1
|
Ramírez-Rodríguez GB, Sabio L, Cerezo-Collado L, Garcés V, Domínguez-Vera JM, Delgado-López JM. Probiotic-Based Mineralized Living Materials to Produce Antimicrobial Yogurts. Adv Healthc Mater 2024:e2402793. [PMID: 39648506 DOI: 10.1002/adhm.202402793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/05/2024] [Indexed: 12/10/2024]
Abstract
Mineralization of living cells represents an evolutionary adaptation that enhances cellular resilience to physicochemical stress. Inspired by this strategy, we have here developed hybrid living materials (HLMs), incorporating probiotics into mineralized collagen 3D matrices, with the aim of protecting and promoting the successful oral delivery of the bacteria. Collagen fibrils are simultaneously self-assembled and mineralized in the presence of the probiotics (Lactobacillus acidophilus, La, was used as model), resulting in the integration of the probiotics into the hybrid matrix (i.e., bulk encapsulation). During this process, probiotics are also coated with a nanofilm of apatite mineral (single-cell encapsulation), which provides them with extra protection and reinforces their viability and activity. In fact, the resulting HLM is metabolically active, and maintain the capacity to ferment milk into yogurt with antibacterial activity against the two major foodborne pathogens Pseudomonas aeruginosa (Pa) and Staphylococcus aureus (Sa). Interestingly, the HLM provides probiotics an additional protection in the gastrointestinal environment (i.e., simulated gastric fluid), which is of special interest for healthcare materials for oral administration. The results pave the way for the creation of innovative healthcare materials with enhanced functionalities and the potential to produce probiotic foods with notable antimicrobial properties.
Collapse
Affiliation(s)
- Gloria B Ramírez-Rodríguez
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Av. de Fuente Nueva, s/n, Granada, 18071, Spain
| | - Laura Sabio
- Centre for the Cellular Microenvironment, James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Laura Cerezo-Collado
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Av. de Fuente Nueva, s/n, Granada, 18071, Spain
| | - Víctor Garcés
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Av. de Fuente Nueva, s/n, Granada, 18071, Spain
| | - Jose M Domínguez-Vera
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Av. de Fuente Nueva, s/n, Granada, 18071, Spain
| | - José M Delgado-López
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Av. de Fuente Nueva, s/n, Granada, 18071, Spain
| |
Collapse
|
2
|
Dewan D, Basu A, Dolai D, Pal S. Biological and Biophysical Methods for Evaluation of Inhibitors of Sortase A in Staphylococcus aureus: An Overview. Cell Biochem Funct 2024; 42:e70002. [PMID: 39470102 DOI: 10.1002/cbf.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/01/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024]
Abstract
Staphylococcus aureus, one of the most notorious pathogens, develops antibiotic resistance by the formation of a thick layer of exopolysaccharides known as biofilms. Sortase A, a transpeptidase responsible for biofilm formation and attachment to the host surface, has emerged as an important drug target for development of anti-virulence agents. A number of sortase A inhibitors, both peptide and non-peptides are reported which involved the use of several experiments which may provide insights regarding binding affinity, specificity, safety, and efficacy of ligands. In this review, we focus on the principles, pros and cons, and the type of information obtained from biophysical (FRET assay, Microscale Thermophoresis, Surface Plasmon Resonance, CD spectroscopy etc.) and biological (cell viability assay, biofilm formation assay, CLSM, western blot analysis, in vivo characterization on mice etc.) methods for estimation of probable sortase A inhibitors, which might be helpful to the researchers who might be interested to delve into the development of sortase A inhibitors as a drug, to address the burning question of antimicrobial resistance (AMR).
Collapse
|
3
|
Shahreen N, Ahn J, Alsiyabi A, Chowdhury NB, Shinde D, Chaudhari SS, Bayles KW, Thomas VC, Saha R. A thermodynamic bottleneck in the TCA cycle contributes to acetate overflow in Staphylococcus aureus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618751. [PMID: 39464055 PMCID: PMC11507952 DOI: 10.1101/2024.10.16.618751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
During aerobic growth, S. aureus relies on acetate overflow metabolism, a process where glucose is incompletely oxidized to acetate, for its bioenergetic needs. Acetate is not immediately captured as a carbon source and is excreted as waste by cells. The underlying factors governing acetate overflow in S. aureus have not been identified. Here, we show that acetate overflow is favored due to a thermodynamic bottleneck in the TCA cycle, specifically involving the oxidation of succinate to fumarate by succinate dehydrogenase. This bottleneck reduces flux through the TCA cycle, making it more efficient for S. aureus to generate ATP via acetate overflow metabolism. Additionally, the protein allocation cost of maintaining ATP flux through the restricted TCA cycle is greater than that of acetate overflow metabolism. Finally, we show that the TCA cycle bottleneck provides S. aureus the flexibility to redirect carbon towards maintaining redox balance through lactate overflow when oxygen becomes limiting, albeit at the expense of ATP production through acetate overflow. Overall, our findings suggest that overflow metabolism offers S. aureus distinct bioenergetic advantages over a thermodynamically constrained TCA cycle, potentially supporting its commensal-pathogen lifestyle.
Collapse
|
4
|
Blaise O, Duchesne C, Capuzzo E, Nahori MA, Fernandes J, Connor MG, Hamon MA, Pizarro-Cerda J, Lataillade JJ, McGuckin C, Rousseau A, Banzet S, Dussurget O, Frescaline N. Infected wound repair correlates with collagen I induction and NOX2 activation by cold atmospheric plasma. NPJ Regen Med 2024; 9:28. [PMID: 39358383 PMCID: PMC11447178 DOI: 10.1038/s41536-024-00372-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
Cold atmospheric plasma (CAP) is a promising complement to tissue repair and regenerative medicine approaches. CAP has therapeutic potential in infected cutaneous wounds by mechanisms which remain enigmatic. Here, CAP is shown to activate phagocyte NADPH oxidase complex NOX2. CAP induced increased intracellular reactive oxygen species, alleviated by NOX2 inhibitors. Genetic and pharmacological inhibitions of NOX2 in macrophages and bioengineered skin infected with Staphylococcus aureus and treated with CAP reduced intracellular oxidants and increased bacterial survival. CAP triggered Rac activation and phosphorylation of p40phox and p47phox required for NOX2 assembly and activity. Furthermore, CAP induced collagen I expression by fibroblasts. Infection and healing kinetics showed that murine skin wounds infected with S. aureus and treated with CAP are characterized by decreased bacterial burden, increased length of neoepidermis and extracellular matrix formation. Collectively, our findings identify mechanisms triggered by CAP that subdue infection and result in enhanced repair following skin injury.
Collapse
Affiliation(s)
- Océane Blaise
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Unité de Recherche Yersinia, Paris, France
- École Polytechnique, Sorbonne Université, CNRS UMR7648, Laboratoire de Physique des Plasmas, Palaiseau, France
| | - Constance Duchesne
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Unité de Recherche Yersinia, Paris, France
- École Polytechnique, Sorbonne Université, CNRS UMR7648, Laboratoire de Physique des Plasmas, Palaiseau, France
| | - Elena Capuzzo
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Unité de Recherche Yersinia, Paris, France
| | - Marie-Anne Nahori
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Unité des Toxines Bactériennes, Paris, France
| | | | - Michael G Connor
- Institut Pasteur, Université Paris Cité, Unité Chromatine et Infection, Paris, France
| | - Mélanie A Hamon
- Institut Pasteur, Université Paris Cité, Unité Chromatine et Infection, Paris, France
| | - Javier Pizarro-Cerda
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Unité de Recherche Yersinia, Paris, France
| | | | | | - Antoine Rousseau
- École Polytechnique, Sorbonne Université, CNRS UMR7648, Laboratoire de Physique des Plasmas, Palaiseau, France
| | - Sébastien Banzet
- Centre de Transfusion Sanguine des Armées, Clamart, France
- Institut de Recherche Biomédicale des Armées, INSERM UMRS-MD 1197, Brétigny-sur-Orge, France
| | - Olivier Dussurget
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Unité de Recherche Yersinia, Paris, France.
| | - Nadira Frescaline
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Unité de Recherche Yersinia, Paris, France.
- Centre de Transfusion Sanguine des Armées, Clamart, France.
| |
Collapse
|
5
|
Hong X, Huang Y, Lin W, Zhang Y, Lin J, Zhang S, Cai F, Chen J. Genetic Testing Technology Assisting in the Diagnosis and Treatment of Multiple Suppurative Arthritis and Extensive Migratory Skin and Soft Tissue Infections Caused by Disseminated Staphylococcus aureus Disease: A Case Report and Review. Infect Drug Resist 2024; 17:4185-4194. [PMID: 39347491 PMCID: PMC11439357 DOI: 10.2147/idr.s479043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Staphylococcus aureus (S. aureus) infection is readily disseminated, yet the multiple septic arthritis and extensive migratory skin and soft tissue infections it causes are uncommon and challenging to treat. The infection can be life-threatening, with a mortality rate of 15-31%. Early, targeted antibiotic therapy is critical to improve prognosis. However, routine cultures are time-consuming and have low positivity rates, which may lead to errors in antibiotic regimen selection, depriving patients of optimal treatment. Genetic testing technologies, such as macrogenomic next-generation sequencing (mNGS) and digital polymerase chain reaction (dPCR), are now emerging as powerful tools for early pathogen diagnosis as well as pathogen diagnosis of target detectors with low microbial loads. In this study, we report a 53-year-old man who was admitted to the ICU for treatment of septic shock. The causative agent was targeted earlier as S. aureus by mNGS, and the shock was corrected more quickly with targeted antibiotic medication. However, he later developed multiple septic arthritis and an extensive migratory skin soft tissue infection with persistent fever, and at one point a gram-negative bacterial infection was suspected, and the antibiotic regimen was incorrectly changed. Blood dPCR suggested that the causative organism was still methicillin-sensitive S. aureus (MSSA), with no drug resistance gene detected, and the anti-infective regimen was readjusted, and the patient eventually recovered and was discharged from the hospital. We present this rare case and review related studies to validate the superiority of genetic testing technology in pathogen diagnosis, which deserves further application.
Collapse
Affiliation(s)
- Xiaoyan Hong
- Department of Emergency, Third Affiliated Hospital of Wenzhou Medical University (Rui’an People’s Hospital), Wenzhou, Zhejiang, People’s Republic of China
| | - Yangrong Huang
- Department of Emergency, Third Affiliated Hospital of Wenzhou Medical University (Rui’an People’s Hospital), Wenzhou, Zhejiang, People’s Republic of China
| | - Wei Lin
- Department of Emergency, Third Affiliated Hospital of Wenzhou Medical University (Rui’an People’s Hospital), Wenzhou, Zhejiang, People’s Republic of China
| | - Yi Zhang
- Department of Emergency, Third Affiliated Hospital of Wenzhou Medical University (Rui’an People’s Hospital), Wenzhou, Zhejiang, People’s Republic of China
| | - Jianyun Lin
- Department of Emergency, Third Affiliated Hospital of Wenzhou Medical University (Rui’an People’s Hospital), Wenzhou, Zhejiang, People’s Republic of China
| | - Shengguo Zhang
- Department of Infection, Third Affiliated Hospital of Wenzhou Medical University (Rui’an People’s Hospital), Wenzhou, Zhejiang, People’s Republic of China
| | - Fengquan Cai
- Department of Emergency, Third Affiliated Hospital of Wenzhou Medical University (Rui’an People’s Hospital), Wenzhou, Zhejiang, People’s Republic of China
| | - Jie Chen
- Department of Emergency, Third Affiliated Hospital of Wenzhou Medical University (Rui’an People’s Hospital), Wenzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
6
|
Subbarayudu S, Namasivayam SKR, Arockiaraj J. Immunomodulation in Non-traditional Therapies for Methicillin-resistant Staphylococcus aureus (MRSA) Management. Curr Microbiol 2024; 81:346. [PMID: 39240286 DOI: 10.1007/s00284-024-03875-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024]
Abstract
The rise of methicillin-resistant Staphylococcus aureus (MRSA) poses a significant challenge in clinical settings due to its ability to evade conventional antibiotic treatments. This overview explores the potential of immunomodulatory strategies as alternative therapeutic approaches to combat MRSA infections. Traditional antibiotics are becoming less effective, necessitating innovative solutions that harness the body's immune system to enhance pathogen clearance. Recent advancements in immunotherapy, including the use of antimicrobial peptides, phage therapy, and mechanisms of immune cells, demonstrate promise in enhancing the body's ability to clear MRSA infections. However, the exact interactions between these therapies and immunomodulation are not fully understood, underscoring the need for further research. Hence, this review aims to provide a broad overview of the current understanding of non-traditional therapeutics and their impact on immune responses, which could lead to more effective MRSA treatment strategies. Additionally, combining immunomodulatory agents with existing antibiotics may improve outcomes, particularly for immunocompromised patients or those with chronic infections. As the landscape of antibiotic resistance evolves, the development of effective immunotherapeutic strategies could play a vital role in managing MRSA infections and reducing reliance on traditional antibiotics. Future research must focus on optimizing these approaches and validating their efficacy in diverse clinical populations to address the urgent need for effective MRSA management strategies.
