1
|
Liu Z, Xie W, Li H, Liu X, Lu Y, Lu B, Deng Z, Li Y. Novel perspectives on leptin in osteoarthritis: Focus on aging. Genes Dis 2024; 11:101159. [PMID: 39229323 PMCID: PMC11369483 DOI: 10.1016/j.gendis.2023.101159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 09/10/2023] [Accepted: 09/16/2023] [Indexed: 09/05/2024] Open
Abstract
Osteoarthritis (OA) is a common chronic joint disease characterized by articular cartilage degeneration, subchondral sclerosis, synovitis, and osteophyte formation. OA is associated with disability and impaired quality of life, particularly among the elderly. Leptin, a 16-kD non-glycosylated protein encoded by the obese gene, is produced on a systemic and local basis in adipose tissue and the infrapatellar fat pad located in the knee. The metabolic mechanisms employed by leptin in OA development have been widely studied, with attention being paid to aging as a corroborative risk factor for OA. Hence, in this review, we have attempted to establish a potential link between leptin and OA, by focusing on aging-associated mechanisms and proposing leptin as a potential diagnostic and therapeutic target in aging-related mechanisms of OA that may provide fruitful guidance and emphasis for future research.
Collapse
Affiliation(s)
- Zimo Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hengzhen Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xu Liu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yao Lu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan 410083, China
| | - Bangbao Lu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhenhan Deng
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
2
|
Giordo R, Tulasigeri Totiger S, Caggiari G, Cossu A, Manunta AF, Posadino AM, Pintus G. Protective Effect of Knee Postoperative Fluid on Oxidative-Induced Damage in Human Knee Articular Chondrocytes. Antioxidants (Basel) 2024; 13:188. [PMID: 38397786 PMCID: PMC10886415 DOI: 10.3390/antiox13020188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/15/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
The oxidative-stress-elicited deterioration of chondrocyte function is the initial stage of changes leading to the disruption of cartilage homeostasis. These changes entail a series of catabolic damages mediated by proinflammatory cytokines, MMPs, and aggrecanases, which increase ROS generation. Such uncontrolled ROS production, inadequately balanced by the cellular antioxidant capacity, eventually contributes to the development and progression of chondropathies. Several pieces of evidence show that different growth factors, single or combined, as well as anti-inflammatory cytokines and chemokines, can stimulate chondrogenesis and improve cartilage repair and regeneration. In this view, hypothesizing a potential growth-factor-associated action, we investigate the possible protective effect of post-operation knee fluid from patients undergoing prosthesis replacement surgery against ROS-induced damage on normal human knee articular chondrocytes (HKACs). To this end, HKACs were pre-treated with post-operation knee fluid and then exposed to H2O2 to mimic oxidative stress. Intracellular ROS levels were measured by using the molecular probe H2DCFDA; cytosolic and mitochondrial oxidative status were assessed by using HKACs infected with lentiviral particles harboring the redox-sensing green fluorescent protein (roGFP); and cell proliferation was determined by measuring the rate of DNA synthesis with BrdU incorporation. Moreover, superoxide dismutase (SOD), catalase, and glutathione levels from the cell lysates of treated cells were also measured. Postoperative peripheral blood sera from the same patients were used as controls. Our study shows that post-operation knee fluid can counteract H2O2-elicited oxidative stress by decreasing the intracellular ROS levels, preserving the cytosolic and mitochondrial redox status, maintaining the proliferation of oxidatively stressed HKACs, and upregulating chondrocyte antioxidant defense. Overall, our results support and propose an important effect of post-operation knee fluid substances in maintaining HKAC function by mediating cell antioxidative system upregulation and protecting cells from oxidative stress.
Collapse
Affiliation(s)
- Roberta Giordo
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (R.G.); (S.T.T.); (A.C.)
| | - Smitha Tulasigeri Totiger
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (R.G.); (S.T.T.); (A.C.)
| | - Gianfilippo Caggiari
- Orthopaedic and Traumatology Department, University Hospital, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (G.C.); (A.F.M.)
| | - Annalisa Cossu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (R.G.); (S.T.T.); (A.C.)
| | - Andrea Fabio Manunta
- Orthopaedic and Traumatology Department, University Hospital, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (G.C.); (A.F.M.)
| | - Anna Maria Posadino
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (R.G.); (S.T.T.); (A.C.)
| | - Gianfranco Pintus
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy; (R.G.); (S.T.T.); (A.C.)
- Department of Medical Laboratory Sciences, College of Health Sciences, Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
3
|
Peng R, Shang J, Jiang N, Chi-Jen H, Gu Y, Xing B, Hu R, Wu B, Wang D, Xu X, Lu H. Klf10 is involved in extracellular matrix calcification of chondrocytes alleviating chondrocyte senescence. J Transl Med 2024; 22:52. [PMID: 38217021 PMCID: PMC10790269 DOI: 10.1186/s12967-023-04666-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 10/27/2023] [Indexed: 01/14/2024] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative disease resulting joint disability and pain. Accumulating evidences suggest that chondrocyte extracellular matrix calcification plays an important role in the development of OA. Here, we showed that Krüppel-like factor 10 (Klf10) was involved in the regulation of chondrocyte extracellular matrix calcification by regulating the expression of Frizzled9. Knockdown of Klf10 attenuated TBHP induced calcification and reduced calcium content in chondrocytes. Restoring extracellular matrix calcification of chondrocytes could aggravate chondrocyte senescence. Destabilization of a medial meniscus (DMM) mouse model of OA, in vivo experiments revealed that knockdown Klf10 improved the calcification of articular cartilage and ameliorated articular cartilage degeneration. These findings suggested that knockdown Klf10 inhibited extracellular matrix calcification-related changes in chondrocytes and alleviated chondrocyte senescence.
Collapse
Affiliation(s)
- Rong Peng
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Jie Shang
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Ning Jiang
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
- Department of Orthopedics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 26400, Shandong, China
| | - Hsu Chi-Jen
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Yu Gu
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Baizhou Xing
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Renan Hu
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Biao Wu
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Dawei Wang
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.
| | - Xianghe Xu
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.
| | - Huading Lu
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
4
|
Atasoy-Zeybek A, Hawse GP, Nagelli CV, Lopez De Padilla C, Abdel MP, Evans CH. Transcriptomic changes during the replicative senescence of human articular chondrocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.565835. [PMID: 37986862 PMCID: PMC10659330 DOI: 10.1101/2023.11.07.565835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Osteoarthritis (OA) is a degenerative joint disease and a leading cause of disability worldwide. Aging is a major risk factor for OA, but the specific mechanisms underlying this connection remain unclear. Although chondrocytes rarely divide in adult articular cartilage, they undergo replicative senescence in vitro which provides an opportunity to study changes related to aging under controlled laboratory conditions. In this pilot study, we performed bulk RNA sequencing on early- and late-passage human articular chondrocytes to identify transcriptomic changes associated with cellular aging. Chondrocytes were isolated from the articular cartilage of three donors, two with OA (age 70-80 years) and one with healthy cartilage (age 26 years). Chondrocytes were serially passaged until replicative senescence and RNA extracted from early- and late-passage cells. Principal component analysis of all genes showed clear separation between early- and late-passage chondrocytes, indicating substantial age-related differences in gene expression. Differentially expressed genes (DEGs) analysis confirmed distinct transcriptomic profiles between early- and late-passage chondrocytes. Hierarchical clustering revealed contrasting expression patterns between the two isolates from osteoarthritic samples and the healthy sample. Focused analysis of DEGs on transcripts associated with turnover of the extra-cellular matrix and the senescence-associated secretory phenotype (SASP) showed consistent downregulation of Col2A1 and ACAN, and upregulation of MMP19, ADAMTS4, and ADAMTS8 in late passage chondrocytes across all samples. SASP components including IL-1α, IL-1β, IL-6, IL-7, p16INK4A (CDKN2A) and CCL2 demonstrated significant upregulation in late passage chondrocytes originally isolated from OA samples. Pathway analysis between sexes with OA revealed shared pathways such as extracellular matrix (ECM) organization, collagen formation, skeletal and muscle development, and nervous system development. Sex-specific differences were observed, with males showing distinctions in ECM organization, regulation of the cell cycle process as well as neuron differentiation. In contrast, females exhibited unique variations in the regulation of the cell cycle process, DNA metabolic process, and the PID-PLK1 pathway.
Collapse
Affiliation(s)
- Aysegul Atasoy-Zeybek
- Musculoskeletal Gene Therapy Research Laboratory, Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Gresin P. Hawse
- Musculoskeletal Gene Therapy Research Laboratory, Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Christopher V. Nagelli
- Musculoskeletal Gene Therapy Research Laboratory, Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Consuelo Lopez De Padilla
- Musculoskeletal Gene Therapy Research Laboratory, Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | - Matthew P. Abdel
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Christopher H. Evans
- Musculoskeletal Gene Therapy Research Laboratory, Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
5
|
Kanazawa Y, Miyachi R, Higuchi T, Sato H. Effects of Aging on Collagen in the Skeletal Muscle of Mice. Int J Mol Sci 2023; 24:13121. [PMID: 37685934 PMCID: PMC10487623 DOI: 10.3390/ijms241713121] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Aging affects several tissues in the body, including skeletal muscle. Multiple types of collagens are localized in the skeletal muscle and contribute to the maintenance of normal muscle structure and function. Since the effects of aging on muscle fibers vary by muscle fiber type, it is expected that the effects of aging on intramuscular collagen might be influenced by muscle fiber type. In this study, we examined the effect of aging on collagen levels in the soleus (slow-twitch muscle) and gastrocnemius (fast-twitch muscle) muscles of 3-, 10-, 24-, and 28-month-old male C57BL/6J mice using molecular and morphological analysis. It was found that aging increased collagen I, III, and VI gene expression and immunoreactivity in both slow- and fast-twitch muscles and collagen IV expression in slow-twitch muscles. However, collagen IV gene expression and immunoreactivity in fast-twitch muscle were unaffected by aging. In contrast, the expression of the collagen synthesis marker heat shock protein 47 in both slow- and fast-twitch muscles decreased with aging, while the expression of collagen degradation markers increased with aging. Overall, these results suggest that collagen gene expression and immunoreactivity are influenced by muscle fiber type and collagen type and that the balance between collagen synthesis and degradation tends to tilt toward degradation with aging.
Collapse
Affiliation(s)
- Yuji Kanazawa
- Department of Physical Therapy, Hokuriku University, Kanazawa 920-1180, Ishikawa, Japan;
| | - Ryo Miyachi
- Department of Physical Therapy, Hokuriku University, Kanazawa 920-1180, Ishikawa, Japan;
| | - Takashi Higuchi
- Department of Physical Therapy, Osaka University of Human Sciences, Settsu 566-8501, Osaka, Japan;
| | - Hiaki Sato
- Department of Medical Technology and Clinical Engineering, Hokuriku University, Kanazawa 920-1180, Ishikawa, Japan;
| |
Collapse
|
6
|
Gwam C, Ohanele C, Hamby J, Chughtai N, Mufti Z, Ma X. Human placental extract: a potential therapeutic in treating osteoarthritis. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:322. [PMID: 37404996 PMCID: PMC10316113 DOI: 10.21037/atm.2019.10.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 09/29/2019] [Indexed: 09/19/2023]
Abstract
Osteoarthritis (OA) is a degenerative joint disease marked by cartilage degradation and loss of function. Recently, there have been increased efforts to attenuate and reverse OA by stimulating cartilage regeneration and preventing cartilage degradation. Human placental extract (HPE) may be an option due to its anti-inflammatory, antioxidant, and growth stimulatory properties. These properties are useful in preventing cell death and senescence, which may optimize in-situ cartilage regeneration. In this review, we discuss the anatomy and physiology of the placenta, as well as explore in vivo and in vitro studies assessing its effects on tissue regeneration. Finally, we assess the potential role of HPE in cartilage regenerative medicine and OA. The Medline database was utilized for all studies that involved the use of HPE or human placenta hydrolysate. Exclusion criteria included articles not written in English, conference reviews, editorials, letters to the editor, surveys, case reports, and case series. HPE had significant anti-inflammatory and regenerative properties in vitro and in vivo. Furthermore, HPE had a role in attenuating cellular senescence and cell apoptosis via reduction of reactive oxidative species both in vitro and in vivo. One study explored the effects of HPE in OA and demonstrated reduction in cartilage catabolic gene expression, indicating HPE's effect in attenuating OA. HPE houses favorable properties that can attenuate and reverse tissue damage. This may be a beneficial therapeutic in OA as it creates a more favorable environment for in-situ cartilage regeneration. More well designed in-vitro and in-vivo studies are needed to define the role of HPE in treating OA.
Collapse
Affiliation(s)
- Chukwuweike Gwam
- Department of Orthopedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | - Jacob Hamby
- Department of Orthopedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | | | | | - Xue Ma
- Department of Orthopedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC, USA
| |
Collapse
|
7
|
Parker E, Khayrullin A, Kent A, Mendhe B, Youssef El Baradie KB, Yu K, Pihkala J, Liu Y, McGee-Lawrence M, Johnson M, Chen J, Hamrick M. Hindlimb Immobilization Increases IL-1β and Cdkn2a Expression in Skeletal Muscle Fibro-Adipogenic Progenitor Cells: A Link Between Senescence and Muscle Disuse Atrophy. Front Cell Dev Biol 2022; 9:790437. [PMID: 35047502 PMCID: PMC8762295 DOI: 10.3389/fcell.2021.790437] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/13/2021] [Indexed: 11/26/2022] Open
Abstract
Loss of muscle mass and strength contributes to decreased independence and an increased risk for morbidity and mortality. A better understanding of the cellular and molecular mechanisms underlying muscle atrophy therefore has significant clinical and therapeutic implications. Fibro-adipogenic progenitors (FAPs) are a skeletal muscle resident stem cell population that have recently been shown to play vital roles in muscle regeneration and muscle hypertrophy; however, the role that these cells play in muscle disuse atrophy is not well understood. We investigated the role of FAPs in disuse atrophy in vivo utilizing a 2-week single hindlimb immobilization model. RNA-seq was performed on FAPs isolated from the immobilized and non-immobilized limb. The RNAseq data show that IL-1β is significantly upregulated in FAPs following 2 weeks of immobilization, which we confirmed using droplet-digital PCR (ddPCR). We further validated the RNA-seq and ddPCR data from muscle in situ using RNAscope technology. IL-1β is recognized as a key component of the senescence-associated secretory phenotype, or SASP. We then tested the hypothesis that FAPs from the immobilized limb would show elevated senescence measured by cyclin-dependent kinase inhibitor 2A (Cdkn2a) expression as a senescence marker. The ddPCR and RNAscope data both revealed increased Cdkn2a expression in FAPs with immobilization. These data suggest that the gene expression profile of FAPs is significantly altered with disuse, and that disuse itself may drive senescence in FAPs further contributing to muscle atrophy.
