1
|
Amambua-Ngwa A, Button-Simons KA, Li X, Kumar S, Brenneman KV, Ferrari M, Checkley LA, Haile MT, Shoue DA, McDew-White M, Tindall SM, Reyes A, Delgado E, Dalhoff H, Larbalestier JK, Amato R, Pearson RD, Taylor AB, Nosten FH, D'Alessandro U, Kwiatkowski D, Cheeseman IH, Kappe SHI, Avery SV, Conway DJ, Vaughan AM, Ferdig MT, Anderson TJC. Chloroquine resistance evolution in Plasmodium falciparum is mediated by the putative amino acid transporter AAT1. Nat Microbiol 2023; 8:1213-1226. [PMID: 37169919 PMCID: PMC10322710 DOI: 10.1038/s41564-023-01377-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/29/2023] [Indexed: 05/13/2023]
Abstract
Malaria parasites break down host haemoglobin into peptides and amino acids in the digestive vacuole for export to the parasite cytoplasm for growth: interrupting this process is central to the mode of action of several antimalarial drugs. Mutations in the chloroquine (CQ) resistance transporter, pfcrt, located in the digestive vacuole membrane, confer CQ resistance in Plasmodium falciparum, and typically also affect parasite fitness. However, the role of other parasite loci in the evolution of CQ resistance is unclear. Here we use a combination of population genomics, genetic crosses and gene editing to demonstrate that a second vacuolar transporter plays a key role in both resistance and compensatory evolution. Longitudinal genomic analyses of the Gambian parasites revealed temporal signatures of selection on a putative amino acid transporter (pfaat1) variant S258L, which increased from 0% to 97% in frequency between 1984 and 2014 in parallel with the pfcrt1 K76T variant. Parasite genetic crosses then identified a chromosome 6 quantitative trait locus containing pfaat1 that is selected by CQ treatment. Gene editing demonstrated that pfaat1 S258L potentiates CQ resistance but at a cost of reduced fitness, while pfaat1 F313S, a common southeast Asian polymorphism, reduces CQ resistance while restoring fitness. Our analyses reveal hidden complexity in CQ resistance evolution, suggesting that pfaat1 may underlie regional differences in the dynamics of resistance evolution, and modulate parasite resistance or fitness by manipulating the balance between both amino acid and drug transport.
Collapse
Affiliation(s)
- Alfred Amambua-Ngwa
- MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Katrina A Button-Simons
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Xue Li
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Katelyn Vendrely Brenneman
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Marco Ferrari
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Lisa A Checkley
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Meseret T Haile
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Douglas A Shoue
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Marina McDew-White
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Sarah M Tindall
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Ann Reyes
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Elizabeth Delgado
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Haley Dalhoff
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - James K Larbalestier
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | | | | | - Alexander B Taylor
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San Antonio, Antonio, TX, USA
| | - François H Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Umberto D'Alessandro
- MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | | | - Ian H Cheeseman
- Host Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Stefan H I Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| | - Simon V Avery
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - David J Conway
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Ashley M Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, USA.
- Department of Pediatrics, University of Washington, Seattle, WA, USA.
| | - Michael T Ferdig
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
| | - Timothy J C Anderson
- Disease Intervention and Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
2
|
Han W, Peng B, Wang C, Townsend GE, Barry NA, Peske F, Goodman AL, Liu J, Rodnina MV, Groisman EA. Gut colonization by Bacteroides requires translation by an EF-G paralog lacking GTPase activity. EMBO J 2023; 42:e112372. [PMID: 36472247 PMCID: PMC9841332 DOI: 10.15252/embj.2022112372] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Protein synthesis is crucial for cell growth and survival yet one of the most energy-consuming cellular processes. How, then, do cells sustain protein synthesis under starvation conditions when energy is limited? To accelerate the translocation of mRNA-tRNAs through the ribosome, bacterial elongation factor G (EF-G) hydrolyzes energy-rich guanosine triphosphate (GTP) for every amino acid incorporated into a protein. Here, we identify an EF-G paralog-EF-G2-that supports translocation without hydrolyzing GTP in the gut commensal bacterium Bacteroides thetaiotaomicron. EF-G2's singular ability to sustain protein synthesis, albeit at slow rates, is crucial for bacterial gut colonization. EF-G2 is ~10-fold more abundant than canonical EF-G1 in bacteria harvested from murine ceca and, unlike EF-G1, specifically accumulates during carbon starvation. Moreover, we uncover a 26-residue region unique to EF-G2 that is essential for protein synthesis, EF-G2 dissociation from the ribosome, and responsible for the absence of GTPase activity. Our findings reveal how cells curb energy consumption while maintaining protein synthesis to advance fitness in nutrient-fluctuating environments.
Collapse
Affiliation(s)
- Weiwei Han
- Department of Microbial PathogenesisYale School of MedicineNew HavenCTUSA
- Yale Microbial Sciences InstituteWest HavenCTUSA
| | - Bee‐Zen Peng
- Department of Physical BiochemistryMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Chunyan Wang
- Department of Microbial PathogenesisYale School of MedicineNew HavenCTUSA
- Yale Microbial Sciences InstituteWest HavenCTUSA
| | - Guy E Townsend
- Department of Microbial PathogenesisYale School of MedicineNew HavenCTUSA
- Yale Microbial Sciences InstituteWest HavenCTUSA
- Present address:
Department of Biochemistry and Molecular BiologyPenn State College of MedicineHersheyPAUSA
| | - Natasha A Barry
- Department of Microbial PathogenesisYale School of MedicineNew HavenCTUSA
- Yale Microbial Sciences InstituteWest HavenCTUSA
| | - Frank Peske
- Department of Physical BiochemistryMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Andrew L Goodman
- Department of Microbial PathogenesisYale School of MedicineNew HavenCTUSA
- Yale Microbial Sciences InstituteWest HavenCTUSA
| | - Jun Liu
- Department of Microbial PathogenesisYale School of MedicineNew HavenCTUSA
- Yale Microbial Sciences InstituteWest HavenCTUSA
| | - Marina V Rodnina
- Department of Physical BiochemistryMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Eduardo A Groisman
- Department of Microbial PathogenesisYale School of MedicineNew HavenCTUSA
- Yale Microbial Sciences InstituteWest HavenCTUSA
| |
Collapse
|
3
|
Kumar S, Li X, McDew-White M, Reyes A, Delgado E, Sayeed A, Haile MT, Abatiyow BA, Kennedy SY, Camargo N, Checkley LA, Brenneman KV, Button-Simons KA, Duraisingh MT, Cheeseman IH, Kappe SHI, Nosten F, Ferdig MT, Vaughan AM, Anderson TJC. A Malaria Parasite Cross Reveals Genetic Determinants of Plasmodium falciparum Growth in Different Culture Media. Front Cell Infect Microbiol 2022; 12:878496. [PMID: 35711667 PMCID: PMC9197316 DOI: 10.3389/fcimb.2022.878496] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/28/2022] [Indexed: 12/21/2022] Open
Abstract
What genes determine in vitro growth and nutrient utilization in asexual blood-stage malaria parasites? Competition experiments between NF54, clone 3D7, a lab-adapted African parasite, and a recently isolated Asian parasite (NHP4026) reveal contrasting outcomes in different media: 3D7 outcompetes NHP4026 in media containing human serum, while NHP4026 outcompetes 3D7 in media containing AlbuMAX, a commercial lipid-rich bovine serum formulation. To determine the basis for this polymorphism, we conducted parasite genetic crosses using humanized mice and compared genome-wide allele frequency changes in three independent progeny populations cultured in media containing human serum or AlbuMAX. This bulk segregant analysis detected three quantitative trait loci (QTL) regions [on chromosome (chr) 2 containing aspartate transaminase AST; chr 13 containing EBA-140; and chr 14 containing cysteine protease ATG4] linked with differential growth in serum or AlbuMAX in each of the three independent progeny pools. Selection driving differential growth was strong (s = 0.10 – 0.23 per 48-hour lifecycle). We conducted validation experiments for the strongest QTL on chr 13: competition experiments between ΔEBA-140 and 3D7 wildtype parasites showed fitness reversals in the two medium types as seen in the parental parasites, validating this locus as the causative gene. These results (i) demonstrate the effectiveness of bulk segregant analysis for dissecting fitness traits in P. falciparum genetic crosses, and (ii) reveal intimate links between red blood cell invasion and nutrient composition of growth media. Use of parasite crosses combined with bulk segregant analysis will allow systematic dissection of key nutrient acquisition/metabolism and red blood cell invasion pathways in P. falciparum.
