1
|
Yu Y, Lin K, Wu H, Hu M, Yang X, Wang J, Grillari J, Chen J. Targeting senescent cells in aging and COVID-19: from cellular mechanisms to therapeutic opportunities. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:20. [PMID: 39358480 PMCID: PMC11447201 DOI: 10.1186/s13619-024-00201-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/10/2024] [Indexed: 10/04/2024]
Abstract
The COVID-19 pandemic has caused a global health crisis and significant social economic burden. While most individuals experience mild or non-specific symptoms, elderly individuals are at a higher risk of developing severe symptoms and life-threatening complications. Exploring the key factors associated with clinical severity highlights that key characteristics of aging, such as cellular senescence, immune dysregulation, metabolic alterations, and impaired regenerative potential, contribute to disruption of tissue homeostasis of the lung and worse clinical outcome. Senolytic and senomorphic drugs, which are anti-aging treatments designed to eliminate senescent cells or decrease the associated phenotypes, have shown promise in alleviating age-related dysfunctions and offer a novel approach to treating diseases that share certain aspects of underlying mechanisms with aging, including COVID-19. This review summarizes the current understanding of aging in COVID-19 progression, and highlights recent findings on anti-aging drugs that could be repurposed for COVID-19 treatment to complement existing therapies.
Collapse
Affiliation(s)
- Yuan Yu
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kaixuan Lin
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Haoyu Wu
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Mingli Hu
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xuejie Yang
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jie Wang
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Johannes Grillari
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Institute of Molecular Biotechnology, BOKU University, Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation With AUVA, 1200, Vienna, Austria
| | - Jiekai Chen
- Center for Cell Lineage and Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| |
Collapse
|
2
|
Koloko Ngassie ML, Drake LY, Roos BB, Koenig-Kappes A, Pabelick CM, Gosens R, Brandsma CA, Burgess JK, Prakash YS. Endoplasmic reticulum stress-induced senescence in human lung fibroblasts. Am J Physiol Lung Cell Mol Physiol 2024; 327:L126-L139. [PMID: 38771153 PMCID: PMC11380945 DOI: 10.1152/ajplung.00264.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/08/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024] Open
Abstract
Loss of proteostasis and cellular senescence have been previously established as characteristics of aging; however, their interaction in the context of lung aging and potential contributions to aging-associated lung remodeling remains understudied. In this study, we aimed to characterize endoplasmic reticulum (ER) stress response, cellular senescence, and their interaction in relation to extracellular matrix (ECM) production in lung fibroblasts from young (25-45 yr) and old (>60 yr) humans. Fibroblasts from young and old patients without significant preexisting lung disease were exposed to vehicle, MG132, etoposide, or salubrinal. Afterward, cells and cell lysates or supernatants were analyzed for ER stress, cellular senescence, and ECM changes using protein analysis, proliferation assay, and senescence-associated beta-galactosidase (SA-β-Gal) staining. At baseline, fibroblasts from aging individuals showed increased levels of ER stress (ATF6 and PERK), senescence (p21 and McL-1), and ECM marker (COL1A1) compared to those from young individuals. Upon ER stress induction and etoposide exposure, fibroblasts showed an increase in senescence (SA-β-Gal, p21, and Cav-1), ER stress (PERK), and ECM markers (COL1A1 and LUM) compared to vehicle. Additionally, IL-6 and IL-8 levels were increased in the supernatants of MG132- and etoposide-treated fibroblasts, respectively. Finally, the ER stress inhibitor salubrinal decreased the expression of p21 compared to vehicle and MG132 treatments; however, salubrinal inhibited COL1A1 but not p21 expression in MG132-treated fibroblasts. Our study suggests that ER stress response plays an important role in establishment and maintenance of a senescence phenotype in lung fibroblasts and therefore contributes to altered remodeling in the aging lung.NEW & NOTEWORTHY The current study establishes functional links between endoplasmic reticulum (ER) stress and cellular senescence per se in the specific context of aging human lung fibroblasts. Recognizing that the process of aging per se is complex, modulated by the myriad of lifelong and environmental exposures, it is striking to note that chronic ER stress may play a crucial role in the establishment and maintenance of cellular senescence in lung fibroblasts.
Collapse
Affiliation(s)
- Maunick Lefin Koloko Ngassie
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Li Y Drake
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Benjamin B Roos
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Amanda Koenig-Kappes
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Christina M Pabelick
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Reinoud Gosens
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - Corry-Anke Brandsma
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Janette K Burgess
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
3
|
Fujita M, Sasada M, Iyoda T, Fukai F. Involvement of Matricellular Proteins in Cellular Senescence: Potential Therapeutic Targets for Age-Related Diseases. Int J Mol Sci 2024; 25:6591. [PMID: 38928297 PMCID: PMC11204155 DOI: 10.3390/ijms25126591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Senescence is a physiological and pathological cellular program triggered by various types of cellular stress. Senescent cells exhibit multiple characteristic changes. Among them, the characteristic flattened and enlarged morphology exhibited in senescent cells is observed regardless of the stimuli causing the senescence. Several studies have provided important insights into pro-adhesive properties of cellular senescence, suggesting that cell adhesion to the extracellular matrix (ECM), which is involved in characteristic morphological changes, may play pivotal roles in cellular senescence. Matricellular proteins, a group of structurally unrelated ECM molecules that are secreted into the extracellular environment, have the unique ability to control cell adhesion to the ECM by binding to cell adhesion receptors, including integrins. Recent reports have certified that matricellular proteins are closely involved in cellular senescence. Through this biological function, matricellular proteins are thought to play important roles in the pathogenesis of age-related diseases, including fibrosis, osteoarthritis, intervertebral disc degeneration, atherosclerosis, and cancer. This review outlines recent studies on the role of matricellular proteins in inducing cellular senescence. We highlight the role of integrin-mediated signaling in inducing cellular senescence and provide new therapeutic options for age-related diseases targeting matricellular proteins and integrins.
Collapse
Affiliation(s)
- Motomichi Fujita
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan
| | - Manabu Sasada
- Clinical Research Center in Hiroshima, Hiroshima University Hospital, 1-2-3 Kasumi, Minami-Ku, Hiroshima 734-8551, Japan
| | - Takuya Iyoda
- Department of Pharmacy, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, 1-1-1 Daigaku-Doori, Sanyo-Onoda 756-0884, Yamaguchi, Japan
| | - Fumio Fukai
- Department of Molecular Patho-Physiology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan
| |
Collapse
|
4
|
Howes AM, Dea NC, Ghosh D, Krishna K, Wang Y, Li Y, Morrison B, Toussaint KC, Dawson MR. Fibroblast senescence-associated extracellular matrix promotes heterogeneous lung niche. APL Bioeng 2024; 8:026119. [PMID: 38855444 PMCID: PMC11161856 DOI: 10.1063/5.0204393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024] Open
Abstract
Senescent cell accumulation in the pulmonary niche is associated with heightened susceptibility to age-related disease, tissue alterations, and ultimately a decline in lung function. Our current knowledge of senescent cell-extracellular matrix (ECM) dynamics is limited, and our understanding of how senescent cells influence spatial ECM architecture changes over time is incomplete. Herein is the design of an in vitro model of senescence-associated extracellular matrix (SA-ECM) remodeling using a senescent lung fibroblast-derived matrix that captures the spatiotemporal dynamics of an evolving senescent ECM architecture. Multiphoton second-harmonic generation microscopy was utilized to examine the spatial and temporal dynamics of fibroblast SA-ECM remodeling, which revealed a biphasic process that established a disordered and heterogeneous architecture. Additionally, we observed that inhibition of transforming growth factor-β signaling during SA-ECM remodeling led to improved local collagen fiber organization. Finally, we examined patient samples diagnosed with pulmonary fibrosis to further tie our results of the in vitro model to clinical outcomes. Moreover, we observed that the senescence marker p16 is correlated with local collagen fiber disorder. By elucidating the temporal dynamics of SA-ECM remodeling, we provide further insight on the role of senescent cells and their contributions to pathological ECM remodeling.