Collapse
Affiliation(s)
- Emily Parker
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Andrew Khayrullin
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Andrew Kent
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Bharati Mendhe
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Khairat Bahgat Youssef El Baradie
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States.,Faculty of Science, Tanta University, Tanta, Egypt
| | - Kanglun Yu
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Jeanene Pihkala
- Flow Cytometry Core Facility Research Laboratory Director, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Meghan McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Maribeth Johnson
- Division of Biostatistics and Data Science, DPHS, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Jie Chen
- Division of Biostatistics and Data Science, DPHS, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Mark Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, GA, United States
| |
Collapse
|
8
|
Wang Q, Chen Q, Sui J, Tu Y, Guo X, Li F. Celecoxib prevents tumor necrosis factor-α (TNF-α)-induced cellular senescence in human chondrocytes. Bioengineered 2021; 12:12812-12820. [PMID: 34895043 PMCID: PMC8809908 DOI: 10.1080/21655979.2021.2003661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Osteoarthritis (OA) is a cartilage degenerative disease commonly observed in the elderly population and significantly impacts the normal life of OA patients. It has been reported that the development of pathological cell senescence in chondrocytes is involved in the pathogenesis of OA. Celecoxib is a common non-steroidal anti-inflammatory drug, and it has been recently reported to exert therapeutic effects on OA. However, its underlying mechanism is still unclear. The present study intends to explore its mechanism and provide fundamental evidence for the application of Celecoxib in the treatment of clinical OA. Tumor necrosis factor-α (TNF-α) was utilized to establish an in vitro model of chondrocytes senescence. The elevated reactive oxygen species (ROS) generation, increased cell cycle arrest in G0/G1 phase, reduced telomerase activity, and upregulated senescence-associatedβ-galactosidase (SA-β-Gal) staining were all observed in TNF-α-treated chondrocytes, which were then dramatically reversed by 10 and 20 μM Celecoxib. In addition, the upregulated DNA damage biomarkers, p-ATM, and p-CHK2, observed in TNF-α-treated chondrocytes were significantly downregulated by 10 and 20 μM Celecoxib. Lastly, the expression level of p21 and p53 was greatly elevated in chondrocytes by stimulation with TNF-α which was then pronouncedly repressed by treatment with Celecoxib. Taken together, our data reveal that Celecoxib ameliorated TNF-α-induced cellular senescence in human chondrocytes.
Collapse
Affiliation(s)
- Qunli Wang
- Department of Orthopaedic Center, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, China
| | - Qi Chen
- Department of Orthopedics, The 928th Hospital of the Joint Logistic Support Force of the People's Liberation Army, Haikou, Hainan, China
| | - Jie Sui
- Department of Orthopedics, The 904th Hospital of the Joint Logistic Support Force of the People's Liberation Army, Changzhou, Jiangsu, China
| | - Yuanyuan Tu
- Department of Orthopaedic Center, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, China
| | - Xiang Guo
- Department of Orthopaedic Center, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, Hainan, China
| | - Feng Li
- Department of Orthopedics, The 928th Hospital of the Joint Logistic Support Force of the People's Liberation Army, Haikou, Hainan, China
| |
Collapse
|
9
|
Stücker S, Bollmann M, Garbers C, Bertrand J. The role of calcium crystals and their effect on osteoarthritis pathogenesis. Best Pract Res Clin Rheumatol 2021; 35:101722. [PMID: 34732285 DOI: 10.1016/j.berh.2021.101722] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Osteoarthritis (OA) is a degenerative joint disease characterized by progressive degeneration of articular cartilage. Due to its high prevalence and limited treatment options, OA has become one of the most disabling diseases in developed countries. In recent years, OA has been recognized as a heterogenic disease with various phenotypes. Calcium crystal-related endotypes, which are defined by either a distinct functional or pathobiological mechanism, are present in approximately 60% of all OA patients. Two different calcium crystals can accumulate in the joint and thereby calcify the cartilage matrix, which are basic calcium phosphate (BCP) and calcium pyrophosphate (CPP) crystals. The formation of these crystals depends mainly on the balance of phosphate and pyrophosphate, which is regulated by specific proteins controlling the pyrophosphate metabolism. Dysregulation of these molecules subsequently leads to preferential formation of either BCP or CPP crystals. BCP crystals, on the one hand, are directly associated with OA severity and cartilage degradation. They are mostly located in the deeper cartilage layers and are associated with chondrocyte hypertrophy. CPP crystal deposition, on the other hand, is a hallmark of chondrocalcinosis and is associated with aging and chondrocyte senescence. Therefore, BCP and CPP crystals are associated with different chondrocyte phenotypes. However, BCP and CPP crystals are not mutually exclusive and can coexist in OA, creating a mixed endotype of OA. Both crystals clearly play a role in the pathogenesis of OA. However, the exact impact of each crystal type on either driving the disease progression or being a result of chondrocyte differentiation is still to be elucidated.
Collapse
Affiliation(s)
- Sina Stücker
- Department of Orthopaedic Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
| | - Miriam Bollmann
- Department of Orthopaedic Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
| | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany.
| | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.
| |
Collapse
|
10
|
Nox2 Deficiency Reduces Cartilage Damage and Ectopic Bone Formation in an Experimental Model for Osteoarthritis. Antioxidants (Basel) 2021; 10:antiox10111660. [PMID: 34829531 PMCID: PMC8614813 DOI: 10.3390/antiox10111660] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/17/2022] Open
Abstract
Osteoarthritis (OA) is a destructive disease of the joint with age and obesity being its most important risk factors. Around 50% of OA patients suffer from inflammation of the synovial joint capsule, which is characterized by increased abundance and activation of synovial macrophages that produce reactive oxygen species (ROS) via NADPH-oxidase 2 (NOX2). Both ROS and high blood levels of low-density lipoprotein (LDL) are implicated in OA pathophysiology, which may interact to form oxidized LDL (oxLDL) and thereby promote disease. Therefore, targeting NOX2 could be a viable treatment strategy for OA. Collagenase-induced OA (CiOA) was used to compare pathology between wild-type (WT) and Nox2 knockout (Nox2−/−) C57Bl/6 mice. Mice were either fed a standard diet or Western diet (WD) to study a possible interaction between NOX2-derived ROS and LDL. Synovial inflammation, cartilage damage and ectopic bone size were assessed on histology. Extracellular ROS production by macrophages was measured in vitro using the Amplex Red assay. Nox2−/− macrophages produced basal levels of ROS but were unable to increase ROS production in response to the alarmin S100A8 or the phorbol ester PMA. Interestingly, Nox2 deficiency reduced cartilage damage, synovial lining thickness and ectopic bone size, whereas these disease parameters were not affected by WD-feeding. These results suggest that NOX2-derived ROS are involved in CiOA development.
Collapse
|
11
|
Qiao K, Chen Q, Cao Y, Li J, Xu G, Liu J, Cui X, Tian K, Zhang W. Diagnostic and Therapeutic Role of Extracellular Vesicles in Articular Cartilage Lesions and Degenerative Joint Diseases. Front Bioeng Biotechnol 2021; 9:698614. [PMID: 34422779 PMCID: PMC8371972 DOI: 10.3389/fbioe.2021.698614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/28/2021] [Indexed: 01/15/2023] Open
Abstract
Two leading contributors to the global disability are cartilage lesions and degenerative joint diseases, which are characterized by the progressive cartilage destruction. Current clinical treatments often fail due to variable outcomes and an unsatisfactory long-term repair. Cell-based therapies were once considered as an effective solution because of their anti-inflammatory and immunosuppression characteristics as well as their differentiation capacity to regenerate the damaged tissue. However, stem cell-based therapies have inherent limitations, such as a high tumorigenicity risk, a low retention, and an engraftment rate, as well as strict regulatory requirements, which result in an underwhelming therapeutic effect. Therefore, the non-stem cell-based therapy has gained its popularity in recent years. Extracellular vesicles (EVs), in particular, like the paracrine factors secreted by stem cells, have been proven to play a role in mediating the biological functions of target cells, and can achieve the therapeutic effect similar to stem cells in cartilage tissue engineering. Therefore, a comprehensive review of the therapeutic role of EVs in cartilage lesions and degenerative joint diseases can be discussed both in terms of time and favorability. In this review, we summarized the physiological environment of a joint and its pathological alteration after trauma and consequent changes in EVs, which are lacking in the current literature studies. In addition, we covered the potential working mechanism of EVs in the repair of the cartilage and the joint and also discussed the potential therapeutic applications of EVs in future clinical use.
Collapse
Affiliation(s)
- Kai Qiao
- First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Qi Chen
- First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Yiguo Cao
- First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jie Li
- First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Gang Xu
- First Affiliated Hospital, Dalian Medical University, Dalian, China
| | - Jiaqing Liu
- Qingdao University of Science and Technology, Qingdao, China
| | - Xiaolin Cui
- First Affiliated Hospital, Dalian Medical University, Dalian, China
- Department of Orthopaedic Surgery and Musculoskeletal Medicine, University of Otago, Christchurch, New Zealand
| | - Kang Tian
- First Affiliated Hospital, Dalian Medical University, Dalian, China
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Weiguo Zhang
- First Affiliated Hospital, Dalian Medical University, Dalian, China
| |
Collapse
|
12
|
Osteocyte Dysfunction in Joint Homeostasis and Osteoarthritis. Int J Mol Sci 2021; 22:ijms22126522. [PMID: 34204587 PMCID: PMC8233862 DOI: 10.3390/ijms22126522] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/13/2021] [Accepted: 06/16/2021] [Indexed: 01/29/2023] Open
Abstract
Structural disturbances of the subchondral bone are a hallmark of osteoarthritis (OA), including sclerotic changes, cystic lesions, and osteophyte formation. Osteocytes act as mechanosensory units for the micro-cracks in response to mechanical loading. Once stimulated, osteocytes initiate the reparative process by recruiting bone-resorbing cells and bone-forming cells to maintain bone homeostasis. Osteocyte-expressed sclerostin is known as a negative regulator of bone formation through Wnt signaling and the RANKL pathway. In this review, we will summarize current understandings of osteocytes at the crossroad of allometry and mechanobiology to exploit the relationship between osteocyte morphology and function in the context of joint aging and osteoarthritis. We also aimed to summarize the osteocyte dysfunction and its link with structural and functional disturbances of the osteoarthritic subchondral bone at the molecular level. Compared with normal bones, the osteoarthritic subchondral bone is characterized by a higher bone volume fraction, a larger trabecular bone number in the load-bearing region, and an increase in thickness of pre-existing trabeculae. This may relate to the aberrant expressions of sclerostin, periostin, dentin matrix protein 1, matrix extracellular phosphoglycoprotein, insulin-like growth factor 1, and transforming growth factor-beta, among others. The number of osteocyte lacunae embedded in OA bone is also significantly higher, yet the volume of individual lacuna is relatively smaller, which could suggest abnormal metabolism in association with allometry. The remarkably lower percentage of sclerostin-positive osteocytes, together with clustering of Runx-2 positive pre-osteoblasts, may suggest altered regulation of osteoblast differentiation and osteoblast-osteocyte transformation affected by both signaling molecules and the extracellular matrix. Aberrant osteocyte morphology and function, along with anomalies in molecular signaling mechanisms, might explain in part, if not all, the pre-osteoblast clustering and the uncoupled bone remodeling in OA subchondral bone.
Collapse
|
13
|
El-Jawhari JJ, Ganguly P, Jones E, Giannoudis PV. Bone Marrow Multipotent Mesenchymal Stromal Cells as Autologous Therapy for Osteonecrosis: Effects of Age and Underlying Causes. Bioengineering (Basel) 2021; 8:69. [PMID: 34067727 PMCID: PMC8156020 DOI: 10.3390/bioengineering8050069] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/29/2021] [Accepted: 05/13/2021] [Indexed: 12/21/2022] Open
Abstract
Bone marrow (BM) is a reliable source of multipotent mesenchymal stromal cells (MSCs), which have been successfully used for treating osteonecrosis. Considering the functional advantages of BM-MSCs as bone and cartilage reparatory cells and supporting angiogenesis, several donor-related factors are also essential to consider when autologous BM-MSCs are used for such regenerative therapies. Aging is one of several factors contributing to the donor-related variability and found to be associated with a reduction of BM-MSC numbers. However, even within the same age group, other factors affecting MSC quantity and function remain incompletely understood. For patients with osteonecrosis, several underlying factors have been linked to the decrease of the proliferation of BM-MSCs as well as the impairment of their differentiation, migration, angiogenesis-support and immunoregulatory functions. This review discusses the quality and quantity of BM-MSCs in relation to the etiological conditions of osteonecrosis such as sickle cell disease, Gaucher disease, alcohol, corticosteroids, Systemic Lupus Erythematosus, diabetes, chronic renal disease and chemotherapy. A clear understanding of the regenerative potential of BM-MSCs is essential to optimize the cellular therapy of osteonecrosis and other bone damage conditions.