Collapse
Affiliation(s)
- Suthi Subbarayudu
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India
| | - S Karthick Raja Namasivayam
- Centre for Applied Research, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 602105, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
| |
Collapse
|
7
|
Kansari M, Idiris F, Szurmant H, Kubař T, Schug A. Mechanism of activation and autophosphorylation of a histidine kinase. Commun Chem 2024; 7:196. [PMID: 39227740 PMCID: PMC11371814 DOI: 10.1038/s42004-024-01272-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
Histidine kinases (HK) are one of the main prokaryotic signaling systems. Two structurally conserved catalytic domains inside the HK enable autokinase, phosphotransfer, and phosphatase activities. Here, we focus on a detailed mechanistic understanding of the functional cycle of the WalK HK by a multi-scale simulation approach, consisting of classical as well as hybrid QM/MM molecular dynamics simulation. Strikingly, a conformational transition induced solely in DHp leads to the correct activated conformation in CA crucial for autophosphorylation. This finding explains how variable sensor domains induce the transition from inactive to active state. The subsequent autophosphorylation inside DHp proceeds via a penta-coordinated transition state to a protonated phosphohistidine intermediate. This intermediate is consequently deprotonated by a suitable nearby base. The reaction energetics are controlled by the final proton acceptor and presence of a magnesium cation. The slow rates of the process result from the high energy barrier of the conformational transition between inactive and active states. The phosphorylation step exhibits a lower barrier and down-the-hill energetics. Thus, our work suggests a detailed mechanistic model for HK autophosphorylation.
Collapse
Affiliation(s)
- Mayukh Kansari
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Fathia Idiris
- Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Hendrik Szurmant
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Tomáš Kubař
- Institute of Physical Chemistry, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Alexander Schug
- Jülich Supercomputing Centre, Forschungszentrum Jülich, Jülich, Germany.
- Faculty of Biology, University of Duisburg/Essen, Essen, Germany.
| |
Collapse
|
8
|
Wang M, Li X, Cavallo FM, Yedavally H, Piersma S, Raineri EJM, Vera Murguia E, Kuipers J, Zhang Z, van Dijl JM, Buist G. Functional profiling of CHAP domain-containing peptidoglycan hydrolases of Staphylococcus aureus USA300 uncovers potential targets for anti-staphylococcal therapies. Int J Med Microbiol 2024; 316:151632. [PMID: 39142057 DOI: 10.1016/j.ijmm.2024.151632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/16/2024] [Accepted: 08/04/2024] [Indexed: 08/16/2024] Open
Abstract
The bacterial pathogen Staphylococcus aureus employs a thick cell wall for protection against physical and chemical insults. This wall requires continuous maintenance to ensure strength and barrier integrity, but also to permit bacterial growth and division. The main cell wall component is peptidoglycan. Accordingly, the bacteria produce so-called peptidoglycan hydrolases (PGHs) that cleave glycan strands to facilitate growth, cell wall remodelling, separation of divided cells and release of exported proteins into the extracellular milieu. A special class of PGHs contains so-called 'cysteine, histidine-dependent amidohydrolase/peptidase' (CHAP) domains. In the present study, we profiled the roles of 11 CHAP PGHs encoded by the core genome of S. aureus USA300 LAC. Mutant strains lacking individual CHAP PGHs were analysed for growth, cell morphology, autolysis, and invasion and replication inside human lung epithelial cells. The results show that several investigated CHAP PGHs contribute to different extents to extracellular and intracellular growth and replication of S. aureus, septation of dividing cells, daughter cell separation once the division process is completed, autolysis and biofilm formation. In particular, the CHAP PGHs Sle1 and SAUSA300_2253 control intracellular staphylococcal replication and the resistance to β-lactam antibiotics like oxacillin. This makes the S. aureus PGHs in general, and the Sle1 and SAUSA300_2253 proteins in particular, attractive targets for future prophylactic or therapeutic anti-staphylococcal interventions. Alternatively, these cell surface-exposed enzymes, or particular domains of these enzymes, could be applied in innovative anti-staphylococcal therapies.
Collapse
Affiliation(s)
- Min Wang
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. box 30001, Groningen 9700 RB, the Netherlands
| | - Xiaofang Li
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. box 30001, Groningen 9700 RB, the Netherlands
| | - Francis M Cavallo
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. box 30001, Groningen 9700 RB, the Netherlands
| | - Harita Yedavally
- Department of Nanomedicine and Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, the Netherlands
| | - Sjouke Piersma
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. box 30001, Groningen 9700 RB, the Netherlands
| | - Elisa J M Raineri
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. box 30001, Groningen 9700 RB, the Netherlands
| | - Elias Vera Murguia
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. box 30001, Groningen 9700 RB, the Netherlands
| | - Jeroen Kuipers
- Department of Biomedical Sciences, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Zhenhua Zhang
- Genomics Coordination Center, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, the Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. box 30001, Groningen 9700 RB, the Netherlands.
| | - Girbe Buist
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. box 30001, Groningen 9700 RB, the Netherlands.
| |
Collapse
|
9
|
Zhang S, Kang T, Malacrinò A, Zhang Z, Zhang Z, Lin W, Wu H. Pseudostellaria heterophylla improves intestinal microecology through modulating gut microbiota and metabolites in mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6174-6185. [PMID: 38459926 DOI: 10.1002/jsfa.13453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/14/2024] [Accepted: 03/09/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND Pseudostellaria heterophylla is a Chinese medicine and healthy edible that is widely used to for its immunomodulatory, antioxidant, antidiabetic and antitussive properties. However, the potential function of P. heterophylla in intestinal microecology remains unclear. In this study, we investigated the impact of P. heterophylla on immune functions and evaluated its potential to regulate the gut microbiota and metabolome. RESULTS The results showed that P. heterophylla significantly increased the content of red blood cells, total antioxidant capacity and expression of immune factors, and decreased platelet counts when compared to the control under cyclophosphamide injury. In addition, P. heterophylla altered the diversity and composition of the gut bacterial community; increased the abundance of potentially beneficial Akkermansia, Roseburia, unclassified Clostridiaceae, Mucispirillum, Anaeroplasma and Parabacteroides; and decreased the relative abundance of pathogenic Cupriavidus and Staphylococcus in healthy mice. Metabolomic analyses showed that P. heterophylla significantly increased the content of functional oligosaccharides, common oligosaccharides, vitamins and functional substances. Probiotics and pathogens were regulated by metabolites across 11 pathways in the bacterial-host co-metabolism network. CONCLUSION We demonstrated that P. heterophylla increased the abundance of probiotics and decreased pathogens, and further stimulated host microbes to produce beneficial secondary metabolites for host health. Our studies highlight the role of P. heterophylla in gut health and provide new insights for the development of traditional Chinese medicine in the diet. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shengkai Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tao Kang
- Laboratory of Rhizosphere Ecology Processes and Management, College of Resource and Environment, Anhui Agricultural University, Hefei, China
| | - Antonino Malacrinò
- Department of Agriculture, Università degli Studi Mediterranea di Reggio Calabria, Reggio Calabria, Italy
| | - Zhen Zhang
- Laboratory of Rhizosphere Ecology Processes and Management, College of Resource and Environment, Anhui Agricultural University, Hefei, China
| | - Zhongyi Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongmiao Wu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Laboratory of Rhizosphere Ecology Processes and Management, College of Resource and Environment, Anhui Agricultural University, Hefei, China
| |
Collapse
|
10
|
Long DR, Cifu A, Salipante SJ, Sawyer RG, Machutta K, Alverdy JC. Preventing Surgical Site Infections in the Era of Escalating Antibiotic Resistance and Antibiotic Stewardship. JAMA Surg 2024; 159:949-956. [PMID: 38922606 PMCID: PMC11622804 DOI: 10.1001/jamasurg.2024.0429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Importance According to the Centers for Disease Control and Prevention and governing bodies within the American College of Surgeons, the administration of antibiotics as prophylaxis against infection prior to a planned elective procedure is, with rare exception, routinely recommended. The goal of "getting to zero" infections remains a high priority for policymakers, practitioners, and certainly for patients. Observations Despite the many advances in surgical technique, skin decontamination, sterile procedure, and enhanced recovery programs, surgical site infections continue to adversely affect procedures as diverse as dental implant surgery, joint arthroplasty, and major abdominal surgery. Although surgical site infection rates are at historically low levels, progress has stalled in recent reporting periods and such infections remain disabling, costly, and occasionally lethal. Stakeholders in the field, including surgeons, infectious diseases specialists, and industry, advocate for strategies emphasizing greater levels of intraoperative sterility or broader-spectrum antibiotic coverage as the most appropriate path forward. Conclusions and Relevance The current emphasis on ever-increasing levels of intraoperative sterility and extended-spectrum antibiotic use are not sustainable long-term solutions. Continuing to escalate these approaches may contribute to unintended consequences including antimicrobial resistance. Principles of antimicrobial stewardship and microbiome sciences can be applied to inform a more effective and sustainable approach to infection prevention in the field of surgery.
