at suppressing PWD and resulted in more beneficial changes in rhizosphere microbial composition.
Collapse
Affiliation(s)
- Mohamed Mannaa
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (M.M.); (G.H.); (N.K.)
| | - Gil Han
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (M.M.); (G.H.); (N.K.)
| | - Hee Won Jeon
- Division of Applied Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (H.W.J.); (A.R.P.)
| | - Junheon Kim
- Forest Insect Pests and Diseases Division, National Institute of Forest Science, Seoul 02455, Korea;
| | - Namgyu Kim
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (M.M.); (G.H.); (N.K.)
| | - Ae Ran Park
- Division of Applied Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (H.W.J.); (A.R.P.)
| | - Jin-Cheol Kim
- Division of Applied Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea; (H.W.J.); (A.R.P.)
- Correspondence: (J.-C.K.); (Y.-S.S.)
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea; (M.M.); (G.H.); (N.K.)
- Correspondence: (J.-C.K.); (Y.-S.S.)
| |
Collapse
|
20
|
Guo Y, Lin Q, Chen L, Carballar-Lejarazú R, Zhang A, Shao E, Liang G, Hu X, Wang R, Xu L, Zhang F, Wu S. Characterization of bacterial communities associated with the pinewood nematode insect vector Monochamus alternatus Hope and the host tree Pinus massoniana. BMC Genomics 2020; 21:337. [PMID: 32357836 PMCID: PMC7195709 DOI: 10.1186/s12864-020-6718-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 04/05/2020] [Indexed: 01/24/2023] Open
Abstract
Background Monochamus alternatus Hope is one of the insect vectors of pinewood nematode (Bursaphelenchus xylophilus), which causes the destructive pine wilt disease. The microorganisms within the ecosystem, comprising plants, their environment, and insect vectors, form complex networks. This study presents a systematic analysis of the bacterial microbiota in the M. alternatus midgut and its habitat niche. Methods Total DNA was extracted from 20 types of samples (with three replicates each) from M. alternatus and various tissues of healthy and infected P. massoniana (pines). 16S rDNA amplicon sequencing was conducted to determine the composition and diversity of the bacterial microbiota in each sample. Moreover, the relative abundances of bacteria in the midgut of M. alternatus larvae were verified by counting the colony-forming units. Results Pinewood nematode infection increased the microbial diversity in pines. Bradyrhizobium, Burkholderia, Dyella, Mycobacterium, and Mucilaginibacter were the dominant bacterial genera in the soil and infected pines. These results indicate that the bacterial community in infected pines may be associated with the soil microbiota. Interestingly, the abundance of the genus Gryllotalpicola was highest in the bark of infected pines. The genus Cellulomonas was not found in the midgut of M. alternatus, but it peaked in the phloem of infected pines, followed by the phloem of heathy pines. Moreover, the genus Serratia was not only present in the habitat niche, but it was also enriched in the M. alternatus midgut. The colony-forming unit assays showed that the relative abundance of Serratia sp. peaked in the midgut of instar II larvae (81%). Conclusions Overall, the results indicate that the bacterial microbiota in the soil and in infected pines are correlated. The Gryllotalpicola sp. and Cellulomonas sp. are potential microbial markers of pine wilt disease. Additionally, Serratia sp. could be an ideal agent for expressing insecticidal protein in the insect midgut by genetic engineering, which represents a new use of microbes to control M. alternatus.
Collapse
Affiliation(s)
- Yajie Guo
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350000, China.,Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 350000, China.,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Qiannan Lin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350000, China.,Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Lyuyi Chen
- Universityof California, Irvine, CA, 92697-4025, USA
| | - Rebeca Carballar-Lejarazú
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, 92697-4025, USA
| | - Aishan Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Ensi Shao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Guanghong Liang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350000, China.,Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Xia Hu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350000, China.,Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Rong Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350000, China.,Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 350000, China
| | - Lei Xu
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Feiping Zhang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350000, China. .,Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 350000, China.
| | - Songqing Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350000, China. .,Key Laboratory of Integrated Pest Management in Ecological Forests, Fujian Province University, Fujian Agriculture and Forestry University, Fuzhou, 350000, China. .,State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, 350000, China.
