1
|
Elmansi AM, Kassem A, Castilla RM, Miller RA. Downregulation of the NF-κB protein p65 is a shared phenotype among most anti-aging interventions. GeroScience 2024:10.1007/s11357-024-01466-9. [PMID: 39666139 DOI: 10.1007/s11357-024-01466-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/03/2024] [Indexed: 12/13/2024] Open
Abstract
Many aspects of inflammation increase with aging in mice and humans. Transcriptomic analysis revealed that many murine anti-aging interventions produce lower levels of pro-inflammatory proteins. Here, we explore the hypothesis that different longevity interventions diminish NF-κB levels, potentially mediating some of the anti-inflammatory benefits of lifespan-extending interventions. We found that the NF-κB protein p65 is significantly downregulated in the liver of several kinds of slow-aging mice. These included both sexes of GHRKO and Snell Dwarf mutant mice, and in females only of PAPPA KO mice. P65 is also lower in both sexes of mice treated with rapamycin, canagliflozin, meclizine, or acarbose, and in mice undergoing caloric restriction. Two drugs that extend lifespan of male mice, i.e. 17α-estradiol and astaxanthin, however, did not produce lower levels of p65. We also measured other canonical NF-κB signaling regulators, including the activators IKKα and IKKβ and the inhibitor IκB-α. We found that those regulators do not consistently change in a direction that would lead to of NF-κB inhibition. In contrast, we found that NCoR1, an HDAC3 cofactor and a transcription co-repressor that regulates p65 activity, was also downregulated in many of these mouse models. Finally, we report downregulation of three p65 target proteins that regulate the metabolic and inflammatory states of the liver (HNF4α, IL-1β, and CRP) in multiple slow-aging mouse models. Together, these data suggest that NF-κB signaling, might be inhibited in liver of multiple varieties of slow aging mice. This establishes p65 as a potential target for novel longevity interventions.
Collapse
Affiliation(s)
- Ahmed M Elmansi
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
- University of Michigan Geriatrics Center, Ann Arbor, MI, USA
| | - Abraham Kassem
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Rafael M Castilla
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
- University of Michigan Geriatrics Center, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Panchin AY, Ogmen A, Blagodatski AS, Egorova A, Batin M, Glinin T. Targeting multiple hallmarks of mammalian aging with combinations of interventions. Aging (Albany NY) 2024; 16:12073-12100. [PMID: 39159129 PMCID: PMC11386927 DOI: 10.18632/aging.206078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 06/28/2024] [Indexed: 08/21/2024]
Abstract
Aging is currently viewed as a result of multiple biological processes that manifest themselves independently, reinforce each other and in their totality lead to the aged phenotype. Genetic and pharmaceutical approaches targeting specific underlying causes of aging have been used to extend the lifespan and healthspan of model organisms ranging from yeast to mammals. However, most interventions display only a modest benefit. This outcome is to be expected if we consider that even if one aging process is successfully treated, other aging pathways may remain intact. Hence solving the problem of aging may require targeting not one but many of its underlying causes at once. Here we review the challenges and successes of combination therapies aimed at increasing the lifespan of mammals and propose novel directions for their development. We conclude that both additive and synergistic effects on mammalian lifespan can be achieved by combining interventions that target the same or different hallmarks of aging. However, the number of studies in which multiple hallmarks were targeted simultaneously is surprisingly limited. We argue that this approach is as promising as it is understudied.
Collapse
Affiliation(s)
- Alexander Y Panchin
- Sector of Molecular Evolution, Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127051, Russia
| | - Anna Ogmen
- Open Longevity, Sherman Oaks, CA 91403, USA
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul 34342, Turkey
| | - Artem S Blagodatski
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | | | | | - Timofey Glinin
- Open Longevity, Sherman Oaks, CA 91403, USA
- Department of Surgery, Endocrine Neoplasia Laboratory, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
3
|
Tang H, Ge WW, Wei WH, Yang SM, Dai X. Food Grinding Behavior: A Review of Causality and Influential Factors. Animals (Basel) 2024; 14:1865. [PMID: 38997977 PMCID: PMC11240756 DOI: 10.3390/ani14131865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Food waste is a common issue arising from grinding of food by experimental animals, leading to excessive food scraps falling into cages. In the wild, animals grind food by gnawing vegetation and seeds, potentially damaging the ecological environment. However, limited ecology studies have focused on food grinding behavior since the last century, with even fewer on rodent food grinding, particularly recently. Although food grinding's function is partially understood, its biological purposes remain under-investigated and driving factors unclear. This review aims to explain potential causes of animal food grinding, identify influencing factors, and discuss contexts and limitations. Specifically, we emphasize recent progress on gut microbiota significance for food grinding. Moreover, we show abnormal food grinding is determined by degree of excess normal behavior, emphasizing food grinding is not meaningless. Findings from this review promote comprehensive research on the myriad factors, multifaceted roles, and intricate evolution underlying food grinding behavior, benefiting laboratory animal husbandry and ecological environment protection, and identifying potential physiological benefits yet undiscovered.
Collapse
Affiliation(s)
- Hao Tang
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (H.T.); (W.-W.G.); (W.-H.W.); (S.-M.Y.)
| | - Wei-Wei Ge
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (H.T.); (W.-W.G.); (W.-H.W.); (S.-M.Y.)
| | - Wan-Hong Wei
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (H.T.); (W.-W.G.); (W.-H.W.); (S.-M.Y.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Sheng-Mei Yang
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (H.T.); (W.-W.G.); (W.-H.W.); (S.-M.Y.)
| | - Xin Dai
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou 225009, China; (H.T.); (W.-W.G.); (W.-H.W.); (S.-M.Y.)
| |
Collapse
|
4
|
Willows JW, Alshahal Z, Story NM, Alves MJ, Vidal P, Harris H, Rodrigo R, Stanford KI, Peng J, Reifsnyder PC, Harrison DE, David Arnold W, Townsend KL. Contributions of mouse genetic strain background to age-related phenotypes in physically active HET3 mice. Neurobiol Aging 2024; 136:58-69. [PMID: 38325031 DOI: 10.1016/j.neurobiolaging.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/06/2024] [Accepted: 01/22/2024] [Indexed: 02/09/2024]
Abstract
We assessed aging hallmarks in skin, muscle, and adipose in the genetically diverse HET3 mouse, and generated a broad dataset comparing these to individual animal diagnostic SNPs from the 4 founding inbred strains of the HET3 line. For middle- and old-aged HET3 mice, we provided running wheel exercise to ensure our observations were not purely representative of sedentary animals, but age-related phenotypes were not improved with running wheel activity. Adipose tissue fibrosis, peripheral neuropathy, and loss of neuromuscular junction integrity were consistent phenotypes in older-aged HET3 mice regardless of physical activity, but aspects of these phenotypes were moderated by the SNP% contributions of the founding strains for the HET3 line. Taken together, the genetic contribution of founder strain SNPs moderated age-related phenotypes in skin and muscle innervation and were dependent on biological sex and chronological age. However, there was not a single founder strain (BALB/cJ, C57BL/6J, C3H/HeJ, DBA/2J) that appeared to drive more protection or disease-risk across aging in this mouse line, but genetic diversity in general was more protective.
Collapse
Affiliation(s)
- Jake W Willows
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
| | - Zahra Alshahal
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
| | - Naeemah M Story
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
| | - Michele J Alves
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA
| | - Pablo Vidal
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Hallie Harris
- Department of Neurology, The Ohio State University, Columbus, OH, USA
| | - Rochelle Rodrigo
- Department of Neurology, The Ohio State University, Columbus, OH, USA
| | - Kristin I Stanford
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Juan Peng
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | | | | | - W David Arnold
- Department of Neurology, The Ohio State University, Columbus, OH, USA
| | - Kristy L Townsend
- Department of Neurological Surgery, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
5
|
Burns AR, Wiedrick J, Feryn A, Maes M, Midha MK, Baxter DH, Morrone SR, Prokop TJ, Kapil C, Hoopmann MR, Kusebauch U, Deutsch EW, Rappaport N, Watanabe K, Moritz RL, Miller RA, Lapidus JA, Orwoll ES. Proteomic changes induced by longevity-promoting interventions in mice. GeroScience 2024; 46:1543-1560. [PMID: 37653270 PMCID: PMC10828338 DOI: 10.1007/s11357-023-00917-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/20/2023] [Indexed: 09/02/2023] Open
Abstract
Using mouse models and high-throughput proteomics, we conducted an in-depth analysis of the proteome changes induced in response to seven interventions known to increase mouse lifespan. This included two genetic mutations, a growth hormone receptor knockout (GHRKO mice) and a mutation in the Pit-1 locus (Snell dwarf mice), four drug treatments (rapamycin, acarbose, canagliflozin, and 17α-estradiol), and caloric restriction. Each of the interventions studied induced variable changes in the concentrations of proteins across liver, kidney, and gastrocnemius muscle tissue samples, with the strongest responses in the liver and limited concordance in protein responses across tissues. To the extent that these interventions promote longevity through common biological mechanisms, we anticipated that proteins associated with longevity could be identified by characterizing shared responses across all or multiple interventions. Many of the proteome alterations induced by each intervention were distinct, potentially implicating a variety of biological pathways as being related to lifespan extension. While we found no protein that was affected similarly by every intervention, we identified a set of proteins that responded to multiple interventions. These proteins were functionally diverse but tended to be involved in peroxisomal oxidation and metabolism of fatty acids. These results provide candidate proteins and biological mechanisms related to enhancing longevity that can inform research on therapeutic approaches to promote healthy aging.
Collapse
Affiliation(s)
- Adam R Burns
- Biostatistics & Design Program, Oregon Health & Science University, Portland, OR, USA.
| | - Jack Wiedrick
- Biostatistics & Design Program, Oregon Health & Science University, Portland, OR, USA
| | - Alicia Feryn
- Biostatistics & Design Program, Oregon Health & Science University, Portland, OR, USA
| | - Michal Maes
- Institute for Systems Biology, Seattle, WA, USA
| | | | | | | | | | - Charu Kapil
- Institute for Systems Biology, Seattle, WA, USA
| | | | | | | | | | | | | | - Richard A Miller
- Department of Pathology and Geriatrics Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Jodi A Lapidus
- School of Public Health, Oregon Health & Science University-Portland State University, Portland, OR, USA
| | - Eric S Orwoll
- Department of Endocrinology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
6
|
Mitteldorf J. Biological Clocks: Why We Need Them, Why We Cannot Trust Them, How They Might Be Improved. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:356-366. [PMID: 38622101 DOI: 10.1134/s0006297924020135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 04/17/2024]
Abstract
Late in life, the body is at war with itself. There is a program of self-destruction (phenoptosis) implemented via epigenetic and other changes. I refer to these as type (1) epigenetic changes. But the body retains a deep instinct for survival, and other epigenetic changes unfold in response to a perception of accumulated damage (type (2)). In the past decade, epigenetic clocks have promised to accelerate the search for anti-aging interventions by permitting prompt, reliable, and convenient measurement of their effects on lifespan without having to wait for trial results on mortality and morbidity. However, extant clocks do not distinguish between type (1) and type (2). Reversing type (1) changes extends lifespan, but reversing type (2) shortens lifespan. This is why all extant epigenetic clocks may be misleading. Separation of type (1) and type (2) epigenetic changes will lead to more reliable clock algorithms, but this cannot be done with statistics alone. New experiments are proposed. Epigenetic changes are the means by which the body implements phenoptosis, but they do not embody a clock mechanism, so they cannot be the body's primary timekeeper. The timekeeping mechanism is not yet understood, though there are hints that it may be (partially) located in the hypothalamus. For the future, we expect that the most fundamental measurement of biological age will observe this clock directly, and the most profound anti-aging interventions will manipulate it.
Collapse
|
7
|
Green CL, Trautman ME, Chaiyakul K, Jain R, Alam YH, Babygirija R, Pak HH, Sonsalla MM, Calubag MF, Yeh CY, Bleicher A, Novak G, Liu TT, Newman S, Ricke WA, Matkowskyj KA, Ong IM, Jang C, Simcox J, Lamming DW. Dietary restriction of isoleucine increases healthspan and lifespan of genetically heterogeneous mice. Cell Metab 2023; 35:1976-1995.e6. [PMID: 37939658 PMCID: PMC10655617 DOI: 10.1016/j.cmet.2023.10.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/01/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023]
Abstract
Low-protein diets promote health and longevity in diverse species. Restriction of the branched-chain amino acids (BCAAs) leucine, isoleucine, and valine recapitulates many of these benefits in young C57BL/6J mice. Restriction of dietary isoleucine (IleR) is sufficient to promote metabolic health and is required for many benefits of a low-protein diet in C57BL/6J males. Here, we test the hypothesis that IleR will promote healthy aging in genetically heterogeneous adult UM-HET3 mice. We find that IleR improves metabolic health in young and old HET3 mice, promoting leanness and glycemic control in both sexes, and reprograms hepatic metabolism in a sex-specific manner. IleR reduces frailty and extends the lifespan of male and female mice, but to a greater degree in males. Our results demonstrate that IleR increases healthspan and longevity in genetically diverse mice and suggests that IleR, or pharmaceuticals that mimic this effect, may have potential as a geroprotective intervention.