Collapse
Affiliation(s)
- Dustin R Long
- Division of Critical Care Medicine, Department of Anesthesiology & Pain Medicine, University of Washington, Seattle
| | - Adam Cifu
- Department of Internal Medicine, University of Chicago, Chicago, Illinois
| | - Stephen J Salipante
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle
| | - Robert G Sawyer
- Department of Surgery, Western Michigan University Homer Stryker School of Medicine, Kalamazoo
| | | | - John C Alverdy
- Department of Surgery, University of Chicago, Chicago, Illinois
| |
Collapse
|
11
|
Wang X, Zhang T, Li W, Zhang M, Zhao L, Wang N, Zhang X, Zhang B. Dietary supplementation with Macleaya cordata extract alleviates intestinal injury in broiler chickens challenged with lipopolysaccharide by regulating gut microbiota and plasma metabolites. Front Immunol 2024; 15:1414869. [PMID: 39100674 PMCID: PMC11294198 DOI: 10.3389/fimmu.2024.1414869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/08/2024] [Indexed: 08/06/2024] Open
Abstract
Introduction The prevention and mitigation of intestinal immune challenge is crucial for poultry production. This study investigated the effects of dietary Macleaya cordata extract (MCE) supplementation on the prevention of intestinal injury in broiler chickens challenged with lipopolysaccharide (LPS). Methods A total of 256 one-day-old male Arbor Acres broilers were randomly divided into 4 treatment groups using a 2×2 factorial design with 2 MCE supplemental levels (0 and 400 mg/kg) and 2 LPS challenge levels (0 and 1 mg/kg body weight). The experiment lasted for 21 d. Results and discussion The results showed that MCE supplementation increased the average daily feed intake during days 0-14. MCE supplementation and LPS challenge have an interaction on the average daily gain during days 15-21. MCE supplementation significantly alleviated the decreased average daily gain of broiler chickens induced by LPS. MCE supplementation increased the total antioxidant capacity and the activity of catalase and reduced the level of malondialdehyde in jejunal mucosa. MCE addition elevated the villus height and the ratio of villus height to crypt depth of the ileum. MCE supplementation decreased the mRNA expression of pro-inflammatory cytokines interleukin (IL)-6 and IL-8 in the jejunum. MCE addition mitigated LPS-induced mRNA up-expression of pro-inflammatory factors IL-1β and IL-17 in the jejunum. MCE supplementation increased the abundance of probiotic bacteria (such as Lactobacillus and Blautia) and reduced the abundance of pathogenic bacteria (such as Actinobacteriota, Peptostretococcaceae, and Rhodococcus), leading to alterations in gut microbiota composition. MCE addition altered several metabolic pathways such as Amino acid metabolism, Nucleotide metabolism, Energy metabolism, Carbohydrate metabolism, and Lipid metabolism in broilers. In these pathways, MCE supplementation increased the levels of L-aspartic acid, L-Glutamate, L-serine, etc., and reduced the levels of phosphatidylcholine, phosphatidylethanolamine, thromboxane B2, 13-(S)-HODPE, etc. In conclusion, dietary supplementation of 400 mg/kg MCE effectively improved the growth performance and intestinal function in LPS-challenged broiler chickens, probably due to the modulation of gut microbiota and plasma metabolites.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Beibei Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
12
|
Ayala-García JC, Bahena-Román M, Díaz-Benítez CE, Bermúdez-Morales VH, Cruz M, Lagunas-Martínez A, Burguete-García AI. Association between Gut Microbiota and Inflammation: Mediation Analysis Using Waist Circumference. J Interferon Cytokine Res 2024; 44:281-289. [PMID: 38516906 DOI: 10.1089/jir.2024.0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Chronic low-grade inflammation (CLI) is implicated in the development of multiple metabolic diseases. The gut microbiota (GM) activates different signaling pathways and induces phenotypic changes, offering an exciting opportunity to treat CLI. We evaluated the mediation of waist circumference on the association of GM with serum cytokines. In this cross-sectional study of 331 children, we measured 5 gut bacterial species, namely, Lactobacillus (L.) casei, L. paracasei, L. reuteri, Staphylococcus (S.) aureus, and Akkermansia (A.) muciniphila, as well as anthropometry, serum cytokines, and other covariates. We evaluated adjusted regression models, path analysis, and structural equation modeling to obtain path coefficients (PCs) for direct, indirect (waist circumference-mediated), and total effects. We found that L. paracasei was directly associated with lower interleukin-10 (IL-10) levels (PC = -173.5 pg/mL). We also observed indirect associations between S. aureus with lower adiponectin levels (PC = -0.1 µg/mL and -0.09 µg/mL). Finally, A. muciniphila was indirectly associated with higher adiponectin levels (PC = 0.1 µg/mL). Our findings suggest the importance of considering the GM composition and waist circumference when evaluating inflammatory-related factors, providing a basis for future research to identify potential strategies to intervene in inflammatory processes and prevent metabolic diseases in childhood. [Figure: see text].
Collapse
Affiliation(s)
- Juan Carlos Ayala-García
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, México
| | - Margarita Bahena-Román
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, México
| | | | | | - Miguel Cruz
- Unidad de Investigación Médica en Bioquímica, Centro Médico Nacional Siglo XXI, Ciudad de México, México
| | - Alfredo Lagunas-Martínez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, México
| | - Ana Isabel Burguete-García
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, México
| |
Collapse
|
13
|
Zhang F, Liu F, Sheng X, Liu Q, Cui L, Cao Z, Hu T, Li D, Dai M. Bacitracin-resistant Staphylococcus aureus induced in chicken gut and in vitro under bacitracin exposure. Microb Pathog 2024; 191:106666. [PMID: 38685360 DOI: 10.1016/j.micpath.2024.106666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/13/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
It is common knowledge that prolonged and excessive use of antibiotics can lead to antimicrobial resistance. However, the characteristics and mechanism of resistant-bacteria induced by clinically recommended and prophylactic dose drugs remain largely unclear. This study aimed to observe the trends of drug resistance of the bacitracin-susceptible Staphylococcus aureus strain FS127 under exposure to bacitracin (BAC), which were induced in vitro and in chicken gut. Antimicrobial susceptibility testing was used to detect the susceptibility of S. aureus induced in vitro and in the chicken gut to gentamicin, chloramphenicol, tetracycline, doxycycline, penicillin and chloramphenicol. The research results showed that bacitracin could induce drug resistance in S. aureus both in vitro and in vivo. The bacitracin-resistance rate of S. aureus isolated from chicken gut was positively correlated with the dose and time of bacitracin administration. The findings revealed that bacitracin-resistant S. aureus induced in vivo had enhanced susceptibility to chloramphenicol but no such change in vitro. Meanwhile, RT-qPCR assay was used to detect the expression levels of vraD, braD, braR and bacA in typical strains with different bacitracin-resistance levels. It was found that BacA may play a key role in the bacitracin resistance of S. aureus. In conclusion, this work reveals the characteristics and mechanism of bacitracin-resistant S. aureus induced by bacitracin in vivo and in vitro respectively.
Collapse
Affiliation(s)
- Fan Zhang
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China; MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, 430070, China
| | - Fangjia Liu
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China; MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xijing Sheng
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China; MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, 430070, China
| | - Quan Liu
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China; MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, 430070, China
| | - Luqing Cui
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China; MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhengzheng Cao
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China; MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, 430070, China
| | - Tianyu Hu
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China; MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, 430070, China
| | - Donghua Li
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China; MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, 430070, China
| | - Menghong Dai
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China; MOA Key Laboratory of Food Safety Evaluation/National Reference Laboratory of Veterinary Drug Residue (HZAU), Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
14
|
Hofstetter KS, Jacko NF, Shumaker MJ, Talbot BM, Petit RA, Read TD, David MZ. Strain Differences in Bloodstream and Skin Infection: Methicillin-Resistant Staphylococcus aureus Isolated in 2018-2021 in a Single Health System. Open Forum Infect Dis 2024; 11:ofae261. [PMID: 38854395 PMCID: PMC11160326 DOI: 10.1093/ofid/ofae261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/02/2024] [Indexed: 06/11/2024] Open
Abstract
Staphylococcus aureus is a common cause of skin and soft-tissue infections (SSTIs) and has become the most common cause of bloodstream infections (BSIs) in recent years, but whether the strains causing these two clinical syndromes overlap has not been studied adequately. USA300/500 (clonal complex [CC] 8-sequence type [ST] 8) and USA100 (CC5-ST5) have dominated among methicillin-resistant S aureus (MRSA) strains in the United States since the early 2000s. We compared the genomes of unselected MRSA isolates from 131 SSTIs with those from 145 BSIs at a single US center in overlapping periods in 2018-2021. CC8 MRSA was more common among SSTIs, and CC5 was more common among BSIs, consistent with prior literature. Based on clustering genomes with a threshold of 15 single-nucleotide polymorphisms, we identified clusters limited to patients with SSTI and separate clusters exclusively comprising patients with BSIs. However, we also identified eight clusters that included at least one SSTI and one BSI isolate. This suggests that virulent MRSA strains are transmitted from person to person locally in the healthcare setting or the community and that single lineages are often capable of causing both SSTIs and BSIs.
Collapse
Affiliation(s)
- Katrina S Hofstetter
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Natasia F Jacko
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Margot J Shumaker
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brooke M Talbot
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Robert A Petit
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Timothy D Read
- Division of Infectious Diseases, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Michael Z David
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
15
|
Traoré SG, Fokou G, Wognin AS, Dié SAG, Amanzou NAA, Heitz-Tokpa K, Tetchi SM, Seko MO, Sanhoun AR, Traoré A, Anoh EA, Tiembre I, Koussemon-Camara M, Akoua-Koffi C, Bonfoh B. Assessment of handwashing impact on detection of SARS-CoV-2, Staphylococcus aureus, Escherichia coli on hands in rural and urban settings of Côte d'Ivoire during COVID-19 pandemic. BMC Public Health 2024; 24:1380. [PMID: 38778328 PMCID: PMC11112913 DOI: 10.1186/s12889-024-18838-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND Handwashing is the first line of hygiene measures and one of the oldest methods of preventing the spread of infectious diseases. Despite its efficacy in the health system, handwashing is often inadequately practiced by populations. This study aimed to assess the presence of SARS-CoV-2, Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) on hands as indicators of lack of hand hygiene during COVID 19 pandemic. METHODS A cross-sectional study was conducted in rural Taabo and urban Abidjan (Côte d'Ivoire) from January to September 2021. A total of 384 participants from 384 households were included in the study. The total households were distributed proportionally within various municipalities in the two study areas according to the number of households in each municipality, based on data of the National Institute of Statistics from the 2014 general population census. Hand swabbing of the 384 participants within households (320 in Abidjan and 64 in Taabo) was performed for the enumeration of E. coli and S aureus, using laboratory standard method and for the detection of SARS-CoV-2 by RT-qPCR. A binary logistic regression model was built with the outcome variable presence of Staphylococcus spp. on hands of respondents that was categorized into binary variables, Staphylococcus spp. (1 = presence, 0 = absence) for the Risk Ratio estimation. Place of living, sex, handwashing, education and age group were used to adjust the model to observe the effects of these explanatory variables. RESULTS No presence of SARS-CoV-2 virus was detected on the hands of respondents in both sites. However, in urban Abidjan, only Staphylococcus spp. (Coagulase Negative Staphylococci) was found on the hands of 233 (72.8%, 95%CI: 67.7-77.4) respondents with the average load of 0.56 CFU/ Cm2 (95% CI, 0.52-0.60). Meanwhile, in rural Taabo, Staphylococcus spp. (Coagulase Negative Staphylococci) and E. coli were found on the hands of 40 (62.5%, 95%CI: 50.3-73.3) and 7 (10.9%, 95%CI: 5.4-20.9) respondents with the respective average load of 0.49 CFU/ Cm2 (95% CI, 0.39-0.59) and 0.08 CFU/ Cm2 (95% CI, 0.03-0.18). Participants living in rural Taabo were less likely to have Staphylococcus spp. on their hands (RR = 0.811; 95%IC: 0.661-0.995) compared to those living in urban Abidjan. CONCLUSIONS No SARS-CoV-2 was detected on the hands of participants in both sites, suggesting that our study did not show direct transmission through hands. No E. coli was found in urban Abidjan while E. coli was found on the hands of participants in rural Taabo indicating poor hand washing and disinfection practices in rural Taabo. Living in urban Abidjan is statistically associated to having Staphylococcus spp. on hands. Further studies are necessary especially to understand to what extent the presence of Staphylococcus spp. on hands indicates a higher infection or fecal colonization rates in the case of E. coli.