Collapse
Affiliation(s)
- Jehan J El-Jawhari
- Department of Biosciences, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
- Clinical Pathology Department, Mansoura University, Mansoura 35516, Egypt
| | - Payal Ganguly
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK; (P.G.); (E.J.); (P.V.G.)
| | - Elena Jones
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK; (P.G.); (E.J.); (P.V.G.)
| | - Peter V Giannoudis
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, School of Medicine, University of Leeds, Leeds LS2 9JT, UK; (P.G.); (E.J.); (P.V.G.)
- Academic Department of Trauma and Orthopedic, School of Medicine, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
14
|
Cherifi C, Monteagudo S, Lories RJ. Promising targets for therapy of osteoarthritis: a review on the Wnt and TGF-β signalling pathways. Ther Adv Musculoskelet Dis 2021; 13:1759720X211006959. [PMID: 33948125 PMCID: PMC8053758 DOI: 10.1177/1759720x211006959] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/10/2021] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis (OA) is the most common chronic joint disorder worldwide, with a high personal burden for the patients and an important socio-economic impact. Current therapies are largely limited to pain management and rehabilitation and exercise strategies. For advanced cases, joint replacement surgery may be the only option. Hence, there is an enormous need for the development of effective and safe disease-modifying anti-OA drugs. A strong focus in OA research has been on the identification and role of molecular signalling pathways that contribute to the balance between anabolism and catabolism in the articular cartilage. In this context, most insights have been gained in understanding the roles of the transforming growth factor-beta (TGF-β) and the Wingless-type (Wnt) signalling cascades. The emerging picture demonstrates a high degree of complexity with context-dependent events. TGF-β appears to protect cartilage under healthy conditions, but shifts in its receptor use and subsequent downstream signalling may be deleterious in aged individuals or in damaged cartilage. Likewise, low levels of Wnt activity appear important to sustain chondrocyte viability but excessive activation is associated with progressive joint damage. Emerging clinical data suggest some potential for the use of sprifermin, a recombinant forms of fibroblast growth factor 18, a distant TGF-β superfamily member, and for lorecivivint, a Wnt pathway modulator.
Collapse
Affiliation(s)
- Chahrazad Cherifi
- Department of Development and Regeneration, KU Leuven, Skeletal Biology and Engineering Research Centre, Leuven, Belgium
| | - Silvia Monteagudo
- Department of Development and Regeneration, KU Leuven, Skeletal Biology and Engineering Research Centre, Leuven, Belgium
| | - Rik J Lories
- Department of Development and Regeneration, KU Leuven, Skeletal Biology and Engineering Research Centre, Box 813 O&N, Herestraat 49, Leuven 3000, Belgium; Division of Rheumatology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Li Z, Huang Z, Bai L. The P2X7 Receptor in Osteoarthritis. Front Cell Dev Biol 2021; 9:628330. [PMID: 33644066 PMCID: PMC7905059 DOI: 10.3389/fcell.2021.628330] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis (OA) is the most common joint disease. With the increasing aging population, the associated socio-economic costs are also increasing. Analgesia and surgery are the primary treatment options in late-stage OA, with drug treatment only possible in early prevention to improve patients' quality of life. The most important structural component of the joint is cartilage, consisting solely of chondrocytes. Instability in chondrocyte balance results in phenotypic changes and cell death. Therefore, cartilage degradation is a direct consequence of chondrocyte imbalance, resulting in the degradation of the extracellular matrix and the release of pro-inflammatory factors. These factors affect the occurrence and development of OA. The P2X7 receptor (P2X7R) belongs to the purinergic receptor family and is a non-selective cation channel gated by adenosine triphosphate. It mediates Na+, Ca2+ influx, and K+ efflux, participates in several inflammatory reactions, and plays an important role in the different mechanisms of cell death. However, the relationship between P2X7R-mediated cell death and the progression of OA requires investigation. In this review, we correlate potential links between P2X7R, cartilage degradation, and inflammatory factor release in OA. We specifically focus on inflammation, apoptosis, pyroptosis, and autophagy. Lastly, we discuss the therapeutic potential of P2X7R as a potential drug target for OA.
Collapse
Affiliation(s)
- Zihao Li
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ziyu Huang
- Foreign Languages College, Shanghai Normal University, Shanghai, China
| | - Lunhao Bai
- Department of Orthopedic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
16
|
Huang HT, Cheng TL, Yang CD, Chang CF, Ho CJ, Chuang SC, Li JY, Huang SH, Lin YS, Shen HY, Yu TH, Kang L, Lin SY, Chen CH. Intra-Articular Injection of (-)-Epigallocatechin 3-Gallate (EGCG) Ameliorates Cartilage Degeneration in Guinea Pigs with Spontaneous Osteoarthritis. Antioxidants (Basel) 2021; 10:178. [PMID: 33530594 PMCID: PMC7910837 DOI: 10.3390/antiox10020178] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/17/2021] [Accepted: 01/20/2021] [Indexed: 12/18/2022] Open
Abstract
Osteoarthritis (OA) is the most prevalent joint disease that causes an enormous burden of disease worldwide. (-)-Epigallocatechin 3-gallate (EGCG) has been reported to reduce post-traumatic OA progression through its anti-inflammatory property. Aging is the most crucial risk factor of OA, and the majority of OA incidences are related to age and not trauma. In this study, we assess whether EGCG can ameliorate cartilage degradation in primary OA. In an in-vitro study, real-time PCR was performed to assess the expression of genes associated with human articular chondrocyte homeostasis. A spontaneously occurring OA model in guinea pigs was used to investigate the effect of EGCG in vivo. OA severity was evaluated using Safranin O staining and Osteoarthritis Research Society International (OARSI) scores, as well as by immunohistochemical (IHC) analysis to determine the protein level of type II collagen (Col II), matrix metalloproteinase 13 (MMP-13), and p16 ink4a in articular cartilage. In the in-vitro study, EGCG increased the gene expression of aggrecan and Col II and decreased the expression of interleukin-1, cyclooxygenase 2, MMP-13, alkaline phosphatase, Col X, and p16 Ink4a; EGCG treatment also attenuated the degraded cartilage with a lower OARSI score. Meanwhile, IHC results showed that EGCG exerted an anti-OA effect by reducing ECM degradation, cartilage inflammation, and cell senescence with a less-immunostained Col II, MMP-13, and p16 Ink4a. In conclusion, these findings suggest that EGCG may be a potential disease-modifying OA drug for the treatment of primary OA.
Collapse
Affiliation(s)
- Hsuan-Ti Huang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (C.-J.H.); (S.-C.C.); (J.-Y.L.); (S.-H.H.); (Y.-S.L.); (H.-Y.S.); (T.-H.Y.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Tsung-Lin Cheng
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (C.-J.H.); (S.-C.C.); (J.-Y.L.); (S.-H.H.); (Y.-S.L.); (H.-Y.S.); (T.-H.Y.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Chung-Da Yang
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan;
| | - Chi-Fen Chang
- Department of Anatomy, School of Medicine, China Medical University, Taichung 40402, Taiwan;
| | - Cheng-Jung Ho
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (C.-J.H.); (S.-C.C.); (J.-Y.L.); (S.-H.H.); (Y.-S.L.); (H.-Y.S.); (T.-H.Y.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Shu-Chun Chuang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (C.-J.H.); (S.-C.C.); (J.-Y.L.); (S.-H.H.); (Y.-S.L.); (H.-Y.S.); (T.-H.Y.)
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Jhong-You Li
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (C.-J.H.); (S.-C.C.); (J.-Y.L.); (S.-H.H.); (Y.-S.L.); (H.-Y.S.); (T.-H.Y.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Shih-Hao Huang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (C.-J.H.); (S.-C.C.); (J.-Y.L.); (S.-H.H.); (Y.-S.L.); (H.-Y.S.); (T.-H.Y.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Yi-Shan Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (C.-J.H.); (S.-C.C.); (J.-Y.L.); (S.-H.H.); (Y.-S.L.); (H.-Y.S.); (T.-H.Y.)
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Hsin-Yi Shen
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (C.-J.H.); (S.-C.C.); (J.-Y.L.); (S.-H.H.); (Y.-S.L.); (H.-Y.S.); (T.-H.Y.)
| | - Tsung-Han Yu
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (C.-J.H.); (S.-C.C.); (J.-Y.L.); (S.-H.H.); (Y.-S.L.); (H.-Y.S.); (T.-H.Y.)
| | - Lin Kang
- Department of Obstetrics and Gynecology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70457, Taiwan
| | - Sung-Yen Lin
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (C.-J.H.); (S.-C.C.); (J.-Y.L.); (S.-H.H.); (Y.-S.L.); (H.-Y.S.); (T.-H.Y.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
| | - Chung-Hwan Chen
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan; (H.-T.H.); (T.-L.C.); (C.-J.H.); (S.-C.C.); (J.-Y.L.); (S.-H.H.); (Y.-S.L.); (H.-Y.S.); (T.-H.Y.)
- Department of Orthopedics, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Regeneration Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Departments of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Orthopedics, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
- Musculoskeletal Regeneration Research Center, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 80701, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| |
Collapse
|
17
|
Study of Osteoarthritis-Related Hub Genes Based on Bioinformatics Analysis. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2379280. [PMID: 32832544 PMCID: PMC7428874 DOI: 10.1155/2020/2379280] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/02/2020] [Accepted: 07/17/2020] [Indexed: 12/21/2022]
Abstract
Osteoarthritis (OA) is a common cause of morbidity and disability worldwide. However, the pathogenesis of OA is unclear. Therefore, this study was conducted to characterize the pathogenesis and implicated genes of OA. The gene expression profiles of GSE82107 and GSE55235 were downloaded from the Gene Expression Omnibus database. Altogether, 173 differentially expressed genes including 68 upregulated genes and 105 downregulated genes in patients with OA were selected based on the criteria of ∣log fold-change | >1 and an adjusted p value < 0.05. Protein-protein interaction network analysis showed that FN1, COL1A1, IGF1, SPP1, TIMP1, BGN, COL5A1, MMP13, CLU, and SDC1 are the top ten genes most closely related to OA. Quantitative reverse transcription-polymerase chain reaction showed that the expression levels of COL1A1, COL5A1, TIMP1, MMP13, and SDC1 were significantly increased in OA. This study provides clues for the molecular mechanism and specific biomarkers of OA.
Collapse
|
18
|
Szwedowski D, Szczepanek J, Paczesny Ł, Pękała P, Zabrzyński J, Kruczyński J. Genetics in Cartilage Lesions: Basic Science and Therapy Approaches. Int J Mol Sci 2020; 21:E5430. [PMID: 32751537 PMCID: PMC7432875 DOI: 10.3390/ijms21155430] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/31/2022] Open
Abstract
Cartilage lesions have a multifactorial nature, and genetic factors are their strongest determinants. As biochemical and genetic studies have dramatically progressed over the past decade, the molecular basis of cartilage pathologies has become clearer. Several homeostasis abnormalities within cartilaginous tissue have been found, including various structural changes, differential gene expression patterns, as well as altered epigenetic regulation. However, the efficient treatment of cartilage pathologies represents a substantial challenge. Understanding the complex genetic background pertaining to cartilage pathologies is useful primarily in the context of seeking new pathways leading to disease progression as well as in developing new targeted therapies. A technology utilizing gene transfer to deliver therapeutic genes to the site of injury is quickly becoming an emerging approach in cartilage renewal. The goal of this work is to provide an overview of the genetic basis of chondral lesions and the different approaches of the most recent systems exploiting therapeutic gene transfer in cartilage repair. The integration of tissue engineering with viral gene vectors is a novel and active area of research. However, despite promising preclinical data, this therapeutic concept needs to be supported by the growing body of clinical trials.
Collapse
Affiliation(s)
- Dawid Szwedowski
- Orthopedic Arthroscopic Surgery International (O.A.S.I.) Bioresearch Foundation, Gobbi N.P.O., 20133 Milan, Italy;
- Department of Orthopaedics and Trauma Surgery, Provincial Polyclinical Hospital, 87100 Torun, Poland
| | - Joanna Szczepanek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, 87100 Torun, Poland
| | - Łukasz Paczesny
- Orvit Clinic, Citomed Healthcare Center, 87100 Torun, Poland; (Ł.P.); (J.Z.)
| | - Przemysław Pękała
- Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, 30705 Krakow, Poland;
| | - Jan Zabrzyński
- Orvit Clinic, Citomed Healthcare Center, 87100 Torun, Poland; (Ł.P.); (J.Z.)
| | - Jacek Kruczyński
- Department of General Orthopaedics, Musculoskeletal Oncology and Trauma Surgery, Poznan University of Medical Sciences, 60512 Poznań, Poland;
| |
Collapse
|
19
|
Pathogenesis of Osteoarthritis: Risk Factors, Regulatory Pathways in Chondrocytes, and Experimental Models. BIOLOGY 2020; 9:biology9080194. [PMID: 32751156 PMCID: PMC7464998 DOI: 10.3390/biology9080194] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/28/2022]
Abstract
As the most common chronic degenerative joint disease, osteoarthritis (OA) is the leading cause of pain and physical disability, affecting millions of people worldwide. Mainly characterized by articular cartilage degradation, osteophyte formation, subchondral bone remodeling, and synovial inflammation, OA is a heterogeneous disease that impacts all component tissues of the articular joint organ. Pathological changes, and thus symptoms, vary from person to person, underscoring the critical need of personalized therapies. However, there has only been limited progress towards the prevention and treatment of OA, and there are no approved effective disease-modifying osteoarthritis drugs (DMOADs). Conventional treatments, including non-steroidal anti-inflammatory drugs (NSAIDs) and physical therapy, are still the major remedies to manage the symptoms until the need for total joint replacement. In this review, we provide an update of the known OA risk factors and relevant mechanisms of action. In addition, given that the lack of biologically relevant models to recapitulate human OA pathogenesis represents one of the major roadblocks in developing DMOADs, we discuss current in vivo and in vitro experimental OA models, with special emphasis on recent development and application potential of human cell-derived microphysiological tissue chip platforms.