Collapse
Affiliation(s)
- Cara L Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Michaela E Trautman
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Krittisak Chaiyakul
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Raghav Jain
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Yasmine H Alam
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Reji Babygirija
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Heidi H Pak
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Michelle M Sonsalla
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Mariah F Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Chung-Yang Yeh
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Anneliese Bleicher
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Grace Novak
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Teresa T Liu
- George M. O'Brien Center of Research Excellence, Department of Urology, University of Wisconsin, Madison, WI 93705, USA
| | - Sarah Newman
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA
| | - Will A Ricke
- George M. O'Brien Center of Research Excellence, Department of Urology, University of Wisconsin, Madison, WI 93705, USA
| | - Kristina A Matkowskyj
- William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA; University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| | - Irene M Ong
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA; University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53705, USA; Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Judith Simcox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Integrated Program in Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Nutrition and Metabolism Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA; Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI 53706, USA; Comparative Biomedical Sciences Graduate Program, University of Wisconsin-Madison, Madison, WI 53706, USA; University of Wisconsin Carbone Comprehensive Cancer Center, University of Wisconsin, Madison, WI 53705, USA.
| |
Collapse
|
8
|
Mannick JB, Lamming DW. Targeting the biology of aging with mTOR inhibitors. NATURE AGING 2023; 3:642-660. [PMID: 37142830 PMCID: PMC10330278 DOI: 10.1038/s43587-023-00416-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/07/2023] [Indexed: 05/06/2023]
Abstract
Inhibition of the protein kinase mechanistic target of rapamycin (mTOR) with the Food and Drug Administration (FDA)-approved therapeutic rapamycin promotes health and longevity in diverse model organisms. More recently, specific inhibition of mTORC1 to treat aging-related conditions has become the goal of basic and translational scientists, clinicians and biotechnology companies. Here, we review the effects of rapamycin on the longevity and survival of both wild-type mice and mouse models of human diseases. We discuss recent clinical trials that have explored whether existing mTOR inhibitors can safely prevent, delay or treat multiple diseases of aging. Finally, we discuss how new molecules may provide routes to the safer and more selective inhibition of mTOR complex 1 (mTORC1) in the decade ahead. We conclude by discussing what work remains to be done and the questions that will need to be addressed to make mTOR inhibitors part of the standard of care for diseases of aging.
Collapse
Affiliation(s)
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
9
|
Willows JW, Robinson M, Alshahal Z, Morrison SK, Mishra G, Cyr H, Blaszkiewicz M, Gunsch G, DiPietro S, Paradie E, Tero B, Harrington A, Ryzhova L, Liaw L, Reifsnyder PC, Harrison DE, Townsend KL. Age-related changes to adipose tissue and peripheral neuropathy in genetically diverse HET3 mice differ by sex and are not mitigated by rapamycin longevity treatment. Aging Cell 2023; 22:e13784. [PMID: 36798047 PMCID: PMC10086534 DOI: 10.1111/acel.13784] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 12/16/2022] [Accepted: 01/05/2023] [Indexed: 02/18/2023] Open
Abstract
Neural communication between the brain and adipose tissues regulates energy expenditure and metabolism through modulation of adipose tissue functions. We have recently demonstrated that under pathophysiological conditions (obesity, diabetes, and aging), total subcutaneous white adipose tissue (scWAT) innervation is decreased ('adipose neuropathy'). With advanced age in the C57BL/6J mouse, small fiber peripheral nerve endings in adipose tissue die back, resulting in reduced contact with adipose-resident blood vessels and other cells. This vascular neuropathy and parenchymal neuropathy together likely pose a physiological challenge for tissue function. In the current work, we used the genetically diverse HET3 mouse model to investigate the incidence of peripheral neuropathy and adipose tissue dysregulation across several ages in both male and female mice. We also investigated the anti-aging treatment rapamycin, an mTOR inhibitor, as a means to prevent or reduce adipose neuropathy. We found that HET3 mice displayed a reduced neuropathy phenotype compared to inbred C56BL/6 J mice, indicating genetic contributions to this aging phenotype. Compared to female HET3 mice, male HET3 mice had worse neuropathic phenotypes by 62 weeks of age. Female HET3 mice appeared to have increased protection from neuropathy until advanced age (126 weeks), after reproductive senescence. We found that rapamycin overall had little impact on neuropathy measures, and actually worsened adipose tissue inflammation and fibrosis. Despite its success as a longevity treatment in mice, higher doses and longer delivery paradigms for rapamycin may lead to a disconnect between life span and beneficial health outcomes.
Collapse
Affiliation(s)
- Jake W Willows
- Department of Neurological Surgery, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | | | - Zahra Alshahal
- Department of Neurological Surgery, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Samantha K Morrison
- Department of Neurological Surgery, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Gargi Mishra
- Department of Neurological Surgery, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | | | - Magdalena Blaszkiewicz
- Department of Neurological Surgery, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Gilian Gunsch
- Department of Neurological Surgery, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Sabrina DiPietro
- Department of Neurological Surgery, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Emma Paradie
- Department of Neurological Surgery, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA
| | - Benjamin Tero
- Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Anne Harrington
- Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Larisa Ryzhova
- Maine Medical Center Research Institute, Scarborough, Maine, USA
| | - Lucy Liaw
- Maine Medical Center Research Institute, Scarborough, Maine, USA
| | | | | | - Kristy L Townsend
- Department of Neurological Surgery, The Ohio State University, Wexner Medical Center, Columbus, Ohio, USA.,University of Maine, Orono, Maine, USA
| |
Collapse
|
10
|
Redwan A, Kiriaev L, Kueh S, Morley JW, Houweling P, Perry BD, Head SI. Six weeks of N-acetylcysteine antioxidant in drinking water decreases pathological fiber branching in MDX mouse dystrophic fast-twitch skeletal muscle. Front Physiol 2023; 14:1109587. [PMID: 36866174 PMCID: PMC9971923 DOI: 10.3389/fphys.2023.1109587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/03/2023] [Indexed: 02/16/2023] Open
Abstract
Introduction: It has been proposed that an increased susceptivity to oxidative stress caused by the absence of the protein dystrophin from the inner surface of the sarcolemma is a trigger of skeletal muscle necrosis in the destructive dystrophin deficient muscular dystrophies. Here we use the mdx mouse model of human Duchenne Muscular Dystrophy to test the hypothesis that adding the antioxidant NAC at 2% to drinking water for six weeks will treat the inflammatory phase of the dystrophic process and reduce pathological muscle fiber branching and splitting resulting in a reduction of mass in mdx fast-twitch EDL muscles. Methods: Animal weight and water intake was recorded during the six weeks when 2% NAC was added to the drinking water. Post NAC treatment animals were euthanised and the EDL muscles dissected out and placed in an organ bath where the muscle was attached to a force transducer to measure contractile properties and susceptibility to force loss from eccentric contractions. After the contractile measurements had been made the EDL muscle was blotted and weighed. In order to assess the degree of pathological fiber branching mdx EDL muscles were treated with collagenase to release single fibers. For counting and morphological analysis single EDL mdx skeletal muscle fibers were viewed under high magnification on an inverted microscope. Results: During the six-week treatment phase NAC reduced body weight gain in three- to nine-week-old mdx and littermate control mice without effecting fluid intake. NAC treatment also significantly reduced the mdx EDL muscle mass and abnormal fiber branching and splitting. Discussion: We propose chronic NAC treatment reduces the inflammatory response and degenerative cycles in the mdx dystrophic EDL muscles resulting in a reduction in the number of complexed branched fibers reported to be responsible for the dystrophic EDL muscle hypertrophy.
Collapse
Affiliation(s)
- Asma Redwan
- School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Leonit Kiriaev
- Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Sindy Kueh
- School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - John W. Morley
- School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Peter Houweling
- Murdoch Children’s Research Institute, Melbourne, VIC, Australia
| | - Ben D. Perry
- School of Science, Western Sydney University, Sydney, NSW, Australia
| | - Stewart I. Head
- School of Medicine, Western Sydney University, Sydney, NSW, Australia,Murdoch Children’s Research Institute, Melbourne, VIC, Australia,*Correspondence: Stewart I. Head,
| |
Collapse
|
11
|
Santos AL, Sinha S. Ageing, Metabolic Dysfunction, and the Therapeutic Role of Antioxidants. Subcell Biochem 2023; 103:341-435. [PMID: 37120475 DOI: 10.1007/978-3-031-26576-1_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2023]
Abstract
The gradual ageing of the world population has been accompanied by a dramatic increase in the prevalence of obesity and metabolic diseases, especially type 2 diabetes. The adipose tissue dysfunction associated with ageing and obesity shares many common physiological features, including increased oxidative stress and inflammation. Understanding the mechanisms responsible for adipose tissue dysfunction in obesity may help elucidate the processes that contribute to the metabolic disturbances that occur with ageing. This, in turn, may help identify therapeutic targets for the treatment of obesity and age-related metabolic disorders. Because oxidative stress plays a critical role in these pathological processes, antioxidant dietary interventions could be of therapeutic value for the prevention and/or treatment of age-related diseases and obesity and their complications. In this chapter, we review the molecular and cellular mechanisms by which obesity predisposes individuals to accelerated ageing. Additionally, we critically review the potential of antioxidant dietary interventions to counteract obesity and ageing.
Collapse
Affiliation(s)
- Ana L Santos
- IdISBA - Fundación de Investigación Sanitaria de las Islas Baleares, Palma, Spain.
| | | |
Collapse
|
12
|
Wang K, Liu H, Hu Q, Wang L, Liu J, Zheng Z, Zhang W, Ren J, Zhu F, Liu GH. Epigenetic regulation of aging: implications for interventions of aging and diseases. Signal Transduct Target Ther 2022; 7:374. [PMID: 36336680 PMCID: PMC9637765 DOI: 10.1038/s41392-022-01211-8] [Citation(s) in RCA: 180] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Aging is accompanied by the decline of organismal functions and a series of prominent hallmarks, including genetic and epigenetic alterations. These aging-associated epigenetic changes include DNA methylation, histone modification, chromatin remodeling, non-coding RNA (ncRNA) regulation, and RNA modification, all of which participate in the regulation of the aging process, and hence contribute to aging-related diseases. Therefore, understanding the epigenetic mechanisms in aging will provide new avenues to develop strategies to delay aging. Indeed, aging interventions based on manipulating epigenetic mechanisms have led to the alleviation of aging or the extension of the lifespan in animal models. Small molecule-based therapies and reprogramming strategies that enable epigenetic rejuvenation have been developed for ameliorating or reversing aging-related conditions. In addition, adopting health-promoting activities, such as caloric restriction, exercise, and calibrating circadian rhythm, has been demonstrated to delay aging. Furthermore, various clinical trials for aging intervention are ongoing, providing more evidence of the safety and efficacy of these therapies. Here, we review recent work on the epigenetic regulation of aging and outline the advances in intervention strategies for aging and age-associated diseases. A better understanding of the critical roles of epigenetics in the aging process will lead to more clinical advances in the prevention of human aging and therapy of aging-related diseases.
Collapse
Affiliation(s)
- Kang Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Huicong Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Qinchao Hu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
- Hospital of Stomatology, Sun Yat-sen University, 510060, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, 510060, Guangzhou, China
| | - Lingna Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Jiaqing Liu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Zikai Zheng
- University of Chinese Academy of Sciences, 100049, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
| | - Weiqi Zhang
- University of Chinese Academy of Sciences, 100049, Beijing, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China
| | - Jie Ren
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, 100101, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Fangfang Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, 100101, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, 100101, Beijing, China.
| |
Collapse
|
13
|
Zhang Y, Jelleschitz J, Grune T, Chen W, Zhao Y, Jia M, Wang Y, Liu Z, Höhn A. Methionine restriction - Association with redox homeostasis and implications on aging and diseases. Redox Biol 2022; 57:102464. [PMID: 36152485 PMCID: PMC9508608 DOI: 10.1016/j.redox.2022.102464] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 10/31/2022] Open
Abstract
Methionine is an essential amino acid, involved in the promotion of growth, immunity, and regulation of energy metabolism. Over the decades, research has long focused on the beneficial effects of methionine supplementation, while data on positive effects of methionine restriction (MR) were first published in 1993. MR is a low-methionine dietary intervention that has been reported to ameliorate aging and aging-related health concomitants and diseases, such as obesity, type 2 diabetes, and cognitive disorders. In addition, MR seems to be an approach to prolong lifespan which has been validated extensively in various animal models, such as Caenorhabditis elegans, Drosophila, yeast, and murine models. MR appears to be associated with a reduction in oxidative stress via so far mainly undiscovered mechanisms, and these changes in redox status appear to be one of the underlying mechanisms for lifespan extension and beneficial health effects. In the present review, the association of methionine metabolism pathways with redox homeostasis is described. In addition, the effects of MR on lifespan, age-related implications, comorbidities, and diseases are discussed.