Collapse
Affiliation(s)
- Sylvain Gnamien Traoré
- Université Peleforo Gon Coulibaly, Korhogo, Côte d'Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Gilbert Fokou
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | | | | | - Nogbou Andetchi Aubin Amanzou
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
- Université Virtuelle de Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Kathrin Heitz-Tokpa
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| | | | - Malik Orou Seko
- Ecole Inter-Etats des Sciences et Médecine Vétérinaires, Dakar, Sénégal.
| | - Aimé Roland Sanhoun
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
- Université Nangui Abrogoua, Abidjan, Côte d'Ivoire
| | - Adjaratou Traoré
- Centre Hospitalier Universitaire de Bouaké, Bouaké, Côte d'Ivoire
| | | | - Issaka Tiembre
- Institut National d'Hygiène Publique, Abidjan, Côte d'Ivoire
| | | | - Chantal Akoua-Koffi
- Centre Hospitalier Universitaire de Bouaké, Bouaké, Côte d'Ivoire
- UFR Sciences Médicales de l'Université Alassane Ouattara, Bouaké, Côte d'Ivoire
| | - Bassirou Bonfoh
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, Abidjan, Côte d'Ivoire
| |
Collapse
|
16
|
Vadakkan K, Sathishkumar K, Kuttiyachan Urumbil S, Ponnenkunnathu Govindankutty S, Kumar Ngangbam A, Devi Nongmaithem B. A review of chemical signaling mechanisms underlying quorum sensing and its inhibition in Staphylococcus aureus. Bioorg Chem 2024; 148:107465. [PMID: 38761705 DOI: 10.1016/j.bioorg.2024.107465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/29/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
Staphylococcus aureus is a significant bacterium responsible for multiple infections and is a primary cause of fatalities among patients in hospital environments. The advent of pathogenic bacteria such as methicillin-resistant S. aureus revealed the shortcomings of employing antibiotics to treat bacterial infectious diseases. Quorum sensing enhances S. aureus's survivability through signaling processes. Targeting the key components of quorum sensing has drawn much interest nowadays as a promising strategy for combating infections caused by bacteria. Concentrating on the accessory gene regulator quorum-sensing mechanism is the most commonly suggested anti-virulence approach for S.aureus. Quorum quenching is a common strategy for controlling illnesses triggered by microorganisms since it reduces the pathogenicity of bacteria and improves bacterial biofilm susceptibility to antibiotics, thus providing an intriguing prospect for drug discovery. Quorum sensing inhibition reduces selective stresses and constrains the emergence of antibiotic resistance while limiting bacterial pathogenicity. This review examines the quorum sensing mechanisms involved in S. aureus, quorum sensing targets and gene regulation, environmental factors affecting quorum sensing, quorum sensing inhibition, natural products as quorum sensing inhibitory agents and novel therapeutical strategies to target quorum sensing in S. aureus as drug developing technique to augment conventional antibiotic approaches.
Collapse
Affiliation(s)
- Kayeen Vadakkan
- Department of Biotechnology, St. Mary's College (Autonomous), Thrissur, Kerala 680020, India; Manipur International University, Imphal, Manipur 795140, India.
| | - Kuppusamy Sathishkumar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Thandalam, Chennai, Tamil Nadu 602105, India
| | | | | | | | | |
Collapse
|
17
|
Forouzani‐Moghaddam MJ, Habibi S, Hosseini‐Safa A, Khanaliha K, Mokarinejad R, Akhoundzadeh F, Oshaghi M. Rapid detection of major enterotoxin genes and antibiotic resistance of Staphylococcus aureus isolated from raw milk in the Yazd province, Iran. Vet Med Sci 2024; 10:e1407. [PMID: 38519836 PMCID: PMC10959825 DOI: 10.1002/vms3.1407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/22/2024] [Accepted: 02/19/2024] [Indexed: 03/25/2024] Open
Abstract
INTRODUCTION Raw milk is a nutrient-rich food, but it may harbour harmful bacteria, such as enterotoxigenic Staphylococcus aureus (S. aureus), which can cause staphylococcal food poisoning. Antibiotic resistance of S. aureus in raw milk can increase the risk of such infections, particularly among susceptible individuals. OBJECTIVE This study aimed to investigate the prevalence of enterotoxin genes a, d, g, i and j and the antibiotic resistance of S. aureus isolated from raw milk samples. METHODS During a 6-month sampling period, 60 raw milk specimens were obtained from diverse locations in Yazd province, Iran. Antibiogram profiling was conducted via the disc diffusion method. In addition, staphylococcal enterotoxin (SE) genes a, d, g, i, and j were detected through real-time PCR analysis. RESULTS Bacteriological assays confirmed the presence of S. aureus in 11 samples (18.3%). All isolates demonstrated 100% resistance to penicillin G but exhibited sensitivity to vancomycin, while resistance to other antibiotics ranged from 36.4% to 45.5%. The prevalence of enterotoxin genes in these strains showed variable distribution, with sea being the predominant SE (45.5%), followed by sed (36.4%), seg (18.2), sej and sei (9.1% each). CONCLUSIONS This study discovered the presence of multiple enterotoxins in S. aureus strains obtained from raw milk samples. These strains also demonstrated resistance to a variety of antibiotics. Since enterotoxigenic S. aureus is known to cause human food poisoning, monitoring food hygiene practices, especially during raw milk production, is critical.
Collapse
Affiliation(s)
| | - Sina Habibi
- Department of Medical Laboratory SciencesFaculty of Allied MedicineIran University of Medical SciencesTehranIran
- Department of Hematology and Blood Banking, Faculty of Allied MedicineIran University of Medical SciencesTehranIran
| | - Ahmad Hosseini‐Safa
- Department of Medical Laboratory SciencesFaculty of Allied MedicineIran University of Medical SciencesTehranIran
| | - Khadijeh Khanaliha
- Research Center of Pediatric Infectious DiseasesInstitute of Immunology and Infectious DiseasesIran University of Medical SciencesTehranIran
| | - Roya Mokarinejad
- Department of Medical Laboratory SciencesFaculty of Allied MedicineIran University of Medical SciencesTehranIran
| | - Fatemeh Akhoundzadeh
- Department of Medical Laboratory SciencesFaculty of Allied MedicineIran University of Medical SciencesTehranIran
| | - Mojgan Oshaghi
- Department of Medical Laboratory SciencesFaculty of Allied MedicineIran University of Medical SciencesTehranIran
| |
Collapse
|
18
|
Sam SW, Hafeez B, Ong HI, Gill S, Smibert O, Lavelle A, Burgess A, Proud D, Mohan H. The impact of faecal diversion on the gut microbiome: a systematic review. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2024; 5:e4. [PMID: 39290660 PMCID: PMC11406410 DOI: 10.1017/gmb.2024.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/06/2024] [Accepted: 02/12/2024] [Indexed: 09/19/2024]
Abstract
Diversion of the faecal stream is associated with diversion colitis (DC). Preliminary studies indicate that microbiome dysbiosis contributes to its development and potentially treatment. This review aims to characterise these changes in the context of faecal diversion and identify their clinical impact. A systematic search was conducted using MEDLINE, EMBASE and CENTRAL databases using a predefined search strategy identifying studies investigating changes in microbiome following diversion. Findings reported according to PRISMA guidelines. Of 743 results, 6 met inclusion criteria. Five reported significantly decreased microbiome diversity in the diverted colon. At phylum level, decreases in Bacillota with a concomitant increase in Pseudomonadota were observed, consistent with dysbiosis. At genus level, studies reported decreases in beneficial lactic acid bacteria which produce short-chain fatty acid (SCFA), which inversely correlated with disease severity. Significant losses in commensals were also noted. These changes were seen to be partially reversible with restoration of bowel continuity. Changes within the microbiome were reflected by histopathological findings suggestive of intestinal dysfunction. Faecal diversion is associated with dysbiosis in the diverted colon which may have clinical implications. This is reflected in loss of microbiome diversity, increases in potentially pathogenic-associated phyla and reduction in SCFA-producing and commensal bacteria.
Collapse
Affiliation(s)
- Shien Wenn Sam
- Faculty of Medical and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, Austin Health Department of Surgery, Heidelberg, VIC, Australia
| | - Bilal Hafeez
- Faculty of Medical and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, Austin Health Department of Surgery, Heidelberg, VIC, Australia
| | - Hwa Ian Ong
- Faculty of Medical and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, Austin Health Department of Surgery, Heidelberg, VIC, Australia
| | - Sonia Gill
- Faculty of Medical and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, Austin Health Department of Surgery, Heidelberg, VIC, Australia
| | - Olivia Smibert
- Faculty of Medical and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, Austin Health Department of Surgery, Heidelberg, VIC, Australia
- Department of Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Aonghus Lavelle
- Department of Anatomy & Neuroscience and APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Adele Burgess
- Faculty of Medical and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, Austin Health Department of Surgery, Heidelberg, VIC, Australia
| | - David Proud
- Faculty of Medical and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, Austin Health Department of Surgery, Heidelberg, VIC, Australia
| | - Helen Mohan
- Faculty of Medical and Health Sciences, University of Melbourne, Parkville, VIC, Australia
- Department of Surgery, Austin Health Department of Surgery, Heidelberg, VIC, Australia
- Department of Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Rogers SO, Wenzel RP. Lister Revisited - Skin Antisepsis before Fracture Fixation. N Engl J Med 2024; 390:466-467. [PMID: 38294980 DOI: 10.1056/nejme2314785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Affiliation(s)
- Selwyn O Rogers
- From University of Chicago Medicine, Chicago (S.O.R.); and Virginia Commonwealth University, Richmond (R.P.W.)
| | - Richard P Wenzel
- From University of Chicago Medicine, Chicago (S.O.R.); and Virginia Commonwealth University, Richmond (R.P.W.)
| |
Collapse
|
20
|
Alverdy JC. Studies Involving Surgical Site Infections (SSIs) Without Culture Results, the Antibiotics Chosen for Prophylaxis and Antibiotic Sensitivity Data: "Are they Actionable?". Ann Surg 2024; 279:13-14. [PMID: 37465974 DOI: 10.1097/sla.0000000000006033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Affiliation(s)
- John C Alverdy
- Pritzker School of Medicine, University of Chicago, Chicago, IL
| |
Collapse
|
21
|
Abdullahi IN, Latorre-Fernández J, Reuben RC, Trabelsi I, González-Azcona C, Arfaoui A, Usman Y, Lozano C, Zarazaga M, Torres C. Beyond the Wild MRSA: Genetic Features and Phylogenomic Review of mecC-Mediated Methicillin Resistance in Non- aureus Staphylococci and Mammaliicocci. Microorganisms 2023; 12:66. [PMID: 38257893 PMCID: PMC10818522 DOI: 10.3390/microorganisms12010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/22/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
Methicillin resistance, mediated by the mecA gene in staphylococci and mammaliicocci, has caused tremendous setbacks in the use of antibiotics in human and veterinary medicine due to its high potential of presenting the multidrug resistance (MDR) phenotype. Three other mec analogs exist, of which the mecC has evolutionary been associated with methicillin-resistant Staphylococcus aureus (MRSA) in wild animals, thus loosely referred to as the wild MRSA. In this study, we present an epidemiological review and genomic analysis of non-aureus staphylococci and mammaliicocci that carry the mecC-mediated methicillin resistance trait and determine whether this trait has any relevant link with the One Health niches. All previous studies (2007 till 2023) that described the mecC gene in non-aureus staphylococci and mammaliicocci were obtained from bibliometric databases, reviewed, and systematically analyzed to obtain the antimicrobial resistance (AMR) and virulence determinants, mobilome, and other genetic contents. Moreover, core genome single-nucleotide polymorphism analysis was used to assess the relatedness of these strains. Of the 533 articles analyzed, only 16 studies (on livestock, environmental samples, milk bulk tanks, and wild animals) were eligible for inclusion, of which 17 genomes from 6 studies were used for various in silico genetic analyses. Findings from this systematic review show that all mecC-carrying non-aureus staphylococci were resistant to only beta-lactam antibiotics and associated with the classical SCCmec XI of S. aureusLGA251. Similarly, two studies on wild animals reported mecC-carrying Mammaliicoccus stepanovicii associated with SCCmec XI. Nevertheless, most of the mecC-carrying Mammaliicoccus species presented an MDR phenotype (including linezolid) and carried the SCCmec-mecC hybrid associated with mecA. The phylogenetic analysis of the 17 genomes revealed close relatedness (<20 SNPs) and potential transmission of M. sciuri and M. lentus strains in livestock farms in Algeria, Tunisia, and Brazil. Furthermore, closely related M. sciuri strains from Austria, Brazil, and Tunisia (<40 SNPs) were identified. This systematic review enhances our comprehension of the epidemiology and genetic organization of mecC within the non-aureus staphylococci and mammaliicocci. It could be hypothesized that the mecC-carrying non-aureus staphylococci are evolutionarily related to the wild MRSA-mecC. The potential implications of clonal development of a lineage of mecA/mecC carrying strains across multiple dairy farms in a vast geographical region with the dissemination of MDR phenotype is envisaged. It was observed that most mecC-carrying non-aureus staphylococci and mammaliicocci were reported in mastitis cases. Therefore, veterinarians and veterinary microbiology laboratories must remain vigilant regarding the potential existence of mecA/mecC strains originating from mastitis as a potential niche for this resistance trait.
