1
|
Geng P, Zhao N, Zhou Y, Harris RS, Ge Y. Faecalibacterium prausnitzii regulates carbohydrate metabolic functions of the gut microbiome in C57BL/6 mice. Gut Microbes 2025; 17:2455503. [PMID: 39841201 DOI: 10.1080/19490976.2025.2455503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/08/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025] Open
Abstract
The probiotic impact of microbes on host metabolism and health depends on both host genetics and bacterial genomic variation. Faecalibacterium prausnitzii is the predominant human gut commensal emerging as a next-generation probiotic. Although this bacterium exhibits substantial intraspecies diversity, it is unclear whether genetically distinct F. prausnitzii strains might lead to functional differences in the gut microbiome. Here, we isolated and characterized a novel F. prausnitzii strain (UT1) that belongs to the most prevalent but underappreciated phylogenetic clade in the global human population. Genome analysis showed that this butyrate-producing isolate carries multiple putative mobile genetic elements, a clade-specific defense system, and a range of carbohydrate catabolic enzymes. Multiomic approaches were used to profile the impact of UT1 on the gut microbiome and associated metabolic activity of C57BL/6 mice at homeostasis. Both 16S rRNA and metagenomic sequencing demonstrated that oral administration of UT1 resulted in profound microbial compositional changes including a significant enrichment of Lactobacillus, Bifidobacterium, and Turicibacter. Functional profiling of the fecal metagenomes revealed a markedly higher abundance of carbohydrate-active enzymes (CAZymes) in UT1-gavaged mice. Accordingly, UT1-conditioned microbiota possessed the elevated capability of utilizing starch in vitro and exhibited a lower availability of microbiota-accessible carbohydrates in the gut. Further analysis uncovered a functional network wherein UT1 reduced the abundance of mucin-degrading CAZymes and microbes, which correlated with a concomitant reduction of fecal mucin glycans. Collectively, our results reveal a crucial role of UT1 in facilitating the carbohydrate metabolism of the gut microbiome and expand our understanding of the genetic and phenotypic diversity of F. prausnitzii.
Collapse
Affiliation(s)
- Peiling Geng
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Ni Zhao
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Yufan Zhou
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Reuben S Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX, USA
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Yong Ge
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
2
|
Yang Q, Chang S, Tian Y, Zhang H, Zhu Y, Li W, Ren J. Simulated digestion and gut microbiota fermentation of polysaccharides from Lactarius hatsudake Tanaka mushroom. Food Chem 2025; 466:142146. [PMID: 39591778 DOI: 10.1016/j.foodchem.2024.142146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/13/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024]
Abstract
Lactarius hatsudake Tanaka is a popular edible mushroom known for its delicious flavor and health benefits. Its polysaccharides (LHP) exhibit significant bioactivity, but their application is limited due to uncertainties in digestion. This study used in vitro simulated models to explore the dynamic changes of LHP during the digestive and fermentation process and validated them through mouse models. Results revealed that LHP cannot be digested by the simulated digestive system, but is primarily degraded into fatty acids by gut microbes, accompanied by reductions in molecular weight, carbohydrate content, and pH. Additionally, LHP promotes the proliferation of beneficial bacteria (Faecalibacterium, Bifidobacterium, Lactobacillus, etc.), while inhibiting harmful bacteria (Escherichia and Shigella). Metabolite analysis in serum indicated that LHP can regulate amino acid and lipid metabolism, enhancing overall health. These findings provide a theoretical foundation for developing LHP as a potential prebiotic, highlighting its considerable promise for disease prevention through improved intestinal health.
Collapse
Affiliation(s)
- Qiao Yang
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China
| | - Songlin Chang
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China
| | - Yiming Tian
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China
| | - Hui Zhang
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China
| | - Yuxing Zhu
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Wang Li
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China.
| | - Jiali Ren
- Hunan Key Laboratory of Forestry Edible Sources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan 410004, PR China.
| |
Collapse
|
3
|
Yoo Y, Kim S, Lee W, Kim J, Son B, Lee KJ, Shin H. The prebiotic potential of dietary onion extracts: shaping gut microbial structures and promoting beneficial metabolites. mSystems 2025; 10:e0118924. [PMID: 39714164 DOI: 10.1128/msystems.01189-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/23/2024] [Indexed: 12/24/2024] Open
Abstract
Onions are well-known vegetables that offer various health benefits. This study explores the impact of onion extracts on gut microbiome using an in vitro fecal incubation model and metabolome analysis. Fecal samples were collected from 19 healthy donors and incubated in the presence or absence of onion extracts for 24 h. To reduce inter-individual variability in the gut microbiome, we employed enterotyping based on baseline fecal microbiota: 14 subjects with a Bacteroides-dominant type (enterotype B) and 5 subjects with Prevotella-dominant type (enterotype P). Alpha diversity was significantly reduced in the onion-treated group compared to the non-treated control group in both Bacteroides- and Prevotella-dominant types. However, significant structural differences in bacterial communities were observed based on weighted UniFrac distance. Notably, short-chain fatty acid (SCFA)-producing bacteria, such as Bifidobacterium_388775, Feacalibacterium, and Fusicatenibacter, were overrepresented in response to onion extracts in enterotype B. Furthermore, genes related to butyrate production were significantly overrepresented in the onion-treated group within enterotype B. Consistent with the enriched taxa and the predicted metabolic pathways, SCFAs and their related metabolites were significantly enriched in the onion-treated group. Additionally, tryptophan metabolism-derived metabolites, including indolelactate (ILA) and indolepropionate (IPA), were elevated by 4- and 32-fold, respectively, in the onion-treated group compared to the control group. In vitro growth assays showed an increase in lactobacilli strains in the presence of onion extracts. These results provide evidence that onion extracts could serve as promising prebiotics by altering gut microbial structure and promoting the production of beneficiary metabolites, including SCFAs and indole derivatives, and enhancing the growth of probiotics.IMPORTANCEThis study is significant as it provides compelling evidence that onion extracts have the potential to serve as effective prebiotics. Utilizing an in vitro fecal incubation model and enterotyping to reduce inter-individual variability, the research demonstrates how onion extracts can alter gut microbial structure and promote the production of beneficial metabolites, including SCFAs and indole derivatives like ILA and IPA. Additionally, onion extract treatment enhances the growth of beneficial probiotics. The findings underscore the potential of onion extracts to improve gut health by enriching specific beneficial bacteria and metabolic pathways, thereby supporting the development of functional foods aimed at improving gut microbiota composition and metabolic health.
Collapse
Affiliation(s)
- Yebeen Yoo
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, South Korea
| | - Seongok Kim
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, South Korea
- Carbohydrate Bioproduct Research Center, Sejong University, Seoul, South Korea
| | - WonJune Lee
- Carbohydrate Bioproduct Research Center, Sejong University, Seoul, South Korea
| | - Jinwoo Kim
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, South Korea
- Carbohydrate Bioproduct Research Center, Sejong University, Seoul, South Korea
| | - Bokyung Son
- Department of Food Biotechnology, Dong-A University, Busan, Republic of Korea
| | - Kwang Jun Lee
- Division of Zoonotic and Vector Borne Diseases Research, Center for Infectious Diseases Research, National Institute of Health, Cheongju, South Korea
| | - Hakdong Shin
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, South Korea
- Carbohydrate Bioproduct Research Center, Sejong University, Seoul, South Korea
| |
Collapse
|
4
|
Hutkins R, Walter J, Gibson GR, Bedu-Ferrari C, Scott K, Tancredi DJ, Wijeyesekera A, Sanders ME. Classifying compounds as prebiotics - scientific perspectives and recommendations. Nat Rev Gastroenterol Hepatol 2025; 22:54-70. [PMID: 39358591 DOI: 10.1038/s41575-024-00981-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 10/04/2024]
Abstract
Microbiomes provide key contributions to health and potentially important therapeutic targets. Conceived nearly 30 years ago, the prebiotic concept posits that targeted modulation of host microbial communities through the provision of selectively utilized growth substrates provides an effective approach to improving health. Although the basic tenets of this concept remain the same, it is timely to address certain challenges pertaining to prebiotics, including establishing that prebiotic-induced microbiota modulation causes the health outcome, determining which members within a complex microbial community directly utilize specific substrates in vivo and when those microbial effects sufficiently satisfy selectivity requirements, and clarification of the scientific principles on which the term 'prebiotic' is predicated to inspire proper use. In this Expert Recommendation, we provide a framework for the classification of compounds as prebiotics. We discuss ecological principles by which substrates modulate microbiomes and methodologies useful for characterizing such changes. We then propose statistical approaches that can be used to establish causal links between selective effects on the microbiome and health effects on the host, which can help address existing challenges. We use this information to provide the minimum criteria needed to classify compounds as prebiotics. Furthermore, communications to consumers and regulatory approaches to prebiotics worldwide are discussed.
Collapse
Affiliation(s)
| | | | - Glenn R Gibson
- Food and Nutritional Sciences, University of Reading, Reading, UK
| | | | - Karen Scott
- Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Daniel J Tancredi
- Department of Pediatrics, University of California at Davis, Sacramento, CA, USA
| | | | - Mary Ellen Sanders
- International Scientific Association for Probiotics and Prebiotics, Centennial, CO, USA.
| |
Collapse
|
5
|
García Mansilla MJ, Rodríguez Sojo MJ, Lista AR, Ayala Mosqueda CV, Ruiz Malagón AJ, Gálvez J, Rodríguez Nogales A, Rodríguez Sánchez MJ. Exploring Gut Microbiota Imbalance in Irritable Bowel Syndrome: Potential Therapeutic Effects of Probiotics and Their Metabolites. Nutrients 2024; 17:155. [PMID: 39796588 PMCID: PMC11723002 DOI: 10.3390/nu17010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Irritable bowel syndrome is a common functional gastrointestinal disorder characterized by recurrent abdominal discomfort, bloating, cramping, flatulence, and changes in bowel movements. The pathophysiology of IBS involves a complex interaction between motor, sensory, microbiological, immunological, and psychological factors. Diversity, stability, and metabolic activity of the gut microbiota are frequently altered in IBS, thus leading to a situation of gut dysbiosis. Therefore, the use of probiotics and probiotic-derived metabolites may be helpful in balancing the gut microbiota and alleviating irritable bowel syndrome symptoms. This review aimed to report and consolidate recent progress in understanding the role of gut dysbiosis in the pathophysiology of IBS, as well as the current studies that have focused on the use of probiotics and their metabolites, providing a foundation for their potential beneficial effects as a complementary and alternative therapeutic strategy for this condition due to the current absence of effective and safe treatments.
Collapse
Affiliation(s)
- María José García Mansilla
- Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.); (M.J.R.S.)
| | - María Jesús Rodríguez Sojo
- Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.); (M.J.R.S.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
| | - Andrea Roxana Lista
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
| | | | - Antonio Jesús Ruiz Malagón
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, 29590 Málaga, Spain
| | - Julio Gálvez
- Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.); (M.J.R.S.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
- CIBER de Enfermedades Hepáticas y Digestivas (CIBER-EHD), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Alba Rodríguez Nogales
- Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.); (M.J.R.S.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
| | - María José Rodríguez Sánchez
- Department of Pharmacology, Centro de investigación Biomédica (CIBM), University of Granada, 18071 Granada, Spain; (M.J.G.M.); (M.J.R.S.); (J.G.); (A.R.N.); (M.J.R.S.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (A.R.L.); (C.V.A.M.)
| |
Collapse
|
6
|
Maruyama S, Matsuoka T, Hosomi K, Park J, Murakami H, Miyachi M, Kawashima H, Mizuguchi K, Kobayashi T, Ooka T, Yamagata Z, Kunisawa J. High barley intake in non-obese individuals is associated with high natto consumption and abundance of butyrate-producing bacteria in the gut: a cross-sectional study. Front Nutr 2024; 11:1434150. [PMID: 39545049 PMCID: PMC11562852 DOI: 10.3389/fnut.2024.1434150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024] Open
Abstract
Objective Barley, abundant in β-glucan, a soluble dietary fiber, holds promise in obesity prevention. Given the microbial metabolism of dietary fiber in the gastrointestinal tract, we investigated the role of gut microbiota in non-obese individuals consuming high levels of barley. Methods Our study enrolled 185 participants from "The cohort study on barley and the intestinal environment (UMIN000033479)." Comprehensive physical examinations, including blood tests, were conducted, along with separate assessments of gut microbiome profiling and dietary intake. Participants were categorized into high and low barley consumption groups based on the median intake, with non-obese individuals in the high intake group identified as barley responders while participants with obesity were designated as non-responders. We compared the relative abundance of intestinal bacteria between these groups and used multivariate analysis to assess the association between intestinal bacteria and barley responders while controlling for confounding factors. Results and discussion Among the fermented food choices, responders exhibited notably higher consumption of natto (fermented soybeans) than non-responders. Moreover, after adjusting for confounders, Butyricicoccus and Subdoligranulum were found to be significantly more prevalent in the intestines of responders. Given natto's inclusion of Bacillus subtilis, a glycolytic bacterium, and the butyrate-producing capabilities of Butyricicoccus and Subdoligranulum, it is hypothesized that fiber degradation and butyrate production are likely to be enhanced within the digestive tract of barley responders.