Collapse
Affiliation(s)
- Yuyu Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Julia Jelleschitz
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Tilman Grune
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany; NutriAct-Competence Cluster Nutrition Research Berlin-Potsdam, Nuthetal, Germany; German Center for Cardiovascular Research (DZHK), Berlin, Germany; Institute of Nutrition, University of Potsdam, Nuthetal, 14558, Germany
| | - Weixuan Chen
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yihang Zhao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mengzhen Jia
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yajie Wang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.
| | - Annika Höhn
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; German Center for Diabetes Research (DZD), 85764, Muenchen-Neuherberg, Germany.
| |
Collapse
|
14
|
Bisset ES, Howlett SE. The Use of Dietary Supplements and Amino Acid Restriction Interventions to Reduce Frailty in Pre-Clinical Models. Nutrients 2022; 14:2806. [PMID: 35889763 PMCID: PMC9316446 DOI: 10.3390/nu14142806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/06/2022] [Accepted: 07/05/2022] [Indexed: 02/04/2023] Open
Abstract
Frailty is a state of accelerated aging that increases susceptibility to adverse health outcomes. Due to its high societal and personal costs, there is growing interest in discovering beneficial interventions to attenuate frailty. Many of these interventions involve the use of lifestyle modifications such as dietary supplements. Testing these interventions in pre-clinical models can facilitate our understanding of their impact on underlying mechanisms of frailty. We conducted a narrative review of studies that investigated the impact of dietary modifications on measures of frailty or overall health in rodent models. These interventions include vitamin supplements, dietary supplements, or amino acid restriction diets. We found that vitamins, amino acid restriction diets, and dietary supplements can have beneficial effects on frailty and other measures of overall health in rodent models. Mechanistic studies show that these effects are mediated by modifying one or more mechanisms underlying frailty, in particular effects on chronic inflammation. However, many interventions do not measure frailty directly and most do not investigate effects in both sexes, which limits their applicability. Examining dietary interventions in animal models allows for detailed investigation of underlying mechanisms involved in their beneficial effects. This may lead to more successful, translatable interventions to attenuate frailty.
Collapse
Affiliation(s)
- Elise S. Bisset
- Department of Pharmacology, Dalhousie University, P.O. Box 15000, Halifax, NS B3H 4R2, Canada;
| | - Susan E. Howlett
- Department of Pharmacology, Dalhousie University, P.O. Box 15000, Halifax, NS B3H 4R2, Canada;
- Department of Medicine (Geriatric Medicine), Dalhousie University, P.O. Box 15000, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
15
|
FGF21 is required for protein restriction to extend lifespan and improve metabolic health in male mice. Nat Commun 2022; 13:1897. [PMID: 35393401 PMCID: PMC8991228 DOI: 10.1038/s41467-022-29499-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 03/17/2022] [Indexed: 12/12/2022] Open
Abstract
Dietary protein restriction is increasingly recognized as a unique approach to improve metabolic health, and there is increasing interest in the mechanisms underlying this beneficial effect. Recent work indicates that the hormone FGF21 mediates the metabolic effects of protein restriction in young mice. Here we demonstrate that protein restriction increases lifespan, reduces frailty, lowers body weight and adiposity, improves physical performance, improves glucose tolerance, and alters various metabolic markers within the serum, liver, and adipose tissue of wildtype male mice. Conversely, mice lacking FGF21 fail to exhibit metabolic responses to protein restriction in early life, and in later life exhibit early onset of age-related weight loss, reduced physical performance, increased frailty, and reduced lifespan. These data demonstrate that protein restriction in aging male mice exerts marked beneficial effects on lifespan and metabolic health and that a single metabolic hormone, FGF21, is essential for the anti-aging effect of this dietary intervention.
Collapse
|
16
|
Kulkarni AS, Aleksic S, Berger DM, Sierra F, Kuchel G, Barzilai N. Geroscience-guided repurposing of FDA-approved drugs to target aging: A proposed process and prioritization. Aging Cell 2022; 21:e13596. [PMID: 35343051 PMCID: PMC9009114 DOI: 10.1111/acel.13596] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/11/2022] [Accepted: 03/13/2022] [Indexed: 12/29/2022] Open
Abstract
Common chronic diseases represent the greatest driver of rising healthcare costs, as well as declining function, independence, and quality of life. Geroscience-guided approaches seek to delay the onset and progression of multiple chronic conditions by targeting fundamental biological pathways of aging. This approach is more likely to improve overall health and function in old age than treating individual diseases, by addressing aging the largest and mostly ignored risk factor for the leading causes of morbidity in older adults. Nevertheless, challenges in repurposing existing and moving newly discovered interventions from the bench to clinical care have impeded the progress of this potentially transformational paradigm shift. In this article, we propose the creation of a standardized process for evaluating FDA-approved medications for their geroscience potential. Criteria for systematically evaluating the existing literature that spans from animal models to human studies will permit the prioritization of efforts and financial investments for translating geroscience and allow immediate progress on the design of the next Targeting Aging with MEtformin (TAME)-like study involving such candidate gerotherapeutics.
Collapse
Affiliation(s)
- Ameya S. Kulkarni
- Institute for Aging ResearchAlbert Einstein College of MedicineBronxNew YorkUSA
- Present address:
AbbVie Inc.North ChicagoIL60064USA.
| | - Sandra Aleksic
- Department of Medicine (Endocrinology and Geriatrics)Albert Einstein College of MedicineBronxNew YorkUSA
| | - David M. Berger
- Department of Medicine (Hospital Medicine)Montefiore Medical Center and Albert Einstein College of MedicineBronxNew YorkUSA
| | - Felipe Sierra
- Centre Hospitalier Universitaire de ToulouseToulouseFrance
| | - George A. Kuchel
- UConn Center on AgingUniversity of Connecticut School of MedicineFarmingtonConnecticutUSA
| | - Nir Barzilai
- Institute for Aging ResearchAlbert Einstein College of MedicineBronxNew YorkUSA
| |
Collapse
|
17
|
Wolf AM. Rodent diet aids and the fallacy of caloric restriction. Mech Ageing Dev 2021; 200:111584. [PMID: 34673082 DOI: 10.1016/j.mad.2021.111584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022]
Abstract
Understanding the molecular mechanisms of normal aging is a prerequisite to significantly improving human health span. Caloric restriction (CR) can delay aging and has served as a yardstick to evaluate interventions extending life span. However, mice given unlimited access to food suffer severe obesity. Health gains from CR depend on control mice being sufficiently overweight and less obese mouse strains benefit far less from CR. Pharmacologic interventions that increase life span, including resveratrol, rapamycin, nicotinamide mononucleotide and metformin, also reduce body weight. In primates, CR does not delay aging unless the control group is eating enough to suffer from obesity-related disease. Human survival is optimal at a body mass index achievable without CR, and the above interventions are merely diet aids that shouldn't slow aging in healthy weight individuals. CR in humans of optimal weight can safely be declared useless, since there is overwhelming evidence that hunger, underweight and starvation reduce fitness, survival, and quality of life. Against an obese control, CR does, however, truly delay aging through a mechanism laid out in the following tumor suppression theory of aging.
Collapse
Affiliation(s)
- Alexander M Wolf
- Laboratory for Morphological and Biomolecular Imaging, Faculty of Medicine, Nippon Medical School, Japan.
| |
Collapse
|
18
|
Lee MB, Kiflezghi MG, Tsuchiya M, Wasko B, Carr DT, Uppal PA, Grayden KA, Elala YC, Nguyen TA, Wang J, Ragosti P, Nguyen S, Zhao YT, Kim D, Thon S, Sinha I, Tang TT, Tran NHB, Tran THB, Moore MD, Li MAK, Rodriguez K, Promislow DEL, Kaeberlein M. Pterocarpus marsupium extract extends replicative lifespan in budding yeast. GeroScience 2021; 43:2595-2609. [PMID: 34297314 PMCID: PMC8599564 DOI: 10.1007/s11357-021-00418-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/05/2021] [Indexed: 02/02/2023] Open
Abstract
As the molecular mechanisms of biological aging become better understood, there is growing interest in identifying interventions that target those mechanisms to promote extended health and longevity. The budding yeast Saccharomyces cerevisiae has served as a premier model organism for identifying genetic and molecular factors that modulate cellular aging and is a powerful system in which to evaluate candidate longevity interventions. Here we screened a collection of natural products and natural product mixtures for effects on the growth rate, mTOR-mediated growth inhibition, and replicative lifespan. No mTOR inhibitory activity was detected, but several of the treatments affected growth rate and lifespan. The strongest lifespan shortening effects were observed for green tea extract and berberine. The most robust lifespan extension was detected from an extract of Pterocarpus marsupium and another mixture containing Pterocarpus marsupium extract. These findings illustrate the utility of the yeast system for longevity intervention discovery and identify Pterocarpus marsupium extract as a potentially fruitful longevity intervention for testing in higher eukaryotes.
Collapse
Affiliation(s)
- Mitchell B. Lee
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Michael G. Kiflezghi
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Mitsuhiro Tsuchiya
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Brian Wasko
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA ,Department of Biology and Biotechnology, University of Houston-Clear Lake, Houston, TX USA
| | - Daniel T. Carr
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Priya A. Uppal
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Katherine A. Grayden
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Yordanos C. Elala
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Tu Anh Nguyen
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Jesse Wang
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Priya Ragosti
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Sunny Nguyen
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Yan Ting Zhao
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA ,Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA USA
| | - Deborah Kim
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Socheata Thon
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Irika Sinha
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Thao T. Tang
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Ngoc H. B. Tran
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Thu H. B. Tran
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Margarete D. Moore
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Mary Ann K. Li
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Karl Rodriguez
- Department of Cell Systems and Anatomy, University of Texas Health Sciences Center, San Antonio, TX USA ,Sam and Ann Barshop Center for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX USA
| | - Daniel E. L. Promislow
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA ,Department of Biology, University of Washington, Seattle, WA USA
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| |
Collapse
|
19
|
Harrison DE, Strong R, Reifsnyder P, Kumar N, Fernandez E, Flurkey K, Javors MA, Lopez‐Cruzan M, Macchiarini F, Nelson JF, Markewych A, Bitto A, Sindler AL, Cortopassi G, Kavanagh K, Leng L, Bucala R, Rosenthal N, Salmon A, Stearns TM, Bogue M, Miller RA. 17-a-estradiol late in life extends lifespan in aging UM-HET3 male mice; nicotinamide riboside and three other drugs do not affect lifespan in either sex. Aging Cell 2021; 20:e13328. [PMID: 33788371 PMCID: PMC8135004 DOI: 10.1111/acel.13328] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/27/2020] [Accepted: 01/12/2021] [Indexed: 01/23/2023] Open
Abstract
In genetically heterogeneous mice produced by the CByB6F1 x C3D2F1 cross, the "non-feminizing" estrogen, 17-α-estradiol (17aE2), extended median male lifespan by 19% (p < 0.0001, log-rank test) and 11% (p = 0.007) when fed at 14.4 ppm starting at 16 and 20 months, respectively. 90th percentile lifespans were extended 7% (p = 0.004, Wang-Allison test) and 5% (p = 0.17). Body weights were reduced about 20% after starting the 17aE2 diets. Four other interventions were tested in males and females: nicotinamide riboside, candesartan cilexetil, geranylgeranylacetone, and MIF098. Despite some data suggesting that nicotinamide riboside would be effective, neither it nor the other three increased lifespans significantly at the doses tested. The 17aE2 results confirm and extend our original reports, with very similar results when started at 16 months compared with mice started at 10 months of age in a prior study. The consistently large lifespan benefit in males, even when treatment is started late in life, may provide information on sex-specific aspects of aging.
