1
|
Fabisch P, Voropai V, Nieher M, Buchholz A, Weissmantel S, Lohmann CH, Bertrand J, Döring J. Biocompatibility and Antibacterial Potential of Tetrahedral Amorphous Carbon (ta-C) Coatings on CoCrMo Alloy for Articulating Implant Surfaces. J Biomed Mater Res A 2025; 113:e37815. [PMID: 39508688 DOI: 10.1002/jbm.a.37815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/27/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024]
Abstract
Premature implant failure, a critical concern in biomedical applications, is often attributed to poor biocompatibility and vulnerability to bacterial colonization. These issues are addressed by creating an endoprosthetic material with natural biocompatibility and antibacterial properties. In this in vitro study, the relaxed and unrelaxed tetrahedral amorphous carbon (ta-C) coatings were examined, both fabricated by the improved patented Pulsed Laser Deposition (PLD) technology. The chemical composition, surface roughness, hardness, topography, and wettability were analyzed. The ta-C surfaces were incubated by MM6 cells, E. coli and S. capitis bacteria for 24 h. PCR assessed the inflammatory response in MM6 cells, while fluorescence microscopy quantified adhering bacteria, and scanning electron microscopy examined local adhesion behavior. The results demonstrate comparable carbon phase composition, wettability properties, and hardness for both relaxed and unrelaxed ta-C. However, relaxed ta-C coating exhibited significantly fewer defects in terms of both quantity and quality, along with an antibacterial effect against E. coli. This suggests that the relaxed ta-C coating could contribute to the development of an endoprosthesis, preventing adverse biological reactions and implant-related infections, thus improving the longevity of the prosthesis.
Collapse
Affiliation(s)
- Patrick Fabisch
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Vadym Voropai
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Maren Nieher
- Laserinstitut Hochschule Mittweida, University of Applied Sciences Mittweida, Mittweida, Germany
| | - Adrian Buchholz
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Steffen Weissmantel
- Laserinstitut Hochschule Mittweida, University of Applied Sciences Mittweida, Mittweida, Germany
| | - Christoph H Lohmann
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Magdeburg, Germany
| | - Joachim Döring
- Department of Orthopaedic Surgery, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
2
|
Ormsby MJ, Woodford L, Fellows R, White HL, Quilliam RS. Rapid colonisation of environmental plastic waste by pathogenic bacteria drives adaptive phenotypic changes. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136359. [PMID: 39504769 DOI: 10.1016/j.jhazmat.2024.136359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/16/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024]
Abstract
Microbial biofilms on environmental plastic pollution can serve as a reservoir for both pathogenic and commensal bacteria. Associating with this 'plastisphere', provides a mechanism for the wider dissemination of pathogens within the environment and a greater potential for human exposure. For pathogens to bind to environmental plastic waste they need to be in close contact with it; therefore, understanding how rapidly pathogens can bind to plastics and the temporal colonisation dynamics of the continual cycling between the plastisphere and the environment are important factors for quantifying the persistence of human pathogens. Using simulated environmental conditions, we demonstrate that pathogenic E. coli O157 can rapidly colonise plastics (within 30 min) and persist for extended periods (at least 21 days), at concentrations sufficient to cause human infection. Importantly, repeated colonisation and dissociation cycles of E. coli O157 from the plastisphere leads to an enhanced capacity for persistence and the emergence of variants with increased virulence traits, including improved biofilm formation and antibiotic tolerance. This phenotypic adaptation to repeated colonisation of environmental plastic surfaces could be selecting for more persistent and virulent strains of pathogens, and hence increase the co-pollutant risks associated with plastic pollution.
Collapse
Affiliation(s)
- Michael J Ormsby
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA. UK.
| | - Luke Woodford
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA. UK
| | - Rosie Fellows
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA. UK
| | - Hannah L White
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA. UK
| | - Richard S Quilliam
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA. UK
| |
Collapse
|
3
|
Klopffer L, Louvet N, Becker S, Fix J, Pradalier C, Mathieu L. Effect of shear rate on early Shewanella oneidensis adhesion dynamics monitored by deep learning. Biofilm 2024; 8:100240. [PMID: 39650339 PMCID: PMC11621503 DOI: 10.1016/j.bioflm.2024.100240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/30/2024] [Accepted: 11/15/2024] [Indexed: 12/11/2024] Open
Abstract
Understanding pioneer bacterial adhesion is essential to appreciate bacterial colonization and consider appropriate control strategies. This bacterial entrapment at the wall is known to be controlled by many physical, chemical or biological factors, including hydrodynamic conditions. However, due to the nature of early bacterial adhesion, i.e. a short and dynamic process with low biomass involved, such investigations are challenging. In this context, our study aimed to evaluate the effect of wall shear rate on the early bacterial adhesion dynamics. Firstly, at the population scale by assessing bacterial colonization kinetics and the mechanisms responsible for wall transfer under shear rates using a time-lapse approach. Secondly, at the individual scale, by implementing an automated image processing method based on deep learning to track each individual pioneer bacterium on the wall. Bacterial adhesion experiments are performed on a model bacterium (Shewanella oneidensis MR-1) at different shear rates (0 to1250 s-1) in a microfluidic system mounted under a microscope equipped with a CCD camera. Image processing was performed using a trained neural network (YOLOv8), which allowed information extraction, i.e. bacterial wall residence time and orientation for each adhered bacterium during pioneer colonization (14 min). Collected from over 20,000 bacteria, our results showed that adhered bacteria had a very short residence time at the wall, with over 70 % remaining less than 1 min. Shear rates had a non-proportional effect on pioneer colonization with a bell-shape profile suggesting that intermediate shear rates improved both bacterial wall residence time as well as colonization rate and level. This lack of proportionality highlights the dual effect of wall shear rate on early bacterial colonization; initially increasing it improves bacterial colonization up to a threshold, beyond which it leads to higher bacterial wall detachment. The present study provides quantitative data on the individual dynamics of just adhered bacteria within a population when exposed to different rates of wall shear.
Collapse
Affiliation(s)
- Lucie Klopffer
- Université de Lorraine, CNRS, LCPME, F-54000, Nancy, France
- Université de Lorraine, CNRS, LEMTA, F-54000, Nancy, France
| | - Nicolas Louvet
- Université de Lorraine, CNRS, LEMTA, F-54000, Nancy, France
| | - Simon Becker
- Université de Lorraine, CNRS, LEMTA, F-54000, Nancy, France
| | - Jérémy Fix
- Unviversité de Lorraine, CNRS, Centrale Supélec, F-57070, Metz, France
| | | | | |
Collapse
|
4
|
Emeka PM, Badger-Emeka LI, Thirugnanasambantham K. Virtual Screening and Meta-Analysis Approach Identifies Factors for Inversion Stimulation (Fis) and Other Genes Responsible for Biofilm Production in Pseudomonas aeruginosa: A Corneal Pathogen. Curr Issues Mol Biol 2024; 46:12931-12950. [PMID: 39590364 PMCID: PMC11592581 DOI: 10.3390/cimb46110770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Bacterial keratitis caused by Pseudomonas aeruginosa is indeed a serious concern due to its potential to cause blindness and its resistance to antibiotics, partly attributed to biofilm formation and cytotoxicity to the cornea. The present study uses a meta-analysis of a transcriptomics dataset to identify important genes and pathways in biofilm formation of P. aeruginosa induced keratitis. By combining data from several studies, meta-analysis can enhance statistical power and robustness, enabling the identification of 83 differentially expressed candidate genes, including fis that could serve as therapeutic targets. The approach of combining meta-analysis with virtual screening and in vitro methods provides a comprehensive strategy for identifying potential target genes and pathways crucial for bacterial biofilm formation and development anti-biofilm medications against P. aeruginosa infections. The study identified 83 candidate genes that exhibited differential expression in the biofilm state, with fis proposed as an ideal target for therapy for P. aeruginosa biofilm formation. These techniques, meta-analysis, virtual screening, and invitro methods were used in combination to diagnostically identify these genes, which play a significant role in biofilms. This finding has highlighted a hallmark target list for P. aeruginosa anti-biofilm potential treatments.
Collapse
Affiliation(s)
- Promise M. Emeka
- Department of Pharmaceutical Science, College of Clinical Pharmacy, King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Lorina I. Badger-Emeka
- Department of Biomedical Science, College of Medicine King Faisal University, Al Ahsa 31982, Saudi Arabia;
| | | |
Collapse
|
5
|
Bazzoli D, Mahmoodi N, Verrill TA, Overton TW, Mendes PM. Nanovibrational Stimulation of Escherichia coli Mitigates Surface Adhesion by Altering Cell Membrane Potential. ACS NANO 2024; 18:30786-30797. [PMID: 39436348 PMCID: PMC11544934 DOI: 10.1021/acsnano.4c11000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/29/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024]
Abstract
Mechanical forces shape living matter from the macro- to the microscale as both eukaryotic and prokaryotic cells are force wielders and sensors. However, whereas such forces have been used to control mechanically dependent behaviors in mammalian cells, we lack the same level of understanding in bacteria. Surface adhesion, the initial stages of biofilm formation and surface biofouling, is a mechanically dependent process, which makes it an ideal target for mechano-control. In this study, we employed nanometer surface vibrations to mechanically stimulate bacteria and investigate their effect on adhesion. We discovered that vibrational stimulation at the nanoscale consistently reduces surface adhesion by altering cell membrane potential. Our findings identify a link between bacteria electrophysiology and surface adhesion and provide evidence that the nanometric mechanical "tickling" of bacteria can inhibit surface adhesion.
Collapse
Affiliation(s)
- Dario
G. Bazzoli
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Nasim Mahmoodi
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Terri-Anne Verrill
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Tim W. Overton
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Paula M. Mendes
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, U.K.
| |
Collapse
|
6
|
Guron GKP, Cassidy JM, Chen CY, Paoli GC. Transfer of beef bacterial communities onto food-contact surfaces. Front Microbiol 2024; 15:1450682. [PMID: 39435439 PMCID: PMC11491791 DOI: 10.3389/fmicb.2024.1450682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/11/2024] [Indexed: 10/23/2024] Open
Abstract
Introduction Food spoilage and pathogenic bacteria on food-contact surfaces, especially biofilm-forming strains, can transfer to meats during processing. The objectives of this study were to survey the bacterial communities of beef cuts that transfer onto two commonly used food-contact surfaces, stainless steel (SS) and high-density polyethylene (HDPE) and identify potentially biofilm-forming strains. Methods Top round, flank, chuck, and ground beef were purchased from 3 retail stores. SS and HDPE coupons (approximately 2cm × 5cm) were placed on beef portions (3h, 10°C), after which, the coupons were submerged halfway in PBS (24h, 10°C). Bacteria from the beef cuts and coupon surfaces (n = 3) were collected, plated on tryptic soy agar plates and incubated (5 days, 25°C). Bacterial isolates were identified by 16S rRNA gene amplicon sequencing and assayed for biofilm formation using a crystal violet binding (CV) assay (72h, 10°C). Additionally, beef and coupon samples were collected for bacterial community analysis by 16S rRNA gene amplicon sequencing. Results and discussion Sixty-one of 972 beef isolates, 29 of 204 HDPE isolates, and 30 of 211 SS isolates were strong biofilm-formers (Absorbance>1.000 at 590 nm in the CV assay). Strong-binding isolates identified were of the genera Pseudomonas, Acinetobacter, Psychrobacter, Carnobacterium, and Brochothrix. Coupon bacterial communities among stores and cuts were distinct (p < 0.001, PERMANOVA), but there was no distinction between the communities found on HDPE or SS coupons (p > 0.050, PERMANOVA). The bacterial communities identified on the coupons may help determine the communities capable of transferring and colonizing onto surfaces, which can subsequently cross-contaminate foods.