Collapse
Affiliation(s)
- Satoko Maruyama
- Department of Research and Development, Hakubaku Co., Ltd., Yamanashi, Japan
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Tsubasa Matsuoka
- Department of Research and Development, Hakubaku Co., Ltd., Yamanashi, Japan
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Koji Hosomi
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Jonguk Park
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Haruka Murakami
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Motohiko Miyachi
- Department of Physical Activity Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Hitoshi Kawashima
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Kenji Mizuguchi
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Toshiki Kobayashi
- Department of Research and Development, Hakubaku Co., Ltd., Yamanashi, Japan
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Tadao Ooka
- Department of Health Sciences, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Zentaro Yamagata
- Department of Health Sciences, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Jun Kunisawa
- Laboratory of Vaccine Materials and Laboratory of Gut Environmental System, Microbial Research Center for Health and Medicine, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
- Department of Microbiology and Immunology, Kobe University Graduate School of Medicine, Kobe, Japan
- Graduate Schools of Medicine, Osaka University, Osaka, Japan
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Graduate Schools of Science, Osaka University, Osaka, Japan
- Graduate School of Dentistry, Osaka University, Osaka, Japan
- International Vaccine Design Center, The University of Tokyo, Tokyo, Japan
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
| |
Collapse
|
7
|
Singh AK, Kumar P, Mishra SK, Rajput VD, Tiwari KN, Singh AK, Minkina T, Pandey AK, Upadhyay P. A Dual Therapeutic Approach to Diabetes Mellitus via Bioactive Phytochemicals Found in a Poly Herbal Extract by Restoration of Favorable Gut Flora and Related Short-Chain Fatty Acids. Appl Biochem Biotechnol 2024; 196:6690-6715. [PMID: 38393580 DOI: 10.1007/s12010-024-04879-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
Diabetes mellitus (DM), a metabolic and endocrine condition, poses a serious threat to human health and longevity. The emerging role of gut microbiome associated with bioactive compounds has recently created a new hope for DM treatment. UHPLC-HRMS methods were used to identify these compounds in a poly herbal ethanolic extract (PHE). The effects of PHE on body weight (BW), fasting blood glucose (FBG) level, gut microbiota, fecal short-chain fatty acids (SCFAs) production, and the correlation between DM-related indices and gut microbes, in rats were investigated. Chebulic acid (0.368%), gallic acid (0.469%), andrographolide (1.304%), berberine (6.442%), and numerous polysaccharides were the most representative constituents in PHE. A more significant BW gain and a reduction in FBG level towards normal of PHE 600 mg/kg treated rats group were resulted at the end of 28th days of the study. Moreover, the composition of the gut microbiota corroborated the study's hypothesis, as evidenced by an increased ratio of Bacteroidetes to Firmicutes and some beneficial microbial species, including Prevotella copri and Lactobacillus hamster. The relative abundance of Bifidobacterium pseudolongum, Ruminococcus bromii, and Blautia producta was found to decline in PHE treatment groups as compared to diabetic group. The abundance of beneficial bacteria in PHE 600 mg/kg treatment group was concurrently associated with increased SCFAs concentrations of acetate and propionate (7.26 nmol/g and 4.13 nmol/g). The findings of this study suggest a promising approach to prevent DM by demonstrating that these naturally occurring compounds decreased FBG levels by increasing SCFAs content and SCFAs producing gut microbiota.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Pradeep Kumar
- Department of Botany, MMV, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Sunil Kumar Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov On Don, Russia
| | - Kavindra Nath Tiwari
- Department of Botany, MMV, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Anand Kumar Singh
- Department of Chemistry, Mariahu PG College, VBS Purvanchal University, Jaunpur, Uttar Pradesh, 222161, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov On Don, Russia
| | - Ajay Kumar Pandey
- Department of Kaychikitsa, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Prabhat Upadhyay
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
8
|
Saadh MJ, Mustafa AN, Mustafa MA, S RJ, Dabis HK, Prasad GVS, Mohammad IJ, Adnan A, Idan AH. The role of gut-derived short-chain fatty acids in Parkinson's disease. Neurogenetics 2024; 25:307-336. [PMID: 39266892 DOI: 10.1007/s10048-024-00779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/29/2024] [Indexed: 09/14/2024]
Abstract
The emerging function of short-chain fatty acids (SCFAs) in Parkinson's disease (PD) has been investigated in this article. SCFAs, which are generated via the fermentation of dietary fiber by gut microbiota, have been associated with dysfunction of the gut-brain axis and, neuroinflammation. These processes are integral to the development of PD. This article examines the potential therapeutic implications of SCFAs in the management of PD, encompassing their capacity to modulate gastrointestinal permeability, neuroinflammation, and neuronal survival, by conducting an extensive literature review. As a whole, this article emphasizes the potential therapeutic utility of SCFAs as targets for the management and treatment of PD.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan.
| | | | - Mohammed Ahmed Mustafa
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Pharmacy, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Renuka Jyothi S
- Department of Biotechnology and Genetics, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | | | - G V Siva Prasad
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra, Pradesh-531162, India
| | - Imad Jassim Mohammad
- College of Health and Medical Technology, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | - Ahmed Adnan
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
9
|
Yüksel E, Voragen AGJ, Kort R. The pectin metabolizing capacity of the human gut microbiota. Crit Rev Food Sci Nutr 2024:1-23. [PMID: 39264366 DOI: 10.1080/10408398.2024.2400235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The human gastrointestinal microbiota, densely populated with a diverse array of microorganisms primarily from the bacterial phyla Bacteroidota, Bacillota, and Actinomycetota, is crucial for maintaining health and physiological functions. Dietary fibers, particularly pectin, significantly influence the composition and metabolic activity of the gut microbiome. Pectin is fermented by gut bacteria using carbohydrate-active enzymes (CAZymes), resulting in the production of short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate, which provide various health benefits. The gastrointestinal microbiota has evolved to produce CAZymes that target different pectin components, facilitating cross-feeding within the microbial community. This review explores the fermentation of pectin by various gut bacteria, focusing on the involved transport systems, CAZyme families, SCFA synthesis capacity, and effects on microbial ecology in the gut. It addresses the complexities of the gut microbiome's response to pectin and highlights the importance of microbial cross-feeding in maintaining a balanced and diverse gut ecosystem. Through a systematic analysis of pectinolytic CAZyme production, this review provides insights into the enzymatic mechanisms underlying pectin degradation and their broader implications for human health, paving the way for more targeted and personalized dietary strategies.
Collapse
Affiliation(s)
- Ecem Yüksel
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Alphons G J Voragen
- Keep Food Simple, Driebergen, The Netherlands
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Remco Kort
- Amsterdam Institute for Life and Environment (A-LIFE), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- ARTIS-Micropia, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Guo L, Xi B, Lu L. Strategies to enhance production of metabolites in microbial co-culture systems. BIORESOURCE TECHNOLOGY 2024; 406:131049. [PMID: 38942211 DOI: 10.1016/j.biortech.2024.131049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/06/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Increasing evidence shows that microbial synthesis plays an important role in producing high value-added products. However, microbial monoculture generally hampers metabolites production and limits scalability due to the increased metabolic burden on the host strain. In contrast, co-culture is a more flexible approach to improve the environmental adaptability and reduce the overall metabolic burden. The well-defined co-culturing microbial consortia can tap their metabolic potential to obtain yet-to-be discovered and pre-existing metabolites. This review focuses on the use of a co-culture strategy and its underlying mechanisms to enhance the production of products. Notably, the significance of comprehending the microbial interactions, diverse communication modes, genetic information, and modular co-culture involved in co-culture systems were highlighted. Furthermore, it addresses the current challenges and outlines potential future directions for microbial co-culture. This review provides better understanding the diversity and complexity of the interesting interaction and communication to advance the development of co-culture techniques.
Collapse
Affiliation(s)
- Lichun Guo
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214122, PR China; State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Bingwen Xi
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214122, PR China
| | - Liushen Lu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
11
|
Horasan Sagbasan B, Williams CM, Bell L, Barfoot KL, Poveda C, Walton GE. Inulin and Freeze-Dried Blueberry Intervention Lead to Changes in the Microbiota and Metabolites within In Vitro Studies and in Cognitive Function within a Small Pilot Trial on Healthy Children. Microorganisms 2024; 12:1501. [PMID: 39065269 PMCID: PMC11279127 DOI: 10.3390/microorganisms12071501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The relationship between the gut microbiota and cognitive health is complex and bidirectional, being significantly impacted by our diet. Evidence indicates that polyphenols and inulin can impact cognitive function via various mechanisms, one of which is the gut microbiota. In this study, effects of a wild blueberry treatment (WBB) and enriched chicory inulin powder were investigated both in vitro and in vivo. Gut microbiota composition and metabolites, including neurotransmitters, were assessed upon faecal microbial fermentation of WBB and inulin in a gut model system. Secondly, microbiota changes and cognitive function were assessed in children within a small pilot (n = 13) trial comparing WBB, inulin, and a maltodextrin placebo, via a series of tests measuring executive function and memory function, with faecal sampling at baseline, 4 weeks post-intervention and after a 4 week washout period. Both WBB and inulin led to microbial changes and increases in levels of short chain fatty acids in vitro. In vivo significant improvements in executive function and memory were observed following inulin and WBB consumption as compared to placebo. Cognitive benefits were accompanied by significant increases in Faecalibacterium prausnitzii in the inulin group, while in the WBB group, Bacteroidetes significantly increased and Firmicutes significantly decreased (p < 0.05). As such, WBB and inulin both impact the microbiota and may impact cognitive function via different gut-related or other mechanisms. This study highlights the important influence of diet on cognitive function that could, in part, be mediated by the gut microbiota.
Collapse
Affiliation(s)
- Buket Horasan Sagbasan
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AP, UK
| | - Claire M Williams
- Department of Psychology, University of Reading, Earley Gate, Whiteknights, Reading RG6 6AL, UK
| | - Lynne Bell
- Department of Psychology, University of Reading, Earley Gate, Whiteknights, Reading RG6 6AL, UK
| | - Katie L Barfoot
- Department of Psychology, University of Reading, Earley Gate, Whiteknights, Reading RG6 6AL, UK
| | - Carlos Poveda
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AP, UK
| | - Gemma E Walton
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading RG6 6AP, UK
| |
Collapse
|
12
|
Meyer C, Brockmueller A, Ruiz de Porras V, Shakibaei M. Microbiota and Resveratrol: How Are They Linked to Osteoporosis? Cells 2024; 13:1145. [PMID: 38994996 PMCID: PMC11240679 DOI: 10.3390/cells13131145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/18/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024] Open
Abstract
Osteoporosis (OP), which is characterized by a decrease in bone density and increased susceptibility to fractures, is closely linked to the gut microbiota (GM). It is increasingly realized that the GM plays a key role in the maintenance of the functioning of multiple organs, including bone, by producing bioactive metabolites such as short-chain fatty acids (SCFA). Consequently, imbalances in the GM, referred to as dysbiosis, have been identified with a significant reduction in beneficial metabolites, such as decreased SCFA associated with increased chronic inflammatory processes, including the activation of NF-κB at the epigenetic level, which is recognized as the main cause of many chronic diseases, including OP. Furthermore, regular or long-term medications such as antibiotics and many non-antibiotics such as proton pump inhibitors, chemotherapy, and NSAIDs, have been found to contribute to the development of dysbiosis, highlighting an urgent need for new treatment approaches. A promising preventive and adjuvant approach is to combat dysbiosis with natural polyphenols such as resveratrol, which have prebiotic functions and ensure an optimal microenvironment for beneficial GM. Resveratrol offers a range of benefits, including anti-inflammatory, anti-oxidant, analgesic, and prebiotic effects. In particular, the GM has been shown to convert resveratrol, into highly metabolically active molecules with even more potent beneficial properties, supporting a synergistic polyphenol-GM axis. This review addresses the question of how the GM can enhance the effects of resveratrol and how resveratrol, as an epigenetic modulator, can promote the growth and diversity of beneficial GM, thus providing important insights for the prevention and co-treatment of OP.
Collapse
Affiliation(s)
- Christine Meyer
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany; (C.M.); (A.B.)
| | - Aranka Brockmueller
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany; (C.M.); (A.B.)
| | - Vicenç Ruiz de Porras
- CARE Program, Germans Trias i Pujol Research Institute (IGTP), Camí de les Escoles, s/n, Badalona, 08916 Barcelona, Spain;
- Badalona Applied Research Group in Oncology (B⋅ARGO), Catalan Institute of Oncology, Camí de les Escoles, s/n, Badalona, 08916 Barcelona, Spain
- GRET and Toxicology Unit, Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
| | - Mehdi Shakibaei
- Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-University Munich, Pettenkoferstr. 11, D-80336 Munich, Germany; (C.M.); (A.B.)
| |
Collapse
|
13
|
Song Q, Zhu Y, Liu X, Liu H, Zhao X, Xue L, Yang S, Wang Y, Liu X. Changes in the gut microbiota of patients with sarcopenia based on 16S rRNA gene sequencing: a systematic review and meta-analysis. Front Nutr 2024; 11:1429242. [PMID: 39006102 PMCID: PMC11239431 DOI: 10.3389/fnut.2024.1429242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Introduction Sarcopenia, an age-related disease, has become a major public health concern, threatening muscle health and daily functioning in older adults around the world. Changes in the gut microbiota can affect skeletal muscle metabolism, but the exact association is unclear. The richness of gut microbiota refers to the number of different species in a sample, while diversity not only considers the number of species but also the evenness of their abundances. Alpha diversity is a comprehensive metric that measures both the number of different species (richness) and the evenness of their abundances, thereby providing a thorough understanding of the species composition and structure of a community. Methods This meta-analysis explored the differences in intestinal microbiota diversity and richness between populations with sarcopenia and non-sarcopenia based on 16 s rRNA gene sequencing and identified new targets for the prevention and treatment of sarcopenia. PubMed, Embase, Web of Science, and Google Scholar databases were searched for cross-sectional studies on the differences in gut microbiota between sarcopenia and non-sarcopenia published from 1995 to September 2023 scale and funnel plot analysis assessed the risk of bias, and performed a meta-analysis with State v.15. 1. Results A total of 17 randomized controlled studies were included, involving 4,307 participants aged 43 to 87 years. The alpha diversity of intestinal flora in the sarcopenia group was significantly reduced compared to the non-sarcopenia group: At the richness level, the proportion of Actinobacteria and Fusobacteria decreased, although there was no significant change in other phyla. At the genus level, the abundance of f-Ruminococcaceae; g-Faecalibacterium, g-Prevotella, Lachnoclostridium, and other genera decreased, whereas the abundance of g-Bacteroides, Parabacteroides, and Shigella increased. Discussion This study showed that the richness of the gut microbiota decreased with age in patients with sarcopenia. Furthermore, the relative abundance of different microbiota changed related to age, comorbidity, participation in protein metabolism, and other factors. This study provides new ideas for targeting the gut microbiota for the prevention and treatment of sarcopenia. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=475887, CRD475887.