Collapse
|
20
|
Rim YA, Nam Y, Ju JH. The Role of Chondrocyte Hypertrophy and Senescence in Osteoarthritis Initiation and Progression. Int J Mol Sci 2020; 21:ijms21072358. [PMID: 32235300 PMCID: PMC7177949 DOI: 10.3390/ijms21072358] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 12/31/2022] Open
Abstract
Osteoarthritis (OA) is the most common joint disease that causes pain and disability in the adult population. OA is primarily caused by trauma induced by an external force or by age-related cartilage damage. Chondrocyte hypertrophy or chondrocyte senescence is thought to play a role in the initiation and progression of OA. Although chondrocyte hypertrophy and cell death are both crucial steps during the natural process of endochondral bone formation, the abnormal activation of these two processes after injury or during aging seems to accelerate the progression of OA. However, the exact mechanisms of OA progression and these two processes remain poorly understood. Chondrocyte senescence and hypertrophy during OA share various markers and processes. In this study, we reviewed the changes that occur during chondrocyte hypertrophy or senescence in OA and the attempts that were made to regulate them. Regulation of hypertrophic or senescent chondrocytes might be a potential therapeutic target to slow down or stop OA progression; thus, a better understanding of the processes is required for management.
Collapse
Affiliation(s)
- Yeri Alice Rim
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (Y.A.R.); (Y.N.)
| | - Yoojun Nam
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (Y.A.R.); (Y.N.)
| | - Ji Hyeon Ju
- Catholic iPSC Research Center, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea; (Y.A.R.); (Y.N.)
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, Institute of Medical Science, College of Medicine, The Catholic University of Korea, Seoul 06591, Korea
- Correspondence: ; Tel.: +82-2-2258-6895
| |
Collapse
|
21
|
Berenbaum F, Walker C. Osteoarthritis and inflammation: a serious disease with overlapping phenotypic patterns. Postgrad Med 2020; 132:377-384. [PMID: 32100608 DOI: 10.1080/00325481.2020.1730669] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Globally, osteoarthritis (OA) is the most prevalent arthritic condition in those aged over 60 years. OA has a high impact on patient disability and is associated with a significant economic burden. Pain is the most common first sign of disease and the leading cause of disability. Data demonstrating the increasing global prevalence of OA, together with a greater understanding of the burden of the disease, have led to a reassessment of the seriousness of OA and calls for the designation of OA as a serious disease in line with the diseases impact on comorbidity, disability, and mortality. While OA was traditionally seen as a prototypical 'wear and tear' disease, it is now more accurately thought of as a disease of the whole joint involving cartilage together with subchondral bone and synovium. As more has become known of the pathophysiology of OA, it has become increasingly common for it to be described using a number of overlapping phenotypes. Patients with OA will likely experience multiple phenotypes during their disease. This review focuses on what we feel are three key phenotypes: post-trauma, metabolic, and aging. A greater understanding of OA phenotypes, particularly at the early stages of disease, may be necessary to improve treatment outcomes. In the future, non-pharmacological and pharmacological treatments could be tailored to patients based on the key features of their phenotype and disease pathway.
Collapse
Affiliation(s)
- Francis Berenbaum
- INSERM CRSA, Department of Rheumatology, Hospital Saint Antoine, AP-HP.Sorbonne Université , Paris, France
| | | |
Collapse
|
22
|
Yan L, Zhou L, Xie D, Du W, Chen F, Yuan Q, Tong P, Shan L, Efferth T. Chondroprotective effects of platelet lysate towards monoiodoacetate-induced arthritis by suppression of TNF-α-induced activation of NF-ĸB pathway in chondrocytes. Aging (Albany NY) 2019; 11:2797-2811. [PMID: 31089001 PMCID: PMC6535074 DOI: 10.18632/aging.101952] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 05/02/2019] [Indexed: 12/14/2022]
Abstract
Platelet lysate (PL) contains a cocktail of growth factors that actively participates in cartilage repair. This study was designed to determine the effect and mechanism of PL on osteoarthritis (OA). An arthritis model was established to mimic human OA by intra-articular injection of monoiodoacetate (MIA) to Sprague Dawley (SD) rats. The model was weekly treated with PL by intra-articular injection. Thermal withdrawal latency, mechanical withdrawal threshold, and treadmill gait were tested for pain behavior observation. Histopathological and immunohistochemical analyses were conducted for evaluating cartilage degradation. Real time PCRs and Western blots were conducted to elucidate the mechanism of PL on primary chondrocytes. Results showed that, in vivo, PL significantly attenuated pain symptoms and exerted chondrocyte-protective and extracellular matrix (ECM)-modifying effect on the arthritic cartilage in a dose-dependent manner. The in situ expressions of type II Collagen (Col2) and matrix metalloproteinase 13 (Mmp13) in the arthritic cartilage was abnormal and was restored by PL. In vitro, PL significantly restored tumor necrosis factor α (TNF-α)-suppressed anabolic gene expression (Col2 and aggrecan) and TNF-α-increased catabolic gene expression (Col10, Mmp13, Adamts5, and Adamts9) in chondrocytes. The effects were mediated by TNF-α downstream signaling, including inhibition of NF-κB and c-Jun activities. This study provides certain knowledge of anti-OA effect and TNF signaling-related mechanism of PL, placing it as a promising and alternative option for OA therapy in the future.
Collapse
Affiliation(s)
- Li Yan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
- Center for Stem Cell Translational Research, Zhejiang Chinese Medical University, Hangzhou, China
- Equal contribution
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
- Center for Stem Cell Translational Research, Zhejiang Chinese Medical University, Hangzhou, China
- Equal contribution
| | - Danting Xie
- Center for Stem Cell Translational Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wenxi Du
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangming Chen
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiang Yuan
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Peijian Tong
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
- Center for Stem Cell Translational Research, Zhejiang Chinese Medical University, Hangzhou, China
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
23
|
McCutchan A, Dobson GP, Stewart N, Letson HL, Grant AL, Jovanovic IA, Hazratwala K, Wilkinson M, McEwen P, Morris J. Absence of cytotoxic and inflammatory effects following in vitro exposure of chondrogenically-differentiated human mesenchymal stem cells to adenosine, lidocaine and Mg 2+ solution. J Exp Orthop 2019; 6:16. [PMID: 30989345 PMCID: PMC6465392 DOI: 10.1186/s40634-019-0185-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/22/2019] [Indexed: 12/12/2022] Open
Abstract
Background ALM solution, a combination of adenosine, lidocaine and Mg2+, is an emerging small volume therapy that has been shown to prevent and correct coagulopathy and surgery-related inflammation in preclinical models, though its application in orthopaedic surgery is yet to be demonstrated. The effect of ALM solution on chondrocytes is unknown. The aim of this preliminary study was to investigate the effect of ALM solution on viability and inflammatory responses of chondrogenically-differentiated human bone marrow-derived mesenchymal stem cells (chondro-MSC), in vitro. Methods Chondro-MSC were exposed to media only, saline (0.9% NaCl or 1.3% NaCl) only, or saline containing ALM (1 mM adenosine, 3 mM lidocaine, 2.5 mM Mg2+) or tranexamic acid (TXA, 100 mg/ml) for 1 or 4 h. Responses to ALM solutions containing higher lidocaine concentrations were also compared. Chondrocyte viability was determined using WST-8 colorimetric assays and inflammatory cytokine (TNF-α, IL-1β, IL-8) and matrix metalloproteinases (MMP-3, MMP-12, MMP-13) concentrations using multiplex bead arrays. Results The viability of chondro-MSC was significantly greater after 1 h treatment with ALM compared to saline (96.2 ± 7.9 versus 75.6 ± 7.3%). Extension of exposure times to 4 h had no significant adverse effect on cell viability after treatment with ALM (1 h, 85.4 ± 5.6 v 4 h, 74.0 ± 15.2%). Cytotoxicity was evident following exposure to solutions containing lidocaine concentrations greater than 30 mM. There were no significant differences in viability (80 ± 5.4 v 57.3 ± 16.2%) or secretion of IL-8 (60 ± 20 v 160 ± 50 pg/ml), MMP-3 (0.95 ± 0.6 v 3.4 ± 1.6 ng/ml), and MMP-13 (4.2 ± 2.4 v 9.2 ± 4.3 ng/ml) in chondro-MSC exposed to saline, ALM or TXA. Conclusions Short-term, in vitro exposure to clinically-relevant concentrations of ALM solution had no adverse inflammatory or chondrotoxic effects on human chondro-MSC, with responses comparable to saline and TXA. These findings provide support for continued evaluation of ALM solution as a possible therapeutic to improve outcomes following orthopaedic procedures.
Collapse
Affiliation(s)
- Andrew McCutchan
- Department of Haematology and Bone Marrow Transplantation, Townsville Hospital, Townsville, Australia
| | - Geoffrey P Dobson
- Heart, Trauma and Sepsis Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, Australia
| | - Natalie Stewart
- Department of Haematology and Bone Marrow Transplantation, Townsville Hospital, Townsville, Australia
| | - Hayley L Letson
- Heart, Trauma and Sepsis Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, Australia
| | - Andrea L Grant
- The Orthopaedic Research Institute of Queensland, 7 Turner St, Pimlico, Townsville, Q 4812, Australia
| | | | - Kaushik Hazratwala
- Heart, Trauma and Sepsis Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, Australia.,The Orthopaedic Research Institute of Queensland, 7 Turner St, Pimlico, Townsville, Q 4812, Australia
| | - Matthew Wilkinson
- Heart, Trauma and Sepsis Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, Australia.,The Orthopaedic Research Institute of Queensland, 7 Turner St, Pimlico, Townsville, Q 4812, Australia
| | - Peter McEwen
- Heart, Trauma and Sepsis Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, Australia.,The Orthopaedic Research Institute of Queensland, 7 Turner St, Pimlico, Townsville, Q 4812, Australia
| | - Jodie Morris
- Heart, Trauma and Sepsis Research Laboratory, College of Medicine and Dentistry, James Cook University, Townsville, Australia. .,The Orthopaedic Research Institute of Queensland, 7 Turner St, Pimlico, Townsville, Q 4812, Australia.
| |
Collapse
|
24
|
Collins JA, Wood ST, Bolduc JA, Nurmalasari NPD, Chubinskaya S, Poole LB, Furdui CM, Nelson KJ, Loeser RF. Differential peroxiredoxin hyperoxidation regulates MAP kinase signaling in human articular chondrocytes. Free Radic Biol Med 2019; 134:139-152. [PMID: 30639614 PMCID: PMC6588440 DOI: 10.1016/j.freeradbiomed.2019.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/03/2019] [Indexed: 11/28/2022]
Abstract
The peroxiredoxin (Prx) family of Cys-dependent peroxidases control intracellular levels of H2O2 and can regulate signal transduction. Inhibition of the Prxs, through hyperoxidation amongst other mechanisms, leads to oxidative stress conditions that can alter homeostatic signaling. To determine the effects oxidation of Prx1-Prx3 has on MAP kinase and IGF-1 signaling events in human chondrocytes, this study used 2-methyl-1,4-naphthoquinone (menadione) and 2,3-dimethyl-1,4-naphthoquinone (DMNQ) as H2O2-generating tools due to their differential mechanisms of action. Menadione and DMNQ generated similar levels of intracellular H2O2 as determined using the biosensor Orp1-roGFP and by measuring Prx redox status. However, menadione generated higher levels of mitochondrial H2O2 associated with Prx3 hyperoxidation and phosphorylation of Prx1 while DMNQ treatment was associated with hyperoxidation of cytosolic Prx1 and Prx2 but not mitochondrial Prx3. Both menadione and DMNQ induced sustained phosphorylation of p38 but only DMNQ activated JNK. Menadione but not DMNQ inhibited IGF-1-induced Akt phosphorylation. Chondrocytes transduced with an adenoviral vector to overexpress Prx3 displayed decreased PrxSO2/3 formation in response to menadione which was associated with restoration of IGF-1-mediated Akt signaling and inhibition of p38 phosphorylation. Prx1 and Prx2 overexpression had no effects on Prx redox status but Prx1 overexpression enhanced basal Akt phosphorylation. These results suggest that hyperoxidation of specific Prx isoforms is associated with distinct cell signaling events and identify Prx3 redox status as an important regulator of anabolic and catabolic signal transduction. Targeted strategies to prevent mitochondrial Prx3 hyperoxidation could be useful in maintaining cellular redox balance and homeostatic signaling.
Collapse
Affiliation(s)
- John A Collins
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott T Wood
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, BioSNTR, Rapid City, SD, USA
| | - Jesalyn A Bolduc
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - N P Dewi Nurmalasari
- Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, BioSNTR, Rapid City, SD, USA
| | - Susan Chubinskaya
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA
| | - Leslie B Poole
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Kimberly J Nelson
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Richard F Loeser
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
25
|
Collins J, Arbeeva L, Chubinskaya S, Loeser R. Articular chondrocytes isolated from the knee and ankle joints of human tissue donors demonstrate similar redox-regulated MAP kinase and Akt signaling. Osteoarthritis Cartilage 2019; 27:703-711. [PMID: 30590195 PMCID: PMC6530906 DOI: 10.1016/j.joca.2018.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To compare key intracellular redox-regulated signaling pathways in chondrocytes derived from knee joint femoral cartilage and ankle joint talar cartilage in order to determine if differences exist that might contribute to the lower prevalence of ankle osteoarthritis (OA). METHODS Femoral and talar chondrocytes were treated with H2O2 generators (menadione or 2-3-dimethoxy-1,4-napthoquinone (DMNQ), fragments of fibronectin (FN-f)) to stimulate MAP kinase signaling (MAPK), or with IGF-1 to stimulate the Akt signaling pathway. Hyperoxidation of the peroxiredoxins, used as a measure of redox status, and phosphorylation of proteins pertinent to MAPK (p38, ERK, JNK, c-Jun) and Akt (Akt, PRAS40) signaling cascades were detected by immunoblotting. RESULTS Treatment of femoral and talar chondrocytes with menadione, DMNQ or FN-f led to a time dependent increase in extracellular-regulated kinase (ERK) and p38 phosphorylation. DMNQ and FN-f stimulation enhanced phosphorylation of JNK and its downstream substrate, c-Jun. Menadione treatment did not stimulate JNK activity but hyperoxidized the peroxiredoxins and inhibited IGF-1-induced Akt activation. In all experiments, chondrocytes derived from the femur and talar joints displayed comparable MAP kinase responses after treatment with various catabolic stimuli, as well as similar Akt signaling responses after IGF-1 treatment. CONCLUSIONS MAP kinase and Akt signaling in response to factors that modulate the intracellular redox status were similar in chondrocytes from knee and ankle joints suggesting that redox signaling differences do not explain differences in OA prevalence. Talar chondrocytes, when isolated from their native matrix, can be used to examine redox-regulated cell signaling events relevant to OA in either joint.