Collapse
Affiliation(s)
| | - Nova C. Dea
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 029012, USA
| | - Deepraj Ghosh
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 029012, USA
| | - Krishangi Krishna
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Yihong Wang
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island 02912, USA
| | - Yanxi Li
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 029012, USA
| | - Braxton Morrison
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 029012, USA
| | - Kimani C. Toussaint
- School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Michelle R. Dawson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 029012, USA
| |
Collapse
|
5
|
Roth‐Walter F, Adcock IM, Benito‐Villalvilla C, Bianchini R, Bjermer L, Caramori G, Cari L, Chung KF, Diamant Z, Eguiluz‐Gracia I, Knol EF, Jesenak M, Levi‐Schaffer F, Nocentini G, O'Mahony L, Palomares O, Redegeld F, Sokolowska M, Van Esch BCAM, Stellato C. Metabolic pathways in immune senescence and inflammaging: Novel therapeutic strategy for chronic inflammatory lung diseases. An EAACI position paper from the Task Force for Immunopharmacology. Allergy 2024; 79:1089-1122. [PMID: 38108546 PMCID: PMC11497319 DOI: 10.1111/all.15977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
The accumulation of senescent cells drives inflammaging and increases morbidity of chronic inflammatory lung diseases. Immune responses are built upon dynamic changes in cell metabolism that supply energy and substrates for cell proliferation, differentiation, and activation. Metabolic changes imposed by environmental stress and inflammation on immune cells and tissue microenvironment are thus chiefly involved in the pathophysiology of allergic and other immune-driven diseases. Altered cell metabolism is also a hallmark of cell senescence, a condition characterized by loss of proliferative activity in cells that remain metabolically active. Accelerated senescence can be triggered by acute or chronic stress and inflammatory responses. In contrast, replicative senescence occurs as part of the physiological aging process and has protective roles in cancer surveillance and wound healing. Importantly, cell senescence can also change or hamper response to diverse therapeutic treatments. Understanding the metabolic pathways of senescence in immune and structural cells is therefore critical to detect, prevent, or revert detrimental aspects of senescence-related immunopathology, by developing specific diagnostics and targeted therapies. In this paper, we review the main changes and metabolic alterations occurring in senescent immune cells (macrophages, B cells, T cells). Subsequently, we present the metabolic footprints described in translational studies in patients with chronic asthma and chronic obstructive pulmonary disease (COPD), and review the ongoing preclinical studies and clinical trials of therapeutic approaches aiming at targeting metabolic pathways to antagonize pathological senescence. Because this is a recently emerging field in allergy and clinical immunology, a better understanding of the metabolic profile of the complex landscape of cell senescence is needed. The progress achieved so far is already providing opportunities for new therapies, as well as for strategies aimed at disease prevention and supporting healthy aging.
Collapse
Affiliation(s)
- F. Roth‐Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine ViennaMedical University Vienna and University ViennaViennaAustria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and ImmunologyMedical University of ViennaViennaAustria
| | - I. M. Adcock
- Molecular Cell Biology Group, National Heart & Lung InstituteImperial College LondonLondonUK
| | - C. Benito‐Villalvilla
- Department of Biochemistry and Molecular Biology, School of ChemistryComplutense University of MadridMadridSpain
| | - R. Bianchini
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine ViennaMedical University Vienna and University ViennaViennaAustria
| | - L. Bjermer
- Department of Respiratory Medicine and Allergology, Lung and Allergy research, Allergy, Asthma and COPD Competence CenterLund UniversityLundSweden
| | - G. Caramori
- Department of Medicine and SurgeryUniversity of ParmaPneumologiaItaly
| | - L. Cari
- Department of Medicine, Section of PharmacologyUniversity of PerugiaPerugiaItaly
| | - K. F. Chung
- Experimental Studies Medicine at National Heart & Lung InstituteImperial College London & Royal Brompton & Harefield HospitalLondonUK
| | - Z. Diamant
- Department of Respiratory Medicine and Allergology, Institute for Clinical ScienceSkane University HospitalLundSweden
- Department of Respiratory Medicine, First Faculty of MedicineCharles University and Thomayer HospitalPragueCzech Republic
- Department of Clinical Pharmacy & PharmacologyUniversity Groningen, University Medical Center Groningen and QPS‐NLGroningenThe Netherlands
| | - I. Eguiluz‐Gracia
- Allergy UnitHospital Regional Universitario de Málaga‐Instituto de Investigación Biomédica de Málaga (IBIMA)‐ARADyALMálagaSpain
| | - E. F. Knol
- Departments of Center of Translational Immunology and Dermatology/AllergologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - M. Jesenak
- Department of Paediatrics, Department of Pulmonology and Phthisiology, Comenius University in Bratislava, Jessenius Faculty of Medicine in MartinUniversity Teaching HospitalMartinSlovakia
| | - F. Levi‐Schaffer
- Institute for Drug Research, Pharmacology Unit, Faculty of MedicineThe Hebrew University of JerusalemJerusalemIsrael
| | - G. Nocentini
- Department of Medicine, Section of PharmacologyUniversity of PerugiaPerugiaItaly
| | - L. O'Mahony
- APC Microbiome IrelandUniversity College CorkCorkIreland
- Department of MedicineUniversity College CorkCorkIreland
- School of MicrobiologyUniversity College CorkCorkIreland
| | - O. Palomares
- Department of Biochemistry and Molecular Biology, School of ChemistryComplutense University of MadridMadridSpain
| | - F. Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - M. Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF)University of ZürichDavosSwitzerland
- Christine Kühne – Center for Allergy Research and Education (CK‐CARE)DavosSwitzerland
| | - B. C. A. M. Van Esch
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - C. Stellato
- Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”University of SalernoSalernoItaly
| |
Collapse
|
6
|
Sugimoto M. Targeting cellular senescence: A promising approach in respiratory diseases. Geriatr Gerontol Int 2024; 24 Suppl 1:60-66. [PMID: 37604771 DOI: 10.1111/ggi.14653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/23/2023]
Abstract
Cellular senescence serves as a significant tumor suppression mechanism in mammals. Cellular senescence is induced in response to various stressors and acts as a safeguard against the uncontrolled proliferation of damaged cells that could lead to malignant transformation. Senescent cells also exhibit a distinctive feature known as the senescence-associated secretory phenotype (SASP), wherein they secrete a range of bioactive molecules, including pro-inflammatory cytokines, growth factors, and proteases. These SASP components have both local and systemic effects, influencing the surrounding microenvironment and distant tissues, and have been implicated in the processes of tissue aging and the development of chronic diseases. Recent studies utilizing senolysis models have shed light on the potential therapeutic implications of targeting senescent cells. The targeting of senescent cell may alleviate the detrimental effects associated with cellular senescence and its SASP components. Senolytics have shown promise in preclinical studies for treating age-related pathologies and chronic diseases, including cancer, cardiovascular disorders, and neurodegenerative conditions. Respiratory diseases have emerged as a significant global health concern, responsible for a considerable number of deaths worldwide. Extensive research conducted in both human subjects and animal models has demonstrated the involvement of cellular senescence in the pathogenesis of respiratory diseases. Chronic pulmonary conditions such as chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis have been linked to the accumulation of senescent cells. This review aims to present the findings from research on respiratory diseases that have utilized systems targeting senescent cells and to identify potential therapeutic strategies for the clinical management of these conditions. Geriatr Gerontol Int 2024; 24: 60-66.