Collapse
Affiliation(s)
- Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Xue Li
- Program in Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Marina McDew-White
- Program in Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Ann Reyes
- Program in Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Elizabeth Delgado
- Program in Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Abeer Sayeed
- Program in Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Meseret T. Haile
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Biley A. Abatiyow
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Spencer Y. Kennedy
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Nelly Camargo
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Lisa A. Checkley
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - Katelyn V. Brenneman
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - Katrina A. Button-Simons
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - Manoj T. Duraisingh
- Immunology and Infectious Diseases Department, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Ian H. Cheeseman
- Program in Host Pathogen Interactions, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Stefan H. I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research building, University of Oxford, Oxford, United Kingdom
| | - Michael T. Ferdig
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, United States
| | - Ashley M. Vaughan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Pediatrics, University of Washington, Seattle, WA, United States
- *Correspondence: Ashley M. Vaughan, ; Tim J. C. Anderson,
| | - Tim J. C. Anderson
- Program in Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, TX, United States
- *Correspondence: Ashley M. Vaughan, ; Tim J. C. Anderson,
| |
Collapse
|
4
|
Li X, Kumar S, McDew-White M, Haile M, Cheeseman IH, Emrich S, Button-Simons K, Nosten F, Kappe SHI, Ferdig MT, Anderson TJC, Vaughan AM. Genetic mapping of fitness determinants across the malaria parasite Plasmodium falciparum life cycle. PLoS Genet 2019; 15:e1008453. [PMID: 31609965 PMCID: PMC6821138 DOI: 10.1371/journal.pgen.1008453] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/30/2019] [Accepted: 10/01/2019] [Indexed: 12/14/2022] Open
Abstract
Determining the genetic basis of fitness is central to understanding evolution and transmission of microbial pathogens. In human malaria parasites (Plasmodium falciparum), most experimental work on fitness has focused on asexual blood stage parasites, because this stage can be easily cultured, although the transmission of malaria requires both female Anopheles mosquitoes and vertebrate hosts. We explore a powerful approach to identify the genetic determinants of parasite fitness across both invertebrate and vertebrate life-cycle stages of P. falciparum. This combines experimental genetic crosses using humanized mice, with selective whole genome amplification and pooled sequencing to determine genome-wide allele frequencies and identify genomic regions under selection across multiple lifecycle stages. We applied this approach to genetic crosses between artemisinin resistant (ART-R, kelch13-C580Y) and ART-sensitive (ART-S, kelch13-WT) parasites, recently isolated from Southeast Asian patients. Two striking results emerge: we observed (i) a strong genome-wide skew (>80%) towards alleles from the ART-R parent in the mosquito stage, that dropped to ~50% in the blood stage as selfed ART-R parasites were selected against; and (ii) repeatable allele specific skews in blood stage parasites with particularly strong selection (selection coefficient (s) ≤ 0.18/asexual cycle) against alleles from the ART-R parent at loci on chromosome 12 containing MRP2 and chromosome 14 containing ARPS10. This approach robustly identifies selected loci and has strong potential for identifying parasite genes that interact with the mosquito vector or compensatory loci involved in drug resistance.
Collapse
Affiliation(s)
- Xue Li
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Sudhir Kumar
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Marina McDew-White
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Meseret Haile
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
| | - Ian H. Cheeseman
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
| | - Scott Emrich
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Katie Button-Simons
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Stefan H. I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Michael T. Ferdig
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Tim J. C. Anderson
- Texas Biomedical Research Institute, San Antonio, Texas, United States of America
- * E-mail: (TJCA); (AMV)
| | - Ashley M. Vaughan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, United States of America
- * E-mail: (TJCA); (AMV)
| |
Collapse
|
5
|
Mossman JA, Ge JY, Navarro F, Rand DM. Mitochondrial DNA Fitness Depends on Nuclear Genetic Background in Drosophila. G3 (BETHESDA, MD.) 2019; 9:1175-1188. [PMID: 30745378 PMCID: PMC6469417 DOI: 10.1534/g3.119.400067] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 01/06/2023]
Abstract
Mitochondrial DNA (mtDNA) has been one of the most extensively studied molecules in ecological, evolutionary and clinical genetics. In its early application in evolutionary genetics, mtDNA was assumed to be a selectively neutral marker conferring negligible fitness consequences for its host. However, this dogma has been overturned in recent years due to now extensive evidence for non-neutral evolutionary dynamics. Since mtDNA proteins physically interact with nuclear proteins to provide the mitochondrial machinery for aerobic ATP production, among other cell functions, co-variation of the respective genes is predicted to affect organismal fitness. To test this hypothesis we used an mtDNA-nuclear DNA introgression model in Drosophila melanogaster to test the fitness of genotypes in perturbation-reperturbation population cages and in a non-competitive assay for female fecundity. Genotypes consisted of both conspecific and heterospecific mtDNA-nDNA constructs, with either D. melanogaster or D. simulans mtDNAs on two alternative D. melanogaster nuclear backgrounds, to investigate mitonuclear genetic interactions (G x G effects). We found considerable variation between nuclear genetic backgrounds on the selection of mtDNA haplotypes. In addition, there was variation in the selection on mtDNAs pre- and post- reperturbation, demonstrating overall poor repeatability of selection. There was a strong influence of nuclear background on non-competitive fecundity across all the mtDNA species types. In only one of the four cage types did we see a significant fecundity effect between genotypes that could help explain the respective change in genotype frequency over generational time. We discuss these results in the context of G x G interactions and the possible influence of stochastic environments on mtDNA-nDNA selection.
Collapse
Affiliation(s)
- Jim A Mossman
- Department of Ecology and Evolutionary Biology, 80 Waterman Street, Box G, Brown University, Providence, Rhode Island 02912
| | - Jennifer Y Ge
- Department of Ecology and Evolutionary Biology, 80 Waterman Street, Box G, Brown University, Providence, Rhode Island 02912
- Department of Medical Oncology
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215
- Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, 25 Shattuck St, Boston, MA 02115
| | - Freddy Navarro
- Department of Ecology and Evolutionary Biology, 80 Waterman Street, Box G, Brown University, Providence, Rhode Island 02912
| | - David M Rand
- Department of Ecology and Evolutionary Biology, 80 Waterman Street, Box G, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
6
|
Lang GI, Rice AM. Evolution unscathed: Darwin Devolvesargues on weak reasoning that unguided evolution is a destructive force, incapable of innovation. Evolution 2019. [DOI: 10.1111/evo.13710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gregory I. Lang
- Department of Biological SciencesLehigh University, Bethlehem Pennsylvania 18015
| | - Amber M. Rice
- Department of Biological SciencesLehigh University, Bethlehem Pennsylvania 18015
| |
Collapse
|
7
|
Analyzing the functional divergence of Slo1 and Slo3 channel subfamilies. Mol Phylogenet Evol 2019; 133:33-41. [DOI: 10.1016/j.ympev.2018.12.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 09/08/2018] [Accepted: 12/20/2018] [Indexed: 01/27/2023]
|
8
|
Fitness Costs and the Rapid Spread of kelch13-C580Y Substitutions Conferring Artemisinin Resistance. Antimicrob Agents Chemother 2018; 62:AAC.00605-18. [PMID: 29914963 PMCID: PMC6125530 DOI: 10.1128/aac.00605-18] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/13/2018] [Indexed: 01/31/2023] Open
Abstract
Fitness costs are key determinants of whether drug resistance alleles establish and how fast they spread within populations. More than 125 different kelch13 alleles, each containing a different amino acid substitution, have arisen in Southeast Asian malaria parasite (Plasmodium falciparum) populations under artemisinin selection over the past 15 years in a dramatic example of a soft selective event. Fitness costs are key determinants of whether drug resistance alleles establish and how fast they spread within populations. More than 125 different kelch13 alleles, each containing a different amino acid substitution, have arisen in Southeast Asian malaria parasite (Plasmodium falciparum) populations under artemisinin selection over the past 15 years in a dramatic example of a soft selective event. However, just one of these alleles (C580Y) is now outcompeting other alleles in multiple different countries and is spreading toward fixation. Here we examine the fitness consequences of C580Y, relative to another less successful kelch13 mutation (R561H), to try to explain the distinctive dynamics of C580Y. We hypothesized that C580Y will show lower fitness costs than other kelch13 substitutions in the absence of artemisinin treatment. We used CRISPR/Cas9 methods to introduce single mutations (C580Y or R561H) or synonymous control edits into a wild-type parasite isolated on the Thailand-Myanmar border, conducted replicated head-to-head competition assays, and determined the outcome of competition using deep sequencing of kelch13 amplicons. Contrary to our predictions, these experiments reveal that C580Y carries higher fitness costs (s [selection coefficient] = 0.15 ± 0.008 [1 standard error {SE}]) than R561H (s = 0.084 ± 0.005). Furthermore, R561H outcompetes C580Y in direct competition (s = 0.065 ± 0.004). We conclude that fitness costs of C580Y in isolation are unlikely to explain the rapid spread of this substitution.
Collapse
|
9
|
Abstract
Kimura's neutral theory argued that positive selection was not responsible for an appreciable fraction of molecular substitutions. Correspondingly, quantitative analysis reveals that the vast majority of substitutions in cancer genomes are not detectably under selection. Insights from the somatic evolution of cancer reveal that beneficial substitutions in cancer constitute a small but important fraction of the molecular variants. The molecular evolution of cancer community will benefit by incorporating the neutral theory of molecular evolution into their understanding and analysis of cancer evolution-and accepting the use of tractable, predictive models, even when there is some evidence that they are not perfect.
Collapse
Affiliation(s)
| | - Jeffrey P Townsend
- Department of Biostatistics, Yale University, New Haven, CT
- Program in Computational Biology and Bioinformatics
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT
| |
Collapse
|
10
|
O'Malley MA. The Experimental Study of Bacterial Evolution and Its Implications for the Modern Synthesis of Evolutionary Biology. JOURNAL OF THE HISTORY OF BIOLOGY 2018; 51:319-354. [PMID: 28980196 DOI: 10.1007/s10739-017-9493-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Since the 1940s, microbiologists, biochemists and population geneticists have experimented with the genetic mechanisms of microorganisms in order to investigate evolutionary processes. These evolutionary studies of bacteria and other microorganisms gained some recognition from the standard-bearers of the modern synthesis of evolutionary biology, especially Theodosius Dobzhansky and Ledyard Stebbins. A further period of post-synthesis bacterial evolutionary research occurred between the 1950s and 1980s. These experimental analyses focused on the evolution of population and genetic structure, the adaptive gain of new functions, and the evolutionary consequences of competition dynamics. This large body of research aimed to make evolutionary theory testable and predictive, by giving it mechanistic underpinnings. Although evolutionary microbiologists promoted bacterial experiments as methodologically advantageous and a source of general insight into evolution, they also acknowledged the biological differences of bacteria. My historical overview concludes with reflections on what bacterial evolutionary research achieved in this period, and its implications for the still-developing modern synthesis.