Collapse
Affiliation(s)
| | - Randy Strong
- Barshop Institute for Longevity and Aging StudiesThe University of Texas Health Science CenterSan AntonioTXUSA
- Geriatric ResearchEducation and Clinical CenterSan AntonioTXUSA
- Research ServiceSouth Texas Veterans Health Care SystemSan AntonioTXUSA
- Department of PharmacologyThe University of Texas Health Science CenterSan AntonioTXUSA
| | | | - Navasuja Kumar
- Department of Pathology and Geriatrics CenterUniversity of MichiganAnn ArborMIUSA
| | - Elizabeth Fernandez
- Barshop Institute for Longevity and Aging StudiesThe University of Texas Health Science CenterSan AntonioTXUSA
- Geriatric ResearchEducation and Clinical CenterSan AntonioTXUSA
- Department of PharmacologyThe University of Texas Health Science CenterSan AntonioTXUSA
| | | | - Martin A. Javors
- Department of PsychiatryThe University of Texas Health Science CenterSan AntonioTXUSA
| | - Marisa Lopez‐Cruzan
- Department of PsychiatryThe University of Texas Health Science CenterSan AntonioTXUSA
| | | | - James F. Nelson
- Barshop Institute for Longevity and Aging StudiesThe University of Texas Health Science CenterSan AntonioTXUSA
- Department of PhysiologyThe University of Texas Health Science CenterSan AntonioTXUSA
| | - Adrian Markewych
- Department of PathologyUniversity of Washington Medical CenterSeattleWAUSA
| | - Alessandro Bitto
- Department of PathologyUniversity of Washington Medical CenterSeattleWAUSA
| | - Amy L. Sindler
- Department of Health & Human Physiology and Department of BiochemistryUniversity of IowaIowa CityIAUSA
| | - Gino Cortopassi
- Department of Molecular BiosciencesUniversity of CaliforniaDavisCAUSA
| | - Kylie Kavanagh
- Department of Pathology and Internal MedicineWake Forest School of MedicineWinston‐SalemNCUSA
| | - Lin Leng
- Department of Internal MedicineYale UniversityNew HavenConnecticutUSA
| | - Richard Bucala
- Department of Internal MedicineYale UniversityNew HavenConnecticutUSA
| | | | - Adam Salmon
- Barshop Institute for Longevity and Aging StudiesThe University of Texas Health Science CenterSan AntonioTXUSA
- Geriatric ResearchEducation and Clinical CenterSan AntonioTXUSA
- Research ServiceSouth Texas Veterans Health Care SystemSan AntonioTXUSA
- Department of Molecular MedicineThe University of Texas Health Science CenterSan AntonioTXUSA
| | | | | | - Richard A. Miller
- Department of Pathology and Geriatrics CenterUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
20
|
Takemon Y, Chick JM, Gerdes Gyuricza I, Skelly DA, Devuyst O, Gygi SP, Churchill GA, Korstanje R. Proteomic and transcriptomic profiling reveal different aspects of aging in the kidney. eLife 2021; 10:e62585. [PMID: 33687326 PMCID: PMC8096428 DOI: 10.7554/elife.62585] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 03/06/2021] [Indexed: 01/10/2023] Open
Abstract
Little is known about the molecular changes that take place in the kidney during the aging process. In order to better understand these changes, we measured mRNA and protein levels in genetically diverse mice at different ages. We observed distinctive change in mRNA and protein levels as a function of age. Changes in both mRNA and protein are associated with increased immune infiltration and decreases in mitochondrial function. Proteins show a greater extent of change and reveal changes in a wide array of biological processes including unique, organ-specific features of aging in kidney. Most importantly, we observed functionally important age-related changes in protein that occur in the absence of corresponding changes in mRNA. Our findings suggest that mRNA profiling alone provides an incomplete picture of molecular aging in the kidney and that examination of changes in proteins is essential to understand aging processes that are not transcriptionally regulated.
Collapse
Affiliation(s)
| | - Joel M Chick
- Harvard Medical SchoolBostonUnited States
- VividionTherapeuticsSan DiegoUnited States
| | | | | | - Olivier Devuyst
- Institute of Physiology, University of ZurichZurichSwitzerland
| | | | | | | |
Collapse
|
21
|
Shields HJ, Traa A, Van Raamsdonk JM. Beneficial and Detrimental Effects of Reactive Oxygen Species on Lifespan: A Comprehensive Review of Comparative and Experimental Studies. Front Cell Dev Biol 2021; 9:628157. [PMID: 33644065 PMCID: PMC7905231 DOI: 10.3389/fcell.2021.628157] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/20/2021] [Indexed: 12/15/2022] Open
Abstract
Aging is the greatest risk factor for a multitude of diseases including cardiovascular disease, neurodegeneration and cancer. Despite decades of research dedicated to understanding aging, the mechanisms underlying the aging process remain incompletely understood. The widely-accepted free radical theory of aging (FRTA) proposes that the accumulation of oxidative damage caused by reactive oxygen species (ROS) is one of the primary causes of aging. To define the relationship between ROS and aging, there have been two main approaches: comparative studies that measure outcomes related to ROS across species with different lifespans, and experimental studies that modulate ROS levels within a single species using either a genetic or pharmacologic approach. Comparative studies have shown that levels of ROS and oxidative damage are inversely correlated with lifespan. While these studies in general support the FRTA, this type of experiment can only demonstrate correlation, not causation. Experimental studies involving the manipulation of ROS levels in model organisms have generally shown that interventions that increase ROS tend to decrease lifespan, while interventions that decrease ROS tend to increase lifespan. However, there are also multiple examples in which the opposite is observed: increasing ROS levels results in extended longevity, and decreasing ROS levels results in shortened lifespan. While these studies contradict the predictions of the FRTA, these experiments have been performed in a very limited number of species, all of which have a relatively short lifespan. Overall, the data suggest that the relationship between ROS and lifespan is complex, and that ROS can have both beneficial or detrimental effects on longevity depending on the species and conditions. Accordingly, the relationship between ROS and aging is difficult to generalize across the tree of life.
Collapse
Affiliation(s)
- Hazel J Shields
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Annika Traa
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Jeremy M Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada.,Department of Genetics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
22
|
Shaposhnikov MV, Zemskaya NV, Koval LA, Schegoleva EV, Yakovleva DV, Ulyasheva NS, Gorbunova AA, Minnikhanova NR, Moskalev AA. Geroprotective potential of genetic and pharmacological interventions to endogenous hydrogen sulfide synthesis in Drosophila melanogaster. Biogerontology 2021; 22:197-214. [PMID: 33544267 DOI: 10.1007/s10522-021-09911-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/22/2021] [Indexed: 12/11/2022]
Abstract
Endogenous hydrogen sulfide (H2S) is a gasotransmitter with a wide range of physiological functions. Aging is accompanied by disruption of H2S homeostasis, therefore, interventions to the processes of H2S metabolism to maintain its balance may have geroprotective potential. Here we demonstrated the additive geroprotective effect of combined genetic and pharmacological interventions to the hydrogen sulfide biosynthesis system by overexpression of cystathionine-β-synthase and cystathionine-γ-lyase genes and treatment with precursors of H2S synthesis cysteine (Cys) and N-acetyl-L-cysteine (NAC). The obtained results suggest that additive effects of genetic and pharmacological interventions to H2S metabolism may be associated with the complex interaction between beneficial action of H2S production and prevention of adverse effects of excess H2S production by Cys and NAC treatment.
Collapse
Affiliation(s)
- Mikhail V Shaposhnikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russian Federation.,Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation
| | - Nadezhda V Zemskaya
- Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation
| | - Liubov A Koval
- Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation
| | - Eugenia V Schegoleva
- Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation
| | - Daria V Yakovleva
- Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation
| | - Natalia S Ulyasheva
- Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation
| | - Anastasia A Gorbunova
- Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation
| | - Natalya R Minnikhanova
- Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation
| | - Alexey A Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russian Federation. .,Institute of Biology of Komi Science Center, Ural Branch of RAS, 167982, Syktyvkar, Russian Federation.
| |
Collapse
|
23
|
Parihar M, Dodds SG, Javors M, Strong R, Hasty P, Sharp ZD. Sex-dependent lifespan extension of Apc Min/+ FAP mice by chronic mTOR inhibition. AGING PATHOBIOLOGY AND THERAPEUTICS 2020; 2:187-194. [PMID: 33834178 PMCID: PMC8026166 DOI: 10.31491/apt.2020.12.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Apc Min/+ mice model familial adenomatous polyposis (FAP), a disease that causes numerous colon polyps leading to colorectal cancer. We previously showed that chronic treatment of Apc Min/+ females with the anti-aging drug, rapamycin, restored a normal lifespan through reduced polyposis and anemia prevention. Lifespan extension by chronic rapamycin in wildtype UM-HET3 mice is sex-dependent with females gaining the most benefit. Whether Apc Min/+ mice have a similar sex-dependent response to chronic mTOR inhibition is not known. METHODS To address this knowledge gap and gain deeper insight into how chronic mTOR inhibition prevents intestinal polyposis, we compared male and female Apc Min/+ mice responses to chronic treatment with a rapamycin-containing diet. Animals were fed a diet containing either 42 ppm microencapsulate rapamycin or empty capsules, one group was used to determine lifespan and a second group with similar treatment was harvested at 16 weeks of age for cross-sectional studies. RESULTS We found that the survival of males is greater than females in this setting (P < 0.0197). To explore the potential basis for this difference we analyzed factors affected by chronic rapamycin. Immunoblot assays showed that males and females exhibited approximately the same level of mTORC1 inhibition using phosphorylation of ribosomal protein S6 (rpS6) as an indirect measure. Immunohistochemistry assays of rpS6 phosphorylation showed that rapamycin reduction of mTORC1 activity was on the same level, with the most prominent difference being in intestinal crypt Paneth cells in both sexes. Chronic rapamycin also reduced crypt depths in both male and female Apc Min/+ mice (P < 0.0001), consistent with reduced crypt epithelial cell proliferation. Finally, chronic rapamycin prevented anemia equally in males and females. CONCLUSIONS In males and females, these findings link rapamycin-mediated intestinal polyposis prevention with mTORC1 inhibition in Paneth cells and concomitant reduced epithelial cell proliferation.
Collapse
Affiliation(s)
- Manish Parihar
- Department of Molecular Medicine and Institute of
Biotechnology, University of Texas Health San Antonio, San Antonio, TX, USA
- Greehey Children's Cancer Research Institute, University of
Texas Health San Antonio, San Antonio, TX, USA
| | - Sherry G. Dodds
- Department of Molecular Medicine and Institute of
Biotechnology, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Marty Javors
- Barshop Institute for Longevity and Aging Studies,
University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Pharmacology, University of Texas Health San
Antonio, San Antonio, TX, USA
- Department of Psychiatry, University of Texas Health San
Antonio, San Antonio, TX, USA
| | - Randy Strong
- Barshop Institute for Longevity and Aging Studies,
University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Pharmacology, University of Texas Health San
Antonio, San Antonio, TX, USA
- South Texas Veterans Health Care System San Antonio, TX,
USA
| | - Paul Hasty
- Department of Molecular Medicine and Institute of
Biotechnology, University of Texas Health San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies,
University of Texas Health San Antonio, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health San Antonio,
San Antonio, TX, USA
| | - Zelton Dave Sharp
- Department of Molecular Medicine and Institute of
Biotechnology, University of Texas Health San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies,
University of Texas Health San Antonio, San Antonio, TX, USA
- Mays Cancer Center, University of Texas Health San Antonio,
San Antonio, TX, USA
| |
Collapse
|
24
|
Targeting metabolic pathways for extension of lifespan and healthspan across multiple species. Ageing Res Rev 2020; 64:101188. [PMID: 33031925 DOI: 10.1016/j.arr.2020.101188] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/20/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022]
Abstract
Metabolism plays a significant role in the regulation of aging at different levels, and metabolic reprogramming represents a major driving force in aging. Metabolic reprogramming leads to impaired organismal fitness, an age-dependent increase in susceptibility to diseases, decreased ability to mount a stress response, and increased frailty. The complexity of age-dependent metabolic reprogramming comes from the multitude of levels on which metabolic changes can be connected to aging and regulation of lifespan. This is further complicated by the different metabolic requirements of various tissues, cross-organ communication via metabolite secretion, and direct effects of metabolites on epigenetic state and redox regulation; however, not all of these changes are causative to aging. Studies in yeast, flies, worms, and mice have played a crucial role in identifying mechanistic links between observed changes in various metabolic traits and their effects on lifespan. Here, we review how changes in the organismal and organ-specific metabolome are associated with aging and how targeting of any one of over a hundred different targets in specific metabolic pathways can extend lifespan. An important corollary is that restriction or supplementation of different metabolites can change activity of these metabolic pathways in ways that improve healthspan and extend lifespan in different organisms. Due to the high levels of conservation of metabolism in general, translating findings from model systems to human beings will allow for the development of effective strategies for human health- and lifespan extension.
Collapse
|
25
|
Miller RA, Harrison DE, Allison DB, Bogue M, Debarba L, Diaz V, Fernandez E, Galecki A, Garvey WT, Jayarathne H, Kumar N, Javors MA, Ladiges WC, Macchiarini F, Nelson J, Reifsnyder P, Rosenthal NA, Sadagurski M, Salmon AB, Smith DL, Snyder JM, Lombard DB, Strong R. Canagliflozin extends life span in genetically heterogeneous male but not female mice. JCI Insight 2020; 5:140019. [PMID: 32990681 PMCID: PMC7710304 DOI: 10.1172/jci.insight.140019] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/23/2020] [Indexed: 12/22/2022] Open
Abstract
Canagliflozin (Cana) is an FDA-approved diabetes drug that protects against cardiovascular and kidney diseases. It also inhibits the sodium glucose transporter 2 by blocking renal reuptake and intestinal absorption of glucose. In the context of the mouse Interventions Testing Program, genetically heterogeneous mice were given chow containing Cana at 180 ppm at 7 months of age until their death. Cana extended median survival of male mice by 14%. Cana also increased by 9% the age for 90th percentile survival, with parallel effects seen at each of 3 test sites. Neither the distribution of inferred cause of death nor incidental pathology findings at end-of-life necropsies were altered by Cana. Moreover, although no life span benefits were seen in female mice, Cana led to lower fasting glucose and improved glucose tolerance in both sexes, diminishing fat mass in females only. Therefore, the life span benefit of Cana is likely to reflect blunting of peak glucose levels, because similar longevity effects are seen in male mice given acarbose, a diabetes drug that blocks glucose surges through a distinct mechanism, i.e., slowing breakdown of carbohydrate in the intestine. Interventions that control daily peak glucose levels deserve attention as possible preventive medicines to protect from a wide range of late-life neoplastic and degenerative diseases.