Collapse
Affiliation(s)
- Masataka Sugimoto
- Laboratory of Molecular and Cellular Aging, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| |
Collapse
|
7
|
Sui J, Boatz JC, Shi J, Hu Q, Li X, Zhang Y, Königshoff M, Kliment CR. Loss of ANT1 Increases Fibrosis and Epithelial Cell Senescence in Idiopathic Pulmonary Fibrosis. Am J Respir Cell Mol Biol 2023; 69:556-569. [PMID: 37487137 PMCID: PMC10633847 DOI: 10.1165/rcmb.2022-0315oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 07/24/2023] [Indexed: 07/26/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by progressive lung scarring and remodeling. Although treatments exist that slow disease progression, IPF is irreversible, and there is no cure. Cellular senescence, a major hallmark of aging, has been implicated in IPF pathogenesis, and mitochondrial dysfunction is increasingly recognized as a driver of senescence. Adenine nucleotide translocases (ANTs) are abundant mitochondrial ATP-ADP transporters critical for regulating cell fate and maintaining mitochondrial function. We sought to determine how alterations in ANTs influence cellular senescence in pulmonary fibrosis. We found that SLC25A4 (solute carrier family 25 member 4) (ANT1) and SLC25A5 (ANT2) expression is reduced in the lungs of patients with IPF, particularly within alveolar type II (AT2) cells, by single-cell RNA sequencing and tissue staining. Loss of ANT1 by siRNA in lung epithelial cells resulted in increased senescence markers such as β-galactosidase and p21, with a reduction in the ratio of nicotinamide adenine dinucleotide to reduced nicotinamide adenine dinucleotide. Bleomycin-treated ANT1 knockdown cells also had increased senescence markers compared with bleomycin-treated control cells. Loss of ANT1 in AT2 cells resulted in a reduction in alveolar organoid growth, with an increase in p21 by staining. Global loss of ANT1 resulted in worse lung fibrosis and increased senescence in the bleomycin- and asbestos-induced mouse models of pulmonary fibrosis. In summary, loss of ANT1 contributes to IPF pathogenesis through mitochondrial dysfunction, increased senescence, and decreased regenerative capacity of AT2 cells, resulting in enhanced lung fibrosis. Modulation of ANTs presents a new therapeutic avenue that may alter cellular senescence pathways and limit pulmonary fibrosis.
Collapse
Affiliation(s)
- Justin Sui
- Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jennifer C Boatz
- Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jian Shi
- Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Qianjiang Hu
- Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xiaoyun Li
- Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yingze Zhang
- Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Melanie Königshoff
- Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Corrine R Kliment
- Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
Lavandoski P, Pierdoná V, Maurmann RM, Grun LK, Guma FTCR, Barbé-Tuana FM. Eotaxin-1/CCL11 promotes cellular senescence in human-derived fibroblasts through pro-oxidant and pro-inflammatory pathways. Front Immunol 2023; 14:1243537. [PMID: 37860000 PMCID: PMC10582634 DOI: 10.3389/fimmu.2023.1243537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Introduction Eotaxin-1/CCL11 is a pivotal chemokine crucial for eosinophil homing to the lungs of asthmatic patients. Recent studies also suggest that CCL11 is involved in the aging process, as it is upregulated in elderly, and correlated with shorter telomere length in leukocytes from asthmatic children. Despite its potential pro-aging effects, the precise contribution of CCL11 and the underlying mechanisms involved in the promotion of cellular senescence remains unclear. Therefore, the primary goal of this study was to explore the role of CCL11 on senescence development and the signaling pathways activated by this chemokine in lung fibroblasts. Methods To investigate the targets potentially modulated by CCL11, we performed an in silico analysis using PseudoCell. We validated in vitro the activation of these targets in the human lung fibroblast cell line MRC-5 following rhCCL11 exposure. Finally, we performed differential gene expression analysis in human airway epithelial cells of asthmatic patients to assess CCL11 signaling and activation of additional senescent markers. Results Our study revealed that eotaxin-1/CCL11 promote reactive oxygen secretion (ROS) production in lung fibroblasts, accompanied by increased activation of the DNA damage response (DDR) and p-TP53 and γH2AX. These modifications were accompanied by cellular senescence promotion and increased secretion of senescence-associated secretory phenotype inflammatory cytokines IL-6 and IL-8. Furthermore, our data show that airway epithelial lung cells from atopic asthmatic patients overexpress CCL11 along with aging markers such as CDKN2A (p16INK4a) and SERPINE1. Discussion These findings provide new insights into the mechanisms underlying the pro-aging effects of CCL11 in the lungs of asthmatic patients. Understanding the role of CCL11 on senescence development may have important implications for the treatment of age-related lung diseases, such as asthma.
Collapse
Affiliation(s)
- Patrícia Lavandoski
- Programa de Pós-Graduação em Ciências Biológicas, Bioquímica do Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde da Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Vinícius Pierdoná
- Programa de Pós-Graduação em Ciências Biológicas, Bioquímica do Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde da Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Rafael Moura Maurmann
- Programa de Pós-Graduação em Biologia Celular e Molecular da Escola de Ciências da Saúde e da Vida - Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Lucas Kich Grun
- Programa de Pós-Graduação em Pediatria e Saúde de Criança da Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fatima T. C. R. Guma
- Programa de Pós-Graduação em Ciências Biológicas, Bioquímica do Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde da Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Florencia María Barbé-Tuana
- Programa de Pós-Graduação em Biologia Celular e Molecular da Escola de Ciências da Saúde e da Vida - Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-Graduação em Pediatria e Saúde de Criança da Escola de Medicina, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
9
|
Walter S, Mertens C, Muckenthaler MU, Ott C. Cardiac iron metabolism during aging - Role of inflammation and proteolysis. Mech Ageing Dev 2023; 215:111869. [PMID: 37678569 DOI: 10.1016/j.mad.2023.111869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/09/2023]
Abstract
Iron is the most abundant trace element in the human body. Since iron can switch between its 2-valent and 3-valent form it is essential in various physiological processes such as energy production, proliferation or DNA synthesis. Especially high metabolic organs such as the heart rely on iron-associated iron-sulfur and heme proteins. However, due to switches in iron oxidation state, iron overload exhibits high toxicity through formation of reactive oxygen species, underlining the importance of balanced iron levels. Growing evidence demonstrates disturbance of this balance during aging. While age-associated cardiovascular diseases are often related to iron deficiency, in physiological aging cardiac iron accumulates. To understand these changes, we focused on inflammation and proteolysis, two hallmarks of aging, and their role in iron metabolism. Via the IL-6-hepcidin axis, inflammation and iron status are strongly connected often resulting in anemia accompanied by infiltration of macrophages. This tight connection between anemia and inflammation highlights the importance of the macrophage iron metabolism during inflammation. Age-related decrease in proteolytic activity additionally affects iron balance due to impaired degradation of iron metabolism proteins. Therefore, this review accentuates alterations in iron metabolism during aging with regards to inflammation and proteolysis to draw attention to their implications and associations.