Collapse
Affiliation(s)
- Giselle K. P. Guron
- Oak Ridge Institute for Science and Education, U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, United States
- Molecular Characterization of Foodborne Pathogens Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Wyndmoor, PA, United States
| | - Jennifer M. Cassidy
- Molecular Characterization of Foodborne Pathogens Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Wyndmoor, PA, United States
- Characterization and Interventions for Foodborne Pathogens Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, United States
| | - Chin-Yi Chen
- Molecular Characterization of Foodborne Pathogens Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Wyndmoor, PA, United States
- Characterization and Interventions for Foodborne Pathogens Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, United States
| | - George C. Paoli
- Molecular Characterization of Foodborne Pathogens Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Wyndmoor, PA, United States
- Characterization and Interventions for Foodborne Pathogens Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, United States
| |
Collapse
|
7
|
Biswas T, Ahmed M, Mondal S. Mixed species biofilm: Structure, challenge and its intricate involvement in hospital associated infections. Microb Pathog 2024; 195:106866. [PMID: 39159773 DOI: 10.1016/j.micpath.2024.106866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/06/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Hospital associated infections or healthcare associated infections (HAIs) are a major threat to healthcare and medical management, mostly because of their recalcitrant nature. The primary cause of these HAIs is bacterial associations, especially the interspecies interactions. In interspecies interactions, more than one species co-exists in a common platform of extracellular polymeric substances (EPS), establishing a strong interspecies crosstalk and thereby lead to the formation of mixed species biofilms. In this process, the internal microenvironment and the surrounding EPS matrix of the biofilms ensure the protection of the microorganisms and allow them to survive under antagonistic conditions. The communications between the biofilm members as well as the interactions between the bacterial cells and the matrix polymers, also aid in the rigidity of the biofilm structure and allow the microorganisms to evade both the host immune response and a wide range of anti-microbials. Therefore, to design a treatment protocol for HAIs is difficult and it has become a growing point of concern. This review therefore first aims to discuss the role of microenvironment, molecular structure, cell-cell communication, and metabolism of mixed species biofilms in manifestation of HAIs. In addition, we discuss the electrochemical properties of mixed-species biofilms and their mechanism in developing drug resistance. Then we focus on the most dreaded bacterial HAI including oral and gut multi-species infections, catheter-associated urinary tract infections, surgical site infections, and ventilator-associated pneumonia. Further, we highlight the challenges to eradication of the mixed species biofilms and the current and prospective future strategies for the treatment of mixed species-associated HAI. Together, the review presents a comprehensive understanding of mixed species biofilm-mediated infections in clinical scenario, and summarizes the current challenge and prospect of therapeutic strategies against HAI.
Collapse
Affiliation(s)
| | - Mehnaz Ahmed
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Susmita Mondal
- Department of Life Sciences, Presidency University, Kolkata, India.
| |
Collapse
|
8
|
Ramesh Kumar U, Nguyen NT, Dewangan NK, Mohiuddin SG, Orman MA, Cirino PC, Conrad JC. Co-Expression of type 1 fimbriae and flagella in Escherichia coli: consequences for adhesion at interfaces. SOFT MATTER 2024; 20:7397-7404. [PMID: 39021099 DOI: 10.1039/d4sm00499j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Escherichia coli expresses surface appendages including fimbriae, flagella, and curli, at various levels in response to environmental conditions and external stimuli. Previous studies have revealed an interplay between expression of fimbriae and flagella in several E. coli strains, but how this regulation between fimbrial and flagellar expression affects adhesion to interfaces is incompletely understood. Here, we investigate how the concurrent expression of fimbriae and flagella by engineered strains of E. coli MG1655 affects their adhesion at liquid-solid and liquid-liquid interfaces. We tune fimbrial and flagellar expression on the cell surface through plasmid-based inducible expression of the fim operon and fliC-flhDC genes. We show that increased fimbrial expression increases interfacial adhesion as well as bacteria-driven actuation of micron-sized objects. Co-expression of flagella in fimbriated bacteria, however, does not greatly affect either of these properties. Together, these results suggest that interfacial adhesion as well as motion actuated by adherent bacteria can be altered by controlling the expression of surface appendages.
Collapse
Affiliation(s)
- Udayanidhi Ramesh Kumar
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
| | - Nam T Nguyen
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
| | - Narendra K Dewangan
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
| | - Sayed Golam Mohiuddin
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
| | - Mehmet A Orman
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
| | - Patrick C Cirino
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
| | - Jacinta C Conrad
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX 77204, USA.
| |
Collapse
|
9
|
Zheng X, Gomez-Rivas EJ, Lamont SI, Daneshjoo K, Shieh A, Wozniak DJ, Parsek MR. The surface interface and swimming motility influence surface-sensing responses in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 2024; 121:e2411981121. [PMID: 39284057 PMCID: PMC11441478 DOI: 10.1073/pnas.2411981121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/01/2024] [Indexed: 10/02/2024] Open
Abstract
Bacterial biofilms have been implicated in several chronic infections. After initial attachment, a critical first step in biofilm formation is a cell inducing a surface-sensing response. In the Gram-negative opportunistic pathogen Pseudomonas aeruginosa, two second messengers, cyclic diguanylate monophosphate (c-di-GMP) and cyclic adenosine monophosphate (cAMP), are produced by different surface-sensing mechanisms. However, given the disparate cellular behaviors regulated by these second messengers, how newly attached cells coordinate these pathways remains unclear. Some of the uncertainty relates to studies using different strains, experimental systems, and usually focusing on a single second messenger. In this study, we developed a tricolor reporter system to simultaneously gauge c-di-GMP and cAMP levels in single cells. Using PAO1, we show that c-di-GMP and cAMP are selectively activated in two commonly used experimental systems to study surface sensing. By further examining the conditions that differentiate a c-di-GMP or cAMP response, we demonstrate that an agarose-air interface activates cAMP signaling through type IV pili and the Pil-Chp system. However, a liquid-agarose interface favors the activation of c-di-GMP signaling. This response is dependent on flagellar motility and correlated with higher swimming speed. Collectively, this work indicates that c-di-GMP and cAMP signaling responses are dependent on the surface context.
Collapse
Affiliation(s)
- Xuhui Zheng
- Department of Microbiology, University of Washington, Seattle, WA
| | | | - Sabrina I. Lamont
- Departments of Microbial Infection and Immunity, Microbiology, The Ohio State University, Columbus, OH
| | | | - Angeli Shieh
- Department of Microbiology, University of Washington, Seattle, WA
| | - Daniel J. Wozniak
- Departments of Microbial Infection and Immunity, Microbiology, The Ohio State University, Columbus, OH
| | | |
Collapse
|
10
|
Noonin C, Putpim A, Thongboonkerd V. The direct inhibitory effects of Lactobacillus acidophilus, a commensal urinary bacterium, on calcium oxalate stone development. MICROBIOME 2024; 12:175. [PMID: 39289694 PMCID: PMC11406782 DOI: 10.1186/s40168-024-01877-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/17/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Lactobacillus acidophilus is a commensal urinary bacterium found more abundantly in healthy individuals than in stone patients. Hence, it has been proposed to play an inhibitory role in kidney stone disease (KSD) but with unclear mechanisms. We therefore investigated the direct effects of L. acidophilus on calcium oxalate (CaOx) stone development compared with Escherichia coli, which is known to promote CaOx stone formation. RESULTS L. acidophilus at 1 × 103 CFU/ml significantly reduced the abundance of newly formed crystals, enlargement and aggregation of seeded crystals, and crystal adhesion on renal cell membranes. By contrast, E. coli at 1 × 103 CFU/ml significantly enhanced crystal growth and aggregation but did not affect crystallization and crystal-cell adhesion. Oxalate consumption assay showed that neither L. acidophilus nor E. coli significantly reduced the remaining oxalate level after 1 - 3 h incubation. However, both of them adhered to CaOx crystals. Surface component detection revealed that only L. acidophilus expressed S-layer protein, whereas only E. coli exhibited flagella on their surfaces. Removal of L. acidophilus S-layer protein and E. coli flagella completely abolished the inhibitory and promoting effects of L. acidophilus and E. coli, respectively. CONCLUSIONS L. acidophilus inhibits CaOx stone development by hampering crystallization, growth, aggregation and cell-adhesive ability of CaOx. By contrast, E. coli enhances CaOx stone development by promoting CaOx growth and aggregation. Their contradictory effects are most likely from differential surface components (i.e., S-layer protein on L. acidophilus and flagella on E. coli) not from oxalate-degrading ability. Video Abstract.
Collapse
Affiliation(s)
- Chadanat Noonin
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Anantaya Putpim
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
11
|
Cheung DL. Surface Hydrophobicity Strongly Influences Adsorption and Conformation of Amyloid Beta Derived Peptides. Molecules 2024; 29:3634. [PMID: 39125038 PMCID: PMC11314246 DOI: 10.3390/molecules29153634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The formation of amyloid fibrils is a common feature of many protein systems. It has implications in both health, as amyloid fibrils are implicated in over 30 degenerative diseases, and in the biological functions of proteins. Surfaces have long been known to affect the formation of fibrils but the specific effect depends on the details of both the surface and protein. Fully understanding the role of surfaces in fibrillization requires microscopic information on protein conformation on surfaces. In this paper replica exchange molecular dynamics simulation is used to investigate the model fibril forming protein, Aβ(10-40) (a 31-residue segment of the amyloid-beta protein) on surfaces of different hydrophobicity. Similar to other proteins Aβ(10-40) is found to adsorb strongly onto hydrophobic surfaces. It also adopts significantly different sets of conformations on hydrophobic and polar surfaces, as well as in bulk solution. On hydrophobic surfaces, it adopts partially helical structures, with the helices overlapping with beta-strand regions in the mature fibril. These may be helical intermediates on the fibril formation pathway, suggesting a mechanism for the enhanced fibril formation seen on hydrophobic surfaces.
Collapse
Affiliation(s)
- David L Cheung
- School of Biological and Chemical Sciences, University of Galway, University Road, H91 TK33 Galway, Ireland
| |
Collapse
|
12
|
Rajewska M, Maciąg T, Narajczyk M, Jafra S. Carbon Source and Substrate Surface Affect Biofilm Formation by the Plant-Associated Bacterium Pseudomonas donghuensis P482. Int J Mol Sci 2024; 25:8351. [PMID: 39125921 PMCID: PMC11312691 DOI: 10.3390/ijms25158351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The ability of bacteria to colonize diverse environmental niches is often linked to their competence in biofilm formation. It depends on the individual characteristics of a strain, the nature of the colonized surface (abiotic or biotic), or the availability of certain nutrients. Pseudomonas donghuensis P482 efficiently colonizes the rhizosphere of various plant hosts, but a connection between plant tissue colonization and the biofilm formation ability of this strain has not yet been established. We demonstrate here that the potential of P482 to form biofilms on abiotic surfaces and the structural characteristics of the biofilm are influenced by the carbon source available to the bacterium, with glycerol promoting the process. Also, the type of substratum, polystyrene or glass, impacts the ability of P482 to attach to the surface. Moreover, P482 mutants in genes associated with motility or chemotaxis, the synthesis of polysaccharides, and encoding proteases or regulatory factors, which affect biofilm formation on glass, were fully capable of colonizing the root tissue of both tomato and maize hosts. Investigating the role of cellular factors in biofilm formation using these plant-associated bacteria shows that the ability of bacteria to form biofilm on abiotic surfaces does not necessarily mirror its ability to colonize plant tissues. Our research provides a broader perspective on the adaptation of these bacteria to various environments.
Collapse
Affiliation(s)
- Magdalena Rajewska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland;
| | - Tomasz Maciąg
- Institute of Biology, Department of Botany, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Magdalena Narajczyk
- Laboratory of Electron Microscopy, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| | - Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland;
| |
Collapse
|
13
|
David A, Tahrioui A, Tareau AS, Forge A, Gonzalez M, Bouffartigues E, Lesouhaitier O, Chevalier S. Pseudomonas aeruginosa Biofilm Lifecycle: Involvement of Mechanical Constraints and Timeline of Matrix Production. Antibiotics (Basel) 2024; 13:688. [PMID: 39199987 PMCID: PMC11350761 DOI: 10.3390/antibiotics13080688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 09/01/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing acute and chronic infections, especially in immunocompromised patients. Its remarkable adaptability and resistance to various antimicrobial treatments make it difficult to eradicate. Its persistence is enabled by its ability to form a biofilm. Biofilm is a community of sessile micro-organisms in a self-produced extracellular matrix, which forms a scaffold facilitating cohesion, cell attachment, and micro- and macro-colony formation. This lifestyle provides protection against environmental stresses, the immune system, and antimicrobial treatments, and confers the capacity for colonization and long-term persistence, often characterizing chronic infections. In this review, we retrace the events of the life cycle of P. aeruginosa biofilm, from surface perception/contact to cell spreading. We focus on the importance of extracellular appendages, mechanical constraints, and the kinetics of matrix component production in each step of the biofilm life cycle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sylvie Chevalier
- Univ Rouen Normandie, Univ Caen Normandie, Normandie Univ, CBSA UR 4312, F-76000 Rouen, France
| |
Collapse
|
14
|
Afonso AC, Botting J, Gomes IB, Saavedra MJ, Simões LC, Liu J, Simões M. Elucidating bacterial coaggregation through a physicochemical and imaging surface characterization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174872. [PMID: 39032752 DOI: 10.1016/j.scitotenv.2024.174872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Bacterial coaggregation is a highly specific type of cell-cell interaction, well-documented among oral bacteria, and involves specific characteristics of the cell surface of the coaggregating strains. However, the understanding of the mechanisms promoting coaggregation in aquatic systems remains limited. This gap is critical to address, given the broad implications of coaggregation for multispecies biofilm formation, water quality, the performance of engineered systems, and diverse biotechnological applications. Therefore, this study aims to comprehensively characterize the cell surface of the coaggregating strain Delftia acidovorans 005P, isolated from drinking water, alongside a non-coaggregating strain, D. acidovorans 009P. By analyzing two strains of the same species, we aim to identify the factors contributing to the coaggregation ability of strain 005P. To achieve this, we employed a combination of physicochemical characterization, Fourier-transform infrared spectroscopy (FTIR), and advancing imaging techniques [transmission electron microscopy and cryo-electron tomography (cryo-ET)]. The coaggregating strain (005P) exhibited higher surface hydrophobicity, negative surface charge, and cell surface and co-adhesion energies than the non-coaggregating strain (009P). The chemical characterization of bacterial surfaces through FTIR revealed subtle differences, particularly in spectral regions linked to carbohydrates and phosphodiesters/amide III of proteins (860-930 cm-1 and 1212-1240 cm-1, respectively). Cryo-ET highlighted significant differences in pili structures between the strains, such as variations in length, frequency, and arrangement. The pili in the 005P strain, identified as pili-like adhesins, serve as key mediators of coaggregation. By integrating physicochemical analyses and high-resolution imaging techniques, this study conclusively links the coaggregation ability of D. acidovorans 005P to its unique pili characteristics, emphasizing their crucial role in microbial coaggregation in aquatic environments.