Collapse
Affiliation(s)
- Richard A. Miller
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, Michigan, USA
| | | | - David B. Allison
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, Indiana, USA
| | - Molly Bogue
- The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Lucas Debarba
- Department of Biological Sciences, Integrative Biosciences Center, Wayne State University, Detroit, Michigan, USA
| | - Vivian Diaz
- Sam and Ann Barshop Institute for Longevity and Aging Studies and Departments of Physiology and Molecular Medicine, UT Health San Antonio, San Antonio, Texas, USA; South Texas Veterans Healthcare System, San Antonio, Texas, USA
| | - Elizabeth Fernandez
- Sam and Ann Barshop Institute for Longevity and Aging Studies and Departments of Physiology and Molecular Medicine, UT Health San Antonio, San Antonio, Texas, USA; South Texas Veterans Healthcare System, San Antonio, Texas, USA
| | - Andrzej Galecki
- Departments of Internal Medicine and Biostatistics, University of Michigan School of Medicine and School of Public Health, Ann Arbor, Michigan, USA
| | - W. Timothy Garvey
- Department of Nutrition Sciences and Diabetes Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA; Birmingham VA Medical Center, Birmingham, Alabama, USA
| | - Hashan Jayarathne
- Department of Biological Sciences, Integrative Biosciences Center, Wayne State University, Detroit, Michigan, USA
| | - Navasuja Kumar
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Martin A. Javors
- Department of Psychiatry, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Warren C. Ladiges
- Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | | | - James Nelson
- Sam and Ann Barshop Institute for Longevity and Aging Research and Department of Cellular and Integrative Physiology, UT Health San Antonio, San Antonio, Texas, USA
| | | | | | - Marianna Sadagurski
- Department of Biological Sciences, Integrative Biosciences Center, Wayne State University, Detroit, Michigan, USA
| | - Adam B. Salmon
- Sam and Ann Barshop Institute for Longevity and Aging Studies and Departments of Physiology and Molecular Medicine, UT Health San Antonio, San Antonio, Texas, USA; South Texas Veterans Healthcare System, San Antonio, Texas, USA
| | - Daniel L. Smith
- Department of Nutrition Sciences and Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jessica M. Snyder
- Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - David B. Lombard
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, Michigan, USA
| | - Randy Strong
- Sam and Ann Barshop Institute for Longevity and Aging Studies and Departments of Physiology and Molecular Medicine, UT Health San Antonio, San Antonio, Texas, USA; South Texas Veterans Healthcare System, San Antonio, Texas, USA
| |
Collapse
|
26
|
Soo SK, Rudich PD, Traa A, Harris-Gauthier N, Shields HJ, Van Raamsdonk JM. Compounds that extend longevity are protective in neurodegenerative diseases and provide a novel treatment strategy for these devastating disorders. Mech Ageing Dev 2020; 190:111297. [PMID: 32610099 PMCID: PMC7484136 DOI: 10.1016/j.mad.2020.111297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
While aging is the greatest risk factor for the development of neurodegenerative disease, the role of aging in these diseases is poorly understood. In the inherited forms of these diseases, the disease-causing mutation is present from birth but symptoms appear decades later. This indicates that these mutations are well tolerated in younger individuals but not in older adults. Based on this observation, we hypothesized that changes taking place during normal aging make the cells in the brain (and elsewhere) susceptible to the disease-causing mutations. If so, then delaying some of these age-related changes may be beneficial in the treatment of neurodegenerative disease. In this review, we examine the effects of five compounds that have been shown to extend longevity (metformin, rapamycin, resveratrol, N-acetyl-l-cysteine, curcumin) in four of the most common neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis). While not all investigations observe a beneficial effect of these compounds, there are multiple studies that show a protective effect of each of these lifespan-extending compounds in animal models of neurodegenerative disease. Combined with genetic studies, this suggests the possibility that targeting the aging process may be an effective strategy to treat neurodegenerative disease.
Collapse
Affiliation(s)
- Sonja K Soo
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Paige D Rudich
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Annika Traa
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Namasthée Harris-Gauthier
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Hazel J Shields
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Jeremy M Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, H4A 3J1, Canada; Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
27
|
Unnikrishnan A, Kurup K, Salmon AB, Richardson A. Is Rapamycin a Dietary Restriction Mimetic? J Gerontol A Biol Sci Med Sci 2020; 75:4-13. [PMID: 30854544 PMCID: PMC6909904 DOI: 10.1093/gerona/glz060] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 02/28/2019] [Indexed: 01/21/2023] Open
Abstract
Since the initial suggestion that rapamycin, an inhibitor of target of rapamycin (TOR) nutrient signaling, increased lifespan comparable to dietary restriction, investigators have viewed rapamycin as a potential dietary restriction mimetic. Both dietary restriction and rapamycin increase lifespan across a wide range of evolutionarily diverse species (including yeast, Caenorhabditis elegans, Drosophila, and mice) as well as reducing pathology and improving physiological functions that decline with age in mice. The purpose of this article is to review the research comparing the effect of dietary restriction and rapamycin in mice. The current data show that dietary restriction and rapamycin have different effects on many pathways and molecular processes. In addition, these interventions affect the lifespan of many genetically manipulated mouse models differently. In other words, while dietary restriction and rapamycin may have similar effects on some pathways and processes; overall, they affect many pathways/processes quite differently. Therefore, rapamycin is likely not a true dietary restriction mimetic. Rather dietary restriction and rapamycin appear to be increasing lifespan and retarding aging largely through different mechanisms/pathways, suggesting that a combination of dietary restriction and rapamycin will have a greater effect on lifespan than either manipulation alone.
Collapse
Affiliation(s)
- Archana Unnikrishnan
- Reynolds Oklahoma Center on Aging and Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Kavitha Kurup
- Reynolds Oklahoma Center on Aging and Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Adam B Salmon
- Department of Molecular Medicine and the Sam and Ann Barhop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio,Geratric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio
| | - Arlan Richardson
- Reynolds Oklahoma Center on Aging and Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City,Oklahoma City VA Medical Center, Oklahoma,Address correspondence to: Arlan Richardson, PhD, Department of Geriatric Medicine, University of Oklahoma Health Sciences Center, 975 NE 10th Street, BRC 1372, Oklahoma City, OK 73104. E-mail:
| |
Collapse
|
28
|
Mau T, O’Brien M, Ghosh AK, Miller RA, Yung R. Life-span Extension Drug Interventions Affect Adipose Tissue Inflammation in Aging. J Gerontol A Biol Sci Med Sci 2020; 75:89-98. [PMID: 31353414 PMCID: PMC6909899 DOI: 10.1093/gerona/glz177] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Indexed: 02/02/2023] Open
Abstract
The National Institute on Aging (NIA)-sponsored Interventions Testing Program (ITP) has identified a number of dietary drug interventions that significantly extend life span, including rapamycin, acarbose, and 17-α estradiol. However, these drugs have diverse downstream targets, and their effects on age-associated organ-specific changes are unclear (Nadon NL, Strong R, Miller RA, Harrison DE. NIA Interventions Testing Program: investigating putative aging intervention agents in a genetically heterogeneous mouse model. EBioMedicine. 2017;21:3-4. doi:10.1016/j.ebiom.2016.11.038). Potential mechanisms by which these drugs extend life could be through their effect on inflammatory processes often noted in tissues of aging mice and humans. Our study focuses on the effects of three drugs in the ITP on inflammation in gonadal white adipose tissue (gWAT) of HET3 mice-including adiposity, adipose tissue macrophage (ATM) M1/M2 polarization, markers of cellular senescence, and endoplasmic reticulum stress. We found that rapamycin led to a 56% increase of CD45+ leukocytes in gWAT, where the majority of these are ATMs. Interestingly, rapamycin led to a 217% and 106% increase of M1 (CD45+CD64+CD206-) ATMs in females and males, respectively. Our data suggest rapamycin may achieve life-span extension in part through adipose tissue inflammation. Additionally, HET3 mice exhibit a spectrum of age-associated changes in the gWAT, but acarbose and 17-α estradiol do not strongly alter these phenotypes-suggesting that acarbose and 17- α estradiol may not influence life span through mechanisms involving adipose tissue inflammation.
Collapse
Affiliation(s)
- Theresa Mau
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor
- Graduate Program in Immunology, Program in Biomedical Sciences (PIBS), University of Michigan, Ann Arbor
| | - Martin O’Brien
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Amiya K Ghosh
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Richard A Miller
- Department of Pathology and Glenn Center for Biology of Aging Research, University of Michigan, Ann Arbor
| | - Raymond Yung
- Division of Geriatric and Palliative Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor
- Graduate Program in Immunology, Program in Biomedical Sciences (PIBS), University of Michigan, Ann Arbor
- Department of Pathology and Glenn Center for Biology of Aging Research, University of Michigan, Ann Arbor
- Geriatric Research, Education, and Clinical Care Center (GRECC), VA Ann Arbor Health System, Michigan
| |
Collapse
|
29
|
Bittle J, Menezes EC, McCormick ML, Spitz DR, Dailey M, Stevens HE. The Role of Redox Dysregulation in the Effects of Prenatal Stress on Embryonic Interneuron Migration. Cereb Cortex 2019; 29:5116-5130. [PMID: 30877797 PMCID: PMC7199998 DOI: 10.1093/cercor/bhz052] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 01/09/2023] Open
Abstract
Maternal stress during pregnancy is associated with increased risk of psychiatric disorders in offspring, but embryonic brain mechanisms disrupted by prenatal stress are not fully understood. Our lab has shown that prenatal stress delays inhibitory neural progenitor migration. Here, we investigated redox dysregulation as a mechanism for embryonic cortical interneuron migration delay, utilizing direct manipulation of pro- and antioxidants and a mouse model of maternal repetitive restraint stress starting on embryonic day 12. Time-lapse, live-imaging of migrating GAD67GFP+ interneurons showed that normal tangential migration of inhibitory progenitor cells was disrupted by the pro-oxidant, hydrogen peroxide. Interneuron migration was also delayed by in utero intracerebroventricular rotenone. Prenatal stress altered glutathione levels and induced changes in activity of antioxidant enzymes and expression of redox-related genes in the embryonic forebrain. Assessment of dihydroethidium (DHE) fluorescence after prenatal stress in ganglionic eminence (GE), the source of migrating interneurons, showed increased levels of DHE oxidation. Maternal antioxidants (N-acetylcysteine and astaxanthin) normalized DHE oxidation levels in GE and ameliorated the migration delay caused by prenatal stress. Through convergent redox manipula-tions, delayed interneuron migration after prenatal stress was found to critically involve redox dysregulation. Redox biology during prenatal periods may be a target for protecting brain development.
Collapse
Affiliation(s)
- Jada Bittle
- Department of Psychiatry, University of Iowa Carver College of Medicine, 1310 PBDB, 169 Newton Rd, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, 356 Medical Research Center, Iowa City, IA, USA
| | - Edenia C Menezes
- Department of Psychiatry, University of Iowa Carver College of Medicine, 1310 PBDB, 169 Newton Rd, Iowa City, IA, USA
| | - Michael L McCormick
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Carver College of Medicine, B180 Medical Laboratories, Iowa City, IA, USA
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Carver College of Medicine, B180 Medical Laboratories, Iowa City, IA, USA
| | - Michael Dailey
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, 356 Medical Research Center, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, 2312 PBDB, 169 Newton Rd, Iowa City, IA, USA
| | - Hanna E Stevens
- Department of Psychiatry, University of Iowa Carver College of Medicine, 1310 PBDB, 169 Newton Rd, Iowa City, IA, USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, 356 Medical Research Center, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, 2312 PBDB, 169 Newton Rd, Iowa City, IA, USA
| |
Collapse
|
30
|
Ozkurede U, Miller RA. Improved mitochondrial stress response in long-lived Snell dwarf mice. Aging Cell 2019; 18:e13030. [PMID: 31423721 PMCID: PMC6826134 DOI: 10.1111/acel.13030] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 07/31/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022] Open
Abstract
Prolonged lifespan and improved health in late adulthood can be achieved by partial inhibition of mitochondrial proteins in yeast, worms, fruit flies, and mice. Upregulation of the mitochondrial unfolded protein response (mtUPR) has been proposed as a common pathway in lifespan extension induced by mitochondrial defects. However, it is not known whether mtUPR is elevated in long‐lived mouse models. Here, we report that Snell dwarf mice, which show 30%–40% lifespan extension and prolonged healthspan, exhibit augmented mitochondrial stress responses. Cultured cells from Snell mice show elevated levels of the mitochondrial chaperone HSP60 and mitochondrial protease LONP1, two components of the mtUPR. In response to mitochondrial stress, the increase in Tfam (mitochondrial transcription factor A), a regulator of mitochondrial transcription, is higher in Snell cells, while Pgc‐1α, the main regulator of mitochondrial biogenesis, is upregulated only in Snell cells. Consistent with these differences, Snell cells maintain oxidative respiration rate, ATP content, and expression of mitochondrial‐DNA‐encoded genes after exposure to doxycycline stress. In vivo, compared to normal mice, Snell mice show stronger hepatic mtUPR induction and maintain mitochondrial protein stoichiometry after mitochondrial stress exposure. Overall, our work demonstrates that a long‐lived mouse model exhibits improved mitochondrial stress response, and provides a rationale for future mouse lifespan studies involving compounds that induce mtUPR. Further research on mitochondrial homeostasis in long‐lived mice may facilitate development of interventions that blunt mitochondrial deterioration in neurodegenerative diseases such as Alzheimer's and Parkinson's and postpone diseases of aging in humans.