Collapse
Affiliation(s)
- Sophia Walter
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Molecular Toxicology, Nuthetal, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Wuppertal, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Christina Mertens
- Center for Translational Biomedical Iron Research, Department of Pediatric Oncology, Immunology, and Hematology, University of Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Heidelberg, Mannheim, Germany
| | - Martina U Muckenthaler
- Center for Translational Biomedical Iron Research, Department of Pediatric Oncology, Immunology, and Hematology, University of Heidelberg, Heidelberg, Germany; DZHK (German Center for Cardiovascular Research), Heidelberg, Mannheim, Germany; Molecular Medicine Partnership Unit, Heidelberg, Germany; Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Christiane Ott
- German Institute of Human Nutrition Potsdam-Rehbruecke, Department of Molecular Toxicology, Nuthetal, Germany; TraceAge-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Berlin-Jena, Wuppertal, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany.
| |
Collapse
|
10
|
Mebratu YA, Soni S, Rosas L, Rojas M, Horowitz JC, Nho R. The aged extracellular matrix and the profibrotic role of senescence-associated secretory phenotype. Am J Physiol Cell Physiol 2023; 325:C565-C579. [PMID: 37486065 PMCID: PMC10511170 DOI: 10.1152/ajpcell.00124.2023] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
Idiopathic pulmonary fibrosis (IPF) is an irreversible and fatal lung disease that is primarily found in the elderly population, and several studies have demonstrated that aging is the major risk factor for IPF. IPF is characterized by the presence of apoptosis-resistant, senescent fibroblasts that generate an excessively stiff extracellular matrix (ECM). The ECM profoundly affects cellular functions and tissue homeostasis, and an aberrant ECM is closely associated with the development of lung fibrosis. Aging progressively alters ECM components and is associated with the accumulation of senescent cells that promote age-related tissue dysfunction through the expression of factors linked to a senescence-associated secretary phenotype (SASP). There is growing evidence that SASP factors affect various cell behaviors and influence ECM turnover in lung tissue through autocrine and/or paracrine signaling mechanisms. Since life expectancy is increasing worldwide, it is important to elucidate how aging affects ECM dynamics and turnover via SASP and thereby promotes lung fibrosis. In this review, we will focus on the molecular properties of SASP and its regulatory mechanisms. Furthermore, the pathophysiological process of ECM remodeling by SASP factors and the influence of an altered ECM from aged lungs on the development of lung fibrosis will be highlighted. Finally, recent attempts to target ECM alteration and senescent cells to modulate fibrosis will be introduced.NEW & NOTEWORTHY Aging is the most prominent nonmodifiable risk factor for various human diseases including Idiopathic pulmonary fibrosis. Aging progressively alters extracellular matrix components and is associated with the accumulation of senescent cells that promote age-related tissue dysfunction. In this review, we will discuss the pathological impact of aging and senescence on lung fibrosis via senescence-associated secretary phenotype factors and potential therapeutic approaches to limit the progression of lung fibrosis.
Collapse
Affiliation(s)
- Yohannes A Mebratu
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Sourabh Soni
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Lorena Rosas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Mauricio Rojas
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Jeffrey C Horowitz
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| | - Richard Nho
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, The Davis Heart and Lung Research Institute, The Ohio State University, Columbus, Ohio, United States
| |
Collapse
|
11
|
Xie K, Ehninger D. Ageing-associated phenotypes in mice. Mech Ageing Dev 2023; 214:111852. [PMID: 37454704 DOI: 10.1016/j.mad.2023.111852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Ageing is a continuous process in life featuring progressive damage accumulation that leads to physiological decline, functional deterioration and ultimately death of an organism. Based on the relatively close anatomical and physiological similarity to humans, the mouse has been proven as a valuable model organism in ageing research over the last decades. In this review, we survey methods and tools currently in use to assess ageing phenotypes in mice. We summarize a range of ageing-associated alterations detectable at two major levels of analysis: (1) physiology and pathophysiology and (2) molecular biomarkers. Age-sensitive phenotypes provided in this article may serve to inform future studies targeting various aspects of organismal ageing in mice. In addition, we discuss conceptual and technical challenges faced by previous ageing studies in mice and, where possible, provide recommendations on how to resolve some of these issues.
Collapse
Affiliation(s)
- Kan Xie
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
| | - Dan Ehninger
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany.
| |
Collapse
|
12
|
Wu Y, Hu SS, Zhang R, Goplen NP, Gao X, Narasimhan H, Shi A, Chen Y, Li Y, Zang C, Dong H, Braciale TJ, Zhu B, Sun J. Single cell RNA sequencing unravels mechanisms underlying senescence-like phenotypes of alveolar macrophages. iScience 2023; 26:107197. [PMID: 37456831 PMCID: PMC10344965 DOI: 10.1016/j.isci.2023.107197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 12/11/2022] [Accepted: 06/20/2023] [Indexed: 07/18/2023] Open
Abstract
Alveolar macrophages (AMs) are resident innate immune cells that play vital roles in maintaining lung physiological functions. However, the effects of aging on their dynamics, heterogeneity, and transcriptional profiles remain to be fully elucidated. Through single cell RNA sequencing (scRNA-seq), we identified CBFβ as an indispensable transcription factor that ensures AM self-renewal. Intriguingly, despite transcriptome similarities of proliferating cells, AMs from aged mice exhibited reduced embryonic stem cell-like features. Aged AMs also displayed compromised DNA repair abilities, potentially leading to obstructed cell cycle progression and an elevation of senescence markers. Consistently, AMs from aged mice exhibited impaired self-renewal ability and reduced sensitivity to GM-CSF. Decreased CBFβ was observed in the cytosol of AMs from aged mice. Similar senescence-like phenotypes were also found in human AMs. Taken together, these findings suggest that AMs in aged hosts demonstrate senescence-like phenotypes, potentially facilitated by the abrogated CBF β activity.