Collapse
Affiliation(s)
- J.A. Collins
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - L. Arbeeva
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - S. Chubinskaya
- Department of Pediatrics, Rush University Medical Center, Chicago, IL, USA
| | - R.F. Loeser
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA,Address correspondence and reprint requests to: R. F. Loeser, Thurston Arthritis Research Center, Division of Rheumatology, Allergy and Immunology, The University of North Carolina at Chapel Hill, 3300 Thurston Building, Campus Box 7280, Chapel Hill, NC, 27599-7280, USA., (R.F. Loeser)
| |
Collapse
|
26
|
Bolduc JA, Collins JA, Loeser RF. Reactive oxygen species, aging and articular cartilage homeostasis. Free Radic Biol Med 2019; 132:73-82. [PMID: 30176344 PMCID: PMC6342625 DOI: 10.1016/j.freeradbiomed.2018.08.038] [Citation(s) in RCA: 361] [Impact Index Per Article: 72.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/07/2018] [Accepted: 08/30/2018] [Indexed: 01/08/2023]
Abstract
Chondrocytes are responsible for the maintenance of the articular cartilage. A loss of homeostasis in cartilage contributes to the development of osteoarthritis (OA) when the synthetic capacity of chondrocytes is overwhelmed by processes that promote matrix degradation. There is evidence for an age-related imbalance in reactive oxygen species (ROS) production relative to the anti-oxidant capacity of chondrocytes that plays a role in cartilage degradation as well as chondrocyte cell death. The ROS produced by chondrocytes that have received the most attention include superoxide, hydrogen peroxide, the reactive nitrogen species nitric oxide, and the nitric oxide derived product peroxynitrite. Excess levels of these ROS not only cause oxidative-damage but, perhaps more importantly, cause a disruption in cell signaling pathways that are redox-regulated, including Akt and MAP kinase signaling. Age-related mitochondrial dysfunction and reduced activity of the mitochondrial superoxide dismutase (SOD2) are associated with an increase in mitochondrial-derived ROS and are in part responsible for the increase in chondrocyte ROS with age. Peroxiredoxins (Prxs) are a key family of peroxidases responsible for removal of H2O2, as well as for regulating redox-signaling events. Prxs are inactivated by hyperoxidation. An age-related increase in chondrocyte Prx hyperoxidation and an increase in OA cartilage has been noted. The finding in mice that deletion of SOD2 or the anti-oxidant gene transcriptional regulator nuclear factor-erythroid 2- related factor (Nrf2) result in more severe OA, while overexpression or treatment with mitochondrial targeted anti-oxidants reduces OA, further support a role for excessive ROS in the pathogenesis of OA. Therefore, new therapeutic strategies targeting specific anti-oxidant systems including mitochondrial ROS may be of value in reducing the progression of age-related OA.
Collapse
Affiliation(s)
- Jesalyn A Bolduc
- Division of Rheumatology, Allergy, and Immunology, University of North Carolina, Chapel Hill, NC, USA; Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - John A Collins
- Division of Rheumatology, Allergy, and Immunology, University of North Carolina, Chapel Hill, NC, USA; Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA
| | - Richard F Loeser
- Division of Rheumatology, Allergy, and Immunology, University of North Carolina, Chapel Hill, NC, USA; Thurston Arthritis Research Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
27
|
The Link Between Inflammaging and Degenerative Joint Diseases. Int J Mol Sci 2019; 20:ijms20030614. [PMID: 30708978 PMCID: PMC6386892 DOI: 10.3390/ijms20030614] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/21/2019] [Accepted: 01/29/2019] [Indexed: 12/12/2022] Open
Abstract
Aging is an inevitable process in the human body that is associated with a multitude of systemic and localized changes. All these conditions have a common pathogenic mechanism characterized by the presence of a low-grade proinflammatory status. Inflammaging refers to all the processes that contribute to the occurrence of various diseases associated with aging such as frailty, atherosclerosis, Alzheimer’s disease, sarcopenia, type 2 diabetes, or osteoarthritis. Inflammaging is systemic, chronic, and asymptomatic. Osteoarthritis and many age-related degenerative joint diseases are correlated with aging mechanisms such as the presence of an inflammatory microenvironment and the impaired link between inflammasomes and autophagy. There is a close relationship between chondrocyte activity and local articular environment changes due to cell senescence, followed by secretion of inflammatory mediators. In addition, systemic inflammaging can lead to cartilage destruction, pain, disability, and an impaired quality of life. The purpose of this review is to summarize the main mechanisms implicated in inflammaging and the connection it has with degenerative joint diseases.
Collapse
|
28
|
Trellu S, Courties A, Jaisson S, Gorisse L, Gillery P, Kerdine-Römer S, Vaamonde-Garcia C, Houard X, Ekhirch FP, Sautet A, Friguet B, Jacques C, Berenbaum F, Sellam J. Impairment of glyoxalase-1, an advanced glycation end-product detoxifying enzyme, induced by inflammation in age-related osteoarthritis. Arthritis Res Ther 2019; 21:18. [PMID: 30635030 PMCID: PMC6330409 DOI: 10.1186/s13075-018-1801-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/20/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Accumulation of advanced glycation end-products (AGEs) is involved in age-related osteoarthritis (OA). Glyoxalase (Glo)-1 is the main enzyme involved in the removal of AGE precursors, especially carboxymethyl-lysine (CML). We aimed to investigate the expression of several AGEs and Glo-1 in human OA cartilage and to study chondrocytic Glo-1 regulation by inflammation, mediated by interleukin (IL)-1β. METHODS Ex vivo, we quantified AGEs (pentosidine, CML, methylglyoxal-hydroimidazolone-1) in knee cartilage from 30 OA patients. Explants were also incubated with and without IL-1β, and we assessed Glo-1 protein expression and enzymatic activity. In vitro, primary cultured murine chondrocytes were stimulated with increasing concentrations of IL-1β to assess Glo-1 enzymatic activity and expression. To investigate the role of oxidative stress in the IL-1β effect, cells were also treated with inhibitors of mitochondrial oxidative stress or nitric oxide synthase. RESULTS Ex vivo, only the human cartilage CML content was correlated with patient age (r = 0.78, p = 0.0031). No statistically significant correlation was found between Glo-1 protein expression and enzymatic activity in human cartilage and patient age. We observed that cartilage explant stimulation with IL-1β decreased Glo-1 protein expression and enzymatic activity. In vitro, we observed a dose-dependent decrease in Glo-1 mRNA, protein quantity, and enzymatic activity in response to IL-1β in murine chondrocytes. Inhibitors of oxidative stress blunted this downregulation. CONCLUSION Glo-1 is impaired by inflammation mediated by IL-1β in chondrocytes through oxidative stress pathways and may explain age-dependent accumulation of the AGE CML in OA cartilage.
Collapse
Affiliation(s)
- Sabine Trellu
- Sorbonne University, UPMC Univ Paris 06, Paris, France
- INSERM UMRS_938, CRSA, Paris, France
- Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Paris, France
- Department of Rheumatology, Assistance Publique - Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, 184 rue du Faubourg Saint-Antoine, 75012 Paris, France
| | - Alice Courties
- Sorbonne University, UPMC Univ Paris 06, Paris, France
- INSERM UMRS_938, CRSA, Paris, France
- Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Paris, France
- Department of Rheumatology, Assistance Publique - Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, 184 rue du Faubourg Saint-Antoine, 75012 Paris, France
| | - Stéphane Jaisson
- UMR MEDyC CNRS/URCA 7369, University of Reims Champagne-Ardenne, Reims, France
| | - Laëtitia Gorisse
- UMR MEDyC CNRS/URCA 7369, University of Reims Champagne-Ardenne, Reims, France
| | - Philippe Gillery
- UMR MEDyC CNRS/URCA 7369, University of Reims Champagne-Ardenne, Reims, France
| | - Saadia Kerdine-Römer
- INSERM UMR 996, Univ Paris-Sud, University Paris-Saclay, Châtenay-Malabry, France
| | - Carlos Vaamonde-Garcia
- Sorbonne University, UPMC Univ Paris 06, Paris, France
- INSERM UMRS_938, CRSA, Paris, France
- Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Paris, France
- Department of Physiotherapy, Cell Therapy and Regenerative Medicine Group, Medicine and Biological Science. Faculty of Health Sciences, University of A Coruña, 15006 A Coruña, Spain
| | - Xavier Houard
- Sorbonne University, UPMC Univ Paris 06, Paris, France
- INSERM UMRS_938, CRSA, Paris, France
- Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Paris, France
| | | | - Alain Sautet
- Sorbonne University, UPMC Univ Paris 06, Paris, France
- Department of Orthopedic Surgery, AP-HP, Saint-Antoine Hospital, Paris, France
| | - Bertrand Friguet
- Sorbonne University, UPMC Univ Paris 06, Paris, France
- UMR 8256 - IBPS, CNRS UMR 8256, INSERM U1164, F-75005 Paris, France
| | - Claire Jacques
- Sorbonne University, UPMC Univ Paris 06, Paris, France
- INSERM UMRS_938, CRSA, Paris, France
- Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Paris, France
| | - Francis Berenbaum
- Sorbonne University, UPMC Univ Paris 06, Paris, France
- INSERM UMRS_938, CRSA, Paris, France
- Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Paris, France
- Department of Rheumatology, Assistance Publique - Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, 184 rue du Faubourg Saint-Antoine, 75012 Paris, France
| | - Jérémie Sellam
- Sorbonne University, UPMC Univ Paris 06, Paris, France
- INSERM UMRS_938, CRSA, Paris, France
- Inflammation-Immunopathology-Biotherapy Department (DHU i2B), Paris, France
- Department of Rheumatology, Assistance Publique - Hôpitaux de Paris (AP-HP), Saint-Antoine Hospital, 184 rue du Faubourg Saint-Antoine, 75012 Paris, France
| |
Collapse
|
29
|
Zhang W, Zhang C, Luo C, Zhan Y, Zhong B. Design, cyclization, and optimization of MMP13-TIMP1 interaction-derived self-inhibitory peptides against chondrocyte senescence in osteoarthritis. Int J Biol Macromol 2018; 121:921-929. [PMID: 30352228 DOI: 10.1016/j.ijbiomac.2018.10.141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 02/07/2023]
Abstract
The matrix metallopeptidase 13 (MMP13) is a central regulator of chondrocyte senescence that contributes to the development and progression of osteoarthritis (OA). In the present study, the native inhibitory structure of MMP13 in complex with its natural cognate inhibitor, the tissue inhibitor of metalloproteinases 1 (TIMP1), was modeled at atomic level using a grafting-based structural bioinformatics method with existing crystal structures. The modeled complex structure was then examined in detail, from which a TIMP1 inhibitory site that directly inserts into the active site of MMP13 enzyme was identified. The inhibitory site contains a coiled inhibitory loop (ILP) and a stretched N-terminal tail (NTT); they are highly structured in the intact MMP13-TIMP1 complex interface, but exhibit a large flexibility and intrinsic disorder when split from the interface context. In vitro binding assays demonstrated that the isolated ILP and NTT peptides cannot effectively rebind at the MMP13 active site (Kd > ~100 μM or = n.d.), although they have all key interacting residues in the enzyme inhibition. In silico simulations revealed that splitting of the peptide segments from TIMP1 inhibitory site does not influence the direct intermolecular interaction between MMP13 and the peptides substantially; instead, the large conformational flexibility of these isolated peptides in absence of interface context is primarily responsible for the affinity impairment, which would incur a considerable entropy penalty upon the peptide binding to MMP13. An extended version of ILP peptide, namely eILP (63TPAMESVCGY72), was redesigned with a rational strategy to derive a number of its cyclized counterparts by introducing a disulfide bridge across the peptide two-termini; the redesign reduces the peptide flexibility in free state and constrains the peptide pre-folding to a native-like conformation, which would help the peptide binding with minimized entropy penalty. Binding assays substantiated that the affinity Kd values of four designed cyclic peptides (, , and ) were improved to 23, 67, 42 and 18 μM, respectively, from the 96 μM of linear eILP peptide.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Chi Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Congfeng Luo
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yulin Zhan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Biao Zhong
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
30
|
CYLD suppression enhances the pro-inflammatory effects and hyperproliferation of rheumatoid arthritis fibroblast-like synoviocytes by enhancing NF-κB activation. Arthritis Res Ther 2018; 20:219. [PMID: 30285829 PMCID: PMC6169018 DOI: 10.1186/s13075-018-1722-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/11/2018] [Indexed: 01/14/2023] Open
Abstract
Background Rheumatoid arthritis fibroblast-like synoviocytes (RA-FLSs) actively drive joint inflammation and degradation by producing inflammatory cytokines and matrix-degrading molecules, making them key factors in the pathogenesis of RA. Cylindromatosis (CYLD) is a tumor suppressor that downregulates nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation by deubiquitinating NF-κB essential modulator and tumor necrosis factor receptor-associated factors 2 and 6. In this study, we aimed to determine CYLD expression in the synovium of patients with RA, analyze its correlation with NF-κB activation and clinical disease activity, further investigate CYLD expression in RA-FLSs, and explore CYLD’s roles and mechanisms in the pro-inflammatory effects, proliferation, apoptosis, and cell cycles of RA-FLSs. Methods We obtained synovia from 50 patients with active RA and 20 with osteoarthritis (OA) and then cultured FLSs from the samples. We determined CYLD expression in the synovia of RA patients and in FLSs via reverse transcription polymerase chain reaction (RT-PCR). CYLD was depleted by lentiviral CYLD short hairpin ribonucleic acid. We used RT-PCR and enzyme-linked immunosorbent assay to analyze the expression of pro-inflammatory cytokines, matrix metalloproteinases (MMPs), and receptor activator of nuclear factor kappa-B ligand (RANKL). We detected cell proliferation using Cell Counting Kit-8 and examined cell apoptosis and cell cycle using flow cytometry. Results We obtained the following results:In synovia from patients with RA, CYLD expression was significantly downregulated while NF-κB expression was distinctly upregulated, compared with synovia from patients with OA. Thus, there is a significant inverse correlation between CYLD and NF-κB in synovia affected by RA. CYLD expression significantly decreased in RA-FLSs compared with OA-FLSs. CYLD suppression enhanced the production of pro-inflammatory cytokines, MMPs, and RANKL by activating NF-κB in RA-FLSs. CYLD suppression enhanced proliferation, reduced apoptosis, and increased cell division of RA-FLSs and aggravated the activity of NF-κB in RA-FLSs.