Collapse
Affiliation(s)
- Ulas Ozkurede
- Department of Molecular and Cellular Pathology, University of Michigan Geriatrics Center University of Michigan School of Medicine Ann Arbor MI USA
| | - Richard A. Miller
- Department of Molecular and Cellular Pathology, University of Michigan Geriatrics Center University of Michigan School of Medicine Ann Arbor MI USA
- Department of Pathology, University of Michigan Geriatrics Center University of Michigan School of Medicine Ann Arbor MI USA
| |
Collapse
|
31
|
Parkhitko AA, Jouandin P, Mohr SE, Perrimon N. Methionine metabolism and methyltransferases in the regulation of aging and lifespan extension across species. Aging Cell 2019; 18:e13034. [PMID: 31460700 PMCID: PMC6826121 DOI: 10.1111/acel.13034] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/11/2019] [Accepted: 08/08/2019] [Indexed: 12/20/2022] Open
Abstract
Methionine restriction (MetR) extends lifespan across different species and exerts beneficial effects on metabolic health and inflammatory responses. In contrast, certain cancer cells exhibit methionine auxotrophy that can be exploited for therapeutic treatment, as decreasing dietary methionine selectively suppresses tumor growth. Thus, MetR represents an intervention that can extend lifespan with a complementary effect of delaying tumor growth. Beyond its function in protein synthesis, methionine feeds into complex metabolic pathways including the methionine cycle, the transsulfuration pathway, and polyamine biosynthesis. Manipulation of each of these branches extends lifespan; however, the interplay between MetR and these branches during regulation of lifespan is not well understood. In addition, a potential mechanism linking the activity of methionine metabolism and lifespan is regulation of production of the methyl donor S-adenosylmethionine, which, after transferring its methyl group, is converted to S-adenosylhomocysteine. Methylation regulates a wide range of processes, including those thought to be responsible for lifespan extension by MetR. Although the exact mechanisms of lifespan extension by MetR or methionine metabolism reprogramming are unknown, it may act via reducing the rate of translation, modifying gene expression, inducing a hormetic response, modulating autophagy, or inducing mitochondrial function, antioxidant defense, or other metabolic processes. Here, we review the mechanisms of lifespan extension by MetR and different branches of methionine metabolism in different species and the potential for exploiting the regulation of methyltransferases to delay aging.
Collapse
Affiliation(s)
- Andrey A. Parkhitko
- Department of GeneticsBlavatnik InstituteHarvard Medical SchoolBostonMassachusetts
| | - Patrick Jouandin
- Department of GeneticsBlavatnik InstituteHarvard Medical SchoolBostonMassachusetts
| | - Stephanie E. Mohr
- Department of GeneticsBlavatnik InstituteHarvard Medical SchoolBostonMassachusetts
| | - Norbert Perrimon
- Department of GeneticsBlavatnik InstituteHarvard Medical SchoolBostonMassachusetts
- Howard Hughes Medical InstituteBostonMassachusetts
| |
Collapse
|
32
|
Šalamon Š, Kramar B, Marolt TP, Poljšak B, Milisav I. Medical and Dietary Uses of N-Acetylcysteine. Antioxidants (Basel) 2019; 8:antiox8050111. [PMID: 31035402 PMCID: PMC6562654 DOI: 10.3390/antiox8050111] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/09/2019] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
N-acetylcysteine (NAC), a plant antioxidant naturally found in onion, is a precursor to glutathione. It has been used as a drug since the 1960s and is listed on the World Health Organization (WHO) Model List of Essential Medicines as an antidote in poisonings. There are numerous other uses or proposed uses in medicine that are still in preclinical and clinical investigations. NAC is also used in food supplements and cosmetics. Despite its abundant use, there are projections that the NAC global market will grow in the next five years; therefore, the purpose of this work is to provide a balanced view of further uses of NAC as a dietary supplement. Although NAC is considered a safe substance, the results among clinical trials are sometimes controversial or incomplete, like for many other antioxidants. More clinical trials are underway that will improve our understanding of NAC applicability.
Collapse
Affiliation(s)
- Špela Šalamon
- Center for human molecular genetics and pharmacogenomics, Faculty of Medicine, University of Maribor, SI-2000 Maribor, Slovenia.
| | - Barbara Kramar
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| | - Tinkara Pirc Marolt
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
| | - Borut Poljšak
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Oxidative Stress Research, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia.
| | - Irina Milisav
- Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, SI-1000 Ljubljana, Slovenia.
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Oxidative Stress Research, Zdravstvena pot 5, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
33
|
Harrison DE, Strong R, Alavez S, Astle CM, DiGiovanni J, Fernandez E, Flurkey K, Garratt M, Gelfond JAL, Javors MA, Levi M, Lithgow GJ, Macchiarini F, Nelson JF, Sukoff Rizzo SJ, Slaga TJ, Stearns T, Wilkinson JE, Miller RA. Acarbose improves health and lifespan in aging HET3 mice. Aging Cell 2019; 18:e12898. [PMID: 30688027 PMCID: PMC6413665 DOI: 10.1111/acel.12898] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/01/2018] [Accepted: 10/29/2018] [Indexed: 12/31/2022] Open
Abstract
To follow-up on our previous report that acarbose (ACA), a drug that blocks postprandial glucose spikes, increases mouse lifespan, we studied ACA at three doses: 400, 1,000 (the original dose), and 2,500 ppm, using genetically heterogeneous mice at three sites. Each dose led to a significant change (by log-rank test) in both sexes, with larger effects in males, consistent with the original report. There were no significant differences among the three doses. The two higher doses produced 16% or 17% increases in median longevity of males, but only 4% or 5% increases in females. Age at the 90th percentile was increased significantly (8%-11%) in males at each dose, but was significantly increased (3%) in females only at 1,000 ppm. The sex effect on longevity is not explained simply by weight or fat mass, which were reduced by ACA more in females than in males. ACA at 1,000 ppm reduced lung tumors in males, diminished liver degeneration in both sexes and glomerulosclerosis in females, reduced blood glucose responses to refeeding in males, and improved rotarod performance in aging females, but not males. Three other interventions were also tested: ursolic acid, 2-(2-hydroxyphenyl) benzothiazole (HBX), and INT-767; none of these affected lifespan at the doses tested. The acarbose results confirm and extend our original report, prompt further attention to the effects of transient periods of high blood glucose on aging and the diseases of aging, including cancer, and should motivate studies of acarbose and other glucose-control drugs in humans.
Collapse
Affiliation(s)
| | - Randy Strong
- Barshop Institute for Longevity and Aging StudiesThe University of Texas Health Science Center at San AntonioSan AntonioTexas
- Geriatric Research, Education and Clinical CenterSouth Texas Veterans Health Care SystemSan AntonioTexas
- Research ServiceSouth Texas Veterans Health Care SystemSan AntonioTexas
- Department of PharmacologyThe University of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Silvestre Alavez
- Buck Institute for Research on AgingNovatoCalifornia
- Metropolitan Autonomous UniversityLermaMexico
| | | | | | - Elizabeth Fernandez
- Barshop Institute for Longevity and Aging StudiesThe University of Texas Health Science Center at San AntonioSan AntonioTexas
- Geriatric Research, Education and Clinical CenterSouth Texas Veterans Health Care SystemSan AntonioTexas
- Department of PharmacologyThe University of Texas Health Science Center at San AntonioSan AntonioTexas
| | | | - Michael Garratt
- Department of PathologyUniversity of MichiganAnn ArborMichigan
- Geriatrics CenterUniversity of MichiganAnn ArborMichigan
| | - Jonathan A. L. Gelfond
- Department of Epidemiology & BiostatisticsThe University of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Martin A. Javors
- Department of PsychiatryThe University of Texas Health Science Center at San AntonioSan AntonioTexas
| | - Moshe Levi
- Georgetown UniversityWashingtonDistrict of Columbia
| | | | | | - James F. Nelson
- Barshop Institute for Longevity and Aging StudiesThe University of Texas Health Science Center at San AntonioSan AntonioTexas
- Department of PhysiologyThe University of Texas Health Science Center at San AntonioSan AntonioTexas
| | | | - Thomas J. Slaga
- Department of PharmacologyThe University of Texas Health Science Center at San AntonioSan AntonioTexas
| | | | - John Erby Wilkinson
- Unit for Laboratory Animal Medicine and Department of PathologyUniversity of MichiganAnn ArborMichigan
| | | |
Collapse
|
34
|
Ikonne US, Vann PH, Wong JM, Forster MJ, Sumien N. Supplementation with N-Acetyl Cysteine Affects Motor and Cognitive Function in Young but Not Old Mice. J Nutr 2019; 149:463-470. [PMID: 30770531 PMCID: PMC6398433 DOI: 10.1093/jn/nxy287] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/14/2018] [Accepted: 10/18/2018] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND N-acetyl cysteine (NAC) is a thiolic antioxidant that is thought to increase cellular glutathione (GSH) by augmenting the concentration of available cysteine, an essential precursor to GSH production. Manipulating redox status can affect brain function, and NAC intake has been associated with improving brain function in models of neurodegenerative diseases. OBJECTIVES The objective of the study was to determine if short-term dietary supplementation with NAC could ameliorate functional impairment associated with aging. METHODS C57BL/6J male mice aged 6, 12, or 24 mo were fed a control diet or the control diet supplemented with 0.3% NAC for a total of 12 wk. After 4 wk of dietary supplementation, mice began a series of behavioral tests to measure spontaneous activity (locomotor activity test), psychomotor performance (bridge-walking and coordinated running), and cognitive capacity (Morris water maze and discriminated active avoidance). The performance of the mice on these tests was analyzed through the use of analyses of variance with Age and Diet as factors. RESULTS Supplementation of NAC improved peak motor performance in a coordinated running task by 14% (P < 0.05), and increased the time spent around the platform by 24% in a Morris water maze at age 6 mo. However, the supplementation had no to minimal effect on the motor and cognitive functions of 12- and 24-mo-old mice. CONCLUSIONS The findings of this preclinical study support the claim that NAC has nootropic properties in 6-mo-old mice, but suggest that it may not be useful for improving motor and cognitive impairments in older mice.
Collapse
Affiliation(s)
- Uzoma S Ikonne
- Department of Pharmacology and Neuroscience and Institute for Healthy Aging, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX
- Basic Medical Science, School of Osteopathic Medicine Arizona, A.T. Still University, Mesa, AZ
| | - Philip H Vann
- Department of Pharmacology and Neuroscience and Institute for Healthy Aging, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX
| | - Jessica M Wong
- Department of Pharmacology and Neuroscience and Institute for Healthy Aging, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX
| | - Michael J Forster
- Department of Pharmacology and Neuroscience and Institute for Healthy Aging, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX
| | - Nathalie Sumien
- Department of Pharmacology and Neuroscience and Institute for Healthy Aging, University of North Texas Health Science Center at Fort Worth, Fort Worth, TX
| |
Collapse
|
35
|
Canfield CA, Bradshaw PC. Amino acids in the regulation of aging and aging-related diseases. TRANSLATIONAL MEDICINE OF AGING 2019. [DOI: 10.1016/j.tma.2019.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
36
|
Hahn O, Stubbs TM, Reik W, Grönke S, Beyer A, Partridge L. Hepatic gene body hypermethylation is a shared epigenetic signature of murine longevity. PLoS Genet 2018; 14:e1007766. [PMID: 30462643 PMCID: PMC6281273 DOI: 10.1371/journal.pgen.1007766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/05/2018] [Accepted: 11/08/2018] [Indexed: 12/30/2022] Open
Abstract
Dietary, pharmacological and genetic interventions can extend health- and lifespan in diverse mammalian species. DNA methylation has been implicated in mediating the beneficial effects of these interventions; methylation patterns deteriorate during ageing, and this is prevented by lifespan-extending interventions. However, whether these interventions also actively shape the epigenome, and whether such epigenetic reprogramming contributes to improved health at old age, remains underexplored. We analysed published, whole-genome, BS-seq data sets from mouse liver to explore DNA methylation patterns in aged mice in response to three lifespan-extending interventions: dietary restriction (DR), reduced TOR signaling (rapamycin), and reduced growth (Ames dwarf mice). Dwarf mice show enhanced DNA hypermethylation in the body of key genes in lipid biosynthesis, cell proliferation and somatotropic signaling, which strongly correlates with the pattern of transcriptional repression. Remarkably, DR causes a similar hypermethylation in lipid biosynthesis genes, while rapamycin treatment increases methylation signatures in genes coding for growth factor and growth hormone receptors. Shared changes of DNA methylation were restricted to hypermethylated regions, and they were not merely a consequence of slowed ageing, thus suggesting an active mechanism driving their formation. By comparing the overlap in ageing-independent hypermethylated patterns between all three interventions, we identified four regions, which, independent of genetic background or gender, may serve as novel biomarkers for longevity-extending interventions. In summary, we identified gene body hypermethylation as a novel and partly conserved signature of lifespan-extending interventions in mouse, highlighting epigenetic reprogramming as a possible intervention to improve health at old age.