Collapse
Affiliation(s)
- Idris Nasir Abdullahi
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (I.N.A.); (J.L.-F.); (R.C.R.); (C.G.-A.); (C.L.); (M.Z.)
| | - Javier Latorre-Fernández
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (I.N.A.); (J.L.-F.); (R.C.R.); (C.G.-A.); (C.L.); (M.Z.)
| | - Rine Christopher Reuben
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (I.N.A.); (J.L.-F.); (R.C.R.); (C.G.-A.); (C.L.); (M.Z.)
| | - Islem Trabelsi
- Bioresources, Environment and Biotechnology Laboratory, Higher Institute of Applied Biological Sciences of Tunis, University of Tunis El Manar, Tunis 1006, Tunisia;
| | - Carmen González-Azcona
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (I.N.A.); (J.L.-F.); (R.C.R.); (C.G.-A.); (C.L.); (M.Z.)
| | - Ameni Arfaoui
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis 1068, Tunisia;
| | - Yahaya Usman
- Department of Medical Laboratory Science, Ahmadu Bello University, Zaria 810107, Nigeria;
| | - Carmen Lozano
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (I.N.A.); (J.L.-F.); (R.C.R.); (C.G.-A.); (C.L.); (M.Z.)
| | - Myriam Zarazaga
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (I.N.A.); (J.L.-F.); (R.C.R.); (C.G.-A.); (C.L.); (M.Z.)
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006 Logroño, Spain; (I.N.A.); (J.L.-F.); (R.C.R.); (C.G.-A.); (C.L.); (M.Z.)
| |
Collapse
|
22
|
Abdullahi IN, Lozano C, Zarazaga M, Trabelsi I, Reuben RC, Stegger M, Torres C. Nasal staphylococci microbiota and resistome in healthy adults in La Rioja, northern Spain: High frequency of toxigenic S. aureus and MSSA-CC398 subclade. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2023; 116:105529. [PMID: 38013047 DOI: 10.1016/j.meegid.2023.105529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 11/19/2023] [Indexed: 11/29/2023]
Abstract
This study determined the nasal staphylococci diversity and characterized their resistome, with a focus on the mobilome of methicillin-susceptible Staphylococcus aureus (MSSA)-CC398 subclade from healthy adults in La Rioja (northern Spain). Nasal staphylococci recovered from 57 healthy individuals (HI) were identified (MALDI-TOF-MS) and their antimicrobial resistance, virulence determinants and genetic lineages were studied. The relatedness of MSSA-CC398 isolates was assessed by core-genome single-nucleotide-polymorphisms (SNPs). One-hundred-forty-three non-repetitive staphylococci were obtained from most HI (98.2%), of which S. epidermidis (87.7%) and S. aureus (36.8%) were the predominant species. About 15% of the 27 S. aureus and 30.1% of the 116 coagulase-negative staphylococci (CoNS) isolates presented a multidrug resistance (MDR) phenotype. All S. aureus isolates were MSSA but 30.2% of CoNS isolates were mecA-positive and carried SCCmec types III, IV, and V. The highest non-beta-lactam resistance (frequency/genes) in S. aureus and CoNS were: erythromycin-clindamycin-inducible (25.9%/ermT, ermC) and mupirocin (30.1%/mupA), respectively. About 85% of S. aureus isolates carried relevant virulence genes. Eight clonal complexes (CCs) of MSSA were identified, of which CC398 was the predominant (33.3%). About 78% of the CC398 isolates harboured rep13-bound ermT gene, however, one carried a rep10-bound ermC gene. Only the ermT-positive MSSA-CC398 isolates were closely related (<50 SNPs) and carried the φSa3. Diverse MDR-S. epidermidis isolates were identified which included the lineages ST59 and ST210. The high rate of toxigenic S. aureus and of MSSA-CC398 subclade highlight the ability of HI to carry and transmit virulent isolates. Moreover, the high frequency of MDR-CoNS, often linked with SCCmec, needs to be monitored for their potential human health implications.
Collapse
Affiliation(s)
- Idris Nasir Abdullahi
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Carmen Lozano
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Myriam Zarazaga
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Islem Trabelsi
- Bioresources, Environment and Biotechnology Laboratory, Higher Institute of Applied Biological Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Rine Christopher Reuben
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain
| | - Marc Stegger
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark; Antimicrobial Resistance and Infectious Diseases Laboratory, Harry Butler Institute, Murdoch University, Murdoch, WA, Australia
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, Logroño, Spain.
| |
Collapse
|
23
|
Zhou X, Kumar P, Bhuyan DJ, Jensen SO, Roberts TL, Münch GW. Neuroinflammation in Alzheimer's Disease: A Potential Role of Nose-Picking in Pathogen Entry via the Olfactory System? Biomolecules 2023; 13:1568. [PMID: 38002250 PMCID: PMC10669446 DOI: 10.3390/biom13111568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder characterized by progressive cognitive decline and memory impairment. Many possible factors might contribute to the development of AD, including amyloid peptide and tau deposition, but more recent evidence suggests that neuroinflammation may also play an-at least partial-role in its pathogenesis. In recent years, emerging research has explored the possible involvement of external, invading pathogens in starting or accelerating the neuroinflammatory processes in AD. In this narrative review, we advance the hypothesis that neuroinflammation in AD might be partially caused by viral, bacterial, and fungal pathogens entering the brain through the nose and the olfactory system. The olfactory system represents a plausible route for pathogen entry, given its direct anatomical connection to the brain and its involvement in the early stages of AD. We discuss the potential mechanisms through which pathogens may exploit the olfactory pathway to initiate neuroinflammation, one of them being accidental exposure of the olfactory mucosa to hands contaminated with soil and feces when picking one's nose.
Collapse
Affiliation(s)
- Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (D.J.B.)
| | - Paayal Kumar
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia;
| | - Deep J. Bhuyan
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (D.J.B.)
| | - Slade O. Jensen
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.O.J.); (T.L.R.)
- Microbiology and Infectious Diseases Unit, School of Medicine, Western Sydney University, Liverpool, NSW 2170, Australia
| | - Tara L. Roberts
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; (S.O.J.); (T.L.R.)
- Oncology Unit, School of Medicine, Western Sydney University, Liverpool, NSW 2170, Australia
| | - Gerald W. Münch
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia; (X.Z.); (D.J.B.)
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia;
| |
Collapse
|
24
|
Suthi S, Mounika A, Potukuchi VGKS. Elevated acetate kinase (ackA) gene expression, activity, and biofilm formation observed in methicillin-resistant strains of Staphylococcus aureus (MRSA). J Genet Eng Biotechnol 2023; 21:100. [PMID: 37831271 PMCID: PMC10575836 DOI: 10.1186/s43141-023-00555-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 09/20/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Staphylococcus aureus spreads its infections through biofilms. This usually happens in the stationary phase of S. aureus growth where it utilizes accumulated acetate as a carbon source via the phosphotrans-acetylase-acetate kinase (Pta-Ack) pathway. In which acetate kinase (ackA) catalyzes the substrate-level phosphorylation, a vital secondary energy-yielding pathway that promotes biofilms formation aids bacterium survival in hostile environments. In this study, we describe the cloning, sequencing, and expression of S. aureus ackA gene. The expression analysis of ackA gene in methicillin-resistant strains of S. aureus (MRSA) correlates with ackA activity and biofilm units. The uniqueness of ackA was analyzed by using in silico methods. RESULTS Elevated ackA gene expression was observed in MRSA strains, which correlates with increased ackA activity and biofilm units, explaining ackA role in MRSA growth and pathogenicity. The pure recombinant acetate kinase showed a molecular weight of 44 kDa, with enzyme activity of 3.35 ± 0.05 μM/ml/min. The presence of ACKA-1, ACKA-2 sites, one ATP, and five serine/threonine-protein kinase sites in the ackA gene (KC954623.1) indicated that acetyl phosphate production is strongly controlled. The comparative structural analysis of S. aureus ackA with ackA structures of Mycobacterium avium (3P4I) and Salmonella typhimurium (3SLC) exhibited variations as indicated by the RMSD values 1.877 Å and 2.141 Å respectively, explaining why ackA functions are differently placed in bacteria, concurring its involvement in S. aureus pathogenesis. CONCLUSIONS Overall findings of this study highlight the correlation of ackA expression profoundly increases survival capacity through biofilm formation, which is a pathogenic factor in MRSA and plays a pivotal role in infection spreading.
Collapse
Affiliation(s)
- Subbarayudu Suthi
- Microbial Genetics Laboratory, Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Alipiri Road, Tirupati, 517501, Andhra Pradesh, India
| | - A Mounika
- Microbial Genetics Laboratory, Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Alipiri Road, Tirupati, 517501, Andhra Pradesh, India
| | | |
Collapse
|
25
|
Kumar S, Sandeep K, Kumar R, Kumar A. Antimicrobial effect of pimozide by targeting ROS-mediated killing in Staphylococcus aureus. Biotechnol Appl Biochem 2023; 70:1679-1689. [PMID: 37000616 DOI: 10.1002/bab.2465] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/26/2023] [Indexed: 04/01/2023]
Abstract
In spite of the higher nosocomial and community-acquired infections caused by Staphylococcus aureus, emerging drug resistance is a leading cause of increased mortality and morbidity associated with the overuse of antimicrobials. It is an emergent need to find out new molecules to combat such infections. In the present study, we analyzed the antibacterial effect of pimozide (PMZ) against gram-positive and gram-negative bacterial strains, including methicillin-sensitive (MSSA) and methicillin-resistant (MRSA) S. aureus. The growth of MSSA and MRSA was completely inhibited at concentrations of 12.5 and 100 μg/mL, respectively, which is referred to as 1× minimum inhibitory concentration (MIC). The cell viability was completely eliminated within 90 min of PMZ treatment (2× MIC) through reactive oxygen species (ROS)-mediated killing without affecting cell membrane permeability. It suppressed α-hemolysin production and biofilm formation of different S. aureus strains by almost 50% at 1× MIC concentration, and was found to detach matured biofilm. PMZ treatment effectively eliminates S. aureus infection in Caenorhabditis elegans and improves its survival by 90% and is found safe to use with no hemolytic effect on human and chicken blood tissues. Taken together, it is concluded that PMZ may turn out to be an effective antibacterial for treating bacterial infections including MSSA and MRSA.
Collapse
Affiliation(s)
- Siddhartha Kumar
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| | - Kumar Sandeep
- Dr. B.R. Ambedkar Institute - Rotary Cancer Hospital, AIIMS, New Delhi, India
| | - Rakesh Kumar
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar, India
| | - Antresh Kumar
- Department of Biochemistry, Central University of Haryana, Mahendergarh, Haryana, India
| |
Collapse
|
26
|
Bear A, Locke T, Rowland-Jones S, Pecetta S, Bagnoli F, Darton TC. The immune evasion roles of Staphylococcus aureus protein A and impact on vaccine development. Front Cell Infect Microbiol 2023; 13:1242702. [PMID: 37829608 PMCID: PMC10565657 DOI: 10.3389/fcimb.2023.1242702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/08/2023] [Indexed: 10/14/2023] Open
Abstract
While Staphylococcus aureus (S. aureus) bacteria are part of the human commensal flora, opportunistic invasion following breach of the epithelial layers can lead to a wide array of infection syndromes at both local and distant sites. Despite ubiquitous exposure from early infancy, the life-long risk of opportunistic infection is facilitated by a broad repertoire of S. aureus virulence proteins. These proteins play a key role in inhibiting development of a long-term protective immune response by mechanisms ranging from dysregulation of the complement cascade to the disruption of leukocyte migration. In this review we describe the recent progress made in dissecting S. aureus immune evasion, focusing on the role of the superantigen, staphylococcal protein A (SpA). Evasion of the normal human immune response drives the ability of S. aureus to cause infection, often recurrently, and is also thought to be a major hindrance in the development of effective vaccination strategies. Understanding the role of S. aureus virulence protein and determining methods overcoming or subverting these mechanisms could lead to much-needed breakthroughs in vaccine and monoclonal antibody development.