Collapse
|
11
|
Hochberg ME, Marquet PA, Boyd R, Wagner A. Innovation: an emerging focus from cells to societies. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0414. [PMID: 29061887 DOI: 10.1098/rstb.2016.0414] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2017] [Indexed: 12/20/2022] Open
Abstract
Innovations are generally unexpected, often spectacular changes in phenotypes and ecological functions. The contributions to this theme issue are the latest conceptual, theoretical and experimental developments, addressing how ecology, environment, ontogeny and evolution are central to understanding the complexity of the processes underlying innovations. Here, we set the stage by introducing and defining key terms relating to innovation and discuss their relevance to biological, cultural and technological change. Discovering how the generation and transmission of novel biological information, environmental interactions and selective evolutionary processes contribute to innovation as an ecosystem will shed light on how the dominant features across life come to be, generalize to social, cultural and technological evolution, and have applications in the health sciences and sustainability.This article is part of the theme issue 'Process and pattern in innovations from cells to societies'.
Collapse
Affiliation(s)
- Michael E Hochberg
- Institut des Sciences de l'Evolution, Université de Montpellier, 34095 Montpellier, France .,Santa Fe Institute, Santa Fe, NM 87501, USA.,Institute for Advanced Study in Toulouse, 31015 Toulouse, France
| | - Pablo A Marquet
- Santa Fe Institute, Santa Fe, NM 87501, USA.,Departamento de Ecologı́a, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, Chile.,Instituto de Ecología y Biodiversidad (IEB), Casilla 653, Santiago, Chile.,Instituto de Sistemas Complejos de Valparaíso (ISCV), Artillería 4780, Valparaíso, Chile
| | - Robert Boyd
- Santa Fe Institute, Santa Fe, NM 87501, USA.,School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA
| | - Andreas Wagner
- Santa Fe Institute, Santa Fe, NM 87501, USA.,Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| |
Collapse
|
12
|
Travisano M, Vasi F, Lenski RE. LONG-TERM EXPERIMENTAL EVOLUTION IN ESCHERICHIA COLI. III. VARIATION AMONG REPLICATE POPULATIONS IN CORRELATED RESPONSES TO NOVEL ENVIRONMENTS. Evolution 2017; 49:189-200. [PMID: 28593661 DOI: 10.1111/j.1558-5646.1995.tb05970.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/1993] [Accepted: 03/30/1994] [Indexed: 11/29/2022]
Abstract
Twelve populations of Escherichia coli were founded from a single clone and propagated for 2000 generations in identical glucose-limited environments. During this time, the mean fitnesses of the evolving populations relative to their common ancestor improved greatly, but their fitnesses relative to one another diverged only slightly. Although the populations showed similar fitness increases, they may have done so by different underlying adaptations, or they may have diverged in other respects by random genetic drift. Therefore, we examined the relative fitnesses of independently derived genotypes in two other sugars, maltose and lactose, to determine whether they were homogeneous or heterogeneous in these environments. The genetic variation among the derived lines in fitness on maltose and lactose was more than 100-times greater than their variation in fitness on glucose. Moreover, the glucose-adapted genotypes, on average, showed significant adaptation to lactose, but not to maltose. That pathways for use of maltose and glucose are virtually identical in E. coli, except for their distinct mechanisms of uptake, suggests that the derived genotypes have adapted primarily by improved glucose transport. From consideration of the number of generations of divergence, the mutation rate in E. coli, and the proportion of its genome required for growth on maltose (but not glucose), we hypothesize that pleiotropy involving the selected alleles, rather than random genetic drift of alleles at other loci, was the major cause of the variation among the derived genotypes in fitness on these other sugars.
Collapse
Affiliation(s)
- Michael Travisano
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, 48824
| | - Farida Vasi
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, 48824
| | - Richard E Lenski
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, 48824
| |
Collapse
|
13
|
Silva PJN, Dykhuizen DE. THE INCREASED POTENTIAL FOR SELECTION OF THE LAC OPERON OF ESCHERICHIA COLI. Evolution 2017; 47:741-749. [PMID: 28567900 DOI: 10.1111/j.1558-5646.1993.tb01230.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/1992] [Accepted: 07/17/1992] [Indexed: 11/29/2022]
Abstract
The fitness effects of six lac operons from natural isolates of Escherichia coli were determined in chemostats, in a test of the idea that selective differences among natural alleles are greater in novel conditions than in the prevailing environment, resulting in a greater genetic variance in fitness in novel conditions. Fitnesses were determined in the common milk sugar lactose, the natural substrate of the lac operon, and in three rare β-galactosides, lactulose, galactosyl-arabinose, and methyl-galactopyranoside, that are novel for E. coli. Significantly greater fitness differences were observed among the lac alleles in each of the novel β-galactosides than in lactose. An alternative explanation of the experimental findings is discussed. General evolutionary causes and consequences of selection potentials are discussed, and an outline of the work necessary to further elucidate the physiological basis of the observed potential for selection of the lac operon of E. coli is presented.
Collapse
Affiliation(s)
- Pedro J N Silva
- Department of Ecology and Evolution, State University of New York, Stony Brook, New York, 11794.,Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, C2 Campo Grande, P-1700, Lisboa, Portugal
| | - Daniel E Dykhuizen
- Department of Ecology and Evolution, State University of New York, Stony Brook, New York, 11794
| |
Collapse
|
14
|
Tong KJ, Duchêne S, Lo N, Ho SYW. The impacts of drift and selection on genomic evolution in insects. PeerJ 2017; 5:e3241. [PMID: 28462044 PMCID: PMC5410144 DOI: 10.7717/peerj.3241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 03/28/2017] [Indexed: 11/20/2022] Open
Abstract
Genomes evolve through a combination of mutation, drift, and selection, all of which act heterogeneously across genes and lineages. This leads to differences in branch-length patterns among gene trees. Genes that yield trees with the same branch-length patterns can be grouped together into clusters. Here, we propose a novel phylogenetic approach to explain the factors that influence the number and distribution of these gene-tree clusters. We apply our method to a genomic dataset from insects, an ancient and diverse group of organisms. We find some evidence that when drift is the dominant evolutionary process, each cluster tends to contain a large number of fast-evolving genes. In contrast, strong negative selection leads to many distinct clusters, each of which contains only a few slow-evolving genes. Our work, although preliminary in nature, illustrates the use of phylogenetic methods to shed light on the factors driving rate variation in genomic evolution.
Collapse
Affiliation(s)
- K Jun Tong
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Sebastián Duchêne
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia.,Centre for Systems Genomics, University of Melbourne, Melbourne, Victoria, Australia
| | - Nathan Lo
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
15
|
Abstract
Ever since Darwin, the role of natural selection in shaping the morphological, physiological, and behavioral adaptations of animals and plants across generations has been central to understanding life and its diversity. New discoveries have shown with increasing precision how genetic, molecular, and biochemical processes produce and express those organismal features during an individual's lifetime. When it comes to microorganisms, however, understanding the role of natural selection in producing adaptive solutions has historically been, and sometimes continues to be, contentious. This tension is curious because microbes enable one to observe the power of adaptation by natural selection with exceptional rigor and clarity, as exemplified by the burgeoning field of experimental microbial evolution. I trace the development of this field, describe an experiment with Escherichia coli that has been running for almost 30 years, and highlight other experiments in which natural selection has led to interesting dynamics and adaptive changes in microbial populations.
Collapse
Affiliation(s)
- Richard E Lenski
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America.,BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
16
|
Hu Z, Sun R, Curtis C. A population genetics perspective on the determinants of intra-tumor heterogeneity. Biochim Biophys Acta Rev Cancer 2017; 1867:109-126. [PMID: 28274726 DOI: 10.1016/j.bbcan.2017.03.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/17/2022]
Abstract
Cancer results from the acquisition of somatic alterations in a microevolutionary process that typically occurs over many years, much of which is occult. Understanding the evolutionary dynamics that are operative at different stages of progression in individual tumors might inform the earlier detection, diagnosis, and treatment of cancer. Although these processes cannot be directly observed, the resultant spatiotemporal patterns of genetic variation amongst tumor cells encode their evolutionary histories. Such intra-tumor heterogeneity is pervasive not only at the genomic level, but also at the transcriptomic, phenotypic, and cellular levels. Given the implications for precision medicine, the accurate quantification of heterogeneity within and between tumors has become a major focus of current research. In this review, we provide a population genetics perspective on the determinants of intra-tumor heterogeneity and approaches to quantify genetic diversity. We summarize evidence for different modes of evolution based on recent cancer genome sequencing studies and discuss emerging evolutionary strategies to therapeutically exploit tumor heterogeneity. This article is part of a Special Issue entitled: Evolutionary principles - heterogeneity in cancer?, edited by Dr. Robert A. Gatenby.