Collapse
Affiliation(s)
- Oliver Hahn
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cellular Networks and Systems Biology, CECAD, University of Cologne, Cologne, Germany
| | - Thomas M. Stubbs
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Wolf Reik
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
- The Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | | | - Andreas Beyer
- Cellular Networks and Systems Biology, CECAD, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Department of Genetics, Evolution and Environment, Institute of Healthy Ageing, University College London, London, United Kingdom
| |
Collapse
|
37
|
Shaposhnikov MV, Zemskaya NV, Koval LA, Schegoleva EV, Zhavoronkov A, Moskalev AA. Effects of N-acetyl-L-cysteine on lifespan, locomotor activity and stress-resistance of 3 Drosophila species with different lifespans. Aging (Albany NY) 2018; 10:2428-2458. [PMID: 30243020 PMCID: PMC6188487 DOI: 10.18632/aging.101561] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 09/13/2018] [Indexed: 04/28/2023]
Abstract
N-acetyl-L-cysteine (NAC) is a derivative of the sulphur-containing amino acid L-cysteine with potential anti-aging properties. We studied 3 Drosophila species with contrast longevity differences (D. virilis is longest-lived, D. kikkawai is shortest-lived and D. melanogaster has moderate lifespan) to test the effects of NAC at 8 different concentrations (from 10 nM to 100 mM) on the lifespan, stress-resistance and locomotor activity. Except the adverse effects of highest (10 mM and 100 mM) concentrations NAC demonstrated sexually opposite and male-biased effects on Drosophila lifespan, stress-resistance and locomotor activity and not satisfied the criteria of a geroprotector in terms of the reproducibility of lifespan extending effects in different model organisms. The concentration- and sex-dependent changes in the relative expression levels of the antioxidant genes (Cat/CG6871 and Sod1/CG11793) and genes involved in hydrogen sulfide biosynthesis (Cbs/CG1753, Eip55E/CG5345 and Nfs1/CG12264) suggest the involvement of hormetic mechanisms in the geroprotective effects of NAC.
Collapse
Affiliation(s)
- Mikhail V. Shaposhnikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar 167982, Russia
| | - Nadezhda V. Zemskaya
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar 167982, Russia
| | - Liubov A. Koval
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar 167982, Russia
| | - Eugenia V. Schegoleva
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar 167982, Russia
| | - Alex Zhavoronkov
- Insilico Medicine, Inc, JHU, Rockville, MD 21218, USA
- Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| | - Alexey A. Moskalev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Institute of Biology of Komi Science Center of Ural Branch of RAS, Syktyvkar 167982, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| |
Collapse
|
38
|
O'Halloran KD, Murphy KH, Burns DP. Antioxidant therapy for muscular dystrophy: caveat lector! J Physiol 2018; 596:737-738. [PMID: 29277904 DOI: 10.1113/jp275598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Ken D O'Halloran
- Department of Physiology, University College Cork, Cork, Ireland
| | - Kevin H Murphy
- Department of Physiology, University College Cork, Cork, Ireland
| | - David P Burns
- Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
39
|
Aliper A, Belikov AV, Garazha A, Jellen L, Artemov A, Suntsova M, Ivanova A, Venkova L, Borisov N, Buzdin A, Mamoshina P, Putin E, Swick AG, Moskalev A, Zhavoronkov A. In search for geroprotectors: in silico screening and in vitro validation of signalome-level mimetics of young healthy state. Aging (Albany NY) 2017; 8:2127-2152. [PMID: 27677171 PMCID: PMC5076455 DOI: 10.18632/aging.101047] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 09/10/2016] [Indexed: 12/19/2022]
Abstract
Populations in developed nations throughout the world are rapidly aging, and the search for geroprotectors, or anti-aging interventions, has never been more important. Yet while hundreds of geroprotectors have extended lifespan in animal models, none have yet been approved for widespread use in humans. GeroScope is a computational tool that can aid prediction of novel geroprotectors from existing human gene expression data. GeroScope maps expression differences between samples from young and old subjects to aging-related signaling pathways, then profiles pathway activation strength (PAS) for each condition. Known substances are then screened and ranked for those most likely to target differential pathways and mimic the young signalome. Here we used GeroScope and shortlisted ten substances, all of which have lifespan-extending effects in animal models, and tested 6 of them for geroprotective effects in senescent human fibroblast cultures. PD-98059, a highly selective MEK1 inhibitor, showed both life-prolonging and rejuvenating effects. Natural compounds like N-acetyl-L-cysteine, Myricetin and Epigallocatechin gallate also improved several senescence-associated properties and were further investigated with pathway analysis. This work not only highlights several potential geroprotectors for further study, but also serves as a proof-of-concept for GeroScope, Oncofinder and other PAS-based methods in streamlining drug prediction, repurposing and personalized medicine.
Collapse
Affiliation(s)
- Alexander Aliper
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA
| | - Aleksey V Belikov
- Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia
| | - Andrew Garazha
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA.,Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia.,Center for Biogerontology and Regenerative Medicine, Moscow, 121099, Russia
| | - Leslie Jellen
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA.,Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Artem Artemov
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA
| | - Maria Suntsova
- D. Rogachev Federal Research and Clinical Center for Pediatric Hematology, Oncology, and Immunology, Moscow, 117997, Russia
| | - Alena Ivanova
- D. Rogachev Federal Research and Clinical Center for Pediatric Hematology, Oncology, and Immunology, Moscow, 117997, Russia
| | - Larisa Venkova
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA.,Pathway Pharmaceuticals, Ltd, Hong Kong, Hong Kong
| | - Nicolas Borisov
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA.,Pathway Pharmaceuticals, Ltd, Hong Kong, Hong Kong
| | - Anton Buzdin
- Pathway Pharmaceuticals, Ltd, Hong Kong, Hong Kong
| | - Polina Mamoshina
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA
| | - Evgeny Putin
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA
| | | | - Alexey Moskalev
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA.,Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia.,Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences, Syktyvkar, 167982, Russia.,School of Systems Biology, George Mason University (GMU), Fairfax, VA 22030, USA.,Engelhardt Institute of Molecular Biology of Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alex Zhavoronkov
- Insilico Medicine, Inc, Research Department, Baltimore, MD 21218, USA.,The Biogerontology Research Foundation, Oxford, UK
| |
Collapse
|
40
|
Ma S, Gladyshev VN. Molecular signatures of longevity: Insights from cross-species comparative studies. Semin Cell Dev Biol 2017; 70:190-203. [PMID: 28800931 PMCID: PMC5807068 DOI: 10.1016/j.semcdb.2017.08.007] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/31/2017] [Accepted: 08/03/2017] [Indexed: 01/26/2023]
Abstract
Much of the current research on longevity focuses on the aging process within a single species. Several molecular players (e.g. IGF1 and MTOR), pharmacological compounds (e.g. rapamycin and metformin), and dietary approaches (e.g. calorie restriction and methionine restriction) have been shown to be important in regulating and modestly extending lifespan in model organisms. On the other hand, natural lifespan varies much more significantly across species. Within mammals alone, maximum lifespan differs more than 100 fold, but the underlying regulatory mechanisms remain poorly understood. Recent comparative studies are beginning to shed light on the molecular signatures associated with exceptional longevity. These include genome sequencing of microbats, naked mole rat, blind mole rat, bowhead whale and African turquoise killifish, and comparative analyses of gene expression, metabolites, lipids and ions across multiple mammalian species. Together, they point towards several putative strategies for lifespan regulation and cancer resistance, as well as the pathways and metabolites associated with longevity variation. In particular, longevity may be achieved by both lineage-specific adaptations and common mechanisms that apply across the species. Comparing the resulting cross-species molecular signatures with the within-species lifespan extension strategies will improve our understanding of mechanisms of longevity control and provide a starting point for novel and effective interventions.
Collapse
Affiliation(s)
- Siming Ma
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Genome Institute of Singapore, A*STAR, Singapore, 138672, Singapore
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA; Laboratory of Systems Biology of Aging, Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
41
|
Cady G, Sadagurski M. Targeting neuroinflammation - a potential for anti-aging interventions. Aging (Albany NY) 2017; 9:1951-1952. [PMID: 28952452 PMCID: PMC5636665 DOI: 10.18632/aging.101296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 09/20/2017] [Indexed: 01/24/2023]
Affiliation(s)
- Gillian Cady
- Department of Biological Sciences, Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA
| | - Marianna Sadagurski
- Department of Biological Sciences, Integrative Biosciences Center, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
42
|
Mice under Caloric Restriction Self-Impose a Temporal Restriction of Food Intake as Revealed by an Automated Feeder System. Cell Metab 2017; 26:267-277.e2. [PMID: 28683292 PMCID: PMC5576447 DOI: 10.1016/j.cmet.2017.06.007] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/08/2017] [Accepted: 06/13/2017] [Indexed: 12/18/2022]
Abstract
Caloric restriction (CR) extends lifespan in mammals, yet the mechanisms underlying its beneficial effects remain unknown. The manner in which CR has been implemented in longevity experiments is variable, with both timing and frequency of meals constrained by work schedules. It is commonplace to find that nocturnal rodents are fed during the daytime and meals are spaced out, introducing prolonged fasting intervals. Since implementation of feeding paradigms over the lifetime is logistically difficult, automation is critical, but existing systems are expensive and not amenable to scale. We have developed a system that controls duration, amount, and timing of food availability and records feeding and voluntary wheel-running activity in mice. Using this system, mice were exposed to temporal or caloric restriction protocols. Mice under CR self-imposed a temporal component by consolidating food intake and unexpectedly increasing wheel-running activity during the rest phase, revealing previously unrecognized relationships among feeding, metabolism, and behavior.
Collapse
|
43
|
Selected life-extending interventions reduce arterial CXCL10 and macrophage colony-stimulating factor in aged mouse arteries. Cytokine 2017; 96:102-106. [PMID: 28390264 DOI: 10.1016/j.cyto.2017.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/24/2017] [Accepted: 03/31/2017] [Indexed: 12/30/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the industrialized world. Aging is the most predictive risk factor for CVD and is associated with arterial inflammation which contributes to increased CVD risk. Although age-related arterial inflammation has been described in both humans and animals, only a limited number of inflammatory mediators, cytokines and chemokines have been identified. In this investigation we sought to determine whether lifespan extending interventions, including crowded litter early life nutrient deprivation (CL), traditional lifelong caloric restriction (CR) and lifelong Rapamycin treatment (Rap) would attenuate age-related arterial inflammation using multi analyte profiling. Aortas from Young (4-6months), Old (22months), Old CL, Old CR and Old Rap mice were homogenized and cytokine concentrations were assessed using Luminex Multi Analyte Profiling. Chemokines involved in immune cell recruitment, such as CCL2, CXCL9, CXCL10, GMCSF and MCSF, were increased in Old vs. Young (p<0.05). The age-related increase of CXCL10 was prevented by CR (p<0.05 vs. Old). MSCF concentrations were lower in aortas of Rap treated mice (p<0.05 vs. Old). Interleukins (IL), IL-1α, IL-1β and IL-10, were also greater in Old vs. Young mice (p<0.05). These data demonstrate selected lifespan extending interventions can prevent or limit age-related increases in selected aortic chemokines.
Collapse
|
44
|
Cole JJ, Robertson NA, Rather MI, Thomson JP, McBryan T, Sproul D, Wang T, Brock C, Clark W, Ideker T, Meehan RR, Miller RA, Brown-Borg HM, Adams PD. Diverse interventions that extend mouse lifespan suppress shared age-associated epigenetic changes at critical gene regulatory regions. Genome Biol 2017; 18:58. [PMID: 28351383 PMCID: PMC5370462 DOI: 10.1186/s13059-017-1185-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/01/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Age-associated epigenetic changes are implicated in aging. Notably, age-associated DNA methylation changes comprise a so-called aging "clock", a robust biomarker of aging. However, while genetic, dietary and drug interventions can extend lifespan, their impact on the epigenome is uncharacterised. To fill this knowledge gap, we defined age-associated DNA methylation changes at the whole-genome, single-nucleotide level in mouse liver and tested the impact of longevity-promoting interventions, specifically the Ames dwarf Prop1 df/df mutation, calorie restriction and rapamycin. RESULTS In wild-type mice fed an unsupplemented ad libitum diet, age-associated hypomethylation was enriched at super-enhancers in highly expressed genes critical for liver function. Genes harbouring hypomethylated enhancers were enriched for genes that change expression with age. Hypermethylation was enriched at CpG islands marked with bivalent activating and repressing histone modifications and resembled hypermethylation in liver cancer. Age-associated methylation changes are suppressed in Ames dwarf and calorie restricted mice and more selectively and less specifically in rapamycin treated mice. CONCLUSIONS Age-associated hypo- and hypermethylation events occur at distinct regulatory features of the genome. Distinct longevity-promoting interventions, specifically genetic, dietary and drug interventions, suppress some age-associated methylation changes, consistent with the idea that these interventions exert their beneficial effects, in part, by modulation of the epigenome. This study is a foundation to understand the epigenetic contribution to healthy aging and longevity and the molecular basis of the DNA methylation clock.