Collapse
Affiliation(s)
- Qi Song
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
- Xi'an Physical Education University, Xi'an, China
| | - Youkang Zhu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
- Xi'an Physical Education University, Xi'an, China
| | - Xiao Liu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
- Xi'an Physical Education University, Xi'an, China
| | - Hai Liu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
- Xi'an Physical Education University, Xi'an, China
| | | | - Liyun Xue
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
- Xi'an Physical Education University, Xi'an, China
| | - Shaoying Yang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
- Xi'an Physical Education University, Xi'an, China
| | - Yujia Wang
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
- Xi'an Physical Education University, Xi'an, China
| | - Xifang Liu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
14
|
Xiao M, Zhang C, Duan H, Narbad A, Zhao J, Chen W, Zhai Q, Yu L, Tian F. Cross-feeding of bifidobacteria promotes intestinal homeostasis: a lifelong perspective on the host health. NPJ Biofilms Microbiomes 2024; 10:47. [PMID: 38898089 PMCID: PMC11186840 DOI: 10.1038/s41522-024-00524-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
Throughout the life span of a host, bifidobacteria have shown superior colonization and glycan abilities. Complex glycans, such as human milk oligosaccharides and plant glycans, that reach the colon are directly internalized by the transport system of bifidobacteria, cleaved into simple structures by extracellular glycosyl hydrolase, and transported to cells for fermentation. The glycan utilization of bifidobacteria introduces cross-feeding activities between bifidobacterial strains and other microbiota, which are influenced by host nutrition and regulate gut homeostasis. This review discusses bifidobacterial glycan utilization strategies, focusing on the cross-feeding involved in bifidobacteria and its potential health benefits. Furthermore, the impact of cross-feeding on the gut trophic niche of bifidobacteria and host health is also highlighted. This review provides novel insights into the interactions between microbe-microbe and host-microbe.
Collapse
Affiliation(s)
- Meifang Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chuan Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hui Duan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Arjan Narbad
- Quadram Institute Bioscience, Norwich Research Park Colney, Norwich, Norfolk, NR4 7UA, UK
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| | - Fengwei Tian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
15
|
Cattero V, Roussel C, Lessard-Lord J, Roy D, Desjardins Y. Supplementation with a cranberry extract favors the establishment of butyrogenic guilds in the human fermentation SHIME system. MICROBIOME RESEARCH REPORTS 2024; 3:34. [PMID: 39421251 PMCID: PMC11480733 DOI: 10.20517/mrr.2024.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 10/19/2024]
Abstract
Background: Proanthocyanidins (PAC) and oligosaccharides from cranberry exhibit multiple bioactive health properties and persist intact in the colon post-ingestion. They display a complex bidirectional interaction with the microbiome, which varies based on both time and specific regions of the gut; the nature of this interaction remains inadequately understood. Therefore, we aimed to investigate the impact of cranberry extract on gut microbiota ecology and function. Methods: We studied the effect of a cranberry extract on six healthy participants over a two-week supplementation period using the ex vivo artificial fermentation system TWIN-M-SHIME to replicate luminal and mucosal niches of the ascending and transverse colon. Results: Our findings revealed a significant influence of cranberry extract supplementation on the gut microbiota ecology under ex vivo conditions, leading to a considerable change in bacterial metabolism. Specifically, Bifidobacterium adolescentis (B. adolescentis) flourished in the mucus of the ascending colon, accompanied by a reduced adhesion of Proteobacteria. The overall bacterial metabolism shifted from acetate to propionate and, notably, butyrate production following PAC supplementation. Although there were variations in microbiota modulation among the six donors, the butyrogenic effect induced by the supplementation remained consistent across all individuals. This metabolic shift was associated with a rise in the relative abundance of several short-chain fatty acid (SCFA)-producing bacterial genera and the formation of a consortium of key butyrogenic bacteria in the mucus of the transverse colon. Conclusions: These observations suggest that cranberry extract supplementation has the potential to modulate the gut microbiota in a manner that may promote overall gut health.
Collapse
Affiliation(s)
- Valentina Cattero
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec City G1V 0A6, Quebec, Canada
- Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec City G1V 0A6, Quebec, Canada
| | - Charlène Roussel
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec City G1V 0A6, Quebec, Canada
- Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec City G1V 0A6, Quebec, Canada
- Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Laval University, Quebec City G1V 0A6, Quebec, Canada
| | - Jacob Lessard-Lord
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec City G1V 0A6, Quebec, Canada
- Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec City G1V 0A6, Quebec, Canada
| | - Denis Roy
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec City G1V 0A6, Quebec, Canada
- Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec City G1V 0A6, Quebec, Canada
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Quebec City G1V 0A6, Quebec, Canada
- Centre Nutrition, Santé et Société (NUTRISS), INAF Laval University, Quebec City G1V 0A6, Quebec, Canada
| |
Collapse
|
16
|
Selma-Royo M, Dubois L, Manara S, Armanini F, Cabrera-Rubio R, Valles-Colomer M, González S, Parra-Llorca A, Escuriet R, Bode L, Martínez-Costa C, Segata N, Collado MC. Birthmode and environment-dependent microbiota transmission dynamics are complemented by breastfeeding during the first year. Cell Host Microbe 2024; 32:996-1010.e4. [PMID: 38870906 PMCID: PMC11183301 DOI: 10.1016/j.chom.2024.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/24/2024] [Accepted: 05/10/2024] [Indexed: 06/15/2024]
Abstract
The composition and maturation of the early-life microbiota are modulated by a number of perinatal factors, whose interplay in relation to microbial vertical transmission remains inadequately elucidated. Using recent strain-tracking methodologies, we analyzed mother-to-infant microbiota transmission in two different birth environments: hospital-born (vaginal/cesarean) and home-born (vaginal) infants and their mothers. While delivery mode primarily explains initial compositional differences, place of birth impacts transmission timing-being early in homebirths and delayed in cesarean deliveries. Transmission patterns vary greatly across species and birth groups, yet certain species, like Bifidobacterium longum, are consistently vertically transmitted regardless of delivery setting. Strain-level analysis of B. longum highlights relevant and consistent subspecies replacement patterns mainly explained by breastfeeding practices, which drive changes in human milk oligosaccharide (HMO) degrading capabilities. Our findings highlight how delivery setting, breastfeeding duration, and other lifestyle preferences collectively shape vertical transmission, impacting infant gut colonization during early life.
Collapse
Affiliation(s)
- Marta Selma-Royo
- Institute of Agrochemistry and Food Technology-Spanish National Research Council (IATA-CSIC), Paterna, Valencia, Spain; Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Léonard Dubois
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Serena Manara
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Federica Armanini
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Raúl Cabrera-Rubio
- Institute of Agrochemistry and Food Technology-Spanish National Research Council (IATA-CSIC), Paterna, Valencia, Spain
| | - Mireia Valles-Colomer
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy; MELIS Department, Universitat Pompeu Fabra, Barcelona, Spain
| | - Sonia González
- Department of Functional Biology, University of Oviedo, Oviedo, Spain; Diet Microbiota and Health Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Anna Parra-Llorca
- Health Research Institute La Fe, Neonatal Research Group, Division of Neonatology, Valencia, Spain
| | - Ramon Escuriet
- Gerencia de Procesos Integrales de Salud. Area Asistencial, Servicio Catalan de la Salud, Generalitat de Catalunya, Centre for Research in Health and Economics, Universidad Pompeu Fabra, Barcelona, Spain
| | - Lars Bode
- Department of Pediatrics, Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (LRF MOMI CORE), Human Milk Institute (HMI), University of California, San Diego, La Jolla, CA, USA
| | - Cecilia Martínez-Costa
- Department of Pediatrics, Hospital Clínico Universitario, University of Valencia, Spain; Nutrition Research Group of INCLIVA, Valencia, Spain
| | - Nicola Segata
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy.
| | - Maria Carmen Collado
- Institute of Agrochemistry and Food Technology-Spanish National Research Council (IATA-CSIC), Paterna, Valencia, Spain.
| |
Collapse
|
17
|
Nguyen NTA, Jiang Y, McQuade JL. Eating away cancer: the potential of diet and the microbiome for shaping immunotherapy outcome. Front Immunol 2024; 15:1409414. [PMID: 38873602 PMCID: PMC11169628 DOI: 10.3389/fimmu.2024.1409414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
The gut microbiome (GMB) plays a substantial role in human health and disease. From affecting gut barrier integrity to promoting immune cell differentiation, the GMB is capable of shaping host immunity and thus oncogenesis and anti-cancer therapeutic response, particularly with immunotherapy. Dietary patterns and components are key determinants of GMB composition, supporting the investigation of the diet-microbiome-immunity axis as a potential avenue to enhance immunotherapy response in cancer patients. As such, this review will discuss the role of the GMB and diet on anti-cancer immunity. We demonstrate that diet affects anti-cancer immunity through both GMB-independent and GMB-mediated mechanisms, and that different diet patterns mold the GMB's functional and taxonomic composition in distinctive ways. Dietary modulation therefore shows promise as an intervention for improving cancer outcome; however, further and more extensive research in human cancer populations is needed.
Collapse
Affiliation(s)
| | | | - Jennifer L. McQuade
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
18
|
Barry DJ, Farragher JB, Betik AC, Fyfe JJ, Convit L, Cooke MB. Investigating the effects of synbiotic supplementation on functional movement, strength and muscle health in older Australians: a study protocol for a double-blind, randomized, placebo-controlled trial. Trials 2024; 25:307. [PMID: 38715143 PMCID: PMC11077830 DOI: 10.1186/s13063-024-08130-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Aging has been associated with a progressive loss of skeletal muscle quality, quantity and strength, which may result in a condition known as sarcopenia, leading to a decline in physical performance, loss of independence and reduced quality of life. While the cause of impaired physical functioning observed in elderly populations appears to be multifactorial, recent evidence suggests that age-associated alterations in gut microbiota could be a contributing factor. The primary objective will be to assess the effects of a dietary synbiotic formulation on sarcopenia-related functional outcomes such as handgrip strength, gait speed and physical performance within older individuals living independently. The secondary objective will be to examine associations between changes in gut microbiota composition, functional performance and lean muscle mass. METHODS Seventy-four elderly (60-85 years) participants will be randomized in a double-blind, placebo-controlled fashion to either an intervention or control group. The intervention group (n = 37) will receive oral synbiotic formulation daily for 16 weeks. The control group (n = 37) will receive placebo. Assessments of physical performance (including Short Physical Performance Battery, handgrip strength and timed up-and-go tests) and muscle ultrasonography will be performed at 4 time points (baseline and weeks 8, 16 and 20). Likewise, body composition via bioelectric impedance analysis and blood and stool samples will be collected at each time point. Dual-energy X-ray absorptiometry will be performed at baseline and week 16. The primary outcomes will be between-group changes in physical performance from baseline to 16 weeks. Secondary outcomes include changes in body composition, muscle mass and architecture, fecal microbiota composition and diversity, and fecal and plasma metabolomics. DISCUSSION Gut-modulating supplements appear to be effective in modifying gut microbiota composition in healthy older adults. However, it is unclear whether these changes translate into functional and/or health improvements. In the present study, we will investigate the effects of a synbiotic formulation on measures of physical performance, strength and muscle health in healthy older populations. TRIAL REGISTRATION This study was prospectively registered with the Australian New Zealand Clinical Trials Registry (ACTRN12622000652774) in May 2022.
Collapse
Affiliation(s)
- David J Barry
- School of Health Sciences, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Joshua B Farragher
- School of Health Sciences, Swinburne University of Technology, Melbourne, VIC, Australia
| | - Andrew C Betik
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Jackson J Fyfe
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC, Australia
| | - Lilia Convit
- Centre for Sports Research (CSR), School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC, Australia
| | - Matthew B Cooke
- Sport, Performance and Nutrition Research Group, School of Allied Health, Human Services and Sport, La Trobe University, Bundoora, VIC, Australia.
| |
Collapse
|
19
|
Zakharevich NV, Morozov MD, Kanaeva VA, Filippov MS, Zyubko TI, Ivanov AB, Ulyantsev VI, Klimina KM, Olekhnovich EI. Systemic metabolic depletion of gut microbiome undermines responsiveness to melanoma immunotherapy. Life Sci Alliance 2024; 7:e202302480. [PMID: 38448159 PMCID: PMC10917649 DOI: 10.26508/lsa.202302480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 03/08/2024] Open
Abstract
Immunotherapy has proven to be a boon for patients battling metastatic melanoma, significantly improving their clinical condition and overall quality of life. A compelling link between the composition of the gut microbiome and the efficacy of immunotherapy has been established in both animal models and human patients. However, the precise biological mechanisms by which gut microbes influence treatment outcomes remain poorly understood. Using a robust dataset of 680 fecal metagenomes from melanoma patients, a detailed catalog of metagenome-assembled genomes (MAGs) was constructed to explore the compositional and functional properties of the gut microbiome. Our study uncovered significant findings that deepen the understanding of the intricate relationship between gut microbes and the efficacy of melanoma immunotherapy. In particular, we discovered the specific metagenomic profile of patients with favorable treatment outcomes, characterized by a prevalence of MAGs with increased overall metabolic potential and proficiency in polysaccharide utilization, along with those responsible for cobalamin and amino acid production. Furthermore, our investigation of the biosynthetic pathways of short-chain fatty acids, known for their immunomodulatory role, revealed a differential abundance of these pathways among the specific MAGs. Among others, the cobalamin-dependent Wood-Ljungdahl pathway of acetate synthesis was directly associated with responsiveness to melanoma immunotherapy.
Collapse
Affiliation(s)
- Natalia V Zakharevich
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian
| | - Maxim D Morozov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian
| | - Vera A Kanaeva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian
- Moscow Institute of Physics and Technology, Moscow, Russian
| | | | | | - Artem B Ivanov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian
- ITMO University, Saint Petersburg, Russian
| | | | - Ksenia M Klimina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian
| | - Evgenii I Olekhnovich
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russian
| |
Collapse
|
20
|
Roux AE, Langella P, Martin R. Overview on biotics development. Curr Opin Biotechnol 2024; 86:103073. [PMID: 38335705 DOI: 10.1016/j.copbio.2024.103073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/15/2024] [Accepted: 01/15/2024] [Indexed: 02/12/2024]
Abstract
Although probiotics have been used in food products and supplements for decades, there has been a considerable increase in their use more recently. Recent technological advances have thus led to major advances in knowledge of the gut microbiota, enabling a significant development of biotics. In this review, we discuss the uses of traditional probiotics but also the discovery of next-generation probiotics that could be used as live biotherapeutics. These novel preventive and therapeutic strategies hold promise for the treatment of numerous diseases such as inflammatory bowel diseases such as Crohn's disease and ulcerative colitis. Probiotic bacteria can be consumed alone, or in combination with prebiotics as synbiotics, or mixed with other probiotic strains to form a consortium for enhanced effects. We also discuss the benefits of using postbiotics.