Collapse
Affiliation(s)
- Alex Bear
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
| | - Thomas Locke
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
| | - Sarah Rowland-Jones
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
| | | | | | - Thomas C. Darton
- Department of Infection, Immunity and Cardiovascular Disease, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
27
|
Abstract
Emerging evidence suggest a major role for the gut microbiome in wound infections. A Trojan Horse mechanism of surgical site infections has been hypothesized to occur when pathogens in the gut, gums, and periodontal areas enter an immune cell and silently travel to the wound site where they release their infectious payload. Genetic tracking of microbes at the strain level is now possible with genetic sequencing techniques and can clarify the origin of microbes that cause wound infections. An emerging field of dietary prehabilitation to modulate the microbiome before surgery is being described to improve infection-related outcomes from surgery.
Collapse
Affiliation(s)
- Sanjiv Hyoju
- Department of Surgery, University of Chicago, Pritzker School of Medicine, 5841 South Maryland, Chicago, IL 60637, USA
| | - Kaylie Machutta
- University of Nevada, Reno School of Medicine, 1664 North Virginia Street, Reno, NV 89557, USA
| | - Monika A Krezalek
- Northshore University Health Systems, 1000 Central Street Suite 800, Evanston, IL 60201, USA
| | - John C Alverdy
- Department of Surgery, University of Chicago, Pritzker School of Medicine, 5841 South Maryland, Chicago, IL 60637, USA.
| |
Collapse
|
28
|
Lu M, He R, Li C, Liu Z, Chen Y, Yang B, Zhang X, Yu B. Apolipoprotein E deficiency potentiates macrophage against Staphylococcus aureus in mice with osteomyelitis via regulating cholesterol metabolism. Front Cell Infect Microbiol 2023; 13:1187543. [PMID: 37529351 PMCID: PMC10387542 DOI: 10.3389/fcimb.2023.1187543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/29/2023] [Indexed: 08/03/2023] Open
Abstract
Introduction Staphylococcus aureus (S. aureus) osteomyelitis causes a variety of metabolism disorders in microenvironment and cells. Defining the changes in cholesterol metabolism and identifying key factors involved in cholesterol metabolism disorders during S. aureus osteomyelitis is crucial to understanding the mechanisms of S. aureus osteomyelitis and is important in designing host-directed therapeutic strategies. Methods In this study, we conducted in vitro and in vivo experiments to define the effects of S. aureus osteomyelitis on cholesterol metabolism, as well as the role of Apolipoprotein E (ApoE) in regulating cholesterol metabolism by macrophages during S. aureus osteomyelitis. Results The data from GSE166522 showed that cholesterol metabolism disorder was induced by S. aureus osteomyelitis. Loss of cholesterol from macrophage obtained from mice with S. aureus osteomyelitis was detected by liquid chromatography-tandem mass spectrometry(LC-MS/MS), which is consistent with Filipin III staining results. Changes in intracellular cholesterol content influenced bactericidal capacity of macrophage. Subsequently, it was proven by gene set enrichment analysis and qPCR, that ApoE played a key role in developing cholesterol metabolism disorder in S. aureus osteomyelitis. ApoE deficiency in macrophages resulted in increased resistance to S. aureus. ApoE-deficient mice manifested abated bone destruction and decreased bacteria load. Moreover, the combination of transcriptional analysis, qPCR, and killing assay showed that ApoE deficiency led to enhanced cholesterol biosynthesis in macrophage, ameliorating anti-infection ability. Conclusion We identified a previously unrecognized role of ApoE in S. aureus osteomyelitis from the perspective of metabolic reprogramming. Hence, during treating S. aureus osteomyelitis, considering cholesterol metabolism as a potential therapeutic target presents a new research direction.
Collapse
Affiliation(s)
- Mincheng Lu
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ruiyi He
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chao Li
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zixian Liu
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuhui Chen
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Bingsheng Yang
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xianrong Zhang
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Bin Yu
- Division of Orthopedics and Traumatology, Department of Orthopedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
29
|
Chen F, Yin Y, Chen H, Li S, Yin G, Wang H. mleS in Staphylococcus aureus Contributes to Microaerobic Metabolic Activity, Abscess Formation, and Survival in Macrophages. Microbiol Spectr 2023; 11:e0090923. [PMID: 37052483 PMCID: PMC10269618 DOI: 10.1128/spectrum.00909-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 03/24/2023] [Indexed: 04/14/2023] Open
Abstract
Staphylococcus aureus is subdivided into lineages termed sequence types (STs), infections of which necessitate the expression of virulence factors and metabolic adaptation to the host niche. Given that mechanisms underlying the dynamic replacement of sequence types in S. aureus populations have yet to be sufficiently determined, we investigated the role of metabolic determinants in epidemic clones. mleS, encoding the NAD+-dependent malolactic enzyme, was found to be carried by the epidemic clones ST59 and ST398, although not by ST239 and ST5. The genomic location of mleS in the metabolism-associated region flanked by the thiol-specific redox system and glycolysis operon implies that it plays significant roles in metabolism and pathogenesis. Mouse skin abscess caused by the BS19-mleS mutant strain (isogenic mleS mutant in an ST59 isolate) was significantly attenuated and associated with reductions in interleukin-6 (IL-6) and lactic acid production. mleS deletion also impaired S. aureus biofilm formation and survival in RAW264.7 cells. The BS19-mleS-mutant was also characterized by reduced ATP and lactic acid production under microaerobic conditions; however, NAD+/NADH levels remained unaffected. mleS is thus identified as an epidemiological marker that plays an important role in the microaerobic metabolism and pathogenesis of epidemic S. aureus clones. IMPORTANCE Given the importance of metabolic adaptation during infection, new insights are required regarding the pathogenesis of S. aureus, particularly for epidemic clones. We accordingly investigated the role of metabolic determinants that are unique to the epidemic clones ST59 and ST398. Our results provide evidence that the NAD+-dependent malolactic enzyme-coding gene mleS is an epidemiological marker that plays an important role in the microaerobic metabolism and pathogenesis of epidemic S. aureus clones.
Collapse
Affiliation(s)
- Fengning Chen
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Yuyao Yin
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Hongbin Chen
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Shuguang Li
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Guankun Yin
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
30
|
Zhang Z, Chen R, Mao S, Zhang Y, Yao L, Xi J, Luo S, Liu R, Liu Y, Wang R. A novel strategy to enhance photocatalytic killing of foodborne pathogenic bacteria by modification of non-metallic monomeric black phosphorus with Elaeagnus mollis polysaccharides. Int J Biol Macromol 2023; 242:125015. [PMID: 37224903 DOI: 10.1016/j.ijbiomac.2023.125015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/26/2023]
Abstract
New antibacterial agents are needed to overcome the challenges of microbial food contamination. In this study, we investigated the potential of Elaeagnus mollis polysaccharide (EMP) to modify black phosphorus (BP) for use as a bactericide for foodborne pathogenic bacteria. The resulting compound (EMP-BP) displayed enhanced stability and activity compared with BP. EMP-BP exhibited an increased antibacterial activity (bactericidal efficiency of 99.999 % after 60 min of light exposure) compared to EMP and BP. Further studies revealed that photocatalytically generated reactive oxygen species (ROS) and active polysaccharides acted collectively on the cell membrane, leading to cell deformation and death. Furthermore, EMP-BP inhibited biofilm formation and reduced expression of virulence factors of Staphylococcus aureus, and material hemolysis and cytotoxicity tests prove that the material had good biocompatibility. In addition, bacteria treated with EMP-BP remained highly sensitive to antibiotics and did not develop significant resistance. In summary, we report an environmentally friendly method for controlling pathogenic foodborne bacteria that is efficient and apparently safe.
Collapse
Affiliation(s)
- Zuwang Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Rui Chen
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuangzhe Mao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yajie Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lenan Yao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiafeng Xi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shijia Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ruixi Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yulin Liu
- College of Forestry, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Rong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
31
|
Alverdy JC. Rationale for Colonic Pre-Habilitation Prior to Restoration of Gastrointestinal Continuity. Surg Infect (Larchmt) 2023; 24:265-270. [PMID: 37010975 PMCID: PMC10061335 DOI: 10.1089/sur.2023.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023] Open
Abstract
The emergence of the gut microbiome as a complex ecosystem that plays a key role in human heath and disease has touched virtually every aspect of medical and surgical care. With the advent of next-generation technology to interrogate the microbiome at the level of its membership, community structure and production of metabolites, applying measures by which the gut microbiome can be manipulated to the advantage of both the patient and provider is now possible. Among the many proposed methods, the most practical and promising is dietary pre-habilitation of the gut microbiome prior to high-risk anastomotic surgery. In this review, we will outline the scientific rationale and molecular underpinning that support dietary pre-habilitation as a practical and deliverable method to prevent complications after high-risk anastomotic surgery.
Collapse
Affiliation(s)
- John C. Alverdy
- Department of Surgery, University of Chicago, Pritzker School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
32
|
Krezalek MA, Alverdy JC. The Role of the Gut Microbiome on the Development of Surgical Site Infections. Clin Colon Rectal Surg 2023; 36:133-137. [PMID: 36844709 PMCID: PMC9946714 DOI: 10.1055/s-0043-1760719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Despite advances in antisepsis techniques, surgical site infection remains the most common and most costly reason for hospital readmission after surgery. Wound infections are conventionally thought to be directly caused by wound contamination. However, despite strict adherence to surgical site infection prevention techniques and bundles, these infections continue to occur at high rates. The contaminant theory of surgical site infection fails to predict and explain most postoperative infections and still remains unproven. In this article we provide evidence that the process of surgical site infection development is far more complex than what can be explained by simple bacterial contamination and hosts' ability to clear the contaminating pathogen. We show a link between the intestinal microbiome and distant surgical site infections, even in the absence of intestinal barrier breach. We discuss the Trojan-horse mechanisms by which surgical wounds may become seeded by pathogens from within one's own body and the contingencies that need to be met for an infection to develop.
Collapse
Affiliation(s)
- Monika A. Krezalek
- Division of Gastrointestinal and General Surgery, Department of Surgery, NorthShore University Health System, University of Chicago Pritzker School of Medicine, Evanston, Illinois
| | - John C. Alverdy
- Sarah and Harold Lincoln Thompson Professor of Surgery, University of Chicago Pritzker School of Medicine, Chicago, Illinois
| |
Collapse
|
33
|
Howden BP, Giulieri SG, Wong Fok Lung T, Baines SL, Sharkey LK, Lee JYH, Hachani A, Monk IR, Stinear TP. Staphylococcus aureus host interactions and adaptation. Nat Rev Microbiol 2023; 21:380-395. [PMID: 36707725 PMCID: PMC9882747 DOI: 10.1038/s41579-023-00852-y] [Citation(s) in RCA: 186] [Impact Index Per Article: 186.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 01/28/2023]
Abstract
Invasive Staphylococcus aureus infections are common, causing high mortality, compounded by the propensity of the bacterium to develop drug resistance. S. aureus is an excellent case study of the potential for a bacterium to be commensal, colonizing, latent or disease-causing; these states defined by the interplay between S. aureus and host. This interplay is multidimensional and evolving, exemplified by the spread of S. aureus between humans and other animal reservoirs and the lack of success in vaccine development. In this Review, we examine recent advances in understanding the S. aureus-host interactions that lead to infections. We revisit the primary role of neutrophils in controlling infection, summarizing the discovery of new immune evasion molecules and the discovery of new functions ascribed to well-known virulence factors. We explore the intriguing intersection of bacterial and host metabolism, where crosstalk in both directions can influence immune responses and infection outcomes. This Review also assesses the surprising genomic plasticity of S. aureus, its dualism as a multi-mammalian species commensal and opportunistic pathogen and our developing understanding of the roles of other bacteria in shaping S. aureus colonization.