Collapse
Affiliation(s)
- Ana C Afonso
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal; CITAB, Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; CEB-LABBELS, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Jack Botting
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, United States; New Haven Microbial Sciences Institute, Yale University, West Haven, CT 06516, United States
| | - Inês B Gomes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal
| | - Maria J Saavedra
- CITAB, Department of Veterinary Sciences, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Lúcia C Simões
- CEB-LABBELS, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Jun Liu
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06536, United States; New Haven Microbial Sciences Institute, Yale University, West Haven, CT 06516, United States
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
15
|
Fernández-Grajera M, Pacha-Olivenza MA, Fernández-Calderón MC, González-Martín ML, Gallardo-Moreno AM. Dynamic Adhesive Behavior and Biofilm Formation of Staphylococcus aureus on Polylactic Acid Surfaces in Diabetic Environments. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3349. [PMID: 38998429 PMCID: PMC11243244 DOI: 10.3390/ma17133349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Interest in biodegradable implants has focused attention on the resorbable polymer polylactic acid. However, the risk of these materials promoting infection, especially in patients with existing pathologies, needs to be monitored. The enrichment of a bacterial adhesion medium with compounds that are associated with human pathologies can help in understanding how these components affect the development of infectious processes. Specifically, this work evaluates the influence of glucose and ketone bodies (in a diabetic context) on the adhesion dynamics of S. aureus to the biomaterial polylactic acid, employing different approaches and discussing the results based on the physical properties of the bacterial surface and its metabolic activity. The combination of ketoacidosis and hyperglycemia (GK2) appears to be the worst scenario: this system promotes a state of continuous bacterial colonization over time, suppressing the stationary phase of adhesion and strengthening the attachment of bacteria to the surface. In addition, these supplements cause a significant increase in the metabolic activity of the bacteria. Compared to non-enriched media, biofilm formation doubles under ketoacidosis conditions, while in the planktonic state, it is glucose that triggers metabolic activity, which is practically suppressed when only ketone components are present. Both information must be complementary to understand what can happen in a real system, where planktonic bacteria are the ones that initially colonize a surface, and, subsequently, these attached bacteria end up forming a biofilm. This information highlights the need for good monitoring of diabetic patients, especially if they use an implanted device made of PLA.
Collapse
Affiliation(s)
- María Fernández-Grajera
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 06006 Badajoz, Spain; (M.F.-G.); (M.A.P.-O.); (M.C.F.-C.); (A.M.G.-M.)
- University Institute of Extremadura Sanity Research (INUBE), 06006 Badajoz, Spain
| | - Miguel A. Pacha-Olivenza
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 06006 Badajoz, Spain; (M.F.-G.); (M.A.P.-O.); (M.C.F.-C.); (A.M.G.-M.)
- University Institute of Extremadura Sanity Research (INUBE), 06006 Badajoz, Spain
- Department of Biomedical Science, University of Extremadura, 06006 Badajoz, Spain
| | - María Coronada Fernández-Calderón
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 06006 Badajoz, Spain; (M.F.-G.); (M.A.P.-O.); (M.C.F.-C.); (A.M.G.-M.)
- University Institute of Extremadura Sanity Research (INUBE), 06006 Badajoz, Spain
- Department of Biomedical Science, University of Extremadura, 06006 Badajoz, Spain
| | - María Luisa González-Martín
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 06006 Badajoz, Spain; (M.F.-G.); (M.A.P.-O.); (M.C.F.-C.); (A.M.G.-M.)
- University Institute of Extremadura Sanity Research (INUBE), 06006 Badajoz, Spain
- Department of Applied Physics, University of Extremadura, 06006 Badajoz, Spain
| | - Amparo M. Gallardo-Moreno
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 06006 Badajoz, Spain; (M.F.-G.); (M.A.P.-O.); (M.C.F.-C.); (A.M.G.-M.)
- University Institute of Extremadura Sanity Research (INUBE), 06006 Badajoz, Spain
- Department of Applied Physics, University of Extremadura, 06006 Badajoz, Spain
| |
Collapse
|
16
|
Perchikov R, Cheliukanov M, Plekhanova Y, Tarasov S, Kharkova A, Butusov D, Arlyapov V, Nakamura H, Reshetilov A. Microbial Biofilms: Features of Formation and Potential for Use in Bioelectrochemical Devices. BIOSENSORS 2024; 14:302. [PMID: 38920606 PMCID: PMC11201457 DOI: 10.3390/bios14060302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
Microbial biofilms present one of the most widespread forms of life on Earth. The formation of microbial communities on various surfaces presents a major challenge in a variety of fields, including medicine, the food industry, shipping, etc. At the same time, this process can also be used for the benefit of humans-in bioremediation, wastewater treatment, and various biotechnological processes. The main direction of using electroactive microbial biofilms is their incorporation into the composition of biosensor and biofuel cells This review examines the fundamental knowledge acquired about the structure and formation of biofilms, the properties they have when used in bioelectrochemical devices, and the characteristics of the formation of these structures on different surfaces. Special attention is given to the potential of applying the latest advances in genetic engineering in order to improve the performance of microbial biofilm-based devices and to regulate the processes that take place within them. Finally, we highlight possible ways of dealing with the drawbacks of using biofilms in the creation of highly efficient biosensors and biofuel cells.
Collapse
Affiliation(s)
- Roman Perchikov
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, Tula 300012, Russia; (R.P.); (M.C.); (A.K.); (V.A.)
| | - Maxim Cheliukanov
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, Tula 300012, Russia; (R.P.); (M.C.); (A.K.); (V.A.)
| | - Yulia Plekhanova
- Federal Research Center (Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia; (Y.P.); (S.T.)
| | - Sergei Tarasov
- Federal Research Center (Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia; (Y.P.); (S.T.)
| | - Anna Kharkova
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, Tula 300012, Russia; (R.P.); (M.C.); (A.K.); (V.A.)
| | - Denis Butusov
- Computer-Aided Design Department, Saint Petersburg Electrotechnical University “LETI”, Saint Petersburg 197022, Russia;
| | - Vyacheslav Arlyapov
- Federal State Budgetary Educational Institution of Higher Education, Tula State University, Tula 300012, Russia; (R.P.); (M.C.); (A.K.); (V.A.)
| | - Hideaki Nakamura
- Department of Liberal Arts, Tokyo University of Technology, 1404-1 Katakura, Hachioji 192-0982, Tokyo, Japan;
| | - Anatoly Reshetilov
- Federal Research Center (Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences), G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino 142290, Russia; (Y.P.); (S.T.)
| |
Collapse
|
17
|
Amador GJ, van Oorschot BK, Liao C, Wu J, Wei D. Functional fibrillar interfaces: Biological hair as inspiration across scales. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:664-677. [PMID: 38887525 PMCID: PMC11181169 DOI: 10.3762/bjnano.15.55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024]
Abstract
Hair, or hair-like fibrillar structures, are ubiquitous in biology, from fur on the bodies of mammals, over trichomes of plants, to the mastigonemes on the flagella of single-celled organisms. While these long and slender protuberances are passive, they are multifunctional and help to mediate interactions with the environment. They provide thermal insulation, sensory information, reversible adhesion, and surface modulation (e.g., superhydrophobicity). This review will present various functions that biological hairs have been discovered to carry out, with the hairs spanning across six orders of magnitude in size, from the millimeter-thick fur of mammals down to the nanometer-thick fibrillar ultrastructures on bateriophages. The hairs are categorized according to their functions, including protection (e.g., thermal regulation and defense), locomotion, feeding, and sensing. By understanding the versatile functions of biological hairs, bio-inspired solutions may be developed across length scales.
Collapse
Affiliation(s)
- Guillermo J Amador
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, Netherlands
| | - Brett Klaassen van Oorschot
- Experimental Zoology Group, Department of Animal Sciences, Wageningen University & Research, De Elst 1, 6708 WD Wageningen, Netherlands
| | - Caiying Liao
- School of Aeronautics and Astronautics, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Jianing Wu
- School of Aeronautics and Astronautics, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China
| | - Da Wei
- Beijing National Laboratory for Condensed Matter Physics and Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
18
|
Javed MA, Ivanovich N, Messinese E, Liu R, Astorga SE, Yeo YP, Idapalapati S, Lauro FM, Wade SA. The Role of Metallurgical Features in the Microbially Influenced Corrosion of Carbon Steel: A Critical Review. Microorganisms 2024; 12:892. [PMID: 38792722 PMCID: PMC11124232 DOI: 10.3390/microorganisms12050892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Microbially influenced corrosion (MIC) is a potentially critical degradation mechanism for a wide range of materials exposed to environments that contain relevant microorganisms. The likelihood and rate of MIC are affected by microbiological, chemical, and metallurgical factors; hence, the understanding of the mechanisms involved, verification of the presence of MIC, and the development of mitigation methods require a multidisciplinary approach. Much of the recent focus in MIC research has been on the microbiological and chemical aspects, with less attention given to metallurgical attributes. Here, we address this knowledge gap by providing a critical synthesis of the literature on the metallurgical aspects of MIC of carbon steel, a material frequently associated with MIC failures and widely used in construction and infrastructure globally. The article begins by introducing the process of MIC, then progresses to explore the complexities of various metallurgical factors relevant to MIC in carbon steel. These factors include chemical composition, grain size, grain boundaries, microstructural phases, inclusions, and welds, highlighting their potential influence on MIC processes. This review systematically presents key discoveries, trends, and the limitations of prior research, offering some novel insights into the impact of metallurgical factors on MIC, particularly for the benefit of those already familiar with other aspects of MIC. The article concludes with recommendations for documenting metallurgical data in MIC research. An appreciation of relevant metallurgical attributes is essential for a critical assessment of a material's vulnerability to MIC to advance research practices and to broaden the collective knowledge in this rapidly evolving area of study.
Collapse
Affiliation(s)
- Muhammad Awais Javed
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, VIC 3122, Australia;
| | - Nicolò Ivanovich
- Asian School of the Environment, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore;
| | - Elena Messinese
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Luigi Mancinelli, 7, 20131 Milan, Italy;
| | - Ruiliang Liu
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637751, Singapore; (R.L.); (S.E.A.); (Y.P.Y.)
- Curtin Corrosion Centre, Faculty of Science and Engineering, Western Australia School of Mines (WASM), Curtin University, Perth, WA 6102, Australia
| | - Solange E. Astorga
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637751, Singapore; (R.L.); (S.E.A.); (Y.P.Y.)
| | - Yee Phan Yeo
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637751, Singapore; (R.L.); (S.E.A.); (Y.P.Y.)
| | - Sridhar Idapalapati
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore;
| | - Federico M. Lauro
- Asian School of the Environment, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore;
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637751, Singapore; (R.L.); (S.E.A.); (Y.P.Y.)
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, Cleantech ONE, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Scott A. Wade
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, VIC 3122, Australia;
| |
Collapse
|
19
|
Ferheen I, Spurio R, Marcheggiani S. Emerging Issues on Antibiotic-Resistant Bacteria Colonizing Plastic Waste in Aquatic Ecosystems. Antibiotics (Basel) 2024; 13:339. [PMID: 38667014 PMCID: PMC11047579 DOI: 10.3390/antibiotics13040339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/31/2024] [Accepted: 04/07/2024] [Indexed: 04/29/2024] Open
Abstract
Antibiotic-resistant bacteria (ARB) adhesion onto plastic substrates is a potential threat to environmental and human health. This current research investigates the prevalence of two relevant human pathogens, Staphylococcus spp. and Klebsiella spp., and their sophisticated equipment of antibiotic-resistant genes (ARGs), retrieved from plastic substrates submerged into an inland water body. The results of microbiological analysis on selective and chromogenic media revealed the presence of colonies with distinctive phenotypes, which were identified using biochemical and molecular methods. 16S rDNA sequencing and BLAST analysis confirmed the presence of Klebsiella spp., while in the case of Staphylococcus spp., 63.6% of strains were found to be members of Lysinibacillus spp., and the remaining 36.3% were identified as Exiguobacterium acetylicum. The Kirby-Bauer disc diffusion assay was performed to test the susceptibility of the isolates to nine commercially available antibiotics, while the genotypic resistant profile was determined for two genes of class 1 integrons and eighteen ARGs belonging to different classes of antibiotics. All isolated bacteria displayed a high prevalence of resistance against all tested antibiotics. These findings provide insights into the emerging risks linked to colonization by potential human opportunistic pathogens on plastic waste commonly found in aquatic ecosystems.