Collapse
Affiliation(s)
- Anne-Emmanuelle Roux
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Philippe Langella
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| | - Rebeca Martin
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France.
| |
Collapse
|
21
|
Manrique P, Montero I, Fernandez-Gosende M, Martinez N, Cantabrana CH, Rios-Covian D. Past, present, and future of microbiome-based therapies. MICROBIOME RESEARCH REPORTS 2024; 3:23. [PMID: 38841413 PMCID: PMC11149097 DOI: 10.20517/mrr.2023.80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 06/07/2024]
Abstract
Technological advances in studying the human microbiome in depth have enabled the identification of microbial signatures associated with health and disease. This confirms the crucial role of microbiota in maintaining homeostasis and the host health status. Nowadays, there are several ways to modulate the microbiota composition to effectively improve host health; therefore, the development of therapeutic treatments based on the gut microbiota is experiencing rapid growth. In this review, we summarize the influence of the gut microbiota on the development of infectious disease and cancer, which are two of the main targets of microbiome-based therapies currently being developed. We analyze the two-way interaction between the gut microbiota and traditional drugs in order to emphasize the influence of gut microbial composition on drug effectivity and treatment response. We explore the different strategies currently available for modulating this ecosystem to our benefit, ranging from 1st generation intervention strategies to more complex 2nd generation microbiome-based therapies and their regulatory framework. Lastly, we finish with a quick overview of what we believe is the future of these strategies, that is 3rd generation microbiome-based therapies developed with the use of artificial intelligence (AI) algorithms.
Collapse
|
22
|
Ticinesi A, Nouvenne A, Cerundolo N, Parise A, Mena P, Meschi T. The interaction between Mediterranean diet and intestinal microbiome: relevance for preventive strategies against frailty in older individuals. Aging Clin Exp Res 2024; 36:58. [PMID: 38448632 PMCID: PMC10917833 DOI: 10.1007/s40520-024-02707-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/22/2024] [Indexed: 03/08/2024]
Abstract
Age-related changes in intestinal microbiome composition and function are increasingly recognized as pivotal in the pathophysiology of aging and are associated with the aging phenotype. Diet is a major determinant of gut-microbiota composition throughout the entire lifespan, and several of the benefits of a healthy diet in aging could be mediated by the microbiome. Mediterranean diet (MD) is a traditional dietary pattern regarded as the healthy diet paradigm, and a large number of studies have demonstrated its benefits in promoting healthy aging. MD has also a positive modulatory effect on intestinal microbiome, favoring bacterial taxa involved in the synthesis of several bioactive compounds, such as short-chain fatty acids (SCFAs), that counteract inflammation, anabolic resistance, and tissue degeneration. Intervention studies conducted in older populations have suggested that the individual response of older subjects to MD, in terms of reduction of frailty scores and amelioration of cognitive function, is significantly mediated by the gut-microbiota composition and functionality. In this context, the pathophysiology of intestinal microbiome in aging should be considered when designing MD-based interventions tailored to the needs of geriatric patients.
Collapse
Affiliation(s)
- Andrea Ticinesi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, Italy.
- Microbiome Research Hub, University of Parma, Parma, Italy.
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria Di Parma, Parma, Italy.
| | - Antonio Nouvenne
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria Di Parma, Parma, Italy
| | - Nicoletta Cerundolo
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria Di Parma, Parma, Italy
| | - Alberto Parise
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria Di Parma, Parma, Italy
| | - Pedro Mena
- Microbiome Research Hub, University of Parma, Parma, Italy
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy
| | - Tiziana Meschi
- Department of Medicine and Surgery, University of Parma, Via Antonio Gramsci 14, 43126, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
- Geriatric-Rehabilitation Department, Azienda Ospedaliero-Universitaria Di Parma, Parma, Italy
| |
Collapse
|
23
|
Lessard-Lord J, Roussel C, Lupien-Meilleur J, Généreux P, Richard V, Guay V, Roy D, Desjardins Y. Short term supplementation with cranberry extract modulates gut microbiota in human and displays a bifidogenic effect. NPJ Biofilms Microbiomes 2024; 10:18. [PMID: 38448452 PMCID: PMC10918075 DOI: 10.1038/s41522-024-00493-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/22/2024] [Indexed: 03/08/2024] Open
Abstract
Cranberry is associated with multiple health benefits, which are mostly attributed to its high content of (poly)phenols, particularly flavan-3-ols. However, clinical trials attempting to demonstrate these positive effects have yielded heterogeneous results, partly due to the high inter-individual variability associated with gut microbiota interaction with these molecules. In fact, several studies have demonstrated the ability of these molecules to modulate the gut microbiota in animal and in vitro models, but there is a scarcity of information in human subjects. In addition, it has been recently reported that cranberry also contains high concentrations of oligosaccharides, which could contribute to its bioactivity. Hence, the aim of this study was to fully characterize the (poly)phenolic and oligosaccharidic contents of a commercially available cranberry extract and evaluate its capacity to positively modulate the gut microbiota of 28 human subjects. After only four days, the (poly)phenols and oligosaccharides-rich cranberry extract, induced a strong bifidogenic effect, along with an increase in the abundance of several butyrate-producing bacteria, such as Clostridium and Anaerobutyricum. Plasmatic and fecal short-chain fatty acids profiles were also altered by the cranberry extract with a decrease in acetate ratio and an increase in butyrate ratio. Finally, to characterize the inter-individual variability, we stratified the participants according to the alterations observed in the fecal microbiota following supplementation. Interestingly, individuals having a microbiota characterized by the presence of Prevotella benefited from an increase in Faecalibacterium with the cranberry extract supplementation.
Collapse
Affiliation(s)
- Jacob Lessard-Lord
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Charlène Roussel
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Laval University, Québec, QC, Canada
| | - Joseph Lupien-Meilleur
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
- Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Pamela Généreux
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Véronique Richard
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Valérie Guay
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada
| | - Denis Roy
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
- Department of Food Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada.
- Nutrition, Health and Society Centre (NUTRISS), INAF, Laval University, Québec, QC, Canada.
- Department of Plant Science, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada.
| |
Collapse
|
24
|
Chang KC, Nagarajan N, Gan YH. Short-chain fatty acids of various lengths differentially inhibit Klebsiella pneumoniae and Enterobacteriaceae species. mSphere 2024; 9:e0078123. [PMID: 38305176 PMCID: PMC10900885 DOI: 10.1128/msphere.00781-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024] Open
Abstract
The gut microbiota is inextricably linked to human health and disease. It can confer colonization resistance against invading pathogens either through niche occupation and nutrient competition or via its secreted metabolites. Short-chain fatty acids (SCFA) are the primary metabolites in the gut as a result of dietary fiber fermentation by the gut microbiota. In this work, we demonstrate that the interaction of single-species gut commensals on solid media is insufficient for pathogen inhibition, but supernatants from monocultures of these commensal bacteria enriched in acetate confer inhibition against anaerobic growth of the enteric pathogen Klebsiella pneumoniae. The three primary SCFAs (acetate, propionate, and butyrate) strongly inhibit the intestinal commensal Escherichia coli Nissle as well as a panel of enteric pathogens besides K. pneumoniae at physiological pH of the cecum and ascending colon. This inhibition was significantly milder on anaerobic gut commensals Bacteroides thetaiotaomicron and Bifidobacterium adolescentis previously demonstrated to be associated with microbiota recovery after antibiotic-induced dysbiosis. We describe a general suppression of bacterial membrane potential by these SCFAs at physiological cecum and ascending colonic pH. Furthermore, the strength of bacterial inhibition increases with increasing alkyl chain length. Overall, the insights gained in this study shed light on the potential therapeutic use of SCFAs for conferring colonization resistance against invading pathogens in a dysbiotic gut.IMPORTANCERising antimicrobial resistance has made treatment of bacterial infections increasingly difficult. According to the World Health Organization, it has become a burgeoning threat to hospital and public health systems worldwide. This threat is largely attributed to the global rise of carbapenem-resistant Enterobacteriaceae in recent years, with common hospital-acquired pathogens growing increasingly resistant to last-line antibiotics. Antibiotics disrupt the homeostatic balance of the gut microbiota, resulting in the loss of colonization resistance against enteric pathogens. This work describes the ability of short-chain fatty acids (SCFAs) produced by gut microbiota to be effective against a wide panel of enteric pathogens without major impact on common gut commensal species. We also demonstrate a previously undescribed link between alkyl chain length and antibacterial effects of SCFAs. SCFAs, thus, hold promise as an alternative therapeutic option leveraging on the antimicrobial activity of these endogenously produced gut metabolites without disrupting gut microbiota homeostasis.
Collapse
Affiliation(s)
- Kai Chirng Chang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Niranjan Nagarajan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yunn-Hwen Gan
- Department of Biochemistry, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
25
|
Argentini C, Lugli GA, Tarracchini C, Fontana F, Mancabelli L, Viappiani A, Anzalone R, Angelini L, Alessandri G, Bianchi MG, Taurino G, Bussolati O, Milani C, van Sinderen D, Turroni F, Ventura M. Ecology- and genome-based identification of the Bifidobacterium adolescentis prototype of the healthy human gut microbiota. Appl Environ Microbiol 2024; 90:e0201423. [PMID: 38294252 PMCID: PMC10880601 DOI: 10.1128/aem.02014-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 02/01/2024] Open
Abstract
Bifidobacteria are among the first microbial colonizers of the human gut, being frequently associated with human health-promoting activities. In the current study, an in silico methodology based on an ecological and phylogenomic-driven approach allowed the selection of a Bifidobacterium adolescentis prototype strain, i.e., B. adolescentis PRL2023, which best represents the overall genetic content and functional features of the B. adolescentis taxon. Such features were confirmed by in vitro experiments aimed at evaluating the ability of this strain to survive in the gastrointestinal tract of the host and its ability to interact with human intestinal cells and other microbial gut commensals. In this context, co-cultivation of B. adolescentis PRL2023 and several gut commensals revealed various microbe-microbe interactions and indicated co-metabolism of particular plant-derived glycans, such as xylan.IMPORTANCEThe use of appropriate bacterial strains in experimental research becomes imperative in order to investigate bacterial behavior while mimicking the natural environment. In the current study, through in silico and in vitro methodologies, we were able to identify the most representative strain of the Bifidobacterium adolescentis species. The ability of this strain, B. adolescentis PRL2023, to cope with the environmental challenges imposed by the gastrointestinal tract, together with its ability to switch its carbohydrate metabolism to compete with other gut microorganisms, makes it an ideal choice as a B. adolescentis prototype and a member of the healthy microbiota of adults. This strain possesses a genetic blueprint appropriate for its exploitation as a candidate for next-generation probiotics.
Collapse
Affiliation(s)
- Chiara Argentini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Federico Fontana
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- GenProbio srl, Parma, Italy
| | - Leonardo Mancabelli
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | | | | | - Giulia Alessandri
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
| | - Massimiliano G. Bianchi
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Medicine and Surgery, Laboratory of General Pathology, University of Parma, Parma, Italy
| | - Giuseppe Taurino
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Medicine and Surgery, Laboratory of General Pathology, University of Parma, Parma, Italy
| | - Ovidio Bussolati
- Microbiome Research Hub, University of Parma, Parma, Italy
- Department of Medicine and Surgery, Laboratory of General Pathology, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, Bioscience Institute, National University of Ireland, Cork, Ireland
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| |
Collapse
|
26
|
Duysburgh C, Miclotte L, Green JB, Watts KT, Sardi MI, Chakrabarti A, Khafipour E, Marzorati M. Saccharomyces cerevisiae derived postbiotic alters gut microbiome metabolism in the human distal colon resulting in immunomodulatory potential in vitro. Front Microbiol 2024; 15:1358456. [PMID: 38410391 PMCID: PMC10895063 DOI: 10.3389/fmicb.2024.1358456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/22/2024] [Indexed: 02/28/2024] Open
Abstract
The yeast-based postbiotic EpiCor is a well-studied formulation, consisting of a complex mixture of bioactive molecules. In clinical studies, EpiCor postbiotic has been shown to reduce intestinal symptoms in a constipated population and support mucosal defense in healthy subjects. Anti-inflammatory potential and butyrogenic properties have been reported in vitro, suggesting a possible link between EpiCor's gut modulatory activity and immunomodulation. The current study used a standardized in vitro gut model, the Simulator of the Human Intestinal Microbial Ecosystem (SHIME®), to obtain a deeper understanding on host-microbiome interactions and potential microbiome modulation following repeated EpiCor administration. It was observed that EpiCor induced a functional shift in carbohydrate fermentation patterns in the proximal colon environment. Epicor promoted an increased abundance of Bifidobacterium in both the proximal and distal colon, affecting overall microbial community structure. Co-occurrence network analysis at the phylum level provided additional evidence of changes in the functional properties of microbial community promoted by EpiCor, increasing positive associations between Actinobacteria with microbes belonging to the Firmicutes phylum. These results, together with a significant increase in butyrate production provide additional support of EpiCor benefits to gut health. Investigation of host-microbiome interactions confirmed the immunomodulatory potential of the applied test product. Specific microbial alterations were observed in the distal colon, with metabotyping indicating that specific metabolic pathways, such as bile acid and tryptophan metabolism, were affected following EpiCor supplementation. These results, especially considering many effects were seen distally, further strengthen the position of EpiCor as a postbiotic with health promoting functionality in the gut, which could be further assessed in vivo.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Massimo Marzorati
- ProDigest BV, Ghent, Belgium
- Center of Microbial Ecology and Technology (CMET), Ghent University, Ghent, Belgium
| |
Collapse
|
27
|
Sibanda T, Marole TA, Thomashoff UL, Thantsha MS, Buys EM. Bifidobacterium species viability in dairy-based probiotic foods: challenges and innovative approaches for accurate viability determination and monitoring of probiotic functionality. Front Microbiol 2024; 15:1327010. [PMID: 38371928 PMCID: PMC10869629 DOI: 10.3389/fmicb.2024.1327010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
Bifidobacterium species are essential members of a healthy human gut microbiota. Their presence in the gut is associated with numerous health outcomes such as protection against gastrointestinal tract infections, inflammation, and metabolic diseases. Regular intake of Bifidobacterium in foods is a sustainable way of maintaining the health benefits associated with its use as a probiotic. Owing to their global acceptance, fermented dairy products (particularly yogurt) are considered the ideal probiotic carrier foods. As envisioned in the definition of probiotics as "live organisms," the therapeutic functionalities of Bifidobacterium spp. depend on maintaining their viability in the foods up to the point of consumption. However, sustaining Bifidobacterium spp. viability during the manufacture and shelf-life of fermented dairy products remains challenging. Hence, this paper discusses the significance of viability as a prerequisite for Bifidobacterium spp. probiotic functionality. The paper focuses on the stress factors that influence Bifidobacterium spp. viability during the manufacture and shelf life of yogurt as an archetypical fermented dairy product that is widely accepted as a delivery vehicle for probiotics. It further expounds the Bifidobacterium spp. physiological and genetic stress response mechanisms as well as the methods for viability retention in yogurt, such as microencapsulation, use of oxygen scavenging lactic acid bacterial strains, and stress-protective agents. The report also explores the topic of viability determination as a critical factor in probiotic quality assurance, wherein, the limitations of culture-based enumeration methods, the challenges of species and strain resolution in the presence of lactic acid bacterial starter and probiotic species are discussed. Finally, new developments and potential applications of next-generation viability determination methods such as flow cytometry, propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR), next-generation sequencing, and single-cell Raman spectroscopy (SCRS) methods are examined.