Collapse
Affiliation(s)
- Zheng Hu
- Departments of Medicine and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ruping Sun
- Departments of Medicine and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Christina Curtis
- Departments of Medicine and Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
17
|
Hunt KA, Jennings RD, Inskeep WP, Carlson RP. Stoichiometric modelling of assimilatory and dissimilatory biomass utilisation in a microbial community. Environ Microbiol 2016; 18:4946-4960. [PMID: 27387069 PMCID: PMC5629010 DOI: 10.1111/1462-2920.13444] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 06/30/2016] [Indexed: 11/26/2022]
Abstract
Assimilatory and dissimilatory utilisation of autotroph biomass by heterotrophs is a fundamental mechanism for the transfer of nutrients and energy across trophic levels. Metagenome data from a tractable, thermoacidophilic microbial community in Yellowstone National Park was used to build an in silico model to study heterotrophic utilisation of autotroph biomass using elementary flux mode analysis and flux balance analysis. Assimilatory and dissimilatory biomass utilisation was investigated using 29 forms of biomass-derived dissolved organic carbon (DOC) including individual monomer pools, individual macromolecular pools and aggregate biomass. The simulations identified ecologically competitive strategies for utilizing DOC under conditions of varying electron donor, electron acceptor or enzyme limitation. The simulated growth environment affected which form of DOC was the most competitive use of nutrients; for instance, oxygen limitation favoured utilisation of less reduced and fermentable DOC while carbon-limited environments favoured more reduced DOC. Additionally, metabolism was studied considering two encompassing metabolic strategies: simultaneous versus sequential use of DOC. Results of this study bound the transfer of nutrients and energy through microbial food webs, providing a quantitative foundation relevant to most microbial ecosystems.
Collapse
Affiliation(s)
- Kristopher A. Hunt
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
- Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| | - Ryan deM. Jennings
- Thermal Biology Institute, Montana State University, Bozeman, MT, USA
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA
| | - William P. Inskeep
- Thermal Biology Institute, Montana State University, Bozeman, MT, USA
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT, USA
| | - Ross P. Carlson
- Center for Biofilm Engineering, Montana State University, Bozeman, MT, USA
- Department of Chemical and Biological Engineering, Montana State University, Bozeman, MT, USA
- Thermal Biology Institute, Montana State University, Bozeman, MT, USA
| |
Collapse
|
18
|
Wu CI, Wang HY, Ling S, Lu X. The Ecology and Evolution of Cancer: The Ultra-Microevolutionary Process. Annu Rev Genet 2016; 50:347-369. [DOI: 10.1146/annurev-genet-112414-054842] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chung-I Wu
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, Sun Yat-Sen University, Guangzhou 510275, China;
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China;
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60637;
| | - Hurng-Yi Wang
- Graduate Institute of Clinical Medicine and Hepatitis Research Center, National Taiwan University and Hospital, Taipei 106, Taiwan;
| | - Shaoping Ling
- State Key Laboratory of Biocontrol, College of Ecology and Evolution, Sun Yat-Sen University, Guangzhou 510275, China;
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China;
| | - Xuemei Lu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China;
| |
Collapse
|
19
|
Huang Y, Wang X, Ge S, Rao GY. Divergence and adaptive evolution of the gibberellin oxidase genes in plants. BMC Evol Biol 2015; 15:207. [PMID: 26416509 PMCID: PMC4587577 DOI: 10.1186/s12862-015-0490-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 09/17/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The important phytohormone gibberellins (GAs) play key roles in various developmental processes. GA oxidases (GAoxs) are critical enzymes in GA synthesis pathway, but their classification, evolutionary history and the forces driving the evolution of plant GAox genes remain poorly understood. RESULTS This study provides the first large-scale evolutionary analysis of GAox genes in plants by using an extensive whole-genome dataset of 41 species, representing green algae, bryophytes, pteridophyte, and seed plants. We defined eight subfamilies under the GAox family, namely C19-GA2ox, C20-GA2ox, GA20ox,GA3ox, GAox-A, GAox-B, GAox-C and GAox-D. Of these, subfamilies GAox-A, GAox-B, GAox-C and GAox-D are described for the first time. On the basis of phylogenetic analyses and characteristic motifs of GAox genes, we demonstrated a rapid expansion and functional divergence of the GAox genes during the diversification of land plants. We also detected the subfamily-specific motifs and potential sites of some GAox genes, which might have evolved under positive selection. CONCLUSIONS GAox genes originated very early-before the divergence of bryophytes and the vascular plants and the diversification of GAox genes is associated with the functional divergence and could be driven by positive selection. Our study not only provides information on the classification of GAox genes, but also facilitates the further functional characterization and analysis of GA oxidases.
Collapse
Affiliation(s)
- Yuan Huang
- College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Xi Wang
- College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Song Ge
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
| | - Guang-Yuan Rao
- College of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
20
|
Yokoyama S, Altun A, Jia H, Yang H, Koyama T, Faggionato D, Liu Y, Starmer WT. Adaptive evolutionary paths from UV reception to sensing violet light by epistatic interactions. SCIENCE ADVANCES 2015; 1:e1500162. [PMID: 26601250 PMCID: PMC4643761 DOI: 10.1126/sciadv.1500162] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 08/02/2015] [Indexed: 06/05/2023]
Abstract
Ultraviolet (UV) reception is useful for such basic behaviors as mate choice, foraging, predator avoidance, communication, and navigation, whereas violet reception improves visual resolution and subtle contrast detection. UV and violet reception are mediated by the short wavelength-sensitive (SWS1) pigments that absorb light maximally (λmax) at ~360 nm and ~395 to 440 nm, respectively. Because of strong nonadditive (epistatic) interactions among amino acid changes in the pigments, the adaptive evolutionary mechanisms of these phenotypes are not well understood. Evolution of the violet pigment of the African clawed frog (Xenopus laevis, λmax = 423 nm) from the UV pigment in the amphibian ancestor (λmax = 359 nm) can be fully explained by eight mutations in transmembrane (TM) I-III segments. We show that epistatic interactions involving the remaining TM IV-VII segments provided evolutionary potential for the frog pigment to gradually achieve its violet-light reception by tuning its color sensitivity in small steps. Mutants in these segments also impair pigments that would cause drastic spectral shifts and thus eliminate them from viable evolutionary pathways. The overall effects of epistatic interactions involving TM IV-VII segments have disappeared at the last evolutionary step and thus are not detectable by studying present-day pigments. Therefore, characterizing the genotype-phenotype relationship during each evolutionary step is the key to uncover the true nature of epistasis.
Collapse
Affiliation(s)
- Shozo Yokoyama
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Ahmet Altun
- Department of Physics and Department of Genetics and Bioengineering, Fatih University, Istanbul 34500, Turkey
| | - Huiyong Jia
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Hui Yang
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Takashi Koyama
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | | | - Yang Liu
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
21
|
Bui DT, Dine E, Anderson JB, Aquadro CF, Alani EE. A Genetic Incompatibility Accelerates Adaptation in Yeast. PLoS Genet 2015; 11:e1005407. [PMID: 26230253 PMCID: PMC4521705 DOI: 10.1371/journal.pgen.1005407] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/01/2015] [Indexed: 12/21/2022] Open
Abstract
During mismatch repair (MMR) MSH proteins bind to mismatches that form as the result of DNA replication errors and recruit MLH factors such as Mlh1-Pms1 to initiate excision and repair steps. Previously, we identified a negative epistatic interaction involving naturally occurring polymorphisms in the MLH1 and PMS1 genes of baker’s yeast. Here we hypothesize that a mutagenic state resulting from this negative epistatic interaction increases the likelihood of obtaining beneficial mutations that can promote adaptation to stress conditions. We tested this by stressing yeast strains bearing mutagenic (incompatible) and non-mutagenic (compatible) mismatch repair genotypes. Our data show that incompatible populations adapted more rapidly and without an apparent fitness cost to high salt stress. The fitness advantage of incompatible populations was rapid but disappeared over time. The fitness gains in both compatible and incompatible strains were due primarily to mutations in PMR1 that appeared earlier in incompatible evolving populations. These data demonstrate a rapid and reversible role (by mating) for genetic incompatibilities in accelerating adaptation in eukaryotes. They also provide an approach to link experimental studies to observational population genomics. In nature, bacterial populations with high mutation rates can adapt faster to new environments by acquiring beneficial mutations. However, such populations also accumulate harmful mutations that reduce their fitness. We show that the model eukaryote baker’s yeast can use a similar mutator strategy to adapt to new environments. The mutator state that we observed resulted from an incompatibility involving two genes, MLH1 and PMS1, that work together to remove DNA replication errors through a spellchecking mismatch repair mechanism. This incompatibility can occur through mating between baker’s yeast from different genetic backgrounds, yielding mutator offspring containing an MLH1-PMS1 combination not present in either parent. Interestingly, these offspring adapted more rapidly to stress, compared to the parental strains, and did so without an overall loss in fitness. DNA sequencing analyses of baker’s yeast strains from across the globe support the presence of incompatible hybrid yeast strains in nature. These observations provide a powerful model to understand how the segregation of defects in DNA mismatch repair can serve as an effective strategy to enable eukaryotes to adapt to changing environments.