Collapse
Affiliation(s)
- Ifra Ferheen
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (I.F.); (R.S.)
| | - Roberto Spurio
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (I.F.); (R.S.)
| | - Stefania Marcheggiani
- Department of Environment and Primary Prevention, National Institute of Health, 00161 Rome, Italy
| |
Collapse
|
20
|
Gao L, Huang M, Xiong Q, Liang Y, Mi L, Jiang Y, Zhang J. Antibacterial Mechanism, Control Efficiency, and Nontarget Toxicity Evaluation of Actinomycin X 2 against Xanthomonas citri Subsp. citri. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4788-4800. [PMID: 38377546 DOI: 10.1021/acs.jafc.3c08600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
The present study investigated the antibacterial mechanism, control efficiency, and nontarget toxicity of actinomycin X2 (Act-X2) against Xanthomonas citri subsp. citri (Xcc) for the first time. Act-X2 almost completely inhibited the proliferation of Xcc in the growth curve assay at a concentration of 0.25 MIC (minimum inhibitory concentration, MIC = 31.25 μg/mL). This inhibitory effect was achieved by increasing the production of reactive oxygen species (ROS), blocking the formation of biofilms, obstructing the synthesis of intracellular proteins, and decreasing the enzymatic activities of malate dehydrogenase (MDH) and succinate dehydrogenase (SDH) of Xcc. Molecular docking and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) analysis results indicated that Act-X2 steadily bonded to the RNA polymerase, ribosome, malate dehydrogenase, and succinate dehydrogenase to inhibit their activities, thus drastically reducing the expression levels of related genes. Act-X2 showed far more effectiveness than the commercially available pesticide Cu2(OH)3Cl in the prevention and therapy of citrus canker disease. Furthermore, the nontarget toxicity evaluation demonstrated that Act-X2 was not phytotoxic to citrus trees and exhibited minimal toxicity to earthworms in both contact and soil toxic assays. This study suggests that Act-X2 has the potential as an effective and environmentally friendly antibacterial agent.
Collapse
Affiliation(s)
- Liangliang Gao
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
| | - Meiling Huang
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
| | - Qin Xiong
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
| | - Yan Liang
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
| | - Lanfang Mi
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
| | - Yueming Jiang
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
- South China Botanical Garden, Chinese Academy of Science, Guangzhou 510650, China
| | - Jun Zhang
- National Engineering Research Center of Navel Orange, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
21
|
Fux AC, Casonato Melo C, Schlahsa L, Burzan NB, Felsberger A, Gessner I, Fauerbach JA, Horejs-Hoeck J, Droste M, Siewert C. Generation of Endotoxin-Specific Monoclonal Antibodies by Phage and Yeast Display for Capturing Endotoxin. Int J Mol Sci 2024; 25:2297. [PMID: 38396974 PMCID: PMC10889169 DOI: 10.3390/ijms25042297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/26/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Endotoxin, a synonym for lipopolysaccharide (LPS), is anchored in the outer membranes of Gram-negative bacteria. Even minute amounts of LPS entering the circulatory system can have a lethal immunoactivating effect. Since LPS is omnipresent in the environment, it poses a great risk of contaminating any surface or solution, including research products and pharmaceuticals. Therefore, monitoring LPS contamination and taking preventive or decontamination measures to ensure human safety is of the utmost importance. Nevertheless, molecules used for endotoxin detection or inhibition often suffer from interferences, low specificity, and low affinity. For this reason, the selection of new binders that are biocompatible, easy to produce, and that can be used for biopharmaceutical applications, such as endotoxin removal, is of high interest. Powerful techniques for selecting LPS-binding molecules in vitro are display technologies. In this study, we established and compared the selection and production of LPS-specific, monoclonal, human single-chain variable fragments (scFvs) through two display methods: yeast and phage display. After selection, scFvs were fused to a human constant fragment crystallizable (Fc). To evaluate the applicability of the constructs, they were conjugated to polystyrene microbeads. Here, we focused on comparing the functionalized beads and their LPS removal capacity to a polyclonal anti-lipid A bead. Summarized, five different scFvs were selected through phage and yeast display, with binding properties comparable to a commercial polyclonal antibody. Two of the conjugated scFv-Fcs outperformed the polyclonal antibody in terms of the removal of LPS in aqueous solution, resulting in 265 times less residual LPS in solution, demonstrating the potential of display methods to generate LPS-specific binding molecules.
Collapse
Affiliation(s)
- Alexandra C. Fux
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, 5020 Salzburg, Austria
- Research and Development Department, Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Cristiane Casonato Melo
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, 5020 Salzburg, Austria
- Research and Development Department, Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Laura Schlahsa
- Research and Development Department, Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Nico B. Burzan
- Research and Development Department, Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - André Felsberger
- Research and Development Department, Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Isabel Gessner
- Research and Development Department, Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Jonathan A. Fauerbach
- Research and Development Department, Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Jutta Horejs-Hoeck
- Department of Biosciences and Medical Biology, Paris Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Miriam Droste
- Research and Development Department, Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| | - Christiane Siewert
- Research and Development Department, Miltenyi Biotec B.V. & Co. KG, 51429 Bergisch Gladbach, Germany
| |
Collapse
|
22
|
Hansson A, Karlsen EA, Stensen W, Svendsen JSM, Berglin M, Lundgren A. Preventing E. coli Biofilm Formation with Antimicrobial Peptide-Functionalized Surface Coatings: Recognizing the Dependence on the Bacterial Binding Mode Using Live-Cell Microscopy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6799-6812. [PMID: 38294883 PMCID: PMC10875647 DOI: 10.1021/acsami.3c16004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/02/2024]
Abstract
Antimicrobial peptides (AMPs) can kill bacteria by destabilizing their membranes, yet translating these molecules' properties into a covalently attached antibacterial coating is challenging. Rational design efforts are obstructed by the fact that standard microbiology methods are ill-designed for the evaluation of coatings, disclosing few details about why grafted AMPs function or do not function. It is particularly difficult to distinguish the influence of the AMP's molecular structure from other factors controlling the total exposure, including which type of bonds are formed between bacteria and the coating and how persistent these contacts are. Here, we combine label-free live-cell microscopy, microfluidics, and automated image analysis to study the response of surface-bound Escherichia coli challenged by the same small AMP either in solution or grafted to the surface through click chemistry. Initially after binding, the grafted AMPs inhibited bacterial growth more efficiently than did AMPs in solution. Yet, after 1 h, E. coli on the coated surfaces increased their expression of type-1 fimbriae, leading to a change in their binding mode, which diminished the coating's impact. The wealth of information obtained from continuously monitoring the growth, shape, and movements of single bacterial cells allowed us to elucidate and quantify the different factors determining the antibacterial efficacy of the grafted AMPs. We expect this approach to aid the design of elaborate antibacterial material coatings working by specific and selective actions, not limited to contact-killing. This technology is needed to support health care and food production in the postantibiotic era.
Collapse
Affiliation(s)
- Adam Hansson
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg 40530, Sweden
- Department
of Chemistry and Materials, RISE Research
Institutes of Sweden, Borås 50115, Sweden
| | - Eskil André Karlsen
- Amicoat
A/S, Sykehusvegen 23, Tromsø 9019, Norway
- Department
of Chemistry, UiT The Arctic University
of Norway, Tromsø 9037, Norway
| | - Wenche Stensen
- Department
of Chemistry, UiT The Arctic University
of Norway, Tromsø 9037, Norway
| | - John S. M. Svendsen
- Amicoat
A/S, Sykehusvegen 23, Tromsø 9019, Norway
- Department
of Chemistry, UiT The Arctic University
of Norway, Tromsø 9037, Norway
| | - Mattias Berglin
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg 40530, Sweden
- Department
of Chemistry and Materials, RISE Research
Institutes of Sweden, Borås 50115, Sweden
| | - Anders Lundgren
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Gothenburg 40530, Sweden
- Centre
for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg 41346, Sweden
| |
Collapse
|
23
|
Røder HL, Christidi E, Amador CI, Music S, Olesen AK, Svensson B, Madsen JS, Herschend J, Kreft JU, Burmølle M. Flagellar interference with plasmid uptake in biofilms: a joint experimental and modeling study. Appl Environ Microbiol 2024; 90:e0151023. [PMID: 38095456 PMCID: PMC10807428 DOI: 10.1128/aem.01510-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/30/2023] [Indexed: 01/25/2024] Open
Abstract
Plasmid conjugation is a key facilitator of horizontal gene transfer (HGT), and plasmids encoding antibiotic resistance drive the increasing prevalence of antibiotic resistance. In natural, engineered, and clinical environments, bacteria often grow in protective biofilms. Therefore, a better understanding of plasmid transfer in biofilms is needed. Our aim was to investigate plasmid transfer in a biofilm-adapted wrinkly colony mutant of Xanthomonas retroflexus (XRw) with enhanced matrix production and reduced motility. We found that XRw biofilms had an increased uptake of the broad host-range IncP-1ϵ plasmid pKJK5 compared to the wild type (WT). Proteomics revealed fewer flagellar-associated proteins in XRw, suggesting that flagella were responsible for reducing plasmid uptake. This was confirmed by the higher plasmid uptake of non-flagellated fliM mutants of the X. retroflexus wrinkly mutant as well as the wild type. Moreover, testing several flagellar mutants of Pseudomonas putida suggested that the flagellar effect was more general. We identified seven mechanisms with the potential to explain the flagellar effect and simulated them in an individual-based model. Two mechanisms could thus be eliminated (increased distances between cells and increased lag times due to flagella). Another mechanism identified as viable in the modeling was eliminated by further experiments. The possibility of steric hindrance of pilus movement and binding by flagella, reducing the frequency of contact and thus plasmid uptake, proved viable, and the three other viable mechanisms had a reduced probability of plasmid transfer in common. Our findings highlight the important yet complex effects of flagella during bacterial conjugation in biofilms.IMPORTANCEBiofilms are the dominant form of microbial life and bacteria living in biofilms are markedly different from their planktonic counterparts, yet the impact of the biofilm lifestyle on horizontal gene transfer (HGT) is still poorly understood. Horizontal gene transfer by conjugative plasmids is a major driver in bacterial evolution and adaptation, as exemplified by the troubling spread of antibiotic resistance. To either limit or promote plasmid prevalence and dissemination, we need a better understanding of plasmid transfer between bacterial cells, especially in biofilms. Here, we identified a new factor impacting the transfer of plasmids, flagella, which are required for many types of bacterial motility. We show that their absence or altered activity can lead to enhanced plasmid uptake in two bacterial species, Xanthomonas retroflexus and Pseudomonas putida. Moreover, we demonstrate the utility of mathematical modeling to eliminate hypothetical mechanisms.
Collapse
Affiliation(s)
- Henriette Lyng Røder
- Department of Food Science, University of Copenhagen, Copenhagen, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Eleni Christidi
- School of Biosciences & Institute of Microbiology and Infection & Centre for Computational Biology, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | | - Samra Music
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | - Birte Svensson
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | | | - Jakob Herschend
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jan-Ulrich Kreft
- School of Biosciences & Institute of Microbiology and Infection & Centre for Computational Biology, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Mette Burmølle
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
24
|
Salas-Tovar JA, Escobedo-García S, Olivas GI, Acosta-Muñiz CH, Harte F, Sepulveda DR. The MATH test. A three-phase assay? FEMS Microbiol Lett 2024; 371:fnae045. [PMID: 38866708 DOI: 10.1093/femsle/fnae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/09/2024] [Accepted: 06/11/2024] [Indexed: 06/14/2024] Open
Abstract
This study aimed to investigating the possible interference caused by glass test tubes on the quantification of bacterial adhesion to hydrocarbons by the MATH test. The adhesion of four bacteria to hexadecane and to glass test tubes was evaluated employing different suspending polar phases. The role of the ionic strength of the polar phase regarding adhesion to glassware was investigated. Within the conditions studied, Gram-positive bacteria adhered to both the test tube and the hydrocarbon regardless of the polar phase employed; meanwhile, Escherichia coli ATCC 25922 did not attach to either one. The capacity of the studied microorganisms to adhere to glassware was associated with their electron-donor properties. The ionic strength of the suspending media altered the patterns of adhesion to glass in a strain-specific manner by defining the magnitude of electrostatic repulsion observed between bacteria and the glass surface. This research demonstrated that glass test tubes may interact with suspended bacterial cells during the MATH test under specific conditions, which may lead to overestimating the percentage of adhesion to hydrocarbons and, thus, to erroneous values of cell surface hydrophobicity.