| |
Collapse
|
21
|
Qian X, Liu YX, Ye X, Zheng W, Lv S, Mo M, Lin J, Wang W, Wang W, Zhang X, Lu M. Gut microbiota in children with juvenile idiopathic arthritis: characteristics, biomarker identification, and usefulness in clinical prediction. BMC Genomics 2020; 21:286. [PMID: 32264859 PMCID: PMC7137182 DOI: 10.1186/s12864-020-6703-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/25/2020] [Indexed: 12/19/2022] Open
Abstract
Background Recent studies have suggested that the gut microbiota is altered in children with juvenile idiopathic arthritis (JIA). However, age, sex, and body mass index (BMI) were not matched in the previous studies, and the results are inconsistent. We conducted an age-, sex-, and BMI-matched cross-sectional study to characterize the gut microbiota in children with JIA, and evaluate its potential in clinical prediction. Methods A total of 40 patients with JIA and 42 healthy controls, ranging from 1 to 16 years, were enrolled in this study. Fecal samples were collected for 16S rDNA sequencing. The data were analyzed using QIIME software and R packages. Specifically, the random forest model was used to identify biomarkers, and the receiver operating characteristic curve and the decision curve analysis were used to evaluate model performance. Results A total of 39 fecal samples from patients with JIA, and 42 fecal samples from healthy controls were sequenced successfully. The Chao 1 and Shannon–Wiener index in the JIA group were significantly lower than those in the control group, and the Bray-Curtis dissimilarity also differed significantly between the two groups. The relative abundance of 4 genera, Anaerostipes, Dialister, Lachnospira, and Roseburia, decreased significantly in the JIA group compared to those in the control group. The 4 genera included microbes that produce short-chain fatty acids (SCFAs) and were negatively correlated with some rheumatic indices. Moreover, 12 genera were identified as potential biomarkers by using the nested cross-validation function of the random forest. A random forest model constructed using these genera was able to differentiate the patients with JIA from the healthy controls, and the area under the receiver operating characteristic curve was 0.7975. The decision curve analysis indicated that the model had usefulness in clinical practice. Conclusions The gut microbiota in patients with JIA is altered and characterized by a decreased abundance of 4 SCFA-producing genera. The decreases in the 4 genera correlated with more serious clinical indices. Twelve genera could be used as biomarkers and predictors in clinical practice. Trial registration The study is registered online at the Chinese Clinical Trial Registry on 11 May 2018 (registration number: ChiCTR1800016110).
Collapse
Affiliation(s)
- Xubo Qian
- Department of Rheumatology Immunology and Allergy, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Yong-Xin Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xiaohong Ye
- Department of Scientific Research Management and Medical Education, Jinhua Hospital of Traditional Chinese Medicine, Jinhua, Zhejiang Province, China
| | - Wenjie Zheng
- Department of Paediatric Rheumatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Shaoxia Lv
- Nursing Department, Jiangnan Community Healthcare Center, Jinhua, Zhejiang Province, China
| | - Miaojun Mo
- Department of Pediatrics, Wenling Maternal and Child Healthcare Hospital, Wenling, Zhejiang Province, China
| | - Jinjing Lin
- Department of Pediatrics, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, Zhejiang Province, China
| | - Wenqin Wang
- Department of Rheumatology Immunology, Jinhua Municipal People's Hospital, Jinhua, Zhejiang Province, China
| | - Weihan Wang
- Department of Scientific Research Management and Medical Education, Jinhua Hospital of Traditional Chinese Medicine, Jinhua, Zhejiang Province, China
| | - Xianning Zhang
- Department of Genetics, Institute of Genetics, Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.
| | - Meiping Lu
- Department of Rheumatology Immunology and Allergy, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
22
|
Johnston‐Monje D, Lopez Mejia J. Botanical microbiomes on the cheap: Inexpensive molecular fingerprinting methods to study plant-associated communities of bacteria and fungi. APPLICATIONS IN PLANT SCIENCES 2020; 8:e11334. [PMID: 32351795 PMCID: PMC7186905 DOI: 10.1002/aps3.11334] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 01/28/2020] [Indexed: 06/07/2023]
Abstract
High-throughput sequencing technologies have revolutionized the study of plant-associated microbial populations, but they are relatively expensive. Molecular fingerprinting techniques are more affordable, yet yield considerably less information about the microbial community. Does this mean they are no longer useful for plant microbiome research? In this paper, we review the past 10 years of studies on plant-associated microbiomes using molecular fingerprinting methodologies, including single-strand conformation polymorphism (SSCP), denaturing gradient gel electrophoresis (DGGE), amplicon length heterogeneity PCR (LH-PCR), ribosomal intergenic spacer analysis (RISA) and automated ribosomal intergenic spacer analysis (ARISA), and terminal restriction fragment length polymorphism (TRFLP). We also present data juxtaposing results from TRFLP methods with those generated using Illumina sequencing in the comparison of rhizobacterial populations of Brazilian maize and fungal surveys in Canadian tomato roots. In both cases, the TRFLP approach yielded the desired results at a level of resolution comparable to that of the MiSeq method, but at a fraction of the cost. Community fingerprinting methods (especially TRFLP) remain relevant for the identification of dominant microbes in a population, the observation of shifts in plant microbiome community diversity, and for screening samples before their use in more sensitive and expensive approaches.