Collapse
Affiliation(s)
- Duyen T. Bui
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Elliot Dine
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - James B. Anderson
- Department of Biology, University of Toronto, Mississauga, Ontario, Canada
| | - Charles F. Aquadro
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Eric E. Alani
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
22
|
Ganu RS, Ishida Y, Koutmos M, Kolokotronis SO, Roca AL, Garrow TA, Schook LB. Evolutionary Analyses and Natural Selection of Betaine-Homocysteine S-Methyltransferase (BHMT) and BHMT2 Genes. PLoS One 2015. [PMID: 26213999 PMCID: PMC4516251 DOI: 10.1371/journal.pone.0134084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Betaine-homocysteine S-methyltransferase (BHMT) and BHMT2 convert homocysteine to methionine using betaine and S-methylmethionine, respectively, as methyl donor substrates. Increased levels of homocysteine in blood are associated with cardiovascular disease. Given their role in human health and nutrition, we identified BHMT and BHMT2 genes and proteins from 38 species of deuterostomes including human and non-human primates. We aligned the genes to look for signatures of selection, to infer evolutionary rates and events across lineages, and to identify the evolutionary timing of a gene duplication event that gave rise to two genes, BHMT and BHMT2. We found that BHMT was present in the genomes of the sea urchin, amphibians, reptiles, birds and mammals; BHMT2 was present only across mammals. BHMT and BHMT2 were present in tandem in the genomes of all monotreme, marsupial and placental species examined. Evolutionary rates were accelerated for BHMT2 relative to BHMT. Selective pressure varied across lineages, with the highest dN/dS ratios for BHMT and BHMT2 occurring immediately following the gene duplication event, as determined using GA Branch analysis. Nine codons were found to display signatures suggestive of positive selection; these contribute to the enzymatic or oligomerization domains, suggesting involvement in enzyme function. Gene duplication likely occurred after the divergence of mammals from other vertebrates but prior to the divergence of extant mammalian subclasses, followed by two deletions in BHMT2 that affect oligomerization and methyl donor specificity. The faster evolutionary rate of BHMT2 overall suggests that selective constraints were reduced relative to BHMT. The dN/dS ratios in both BHMT and BHMT2 was highest following the gene duplication, suggesting that purifying selection played a lesser role as the two paralogs diverged in function.
Collapse
Affiliation(s)
- Radhika S. Ganu
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Yasuko Ishida
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Markos Koutmos
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States of America
| | | | - Alfred L. Roca
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Timothy A. Garrow
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - Lawrence B. Schook
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
- * E-mail:
| |
Collapse
|
23
|
Adams J, Rosenzweig F. Experimental microbial evolution: history and conceptual underpinnings. Genomics 2014; 104:393-8. [PMID: 25315137 DOI: 10.1016/j.ygeno.2014.10.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 10/06/2014] [Indexed: 01/10/2023]
Abstract
We chronicle and dissect the history of the field of Experimental Microbial Evolution, beginning with work by Monod. Early research was largely carried out by microbiologists and biochemists, who used experimental evolutionary change as a tool to understand structure-function relationships. These studies attracted the interest of evolutionary biologists who recognized the power of the approach to address issues such as the tempo of adaptive change, the costs and benefits of sex, parallelism, and the role which contingency plays in the evolutionary process. In the 1980s and 1990s, an ever-expanding body of microbial, physiological and biochemical data, together with new technologies for manipulating microbial genomes, allowed such questions to be addressed in ever-increasing detail. Since then, technological advances leading to low-cost, high-throughput DNA sequencing have made it possible for these and other fundamental questions in evolutionary biology to be addressed at the molecular level.
Collapse
Affiliation(s)
- Julian Adams
- Department of Molecular, Cellular and Developmental Biology, Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Frank Rosenzweig
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
24
|
Zhong Y, Jia Y, Gao Y, Tian D, Yang S, Zhang X. Functional requirements driving the gene duplication in 12 Drosophila species. BMC Genomics 2013; 14:555. [PMID: 23945147 PMCID: PMC3751352 DOI: 10.1186/1471-2164-14-555] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 08/13/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Gene duplication supplies the raw materials for novel gene functions and many gene families arisen from duplication experience adaptive evolution. Most studies of young duplicates have focused on mammals, especially humans, whereas reports describing their genome-wide evolutionary patterns across the closely related Drosophila species are rare. The sequenced 12 Drosophila genomes provide the opportunity to address this issue. RESULTS In our study, 3,647 young duplicate gene families were identified across the 12 Drosophila species and three types of expansions, species-specific, lineage-specific and complex expansions, were detected in these gene families. Our data showed that the species-specific young duplicate genes predominated (86.6%) over the other two types. Interestingly, many independent species-specific expansions in the same gene family have been observed in many species, even including 11 or 12 Drosophila species. Our data also showed that the functional bias observed in these young duplicate genes was mainly related to responses to environmental stimuli and biotic stresses. CONCLUSIONS This study reveals the evolutionary patterns of young duplicates across 12 Drosophila species on a genomic scale. Our results suggest that convergent evolution acts on young duplicate genes after the species differentiation and adaptive evolution may play an important role in duplicate genes for adaption to ecological factors and environmental changes in Drosophila.
Collapse
Affiliation(s)
- Yan Zhong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 22 Hankou Rd, Nanjing 210093, China
| | | | | | | | | | | |
Collapse
|
25
|
Watt WB. Specific-gene studies of evolutionary mechanisms in an age of genome-wide surveying. Ann N Y Acad Sci 2013; 1289:1-17. [PMID: 23679204 DOI: 10.1111/nyas.12139] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The molecular tools of genomics have great power to reveal patterns of genetic difference within or among species, but must be complemented by the mechanistic study of the genetic variants found if these variants' evolutionary meaning is to be well understood. Central to this purpose is knowledge of the organisms' genotype-phenotype-environment interactions, which embody biological adaptation and constraint and thus drive natural selection. The history of this approach is briefly reviewed. Strategies embracing the complementarity of genomics and specific-gene studies in evolution are considered. Implementation of these strategies, and examples showing their feasibility and power, are discussed. Initial generalizations emphasize: (1) reproducibility of adaptive mechanisms; (2) evolutionary co-importance of variation in protein sequences and expression; (3) refinement of rudimentary molecular functions as an origin of evolutionary innovations; (4) identification of specific-gene mechanisms as underpinnings of genomic or quantitative genetic variation; and (5) multiple forms of adaptive or constraining epistasis among genes. Progress along these lines will advance understanding of evolution and support its use in addressing urgent medical and environmental applications.
Collapse
Affiliation(s)
- Ward B Watt
- Department of Biology, Stanford University, Stanford, California and Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA.
| |
Collapse
|
26
|
|
27
|
Liu PL, Wan JN, Guo YP, Ge S, Rao GY. Adaptive evolution of the chrysanthemyl diphosphate synthase gene involved in irregular monoterpene metabolism. BMC Evol Biol 2012; 12:214. [PMID: 23137178 PMCID: PMC3518182 DOI: 10.1186/1471-2148-12-214] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Accepted: 10/31/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chrysanthemyl diphosphate synthase (CDS) is a key enzyme in biosynthetic pathways producing pyrethrins and irregular monoterpenes. These compounds are confined to plants of the tribe Anthemideae of the Asteraceae, and play an important role in defending the plants against herbivorous insects. It has been proposed that the CDS genes arose from duplication of the farnesyl diphosphate synthase (FDS) gene and have different function from FDSs. However, the duplication time toward the origin of CDS and the evolutionary force behind the functional divergence of the CDS gene are still unknown. RESULTS Two duplication events were detected in the evolutionary history of the FDS gene family in the Asteraceae, and the second duplication led to the origin of CDS. CDS occurred after the divergence of the tribe Mutisieae from other tribes of Asteraceae but before the birth of the Anthemideae tribe. After its origin, CDS accumulated four mutations in sites homologous to the substrate-binding and catalysis sites of FDS. Of these, two sites were involved in the binding of the nucleophilic substrate isopentenyl diphosphate in FDS. Maximum likelihood analyses showed that some sites in CDS were under positive selection and were scattered throughout primary sequences, whereas in the three-dimensional structure model they clustered in the large central cavity. CONCLUSION Positive selection associated with gene duplication played a major role in the evolution of CDS.
Collapse
Affiliation(s)
- Ping-Li Liu
- College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | | | |
Collapse
|
28
|
YOKOYAMA SHOZO. Synthesis of Experimental Molecular Biology and Evolutionary Biology: An Example from the World of Vision. Bioscience 2012; 62:939-948. [PMID: 23483186 PMCID: PMC3593118 DOI: 10.1525/bio.2012.62.11.3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Natural selection has played an important role in establishing various phenotypes, but the molecular mechanisms of phenotypic adaptation are not well understood. The slow progress is a consequence of mutagenesis experiments in which present-day molecules were used and of the limited scope of statistical methods used to detect adaptive evolution. To fully appreciate phenotypic adaptation, the precise roles of adaptive mutations during phenotypic evolution must be elucidated through the engineering and manipulation of ancestral phenotypes. Experimental and quantum chemical analyses of dim-light vision reveal some surprising results and provide a foundation for a productive study of the adaptive evolution of various phenotypes.