Collapse
Affiliation(s)
- Jesús A Salas-Tovar
- Centro de Investigación en Alimentación y Desarrollo, Ave. Río Conchos S/N, Parque Industrial, Cd. Cuauhtémoc, Chihuahua 31570, Mexico
| | - Sarai Escobedo-García
- Centro de Investigación en Alimentación y Desarrollo, Ave. Río Conchos S/N, Parque Industrial, Cd. Cuauhtémoc, Chihuahua 31570, Mexico
| | - Guadalupe I Olivas
- Centro de Investigación en Alimentación y Desarrollo, Ave. Río Conchos S/N, Parque Industrial, Cd. Cuauhtémoc, Chihuahua 31570, Mexico
| | - Carlos H Acosta-Muñiz
- Centro de Investigación en Alimentación y Desarrollo, Ave. Río Conchos S/N, Parque Industrial, Cd. Cuauhtémoc, Chihuahua 31570, Mexico
| | - Federico Harte
- Department of Food Science, The Pennsylvania State University, 331 Rodney A. Erickson Food Science Building University Park, PA 16802, United States
| | - David R Sepulveda
- Centro de Investigación en Alimentación y Desarrollo, Ave. Río Conchos S/N, Parque Industrial, Cd. Cuauhtémoc, Chihuahua 31570, Mexico
| |
Collapse
|
25
|
Sukmarini L, Atikana A, Hertiani T. Antibiofilm activity of marine microbial natural products: potential peptide- and polyketide-derived molecules from marine microbes toward targeting biofilm-forming pathogens. J Nat Med 2024; 78:1-20. [PMID: 37930514 DOI: 10.1007/s11418-023-01754-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/05/2023] [Indexed: 11/07/2023]
Abstract
Controlling and treating biofilm-related infections is challenging because of the widespread presence of multidrug-resistant microbes. Biofilm, a naturally occurring matrix of microbial aggregates, has developed intricate and diverse resistance mechanisms against many currently used antibiotics. This poses a significant problem, especially for human health, including clinically chronic infectious diseases. Thus, there is an urgent need to search for and develop new and more effective antibiotics. As the marine environment is recognized as a promising reservoir of new biologically active molecules with potential pharmacological properties, marine natural products, particularly those of microbial origin, have emerged as a promising source of antibiofilm agents. Marine microbes represent an untapped source of secondary metabolites with antimicrobial activity. Furthermore, marine natural products, owing to their self-defense mechanisms and adaptation to harsh conditions, encompass a wide range of chemical compounds, including peptides and polyketides, which are primarily found in microbes. These molecules can be exploited to provide novel and unique structures for developing alternative antibiotics as effective antibiofilm agents. This review focuses on the possible antibiofilm mechanism of these marine microbial molecules against biofilm-forming pathogens. It provides an overview of biofilm development, its recalcitrant mode of action, strategies for the development of antibiofilm agents, and their assessments. The review also revisits some selected peptides and polyketides from marine microbes reported between 2016 and 2023, highlighting their moderate and considerable antibiofilm activities. Moreover, their antibiofilm mechanisms, such as adhesion modulation/inhibition targeting biofilm-forming pathogens, quorum sensing intervention and inhibition, and extracellular polymeric substance disruption, are highlighted herein.
Collapse
Affiliation(s)
- Linda Sukmarini
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), KST Soekarno, Jl. Raya Jakarta-Bogor Km. 46, Cibinong, West Java, 16911, Indonesia.
- Indonesian Biofilm Research Collaboration Center, Jl. Farmako Sekip Utara, Yogyakarta, 55281, Indonesia.
| | - Akhirta Atikana
- Research Center for Applied Microbiology, National Research and Innovation Agency (BRIN), KST Soekarno, Jl. Raya Jakarta-Bogor Km. 46, Cibinong, West Java, 16911, Indonesia
- Indonesian Biofilm Research Collaboration Center, Jl. Farmako Sekip Utara, Yogyakarta, 55281, Indonesia
| | - Triana Hertiani
- Indonesian Biofilm Research Collaboration Center, Jl. Farmako Sekip Utara, Yogyakarta, 55281, Indonesia.
- Pharmaceutical Biology Department, Faculty of Pharmacy, Gadjah Mada University, Jl. Sekip Utara, Yogyakarta, 55281, Indonesia.
| |
Collapse
|
26
|
Iyer D, Laws E, LaJeunesse D. Escherichia coli Adhesion and Biofilm Formation on Polymeric Nanostructured Surfaces. ACS OMEGA 2023; 8:47520-47529. [PMID: 38144076 PMCID: PMC10734028 DOI: 10.1021/acsomega.3c04747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/25/2023] [Indexed: 12/26/2023]
Abstract
Biofilm formation is a multistep process that requires initial contact between a bacterial cell and a surface substrate. Recent work has shown that nanoscale topologies impact bacterial cell viability; however, less is understood about how nanoscale surface properties impact other aspects of bacterial behavior. In this study, we examine the adhesive, viability, morphology, and colonization behavior of the bacterium Escherichia coli on 21 plasma-etched polymeric surfaces. Although we predicted that specific nanoscale surface structures of the surface would control specific aspects of bacterial behavior, we observed no correlation between any bacterial response or surface structures/properties. Instead, it appears that the surface composition of the polymer plays the most significant role in controlling and determining a bacterial response to a substrate, although changes to a polymeric surface via plasma etching alter initial bacteria colonization and morphology.
Collapse
Affiliation(s)
- Divya Iyer
- Department of Nanoscience,
Joint School of Nanoscience and Nanoengineering, University of North Carolina Greensboro, 2907 East Lee Street, Greensboro, North Carolina 27455, United States
| | - Eric Laws
- Department of Nanoscience,
Joint School of Nanoscience and Nanoengineering, University of North Carolina Greensboro, 2907 East Lee Street, Greensboro, North Carolina 27455, United States
| | - Dennis LaJeunesse
- Department of Nanoscience,
Joint School of Nanoscience and Nanoengineering, University of North Carolina Greensboro, 2907 East Lee Street, Greensboro, North Carolina 27455, United States
| |
Collapse
|
27
|
Shafaat A, Gonzalez-Martinez JF, Silva WO, Lesch A, Nagar B, Lopes da Silva Z, Neilands J, Sotres J, Björklund S, Girault H, Ruzgas T. A Rapidly Responsive Sensor for Wireless Detection of Early and Mature Microbial Biofilms. Angew Chem Int Ed Engl 2023; 62:e202308181. [PMID: 37490019 DOI: 10.1002/anie.202308181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 07/26/2023]
Abstract
Biofilm-associated infections, which are able to resist antibiotics, pose a significant challenge in clinical treatments. Such infections have been linked to various medical conditions, including chronic wounds and implant-associated infections, making them a major public-health concern. Early-detection of biofilm formation offers significant advantages in mitigating adverse effects caused by biofilms. In this work, we aim to explore the feasibility of employing a novel wireless sensor for tracking both early-stage and matured-biofilms formed by the medically relevant bacteria Staphylococcus aureus and Pseudomonas aeruginosa. The sensor utilizes electrochemical reduction of an AgCl layer bridging two silver legs made by inkjet-printing, forming a part of near-field-communication tag antenna. The antenna is interfaced with a carbon cloth designed to promote the growth of microorganisms, thereby serving as an electron source for reduction of the resistive AgCl into a highly-conductive Ag bridge. The AgCl-Ag transformation significantly alters the impedance of the antenna, facilitating wireless identification of an endpoint caused by microbial growth. To the best of our knowledge, this study for the first time presents the evidence showcasing that electrons released through the actions of bacteria can be harnessed to convert AgCl to Ag, thus enabling the wireless, battery-less, and chip-less early-detection of biofilm formation.
Collapse
Affiliation(s)
- Atefeh Shafaat
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 20506, Malmö, Sweden
- Biofilms - Research Center for Biointerfaces, Malmö University, 20506, Malmö, Sweden
| | | | - Wanderson O Silva
- Institute of Systems Engineering, HES-SO Valais-Wallis, 1950, Sion, Switzerland
| | - Andreas Lesch
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
| | - Bhawna Nagar
- Laboratory of Physical and Analytical Electrochemistry, École Polytechnique Fédérale de Lausanne (EPFL) Valais Wallis, 1950, Sion, Switzerland
| | - Zita Lopes da Silva
- Department of Oral Biology, Faculty of Odontology, Malmö University, 20506, Malmö, Sweden
| | - Jessica Neilands
- Department of Oral Biology, Faculty of Odontology, Malmö University, 20506, Malmö, Sweden
| | - Javier Sotres
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 20506, Malmö, Sweden
- Biofilms - Research Center for Biointerfaces, Malmö University, 20506, Malmö, Sweden
| | - Sebastian Björklund
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 20506, Malmö, Sweden
- Biofilms - Research Center for Biointerfaces, Malmö University, 20506, Malmö, Sweden
| | - Hubert Girault
- Laboratory of Physical and Analytical Electrochemistry, École Polytechnique Fédérale de Lausanne (EPFL) Valais Wallis, 1950, Sion, Switzerland
| | - Tautgirdas Ruzgas
- Department of Biomedical Science, Faculty of Health and Society, Malmö University, 20506, Malmö, Sweden
- Biofilms - Research Center for Biointerfaces, Malmö University, 20506, Malmö, Sweden
| |
Collapse
|
28
|
Prinz Setter O, Jiang X, Segal E. Rising to the surface: capturing and detecting bacteria by rationally-designed surfaces. Curr Opin Biotechnol 2023; 83:102969. [PMID: 37494819 DOI: 10.1016/j.copbio.2023.102969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/28/2023]
Abstract
Analytical microbiology has made substantial progress since its conception, starting from potato slices, through selective agar media, to engineered surfaces modified with capture probes. While the latter represents the dominant approach in designing sensors for bacteria detection, the importance of sensor surface properties is frequently ignored. Herein, we highlight their significant role in the complex process of bacterial transition from planktonic to sessile, representing the first and critical step in bacteria detection. We present the main surface features and discuss their effect on the bio-solid interface and the resulting sensing capabilities for both flat and particulate systems. The concepts of rationally-designed surfaces for enhanced bacterial detection are presented with recent examples of sensors (capture probe-free) relying solely on surface cues.
Collapse
Affiliation(s)
- Ofer Prinz Setter
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel
| | - Xin Jiang
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel; The Russel Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Technion City, 3200003 Haifa, Israel.
| |
Collapse
|
29
|
Zhang H, Zhai Y, Chen K, Shi H. Adhesion of Escherichia coli O157:H7 during sublethal injury and resuscitation: Importance of pili and surface properties. Food Microbiol 2023; 115:104329. [PMID: 37567635 DOI: 10.1016/j.fm.2023.104329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/19/2023] [Accepted: 06/19/2023] [Indexed: 08/13/2023]
Abstract
Escherichia coli O157:H7 can recover from sublethally injured (SI) state, which causes threat of foodborne illness. Adhesion plays a key role in the carriage of pathogens in food. In this study, we investigated the adhesion ability of SI and recovered E. coli O157:H7 wildtype and its three pili-deficient mutants (curli, type 1 fimbriae, and type IV pili) on six food-related surfaces. Plate counting was used to determine adhesion population after washing and oscillating the surfaces. Spinach exhibited the stronger adhesion population of E. coli O157:H7 than the other fresh produces (p < 0.05). In addition, at least one key pili dominated adhesion on these surfaces, and curli was always included. The adhesion population and contribution of different types of pili were jointly affected by surface and physiological state. This can be attributed to high hydrophobicity and positive charge density on surface and different expression levels of csgB, fimA, fimC and ppdD in SI and recovered cells. Among glucose, mannose, maltose, fructose, lactose, and sucrose, addition of 0.5% mannose could reduce adhesion of cells at all physiological states on stainless steel. Overall, this research will provide support for controlling adhesion of SI and recovered E. coli O157:H7.