Conclusions Via its regulation of NF-κB activation, CYLD may be involved in the pathogenesis of synovial inflammation in RA as well as in the pro-inflammatory effects and hyperproliferation of RA-FLSs. CYLD may therefore provide a potential target for the treatment of RA.
Collapse
|
31
|
Stochastic Resonance with Dynamic Compression Improves the Growth of Adult Chondrocytes in Agarose Gel Constructs. Ann Biomed Eng 2018; 47:243-256. [PMID: 30187237 DOI: 10.1007/s10439-018-02123-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/25/2018] [Indexed: 02/06/2023]
Abstract
Dynamic mechanical stimulation has been an effective method to improve the growth of tissue engineering cartilage constructs derived from immature cells. However, when more mature cell populations are used, results are often variable due to the differing responses of these cells to external stimuli. This can be especially detrimental in the case of mechanical loading. In previous studies, multi-modal mechanical stimulation in the form of stochastic resonance was shown to be effective at improving the growth of young bovine chondrocytes. Thus, the aim of this study was to investigate the short-term and long-term effects of stochastic resonance on two groups of bovine chondrocytes, adult (> 30 month) and juvenile (~ 18 months). While the juvenile cells outperformed the adult cells in terms of their anabolic response to loading, combined mechanical loading for both age groups resulted in greater matrix synthesis compared to compressive loading alone. In the adult cells, potential pathological tissue formation was evident with the presence of cell clustering. However, the presence of broad-band mechanical vibrations (alone or with compressive loading) appeared to mitigate this response and allow these cells to attain a growth response similar to the juvenile, unstimulated cells. Therefore, the use of stochastic resonance appears to show promise as a method to improve the formation and properties of tissue engineered cartilage constructs, irrespective of cell age.
Collapse
|
32
|
Kim JR, Yoo JJ, Kim HA. Therapeutics in Osteoarthritis Based on an Understanding of Its Molecular Pathogenesis. Int J Mol Sci 2018; 19:ijms19030674. [PMID: 29495538 PMCID: PMC5877535 DOI: 10.3390/ijms19030674] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/14/2018] [Accepted: 02/21/2018] [Indexed: 12/30/2022] Open
Abstract
Osteoarthritis (OA) is the most prevalent joint disease in older people and is characterized by the progressive destruction of articular cartilage, synovial inflammation, changes in subchondral bone and peri-articular muscle, and pain. Because our understanding of the aetiopathogenesis of OA remains incomplete, we haven’t discovered a cure for OA yet. This review appraises novel therapeutics based on recent progress in our understanding of the molecular pathogenesis of OA, including pro-inflammatory and pro-catabolic mediators and the relevant signalling mechanisms. The changes in subchondral bone and peri-articular muscle accompanying cartilage damage are also reviewed.
Collapse
Affiliation(s)
- Ju-Ryoung Kim
- Rheumatology Division, Department of Internal Medicine, Hallym University Sacred Heart Hospital, 896, Pyongchondong, Dongan-gu, Anyang, Kyunggi-do 431-070, Korea.
| | - Jong Jin Yoo
- Department of Internal Medicine, Kangdong Sacred Heart Hospital, Seoul 05355, Korea.
| | - Hyun Ah Kim
- Rheumatology Division, Department of Internal Medicine, Hallym University Sacred Heart Hospital, 896, Pyongchondong, Dongan-gu, Anyang, Kyunggi-do 431-070, Korea.
| |
Collapse
|
33
|
Krajewska-Włodarczyk M, Owczarczyk-Saczonek A, Placek W, Osowski A, Wojtkiewicz J. Articular Cartilage Aging-Potential Regenerative Capacities of Cell Manipulation and Stem Cell Therapy. Int J Mol Sci 2018; 19:E623. [PMID: 29470431 PMCID: PMC5855845 DOI: 10.3390/ijms19020623] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 02/11/2018] [Accepted: 02/16/2018] [Indexed: 12/13/2022] Open
Abstract
Changes in articular cartilage during the aging process are a stage of natural changes in the human body. Old age is the major risk factor for osteoarthritis but the disease does not have to be an inevitable consequence of aging. Chondrocytes are particularly prone to developing age-related changes. Changes in articular cartilage that take place in the course of aging include the acquisition of the senescence-associated secretory phenotype by chondrocytes, a decrease in the sensitivity of chondrocytes to growth factors, a destructive effect of chronic production of reactive oxygen species and the accumulation of the glycation end products. All of these factors affect the mechanical properties of articular cartilage. A better understanding of the underlying mechanisms in the process of articular cartilage aging may help to create new therapies aimed at slowing or inhibiting age-related modifications of articular cartilage. This paper presents the causes and consequences of cellular aging of chondrocytes and the biological therapeutic outlook for the regeneration of age-related changes of articular cartilage.
Collapse
Affiliation(s)
- Magdalena Krajewska-Włodarczyk
- Department of Rheumatology, Municipal Hospital in Olsztyn, 10-900 Olsztyn, Poland.
- Department of Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
- Department of Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
| | - Agnieszka Owczarczyk-Saczonek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
| | - Waldemar Placek
- Department of Dermatology, Sexually Transmitted Diseases and Clinical Immunology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
| | - Adam Osowski
- Department of Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
| | - Joanna Wojtkiewicz
- Department of Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
- Laboratory for Regenerative Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury, 10-900 Olsztyn, Poland.
| |
Collapse
|
34
|
Rahmati M, Nalesso G, Mobasheri A, Mozafari M. Aging and osteoarthritis: Central role of the extracellular matrix. Ageing Res Rev 2017; 40:20-30. [PMID: 28774716 DOI: 10.1016/j.arr.2017.07.004] [Citation(s) in RCA: 326] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/10/2017] [Accepted: 07/24/2017] [Indexed: 12/11/2022]
Abstract
Osteoarthritis (OA), is a major cause of severe joint pain, physical disability and quality of life impairment in the aging population across the developed and developing world. Increased catabolism in the extracellular matrix (ECM) of the articular cartilage is a key factor in the development and progression of OA. The molecular mechanisms leading to an impaired matrix turnover have not been fully clarified, however cellular senescence, increased expression of inflammatory mediators as well as oxidative stress in association with an inherently limited regenerative potential of the tissue, are all important contributors to OA development. All these factors are linked to and tend to be maximized by aging. Nonetheless the role of aging in compromising joint stability and function in OA has not been completely clarified yet. This review will systematically analyze cellular and structural changes taking place in the articular cartilage and bone in the pathogenesis of OA which are linked to aging. A particular emphasis will be placed on age-related changes in the phenotype of the articular chondrocytes.
Collapse
Affiliation(s)
- Maryam Rahmati
- Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Giovanna Nalesso
- Department of Veterinary Pre-Clinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Ali Mobasheri
- The D-BOARD European Consortium for Biomarker Discovery, The APPROACH Innovative Medicines Initiative (IMI) Consortium, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK; Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Arthritis Research UK Pain Centre, Medical Research Council and Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK; Center of Excellence in Genomic Medicine Research (CEGMR), King Fahd Medical Research Center (KFMRC) and Sheik Salem Bin Mahfouz Scientific Chair for Treatment of Osteoarthritis with Stem Cells, King AbdulAziz University, Jeddah, 21589, Saudi Arabia
| | - Masoud Mozafari
- Cellular and Molecular Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran; Bioengineering Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), P.O. Box 14155-4777, Tehran, Iran.
| |
Collapse
|
35
|
Fu Y, Kinter M, Hudson J, Humphries KM, Lane RS, White JR, Hakim M, Pan Y, Verdin E, Griffin TM. Aging Promotes Sirtuin 3-Dependent Cartilage Superoxide Dismutase 2 Acetylation and Osteoarthritis. Arthritis Rheumatol 2017; 68:1887-98. [PMID: 26866626 DOI: 10.1002/art.39618] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 01/28/2016] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To quantify functional age-related changes in the cartilage antioxidant network in order to discover novel mediators of cartilage oxidative stress and osteoarthritis (OA) pathophysiology. METHODS We evaluated histopathologic changes of knee OA in 10-, 20-, and 30-month-old male F344BN rats and analyzed cartilage oxidation according to the ratio of reduced to oxidized glutathione. Antioxidant gene expression and protein abundance were analyzed by quantitative reverse transcription-polymerase chain reaction and selected reaction-monitoring mass spectrometry, respectively. Superoxide dismutase 2 (SOD2) activity and acetylation were analyzed by colorimetric enzyme assays and Western blotting, respectively. We examined human OA cartilage to evaluate the clinical relevance of SOD2 acetylation, and we tested age-related changes in the mitochondrial deacetylase sirtuin 3 (SIRT-3) in rats and mice. RESULTS Cartilage oxidation and OA severity in F344BN rats increased with age and were associated with an increase in SOD2 expression and protein abundance. However, SOD2-specific activity decreased with age due to elevated posttranslational lysine acetylation. Consistent with these findings, SIRT-3 levels decreased substantially with age, and treatment with SIRT-3 increased SOD2 activity in an age-dependent manner. SOD2 was also acetylated in human OA cartilage, and activity was increased with SIRT-3 treatment. Moreover, in C57BL/6J mice, cartilage SIRT-3 expression decreased with age, and whole-body deletion of SIRT-3 accelerated the development of knee OA. CONCLUSION Our results show that SIRT-3 mediates age-related changes in cartilage redox regulation and protects against early-stage OA. These findings suggest that mitochondrial acetylation promotes OA and that restoration of SIRT-3 in aging cartilage may improve cartilage resistance to oxidative stress by rescuing acetylation-dependent inhibition of SOD2 activity.
Collapse
Affiliation(s)
- Yao Fu
- Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City
| | - Michael Kinter
- Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City
| | | | - Kenneth M Humphries
- Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City
| | - Rachel S Lane
- Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City
| | - Jeremy R White
- University of Oklahoma College of Medicine and University of Oklahoma Health Sciences Center, Oklahoma City
| | - Michael Hakim
- Oklahoma Medical Research Foundation, University of Oklahoma College of Medicine, and University of Oklahoma Health Sciences Center, Oklahoma City
| | - Yong Pan
- Gladstone Institutes and University of California, San Francisco
| | - Eric Verdin
- Gladstone Institutes and University of California, San Francisco
| | - Timothy M Griffin
- Oklahoma Medical Research Foundation and University of Oklahoma Health Sciences Center, Oklahoma City
| |
Collapse
|
36
|
Chen J, Xuan J, Gu YT, Shi KS, Xie JJ, Chen JX, Zheng ZM, Chen Y, Chen XB, Wu YS, Zhang XL, Wang XY. Celastrol reduces IL-1β induced matrix catabolism, oxidative stress and inflammation in human nucleus pulposus cells and attenuates rat intervertebral disc degeneration in vivo. Biomed Pharmacother 2017; 91:208-219. [PMID: 28458159 DOI: 10.1016/j.biopha.2017.04.093] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 04/20/2017] [Accepted: 04/20/2017] [Indexed: 01/08/2023] Open
Abstract
Celastrol has been reported to exert therapeutic potential on pro-inflammatory diseases including asthma, Crohn's disease, arthritis and neurodegenerative disorders via inhibiting NF-κB pathway. While the effect of celastrol on intervertebral disc degeneration (IDD), which is also a pro-inflammatory disease, remains unknown. In this study, we evaluated the effect of celastrol on IDD in IL-1β treated human nucleus pulposus cells in vitro as well as in puncture induced rat IDD model in vivo. Our results showed that celastrol reduced the expression of catabolic genes (MMP-3, 9, 13, ADAMTS-4, 5), oxidative stress factors (COX-2, iNOS) and pro-inflammatory factors (IL-6, TNF-a) induced by IL-1β in nucleus pulposus cells, also phosphorylation of IκBα and p65 were attenuated by celastrol, indicating NF-κB pathway was inhibited by celastrol in nucleus pulposus cells. In vivo study showed that celastrol treated rats had stronger T2-weighted signal than vehicle-treated rats at 2 weeks and 6 weeks' time point, suggesting celastrol could attenuate intervertebral disc degeneration in vivo. Together, our study demonstrates that celastrol could reduce IL-1β induced matrix catabolism, oxidative stress and inflammation in human nucleus pulposus cells and attenuates rat intervertebral disc degeneration in vivo, which shows its potential to be a therapeutic drug for IDD.