Collapse
Affiliation(s)
- SHOZO YOKOYAMA
- Department of Biology at Emory University, in Atlanta, Georgia
| |
Collapse
|
29
|
On the rapidity of antibiotic resistance evolution facilitated by a concentration gradient. Proc Natl Acad Sci U S A 2012; 109:10775-80. [PMID: 22711808 DOI: 10.1073/pnas.1117716109] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The rapid emergence of bacterial strains resistant to multiple antibiotics is posing a growing public health risk. The mechanisms underlying the rapid evolution of drug resistance are, however, poorly understood. The heterogeneity of the environments in which bacteria encounter antibiotic drugs could play an important role. E.g., in the highly compartmentalized human body, drug levels can vary substantially between different organs and tissues. It has been proposed that this could facilitate the selection of resistant mutants, and recent experiments support this. To study the role of spatial heterogeneity in the evolution of drug resistance, we present a quantitative model describing an environment subdivided into relatively isolated compartments with various antibiotic concentrations, in which bacteria evolve under the stochastic processes of proliferation, migration, mutation and death. Analytical and numerical results demonstrate that concentration gradients can foster a mode of adaptation that is impossible in uniform environments. It allows resistant mutants to evade competition and circumvent the slow process of fixation by invading compartments with higher drug concentrations, where less resistant strains cannot subsist. The speed of this process increases sharply with the sensitivity of the growth rate to the antibiotic concentration, which we argue to be generic. Comparable adaptation rates in uniform environments would require a high selection coefficient (s > 0.1) for each forward mutation. Similar processes can occur if the heterogeneity is more complex than just a linear gradient. The model may also be applicable to other adaptive processes involving environmental heterogeneity and range expansion.
Collapse
|
30
|
Population growth enhances the mean fixation time of neutral mutations and the persistence of neutral variation. Genetics 2012; 191:561-77. [PMID: 22426878 DOI: 10.1534/genetics.112.139220] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A fundamental result of population genetics states that a new mutation, at an unlinked neutral locus in a randomly mating diploid population, has a mean time of fixation of ∼4N(e) generations, where N(e) is the effective population size. This result is based on an assumption of fixed population size, which does not universally hold in natural populations. Here, we analyze such neutral fixations in populations of changing size within the framework of the diffusion approximation. General expressions are derived for the mean and variance of the fixation time in changing populations. Some explicit results are given for two cases: (i) the effective population size undergoes a sudden change, representing a sudden population expansion or a sudden bottleneck; (ii) the effective population changes linearly for a limited period of time and then remains constant. Additionally, a lower bound for the mean time of fixation is obtained for an effective population size that increases with time, and this is applied to exponentially growing populations. The results obtained in this work show, among other things, that for populations that increase in size, the mean time of fixation can be enhanced, sometimes substantially so, over 4N(e,0) generations, where N(e,0) is the effective population size at the time the mutation arises. Such an enhancement is associated with (i) an increased probability of neutral polymorphism in a population and (ii) an enhanced persistence of high-frequency neutral variation, which is the variation most likely to be observed.
Collapse
|
31
|
Carlson RP, Oshota OJ, Taffs RL. Systems analysis of microbial adaptations to simultaneous stresses. Subcell Biochem 2012; 64:139-57. [PMID: 23080249 DOI: 10.1007/978-94-007-5055-5_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Microbes live in multi-factorial environments and have evolved under a variety of concurrent stresses including resource scarcity. Their metabolic organization is a reflection of their evolutionary histories and, in spite of decades of research, there is still a need for improved theoretical tools to explain fundamental aspects of microbial physiology. Using ecological and economic concepts, this chapter explores a resource-ratio based theory to elucidate microbial strategies for extracting and channeling mass and energy. The theory assumes cellular fitness is maximized by allocating scarce resources in appropriate proportions to multiple stress responses. Presented case studies deconstruct metabolic networks into a complete set of minimal biochemical pathways known as elementary flux modes. An economic analysis of the elementary flux modes tabulates enzyme atomic synthesis requirements from amino acid sequences and pathway operating costs from catabolic efficiencies, permitting characterization of inherent tradeoffs between resource investment and phenotype. A set of elementary flux modes with competitive tradeoffs properties can be mathematically projected onto experimental fluxomics datasets to decompose measured phenotypes into metabolic adaptations, interpreted as cellular responses proportional to the experienced culturing stresses. The resource-ratio based method describes the experimental phenotypes with greater accuracy than other contemporary approaches and further analysis suggests the results are both statistically and biologically significant. The insight into metabolic network design principles including tradeoffs associated with concurrent stress adaptation provides a foundation for interpreting physiology as well as for rational control and engineering of medically, environmentally, and industrially relevant microbes.
Collapse
Affiliation(s)
- Ross P Carlson
- Chemical and Biological Engineering Department, Center for Biofilm Engineering, Montana State University, Bozeman, MT, 59717-3920, USA,
| | | | | |
Collapse
|
32
|
Abstract
Superficially, evolutionary engineering is a paradoxical field that balances competing interests. In natural settings, evolution iteratively selects and enriches subpopulations that are best adapted to a particular ecological niche using random processes such as genetic mutation. In engineering desired approaches utilize rational prospective design to address targeted problems. When considering details of evolutionary and engineering processes, more commonality can be found. Engineering relies on detailed knowledge of the problem parameters and design properties in order to predict design outcomes that would be an optimized solution. When detailed knowledge of a system is lacking, engineers often employ algorithmic search strategies to identify empirical solutions. Evolution epitomizes this iterative optimization by continuously diversifying design options from a parental design, and then selecting the progeny designs that represent satisfactory solutions. In this chapter, the technique of applying the natural principles of evolution to engineer microbes for industrial applications is discussed to highlight the challenges and principles of evolutionary engineering.
Collapse
|
33
|
Abstract
Measuring fitness with precision is a key issue in evolutionary biology, particularly in studying mutations of small effects. It is usually thought that sampling error and drift prevent precise measurement of very small fitness effects. We circumvented these limits by using a new combined approach to measuring and analyzing fitness. We estimated the mutational fitness effect (MFE) of three independent mini-Tn10 transposon insertion mutations by conducting competition experiments in large populations of Escherichia coli under controlled laboratory conditions. Using flow cytometry to assess genotype frequencies from very large samples alleviated the problem of sampling error, while the effect of drift was controlled by using large populations and massive replication of fitness measures. Furthermore, with a set of four competition experiments between ancestral and mutant genotypes, we were able to decompose fitness measures into four estimated parameters that account for fitness effects of our fluorescent marker (α), the mutation (β), epistasis between the mutation and the marker (γ), and departure from transitivity (τ). Our method allowed us to estimate mean selection coefficients to a precision of 2 × 10(-4). We also found small, but significant, epistatic interactions between the allelic effects of mutations and markers and confirmed that fitness effects were transitive in most cases. Unexpectedly, we also detected variation in measures of s that were significantly bigger than expected due to drift alone, indicating the existence of cryptic variation, even in fully controlled experiments. Overall our results indicate that selection coefficients are best understood as being distributed, representing a limit on the precision with which selection can be measured, even under controlled laboratory conditions.
Collapse
|
34
|
Microbial laboratory evolution in the era of genome-scale science. Mol Syst Biol 2011; 7:509. [PMID: 21734648 PMCID: PMC3159978 DOI: 10.1038/msb.2011.42] [Citation(s) in RCA: 202] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 05/12/2011] [Indexed: 12/25/2022] Open
Abstract
Advances in DNA sequencing, high-throughput technologies, and genetic manipulation systems have enabled empirical studies of the molecular and genomic bases of adaptive evolution. This review discusses key insights learned from direct observation of the evolution process. Laboratory evolution studies provide fundamental biological insight through direct observation of the evolution process. They not only enable testing of evolutionary theory and principles, but also have applications to metabolic engineering and human health. Genome-scale tools are revolutionizing studies of laboratory evolution by providing complete determination of the genetic basis of adaptation and the changes in the organism's gene expression state. Here, we review studies centered on four central themes of laboratory evolution studies: (1) the genetic basis of adaptation; (2) the importance of mutations to genes that encode regulatory hubs; (3) the view of adaptive evolution as an optimization process; and (4) the dynamics with which laboratory populations evolve.
Collapse
|
35
|
Storz JF, Wheat CW. Integrating evolutionary and functional approaches to infer adaptation at specific loci. Evolution 2011; 64:2489-509. [PMID: 20500215 DOI: 10.1111/j.1558-5646.2010.01044.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Inferences about adaptation at specific loci are often exclusively based on the static analysis of DNA sequence variation. Ideally,population-genetic evidence for positive selection serves as a stepping-off point for experimental studies to elucidate the functional significance of the putatively adaptive variation. We argue that inferences about adaptation at specific loci are best achieved by integrating the indirect, retrospective insights provided by population-genetic analyses with the more direct, mechanistic insights provided by functional experiments. Integrative studies of adaptive genetic variation may sometimes be motivated by experimental insights into molecular function, which then provide the impetus to perform population genetic tests to evaluate whether the functional variation is of adaptive significance. In other cases, studies may be initiated by genome scans of DNA variation to identify candidate loci for recent adaptation. Results of such analyses can then motivate experimental efforts to test whether the identified candidate loci do in fact contribute to functional variation in some fitness-related phenotype. Functional studies can provide corroborative evidence for positive selection at particular loci, and can potentially reveal specific molecular mechanisms of adaptation.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA.
| | | |
Collapse
|
36
|
Hermsen R, Hwa T. Sources and sinks: a stochastic model of evolution in heterogeneous environments. PHYSICAL REVIEW LETTERS 2010; 105:248104. [PMID: 21231560 PMCID: PMC4038430 DOI: 10.1103/physrevlett.105.248104] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Indexed: 05/30/2023]
Abstract
We study evolution driven by spatial heterogeneity in a stochastic model of source-sink ecologies. A sink is a habitat where mortality exceeds reproduction so that a local population persists only due to immigration from a source. Immigrants can, however, adapt to conditions in the sink by mutation. To characterize the adaptation rate, we derive expressions for the first arrival time of adapted mutants. The joint effects of migration, mutation, birth, and death result in two distinct parameter regimes. These results may pertain to the rapid evolution of drug-resistant pathogens and insects.