Collapse
Affiliation(s)
- Hongchen Zhang
- College of Food Science, Southwest University, Chongqing, China
| | - Yujun Zhai
- College of Food Science, Southwest University, Chongqing, China
| | - Kewei Chen
- College of Food Science, Southwest University, Chongqing, China
| | - Hui Shi
- College of Food Science, Southwest University, Chongqing, China.
| |
Collapse
|
30
|
Luo G, Liang B, Cui H, Kang Y, Zhou X, Tao Y, Lu L, Fan L, Guo J, Wang A, Gao SH. Determining the Contribution of Micro/Nanoplastics to Antimicrobial Resistance: Challenges and Perspectives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12137-12152. [PMID: 37578142 DOI: 10.1021/acs.est.3c01128] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Microorganisms colonizing the surfaces of microplastics form a plastisphere in the environment, which captures miscellaneous substances. The plastisphere, owning to its inherently complex nature, may serve as a "Petri dish" for the development and dissemination of antibiotic resistance genes (ARGs), adding a layer of complexity in tackling the global challenge of both microplastics and ARGs. Increasing studies have drawn insights into the extent to which the proliferation of ARGs occurred in the presence of micro/nanoplastics, thereby increasing antimicrobial resistance (AMR). However, a comprehensive review is still lacking in consideration of the current increasingly scattered research focus and results. This review focuses on the spread of ARGs mediated by microplastics, especially on the challenges and perspectives on determining the contribution of microplastics to AMR. The plastisphere accumulates biotic and abiotic materials on the persistent surfaces, which, in turn, offers a preferred environment for gene exchange within and across the boundary of the plastisphere. Microplastics breaking down to smaller sizes, such as nanoscale, can possibly promote the horizontal gene transfer of ARGs as environmental stressors by inducing the overgeneration of reactive oxygen species. Additionally, we also discussed methods, especially quantitatively comparing ARG profiles among different environmental samples in this emerging field and the challenges that multidimensional parameters are in great necessity to systematically determine the antimicrobial dissemination risk in the plastisphere. Finally, based on the biological sequencing data, we offered a framework to assess the AMR risks of micro/nanoplastics and biocolonizable microparticles that leverage multidimensional AMR-associated messages, including the ARGs' abundance, mobility, and potential acquisition by pathogens.
Collapse
Affiliation(s)
- Gaoyang Luo
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Hanlin Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yuanyuan Kang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Xu Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Yu Tao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Lu Lu
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Lu Fan
- Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Shu-Hong Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| |
Collapse
|
31
|
Li S, Keenan JI, Shaw IC, Frizelle FA. Could Microplastics Be a Driver for Early Onset Colorectal Cancer? Cancers (Basel) 2023; 15:3323. [PMID: 37444433 DOI: 10.3390/cancers15133323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/12/2023] [Accepted: 06/18/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction: The incidence of colorectal cancer in those under 50 years of age (early onset colorectal cancer (EOCRC)) is increasing throughout the world. This has predominantly been an increase in distal colonic and rectal cancers, which are biologically similar to late onset colorectal cancer (LOCRC) but with higher rates of mucinous or signet ring histology, or poorly differentiated cancers. The epidemiology of this change suggests that it is a cohort effect since 1960, and is most likely driven by an environmental cause. We explore the possible role of microplastics as a driver for this change. Review: The development of sporadic colorectal cancer is likely facilitated by the interaction of gut bacteria and the intestinal wall. Normally, a complex layer of luminal mucus provides colonocytes with a level of protection from the effects of these bacteria and their toxins. Plastics were first developed in the early 1900s. After 1945 they became more widely used, with a resultant dramatic increase in plastic pollution and their breakdown to microplastics. Microplastics (MPs) are consumed by humans from an early age and in increasingly large quantities. As MPs pass through the gastrointestinal tract they interact with the normal physiological mechanism of the body, particularly in the colon and rectum, where they may interact with the protective colonic mucus layer. We describe several possible mechanisms of how microplastics may disrupt this mucus layer, thus reducing its protective effect and increasing the likelihood of colorectal cancer. Conclusions: The epidemiology of increase in EOCRC suggests an environmental driver. This increase in EOCRC matches the time sequence in which we could expect to see an effect of rapid increase of MPs in the environment and, as such, we have explored possible mechanisms for this effect. We suggest that it is possible that the MPs damage the barrier integrity of the colonic mucus layer, thus reducing its protective effect. MPs in CRC pathogenesis warrants further investigation. Future directions: Further clarification needs to be sought regarding the interaction between MPs, gut microbiota and the mucus layer. This will need to be modelled in long-term animal studies to better understand how chronic consumption of environmentally-acquired MPs may contribute to an increased risk of colorectal carcinogenesis.
Collapse
Affiliation(s)
- Shelley Li
- Department of Surgery, University of Otago Christchurch, Christchurch 8011, New Zealand
| | - Jacqueline I Keenan
- Department of Surgery, University of Otago Christchurch, Christchurch 8011, New Zealand
| | - Ian C Shaw
- School of Physical & Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand
| | - Frank A Frizelle
- Department of Surgery, University of Otago Christchurch, Christchurch 8011, New Zealand
| |
Collapse
|
32
|
Bhattacharyya A, Mavrodi O, Bhowmik N, Weller D, Thomashow L, Mavrodi D. Bacterial biofilms as an essential component of rhizosphere plant-microbe interactions. METHODS IN MICROBIOLOGY 2023; 53:3-48. [PMID: 38415193 PMCID: PMC10898258 DOI: 10.1016/bs.mim.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Affiliation(s)
- Ankita Bhattacharyya
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Olga Mavrodi
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Niladri Bhowmik
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - David Weller
- USDA-ARS Wheat Health, Genetics and Quality Research Unit, Pullman, WA, United States
| | - Linda Thomashow
- USDA-ARS Wheat Health, Genetics and Quality Research Unit, Pullman, WA, United States
| | - Dmitri Mavrodi
- School of Biological, Environmental and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
33
|
Lin YS, Sun CL, Tsang S, Bensalem S, Le Pioufle B, Wang HY. Label-free and noninvasive analysis of microorganism surface epistructures at the single-cell level. Biophys J 2023; 122:1794-1806. [PMID: 37041747 PMCID: PMC10209039 DOI: 10.1016/j.bpj.2023.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/10/2022] [Accepted: 04/07/2023] [Indexed: 04/13/2023] Open
Abstract
Cell surface properties of microorganisms provide abundant information for their physiological status and fate choice. However, current methods for analyzing cell surface properties require labeling or fixation, which can alter the cell activity. This study establishes a label-free, rapid, noninvasive, and quantitative analysis of cell surface properties, including the presence and the dimension of epistructure, down to the single-cell level and at the nanometer scale. Simultaneously, electrorotation provides dielectric properties of intracellular contents. With the combined information, the growth phase of microalgae cells can be identified. The measurement is based on electrorotation of single cells, and an electrorotation model accounting for the surface properties is developed to properly interpret experimental data. The epistructure length measured by electrorotation is validated by scanning electron microscopy. The measurement accuracy is satisfactory in particular in the case of microscale epistructures in the exponential phase and nanoscale epistructures in the stationary phase. However, the measurement accuracy for nanoscale epistructures on cells in the exponential phase is offset by the effect of a thick double layer. Lastly, a diversity in epistructure length distinguishes exponential phase from stationary phase.
Collapse
Affiliation(s)
- Yu-Sheng Lin
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan; Université Paris Saclay, ENS Paris Saclay, CNRS Institut d'Alembert, SATIE, Gif sur Yvette, France
| | - Chen-Li Sun
- Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
| | - Sung Tsang
- Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan
| | - Sakina Bensalem
- Université Paris Saclay, ENS Paris Saclay, CNRS Institut d'Alembert, LUMIN, Gif sur Yvette, France
| | - Bruno Le Pioufle
- Université Paris Saclay, ENS Paris Saclay, CNRS Institut d'Alembert, LUMIN, Gif sur Yvette, France
| | - Hsiang-Yu Wang
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
34
|
Xu Z, Gamble A, Niu WA, Smith MN, Sloan Siegrist M, Tuominen M, Santore MM. Contact Area and Deformation of Escherichia coli Cells Adhered on a Cationic Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:6387-6398. [PMID: 37053037 PMCID: PMC10685399 DOI: 10.1021/acs.langmuir.3c00089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
When bacteria adhere to surfaces, the chemical and mechanical character of the cell-substrate interface guides cell function and the development of microcolonies and biofilms. Alternately on bactericidal surfaces, intimate contact is critical to biofilm prevention. The direct study of the buried cell-substrate interfaces at the heart of these behaviors is hindered by the small bacterial cell size and inaccessibility of the contact region. Here, we present a total internal reflectance fluorescence depletion approach to measure the size of the cell-substrate contact region and quantify the gap separation and curvature near the contact zone, providing an assessment of the shapes of the near-surface undersides of adhered bacterial cells. Resolution of the gap height is about 10%, down to a few nanometers at contact. Using 1 and 2 μm silica spheres as calibration standards we report that, for flagella-free Escherichia coli (E. coli) adhering on a cationic poly-l-lysine layer, the cell-surface contact and apparent cell deformation vary with adsorbed cell configuration. Most cells adhere by their ends, achieving small contact areas of 0.15 μm2, corresponding to about 1-2% of the cell's surface. The altered Gaussian curvatures of end-adhered cells suggest the flattening of the envelope within the small contact region. When cells adhere by their sides, the contact area is larger, in the range 0.3-1.1 μm2 and comprising up to ∼12% of the cell's total surface. A region of sharper curvature, greater than that of the cells' original spherocylindrical shape, borders the flat contact region in cases of side-on or end-on cell adhesion, suggesting envelope stress. From the measured curvatures, precise stress distributions over the cell surface could be calculated in future studies that incorporate knowledge of envelope moduli. Overall the small contact areas of end-adhered cells may be a limiting factor for antimicrobial surfaces that kill on contact rather than releasing bactericide.
Collapse
Affiliation(s)
- Zhou Xu
- Department of Physics, University of Massachusetts, Amherst, MA 01003 USA
| | - Alexander Gamble
- Department of Plant and Soil Science, University of Massachusetts, Amherst, MA 01003 USA
| | - Wuqi Amy Niu
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, MA 01003 USA
| | - Morgan N. Smith
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, MA 01003 USA
| | - M. Sloan Siegrist
- Department of Microbiology, University of Massachusetts Amherst, MA 01003 USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003 USA
| | - Mark Tuominen
- Department of Physics, University of Massachusetts, Amherst, MA 01003 USA
| | - Maria M. Santore
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, MA 01003 USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003 USA
| |
Collapse
|
35
|
You Z, Li J, Wang Y, Wu D, Li F, Song H. Advances in mechanisms and engineering of electroactive biofilms. Biotechnol Adv 2023; 66:108170. [PMID: 37148984 DOI: 10.1016/j.biotechadv.2023.108170] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/22/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Electroactive biofilms (EABs) are electroactive microorganisms (EAMs) encased in conductive polymers that are secreted by EAMs and formed by the accumulation and cross-linking of extracellular polysaccharides, proteins, nucleic acids, lipids, and other components. EABs are present in the form of multicellular aggregates and play a crucial role in bioelectrochemical systems (BESs) for diverse applications, including biosensors, microbial fuel cells for renewable bioelectricity production and remediation of wastewaters, and microbial electrosynthesis of valuable chemicals. However, naturally occurred EABs are severely limited owing to their low electrical conductivity that seriously restrict the electron transfer efficiency and practical applications. In the recent decade, synthetic biology strategies have been adopted to elucidate the regulatory mechanisms of EABs, and to enhance the formation and electrical conductivity of EABs. Based on the formation of EABs and extracellular electron transfer (EET) mechanisms, the synthetic biology-based engineering strategies of EABs are summarized and reviewed as follows: (i) Engineering the structural components of EABs, including strengthening the synthesis and secretion of structural elements such as polysaccharides, eDNA, and structural proteins, to improve the formation of biofilms; (ii) Enhancing the electron transfer efficiency of EAMs, including optimizing the distribution of c-type cytochromes and conducting nanowire assembly to promote contact-based EET, and enhancing electron shuttles' biosynthesis and secretion to promote shuttle-mediated EET; (iii) Incorporating intracellular signaling molecules in EAMs, including quorum sensing systems, secondary messenger systems, and global regulatory systems, to increase the electron transfer flux in EABs. This review lays a foundation for the design and construction of EABs for diverse BES applications.
Collapse
Affiliation(s)
- Zixuan You
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jianxun Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Yuxuan Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Deguang Wu
- Department of Brewing Engineering, Moutai Institute, Luban Ave, Renhuai 564507, Guizhou, PR China
| | - Feng Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
36
|
O’Malley MR, Kpenu E, Peck SC, Anderson JC. Plant-exuded chemical signals induce surface attachment of the bacterial pathogen Pseudomonas syringae. PeerJ 2023; 11:e14862. [PMID: 37009160 PMCID: PMC10062345 DOI: 10.7717/peerj.14862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/17/2023] [Indexed: 03/29/2023] Open
Abstract
Many plant pathogenic bacteria suppress host defenses by secreting small molecule toxins or immune-suppressing proteins into host cells, processes that likely require close physical contact between pathogen and host. Yet, in most cases, little is known about whether phytopathogenic bacteria physically attach to host surfaces during infection. Here we report that Pseudomonas syringae pv. tomato strain DC3000, a Gram-negative bacterial pathogen of tomato and Arabidopsis, attaches to polystyrene and glass surfaces in response to chemical signals exuded from Arabidopsis seedlings and tomato leaves. We characterized the molecular nature of these attachment-inducing signals and discovered that multiple hydrophilic metabolites found in plant exudates, including citric acid, glutamic acid, and aspartic acid, are potent inducers of surface attachment. These same compounds were previously identified as inducers of P. syringae genes encoding a type III secretion system (T3SS), indicating that both attachment and T3SS deployment are induced by the same plant signals. To test if surface attachment and T3SS are regulated by the same signaling pathways, we assessed the attachment phenotypes of several previously characterized DC3000 mutants, and found that the T3SS master regulator HrpL was partially required for maximal levels of surface attachment, whereas the response regulator GacA, a negative regulator of T3SS, negatively regulated DC3000 surface attachment. Together, our data indicate that T3SS deployment and surface attachment by P. syringae may be co-regulated by the same host signals during infection, possibly to ensure close contact necessary to facilitate delivery of T3SS effectors into host cells.