Collapse
Affiliation(s)
- Jian Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Jun Xuan
- Jinhua Municipal Central Hospital, Jinhua Hospital of Zhejiang University, People's Republic of China
| | - Yun-Tao Gu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Ke-Si Shi
- The First Clinical College, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Jun-Jun Xie
- Department of Postgraduate Education, Wenzhou Medical University, Wenzhou, 325027, People's Republic of China
| | - Jiao-Xiang Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Zeng-Ming Zheng
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yu Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xi-Bang Chen
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yao-Sen Wu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Xiao-Lei Zhang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.
| | - Xiang-Yang Wang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China.
| |
Collapse
|
37
|
LOESER RICHARDF. The Role of Aging in the Development of Osteoarthritis. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2017; 128:44-54. [PMID: 28790486 PMCID: PMC5525396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Osteoarthritis (OA) is the most common form of arthritis and a significant cause of pain and disability in older adults. Among the risk factors for OA, age is the most prominent. This review will discuss the relationship between aging and the development of OA, with a particular focus on mechanisms relevant to cartilage degeneration and the role of excessive levels of reactive oxygen species. Rather than just causing random oxidative damage, an increase in reactive oxygen species that leads to oxidative stress disrupts specific cell signaling pathways. This disruption in cell signaling affects the ability to maintain the cartilage extracellular matrix and eventually causes cell death. By understanding the specific cell signaling pathways that lead to OA through altered redox signaling, novel targets will be discovered that will be an advance over the current non-targeted anti-oxidant approach that has not been successful in treating chronic diseases of aging such as OA.
Collapse
Affiliation(s)
- RICHARD F. LOESER
- Correspondence and reprint requests: Richard F. Loeser, MD, Thurston Arthritis Research Center, Division of Rheumatology, Allergy, and Immunology, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7280919-966-7042
| |
Collapse
|
38
|
Toh WS, Brittberg M, Farr J, Foldager CB, Gomoll AH, Hui JHP, Richardson JB, Roberts S, Spector M. Cellular senescence in aging and osteoarthritis. Acta Orthop 2016; 87:6-14. [PMID: 27658487 PMCID: PMC5389431 DOI: 10.1080/17453674.2016.1235087] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
- It is well accepted that age is an important contributing factor to poor cartilage repair following injury, and to the development of osteoarthritis. Cellular senescence, the loss of the ability of cells to divide, has been noted as the major factor contributing to age-related changes in cartilage homeostasis, function, and response to injury. The underlying mechanisms of cellular senescence, while not fully understood, have been associated with telomere erosion, DNA damage, oxidative stress, and inflammation. In this review, we discuss the causes and consequences of cellular senescence, and the associated biological challenges in cartilage repair. In addition, we present novel strategies for modulation of cellular senescence that may help to improve cartilage regeneration in an aging population.
Collapse
Affiliation(s)
- Wei Seong Toh
- Faculty of Dentistry, National University of Singapore,Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore,Correspondence:
| | - Mats Brittberg
- Cartilage Research Unit, University of Gothenburg, Gothenburg,Department of Orthopaedics, Kungsbacka Hospital, Kungsbacka, Sweden
| | - Jack Farr
- Indiana University School of Medicine, OrthoIndy Cartilage Restoration Center, Indianapolis, IN, USA
| | | | - Andreas H Gomoll
- Cartilage Repair Center, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - James Hoi Po Hui
- Tissue Engineering Program, Life Sciences Institute, National University of Singapore, Singapore,Cartilage Repair Program, Therapeutic Tissue Engineering Laboratory, Department of Orthopaedic Surgery, National University Health System, National University of Singapore, Singapore
| | - James B Richardson
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire,Institute for Science andTechnology in Medicine, Keele University, Keele, Staffordshire, UK
| | - Sally Roberts
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire,Institute for Science andTechnology in Medicine, Keele University, Keele, Staffordshire, UK
| | - Myron Spector
- Department of Orthopaedic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA,Tissue Engineering Laboratories, VA Boston Healthcare System, Boston, MA, USA
| |
Collapse
|
39
|
Is Synovial Macrophage Activation the Inflammatory Link Between Obesity and Osteoarthritis? Curr Rheumatol Rep 2016; 18:57. [DOI: 10.1007/s11926-016-0605-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
40
|
Wood ST, Long DL, Reisz JA, Yammani RR, Burke EA, Klomsiri C, Poole LB, Furdui CM, Loeser RF. Cysteine-Mediated Redox Regulation of Cell Signaling in Chondrocytes Stimulated With Fibronectin Fragments. Arthritis Rheumatol 2016; 68:117-26. [PMID: 26314228 DOI: 10.1002/art.39326] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 08/06/2015] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Oxidative posttranslational modifications of intracellular proteins can potentially regulate signaling pathways relevant to cartilage destruction in arthritis. In this study, oxidation of cysteine residues to form sulfenic acid (S-sulfenylation) was examined in osteoarthritic (OA) chondrocytes and investigated in normal chondrocytes as a mechanism by which fragments of fibronectin (FN-f) stimulate chondrocyte catabolic signaling. METHODS Chondrocytes isolated from OA and normal human articular cartilage were analyzed using analogs of dimedone that specifically and irreversibly react with protein S-sulfenylated cysteines. Global S-sulfenylation was measured in cell lysates with and without FN-f stimulation by immunoblotting and in fixed cells by confocal microscopy. S-sulfenylation in specific proteins was identified by mass spectroscopy and confirmed by immunoblotting. Src activity was measured in live cells using a fluorescence resonance energy transfer biosensor. RESULTS Proteins in chondrocytes isolated from OA cartilage were found to have elevated basal levels of S-sulfenylation relative to those of chondrocytes from normal cartilage. Treatment of normal chondrocytes with FN-f induced increased levels of S-sulfenylation in multiple proteins, including the tyrosine kinase Src. FN-f treatment also increased the levels of Src activity. Pretreatment with dimedone to alter S-sulfenylation function or with Src kinase inhibitors inhibited FN-f-induced production of matrix metalloproteinase 13. CONCLUSION These results demonstrate for the first time the presence of oxidative posttranslational modification of proteins in human articular chondrocytes by S-sulfenylation. Due to the ability to regulate the activity of a number of cell signaling pathways, including catabolic mediators induced by fibronectin fragments, S-sulfenylation may contribute to cartilage destruction in OA and warrants further investigation.
Collapse
Affiliation(s)
- Scott T Wood
- University of North Carolina School of Medicine, Chapel Hill
| | - David L Long
- Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Julie A Reisz
- Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | | | - Elizabeth A Burke
- Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Chananat Klomsiri
- Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Leslie B Poole
- Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Cristina M Furdui
- Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | | |
Collapse
|
41
|
Ling CHY, Lai JH, Wong IJ, Levenston ME. Bovine meniscal tissue exhibits age- and interleukin-1 dose-dependent degradation patterns and composition-function relationships. J Orthop Res 2016; 34:801-11. [PMID: 26519862 DOI: 10.1002/jor.23096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 09/25/2015] [Indexed: 02/04/2023]
Abstract
Despite increasing evidence that meniscal degeneration is an early event in the development of knee osteoarthritis, relatively little is known regarding the sequence or functional implications of cytokine-induced meniscal degradation or how degradation varies with age. This study examined dose-dependent patterns of interleukin-1 (IL-1)-induced matrix degradation in explants from the radially middle regions of juvenile and adult bovine menisci. Tissue explants were cultured for 10 days in the presence of 0, 1.25, 5, or 20 ng/ml recombinant human IL-1α. Juvenile explants exhibited immediate and extensive sulfated glycosaminoglycan (sGAG) loss and subsequent collagen release beginning after 4-6 days, with relatively little IL-1 dose-dependence. Adult explants exhibited a more graded response to IL-1, with dose-dependent sGAG release and a lower fraction of sGAG released (but greater absolute release) than juvenile explants. In contrast to juvenile explants, adult explants exhibited minimal collagen release over the 10-day culture. Compressive and shear moduli reflected the changes in explant composition, with substantial decreases for both ages but a greater relative decrease in juvenile tissue. Dynamic moduli exhibited stronger dependence on explant sGAG content for juvenile tissue, likely reflecting concomitant changes to both proteoglycan and collagen tissue components. The patterns of tissue degradation suggest that, like in articular cartilage, meniscal proteoglycans may partially protect collagen from cell-mediated degeneration. A more detailed view of functional changes in meniscal tissue mechanics with degeneration will help to establish the relevance of in vitro culture models and will advance understanding of how meniscal degeneration contributes to overall joint changes in early stage osteoarthritis. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:801-811, 2016.
Collapse
Affiliation(s)
- Carrie H-Y Ling
- Department of Mechanical Engineering, Stanford University, Stanford, California, 94305-4038
| | - Janice H Lai
- Department of Mechanical Engineering, Stanford University, Stanford, California, 94305-4038
| | - Ivan J Wong
- Department of Mechanical Engineering, Stanford University, Stanford, California, 94305-4038
| | - Marc E Levenston
- Department of Mechanical Engineering, Stanford University, Stanford, California, 94305-4038
| |
Collapse
|
42
|
Hypoxia-inducible factor-2α induces expression of type X collagen and matrix metalloproteinases 13 in osteoarthritic meniscal cells. Inflamm Res 2016; 65:439-48. [PMID: 26892680 DOI: 10.1007/s00011-016-0926-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 02/03/2016] [Accepted: 02/09/2016] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES To evaluate whether Hypoxia-inducible factor-2α (HIF-2α) regulates expression of endochondral ossification-related molecules in human OA meniscus. METHODS Expressions of HIF-2α, type X collagen (COL10), matrix metalloproteinase (MMP)-13, and vascular endothelial growth factor (VEGF) in non-OA and OA menisci were analyzed by real-time RT-PCR and immunohistochemistry (IHC). Meniscal cells from OA patients were treated with interleukin-1β (IL-1β) and gene expression was analyzed. After knockdown of HIF-2α in OA meniscal cells, COL10 and MMP-13 expression were analyzed by RT-PCR, western blotting, immunofluorescence and ELISA. RESULT Histological analysis demonstrated weak staining of the superficial layer and large round cells in OA meniscus. RT-PCR analysis showed that HIF-2α, COL10, MMP-13, and VEGF mRNA expressions were higher in OA than non-OA meniscal cells. IHC showed a coordinated staining pattern of HIF-2α, COL10, and MMP-13 in OA meniscus. IL-1β treatment increased HIF-2α, COL10, and MMP-13 expressions in OA meniscal cells, and knockdown of HIF-2α suppressed IL-1β-mediated increase in COL10 and MMP-13 expression. CONCLUSIONS These results suggested that HIF-2α may cause meniscal matrix degradation by transactivation of MMP-13. HIF-2α may be a therapeutic target for modulating matrix degradation in both articular cartilage and meniscus during knee OA progression.
Collapse
|
43
|
Sridhar. BV, Dailing EA, Brock JL, Stansbury JW, Randolph MA, Anseth KS. A Biosynthetic Scaffold that Facilitates Chondrocyte-Mediated Degradation and Promotes Articular Cartilage Extracellular Matrix Deposition. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2015; 1:11-21. [PMID: 26900597 PMCID: PMC4758520 DOI: 10.1007/s40883-015-0002-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Articular cartilage remains a significant clinical challenge to repair because of its limited self-healing capacity. Interest has grown in the delivery of autologous chondrocytes to cartilage defects, and combining cell-based therapies with scaffolds that capture aspects of native tissue and allow cell-mediated remodeling could improve outcomes. Currently, scaffold-based therapies with encapsulated chondrocytes permit matrix production; however, resorption of the scaffold often does not match the rate of matrix production by chondrocytes, which can limit functional tissue regeneration. Here, we designed a hybrid biosynthetic system consisting of poly (ethylene glycol) (PEG) endcapped with thiols and crosslinked by norbornene-functionalized gelatin via a thiol-ene photopolymerization. The protein crosslinker was selected to facilitate chondrocyte-mediated scaffold remodeling and matrix deposition. Gelatin was functionalized with norbornene to varying degrees (~4-17 norbornenes/gelatin), and the shear modulus of the resulting hydrogels was characterized (<0.1-0.5 kPa). Degradation of the crosslinked PEG-gelatin hydrogels by chondrocyte-secreted enzymes was confirmed by gel permeation chromatography. Finally, chondrocytes encapsulated in these biosynthetic scaffolds showed significantly increased glycosaminoglycan deposition over just 14 days of culture, while maintaining high levels of viability and producing a distributed matrix. These results indicate the potential of a hybrid PEG-gelatin hydrogel to permit chondrocyte-mediated remodeling and promote articular cartilage matrix production. Tunable scaffolds that can easily permit chondrocyte-mediated remodeling may be useful in designing treatment options for cartilage tissue engineering applications.
Collapse
Affiliation(s)
- Balaji V. Sridhar.