Collapse
Affiliation(s)
- Benjamin P. Howden
- grid.1008.90000 0001 2179 088XCentre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria Australia ,grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia ,grid.410678.c0000 0000 9374 3516Department of Infectious Diseases, Austin Health, Heidelberg, Victoria Australia ,grid.416153.40000 0004 0624 1200Microbiology Department, Royal Melbourne Hospital, Melbourne, Victoria Australia
| | - Stefano G. Giulieri
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia ,grid.416153.40000 0004 0624 1200Victorian Infectious Diseases Service, Royal Melbourne Hospital, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Tania Wong Fok Lung
- grid.21729.3f0000000419368729Department of Paediatrics, Columbia University, New York, NY USA
| | - Sarah L. Baines
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Liam K. Sharkey
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Jean Y. H. Lee
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia ,grid.419789.a0000 0000 9295 3933Department of Infectious Diseases, Monash Health, Clayton, Victoria Australia
| | - Abderrahman Hachani
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Ian R. Monk
- grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| | - Timothy P. Stinear
- grid.1008.90000 0001 2179 088XCentre for Pathogen Genomics, The University of Melbourne, Melbourne, Victoria Australia ,grid.1008.90000 0001 2179 088XDepartment of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria Australia
| |
Collapse
|
34
|
Raineri EJM, Maaß S, Wang M, Brushett S, Palma Medina LM, Sampol Escandell N, Altulea D, Raangs E, de Jong A, Vera Murguia E, Feil EJ, Friedrich AW, Buist G, Becher D, García-Cobos S, Couto N, van Dijl JM. Staphylococcus aureus populations from the gut and the blood are not distinguished by virulence traits-a critical role of host barrier integrity. MICROBIOME 2022; 10:239. [PMID: 36567349 PMCID: PMC9791742 DOI: 10.1186/s40168-022-01419-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The opportunistic pathogen Staphylococcus aureus is an asymptomatically carried member of the microbiome of about one third of the human population at any given point in time. Body sites known to harbor S. aureus are the skin, nasopharynx, and gut. In particular, the mechanisms allowing S. aureus to pass the gut epithelial barrier and to invade the bloodstream were so far poorly understood. Therefore, the objective of our present study was to investigate the extent to which genetic differences between enteric S. aureus isolates and isolates that caused serious bloodstream infections contribute to the likelihood of invasive disease. RESULTS Here, we present genome-wide association studies (GWAS) that compare the genome sequences of 69 S. aureus isolates from enteric carriage by healthy volunteers and 95 isolates from bloodstream infections. We complement our GWAS results with a detailed characterization of the cellular and extracellular proteomes of the representative gut and bloodstream isolates, and by assaying the virulence of these isolates with infection models based on human gut epithelial cells, human blood cells, and a small animal infection model. Intriguingly, our results show that enteric and bloodstream isolates with the same sequence type (ST1 or ST5) are very similar to each other at the genomic and proteomic levels. Nonetheless, bloodstream isolates are not necessarily associated with an invasive profile. Furthermore, we show that the main decisive factor preventing infection of gut epithelial cells in vitro is the presence of a tight barrier. CONCLUSIONS Our data show that virulence is a highly variable trait, even within a single clone. Importantly, however, there is no evidence that blood stream isolates possess a higher virulence potential than those from the enteric carriage. In fact, some gut isolates from healthy carriers were more virulent than bloodstream isolates. Based on our present observations, we propose that the integrity of the gut epithelial layer, rather than the pathogenic potential of the investigated enteric S. aureus isolates, determines whether staphylococci from the gut microbiome will become invasive pathogens. Video Abstract.
Collapse
Affiliation(s)
- Elisa J. M. Raineri
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sandra Maaß
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Min Wang
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Siobhan Brushett
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Laura M. Palma Medina
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Present address: Department of Medicine Huddinge, Present Address: Center for Infectious Medicine, Karolinska Institute, Huddinge, Sweden
| | - Neus Sampol Escandell
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dania Altulea
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Present address: Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Erwin Raangs
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anne de Jong
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Elias Vera Murguia
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Edward J. Feil
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, UK
| | - Alex W. Friedrich
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Girbe Buist
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dörte Becher
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Silvia García-Cobos
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Present address: Reference and Research Laboratory On Antimicrobial Resistance and Healthcare Associated Infections, Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Natacha Couto
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, UK
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
35
|
Talbot BM, Jacko NF, Petit RA, Pegues DA, Shumaker MJ, Read TD, David MZ. Unsuspected Clonal Spread of Methicillin-Resistant Staphylococcus aureus Causing Bloodstream Infections in Hospitalized Adults Detected Using Whole Genome Sequencing. Clin Infect Dis 2022; 75:2104-2112. [PMID: 35510945 DOI: 10.1093/cid/ciac339] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/11/2022] [Accepted: 04/27/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Though detection of transmission clusters of methicillin-resistant Staphylococcus aureus (MRSA) infections is a priority for infection control personnel in hospitals, the transmission dynamics of MRSA among hospitalized patients with bloodstream infections (BSIs) has not been thoroughly studied. Whole genome sequencing (WGS) of MRSA isolates for surveillance is valuable for detecting outbreaks in hospitals, but the bioinformatic approaches used are diverse and difficult to compare. METHODS We combined short-read WGS with genotypic, phenotypic, and epidemiological characteristics of 106 MRSA BSI isolates collected for routine microbiological diagnosis from inpatients in 2 hospitals over 12 months. Clinical data and hospitalization history were abstracted from electronic medical records. We compared 3 genome sequence alignment strategies to assess similarity in cluster ascertainment. We conducted logistic regression to measure the probability of predicting prior hospital overlap between clustered patient isolates by the genetic distance of their isolates. RESULTS While the 3 alignment approaches detected similar results, they showed some variation. A gene family-based alignment pipeline was most consistent across MRSA clonal complexes. We identified 9 unique clusters of closely related BSI isolates. Most BSIs were healthcare associated and community onset. Our logistic model showed that with 13 single-nucleotide polymorphisms, the likelihood that any 2 patients in a cluster had overlapped in a hospital was 50%. CONCLUSIONS Multiple clusters of closely related MRSA isolates can be identified using WGS among strains cultured from BSI in 2 hospitals. Genomic clustering of these infections suggests that transmission resulted from a mix of community spread and healthcare exposures long before BSI diagnosis.
Collapse
Affiliation(s)
- Brooke M Talbot
- Graduate School of Biological and Biomedical Sciences, Emory University, Atlanta, Georgia, USA
| | - Natasia F Jacko
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert A Petit
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - David A Pegues
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Margot J Shumaker
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Timothy D Read
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael Z David
- Division of Infectious Diseases, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
36
|
Wei R, Wang X, Wang Q, Qiang G, Zhang L, Hu HY. Hyperglycemia in Diabetic Skin Infections Promotes Staphylococcus aureus Virulence Factor Aureolysin: Visualization by Molecular Imaging. ACS Sens 2022; 7:3416-3421. [PMID: 36351204 DOI: 10.1021/acssensors.2c01565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Bacterial skin infections are common in diabetic patients, with Staphylococcus aureus (S. aureus) being the most commonly isolated, causing comorbidities such as increased mortality and long-term hospitalization. While precise mechanisms remain to be determined, hyperglycemia represents an important pathogenetic factor responsible for the increased risk of S. aureus infection. Herein, we constructed a series of ratiometric fluorescent molecular probes for aureolysin (Aur), a major virulence factor in S. aureus. Using probe 1, we were able to determine specific Aur activity in both cells and tissues. We also observed that elevated glucose levels led to 2-fold higher Aur expression in S. aureus cultures. In a diabetic mouse model, we used molecular imaging to demonstrate that hyperglycemia tripled S. aureus Aur virulence compared to nondiabetic mice, resulting in more severe infections.
Collapse
Affiliation(s)
- Rao Wei
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qinghua Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Guifen Qiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College and Beijing Key Laboratory of Drug Target and Screening Research, Beijing 100050, China
| | - Leilei Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing Key Laboratory of Active Substance Discovery and Drug Ability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
37
|
du Teil Espina M, Haider Rubio A, Fu Y, López-Álvarez M, Gabarrini G, van Dijl JM. Outer membrane vesicles of the oral pathogen Porphyromonas gingivalis promote aggregation and phagocytosis of Staphylococcus aureus. FRONTIERS IN ORAL HEALTH 2022; 3:948524. [PMID: 35937774 PMCID: PMC9354530 DOI: 10.3389/froh.2022.948524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/30/2022] [Indexed: 12/21/2022] Open
Abstract
Staphylococcus aureus is an opportunistic Gram-positive bacterial pathogen that causes a wide variety of infectious diseases, including S. aureus bacteremia (SAB). Recent studies showed that rheumatoid arthritis (RA) is a risk factor for SAB, as RA patients appear to be more susceptible to SAB and display higher degrees of disease severity or complications, such as osteoarticular infections. On the other hand, Porphyromonas gingivalis is a Gram-negative bacterial oral pathogen, which is notable for its implication in the etiopathogenesis of RA due to its unique citrullinating enzyme PPAD and its highly effective proteases, known as gingipains. Both PPAD and gingipains are abundant in P. gingivalis outer membrane vesicles (OMVs), which are secreted nanostructures that originate from the outer membrane. Here we show that P. gingivalis OMVs cause the aggregation of S. aureus bacteria in a gingipain- and PPAD-dependent fashion, and that this aggregation phenotype is reversible. Importantly, we also show that the exposure of S. aureus to OMVs of P. gingivalis promotes the staphylococcal internalization by human neutrophils with no detectable neutrophil killing. Altogether, our observations suggest that P. gingivalis can eliminate its potential competitor S. aureus by promoting staphylococcal aggregation and the subsequent internalization by neutrophils. We hypothesize that this phenomenon may have repercussions for the host, since immune cells with internalized bacteria may facilitate bacterial translocation to the blood stream, which could potentially contribute to the association between RA and SAB.
Collapse
Affiliation(s)
- Marines du Teil Espina
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Anna Haider Rubio
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Yanyan Fu
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Marina López-Álvarez
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Giorgio Gabarrini
- Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
38
|
Zhao D, Du B, Xu J, Xie Q, Lu Z, Kang Y. Baicalin promotes antibacterial defenses by modulating mitochondrial function. Biochem Biophys Res Commun 2022; 621:130-136. [PMID: 35820283 DOI: 10.1016/j.bbrc.2022.06.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/18/2022]
Abstract
Natural flavonoids, such as baicalin, have been extensively studied for their role in bacterial infection. However, the underlying mechanisms remain poorly understood. We demonstrated that baicalin coordinates mitochondrial function and dynamics to promote antibacterial response. Baicalin protected against Staphylococcus aureus infections and alleviates inflammatory responses in vivo and in vitro. An increase in mitochondrial mass and elevated expression of factors regulating mitochondrial fission and fusion were observed in baicalin-treated macrophages. Baicalin induced Drp1-dependent biogenesis, which contributes to the generation of additional mitochondria. Baicalin improved the mitochondrial membrane potential, ATP levels, and mitochondrial reactive oxygen species (mtROS) production. Importantly, the inhibition of mitochondrial function by rotenone or MitoTEMPO suppressed the antimicrobial activity of baicalin in macrophages. We conclude that baicalin can regulate immune responses during S. aureus infection by improving mitochondrial function and dynamics, implying that it is a promising therapeutic agent for controlling infection and inflammatory diseases.