Collapse
Affiliation(s)
- Rutger Hermsen
- Center for Theoretical Biological Physics, University of California at San Diego, La Jolla, California 92093, USA.
| | | |
Collapse
|
37
|
Abstract
The divergence of new genes and proteins occurs through mutations that modulate protein function. However, mutations are pleiotropic and can have different effects on organismal fitness depending on the environment, as well as opposite effects on protein function and dosage. We review the pleiotropic effects of mutations. We discuss how they affect the evolution of gene and protein function, and how these complex mutational effects dictate the likelihood and mechanism of gene duplication and divergence. We propose several factors that can affect the divergence of new protein functions, including mutational trade-offs and hidden, or apparently neutral, variation.
Collapse
|
38
|
Bell CR, Cummings NE, Canfield ML, Moore LW. Competition of Octopine-Catabolizing Pseudomonas spp. and Octopine-Type Agrobacterium tumefaciens for Octopine in Chemostats. Appl Environ Microbiol 2010; 56:2840-6. [PMID: 16348293 PMCID: PMC184852 DOI: 10.1128/aem.56.9.2840-2846.1990] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of two octopine-catabolizing Pseudomonas spp. and two virulent octopine-type Agrobacterium tumefaciens to compete for substrates has been examined in chemostats. In dual cultures with octopine or glutamate as the limiting carbon or nitrogen source, Pseudomonas fluorescens B99A and E175D always dominated over A. tumefaciens B6 or ATCC 15955. The growth dynamics of each strain in pure culture indicated that some form of antagonism was occurring in dual culture to permit the predominance of the pseudomonads under certain conditions. Although both pseudomonads fluoresce, pyoverdine was not responsible for the observed inhibition. An unidentified antibiotic secreted by both pseudomonads is believed to be responsible. A. tumefaciens B6 grew synergistically in the presence of P. fluorescens B99A with octopine as the limiting nitrogen source. This behavior of Agrobacterium strain B6 may help overcome its grossly inefficient use of octopine as previously reported. The ability of these two pseudomonads to outcompete the agrobacteria under all conditions tested raises the possibility that under field conditions, infectious agrobacteria may be succeeded by opine-catabolizing pseudomonads around crown gall tumors and in the rhizosphere.
Collapse
Affiliation(s)
- C R Bell
- Department of Biology, Acadia University, Wolfville, Nova Scotia, Canada B0P 1X0, and Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331
| | | | | | | |
Collapse
|
39
|
Evolvability and Speed of Evolutionary Algorithms in Light of Recent Developments in Biology. ACTA ACUST UNITED AC 2010. [DOI: 10.1155/2010/568375] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biological and artificial evolutionary systems exhibit varying degrees of evolvability and different rates of evolution. Such quantities can be affected by various factors. Here, we review some evolutionary mechanisms and discuss new developments in biology that can potentially improve evolvability or accelerate evolution in artificial systems. Biological notions are discussed to the degree they correspond to notions in Evolutionary Computation. We hope that the findings put forward here can be used to design computational models of evolution that produce significant gains in evolvability and evolutionary speed.
Collapse
|
40
|
Yuan F, Bernard GD, Le J, Briscoe AD. Contrasting modes of evolution of the visual pigments in Heliconius butterflies. Mol Biol Evol 2010; 27:2392-405. [PMID: 20478921 DOI: 10.1093/molbev/msq124] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The adult compound eyes of passion-vine butterflies in the genus Heliconius contain one more UV opsin than other butterflies. Together with an 11-cis-3-hydroxyretinal chromophore, their four opsin genes UVRh1, UVRh2, BRh, and LWRh produce four rhodopsins that are UV-, blue-, or long wavelength absorbing. One of the Heliconius UV opsin genes, UVRh2, was found to have evolved under positive selection following recent gene duplication, using the branch-site test of selection. Using a more conservative test, the small-sample method, we confirm our prior finding of positive selection of UVRh2 and provide new statistical evidence of episodic evolution, that is, positive selection followed by purifying selection. We also newly note that one of the positively selected amino acid sites contains substitutions with known spectral tuning effects in avian ultraviolet- and violet-sensitive visual pigments. As this is one of a handful of described examples of positive selection of any specific gene in any butterfly where functional variation between copies has been characterized, we were interested in examining the molecular and physiological context of this adaptive event by examining the UV opsin genes in contrast to the other visual pigment genes. We cloned BRh and LWRh from 13 heliconiine species and UVRh1 and UVRh2 from Heliconius elevatus. In parallel, we performed in vivo epi-microspectrophotometric experiments to estimate the wavelength of peak absorbance, λ(max), of several rhodopsins in seven heliconiine species. In contrast to UVRh2, we found both physiological and statistical evidence consistent with purifying selection on UVRh1, BRh, and LWRh along the branch leading to the common ancestor of Heliconius. These results underscore the utility of combining molecular and physiological experiments in a comparative context for strengthening evidence for adaptive evolution at the molecular level.
Collapse
Affiliation(s)
- Furong Yuan
- Department of Ecology and Evolutionary Biology, University of California, Irvine, USA
| | | | | | | |
Collapse
|
41
|
Sun HZ, Ge S. Molecular evolution of the duplicated TFIIAgamma genes in Oryzeae and its relatives. BMC Evol Biol 2010; 10:128. [PMID: 20438643 PMCID: PMC2887407 DOI: 10.1186/1471-2148-10-128] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Accepted: 05/04/2010] [Indexed: 11/10/2022] Open
Abstract
Background Gene duplication provides raw genetic materials for evolutionary novelty and adaptation. The evolutionary fate of duplicated transcription factor genes is less studied although transcription factor gene plays important roles in many biological processes. TFIIAγ is a small subunit of TFIIA that is one of general transcription factors required by RNA polymerase II. Previous studies identified two TFIIAγ-like genes in rice genome and found that these genes either conferred resistance to rice bacterial blight or could be induced by pathogen invasion, raising the question as to their functional divergence and evolutionary fates after gene duplication. Results We reconstructed the evolutionary history of the TFIIAγ genes from main lineages of angiosperms and demonstrated that two TFIIAγ genes (TFIIAγ1 and TFIIAγ5) arose from a whole genome duplication that happened in the common ancestor of grasses. Likelihood-based analyses with branch, codon, and branch-site models showed no evidence of positive selection but a signature of relaxed selective constraint after the TFIIAγ duplication. In particular, we found that the nonsynonymous/synonymous rate ratio (ω = dN/dS) of the TFIIAγ1 sequences was two times higher than that of TFIIAγ5 sequences, indicating highly asymmetric rates of protein evolution in rice tribe and its relatives, with an accelerated rate of TFIIAγ1 gene. Our expression data and EST database search further indicated that after whole genome duplication, the expression of TFIIAγ1 gene was significantly reduced while TFIIAγ5 remained constitutively expressed and maintained the ancestral role as a subunit of the TFIIA complex. Conclusion The evolutionary fate of TFIIAγ duplicates is not consistent with the neofunctionalization model that predicts that one of the duplicated genes acquires a new function because of positive Darwinian selection. Instead, we suggest that subfunctionalization might be involved in TFIIAγ evolution in grasses. The fact that both TFIIAγ1 and TFIIAγ5 genes were effectively involved in response to biotic or abiotic factors might be explained by either Dykhuizen-Hartl effect or buffering hypothesis.
Collapse
Affiliation(s)
- Hong-Zheng Sun
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | | |
Collapse
|
42
|
Macqueen DJ, Delbridge ML, Manthri S, Johnston IA. A Newly Classified Vertebrate Calpain Protease, Directly Ancestral to CAPN1 and 2, Episodically Evolved a Restricted Physiological Function in Placental Mammals. Mol Biol Evol 2010; 27:1886-902. [DOI: 10.1093/molbev/msq071] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
43
|
Cromer D, Wolinsky SM, McLean AR. How fast could HIV change gene frequencies in the human population? Proc Biol Sci 2010; 277:1981-9. [PMID: 20219734 PMCID: PMC2880090 DOI: 10.1098/rspb.2009.2073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Infectious diseases have the potential to act as strong forces for genetic selection on the populations they affect. Human immunodeficiency virus (HIV) is a prime candidate to impose such genetic selection owing to the vast number of people it infects and the varying susceptibility of different human leucocyte antigen (HLA) types to HIV disease progression. We have constructed a model of HIV infection that differentiates between these HLA types, and have used reported estimates of the number of people infected with HIV and the different rates of progression to acquired immunodeficiency syndrome (AIDS) to provide a lower bound estimate on the length of time it would take for HIV to impose major genetic change in humans. We find that an HIV infection similar to that currently affecting sub-Saharan Africa could not yet have caused more than a 3 per cent decrease in the proportion of individuals who progress quickly to disease. Such an infection is unlikely to cause major genetic change (defined as a decrease in the proportion of quickly progressing individuals to under 50 per cent of their starting proportion) until 400 years have passed since HIV emergence. However, in very severely affected populations, there is a chance of observing such major genetic changes after another 50 years.