Collapse
Affiliation(s)
- Yue Wu
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
- Mayo Clinic Department of Immunology, Rochester, MN 55905, USA
| | - Shengen Shawn Hu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
| | - Ruixuan Zhang
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Nick P. Goplen
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA
| | - Xiaochen Gao
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
- Mayo Clinic Department of Immunology, Rochester, MN 55905, USA
| | - Harish Narasimhan
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Ao Shi
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| | - Yin Chen
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
- Mayo Clinic Department of Immunology, Rochester, MN 55905, USA
| | - Ying Li
- Division of Computational Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Chongzhi Zang
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA 22908, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908, USA
- UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA 22908, USA
| | - Haidong Dong
- Mayo Clinic Department of Immunology, Rochester, MN 55905, USA
- Department of Urology, College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Thomas J. Braciale
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Bibo Zhu
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Jie Sun
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
- Mayo Clinic Department of Immunology, Rochester, MN 55905, USA
- Division of Pulmonary and Critical Medicine, Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22908, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
13
|
Koloko Ngassie ML, De Vries M, Borghuis T, Timens W, Sin DD, Nickle D, Joubert P, Horvatovich P, Marko-Varga G, Teske JJ, Vonk JM, Gosens R, Prakash YS, Burgess JK, Brandsma CA. Age-associated differences in the human lung extracellular matrix. Am J Physiol Lung Cell Mol Physiol 2023; 324:L799-L814. [PMID: 37039368 PMCID: PMC10202478 DOI: 10.1152/ajplung.00334.2022] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/15/2023] [Accepted: 04/02/2023] [Indexed: 04/12/2023] Open
Abstract
Extracellular matrix (ECM) remodeling has been associated with chronic lung diseases. However, information about specific age-associated differences in lung ECM is currently limited. In this study, we aimed to identify and localize age-associated ECM differences in human lungs using comprehensive transcriptomic, proteomic, and immunohistochemical analyses. Our previously identified age-associated gene expression signature of the lung was re-analyzed limiting it to an aging signature based on 270 control patients (37-80 years) and focused on the Matrisome core geneset using geneset enrichment analysis. To validate the age-associated transcriptomic differences on protein level, we compared the age-associated ECM genes (false discovery rate, FDR < 0.05) with a profile of age-associated proteins identified from a lung tissue proteomics dataset from nine control patients (49-76 years) (FDR < 0.05). Extensive immunohistochemical analysis was used to localize and semi-quantify the age-associated ECM differences in lung tissues from 62 control patients (18-82 years). Comparative analysis of transcriptomic and proteomic data identified seven ECM proteins with higher expression with age at both gene and protein levels: COL1A1, COL6A1, COL6A2, COL14A1, FBLN2, LTBP4, and LUM. With immunohistochemistry, we demonstrated higher protein levels with age for COL6A2 in whole tissue, parenchyma, airway wall, and blood vessel, for COL14A1 and LUM in bronchial epithelium, and COL1A1 in lung parenchyma. Our study revealed that higher age is associated with lung ECM remodeling, with specific differences occurring in defined regions within the lung. These differences may affect lung structure and physiology with aging and as such may increase susceptibility to developing chronic lung diseases.NEW & NOTEWORTHY We identified seven age-associated extracellular matrix (ECM) proteins, i.e., COL1A1, COL6A1, COL6A2 COL14A1, FBLN2, LTBP4, and LUM with higher transcript and protein levels in human lung tissue with age. Extensive immunohistochemical analysis revealed significant age-associated differences for COL6A2 in whole tissue, parenchyma, airway wall, and vessel, for COL14A1 and LUM in bronchial epithelium, and COL1A1 in parenchyma. Our findings lay a new foundation for the investigation of ECM differences in age-associated chronic lung diseases.
Collapse
Affiliation(s)
- Maunick Lefin Koloko Ngassie
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Maaike De Vries
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Theo Borghuis
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Wim Timens
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Don D Sin
- Centre for Heart Lung Innovation at St. Paul's Hospital, University of British Columbia, Vancouver, British Columbia, Canada
| | - David Nickle
- Monoceros Bio, San Diego, California, United States
| | - Philippe Joubert
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Quebec City, Quebec, Canada
| | - Peter Horvatovich
- Department of Analytical Biochemistry, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands
| | - György Marko-Varga
- Center of Excellence in Biological and Medical Mass Spectrometry, Biomedical Center, Lund University, Lund, Sweden
| | - Jacob J Teske
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Judith M Vonk
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Reinoud Gosens
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Janette K Burgess
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Corry-Anke Brandsma
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
14
|
Moreno-Valladares M, Moncho-Amor V, Silva TM, Garcés JP, Álvarez-Satta M, Matheu A. KRT5 +/p63 + Stem Cells Undergo Senescence in the Human Lung with Pathological Aging. Aging Dis 2023; 14:1013-1027. [PMID: 37191411 DOI: 10.14336/ad.2022.1128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/28/2022] [Indexed: 05/17/2023] Open
Abstract
Adult lungs present high cellular plasticity against stress and injury, mobilizing stem/progenitor populations from conducting airways to maintain tissue homeostasis and gas exchange in alveolar spaces. With aging, pulmonary functional and structural deterioration occurs, mainly in pathological conditions, which is associated with impaired stem cell activity and increased senescence in mice. However, the impact of these processes underlying lung physiopathology in relation to aging has not been explored in humans. In this work, we analyzed stem cell (SOX2, p63, KRT5), senescence (p16INK4A, p21CIP, Lamin B1) and proliferative (Ki67) markers in lung samples from young and aged individuals, with and without pulmonary pathology. We identified a reduction in SOX2+ cells but not p63+ and KRT5+ basal cells in small airways with aging. In alveoli, we revealed the presence of triple SOX2+, p63+ and KRT5+ cells specifically in aged individuals diagnosed with pulmonary pathologies. Notably, p63+ and KRT5+ basal stem cells displayed colocalization with p16INK4A and p21CIP, as well as with low Lamin B1 staining in alveoli. Further studies revealed that senescence and proliferation markers were mutually exclusive in stem cells with a higher percentage colocalizing with senescence markers. These results provide new evidence of the activity of p63+/KRT5+ stem cells on human lung regeneration and point out that regeneration machinery in human lung is activated under stress due to aging, but fails to repair in pathological cases, as stem cells would likely become senescent.
Collapse
Affiliation(s)
- Manuel Moreno-Valladares
- Biodonostia Health Research Institute, Group of Cellular Oncology, San Sebastian, Spain
- Donostia University Hospital, Pathology Department, San Sebastian, Spain
- CIBER of Frailty and Healthy Aging (CIBERfes), Carlos III Institute, Madrid, Spain
| | - Veronica Moncho-Amor
- Biodonostia Health Research Institute, Group of Cellular Oncology, San Sebastian, Spain
- CIBER of Frailty and Healthy Aging (CIBERfes), Carlos III Institute, Madrid, Spain
| | - Tulio M Silva
- Donostia University Hospital, Pathology Department, San Sebastian, Spain
| | - Juan P Garcés
- Donostia University Hospital, Pathology Department, San Sebastian, Spain
| | - María Álvarez-Satta
- Biodonostia Health Research Institute, Group of Cellular Oncology, San Sebastian, Spain
- CIBER of Frailty and Healthy Aging (CIBERfes), Carlos III Institute, Madrid, Spain
| | - Ander Matheu
- Biodonostia Health Research Institute, Group of Cellular Oncology, San Sebastian, Spain
- CIBER of Frailty and Healthy Aging (CIBERfes), Carlos III Institute, Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
15
|
Mannick JB, Lamming DW. Targeting the biology of aging with mTOR inhibitors. NATURE AGING 2023; 3:642-660. [PMID: 37142830 PMCID: PMC10330278 DOI: 10.1038/s43587-023-00416-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/07/2023] [Indexed: 05/06/2023]
Abstract
Inhibition of the protein kinase mechanistic target of rapamycin (mTOR) with the Food and Drug Administration (FDA)-approved therapeutic rapamycin promotes health and longevity in diverse model organisms. More recently, specific inhibition of mTORC1 to treat aging-related conditions has become the goal of basic and translational scientists, clinicians and biotechnology companies. Here, we review the effects of rapamycin on the longevity and survival of both wild-type mice and mouse models of human diseases. We discuss recent clinical trials that have explored whether existing mTOR inhibitors can safely prevent, delay or treat multiple diseases of aging. Finally, we discuss how new molecules may provide routes to the safer and more selective inhibition of mTOR complex 1 (mTORC1) in the decade ahead. We conclude by discussing what work remains to be done and the questions that will need to be addressed to make mTOR inhibitors part of the standard of care for diseases of aging.