Collapse
Affiliation(s)
- Thulani Sibanda
- Department of Consumer and Food Sciences, University of Pretoria, Pretoria, South Africa
- Department of Applied Biology and Biochemistry, National University of Science and Technology, Bulawayo, Zimbabwe
- Department of Biology, National of University of Lesotho, Maseru, Lesotho
| | - Tlaleo Azael Marole
- Department of Consumer and Food Sciences, University of Pretoria, Pretoria, South Africa
| | | | - Mapitsi S. Thantsha
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Elna M. Buys
- Department of Consumer and Food Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
28
|
Zhao S, Lau R, Zhong Y, Chen MH. Lactate cross-feeding between Bifidobacterium species and Megasphaera indica contributes to butyrate formation in the human colonic environment. Appl Environ Microbiol 2024; 90:e0101923. [PMID: 38126785 PMCID: PMC10807433 DOI: 10.1128/aem.01019-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Butyrate, a physiologically active molecule, can be synthesized through metabolic interactions among colonic microorganisms. Previously, in a fermenting trial of human fecal microbiota, we observed that the butyrogenic effect positively correlated with the increasing Bifidobacterium population and an unidentified Megasphaera species. Therefore, we hypothesized that a cross-feeding phenomenon exists between Bifidobacterium and Megasphaera, where Megasphaera is the butyrate producer, and its growth relies on the metabolites generated by Bifidobacterium. To validate this hypothesis, three bacterial species (B. longum, B. pseudocatenulatum, and M. indica) were isolated from fecal cultures fermenting hydrolyzed xylan; pairwise cocultures were conducted between the Bifidobacterium and M. indica isolates; the microbial interactions were determined based on bacterial genome information, cell growth, substrate consumption, metabolite quantification, and metatranscriptomics. The results indicated that two Bifidobacterium isolates contained distinct gene clusters for xylan utilization and expressed varying substrate preferences. In contrast, M. indica alone scarcely grew on the xylose-based substrates. The growth of M. indica was significantly elevated by coculturing it with bifidobacteria, while the two Bifidobacterium species responded differently in the kinetics of cell growth and substrate consumption. Coculturing led to the depletion of lactate and increased the formation of butyrate. An RNA-seq analysis further revealed the upregulation of M. indica genes involved in the lactate utilization and butyrate formation pathways. We concluded that lactate generated by Bifidobacterium through catabolizing xylose fueled the growth of M. indica and triggered the synthesis of butyrate. Our findings demonstrated a novel cross-feeding mechanism to generate butyrate in the human colon.IMPORTANCEButyrate is an important short-chain fatty acid that is produced in the human colon through microbial fermentation. Although many butyrate-producing bacteria exhibit a limited capacity to degrade nondigestible food materials, butyrate can be formed through cross-feeding microbial metabolites, such as acetate or lactate. Previously, the literature has explicated the butyrate-forming links between Bifidobacterium and Faecalibacterium prausnitzii and between Bifidobacterium and Eubacterium rectale. In this study, we provided an alternative butyrate synthetic pathway through the interaction between Bifidobacterium and Megasphaera indica. M. indica is a species named in 2014 and is indigenous to the human intestinal tract. Scientific studies explaining the function of M. indica in the human colon are still limited. Our results show that M. indica proliferated based on the lactate generated by bifidobacteria and produced butyrate as its end metabolic product. The pathways identified here may contribute to understanding butyrate formation in the gut microbiota.
Collapse
Affiliation(s)
- Sainan Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Raymond Lau
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Yang Zhong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- Department of Clinical Translational Research, Singapore General Hospital, Singapore, Singapore
| | - Ming-Hsu Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
29
|
Tintoré M, Cuñé J, Vu LD, Poppe J, Van den Abbeele P, Baudot A, de Lecea C. A Long-Chain Dextran Produced by Weissella cibaria Boosts the Diversity of Health-Related Gut Microbes Ex Vivo. BIOLOGY 2024; 13:51. [PMID: 38248481 PMCID: PMC10813514 DOI: 10.3390/biology13010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/19/2023] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Long-chain dextrans are α-glucans that can be produced by lactic acid bacteria. NextDextTM, a specific long-chain dextran with a high degree of polymerisation, produced using Weissella cibaria, was recently shown to exert prebiotic potential in vitro. In this study, the ex vivo SIFR® technology, recently validated to provide predictive insights into gut microbiome modulation down to the species level, was used to investigate the effects of this long-chain dextran on the gut microbiota of six human adults that altogether covered different enterotypes. A novel community modulation score (CMS) was introduced based on the strength of quantitative 16S rRNA gene sequencing and the highly controlled ex vivo conditions. This CMS overcomes the limitations of traditional α-diversity indices and its application in the current study revealed that dextran is a potent booster of microbial diversity compared to the reference prebiotic inulin (IN). Long-chain dextran not only exerted bifidogenic effects but also consistently promoted Bacteroides spp., Parabacteroides distasonis and butyrate-producing species like Faecalibacterium prausnitzii and Anaerobutyricum hallii. Further, long-chain dextran treatment resulted in lower gas production compared to IN, suggesting that long-chain dextran could be better tolerated. The additional increase in Bacteroides for dextran compared to IN is likely related to the higher propionate:acetate ratio, attributing potential to long-chain dextran for improving metabolic health and weight management. Moreover, the stimulation of butyrate by dextran suggests its potential for improving gut barrier function and inflammation. Overall, this study provides a novel tool for assessing gut microbial diversity ex vivo and positions long-chain dextran as a substrate that has unique microbial diversity enhancing properties.
Collapse
Affiliation(s)
- Maria Tintoré
- AB Biotek Human Nutrition and Health, Peterborough PE7 8QJ, UK
| | - Jordi Cuñé
- AB Biotek Human Nutrition and Health, Peterborough PE7 8QJ, UK
| | - Lam Dai Vu
- Cryptobiotix SA, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium; (L.D.V.)
| | - Jonas Poppe
- Cryptobiotix SA, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium; (L.D.V.)
| | | | - Aurélien Baudot
- Cryptobiotix SA, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium; (L.D.V.)
| | - Carlos de Lecea
- AB Biotek Human Nutrition and Health, Peterborough PE7 8QJ, UK
| |
Collapse
|
30
|
Grion BAR, Fonseca PLC, Kato RB, García GJY, Vaz ABM, Jiménez BN, Dambolenea AL, Garcia-Etxebarria K, Brenig B, Azevedo V, Bujanda L, Banales JM, Góes-Neto A. Identification of taxonomic changes in the fecal bacteriome associated with colorectal polyps and cancer: potential biomarkers for early diagnosis. Front Microbiol 2024; 14:1292490. [PMID: 38293554 PMCID: PMC10827328 DOI: 10.3389/fmicb.2023.1292490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Colorectal cancer (CRC) commonly arises in individuals with premalignant colon lesions known as polyps, with both conditions being influenced by gut microbiota. Host-related factors and inherent characteristics of polyps and tumors may contribute to microbiome variability, potentially acting as confounding factors in the discovery of taxonomic biomarkers for both conditions. In this study we employed shotgun metagenomics to analyze the taxonomic diversity of bacteria present in fecal samples of 90 clinical subjects (comprising 30 CRC patients, 30 with polyps and 30 controls). Our findings revealed a decrease in taxonomic richness among individuals with polyps and CRC, with significant dissimilarities observed among the study groups. We identified significant alterations in the abundance of specific taxa associated with polyps (Streptococcaceae, Lachnoclostridium, and Ralstonia) and CRC (Lactobacillales, Clostridiaceae, Desulfovibrio, SFB, Ruminococcus, and Faecalibacterium). Clostridiaceae exhibited significantly lower abundance in the early stages of CRC. Additionally, our study revealed a positive co-occurrence among underrepresented genera in CRC, while demonstrating a negative co-occurrence between Faecalibacterium and Desulfovibrio, suggesting potential antagonistic relationships. Moreover, we observed variations in taxonomic richness and/or abundance within the polyp and CRC bacteriome linked to polyp size, tumor stage, dyslipidemia, diabetes with metformin use, sex, age, and family history of CRC. These findings provide potential new biomarkers to enhance early CRC diagnosis while also demonstrating how intrinsic host factors contribute to establishing a heterogeneous microbiome in patients with CRC and polyps.
Collapse
Affiliation(s)
- Beatriz Alessandra Rudi Grion
- Laboratory of Molecular and Computational Biology of Fungi, Institute of Biological Sciences, Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Paula Luize Camargos Fonseca
- Integrative Biology Laboratory, Institute of Biological Sciences, Department of Genetics, Ecology, and Evolution, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Aline Bruna Martins Vaz
- Oswaldo Cruz Foundation (Fiocruz-MG), Minas Gerais, Brazil
- Medical School, Universidade José do Rosário Vellano (UNIFENAS), Belo Horizonte, Brazil
| | - Beatriz Nafría Jiménez
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute – Donostia University Hospital, Ikerbasque, San Sebastian, Spain
| | - Ainhoa Lapitz Dambolenea
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute – Donostia University Hospital, Ikerbasque, San Sebastian, Spain
| | - Koldo Garcia-Etxebarria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute – Donostia University Hospital, Ikerbasque, San Sebastian, Spain
| | - Bertram Brenig
- Institute of Veterinary Medicine, Burckhardtweg, University of Göttingen, Göttingen, Germany
| | - Vasco Azevedo
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute – Donostia University Hospital, Ikerbasque, San Sebastian, Spain
| | - Jesus M. Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute – Donostia University Hospital, Ikerbasque, San Sebastian, Spain
- CIBERehd, Madrid, Spain
- Department of Biochemistry and Genetics, University of Navarra, Pamplona, Spain
| | - Aristóteles Góes-Neto
- Laboratory of Molecular and Computational Biology of Fungi, Institute of Biological Sciences, Department of Microbiology, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Graduate Program in Bioinformatics, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
31
|
Tamés H, Sabater C, Royo F, Margolles A, Falcón JM, Ruas-Madiedo P, Ruiz L. Mouse intestinal microbiome modulation by oral administration of a GABA-producing Bifidobacterium adolescentis strain. Microbiol Spectr 2024; 12:e0258023. [PMID: 37991375 PMCID: PMC10783132 DOI: 10.1128/spectrum.02580-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/15/2023] [Indexed: 11/23/2023] Open
Abstract
IMPORTANCE The gut microbiome-brain communication signaling has emerged in recent years as a novel target for intervention with the potential to ameliorate some conditions associated with the central nervous system. Hence, probiotics with capacity to produce neurotransmitters, for instance, have come up as appealing alternatives to treat disorders associated with disbalanced neurotransmitters. Herein, we further deep into the effects of administering a gamma-aminobutyric acid (GABA)-producing Bifidobacterium strain, previously demonstrated to contribute to reduce serum glutamate levels, in the gut microbiome composition and metabolic activity in a mouse model. Our results demonstrate that the GABA-producing strain administration results in a specific pattern of gut microbiota modulation, different from the one observed in animals receiving non-GABA-producing strains. This opens new avenues to delineate the specific mechanisms by which IPLA60004 administration contributes to reducing serum glutamate levels and to ascertain whether this effect could exert health benefits in patients of diseases associated with high-glutamate serum concentrations.