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado
- BioFrontiers Institute, University of Colorado, Boulder, Colorado
| | - Eric A. Dailing
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado
| | - J. Logan Brock
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado
- BioFrontiers Institute, University of Colorado, Boulder, Colorado
| | - Jeffrey W. Stansbury
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado, Aurora, Colorado
| | - Mark A. Randolph
- Department of Orthopedic Surgery, Laboratory for Musculoskeletal Tissue Engineering, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
- Plastic Surgery Research Laboratory, Division of Plastic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado
- BioFrontiers Institute, University of Colorado, Boulder, Colorado
- Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado
| |
Collapse
|
44
|
Aging-related inflammation in osteoarthritis. Osteoarthritis Cartilage 2015; 23:1966-71. [PMID: 26521742 PMCID: PMC4630808 DOI: 10.1016/j.joca.2015.01.008] [Citation(s) in RCA: 336] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 01/05/2015] [Accepted: 01/09/2015] [Indexed: 02/07/2023]
Abstract
It is well accepted that aging is an important contributing factor to the development of osteoarthritis (OA). The mechanisms responsible appear to be multifactorial and may include an age-related pro-inflammatory state that has been termed "inflamm-aging." Age-related inflammation can be both systemic and local. Systemic inflammation can be promoted by aging changes in adipose tissue that result in increased production of cytokines such as interleukin (IL)-6 and tumor necrosis factor-α (TNFα). Numerous studies have shown an age-related increase in blood levels of IL-6 that has been associated with decreased physical function and frailty. Importantly, higher levels of IL-6 have been associated with an increased risk of knee OA progression. However, knockout of IL-6 in male mice resulted in worse age-related OA rather than less OA. Joint tissue cells, including chondrocytes and meniscal cells, as well as the neighboring infrapatellar fat in the knee joint, can be a local source of inflammatory mediators that increase with age and contribute to OA. An increased production of pro-inflammatory mediators that include cytokines and chemokines, as well as matrix-degrading enzymes important in joint tissue destruction, can be the result of cell senescence and the development of the senescence-associated secretory phenotype (SASP). Further studies are needed to better understand the basis for inflamm-aging and its role in OA with the hope that this work will lead to new interventions targeting inflammation to reduce not only joint tissue destruction but also pain and disability in older adults with OA.
Collapse
|
45
|
Fu Y, Huebner JL, Kraus VB, Griffin TM. Effect of Aging on Adipose Tissue Inflammation in the Knee Joints of F344BN Rats. J Gerontol A Biol Sci Med Sci 2015; 71:1131-40. [PMID: 26450946 DOI: 10.1093/gerona/glv151] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/10/2015] [Indexed: 01/28/2023] Open
Abstract
The infrapatellar fat pad (IFP) secretes inflammatory mediators in osteoarthritic knees, but the effect of aging on IFP inflammation is unknown. We tested the hypothesis that aging increases basal and interleukin-1β (IL-1β)-stimulated IFP inflammation in 10-, 20-, and 30-month-old male F344BN F1-hybrid rats. IFPs were cultured ex vivo for 24 hours and treated ±1ng/mL IL-1β to simulate injury-induced inflammation. IFP inflammation was evaluated by measuring secreted cytokine concentrations and by quantitative expression of immunoregulatory and pro- and anti-adipogenic genes. With age, osteoarthritis pathology increased and IFP mass decreased. Although adipocyte size did not change with age, variation in adipocyte size was positively associated with synovial thickness independent of age whereas associations with cartilage damage were age dependent. In the absence of IL-1β, aging was associated with a significant increase in IFP secretion of tumor necrosis factor α by 67% and IL-13 by 35% and a reduction in the expression of immunoregulatory M2 macrophage genes. However, following an IL-1β challenge, adipogenesis markers decreased and pro- and anti-inflammatory cytokines increased independent of age. The lone exception was leptin, which decreased >70% with age. Thus, although aging promotes osteoarthritis risk by increasing basal inflammation, our findings also revealed a potentially protective effect of aging by decreasing IL-1β-stimulated leptin production.
Collapse
Affiliation(s)
- Yao Fu
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation. Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center
| | | | - Virginia B Kraus
- Duke Molecular Physiology Institute and Division of Rheumatology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Timothy M Griffin
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation. Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center. Department of Geriatric Medicine, Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center.
| |
Collapse
|
46
|
Mendel OI, Luchihina LV, Mendel W. Aging and osteoarthritis. Chronic nonspecific inflammation as a link between aging and osteoarthritis (a review). ADVANCES IN GERONTOLOGY 2015. [DOI: 10.1134/s2079057015040165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
47
|
Prenatal ethanol exposure induces the osteoarthritis-like phenotype in female adult offspring rats with a post-weaning high-fat diet and its intrauterine programming mechanisms of cholesterol metabolism. Toxicol Lett 2015. [DOI: 10.1016/j.toxlet.2015.07.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
48
|
Chijimatsu R, Kunugiza Y, Taniyama Y, Nakamura N, Tomita T, Yoshikawa H. Expression and pathological effects of periostin in human osteoarthritis cartilage. BMC Musculoskelet Disord 2015; 16:215. [PMID: 26289167 PMCID: PMC4545863 DOI: 10.1186/s12891-015-0682-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 08/13/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is one of the most common joint diseases in elderly people, however, the underlying mechanism of OA pathogenesis is not completely clear. Periostin, the extracellular protein, has been shown by cDNA array analysis to be highly expressed in OA, but its function is not fully understood. The purpose of this study was to examine the expression and function of periostin in human OA. METHODS Human cartilage and synovia samples were used for the analysis of periostin expression and function. The human cartilage samples were obtained from the knees of patients undergoing total knee arthroplasty as OA samples and from the femoral bone head of patients with femoral neck fracture as control samples. Quantitative RT-PCR, ELISA, and immunohistochemistry were used for analysis of periostin expression in cartilage and synovia. Human primary chondrocytes isolated from control cartilage were stimulated by periostin, and the alteration of OA related gene expression was examined using quantitative RT-PCR. Immunocytochemistry of p65 was performed for the analysis of nuclear factor kappa B (NFκB) activation. RESULTS The periostin mRNA was significantly higher in OA cartilage than in control cartilage. Immunohistochemical analysis of periostin showed that the main positive signal was localized in chondrocytes and their periphery matrix near the erosive area, with less immunoreactivity in deeper zones. There was positive correlation between Mankin score and periostin immunoreactivity. The periostin expression was also detected in the fibrotic cartilage and tissue of subchondral bone. In cultured human chondrocytes, periostin induced the expression of interleukin (IL)-6, IL-8, matrix metalloproteinase (MMP)-1, MMP-3, MMP-13, and nitric oxide synthase-2 (NOS2) in a dose- and time-dependent manner. The activation of NFκB signaling was recognized by the nuclear translocation of p65. Periostin-induced upregulation of these genes was suppressed by NFκB inactivation in chondrocytes. CONCLUSION Periostin was upregulated in OA cartilage, and it may amplify inflammatory events and accelerate OA pathology.
Collapse
Affiliation(s)
- Ryota Chijimatsu
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan. .,Department of Orthopaedic Surgery, Osaka University Graduate School of Frontier Bio Science, 2-2 Yamadaoka, Suita, Osaka, Japan.
| | - Yasuo Kunugiza
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan. .,Department of Orthopaedic Surgery, Japan Community Healthcare Organization Hoshigaoka Medical Center, 4-8-1 Hoshigaoka, Hirakata, Osaka, Japan.
| | - Yoshiaki Taniyama
- Department of Clinical Gene Therapy, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan.
| | - Norimasa Nakamura
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan. .,Department of Rehabilitation Science, Osaka Health Science University, 1-9-27 Kita-ku Tenma, Osaka, Japan.
| | - Tetsuya Tomita
- Department of Orthopaedic Biomaterial Science, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan.
| | - Hideki Yoshikawa
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan.
| |
Collapse
|
49
|
Laureano PEDS, Oliveira KDS, de Aro AA, Gomes L, Pimentel ER, Esquisatto MAM. Structure and composition of arytenoid cartilage of the bullfrog (Lithobates catesbeianus) during maturation and aging. Micron 2015; 77:16-24. [PMID: 26093475 DOI: 10.1016/j.micron.2015.05.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 05/24/2015] [Accepted: 05/28/2015] [Indexed: 01/23/2023]
Abstract
The aging process induces progressive and irreversible changes in the structural and functional organization of animals. The objective of this study was to evaluate the effects of aging on the structure and composition of the extracellular matrix of the arytenoid cartilage found in the larynx of male bullfrogs (Lithobates catesbeianus) kept in captivity for commercial purposes. Animals at 7, 180 and 1080 days post-metamorphosis (n=10/age) were euthanized and the cartilage was removed and processed for structural and biochemical analysis. For the structural analyses, cartilage sections were stained with picrosirius, toluidine blue, Weigert's resorcin-fuchsin and Von Kossa stain. The sections were also submitted to immunohistochemistry for detection of collagen types I and II. Other samples were processed for the ultrastructural and cytochemical analysis of proteoglycans. Histological sections were used to chondrocyte count. The number of positive stainings for proteoglycans was quantified by ultrastructural analysis. For quantification and analysis of glycosaminoglycans were used the dimethyl methylene blue and agarose gel electrophoresis methods. The chloramine T method was used for hydroxyproline quantification. At 7 days, basophilia was observed in the pericellular and territorial matrix, which decreased in the latter over the period studied. Collagen fibers were arranged perpendicular to the major axis of the cartilaginous plate and were thicker in older animals. Few calcification areas were observed at the periphery of the cartilage specimens in 1080-day-old animals. Type II collagen was present throughout the stroma at the different ages. Elastic fibers were found in the stroma and perichondrium and increased with age in the two regions. Proteoglycan staining significantly increased from 7 to 180 days and reduced at 1080 days. The amount of total glycosaminoglycans was higher in 180-day-old animals compared to the other ages, with marked presence of chondroitin- and dermatan-sulfate especially in this age. The content of hydroxyproline, which infers the total collagen concentration, was higher in 1080-day-old animals compared to the other ages. The results demonstrated the elastic nature of the arytenoid cartilage of L. catesbeianus and the occurrence of age-related changes in the structural organization and composition of the extracellular matrix. These changes may contribute to alter the function of the larynx in the animal during aging.
Collapse
Affiliation(s)
- Priscila Eliane dos Santos Laureano
- Programa de Pós-graduação em Ciências Biomédicas, Centro Universitário Hermínio Ometto, Av. Dr. Maximiliano Baruto, 500 Jd. Universitário, 13607-339, Araras, SP, Brazil
| | - Kris Daiana Silva Oliveira
- Programa de Pós-graduação em Ciências Biomédicas, Centro Universitário Hermínio Ometto, Av. Dr. Maximiliano Baruto, 500 Jd. Universitário, 13607-339, Araras, SP, Brazil
| | - Andrea Aparecida de Aro
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Rua Charles Darwin, s/n, CxP 6109, 13083-863, Campinas, SP, Brazil
| | - Laurecir Gomes
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Rua Charles Darwin, s/n, CxP 6109, 13083-863, Campinas, SP, Brazil
| | - Edson Rosa Pimentel
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Rua Charles Darwin, s/n, CxP 6109, 13083-863, Campinas, SP, Brazil
| | - Marcelo Augusto Marretto Esquisatto
- Programa de Pós-graduação em Ciências Biomédicas, Centro Universitário Hermínio Ometto, Av. Dr. Maximiliano Baruto, 500 Jd. Universitário, 13607-339, Araras, SP, Brazil.
| |
Collapse
|
50
|
Niebler S, Schubert T, Hunziker EB, Bosserhoff AK. Activating enhancer binding protein 2 epsilon (AP-2ε)-deficient mice exhibit increased matrix metalloproteinase 13 expression and progressive osteoarthritis development. Arthritis Res Ther 2015; 17:119. [PMID: 25964075 PMCID: PMC4453098 DOI: 10.1186/s13075-015-0648-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 05/05/2015] [Indexed: 01/15/2023] Open
Abstract
Introduction The transcription factor activating enhancer binding protein 2 epsilon (AP-2ε) was recently shown to be expressed during chondrogenesis as well as in articular chondrocytes of humans and mice. Furthermore, expression of AP-2ε was found to be upregulated in affected cartilage of patients with osteoarthritis (OA). Despite these findings, adult mice deficient for AP-2ε (Tfap2e−/−) do not exhibit an obviously abnormal cartilaginous phenotype. We therefore analyzed embryogenesis of Tfap2e−/− mice to elucidate potential transient abnormalities that provide information on the influence of AP-2ε on skeletal development. In a second part, we aimed to define potential influences of AP-2ε on articular cartilage function and gene expression, as well as on OA progression, in adult mice. Methods Murine embryonic development was accessed via in situ hybridization, measurement of skeletal parameters and micromass differentiation of mesenchymal cells. To reveal discrepancies in articular cartilage of adult wild-type (WT) and Tfap2e−/− mice, light and electron microscopy, in vitro culture of cartilage explants, and quantification of gene expression via real-time PCR were performed. OA was induced via surgical destabilization of the medial meniscus in both genotypes, and disease progression was monitored on histological and molecular levels. Results Only minor differences between WT and embryos deficient for AP-2ε were observed, suggesting that redundancy mechanisms effectively compensate for the loss of AP-2ε during skeletal development. Surprisingly, though, we found matrix metalloproteinase 13 (Mmp13), a major mediator of cartilage destruction, to be significantly upregulated in articular cartilage of adult Tfap2e−/− mice. This finding was further confirmed by increased Mmp13 activity and extracellular matrix degradation in Tfap2e−/− cartilage explants. OA progression was significantly enhanced in the Tfap2e−/− mice, which provided evidence for in vivo relevance. This finding is most likely attributable to the increased basal Mmp13 expression level in Tfap2e−/− articular chondrocytes that results in a significantly higher total Mmp13 expression rate during OA as compared with the WT. Conclusions We reveal a novel role of AP-2ε in the regulation of gene expression in articular chondrocytes, as well as in OA development, through modulation of Mmp13 expression and activity.
Collapse
Affiliation(s)
- Stephan Niebler
- Institute of Biochemistry (Emil-Fischer-Center), Friedrich Alexander University Erlangen-Nürnberg, Fahrstrasse17, 91054, Erlangen, Germany. .,Institute of Pathology, University Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| | - Thomas Schubert
- Institute of Pathology, Friedrich Alexander University Erlangen-Nürnberg, Krankenhausstrasse 8-10, 91054, Erlangen, Germany.
| | - Ernst B Hunziker
- Department of Orthopedic Surgery, University Hospital of Bern, Murtenstrasse 35, 3010, Bern, Switzerland.
| | - Anja K Bosserhoff
- Institute of Biochemistry (Emil-Fischer-Center), Friedrich Alexander University Erlangen-Nürnberg, Fahrstrasse17, 91054, Erlangen, Germany.
| |
Collapse
|