Collapse
Affiliation(s)
- Dongjiu Zhao
- Hangzhou Key Lab of Inflammation and Immunoregulation, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Binhao Du
- Hangzhou Key Lab of Inflammation and Immunoregulation, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jihao Xu
- Hangzhou Key Lab of Inflammation and Immunoregulation, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Qinzi Xie
- Hangzhou Key Lab of Inflammation and Immunoregulation, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Zhe Lu
- Hangzhou Key Lab of Inflammation and Immunoregulation, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Yanhua Kang
- Hangzhou Key Lab of Inflammation and Immunoregulation, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China.
| |
Collapse
|
39
|
Wang M, Buist G, van Dijl JM. Staphylococcus aureus cell wall maintenance - the multifaceted roles of peptidoglycan hydrolases in bacterial growth, fitness, and virulence. FEMS Microbiol Rev 2022; 46:6604383. [PMID: 35675307 PMCID: PMC9616470 DOI: 10.1093/femsre/fuac025] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/22/2022] [Accepted: 05/25/2022] [Indexed: 01/07/2023] Open
Abstract
Staphylococcus aureus is an important human and livestock pathogen that is well-protected against environmental insults by a thick cell wall. Accordingly, the wall is a major target of present-day antimicrobial therapy. Unfortunately, S. aureus has mastered the art of antimicrobial resistance, as underscored by the global spread of methicillin-resistant S. aureus (MRSA). The major cell wall component is peptidoglycan. Importantly, the peptidoglycan network is not only vital for cell wall function, but it also represents a bacterial Achilles' heel. In particular, this network is continuously opened by no less than 18 different peptidoglycan hydrolases (PGHs) encoded by the S. aureus core genome, which facilitate bacterial growth and division. This focuses attention on the specific functions executed by these enzymes, their subcellular localization, their control at the transcriptional and post-transcriptional levels, their contributions to staphylococcal virulence and their overall importance in bacterial homeostasis. As highlighted in the present review, our understanding of the different aspects of PGH function in S. aureus has been substantially increased over recent years. This is important because it opens up new possibilities to exploit PGHs as innovative targets for next-generation antimicrobials, passive or active immunization strategies, or even to engineer them into effective antimicrobial agents.
Collapse
Affiliation(s)
- Min Wang
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30001, 9700 RB Groningen, the Netherlands
| | | | - Jan Maarten van Dijl
- Corresponding author: Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. box 30001, HPC EB80, 9700 RB Groningen, the Netherlands, Tel. +31-50-3615187; Fax. +31-50-3619105; E-mail:
| |
Collapse
|
40
|
Dong PT, Jusuf S, Hui J, Zhan Y, Zhu Y, Liu GY, Cheng JX. Photoinactivation of catalase sensitizes wide-ranging bacteria to ROS-producing agents and immune cells. JCI Insight 2022; 7:153079. [PMID: 35446788 PMCID: PMC9220836 DOI: 10.1172/jci.insight.153079] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 04/20/2022] [Indexed: 11/17/2022] Open
Abstract
Bacteria have evolved to cope with the detrimental effects of ROS using their essential molecular components. Catalase, a heme-containing tetramer protein expressed universally in most aerobic bacteria, plays an indispensable role in scavenging excess hydrogen peroxide (H2O2). Here, through use of wild-type and catalase-deficient mutants, we identified catalase as an endogenous therapeutic target of 400–420 nm blue light. Catalase residing inside bacteria could be effectively inactivated by blue light, subsequently rendering the pathogens extremely vulnerable to H2O2 and H2O2-producing agents. As a result, photoinactivation of catalase and H2O2 synergistically eliminated a wide range of catalase-positive planktonic bacteria and P. aeruginosa inside biofilms. In addition, photoinactivation of catalase was shown to facilitate macrophage defense against intracellular pathogens. The antimicrobial efficacy of catalase photoinactivation was validated using a Pseudomonas aeruginosa–induced mouse abrasion model. Taken together, our findings offer a catalase-targeting phototherapy approach against multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Pu-Ting Dong
- Department of Biomedical Engineering, Boston University, Boston, United States of America
| | - Sebastian Jusuf
- Department of Biomedical Engineering, Boston University, Boston, United States of America
| | - Jie Hui
- Department of Biomedical Engineering, Boston University, Boston, United States of America
| | - Yuewei Zhan
- Department of Biomedical Engineering, Boston University, Boston, United States of America
| | - Yifan Zhu
- Department of Chemistry, Boston University, Boston, United States of America
| | - George Y Liu
- Department of Pediatrics, University of California, San Diego, San Diego, United States of America
| | - Ji-Xin Cheng
- Boston University, Boston, United States of America
| |
Collapse
|
41
|
Targeted Antimicrobial Photodynamic Therapy of Biofilm-Embedded and Intracellular Staphylococci with a Phage Endolysin's Cell Binding Domain. Microbiol Spectr 2022; 10:e0146621. [PMID: 35196798 PMCID: PMC8865409 DOI: 10.1128/spectrum.01466-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bacterial pathogens are progressively adapting to current antimicrobial therapies with severe consequences for patients and global health care systems. This is critically underscored by the rise of methicillin resistant Staphylococcus aureus (MRSA) and other biofilm-forming staphylococci. Accordingly, alternative strategies have been explored to fight such highly multidrug resistant microorganisms, including antimicrobial photodynamic therapy (aPDT) and phage therapy. aPDT has the great advantage that it does not elicit resistance, while phage therapy allows targeting of specific pathogens. In the present study, we aimed to merge these benefits by conjugating the cell-binding domain (CBD3) of a Staphylococcus aureus phage endolysin to a photoactivatable silicon phthalocyanine (IRDye 700DX) for the development of a Staphylococcus-targeted aPDT approach. We show that, upon red-light activation, the resulting CBD3-700DX conjugate generates reactive oxygen species that effectively kill high loads of planktonic and biofilm-resident staphylococci, including MRSA. Furthermore, CBD3-700DX is readily internalized by mammalian cells, where it allows the targeted killing of intracellular MRSA upon photoactivation. Intriguingly, aPDT with CBD3-700DX also affects mammalian cells with internalized MRSA, but it has no detectable side effects on uninfected cells. Altogether, we conclude that CBD3 represents an attractive targeting agent for Staphylococcus-specific aPDT, irrespective of planktonic, biofilm-embedded, or intracellular states of the bacterium. IMPORTANCE Antimicrobial resistance is among the biggest threats to mankind today. There are two alternative antimicrobial therapies that may help to control multidrug-resistant bacteria. In phage therapy, natural antagonists of bacteria, lytic phages, are harnessed to fight pathogens. In antimicrobial photodynamic therapy (aPDT), a photosensitizer, molecular oxygen, and light are used to produce reactive oxygen species (ROS) that inflict lethal damage on pathogens. Since aPDT destroys multiple essential components in targeted pathogens, aPDT resistance is unlikely. However, the challenge in aPDT is to maximize target specificity and minimize collateral oxidative damage to host cells. We now present an antimicrobial approach that combines the best features of both alternative therapies, namely, the high target specificity of phages and the efficacy of aPDT. This is achieved by conjugating the specific cell-binding domain from a phage protein to a near-infrared photosensitizer. aPDT with the resulting conjugate shows high target specificity toward MRSA with minimal side effects.
Collapse
|
42
|
Bleul L, Francois P, Wolz C. Two-Component Systems of S. aureus: Signaling and Sensing Mechanisms. Genes (Basel) 2021; 13:34. [PMID: 35052374 PMCID: PMC8774646 DOI: 10.3390/genes13010034] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/18/2022] Open
Abstract
Staphylococcus aureus encodes 16 two-component systems (TCSs) that enable the bacteria to sense and respond to changing environmental conditions. Considering the function of these TCSs in bacterial survival and their potential role as drug targets, it is important to understand the exact mechanisms underlying signal perception. The differences between the sensing of appropriate signals and the transcriptional activation of the TCS system are often not well described, and the signaling mechanisms are only partially understood. Here, we review present insights into which signals are sensed by histidine kinases in S. aureus to promote appropriate gene expression in response to diverse environmental challenges.
Collapse
Affiliation(s)
- Lisa Bleul
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tubingen, Germany;
- Cluster of Excellence EXC 2124 “Controlling Microbes to Fight Infections”, University of Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tubingen, Germany
| | - Patrice Francois
- Genomic Research Laboratory, Infectious Diseases Service, University Hospitals of Geneva University Medical Center, Michel Servet 1, CH-1211 Geneva, Switzerland;
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tubingen, Germany;
- Cluster of Excellence EXC 2124 “Controlling Microbes to Fight Infections”, University of Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tubingen, Germany
| |
Collapse
|
43
|
Wong SC, Chen JHK, So SYC, Ho PL, Yuen KY, Cheng VCC. Gastrointestinal colonization of methicillin-resistant Staphylococcus aureus: an unrecognized burden in the hospital infection control. J Hosp Infect 2021; 121:65-74. [PMID: 34953945 DOI: 10.1016/j.jhin.2021.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 12/22/2022]
Abstract
The incidence, risk factors, outcomes, and genomic relatedness of patients with newly diagnosed gastrointestinal colonization of meticillin-resistant Staphylococcus aureus (MRSA) were analyzed epidemiologically and genetically by whole genome sequencing (WGS) in a hospital network in Hong Kong. Between 1 October 2015 and 31 December 2018, 919 (2.7%) of 34,667 patients had newly diagnosed gastrointestinal MRSA colonization by admission screening. The incidence was 0.67±0.32 per 1,000-patient-days-per-quarter. Including patients with gastrointestinal MRSA colonization, the overall burden of MRSA increased by 59.2% (from 1.13±0.13 to 1.80±0.36 case per 1,000-patient-days-per-quarter), with an addition of MRSA 4,727 patient-days during the study period. Patients referred from residential care home for the elderly [odds ratio (95% confidential interval): 4.18 (3.50-4.99), p<0.001], with history of hospitalization in the past 6 months [1.90 (1.56-2.30), p<0.001], and consumption of fluoroquinolones [1.76 (1.34-2.30), p<0.001], cephalosporins [1.61 (1.11-2.31), p=0.011], and proton pump inhibitors [1.31 (1.10-1.56), p=0.002] in the preceding 6 months were found to be independent risk factors by multivariable analysis in the case-control analysis. The median survival of case was significantly shorter than control (860 vs 1507 days, p<0.001). 127 (13.8%) of 919 patients developed symptomatic MRSA infection in 112 days (median, range: 2-712 days). Of 19 patients with paired MRSA faecal and blood culture isolates subjected to WGS, clonality was found in 16 (84.2%) pairs of MRSA isolates. MRSA ST45 constituted 44.7% (17/38) of MRSA isolates. Gastrointestinal MRSA colonization may contribute to adverse clinical outcomes and pose an unrecognized burden to the hospital infection control.
Collapse
Affiliation(s)
- Shuk-Ching Wong
- Infection Control Team, Queen Mary Hospital, Hong Kong West Cluster, Hong Kong Special Administrative Region, China
| | - Jonathan Hon-Kwan Chen
- Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - Simon Yung-Chun So
- Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, China
| | - Pak-Leung Ho
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Kwok-Yung Yuen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Vincent Chi-Chung Cheng
- Infection Control Team, Queen Mary Hospital, Hong Kong West Cluster, Hong Kong Special Administrative Region, China; Department of Microbiology, Queen Mary Hospital, Hong Kong Special Administrative Region, China.
| |
Collapse
|
44
|
Rosman CWK, van Dijl JM, Sjollema J. Interactions between the foreign body reaction and Staphylococcus aureus biomaterial-associated infection. Winning strategies in the derby on biomaterial implant surfaces. Crit Rev Microbiol 2021; 48:624-640. [PMID: 34879216 DOI: 10.1080/1040841x.2021.2011132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biomaterial-associated infections (BAIs) are an increasing problem where antibiotic therapies are often ineffective. The design of novel strategies to prevent or combat infection requires a better understanding of how an implanted foreign body prevents the immune system from eradicating surface-colonizing pathogens. The objective of this review is to chart factors resulting in sub-optimal clearance of Staphylococcus aureus bacteria involved in BAIs. To this end, we first describe three categories of bacterial mechanisms to counter the host immune system around foreign bodies: direct interaction with host cells, modulation of intercellular communication, and evasion of the immune system. These mechanisms take place in a time frame that differentiates sterile foreign body reactions, BAIs, and soft tissue infections. In addition, we identify experimental interventions in S. aureus BAI that may impact infectious mechanisms. Most experimental treatments modulate the host response to infection or alter the course of BAI through implant surface modulation. In conclusion, the first week after implantation and infection is crucial for the establishment of an S. aureus biofilm that resists the local immune reaction and antibiotic treatment. Although established and chronic S. aureus BAI is still treatable and manageable, the focus of interventions should lie on this first period.
Collapse
Affiliation(s)
- Colin W K Rosman
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Jelmer Sjollema
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|