Collapse
Affiliation(s)
- John J Cole
- Beatson Institute for Cancer Research and University of Glasgow, Garscube Estate, G61 1BD, UK
| | - Neil A Robertson
- Beatson Institute for Cancer Research and University of Glasgow, Garscube Estate, G61 1BD, UK
| | - Mohammed Iqbal Rather
- Beatson Institute for Cancer Research and University of Glasgow, Garscube Estate, G61 1BD, UK
| | - John P Thomson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Tony McBryan
- Beatson Institute for Cancer Research and University of Glasgow, Garscube Estate, G61 1BD, UK
| | - Duncan Sproul
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, UK
- Edinburgh Cancer Research Centre, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Tina Wang
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Claire Brock
- Beatson Institute for Cancer Research and University of Glasgow, Garscube Estate, G61 1BD, UK
| | - William Clark
- Beatson Institute for Cancer Research and University of Glasgow, Garscube Estate, G61 1BD, UK
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Richard R Meehan
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Richard A Miller
- Department of Pathology and Glenn Center for the Biology of Aging, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Holly M Brown-Borg
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, 58203, USA.
| | - Peter D Adams
- Beatson Institute for Cancer Research and University of Glasgow, Garscube Estate, G61 1BD, UK.
- Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA.
| |
Collapse
|
45
|
Gong H, Sun L, Chen B, Han Y, Pang J, Wu W, Qi R, Zhang TM. Evaluation of candidate reference genes for RT-qPCR studies in three metabolism related tissues of mice after caloric restriction. Sci Rep 2016; 6:38513. [PMID: 27922100 PMCID: PMC5138604 DOI: 10.1038/srep38513] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/09/2016] [Indexed: 12/24/2022] Open
Abstract
Reverse transcription quantitative-polymerase chain reaction (RT-qPCR) is a routine method for gene expression analysis, and reliable results depend on proper normalization by stable reference genes. Caloric restriction (CR) is a robust lifestyle intervention to slow aging and delay onset of age-associated diseases via inducing global changes in gene expression. Reliable normalization of RT-qPCR data becomes crucial in CR studies. In this study, the expression stability of 12 candidate reference genes were evaluated in inguinal white adipose tissue (iWAT), skeletal muscle (Sk.M) and liver of CR mice by using three algorithms, geNorm, NormFinder, and Bestkeeper. Our results showed β2m, Ppia and Hmbs as the most stable genes in iWAT, Sk.M and liver, respectively. Moreover, two reference genes were sufficient to normalize RT-qPCR data in each tissue and the suitable pair of reference genes was β2m-Hprt in iWAT, Ppia-Gusb in Sk.M and Hmbs-β2m in liver. By contrast, the least stable gene in iWAT or Sk.M was Gapdh, and in liver was Pgk1. Furthermore, the expression of Leptin and Ppar-γ were profiled in these tissues to validate the selected reference genes. Our data provided a basis for gene expression analysis in future CR studies.
Collapse
Affiliation(s)
- Huan Gong
- The MOH key laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, P.R. China
| | - Liang Sun
- The MOH key laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, P.R. China
| | - Beidong Chen
- The MOH key laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, P.R. China
| | - Yiwen Han
- The MOH key laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, P.R. China
| | - Jing Pang
- The MOH key laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, P.R. China
| | - Wei Wu
- The MOH key laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, P.R. China
| | - Ruomei Qi
- The MOH key laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, P.R. China
| | - Tie-Mei Zhang
- The MOH key laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, P.R. China
| |
Collapse
|
46
|
Nadon NL, Strong R, Miller RA, Harrison DE. NIA Interventions Testing Program: Investigating Putative Aging Intervention Agents in a Genetically Heterogeneous Mouse Model. EBioMedicine 2016; 21:3-4. [PMID: 27923560 PMCID: PMC5514387 DOI: 10.1016/j.ebiom.2016.11.038] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 11/28/2016] [Accepted: 11/30/2016] [Indexed: 11/29/2022] Open
Affiliation(s)
- Nancy L Nadon
- Division of Aging Biology, National Institute on Aging, Bethesda, MD 20892, USA.
| | - Randy Strong
- Geriatric Research, Education and Clinical Center and Research Service, South Texas Veterans Health Care System, Department of Pharmacology, Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Richard A Miller
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
47
|
Brewer RA, Gibbs VK, Smith DL. Targeting glucose metabolism for healthy aging. NUTRITION AND HEALTHY AGING 2016; 4:31-46. [PMID: 28035340 PMCID: PMC5166514 DOI: 10.3233/nha-160007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Advancing age is the greatest single risk factor for numerous chronic diseases. Thus, the ability to target the aging process can facilitate improved healthspan and potentially lifespan. Lack of adequate glucoregulatory control remains a recurrent theme accompanying aging and chronic disease, while numerous longevity interventions result in maintenance of glucoregulatory control. In this review, we propose targeting glucose metabolism to enhance regulatory control as a means to ameliorate the aging process. We highlight that calorie restriction improves glucoregulatory control and extends both lifespan and healthspan in model organisms, but we also indicate more practical interventions (i.e., calorie restriction mimetics) are desirable for clinical application in humans. Of the calorie restriction mimetics being investigated, we focus on the type 2 diabetes drug acarbose, an α-glucosidase inhibitor that when taken with a meal, results in reduced enzymatic degradation and absorption of glucose from complex carbohydrates. We discuss alternatives to acarbose that yield similar physiologic effects and describe dietary sources (e.g., sweet potatoes, legumes, and berries) of bioactive compounds with α-glucosidase inhibitory activity. We indicate future research should include exploration of how non-caloric compounds like α-glucosidase inhibitors modify macronutrient metabolism prior to disease onset, which may guide nutritional/lifestyle interventions to support health and reduce age-related disease risk.
Collapse
Affiliation(s)
- Rachel A. Brewer
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Victoria K. Gibbs
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
- Nutrition Obesity Research Center, Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
- Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL, USA
- Nathan Shock Center of Excellence in the Biology of Aging, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Daniel L. Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
- Nutrition Obesity Research Center, Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL, USA
- Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL, USA
- Nathan Shock Center of Excellence in the Biology of Aging, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
48
|
Dodds SG, Livi CB, Parihar M, Hsu HK, Benavides AD, Morris J, Javors M, Strong R, Christy B, Hasty P, Sharp ZD. Adaptations to chronic rapamycin in mice. PATHOBIOLOGY OF AGING & AGE RELATED DISEASES 2016; 6:31688. [PMID: 27237224 PMCID: PMC4884683 DOI: 10.3402/pba.v6.31688] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/21/2016] [Indexed: 11/24/2022]
Abstract
Rapamycin inhibits mechanistic (or mammalian) target of rapamycin (mTOR) that promotes protein production in cells by facilitating ribosome biogenesis (RiBi) and eIF4E-mediated 5'cap mRNA translation. Chronic treatment with encapsulated rapamycin (eRapa) extended health and life span for wild-type and cancer-prone mice. Yet, the long-term consequences of chronic eRapa treatment are not known at the organ level. Here, we report our observations of chronic eRapa treatment on mTORC1 signaling and RiBi in mouse colon and visceral adipose. As expected, chronic eRapa treatment decreased detection of phosphorylated mTORC1/S6K substrate, ribosomal protein (rpS6) in colon and fat. However, in colon, contrary to expectations, there was an upregulation of 18S rRNA and some ribosomal protein genes (RPGs) suggesting increased RiBi. Among RPGs, eRapa increases rpl22l1 mRNA but not its paralog rpl22. Furthermore, there was an increase in the cap-binding protein, eIF4E relative to its repressor 4E-BP1 suggesting increased translation. By comparison, in fat, there was a decrease in the level of 18S rRNA (opposite to colon), while overall mRNAs encoding ribosomal protein genes appeared to increase, including rpl22, but not rpl22l1 (opposite to colon). In fat, there was a decrease in eIF4E relative to actin (opposite to colon) but also an increase in the eIF4E/4E-BP1 ratio likely due to reductions in 4E-BP1 at our lower eRapa dose (similar to colon). Thus, in contrast to predictions of decreased protein production seen in cell-based studies, we provide evidence that colon from chronically treated mice exhibited an adaptive 'pseudo-anabolic' state, which is only partially present in fat, which might relate to differing tissue levels of rapamycin, cell-type-specific responses, and/or strain differences.
Collapse
Affiliation(s)
- Sherry G Dodds
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Carolina B Livi
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
- Agilent Technologies, Inc., Santa Clara, CA, USA
| | - Manish Parihar
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Hang-Kai Hsu
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
- KCRB 2018, City of Hope, Duarte, CA, USA
| | - Adriana D Benavides
- Department of Microbiology and Immunology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Infectious Disease Research Division, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jay Morris
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Martin Javors
- Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Randy Strong
- Department of Pharmacology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Geriatric Research, Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - Barbara Christy
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
- Coagulation and Blood Research Group, US Army Institute of Surgical Research, JBSA Fort Sam Houston, TX, USA
| | - Paul Hasty
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Cancer Therapy and Research Center, San Antonio, TX, USA;
| | - Zelton Dave Sharp
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Cancer Therapy and Research Center, San Antonio, TX, USA;
| |
Collapse
|
49
|
Gong H, Qian H, Ertl R, Astle CM, Wang GG, Harrison DE, Xu X. Histone modifications change with age, dietary restriction and rapamycin treatment in mouse brain. Oncotarget 2016; 6:15882-90. [PMID: 26021816 PMCID: PMC4599244 DOI: 10.18632/oncotarget.4137] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 04/21/2015] [Indexed: 11/25/2022] Open
Abstract
The risk of developing neurodegenerative disorders such as Alzheimer's disease (AD) increases dramatically with age. Understanding the underlying mechanisms of brain aging is crucial for developing preventative and/or therapeutic approaches for age-associated neurological diseases. Recently, it has been suggested that epigenetic factors, such as histone modifications, maybe be involved in brain aging and age-related neurodegenerations. In this study, we investigated 14 histone modifications in brains of a cohort of young (3 months), old (22 months), and old age-matched dietary restricted (DR) and rapamycin treated BALB/c mice. Results showed that 7 out of all measured histone markers were changed drastically with age. Intriguingly, histone methylations in brain tissues, including H3K27me3, H3R2me2, H3K79me3 and H4K20me2 tend to disappear with age but can be partially restored by both DR and rapamycin treatment. However, both DR and rapamycin treatment also have a significant impact on several other histone modifications such as H3K27ac, H4K16ac, H4R3me2, and H3K56ac, which do not change as animal ages. This study provides the first evidence that a broad spectrum of histone modifications may be involved in brain aging. Besides, this study suggests that both DR and rapamycin may slow aging process in mouse brain via these underlying epigenetic mechanisms.
Collapse
Affiliation(s)
- Huan Gong
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA.,The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, Ministry of Health, Beijing, China
| | - Hong Qian
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA
| | - Robin Ertl
- The Jackson Laboratory, Bar Harbor, ME, USA.,Center for Natural and Health Sciences, Marywood University, Scranton, PA, USA
| | | | - Gang G Wang
- Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Xiangru Xu
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT, USA.,Max Planck Institute for Biology of Ageing, Cologne, Germany
| |
Collapse
|
50
|
Gibbs VK, Smith DL. Nutrition and energetics in rodent longevity research. Exp Gerontol 2016; 86:90-96. [PMID: 27073168 DOI: 10.1016/j.exger.2016.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/30/2016] [Accepted: 04/04/2016] [Indexed: 12/25/2022]
Abstract
The impact of calorie amount on aging has been extensively described; however, variation over time and among laboratories in animal diet, housing condition, and strains complicates discerning the true influence of calories (energy) versus nutrients on lifespan. Within the dietary restriction field, single macronutrient manipulations have historically been researched as a means to reduce calories while maintaining adequate levels of essential nutrients. Recent reports of nutritional geometry, including rodent models, highlight the impact macronutrients have on whole organismal aging outcomes. However, other environmental factors (e.g., ambient temperature) may alter nutrient preferences and requirements revealing context specific outcomes. Herein we highlight factors that influence the energetic and nutrient demands of organisms which oftentimes have underappreciated impacts on clarifying interventional effects on health and longevity in aging studies and subsequent translation to improve the human condition.
Collapse
Affiliation(s)
- Victoria K Gibbs
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Daniel L Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Comprehensive Center for Healthy Aging, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Nutrition Obesity Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|