Collapse
Affiliation(s)
- David Johnston‐Monje
- Max Planck Tandem Group in Plant Microbial Ecology at the Universidad del ValleCalle 13 #100‐00, Building E20760032Cali, Valle del CaucaColombia
- Max Planck Institute for Plant Breeding ResearchDepartment of Plant Microbe InteractionsCarl-von-Linne-Weg 10D-50829CologneGermany
| | - Jessica Lopez Mejia
- Max Planck Tandem Group in Plant Microbial Ecology at the Universidad del ValleCalle 13 #100‐00, Building E20760032Cali, Valle del CaucaColombia
| |
Collapse
|
23
|
Proença DN, Heine T, Senges CHR, Bandow JE, Morais PV, Tischler D. Bacterial Metabolites Produced Under Iron Limitation Kill Pinewood Nematode and Attract Caenorhabditis elegans. Front Microbiol 2019; 10:2166. [PMID: 31608025 PMCID: PMC6761702 DOI: 10.3389/fmicb.2019.02166] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/03/2019] [Indexed: 11/19/2022] Open
Abstract
Pine Wilt Disease (PWD) is caused by Bursaphelenchus xylophilus, the pinewood nematode, and affects several species of pine trees worldwide. The ecosystem of the Pinus pinaster trees was investigated as a source of bacteria producing metabolites affecting this ecosystem: P. pinaster trees as target-plant, nematode as disease effector and its insect-vector as shuttle. For example, metals and metal-carrying compounds contribute to the complex tree-ecosystems. This work aimed to detect novel secondary metabolites like metallophores and related molecules produced under iron limitation by PWD-associated bacteria and to test their activity on nematodes. After screening 357 bacterial strains from Portugal and United States, two promising metallophore-producing strains Erwinia sp. A41C3 and Rouxiella sp. Arv20#4.1 were chosen and investigated in more detail. The genomes of these strains were sequenced, analyzed, and used to detect genetic potential for secondary metabolite production. A combinatorial approach of liquid chromatography-coupled tandem mass spectrometry (LC-MS) linked to molecular networking was used to describe these compounds. Two major metabolites were detected by HPLC analyses and described. One HPLC fraction of strain Arv20#4.1 showed to be a hydroxamate-type siderophore with higher affinity for chelation of Cu. The HPLC fraction of strain A41C3 with highest metal affinity showed to be a catecholate-type siderophore with higher affinity for chelation of Fe. LC-MS allowed the identification of several desferrioxamines from strain Arv20#4.1, in special desferrioxamine E, but no hit was obtained in case of strain A41C3 which might indicate that it is something new. Bacteria and their culture supernatants showed ability to attract C. elegans. HPLC fractions of those supernatant-extracts of Erwinia strain A41C3, enriched with secondary metabolites such as siderophores, were able to kill pinewood nematode. These results suggest that metabolites secreted under iron limitation have potential to biocontrol B. xylophilus and for management of Pine Wilt Disease.
Collapse
Affiliation(s)
- Diogo Neves Proença
- Department of Life Sciences and Laboratory of Environmental Microbiology of CEMMPRE, University of Coimbra, Coimbra, Portugal
| | - Thomas Heine
- Environmental Microbiology, TU Bergakademie Freiberg, Freiberg, Germany
| | - Christoph H. R. Senges
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Julia E. Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Paula V. Morais
- Department of Life Sciences and Laboratory of Environmental Microbiology of CEMMPRE, University of Coimbra, Coimbra, Portugal
| | - Dirk Tischler
- Environmental Microbiology, TU Bergakademie Freiberg, Freiberg, Germany
- Microbial Biotechnology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
24
|
Bolourian A, Mojtahedi Z. Streptomyces, shared microbiome member of soil and gut, as ‘old friends’ against colon cancer. FEMS Microbiol Ecol 2018; 94:5037917. [DOI: 10.1093/femsec/fiy120] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 06/12/2018] [Indexed: 12/14/2022] Open
Affiliation(s)
- Alireza Bolourian
- School of Life Sciences, University of Nevada Las Vegas, 4505 S. Maryland Parkway, Las Vegas, Nevada 89154, USA
| | - Zahra Mojtahedi
- Institute for Cancer Research, Shiraz University of Medical Sciences, Zand street, Shiraz 71348, Iran
| |
Collapse
|