Collapse
Affiliation(s)
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
16
|
Shaikh SB, Goracci C, Tjitropranoto A, Rahman I. Impact of aging on immune function in the pathogenesis of pulmonary diseases: potential for therapeutic targets. Expert Rev Respir Med 2023; 17:351-364. [PMID: 37078192 PMCID: PMC10330361 DOI: 10.1080/17476348.2023.2205127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 04/17/2023] [Indexed: 04/21/2023]
Abstract
INTRODUCTION Several immunological alterations that occur during pulmonary diseases often mimic alterations observed in the aged lung. From the molecular perspective, pulmonary diseases and aging partake in familiar mechanisms associated with significant dysregulation of the immune systems. Here, we summarized the findings of how aging alters immunity to respiratory conditions to identify age-impacted pathways and mechanisms that contribute to the development of pulmonary diseases. AREAS COVERED The current review examines the impact of age-related molecular alterations in the aged immune system during various lung diseases, such as COPD, IPF, Asthma, and alongside many others that could possibly improve on current therapeutic interventions. Moreover, our increased understanding of this phenomenon may play a primary role in shaping immunomodulatory strategies to boost outcomes in the elderly. Here, the authors present new insights into the context of lung-related diseases and describe the alterations in the functioning of immune cells during various pulmonary conditions altered with age. EXPERT OPINION The expert opinion provided the concepts on how aging alters immunity during pulmonary conditions, and suggests the associated mechanisms during the development of lung diseases. As a result, it becomes important to comprehend the complex mechanism of aging in the immune lung system.
Collapse
Affiliation(s)
- Sadiya Bi Shaikh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Chiara Goracci
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Ariel Tjitropranoto
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
17
|
Role of cellular senescence in inflammatory lung diseases. Cytokine Growth Factor Rev 2023; 70:26-40. [PMID: 36797117 DOI: 10.1016/j.cytogfr.2023.02.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
Cellular senescence, a characteristic sign of aging, classically refers to permanent cell proliferation arrest and is a vital contributor to the pathogenesis of cancer and age-related illnesses. A lot of imperative scientific research has shown that senescent cell aggregation and the release of senescence-associated secretory phenotype (SASP) components can cause lung inflammatory diseases as well. In this study, the most recent scientific progress on cellular senescence and phenotypes was reviewed, including their impact on lung inflammation and the contributions of these findings to understanding the underlying mechanisms and clinical relevance of cell and developmental biology. Within a dozen pro-senescent stimuli, the irreparable DNA damage, oxidative stress, and telomere erosion are all crucial in the long-term accumulation of senescent cells, resulting in sustained inflammatory stress activation in the respiratory system. An emerging role for cellular senescence in inflammatory lung diseases was proposed in this review, followed by the identification of the main ambiguities, thus further understanding this event and the potential to control cellular senescence and pro-inflammatory response activation. In addition, novel therapeutic strategies for the modulation of cellular senescence that might help to attenuate inflammatory lung conditions and improve disease outcomes were also presented in this research.
Collapse
|
18
|
Zheng SY, Zhu L, Wu LY, Liu HR, Ma XP, Li Q, Wu MD, Wang WJ, Li J, Wu HG. Helicobacter pylori-positive chronic atrophic gastritis and cellular senescence. Helicobacter 2023; 28:e12944. [PMID: 36539375 DOI: 10.1111/hel.12944] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND Chronic atrophic gastritis (CAG) is a pathological stage in the Correa's cascade, whereby Helicobacter pylori (H. pylori) infection is the primary cause. Cellular senescence is an inducing factor for cancer occurrence and cellular senescence is an obvious phenomenon in gastric mucosal tissues of H. pylori-positive CAG patients. METHODS In this review, we collated the information on cellular senescence and H. pylori-positive CAG. RESULTS At present, only a few studies have observed the effect of cellular senescence on precancerous lesions. In combination with the latest research, this review has collated the information on cellular senescence and H. pylori-positive CAG from four aspects- telomere shortening, DNA methylation, increased reacive oxygen species (ROS) production, and failure of autophagy. CONCLUSION This is expected to be helpful for exploring the relevant mechanisms underlying inflammatory cancerous transformation and formulating appropriate treatment strategies.
Collapse
Affiliation(s)
- Shi-Yu Zheng
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Zhu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu-Yi Wu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui-Rong Liu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Peng Ma
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qi Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Meng-Die Wu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-Jia Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huan-Gan Wu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Shanghai Research Institute of Acupuncture and Meridian, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
19
|
Tu M, Wei T, Jia Y, Wang Y, Wu J. Molecular mechanisms of alveolar epithelial cell senescence and idiopathic pulmonary fibrosis: a narrative review. J Thorac Dis 2023; 15:186-203. [PMID: 36794134 PMCID: PMC9922607 DOI: 10.21037/jtd-22-886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 11/25/2022] [Indexed: 12/29/2022]
Abstract
Background and Objective Idiopathic pulmonary fibrosis (IPF) is a chronic progressive interstitial pneumonia of unknown etiology. An increasing number of studies have reported that the incidence of IPF increases with age. Simultaneously, the number of senescent cells increased in IPF. Epithelial cell senescence, an important component of epithelial cell dysfunction, plays a key role in IPF pathogenesis. This article summarizes the molecular mechanisms associated with alveolar epithelial cell senescence and recent advances in the applications of drugs targeting pulmonary epithelial cell senescence to explore novel therapeutic approaches for the treatment of pulmonary fibrosis. Methods All literature published in English on PubMed, Web of Science, and Google Scholar were electronically searched online using the following keyword combinations: aging, alveolar epithelial cell, cell senescence, idiopathic pulmonary fibrosis, WNT/β-catenin, phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt), mammalian target of rapamycin (mTOR), and nuclear factor kappa B (NF-κB). Key Content and Findings We focused on signaling pathways associated with alveolar epithelial cell senescence in IPF, including WNT/β-catenin, PI3K/Akt, NF-κB, and mTOR signaling pathways. Some of these signaling pathways are involved in alveolar epithelial cell senescence by affecting cell cycle arrest and secretion of senescence-associated secretory phenotype-associated markers. We also found that changes in lipid metabolism in alveolar epithelial cells can be induced by mitochondrial dysfunction, both of which contribute to cellular senescence and development of IPF. Conclusions Decreasing senescent alveolar epithelial cells may be a promising strategy for the treatment of IPF. Therefore, further investigations into new treatments of IPF by applying inhibitors of relevant signaling pathways, as well as senolytic drugs, are warranted.