Collapse
Affiliation(s)
- Héctor Tamés
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa, Asturias, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Carlos Sabater
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa, Asturias, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Félix Royo
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas Y Digestivas (CIBERehd), Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa, Asturias, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Juan Manuel Falcón
- Exosomes Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas Y Digestivas (CIBERehd), Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Patricia Ruas-Madiedo
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa, Asturias, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias-Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa, Asturias, Spain
- Functionality and Ecology of Beneficial Microbes (MicroHealth) Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Asturias, Spain
| |
Collapse
|
32
|
Verstraeten S, Layec S, Auger S, Juste C, Henry C, Charif S, Jaszczyszyn Y, Sokol H, Beney L, Langella P, Thomas M, Huillet E. Faecalibacterium duncaniae A2-165 regulates the expression of butyrate synthesis, ferrous iron uptake, and stress-response genes based on acetate consumption. Sci Rep 2024; 14:987. [PMID: 38200051 PMCID: PMC10781979 DOI: 10.1038/s41598-023-51059-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
The promising next-generation probiotic Faecalibacterium prausnitzii is one of the most abundant acetate-consuming, butyrate-producing bacteria in the healthy human gut. Yet, little is known about how acetate availability affects this bacterium's gene expression strategies. Here, we investigated the effect of acetate on temporal changes in the transcriptome of F. duncaniae A2-165 cultures using RNA sequencing. We compared gene expression patterns between two growth phases (early stationary vs. late exponential) and two acetate levels (low: 3 mM vs. high: 23 mM). Only in low-acetate conditions, a general stress response was activated. In high-acetate conditions, there was greater expression of genes related to butyrate synthesis and to the importation of B vitamins and iron. Specifically, expression was strongly activated in the case of the feoAABC operon, which encodes a FeoB ferrous iron transporter, but not in the case of the feoAB gene, which encodes a second putative FeoAB transporter. Moreover, excess ferrous iron repressed feoB expression but not feoAB. Lastly, FeoB but not FeoAB peptides from strain A2-165 were found in abundance in a healthy human fecal metaproteome. In conclusion, we characterized two early-stationary transcriptomes based on acetate consumption and this work highlights the regulation of feoB expression in F. duncaniae A2-165.
Collapse
Affiliation(s)
- Sophie Verstraeten
- Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Séverine Layec
- Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Sandrine Auger
- Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- Paris Center for Microbiome Medecine (PaCeMM) FHU, AP-HP, Paris, France
| | - Catherine Juste
- Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Céline Henry
- Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Sawiya Charif
- Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Yan Jaszczyszyn
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-Sur-Yvette, France
| | - Harry Sokol
- Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- Paris Center for Microbiome Medecine (PaCeMM) FHU, AP-HP, Paris, France
| | - Laurent Beney
- UMR PAM, INRAe, Université Bourgogne Franche-Conté, AgroSup Dijon, Dijon, France
| | - Philippe Langella
- Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- Paris Center for Microbiome Medecine (PaCeMM) FHU, AP-HP, Paris, France
| | - Muriel Thomas
- Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
- Paris Center for Microbiome Medecine (PaCeMM) FHU, AP-HP, Paris, France
| | - Eugénie Huillet
- Micalis Institute, INRAe, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.
- Paris Center for Microbiome Medecine (PaCeMM) FHU, AP-HP, Paris, France.
| |
Collapse
|
33
|
Cosier D, Lambert K, Batterham M, Sanderson-Smith M, Mansfield KJ, Charlton K. The INHABIT (synergIstic effect of aNtHocyAnin and proBIoTics in) Inflammatory Bowel Disease trial: a study protocol for a double-blind, randomised, controlled, multi-arm trial. J Nutr Sci 2024; 13:e1. [PMID: 38282655 PMCID: PMC10808876 DOI: 10.1017/jns.2023.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/01/2023] [Indexed: 01/30/2024] Open
Abstract
Ulcerative Colitis (UC), a type of Inflammatory Bowel Disease (IBD), is a chronic, relapsing gastrointestinal condition with increasing global prevalence. The gut microbiome profile of people living with UC differs from healthy controls and this may play a role in the pathogenesis and clinical management of UC. Probiotics have been shown to induce remission in UC; however, their impact on the gut microbiome and inflammation is less clear. Anthocyanins, a flavonoid subclass, have shown anti-inflammatory and microbiota-modulating properties; however, this evidence is largely preclinical. To explore the combined effect and clinical significance of anthocyanins and a multi-strain probiotic, a 3-month randomised controlled trial will be conducted in 100 adults with UC. Participants will be randomly assigned to one of four groups: anthocyanins (blackcurrant powder) + placebo probiotic, probiotic + placebo fruit powder, anthocyanin + probiotic, or double placebo. The primary outcome is a clinically significant change in the health-related quality-of-life measured with the Inflammatory Bowel Disease Questionnaire-32. Secondary outcomes include shotgun metagenomic sequencing of the faecal microbiota, faecal calprotectin, symptom severity, and mood and cognitive tests. This research will identify the role of adjuvant anti-inflammatory dietary treatments in adults with UC and elucidate the relationship between the gut microbiome and inflammatory biomarkers in this disease, to help identify targeted individualised microbial therapies. ANZCTR registration ACTRN12623000630617.
Collapse
Affiliation(s)
- Denelle Cosier
- School of Medicine, Indigenous and Health Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Kelly Lambert
- School of Medicine, Indigenous and Health Sciences, University of Wollongong, Wollongong, NSW, Australia
| | - Marijka Batterham
- Statistical Consulting Centre, National Institute for Applied Statistical Research Australia, University of Wollongong, Wollongong, NSW, Australia
| | - Martina Sanderson-Smith
- School of Chemistry and Molecular Bioscience and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia
| | - Kylie J Mansfield
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Karen Charlton
- School of Medicine, Indigenous and Health Sciences, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
34
|
Van Den Ham KM, Little MR, Bednarski OJ, Fusco EM, Mandal RK, Mitra R, Li S, Doumbo S, Doumtabe D, Kayentao K, Ongoiba A, Traore B, Crompton PD, Schmidt NW. Creation of a non-Western humanized gnotobiotic mouse model through the transplantation of rural African fecal microbiota. Microbiol Spectr 2023; 11:e0155423. [PMID: 37819130 PMCID: PMC10714993 DOI: 10.1128/spectrum.01554-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/05/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE There is increasing evidence that microbes residing within the intestines (gut microbiota) play important roles in the well-being of humans. Yet, there are considerable challenges in determining the specific role of gut microbiota in human diseases owing to the complexity of diverse internal and environmental factors that can contribute to diseases. Mice devoid of all microorganisms (germ-free mice) can be colonized with human stool samples to examine the specific contribution of the gut microbiota to a disease. These approaches have been primarily focused on stool samples obtained from individuals in Western countries. Thus, there is limited understanding as to whether the same methods used to colonize germ-free mice with stool from Western individuals would apply to the colonization of germ-free mice with stool from non-Western individuals. Here, we report the results from colonizing germ-free mice with stool samples of Malian children.
Collapse
Affiliation(s)
- Kristin M. Van Den Ham
- Department of Pediatrics, Ryan White Center for Pediatric Infectious Diseases and Global Health, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Morgan R. Little
- Department of Pediatrics, Ryan White Center for Pediatric Infectious Diseases and Global Health, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Olivia J. Bednarski
- Department of Pediatrics, Ryan White Center for Pediatric Infectious Diseases and Global Health, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Elizabeth M. Fusco
- Department of Pediatrics, Ryan White Center for Pediatric Infectious Diseases and Global Health, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Rabindra K. Mandal
- Department of Pediatrics, Ryan White Center for Pediatric Infectious Diseases and Global Health, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Riten Mitra
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, Kentucky, USA
| | - Shanping Li
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Safiatou Doumbo
- Mali International Center of Excellence in Research, Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Didier Doumtabe
- Mali International Center of Excellence in Research, Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Kassoum Kayentao
- Mali International Center of Excellence in Research, Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Aissata Ongoiba
- Mali International Center of Excellence in Research, Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Boubacar Traore
- Mali International Center of Excellence in Research, Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Peter D. Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Nathan W. Schmidt
- Department of Pediatrics, Ryan White Center for Pediatric Infectious Diseases and Global Health, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
35
|
Isegawa Y. Activation of Immune and Antiviral Effects by Euglena Extracts: A Review. Foods 2023; 12:4438. [PMID: 38137241 PMCID: PMC10743201 DOI: 10.3390/foods12244438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/20/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Influenza is an acute respiratory illness caused by influenza virus infection, which is managed using vaccines and antiviral drugs. Recently, the antiviral effects of plants and foods have gained attention. Euglena is a motile unicellular alga and eukaryotic photosynthetic microorganism. It has secondary chloroplasts and is a mixotroph able to feed by photosynthesis or phagocytosis. This review summarizes the influenza treatment effects of Euglena from the perspective of a functional food that is attracting attention. While it has been reported that Euglena contributes to suppressing blood sugar levels and ameliorates symptoms caused by stress by acting on the autonomic nervous system, the immunostimulatory and antiviral activities of Euglena have also been reported. In this review, I focused on the immunostimulation of antiviral activity via the intestinal environment and the suppression of viral replication in infected cells. The functions of specific components of Euglena, which also serves as the source of a wide range of nutrients such as vitamins, minerals, amino acids, unsaturated fatty acids, and β-1,3-glucan (paramylon), are also reviewed. Euglena has animal and plant properties and natural compounds with a wide range of functions, providing crucial information for improved antiviral strategies.
Collapse
Affiliation(s)
- Yuji Isegawa
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
36
|
Zhang X, Irajizad E, Hoffman KL, Fahrmann JF, Li F, Seo YD, Browman GJ, Dennison JB, Vykoukal J, Luna PN, Siu W, Wu R, Murage E, Ajami NJ, McQuade JL, Wargo JA, Long JP, Do KA, Lampe JW, Basen-Engquist KM, Okhuysen PC, Kopetz S, Hanash SM, Petrosino JF, Scheet P, Daniel CR. Modulating a prebiotic food source influences inflammation and immune-regulating gut microbes and metabolites: insights from the BE GONE trial. EBioMedicine 2023; 98:104873. [PMID: 38040541 PMCID: PMC10755114 DOI: 10.1016/j.ebiom.2023.104873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/06/2023] [Accepted: 10/31/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Accessible prebiotic foods hold strong potential to jointly target gut health and metabolic health in high-risk patients. The BE GONE trial targeted the gut microbiota of obese surveillance patients with a history of colorectal neoplasia through a straightforward bean intervention. METHODS This low-risk, non-invasive dietary intervention trial was conducted at MD Anderson Cancer Center (Houston, TX, USA). Following a 4-week equilibration, patients were randomized to continue their usual diet without beans (control) or to add a daily cup of study beans to their usual diet (intervention) with immediate crossover at 8-weeks. Stool and fasting blood were collected every 4 weeks to assess the primary outcome of intra and inter-individual changes in the gut microbiome and in circulating markers and metabolites within 8 weeks. This study was registered on ClinicalTrials.gov as NCT02843425, recruitment is complete and long-term follow-up continues. FINDINGS Of the 55 patients randomized by intervention sequence, 87% completed the 16-week trial, demonstrating an increase on-intervention in diversity [n = 48; linear mixed effect and 95% CI for inverse Simpson index: 0.16 (0.02, 0.30); p = 0.02] and shifts in multiple bacteria indicative of prebiotic efficacy, including increased Faecalibacterium, Eubacterium and Bifidobacterium (all p < 0.05). The circulating metabolome showed parallel shifts in nutrient and microbiome-derived metabolites, including increased pipecolic acid and decreased indole (all p < 0.002) that regressed upon returning to the usual diet. No significant changes were observed in circulating lipoproteins within 8 weeks; however, proteomic biomarkers of intestinal and systemic inflammatory response, fibroblast-growth factor-19 increased, and interleukin-10 receptor-α decreased (p = 0.01). INTERPRETATION These findings underscore the prebiotic and potential therapeutic role of beans to enhance the gut microbiome and to regulate host markers associated with metabolic obesity and colorectal cancer, while further emphasizing the need for consistent and sustainable dietary adjustments in high-risk patients. FUNDING This study was funded by the American Cancer Society.
Collapse
Affiliation(s)
- Xiaotao Zhang
- Division of Cancer Prevention and Population Sciences, Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Institute for Translational Epidemiology & Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ehsan Irajizad
- Division of Basic Sciences, Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristi L Hoffman
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Johannes F Fahrmann
- Red & Charline McCombs Institute for the Early Detection and Treatment of Cancer, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Division of Cancer Prevention and Population Sciences, Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fangyu Li
- Division of Cancer Prevention and Population Sciences, Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yongwoo David Seo
- Division of Surgery, Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gladys J Browman
- Division of Cancer Prevention and Population Sciences, Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer B Dennison
- Red & Charline McCombs Institute for the Early Detection and Treatment of Cancer, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jody Vykoukal
- Red & Charline McCombs Institute for the Early Detection and Treatment of Cancer, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pamela N Luna
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Wesley Siu
- Division of Cancer Prevention and Population Sciences, Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ranran Wu
- Red & Charline McCombs Institute for the Early Detection and Treatment of Cancer, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eunice Murage
- Red & Charline McCombs Institute for the Early Detection and Treatment of Cancer, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nadim J Ajami
- Platform for Innovative Microbiome and Translational Research, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer L McQuade
- Division of Cancer Medicine, Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer A Wargo
- Division of Surgery, Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Platform for Innovative Microbiome and Translational Research, Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - James P Long
- Division of Basic Sciences, Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kim-Anh Do
- Division of Basic Sciences, Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Johanna W Lampe
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Karen M Basen-Engquist
- Division of Cancer Prevention and Population Sciences, Department of Heath Disparities Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pablo C Okhuysen
- Department of Infectious Diseases, Infection Control, and Employee Health, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Samir M Hanash
- Red & Charline McCombs Institute for the Early Detection and Treatment of Cancer, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Division of Cancer Prevention and Population Sciences, Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Joseph F Petrosino
- Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Paul Scheet
- Division of Cancer Prevention and Population Sciences, Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carrie R Daniel
- Division of Cancer Prevention and Population Sciences, Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
37
|
Yadav A, Ahlawat S, Sharma KK. Culturing the unculturables: strategies, challenges, and opportunities for gut microbiome study. J Appl Microbiol 2023; 134:lxad280. [PMID: 38006234 DOI: 10.1093/jambio/lxad280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/17/2023] [Accepted: 11/23/2023] [Indexed: 11/26/2023]
Abstract
Metagenome sequencing techniques revolutionized the field of gut microbiome study. However, it is equipped with experimental and computational biases, which affect the downstream analysis results. Also, live microbial strains are needed for a better understanding of host-microbial crosstalks and for designing next-generation treatment therapies based on probiotic strains and postbiotic molecules. Conventional culturing methodologies are insufficient to get the dark gut matter on the plate; therefore, there is an urgent need to propose novel culturing methods that can fill the limitations of metagenomics. The current work aims to provide a consolidated evaluation of the available methods for host-microbe interaction with an emphasis on in vitro culturing of gut microbes using organoids, gut on a chip, and gut bioreactor. Further, the knowledge of microbial crosstalk in the gut helps us to identify core microbiota, and key metabolites that will aid in designing culturing media and co-culturing systems for gut microbiome study. After the deeper mining of the current culturing methods, we recommend that 3D-printed intestinal cells in a multistage continuous flow reactor equipped with an extended organoid system might be a good practical choice for gut microbiota-based studies.