Collapse
Affiliation(s)
- Deborah Cromer
- Zoology Department, Institute for Emerging Infections, James Martin 21st Century School, University of Oxford, Oxford, UK.
| | | | | |
Collapse
|
44
|
Taffs R, Aston JE, Brileya K, Jay Z, Klatt CG, McGlynn S, Mallette N, Montross S, Gerlach R, Inskeep WP, Ward DM, Carlson RP. In silico approaches to study mass and energy flows in microbial consortia: a syntrophic case study. BMC SYSTEMS BIOLOGY 2009; 3:114. [PMID: 20003240 PMCID: PMC2799449 DOI: 10.1186/1752-0509-3-114] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2009] [Accepted: 12/10/2009] [Indexed: 11/14/2022]
Abstract
BACKGROUND Three methods were developed for the application of stoichiometry-based network analysis approaches including elementary mode analysis to the study of mass and energy flows in microbial communities. Each has distinct advantages and disadvantages suitable for analyzing systems with different degrees of complexity and a priori knowledge. These approaches were tested and compared using data from the thermophilic, phototrophic mat communities from Octopus and Mushroom Springs in Yellowstone National Park (USA). The models were based on three distinct microbial guilds: oxygenic phototrophs, filamentous anoxygenic phototrophs, and sulfate-reducing bacteria. Two phases, day and night, were modeled to account for differences in the sources of mass and energy and the routes available for their exchange. RESULTS The in silico models were used to explore fundamental questions in ecology including the prediction of and explanation for measured relative abundances of primary producers in the mat, theoretical tradeoffs between overall productivity and the generation of toxic by-products, and the relative robustness of various guild interactions. CONCLUSION The three modeling approaches represent a flexible toolbox for creating cellular metabolic networks to study microbial communities on scales ranging from cells to ecosystems. A comparison of the three methods highlights considerations for selecting the one most appropriate for a given microbial system. For instance, communities represented only by metagenomic data can be modeled using the pooled method which analyzes a community's total metabolic potential without attempting to partition enzymes to different organisms. Systems with extensive a priori information on microbial guilds can be represented using the compartmentalized technique, employing distinct control volumes to separate guild-appropriate enzymes and metabolites. If the complexity of a compartmentalized network creates an unacceptable computational burden, the nested analysis approach permits greater scalability at the cost of more user intervention through multiple rounds of pathway analysis.
Collapse
Affiliation(s)
- Reed Taffs
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| | - John E Aston
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Kristen Brileya
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Zackary Jay
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA
| | - Christian G Klatt
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA
| | - Shawn McGlynn
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA
| | - Natasha Mallette
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Scott Montross
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA
| | - Robin Gerlach
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| | - William P Inskeep
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA
| | - David M Ward
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA
| | - Ross P Carlson
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717, USA
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
45
|
Han MV, Demuth JP, McGrath CL, Casola C, Hahn MW. Adaptive evolution of young gene duplicates in mammals. Genome Res 2009; 19:859-67. [PMID: 19411603 DOI: 10.1101/gr.085951.108] [Citation(s) in RCA: 163] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Duplicate genes act as a source of genetic material from which new functions arise. They exist in large numbers in every sequenced eukaryotic genome and may be responsible for many differences in phenotypes between species. However, recent work searching for the targets of positive selection in humans has largely ignored duplicated genes due to complications in orthology assignment. Here we find that a high proportion of young gene duplicates in the human, macaque, mouse, and rat genomes have experienced adaptive natural selection. Approximately 10% of all lineage-specific duplicates show evidence for positive selection on their protein sequences, larger than any reported amount of selection among single-copy genes in these lineages using similar methods. We also find that newly duplicated genes that have been transposed to new chromosomal locations are significantly more likely to have undergone positive selection than the ancestral copy. Human-specific duplicates evolving under adaptive natural selection include a surprising number of genes involved in neuronal and cognitive functions. Our results imply that genome scans for selection that ignore duplicated loci are missing a large fraction of all adaptive substitutions. The results are also in agreement with the classical model of evolution by gene duplication, supporting a common role for neofunctionalization in the long-term maintenance of gene duplicates.
Collapse
Affiliation(s)
- Mira V Han
- School of Informatics, Indiana University, Bloomington, IN 47405, USA
| | | | | | | | | |
Collapse
|
46
|
Wang M, Zhang X, Zhao H, Wang Q, Pan Y. FoxO gene family evolution in vertebrates. BMC Evol Biol 2009; 9:222. [PMID: 19732467 PMCID: PMC2746812 DOI: 10.1186/1471-2148-9-222] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 09/07/2009] [Indexed: 11/10/2022] Open
Abstract
Background Forkhead box, class O (FoxO) belongs to the large family of forkhead transcription factors that are characterized by a conserved forkhead box DNA-binding domain. To date, the FoxO group has four mammalian members: FoxO1, FoxO3a, FoxO4 and FoxO6, which are orthologs of DAF16, an insulin-responsive transcription factor involved in regulating longevity of worms and flies. The degree of homology between these four members is high, especially in the forkhead domain, which contains the DNA-binding interface. Yet, mouse FoxO knockouts have revealed that each FoxO gene has its unique role in the physiological process. Whether the functional divergences are primarily due to adaptive selection pressure or relaxed selective constraint remains an open question. As such, this study aims to address the evolutionary mode of FoxO, which may lead to the functional divergence. Results Sequence similarity searches have performed in genome and scaffold data to identify homologues of FoxO in vertebrates. Phylogenetic analysis was used to characterize the family evolutionary history by identifying two duplications early in vertebrate evolution. To determine the mode of evolution in vertebrates, we performed a rigorous statistical analysis with FoxO gene sequences, including relative rate ratio tests, branch-specific dN/dS ratio tests, site-specific dN/dS ratio tests, branch-site dN/dS ratio tests and clade level amino acid conservation/variation patterns analysis. Our results suggest that FoxO is constrained by strong purifying selection except four sites in FoxO6, which have undergone positive Darwinian selection. The functional divergence in this family is best explained by either relaxed purifying selection or positive selection. Conclusion We present a phylogeny describing the evolutionary history of the FoxO gene family and show that the genes have evolved through duplications followed by purifying selection except for four sites in FoxO6 fixed by positive selection lie mostly within the non-conserved optimal PKB motif in the C-terminal part. Relaxed selection may play important roles in the process of functional differentiation evolved through gene duplications as well.
Collapse
Affiliation(s)
- Minghui Wang
- School of Agriculture and Biology, Department of Animal Sciences, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | | | | | | | | |
Collapse
|
47
|
Hahn MW. Distinguishing among evolutionary models for the maintenance of gene duplicates. J Hered 2009; 100:605-17. [PMID: 19596713 DOI: 10.1093/jhered/esp047] [Citation(s) in RCA: 259] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Determining the evolutionary forces responsible for the maintenance of gene duplicates is key to understanding the processes leading to evolutionary adaptation and novelty. In his highly prescient book, Susumu Ohno recognized that duplicate genes are fixed and maintained within a population with 3 distinct outcomes: neofunctionalization, subfunctionalization, and conservation of function. Subsequent researchers have proposed a multitude of population genetic models that lead to these outcomes, each differing largely in the role played by adaptive natural selection. In this paper, I present a nonmathematical review of these models, their predictions, and the evidence collected in support of each of them. Though the various outcomes of gene duplication are often strictly associated with the presence or absence of adaptive natural selection, I argue that determining the outcome of duplication is orthogonal to determining whether natural selection has acted. Despite an ever-growing field of research into the fate of gene duplicates, there is not yet clear evidence for the preponderance of one outcome over the others, much less evidence for the importance of adaptive or nonadaptive forces in maintaining these duplicates.
Collapse
Affiliation(s)
- Matthew W Hahn
- Department of Biology and School of Informatics, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
48
|
Transcriptional regulation of metabolism associated with the increased desiccation resistance of the cactophilic Drosophila mojavensis. Genetics 2009; 182:1279-88. [PMID: 19487561 DOI: 10.1534/genetics.109.104927] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Drosophila, adaptation to xeric environments presents many challenges, greatest among them the maintenance of water balance. Drosophila mojavensis, a cactophilic species from the deserts of North America, is one of the most desiccation resistant in the genus, surviving low humidity primarily by reducing its metabolic rate. Genetic control of reduced metabolic rate, however, has yet to be elucidated. We utilized the recently sequenced genome of D. mojavensis to create an oligonucleotide microarray to pursue the identities of the genes involved in metabolic regulation during desiccation. We observed large differences in gene expression between male and female D. mojavensis as well as both quantitative and qualitative sex differences in their ability to survive xeric conditions. As expected, genes associated with metabolic regulation and carbohydrate metabolism were differentially regulated between stress treatments. Most importantly, we identified four points in central metabolism (Glyceraldehyde 3-phosphate dehydrogenase, transaldolase, alcohol dehydrogenase, and phosphoenolpyruvate carboxykinase) that indicate the potential mechanisms controlling metabolic rate reduction associated with desiccation resistance. Furthermore, a large number of genes associated with vision pathways also were differentially expressed between stress treatments, especially in females, that may underlie the initial detection of stressful environments and trigger subsequent metabolic changes.
Collapse
|
49
|
Stochasticity in evolution. Trends Ecol Evol 2009; 24:157-65. [DOI: 10.1016/j.tree.2008.09.014] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2008] [Revised: 09/24/2008] [Accepted: 09/25/2008] [Indexed: 11/30/2022]
|
50
|
Affiliation(s)
- Austin L Hughes
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|