Collapse
Affiliation(s)
- Megan R. O’Malley
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Eyram Kpenu
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
| | - Scott C. Peck
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, United States of America
- Department of Biochemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Jeffrey C. Anderson
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
37
|
Engelberts JP, Robbins SJ, Herbold CW, Moeller FU, Jehmlich N, Laffy PW, Wagner M, Webster NS. Metabolic reconstruction of the near complete microbiome of the model sponge Ianthella basta. Environ Microbiol 2023; 25:646-660. [PMID: 36480164 PMCID: PMC10947273 DOI: 10.1111/1462-2920.16302] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Many marine sponges host highly diverse microbiomes that contribute to various aspects of host health. Although the putative function of individual groups of sponge symbionts has been increasingly described, the extreme diversity has generally precluded in-depth characterization of entire microbiomes, including identification of syntrophic partnerships. The Indo-Pacific sponge Ianthella basta is emerging as a model organism for symbiosis research, hosting only three dominant symbionts: a Thaumarchaeotum, a Gammaproteobacterium, and an Alphaproteobacterium and a range of other low abundance or transitory taxa. Here, we retrieved metagenome assembled genomes (MAGs) representing >90% of I. basta's microbial community, facilitating the metabolic reconstruction of the sponge's near complete microbiome. Through this analysis, we identified metabolic complementarity between microbes, including vitamin sharing, described the importance of low abundance symbionts, and characterized a novel microbe-host attachment mechanism in the Alphaproteobacterium. We further identified putative viral sequences, highlighting the role viruses can play in maintaining symbioses in I. basta through the horizontal transfer of eukaryotic-like proteins, and complemented this data with metaproteomics to identify active metabolic pathways in bacteria, archaea, and viruses. This data provide the framework to adopt I. basta as a model organism for studying host-microbe interactions and provide a basis for in-depth physiological experiments.
Collapse
Affiliation(s)
- Joan Pamela Engelberts
- Australian Centre for Ecogenomics, School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - Steven J. Robbins
- Australian Centre for Ecogenomics, School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQueenslandAustralia
| | - Craig W. Herbold
- Centre for Microbiology and Environmental Systems Science, Division of Microbial EcologyUniversity of ViennaAustria
| | - Florian U. Moeller
- Centre for Microbiology and Environmental Systems Science, Division of Microbial EcologyUniversity of ViennaAustria
| | - Nico Jehmlich
- Department of Molecular Systems BiologyHelmholtz‐Centre for Environmental Research – UFZLeipzigGermany
| | - Patrick W. Laffy
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, Division of Microbial EcologyUniversity of ViennaAustria
- Center for Microbial Communities, Department of Chemistry and BioscienceAalborg UniversityAalborgDenmark
| | - Nicole S. Webster
- Australian Centre for Ecogenomics, School of Chemistry and Molecular BiosciencesThe University of QueenslandBrisbaneQueenslandAustralia
- Australian Institute of Marine ScienceTownsvilleQueenslandAustralia
- Australian Antarctic DivisionKingstonTasmaniaAustralia
| |
Collapse
|
38
|
Foodborne Pathogen Biofilms: Development, Detection, Control, and Antimicrobial Resistance. Pathogens 2023; 12:pathogens12020352. [PMID: 36839624 PMCID: PMC9961813 DOI: 10.3390/pathogens12020352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Bacteria can grow either as planktonic cells or as communities within biofilms [...].
Collapse
|
39
|
Dai S, Tang X, Zhang N, Li H, He C, Han Y, Wang Y. Lipid Giant Vesicles Engulf Living Bacteria Triggered by Minor Enhancement in Membrane Fluidity. NANO LETTERS 2023; 23:371-379. [PMID: 36441573 DOI: 10.1021/acs.nanolett.2c03475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Antibacterial amphiphiles normally kill bacteria by destroying the bacterial membrane. Whether and how antibacterial amphiphiles alter normal cell membrane and lead to subsequent effects on pathogen invasion into cells have been scarcely promulgated. Herein, by taking four antibacterial gemini amphiphiles with different spacer groups to modulate cell-mimic phospholipid giant unilamellar vesicles (GUVs), bacteria adhesion on the modified GUVs surface and bacteria engulfment process by the GUVs are clearly captured by confocal laser scanning microscopy. Further characterization shows that the enhanced cationic surface charge of GUVs by the amphiphiles determines the bacteria adhesion amount, while the involvement of amphiphile in GUVs results in looser molecular arrangement and concomitant higher fluidity in the bilayer membranes, facilitating the bacteria intruding into GUVs. This study sheds new light on the effect of amphiphiles on membrane bilayer and the concurrent effect on pathogen invasion into cell mimics and broadens the nonprotein-mediated endocytosis pathway for live bacteria.
Collapse
Affiliation(s)
- Shaoying Dai
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyu Tang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Na Zhang
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haofei Li
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengzhi He
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuchun Han
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yilin Wang
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
40
|
Interactions between Penicillium brevicompactum/Penicillium expansum and Acinetobacter calcoaceticus isolated from drinking water in biofilm development and control. Int J Food Microbiol 2023; 384:109980. [DOI: 10.1016/j.ijfoodmicro.2022.109980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
|
41
|
Shi L, Xia P, Lin T, Li G, Wang T, Du X. Temporal Succession of Bacterial Community Structure, Co-occurrence Patterns, and Community Assembly Process in Epiphytic Biofilms of Submerged Plants in a Plateau Lake. MICROBIAL ECOLOGY 2023; 85:87-99. [PMID: 34997308 DOI: 10.1007/s00248-021-01956-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
In shallow macrophytic lakes, epiphytic biofilms are formed on the surface of submerged plant stems and leaves because of algae and bacterial accumulation. Epiphytic biofilms significantly impact the health of the host vegetation and the biogeochemical cycling of lake elements. However, community diversity, species interactions, and community assembly mechanisms in epiphytic bacterial communities (EBCs) of plants during different growth periods are not well understood. We investigated the successional dynamics, co-occurrence patterns, and community assembly processes of epiphytic biofilm bacterial communities of submerged plants, Najas marina and Potamogeton lucens, from July to November 2020. The results showed a significant seasonal variation in EBC diversity and richness. Community diversity and richness increased from July to November, and the temperature was the most important driving factor for predicting seasonal changes in EBC community structure. Co-occurrence network analysis revealed that the average degree and graph density of the network increased from July to November, indicating that the complexity of the EBC network increased. The bacterial community co-occurrence network was limited by temperature, pH, and transparency. The phylogeny-based null model analysis showed that deterministic processes dominated the microbial community assembly in different periods, increasing their contribution. In addition, we found that as the dominance of deterministic processes increased, the microbial co-occurrence links increased, and the potential interrelationships between species became stronger. Thus, the findings provide insights into the seasonal variability of EBC assemblage and co-occurrence patterns in lacustrine ecosystems.
Collapse
Affiliation(s)
- Lei Shi
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, No. 116 Baoshan Road (N), Guiyang, 550001, Guizhou, China
| | - Pinhua Xia
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, No. 116 Baoshan Road (N), Guiyang, 550001, Guizhou, China.
| | - Tao Lin
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, No. 116 Baoshan Road (N), Guiyang, 550001, Guizhou, China
| | - Guoqing Li
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, No. 116 Baoshan Road (N), Guiyang, 550001, Guizhou, China
| | - Tianyou Wang
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, No. 116 Baoshan Road (N), Guiyang, 550001, Guizhou, China
| | - Xin Du
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, No. 116 Baoshan Road (N), Guiyang, 550001, Guizhou, China
| |
Collapse
|
42
|
Ritter AL, Chang YR, Benmamoun Z, Ducker WA. History-dependent attachment of Pseudomonas aeruginosato solid-liquid interfaces and the dependence of the bacterial surface density on the residence time distribution. Phys Biol 2022; 20. [PMID: 36541507 DOI: 10.1088/1478-3975/aca6c9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022]
Abstract
This study investigates how the recent history of bacteria affects their attachment to a solid-liquid interface. We compare the attachment from a flowing suspension of the bacterium,Pseudomonas aeruginosaPAO1, after one of two histories: (a) passage through a tube packed with glass beads or (b) passage through an empty tube. The glass beads were designed to increase the rate of bacterial interactions with solid-liquid surfaces prior to observation in a flow cell. Analysis of time-lapse microscopy of the bacteria in the flow cells shows that the residence time distribution and surface density of bacteria differ for these two histories. In particular, bacteria exiting the bead-filled tube, in contrast to those bacteria exiting the empty tube, are less likely to attach to the subsequent flow cell window and begin surface growth. In contrast, when we compared two histories defined by different lengths of tubing, there was no difference in either the mean residence time or the surface density. In order to provide a framework for understanding these results, we present a phenomenological model in which the rate of bacterial surface density growth,dN(t)/dt, depends on two terms. One term models the initial attachment of bacteria to a surface, and is proportional to the nonprocessive cumulative residence time distribution for bacteria that attach and detach from the surface without cell division. The second term for the rate is proportional to the bacterial surface density and models surface cell division. The model is in surprisingly good agreement with the data even though the surface growth process is a complex interplay between attachment/detachment at the solid-liquid interface and cell division on the surface.
Collapse
Affiliation(s)
- A L Ritter
- Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, United States of America
| | - Yow-Ren Chang
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, United States of America
| | - Zachary Benmamoun
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, United States of America
| | - William A Ducker
- Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, United States of America.,Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, United States of America
| |
Collapse
|
43
|
Tong CY, Derek CJC. Marine microalgal biofilm development and its adhesion propensities on commercial membrane via XDLVO approach. J Biotechnol 2022; 360:37-44. [PMID: 36272576 DOI: 10.1016/j.jbiotec.2022.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/17/2022] [Indexed: 12/12/2022]
Abstract
An emerging biofilm immobilization method has enabled effortless biomass harvesting and promoted economic feasibility. The current limitation towards the adaptation of this technology is the inadequate understanding of the biofilm interaction towards microporous membrane. Cell adhesion is recognized as the most important step towards the immobilized cultivation of microalgae. Cell attachment kinetic was studied in a short-term batch culture of three marine diatoms, Amphora coffeaeformis, Cylindrotheca fusiformis and Navicula incerta over 96 h on submerged commercial polyvinylidene fluoride (PVDF) membrane under swirling motion of culture medium. Both the evolution of cell adhesion intensity and compositional changes of the extracellular polymeric substances (EPS) released were quantified throughout the cultivation period. To delve into the cell-substratum interactions, existing thermodynamics and colloidal extended Derjaguin, Landau, Vervey, and Overbeek (XDLVO) theory were employed. As a result, A. coffeaeformis and N. incerta recorded a higher cell colonization percentage than C. fusiformis being the lowest about 2.16±0.17% cell colonization due to their respective species-dependent EPS variation. Polysaccharide contents were at least two times higher than protein contents for both C. fusiformis and N. incerta except for A. coffeaeformis depicting a lower polysaccharide-to-protein ratio whereby the protein contents were maximized at 1.03 × 103 ± 64.14 pg m-2 cell-1 at 6th h. From the surface free energy point of view, both thermodynamics and XDLVO model elucidated that cells adhered reversibly in the secondary energy minimum and ranked C. fusiformis the lowest adhesion tendency among three. These findings establish fundamental knowledge about biofilm formation in porous substrate bioreactors.