Collapse
Affiliation(s)
- Asha Yadav
- Laboratory of Enzymology and Gut Microbiology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Shruti Ahlawat
- Department of Microbiology, Faculty of Allied Health Sciences, SGT University, Gurugram 122505, Haryana, India
| | - Krishna K Sharma
- Laboratory of Enzymology and Gut Microbiology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| |
Collapse
|
38
|
Gavzy SJ, Kensiski A, Lee ZL, Mongodin EF, Ma B, Bromberg JS. Bifidobacterium mechanisms of immune modulation and tolerance. Gut Microbes 2023; 15:2291164. [PMID: 38055306 PMCID: PMC10730214 DOI: 10.1080/19490976.2023.2291164] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/30/2023] [Indexed: 12/07/2023] Open
Abstract
Bifidobacterium is a widely distributed commensal bacterial genus that displays beneficial pro-homeostatic and anti-inflammatory immunomodulatory properties. Depletion or absence of Bifidobacterium in humans and model organisms is associated with autoimmune responses and impaired immune homeostasis. At the cellular level, Bifidobacterium upregulates suppressive regulatory T cells, maintains intestinal barrier function, modulates dendritic cell and macrophage activity, and dampens intestinal Th2 and Th17 programs. While there has been a large volume of literature characterizing the probiotic properties of various Bifidobacterial species, the likely multifactorial mechanisms underlying these effects remain elusive, in particular, its immune tolerogenic effect. However, recent work has shed light on Bifidobacterium surface structural polysaccharide and protein elements, as well as its metabolic products, as commensal mediators of immune homeostasis. This review aims to discuss several mechanisms Bifidobacterium utilizes for immune modulation as well as their indirect impact on the regulation of gut microbiome structure and function, from structural molecules to produced metabolites. These mechanisms are pertinent to an increasingly networked understanding of immune tolerance and homeostasis in health and disease.
Collapse
Affiliation(s)
- Samuel J Gavzy
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Allison Kensiski
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zachariah L Lee
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Emmanuel F Mongodin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Bing Ma
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jonathan S Bromberg
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
39
|
Mohr AE, Ahern MM, Sears DD, Bruening M, Whisner CM. Gut microbiome diversity, variability, and latent community types compared with shifts in body weight during the freshman year of college in dormitory-housed adolescents. Gut Microbes 2023; 15:2250482. [PMID: 37642346 PMCID: PMC10467528 DOI: 10.1080/19490976.2023.2250482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/26/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
Significant human gut microbiome changes during adolescence suggest that microbial community evolution occurs throughout important developmental periods including the transition to college, a typical life phase of weight gain. In this observational longitudinal study of 139 college freshmen living in on-campus dormitories, we tracked changes in the gut microbiome via 16S amplicon sequencing and body weight across a single academic year. Participants were grouped by weight change categories of gain (WG), loss (WL), and maintenance (WM). Upon assessment of the community structure, unweighted and weighted UniFrac metrics revealed significant shifts with substantial variation explained by individual effects within weight change categories. Genera that positively contributed to these associations with weight change included Bacteroides, Blautia, and Bifidobacterium in WG participants and Prevotella and Faecalibacterium in WL and WM participants. Moreover, the Prevotella/Bacteroides ratio was significantly different by weight change category, with WL participants displaying an increased ratio. Importantly, these genera did not display co-dominance nor ease of transition between Prevotella- and Bacteroides-dominated states. We further assessed the overall taxonomic variation, noting the increased stability of the WL compared to the WG microbiome. Finally, we found 30 latent community structures within the microbiome with significant associations with waist circumference, sleep, and dietary factors, with alcohol consumption chief among them. Our findings highlight the high level of individual variation and the importance of initial gut microbiome community structure in college students during a period of major lifestyle changes. Further work is needed to confirm these findings and explore mechanistic relationships between gut microbes and weight change in free-living individuals.
Collapse
Affiliation(s)
- Alex E. Mohr
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Center for Health Through Microbiomes, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Mary M. Ahern
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Dorothy D. Sears
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Meg Bruening
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Department of Nutritional Sciences, College of Health and Human Development, Pennsylvania State University, University Park, PA, USA
| | - Corrie M. Whisner
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
- Center for Health Through Microbiomes, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| |
Collapse
|
40
|
Deng C, Pan J, Zhu H, Chen ZY. Effect of Gut Microbiota on Blood Cholesterol: A Review on Mechanisms. Foods 2023; 12:4308. [PMID: 38231771 DOI: 10.3390/foods12234308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 01/19/2024] Open
Abstract
The gut microbiota serves as a pivotal mediator between diet and human health. Emerging evidence has shown that the gut microbiota may play an important role in cholesterol metabolism. In this review, we delve into five possible mechanisms by which the gut microbiota may influence cholesterol metabolism: (1) the gut microbiota changes the ratio of free bile acids to conjugated bile acids, with the former being eliminated into feces and the latter being reabsorbed back into the liver; (2) the gut microbiota can ferment dietary fiber to produce short-chain fatty acids (SCFAs) which are absorbed and reach the liver where SCFAs inhibit cholesterol synthesis; (3) the gut microbiota can regulate the expression of some genes related to cholesterol metabolism through their metabolites; (4) the gut microbiota can convert cholesterol to coprostanol, with the latter having a very low absorption rate; and (5) the gut microbiota could reduce blood cholesterol by inhibiting the production of lipopolysaccharides (LPS), which increases cholesterol synthesis and raises blood cholesterol. In addition, this review will explore the natural constituents in foods with potential roles in cholesterol regulation, mainly through their interactions with the gut microbiota. These include polysaccharides, polyphenolic entities, polyunsaturated fatty acids, phytosterols, and dicaffeoylquinic acid. These findings will provide a scientific foundation for targeting hypercholesterolemia and cardiovascular diseases through the modulation of the gut microbiota.
Collapse
Affiliation(s)
- Chuanling Deng
- School of Food Science and Engineering/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043), Foshan University, Foshan 528011, China
| | - Jingjin Pan
- School of Food Science and Engineering/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043), Foshan University, Foshan 528011, China
| | - Hanyue Zhu
- School of Food Science and Engineering/National Technical Center (Foshan) for Quality Control of Famous and Special Agricultural Products (CAQS-GAP-KZZX043), Foshan University, Foshan 528011, China
| | - Zhen-Yu Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| |
Collapse
|
41
|
Rachmühl C, Lacroix C, Cabrera PM, Geirnaert A. Long-term continuous cultivation of Kenyan infant fecal microbiota using the host adapted PolyFermS model. Sci Rep 2023; 13:20563. [PMID: 37996456 PMCID: PMC10667343 DOI: 10.1038/s41598-023-47131-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Appropriate in vitro models to investigate the impact of novel nutritional strategies on the gut microbiota of infants living in rural Africa are scarce. Here, we aimed to develop such a continuous gut fermentation model based on the PolyFermS platform, which allows controlled and stable long-term cultivation of colon microbiota in conditions akin the host. Nine immobilized Kenyan infant fecal microbiota were used as inoculum for continuous PolyFermS colon models fed with medium mimicking the weaning infant diet. Fructo-oligosaccharides (FOS) supplementation (1, 4 and 8 g/L) and cultivation pH (5.8 and 6.3) were investigated stepwise. Conditions providing a close match between fecal and in vitro microbiota (pH 5.8 with 1 g/L FOS) were selected for investigating long-term stability of four Kenyan infant PolyFermS microbiota. The shared fraction of top bacterial genera between fecal and in vitro microbiota was high (74-89%) and stable during 107 days of continuous cultivation. Community diversity was maintained and two distinct fermentation metabolite profiles of infant fecal microbiota were observed. Three propiogenic and one butyrogenic metabolite profile of infant fecal microbiota established from day 8 onwards and stayed stable. We present here the first rationally designed continuous cultivation model of African infant gut microbiota. This model will be important to assess the effect of dietary or environmental factors on the gut microbiota of African infants with high enteropathogen exposure.
Collapse
Affiliation(s)
- Carole Rachmühl
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Christophe Lacroix
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland.
| | - Paula Momo Cabrera
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Annelies Geirnaert
- Laboratory of Food Biotechnology, Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
42
|
Klostermann CE, Endika MF, Ten Cate E, Buwalda PL, de Vos P, Bitter JH, Zoetendal EG, Schols HA. Type of intrinsic resistant starch type 3 determines in vitro fermentation by pooled adult faecal inoculum. Carbohydr Polym 2023; 319:121187. [PMID: 37567720 DOI: 10.1016/j.carbpol.2023.121187] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 08/13/2023]
Abstract
Resistant starch (RS) results in relatively high health-beneficial butyrate levels upon fermentation by gut microbiota. We studied how physico-chemical characteristics of RS-3 influenced butyrate production during fermentation. Six highly resistant RS-3 substrates (intrinsic RS-3, 80-95 % RS) differing in chain length (DPn 16-76), Mw distribution (PI) and crystal type (A/B) were fermented in vitro by pooled adult faecal inoculum. All intrinsic RS-3 substrates were fermented to relatively high butyrate levels (acetate/butyrate ≤ 2.5), and especially fermentation of A-type RS-3 prepared from polydisperse α-1,4 glucans resulted in the highest relative butyrate amount produced (acetate/butyrate: 1). Analysis of the microbiota composition after fermentation revealed that intrinsic RS-3 stimulated primarily Lachnospiraceae, Bifidobacterium and Ruminococcus, but the relative abundances of these taxa differed slightly depending on the RS-3 physico-chemical characteristics. Especially intrinsic RS-3 of narrow disperse Mw distribution stimulated relatively more Ruminococcus. Selected RS fractions (polydisperse Mw distribution) obtained after pre-digestion were fermented to acetate and butyrate (ratio ≤ 1.8) and stimulated Lachnospiraceae and Bifidobacterium. This study indicates that especially the α-1,4 glucan Mw distribution dependent microstructure of RS-3 influences butyrate production and microbiota composition during RS-3 fermentation.
Collapse
Affiliation(s)
- C E Klostermann
- Biobased Chemistry and Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands; Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - M F Endika
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - E Ten Cate
- Biobased Chemistry and Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands; Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - P L Buwalda
- Biobased Chemistry and Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands; Coöperatie Koninklijke AVEBE u.a., P.O. Box 15, 9640 AA Veendam, the Netherlands
| | - P de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Centre Groningen, Groningen, Hanzeplein 1, 9700 RB Groningen, the Netherlands
| | - J H Bitter
- Biobased Chemistry and Technology, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - E G Zoetendal
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - H A Schols
- Laboratory of Food Chemistry, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands.
| |
Collapse
|
43
|
Lokesh J, Delaygues M, Defaix R, Le Bechec M, Pigot T, Dupont-Nivet M, Kerneis T, Labbé L, Goardon L, Terrier F, Panserat S, Ricaud K. Interaction between genetics and inulin affects host metabolism in rainbow trout fed a sustainable all plant-based diet. Br J Nutr 2023; 130:1105-1120. [PMID: 36690577 DOI: 10.1017/s0007114523000120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Inulin affects nutrition and metabolism in many animals. Although inulin is widely used in the diet of teleosts, its mechanism of action is unknown. Here, we investigated the effect of inulin (2 %) on the intestinal microbiome and metabolism in rainbow trout (Oncorhynchus mykiss) selected for growth and survival when fed a 100 % plant-based diet (suave) and a control line (temoin). Metabolic responses to the two factors (line and inulin) in liver, intestine, muscle and adipose were tissue-specific, with line and interaction between the two factors influencing overall expression in liver. In the intestine, inulin and line and in muscle, line influenced the expression of metabolic genes. Microbiota between the mucus and digestive contents was significantly different, with genera from Proteobacteria being more abundant in the mucus, whereas genera from the Firmicutes and Planctomycetes being more abundant in contents. Effect of inulin and interaction between factors on the microbiome was evident in contents. The significant taxa of control and inulin-fed groups differed greatly with Streptococcus and Weissella being significantly abundant in the inulin-fed group. There was a general trend showing higher levels of all SCFA in temoin group with propionic acid levels being significantly higher. An operational taxonomic unit (OTU) belonging to the Ruminococcaceae was significantly abundant in suave. The tissue-specific correlations between OTU and gene expression may indicate the link between microbiome and metabolism. Together, these results suggest that line and inulin impact the gene expression in a tissue-specific manner, possibly driven by specific OTUs enriched in inulin-fed groups and suave.