Collapse
Affiliation(s)
- Mingjin Tu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China;,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China;,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China;,Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, China
| | - Ting Wei
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China;,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China;,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China;,Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, China
| | - Yufang Jia
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China;,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China;,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China;,Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, China
| | - Yajun Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China;,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China;,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China;,Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, China;,Shunde Women and Children’s Hospital, Guangdong Medical University, Foshan, China
| | - Jun Wu
- Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China;,Department of Biochemistry and Molecular Biology, Guangdong Medical University, Zhanjiang, China;,Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China;,Peptide and Protein Research and Application Key Laboratory of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
20
|
Gauthier V, Kyriazi M, Nefla M, Pucino V, Raza K, Buckley CD, Alsaleh G. Fibroblast heterogeneity: Keystone of tissue homeostasis and pathology in inflammation and ageing. Front Immunol 2023; 14:1137659. [PMID: 36926329 PMCID: PMC10011104 DOI: 10.3389/fimmu.2023.1137659] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Fibroblasts, derived from the embryonic mesenchyme, are a diverse array of cells with roles in development, homeostasis, repair, and disease across tissues. In doing so, fibroblasts maintain micro-environmental homeostasis and create tissue niches by producing a complex extracellular matrix (ECM) including various structural proteins. Although long considered phenotypically homogenous and functionally identical, the emergence of novel technologies such as single cell transcriptomics has allowed the identification of different phenotypic and cellular states to be attributed to fibroblasts, highlighting their role in tissue regulation and inflammation. Therefore, fibroblasts are now recognised as central actors in many diseases, increasing the need to discover new therapies targeting those cells. Herein, we review the phenotypic heterogeneity and functionality of these cells and their roles in health and disease.
Collapse
Affiliation(s)
- Vincent Gauthier
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom.,The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom.,Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Maria Kyriazi
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom.,Faculty of Medical Sciences, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Meriam Nefla
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom.,Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Valentina Pucino
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom.,Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Karim Raza
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.,Department of Rheumatology, Sandwell and West, Birmingham Hospitals NHS Trust, Birmingham, United Kingdom
| | - Christopher D Buckley
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom.,Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Ghada Alsaleh
- Botnar Institute for Musculoskeletal Sciences, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom.,The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| |
Collapse
|
21
|
Gautam LK, Harriott NC, Caceres AM, Ryan AL. Basic Science Perspective on Engineering and Modeling the Large Airways. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1413:73-106. [PMID: 37195527 DOI: 10.1007/978-3-031-26625-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The airway epithelium provides a physical and biochemical barrier playing a key role in protecting the lung from infiltration of pathogens and irritants and is, therefore, crucial in maintaining tissue homeostasis and regulating innate immunity. Due to continual inspiration and expiration of air during breathing, the epithelium is exposed to a plethora of environmental insults. When severe or persistent, these insults lead to inflammation and infection. The effectiveness of the epithelium as a barrier is reliant upon its capacity for mucociliary clearance, immune surveillance, and regeneration upon injury. These functions are accomplished by the cells that comprise the airway epithelium and the niche in which they reside. Engineering of new physiological and pathological models of the proximal airways requires the generation of complex structures comprising the surface airway epithelium, submucosal gland epithelium, extracellular matrix, and niche cells, including smooth muscle cells, fibroblasts, and immune cells. This chapter focuses on the structure-function relationships in the airways and the challenges of developing complex engineered models of the human airway.
Collapse
Affiliation(s)
- Lalit K Gautam
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Noa C Harriott
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Adrian M Caceres
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Amy L Ryan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
22
|
Chung EJ, Kwon S, Shankavaram U, White AO, Das S, Citrin DE. Natural variation in macrophage polarization and function impact pneumocyte senescence and susceptibility to fibrosis. Aging (Albany NY) 2022; 14:7692-7717. [PMID: 36173617 PMCID: PMC9596223 DOI: 10.18632/aging.204309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/17/2022] [Indexed: 11/25/2022]
Abstract
Radiation-induced pulmonary fibrosis (RIPF), a late adverse event of radiation therapy, is characterized by infiltration of inflammatory cells, progressive loss of alveolar structure, secondary to the loss of pneumocytes and accumulation of collagenous extracellular matrix, and senescence of alveolar stem cells. Differential susceptibility to lung injury from radiation and other toxic insults across mouse strains is well described but poorly understood. The accumulation of alternatively activated macrophages (M2) has previously been implicated in the progression of lung fibrosis. Using fibrosis prone strain (C57L), a fibrosis-resistant strain (C3H/HeN), and a strain with intermediate susceptibility (C57BL6/J), we demonstrate that the accumulation of M2 macrophages correlates with the manifestation of fibrosis. A comparison of primary macrophages derived from each strain identified phenotypic and functional differences, including differential expression of NADPH Oxidase 2 and production of superoxide in response to M2 polarization and activation. Further, the sensitivity of primary AECII to senescence after coculture with M2 macrophages was strain dependent and correlated to observations of sensitivity to fibrosis and senescence in vivo. Taken together, these data support that the relative susceptibility of different strains to RIPF is closely related to distinct senescence responses induced through pulmonary M2 macrophages after thoracic irradiation.
Collapse
Affiliation(s)
- Eun Joo Chung
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seokjoo Kwon
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Uma Shankavaram
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ayla O White
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shaoli Das
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Deborah E Citrin
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
23
|
Liu RM. Aging, Cellular Senescence, and Alzheimer's Disease. Int J Mol Sci 2022; 23:1989. [PMID: 35216123 PMCID: PMC8874507 DOI: 10.3390/ijms23041989] [Citation(s) in RCA: 95] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 01/10/2023] Open
Abstract
Aging is the greatest risk factor for late-onset Alzheimer's disease (LOAD), which accounts for >95% of Alzheimer's disease (AD) cases. The mechanism underlying the aging-related susceptibility to LOAD is unknown. Cellular senescence, a state of permanent cell growth arrest, is believed to contribute importantly to aging and aging-related diseases, including AD. Senescent astrocytes, microglia, endothelial cells, and neurons have been detected in the brain of AD patients and AD animal models. Removing senescent cells genetically or pharmacologically ameliorates β-amyloid (Aβ) peptide and tau-protein-induced neuropathologies, and improves memory in AD model mice, suggesting a pivotal role of cellular senescence in AD pathophysiology. Nonetheless, although accumulated evidence supports the role of cellular senescence in aging and AD, the mechanisms that promote cell senescence and how senescent cells contribute to AD neuropathophysiology remain largely unknown. This review summarizes recent advances in this field. We believe that the removal of senescent cells represents a promising approach toward the effective treatment of aging-related diseases, such as AD.