Collapse
Affiliation(s)
- C Y Tong
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
| | - C J C Derek
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
44
|
González-Plaza JJ, Furlan C, Rijavec T, Lapanje A, Barros R, Tamayo-Ramos JA, Suarez-Diez M. Advances in experimental and computational methodologies for the study of microbial-surface interactions at different omics levels. Front Microbiol 2022; 13:1006946. [PMID: 36519168 PMCID: PMC9744117 DOI: 10.3389/fmicb.2022.1006946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/02/2022] [Indexed: 08/31/2023] Open
Abstract
The study of the biological response of microbial cells interacting with natural and synthetic interfaces has acquired a new dimension with the development and constant progress of advanced omics technologies. New methods allow the isolation and analysis of nucleic acids, proteins and metabolites from complex samples, of interest in diverse research areas, such as materials sciences, biomedical sciences, forensic sciences, biotechnology and archeology, among others. The study of the bacterial recognition and response to surface contact or the diagnosis and evolution of ancient pathogens contained in archeological tissues require, in many cases, the availability of specialized methods and tools. The current review describes advances in in vitro and in silico approaches to tackle existing challenges (e.g., low-quality sample, low amount, presence of inhibitors, chelators, etc.) in the isolation of high-quality samples and in the analysis of microbial cells at genomic, transcriptomic, proteomic and metabolomic levels, when present in complex interfaces. From the experimental point of view, tailored manual and automatized methodologies, commercial and in-house developed protocols, are described. The computational level focuses on the discussion of novel tools and approaches designed to solve associated issues, such as sample contamination, low quality reads, low coverage, etc. Finally, approaches to obtain a systems level understanding of these complex interactions by integrating multi omics datasets are presented.
Collapse
Affiliation(s)
- Juan José González-Plaza
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Burgos, Spain
| | - Cristina Furlan
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands
| | - Tomaž Rijavec
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Aleš Lapanje
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Rocío Barros
- International Research Centre in Critical Raw Materials-ICCRAM, University of Burgos, Burgos, Spain
| | | | - Maria Suarez-Diez
- Laboratory of Systems and Synthetic Biology, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
45
|
Shibamura-Fujiogi M, Wang X, Maisat W, Koutsogiannaki S, Li Y, Chen Y, Lee JC, Yuki K. GltS regulates biofilm formation in methicillin-resistant Staphylococcus aureus. Commun Biol 2022; 5:1284. [PMID: 36418899 PMCID: PMC9684512 DOI: 10.1038/s42003-022-04239-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 11/08/2022] [Indexed: 11/25/2022] Open
Abstract
Biofilm-based infection is a major healthcare burden. Methicillin-resistant Staphylococcus aureus (MRSA) is one of major organisms responsible for biofilm infection. Although biofilm is induced by a number of environmental signals, the molecule responsible for environmental sensing is not well delineated. Here we examined the role of ion transporters in biofilm formation and found that the sodium-glutamate transporter gltS played an important role in biofilm formation in MRSA. This was shown by gltS transposon mutant as well as its complementation. The lack of exogenous glutamate also enhanced biofilm formation in JE2 strain. The deficiency of exogenous glutamate intake accelerated endogenous glutamate/glutamine production, which led to the activation of the urea cycle. We also showed that urea cycle activation was critical for biofilm formation. In conclusion, we showed that gltS was a critical regulator of biofilm formation by controlling the intake of exogenous glutamate. An intervention to target glutamate intake may be a potential useful approach against biofilm.
Collapse
Affiliation(s)
- Miho Shibamura-Fujiogi
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Boston, MA, USA
- Department of Anaesthesia and Immunology, Harvard Medical School, Boston, MA, USA
| | - Xiaogang Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Wiriya Maisat
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Boston, MA, USA
- Department of Anaesthesia and Immunology, Harvard Medical School, Boston, MA, USA
| | - Sophia Koutsogiannaki
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Boston, MA, USA
- Department of Anaesthesia and Immunology, Harvard Medical School, Boston, MA, USA
| | - Yunan Li
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Yue Chen
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Jean C Lee
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Koichi Yuki
- Department of Anesthesiology, Critical Care and Pain Medicine, Cardiac Anesthesia Division, Boston Children's Hospital, Boston, MA, USA.
- Department of Anaesthesia and Immunology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
46
|
Campolo A, Pifer R, Shannon P, Crary M. Microbial Adherence to Contact Lenses and Pseudomonas aeruginosa as a Model Organism for Microbial Keratitis. Pathogens 2022; 11:1383. [PMID: 36422634 PMCID: PMC9695309 DOI: 10.3390/pathogens11111383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/11/2022] [Accepted: 11/17/2022] [Indexed: 08/27/2023] Open
Abstract
Microbial keratitis (MK), the infection of the cornea, is a devastating disease and the fifth leading cause of blindness and visual impairment around the world. The overwhelming majority of MK cases are linked to contact lens wear combined with factors which promote infection such as corneal abrasion, an immunocompromised state, improper contact lens use, or failing to routinely disinfect lenses after wear. Contact lens-related MK involves the adherence of microorganisms to the contact lens. Therefore, this review discusses the information currently available regarding the disease pathophysiology, the common types of microorganisms causing MK, physical and organic mechanisms of adhesion, material properties which are involved in adhesion, and current antimicrobial strategies. This review also concludes that Pseudomonas aeruginosa is a model organism for the investigation of contact lens microbial adherence due to its prevalence in MK cases, its extremely robust adhesion, antimicrobial-resistant properties, and the severity of the disease it causes.
Collapse
|
47
|
Tong CY, Lew JK, Derek CJC. Algal extracellular organic matter pre-treatment enhances microalgal biofilm adhesion onto microporous substrate. CHEMOSPHERE 2022; 307:135740. [PMID: 35850213 DOI: 10.1016/j.chemosphere.2022.135740] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/25/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Adhesive biocoating has microstructure composed of biomolecules to entrap viable cells in a stabilized matrix over exposed surfaces. Although marine benthic diatoms are a common group of algae excreting substantial amount of extracellular polymeric substances (EPS), studies regarding the utilization of these EPS are scarce. Using the soluble EPS derived from Navicula incerta and pre-deposition of it as a thin conditioning layer on microporous polyvinylidene fluoride (PVDF) membranes, the pre-coated surface was used to investigate the cell binding affinity of three marine microalgae, namely Amphora coffeaeformis, Cylindrotheca fusiformis and Navicula incerta. Microalgae actively engaged themselves on the pre-coated membranes which was 10 times greater than the initial cell adhesion degree. Soluble EPS is mainly comprised of polysaccharide while bounded EPS is mainly comprised of protein. On EPS pre-coated membranes, N. incerta released the least amount of bounded polysaccharides (<100 mg m-2) and vice versa for the other two because EPS production is usually maximized to assist cell adhesion onto unfavorable substrates. In stark contrast, when the adaptation period (first 6 h) ended, cells began to secrete more bounded protein for cell growth, and an increasing trend of protein content found in N. incerta has verified its optimal adaptation onto the biocoating itself. On pristine PVDF membranes, the adhesion degree was ranked in ascending order: C. fusiformis, N. incerta and A. coffeaeformis. Interestingly, after the pre-coating process, the order was reported as: A. coffeaeformis, N. incerta and C. fusiformis, but it should be noted that C. fusiformis demonstrated fluctuating cell colonization degree and bounded EPS production over time. In other words, the biofilm's susceptibility was confirmed since the cells latched loosely on the membranes rather than in a biofilm matrix. Biocoating enables uniform cell distribution and firmer biofilm growth, opening the door to vast future applications in environmental bioremediation and sensing.
Collapse
Affiliation(s)
- C Y Tong
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
| | - J K Lew
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia
| | - C J C Derek
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300 Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
48
|
Ma R, Hu X, Zhang X, Wang W, Sun J, Su Z, Zhu C. Strategies to prevent, curb and eliminate biofilm formation based on the characteristics of various periods in one biofilm life cycle. Front Cell Infect Microbiol 2022; 12:1003033. [PMID: 36211965 PMCID: PMC9534288 DOI: 10.3389/fcimb.2022.1003033] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Biofilms are colonies of bacteria embedded inside a complicated self-generating intercellular. The formation and scatter of a biofilm is an extremely complex and progressive process in constant cycles. Once formed, it can protect the inside bacteria to exist and reproduce under hostile conditions by establishing tolerance and resistance to antibiotics as well as immunological responses. In this article, we reviewed a series of innovative studies focused on inhibiting the development of biofilm and summarized a range of corresponding therapeutic methods for biological evolving stages of biofilm. Traditionally, there are four stages in the biofilm formation, while we systematize the therapeutic strategies into three main periods precisely:(i) period of preventing biofilm formation: interfering the colony effect, mass transport, chemical bonds and signaling pathway of plankton in the initial adhesion stage; (ii) period of curbing biofilm formation:targeting several pivotal molecules, for instance, polysaccharides, proteins, and extracellular DNA (eDNA) via polysaccharide hydrolases, proteases, and DNases respectively in the second stage before developing into irreversible biofilm; (iii) period of eliminating biofilm formation: applying novel multifunctional composite drugs or nanoparticle materials cooperated with ultrasonic (US), photodynamic, photothermal and even immune therapy, such as adaptive immune activated by stimulated dendritic cells (DCs), neutrophils and even immunological memory aroused by plasmocytes. The multitargeted or combinational therapies aim to prevent it from developing to the stage of maturation and dispersion and eliminate biofilms and planktonic bacteria simultaneously.
Collapse
Affiliation(s)
| | | | | | | | | | - Zheng Su
- *Correspondence: Chen Zhu, ; Zheng Su,
| | - Chen Zhu
- *Correspondence: Chen Zhu, ; Zheng Su,
| |
Collapse
|
49
|
Song E, Lee K, Kim J. Tetrazolium-Based Visually Indicating Bacteria Sensor for Colorimetric Detection of Point of Contamination. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38153-38161. [PMID: 35946791 PMCID: PMC9415389 DOI: 10.1021/acsami.2c08613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/02/2022] [Indexed: 06/15/2023]
Abstract
Protective equipment for detecting bacterial contamination has been in high demand with increasing interest in public health and hygiene. Herein, a fiber-based visually indicating bacteria sensor (VIBS) embedded with iodonitrotetrazolium chloride is developed for the general purpose of detecting live bacteria, and its chromogenic effectiveness is investigated for Gram-negative Escherichia coli and Gram-positive Micrococcus luteus. The developed color intensity is measured by the light absorption coefficient to the scattering coefficient (K/S) based on the Kubelka-Munk equation, and the colorimetric sensitivities of different membranes are examined by calculating the limit of detection (LOD) and the limit of quantification (LOQ). The results demonstrate that the interactions between VIBS and bacteria depend on the wetting properties of membranes. A hydrophobic membrane shows excessive interactions at high concentrations of Gram-negative E. coli bacteria, whose cell membrane is lipophilic. The membrane blended with hydrophobic and hydrophilic polymers displays linear colorimetric responses for both Gram-negative and Gram-positive bacteria strains, demonstrating a reliable sensing capability in the range of the tested bacteria concentration. This study is significant in that explorative experimentations are performed to conceive a proof of concept of a fiber-based bacteria sensor, which is readily applicable in various fields where bacteria pose a threat.
Collapse
Affiliation(s)
- Eugene Song
- Department
of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea
| | - Kyeongeun Lee
- Department
of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea
- Reliability
Assessment Center, FITI Testing & Research
Institute, Seoul 07791, Korea
| | - Jooyoun Kim
- Department
of Textiles, Merchandising and Fashion Design, Seoul National University, Seoul 08826, Korea
- Research
Institute of Human Ecology, Seoul National
University, Seoul 08826, Korea
| |
Collapse
|
50
|
Shave MK, Santore MM. Motility Increases the Numbers and Durations of Cell-Surface Engagements for Escherichia coli Flowing near Poly(ethylene glycol)-Functionalized Surfaces. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34342-34353. [PMID: 35857760 PMCID: PMC9674025 DOI: 10.1021/acsami.2c05936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Bacteria are keenly sensitive to properties of the surfaces they contact, regulating their ability to form biofilms and initiate infections. This study examines how the presence of flagella, interactions between the cell body and the surface, or motility itself guides the dynamic contact between bacterial cells and a surface in flow, potentially enabling cells to sense physicochemical and mechanical properties of surfaces. This work focuses on a poly(ethylene glycol) biomaterial coating, which does not retain cells. In a comparison of four Escherichia coli strains with different flagellar expressions and motilities, cells with substantial run-and-tumble swimming motility exhibited increased flux to the interface (3 times the calculated transport-limited rate which adequately described the non-motile cells), greater proportions of cells engaging in dynamic nanometer-scale surface associations, extended times of contact with the surface, increased probability of return to the surface after escape and, as evidenced by slow velocities during near-surface travel, closer cellular approach. All these metrics, reported here as distributions of cell populations, point to a greater ability of motile cells, compared with nonmotile cells, to interact more closely, forcefully, and for greater periods of time with interfaces in flow. With contact durations of individual cells exceeding 10 s in the window of observation and trends suggesting further interactions beyond the field of view, the dynamic contact of individual cells may approach the minute timescales reported for mechanosensing and other cell recognition pathways. Thus, despite cell translation and the dynamic nature of contact, flow past a surface, even one rendered non-cell arresting by use of an engineered coating, may produce a subpopulation of cells already upregulating virulence factors before they arrest on a downstream surface and formally initiate biofilm formation.
Collapse
Affiliation(s)
| | - Maria M. Santore
- corresponding author: Maria Santore, Department of Polymer Science and Engineering, University of Massachusetts, 120 Governors Drive, Amherst, MA 01003, 413-577-1417,
| |
Collapse
|