Collapse
Affiliation(s)
- Jep Lokesh
- Université de Pau et des Pays de l'Adour, E2S UPPA. INRAE, NUMEA, Saint-Pée-sur-Nivelle, France
| | - Marine Delaygues
- Université de Pau et des Pays de l'Adour, E2S UPPA. INRAE, NUMEA, Saint-Pée-sur-Nivelle, France
| | - Raphaël Defaix
- Université de Pau et des Pays de l'Adour, E2S UPPA. INRAE, NUMEA, Saint-Pée-sur-Nivelle, France
| | - Mickael Le Bechec
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IMT Mines Ales, IPREM, Pau, France; Institut des sciences analytiques et de Physicochimie pour l'environnement et les Matériaux, UMR5254, Hélioparc, 2 avenue Président Angot, 64 053 PAU cedex 9, France
| | - Thierry Pigot
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IMT Mines Ales, IPREM, Pau, France; Institut des sciences analytiques et de Physicochimie pour l'environnement et les Matériaux, UMR5254, Hélioparc, 2 avenue Président Angot, 64 053 PAU cedex 9, France
| | | | | | | | | | - Frédéric Terrier
- Université de Pau et des Pays de l'Adour, E2S UPPA. INRAE, NUMEA, Saint-Pée-sur-Nivelle, France
| | - Stéphane Panserat
- Université de Pau et des Pays de l'Adour, E2S UPPA. INRAE, NUMEA, Saint-Pée-sur-Nivelle, France
| | - Karine Ricaud
- Université de Pau et des Pays de l'Adour, E2S UPPA. INRAE, NUMEA, Saint-Pée-sur-Nivelle, France
| |
Collapse
|
44
|
Sasaki T, Matsumoto Y, Murakami K, Endo S, Toyozumi T, Otsuka R, Kinoshita K, Hu J, Iida S, Morishita H, Nishioka Y, Nakano A, Uesato M, Matsubara H. Gut microbiome can predict chemoradiotherapy efficacy in patients with esophageal squamous cell carcinoma. Esophagus 2023; 20:691-703. [PMID: 37086309 DOI: 10.1007/s10388-023-01004-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/12/2023] [Indexed: 04/23/2023]
Abstract
PURPOSE The gut microbiome plays an important role in cancer pathogenesis and therapy. Some studies have reported that specific bacteria in tumor tissues may contribute to the prognosis and treatment of esophageal squamous cell carcinoma (ESCC). However, there is limited evidence that the gut microbiome is associated with ESCC. This study assessed the utility of the gut microbiome as a predictive marker of the therapeutic effect in patients with ESCC undergoing chemo-radiotherapy (CRT). PATIENTS AND METHODS Fecal samples were collected from 51 patients with ESCC who had never undergone treatment between April 2021 and May 2022 in the Department of Frontier Surgery, Chiba University. The gut microbiome was analyzed using 16S metagenomics sequencing. The association between the gut microbiome composition and stage according to the TNM classification (American Joint Committee on Cancer 7.0) and CRT response according to the RECIST criteria was evaluated. RESULTS The relative abundance of Fusobacteriaceae was enriched in cStage III-IVb group. Among the 27 patients who received CRT, the relative abundance of Lactobacillaceae was enriched in those with a partial and complete response. Lactobacillaceae also did not correlate with any clinical data, but the high Lactobacillales group had a higher LMR (P = 0.032) and lower PLR (P = 0.045) than in the low Lactobacillales group. CONCLUSIONS In conclusion, we found that the relative abundance of Lactobacillaceae was enriched in patients with a partial or complete response among CRT those with ESCC, thus suggesting that the relative abundance of Lactobacillaceae can predict the effect of CRT.
Collapse
Affiliation(s)
- Takuma Sasaki
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-Ku, Chiba-Shi, Chiba, 260-8670, Japan
| | - Yasunori Matsumoto
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-Ku, Chiba-Shi, Chiba, 260-8670, Japan.
| | - Kentaro Murakami
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-Ku, Chiba-Shi, Chiba, 260-8670, Japan
| | - Satoshi Endo
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-Ku, Chiba-Shi, Chiba, 260-8670, Japan
| | - Takeshi Toyozumi
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-Ku, Chiba-Shi, Chiba, 260-8670, Japan
| | - Ryota Otsuka
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-Ku, Chiba-Shi, Chiba, 260-8670, Japan
| | - Kazuya Kinoshita
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-Ku, Chiba-Shi, Chiba, 260-8670, Japan
| | - Jie Hu
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-Ku, Chiba-Shi, Chiba, 260-8670, Japan
| | - Shinichiro Iida
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-Ku, Chiba-Shi, Chiba, 260-8670, Japan
| | - Hiroki Morishita
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-Ku, Chiba-Shi, Chiba, 260-8670, Japan
| | - Yuri Nishioka
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-Ku, Chiba-Shi, Chiba, 260-8670, Japan
| | - Akira Nakano
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-Ku, Chiba-Shi, Chiba, 260-8670, Japan
| | - Masaya Uesato
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-Ku, Chiba-Shi, Chiba, 260-8670, Japan
| | - Hisahiro Matsubara
- Department of Frontier Surgery, Chiba University Graduate School of Medicine, 1-8-1 Inohana, Chuo-Ku, Chiba-Shi, Chiba, 260-8670, Japan
| |
Collapse
|
45
|
Gutierrez A, Pucket B, Engevik MA. Bifidobacterium and the intestinal mucus layer. MICROBIOME RESEARCH REPORTS 2023; 2:36. [PMID: 38045921 PMCID: PMC10688832 DOI: 10.20517/mrr.2023.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/21/2023] [Accepted: 09/13/2023] [Indexed: 12/05/2023]
Abstract
Bifidobacterium species are integral members of the human gut microbiota and these microbes have significant interactions with the intestinal mucus layer. This review delves into Bifidobacterium-mucus dynamics, shedding light on the multifaceted nature of this relationship. We cover conserved features of Bifidobacterium-mucus interactions, such as mucus adhesion and positive regulation of goblet cell and mucus production, as well as species and strain-specific attributes of mucus degradation. For each interface, we explore the molecular mechanisms underlying these interactions and their potential implications for human health. Notably, we emphasize the ability of Bifidobacterium species to positively influence the mucus layer, shedding light on its potential as a mucin-builder and a therapeutic agent for diseases associated with disrupted mucus barriers. By elucidating the complex interplay between Bifidobacterium and intestinal mucus, we aim to contribute to a deeper understanding of the gut microbiota-host interface and pave the way for novel therapeutic strategies.
Collapse
Affiliation(s)
- Alyssa Gutierrez
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Brenton Pucket
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Melinda A. Engevik
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
46
|
Zhu J, Lyu J, Zhao R, Liu G, Wang S. Gut macrobiotic and its metabolic pathways modulate cardiovascular disease. Front Microbiol 2023; 14:1272479. [PMID: 37822750 PMCID: PMC10562559 DOI: 10.3389/fmicb.2023.1272479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023] Open
Abstract
Thousands of microorganisms reside in the human gut, and extensive research has demonstrated the crucial role of the gut microbiota in overall health and maintaining homeostasis. The disruption of microbial populations, known as dysbiosis, can impair the host's metabolism and contribute to the development of various diseases, including cardiovascular disease (CVD). Furthermore, a growing body of evidence indicates that metabolites produced by the gut microbiota play a significant role in the pathogenesis of cardiovascular disease. These bioactive metabolites, such as short-chain fatty acids (SCFAs), trimethylamine (TMA), trimethylamine N-oxide (TMAO), bile acids (BAs), and lipopolysaccharides (LPS), are implicated in conditions such as hypertension and atherosclerosis. These metabolites impact cardiovascular function through various pathways, such as altering the composition of the gut microbiota and activating specific signaling pathways. Targeting the gut microbiota and their metabolic pathways represents a promising approach for the prevention and treatment of cardiovascular diseases. Intervention strategies, such as probiotic drug delivery and fecal transplantation, can selectively modify the composition of the gut microbiota and enhance its beneficial metabolic functions, ultimately leading to improved cardiovascular outcomes. These interventions hold the potential to reshape the gut microbial community and restore its balance, thereby promoting cardiovascular health. Harnessing the potential of these microbial metabolites through targeted interventions offers a novel avenue for tackling cardiovascular health issues. This manuscript provides an in-depth review of the recent advances in gut microbiota research and its impact on cardiovascular health and offers a promising avenue for tackling cardiovascular health issues through gut microbiome-targeted therapies.
Collapse
Affiliation(s)
- Junwen Zhu
- Department of Cardiology, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People’s Hospital of Wenling), Zhejiang, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Jin Lyu
- Department of Pathology, The First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Ruochi Zhao
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Affiliated First Hospital of Ningbo University, Ningbo, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Shuangshuang Wang
- Department of Cardiology, The Affiliated Wenling Hospital of Wenzhou Medical University (The First People’s Hospital of Wenling), Zhejiang, China
| |
Collapse
|
47
|
Zhu L, Wang Y, Pan CQ, Xing H. Gut microbiota in alcohol-related liver disease: pathophysiology and gut-brain cross talk. Front Pharmacol 2023; 14:1258062. [PMID: 37601074 PMCID: PMC10436520 DOI: 10.3389/fphar.2023.1258062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023] Open
Abstract
Alcohol-related liver disease (ALD) from excessive alcohol intake has a unique gut microbiota profile. The disease progression-free survival in ALD patients has been associated with the degree of gut dysbiosis. The vicious cycles between gut dysbiosis and the disease progression in ALD including: an increase of acetaldehyde production and bile acid secretion, impaired gut barrier, enrichment of circulating microbiota, toxicities of microbiota metabolites, a cascade of pro-inflammatory chemokines or cytokines, and augmentation in the generation of reactive oxygen species. The aforementioned pathophysiology process plays an important role in different disease stages with a spectrum of alcohol hepatitis, ALD cirrhosis, neurological dysfunction, and hepatocellular carcinoma. This review aims to illustrate the pathophysiology of gut microbiota and clarify the gut-brain crosstalk in ALD, which may provide the opportunity of identifying target points for future therapeutic intervention in ALD.
Collapse
Affiliation(s)
- Lin Zhu
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yixuan Wang
- Division of Gastroenterology and Hepatology, BaoJi Central Hospital, Shaanxi, China
| | - Calvin Q. Pan
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Division of Gastroenterology and Hepatology, NYU Langone Health, New York University School of Medicine, New York, NY, United States
| | - Huichun Xing
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Center of Liver Diseases, Peking University Ditan Teaching Hospital, Beijing, China
| |
Collapse
|
48
|
Rachmühl C, Lacroix C, Cabrera PM, Geirnaert A. Long-term continuous cultivation of Kenyan infant fecal microbiota using the host adapted PolyFermS model. RESEARCH SQUARE 2023:rs.3.rs-3101157. [PMID: 37461546 PMCID: PMC10350169 DOI: 10.21203/rs.3.rs-3101157/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Appropriate in vitro models to investigate the impact of novel nutritional strategies on the gut microbiota of infants living in rural Africa are scarce. Here, we aimed to develop such a continuous gut fermentation model based on the PolyFermS platform. Eight immobilized Kenyan infant fecal microbiota were used as inoculum for continuous PolyFermS colon models fed with medium mimicking the weaning infant diet. Fructo-oligosaccharides (FOS) supplementation (1, 4 and 8 g/L) and cultivation pH (5.8 and 6.3) were stepwise investigated. Conditions providing a close match between fecal and in vitro microbiota (pH 5.8 with 1 g/L FOS) were selected for investigating long-term stability of four Kenyan infant PolyFermS microbiota. The shared fraction of top bacterial genera between fecal and in vitro microbiota was high (74-89%) and stable during 107 days of continuous cultivation. Community diversity was maintained, and two distinct fermentation metabolite profiles, propiogenic and butyrogenic, of infant fecal microbiota established from day 8 onwards and stayed stable. We present here the first rationally designed and accurate continuous cultivation model of African infant gut microbiota. This model will be important to assess the effect of dietary or environmental factors on the gut microbiota of African infants with high enteropathogen exposure.
Collapse
|
49
|
Martín R, Rios-Covian D, Huillet E, Auger S, Khazaal S, Bermúdez-Humarán LG, Sokol H, Chatel JM, Langella P. Faecalibacterium: a bacterial genus with promising human health applications. FEMS Microbiol Rev 2023; 47:fuad039. [PMID: 37451743 PMCID: PMC10410495 DOI: 10.1093/femsre/fuad039] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/08/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023] Open
Abstract
In humans, many diseases are associated with alterations in gut microbiota, namely increases or decreases in the abundance of specific bacterial groups. One example is the genus Faecalibacterium. Numerous studies have underscored that low levels of Faecalibacterium are correlated with inflammatory conditions, with inflammatory bowel disease (IBD) in the forefront. Its representation is also diminished in the case of several diseases, including colorectal cancer (CRC), dermatitis, and depression. Additionally, the relative presence of this genus is considered to reflect, at least in part, intestinal health status because Faecalibacterium is frequently present at reduced levels in individuals with gastrointestinal diseases or disorders. In this review, we first thoroughly describe updates to the taxonomy of Faecalibacterium, which has transformed a single-species taxon to a multispecies taxon over the last decade. We then explore the links discovered between Faecalibacterium abundance and various diseases since the first IBD-focused studies were published. Next, we examine current available strategies for modulating Faecalibacterium levels in the gut. Finally, we summarize the mechanisms underlying the beneficial effects that have been attributed to this genus. Together, epidemiological and experimental data strongly support the use of Faecalibacterium as a next-generation probiotic (NGP) or live biotherapeutic product (LBP).
Collapse
Affiliation(s)
- Rebeca Martín
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - David Rios-Covian
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Eugénie Huillet
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Sandrine Auger
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Sarah Khazaal
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Luis G Bermúdez-Humarán
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Harry Sokol
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, Gastroenterology Department, F-75012 Paris, France
- Paris Centre for Microbiome Medicine (PaCeMM) FHU, F-75012, Paris, France
| | - Jean-Marc Chatel
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | - Philippe Langella
- Paris-Saclay University, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| |
Collapse
|
50
|
Jawhara S. Healthy Diet and Lifestyle Improve the Gut Microbiota and Help Combat Fungal Infection. Microorganisms 2023; 11:1556. [PMID: 37375058 DOI: 10.3390/microorganisms11061556] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Western diets are rapidly spreading due to globalization, causing an increase in obesity and diseases of civilization. These Western diets are associated with changes in the gut microbiota related to intestinal inflammation. This review discusses the adverse effects of Western diets, which are high in fat and sugar and low in vegetable fiber, on the gut microbiota. This leads to gut dysbiosis and overgrowth of Candida albicans, which is a major cause of fungal infection worldwide. In addition to an unhealthy Western diet, other factors related to disease development and gut dysbiosis include smoking, excessive alcohol consumption, lack of physical activity, prolonged use of antibiotics, and chronic psychological stress. This review suggests that a diversified diet containing vegetable fiber, omega-3 polyunsaturated fatty acids, vitamins D and E, as well as micronutrients associated with probiotic or prebiotic supplements can improve the biodiversity of the microbiota, lead to short-chain fatty acid production, and reduce the abundance of fungal species in the gut. The review also discusses a variety of foods and plants that are effective against fungal overgrowth and gut dysbiosis in traditional medicine. Overall, healthy diets and lifestyle factors contribute to human well-being and increase the biodiversity of the gut microbiota, which positively modulates the brain and central nervous system.
Collapse
Affiliation(s)
- Samir Jawhara
- UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Centre National de la Recherche Scientifique, F-59000 Lille, France
- Institut National de la Santé et de la Recherche Médicale U1285, University of Lille, F-59000 Lille, France
- Medicine Faculty, University of Lille, F-59000 Lille, France
| |
Collapse
|