Collapse
Affiliation(s)
- Rui-Ming Liu
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294-0006, USA
| |
Collapse
|
24
|
Gremlich S, Cremona TP, Yao E, Chabenet F, Fytianos K, Roth-Kleiner M, Schittny JC. Tenascin-C: Friend or Foe in Lung Aging? Front Physiol 2021; 12:749776. [PMID: 34777012 PMCID: PMC8578707 DOI: 10.3389/fphys.2021.749776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Lung aging is characterized by lung function impairment, ECM remodeling and airspace enlargement. Tenascin-C (TNC) is a large extracellular matrix (ECM) protein with paracrine and autocrine regulatory functions on cell migration, proliferation and differentiation. This matricellular protein is highly expressed during organogenesis and morphogenetic events like injury repair, inflammation or cancer. We previously showed that TNC deficiency affected lung development and pulmonary function, but little is known about its role during pulmonary aging. In order to answer this question, we characterized lung structure and physiology in 18 months old TNC-deficient and wild-type (WT) mice. Mice were mechanically ventilated with a basal and high tidal volume (HTV) ventilation protocol for functional analyses. Additional animals were used for histological, stereological and molecular biological analyses. We observed that old TNC-deficient mice exhibited larger lung volume, parenchymal volume, total airspace volume and septal surface area than WT, but similar mean linear intercept. This was accompanied by an increase in proliferation, but not apoptosis or autophagy markers expression throughout the lung parenchyma. Senescent cells were observed in epithelial cells of the conducting airways and in alveolar macrophages, but equally in both genotypes. Total collagen content was doubled in TNC KO lungs. However, basal and HTV ventilation revealed similar respiratory physiological parameters in both genotypes. Smooth muscle actin (α-SMA) analysis showed a faint increase in α-SMA positive cells in TNC-deficient lungs, but a marked increase in non-proliferative α-SMA + desmin + cells. Major TNC-related molecular pathways were not up- or down-regulated in TNC-deficient lungs as compared to WT; only minor changes in TLR4 and TGFβR3 mRNA expression were observed. In conclusion, TNC-deficient lungs at 18 months of age showed exaggerated features of the normal structural lung aging described to occur in mice between 12 and 18 months of age. Correlated to the increased pulmonary function parameters previously observed in young adult TNC-deficient lungs and described to occur in normal lung aging between 3 and 6 months of age, TNC might be an advantage in lung aging.
Collapse
Affiliation(s)
- Sandrine Gremlich
- Clinic of Neonatology, Department Woman-Mother-Child, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Eveline Yao
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Farah Chabenet
- Clinic of Neonatology, Department Woman-Mother-Child, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kleanthis Fytianos
- Department for BioMedical Research, University of Bern, Bern, Switzerland.,Division of Pulmonary Medicine, University of Bern, Bern, Switzerland
| | - Matthias Roth-Kleiner
- Clinic of Neonatology, Department Woman-Mother-Child, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
25
|
Burgoyne RA, Fisher AJ, Borthwick LA. The Role of Epithelial Damage in the Pulmonary Immune Response. Cells 2021; 10:cells10102763. [PMID: 34685744 PMCID: PMC8534416 DOI: 10.3390/cells10102763] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022] Open
Abstract
Pulmonary epithelial cells are widely considered to be the first line of defence in the lung and are responsible for coordinating the innate immune response to injury and subsequent repair. Consequently, epithelial cells communicate with multiple cell types including immune cells and fibroblasts to promote acute inflammation and normal wound healing in response to damage. However, aberrant epithelial cell death and damage are hallmarks of pulmonary disease, with necrotic cell death and cellular senescence contributing to disease pathogenesis in numerous respiratory diseases such as idiopathic pulmonary fibrosis (IPF), chronic obstructive pulmonary disease (COPD) and coronavirus disease (COVID)-19. In this review, we summarise the literature that demonstrates that epithelial damage plays a pivotal role in the dysregulation of the immune response leading to tissue destruction and abnormal remodelling in several chronic diseases. Specifically, we highlight the role of epithelial-derived damage-associated molecular patterns (DAMPs) and senescence in shaping the immune response and assess their contribution to inflammatory and fibrotic signalling pathways in the lung.
Collapse
Affiliation(s)
- Rachel Ann Burgoyne
- Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
| | - Andrew John Fisher
- Regenerative Medicine, Stem Cells and Transplantation Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
- Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE7 7DN, UK
| | - Lee Anthony Borthwick
- Fibrosis Research Group, Biosciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK;
- Fibrofind, Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Correspondence: ; Tel.: +44-191-208-3112
| |
Collapse
|
26
|
Koloko Ngassie ML, Brandsma CA, Gosens R, Prakash YS, Burgess JK. The Stress of Lung Aging: Endoplasmic Reticulum and Senescence Tête-à-Tête. Physiology (Bethesda) 2021; 36:150-159. [PMID: 33904785 DOI: 10.1152/physiol.00039.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Beyond the structural changes, features including the dysregulation of endoplasmic reticulum (ER) stress response and increased senescence characterize the lung aging. ER stress response and senescence have been reported to be induced by factors like cigarette smoke. Therefore, deciphering the mechanisms underlying ER and senescent pathways interaction has become a challenge. In this review we highlight the known and unknown regarding ER stress response and senescence and their cross talk in aged lung.
Collapse
Affiliation(s)
- M L Koloko Ngassie
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - C A Brandsma
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - R Gosens
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD; University of Groningen, Department of Molecular Pharmacology, Groningen, The Netherlands
| | - Y S Prakash
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota
| | - J K Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology; University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| |
Collapse
|
27
|
Schneider JL, Rowe JH, Garcia-de-Alba C, Kim CF, Sharpe AH, Haigis MC. The aging lung: Physiology, disease, and immunity. Cell 2021; 184:1990-2019. [PMID: 33811810 PMCID: PMC8052295 DOI: 10.1016/j.cell.2021.03.005] [Citation(s) in RCA: 192] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/01/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023]
Abstract
The population is aging at a rate never seen before in human history. As the number of elderly adults grows, it is imperative we expand our understanding of the underpinnings of aging biology. Human lungs are composed of a unique panoply of cell types that face ongoing chemical, mechanical, biological, immunological, and xenobiotic stress over a lifetime. Yet, we do not fully appreciate the mechanistic drivers of lung aging and why age increases the risk of parenchymal lung disease, fatal respiratory infection, and primary lung cancer. Here, we review the molecular and cellular aspects of lung aging, local stress response pathways, and how the aging process predisposes to the pathogenesis of pulmonary disease. We place these insights into context of the COVID-19 pandemic and discuss how innate and adaptive immunity within the lung is altered with age.
Collapse
Affiliation(s)
- Jaime L Schneider
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Dana Farber Cancer Institute, Boston, MA 02115, USA; Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - Jared H Rowe
- Division of Hematology Boston Children's Hospital and Division of Pediatric Oncology Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Carolina Garcia-de-Alba
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Carla F Kim
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA.
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Evergrande Center for Immunologic Disease, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
28
|
Phan THG, Paliogiannis P, Nasrallah GK, Giordo R, Eid AH, Fois AG, Zinellu A, Mangoni AA, Pintus G. Emerging cellular and molecular determinants of idiopathic pulmonary fibrosis. Cell Mol Life Sci 2020; 78:2031-2057. [PMID: 33201251 PMCID: PMC7669490 DOI: 10.1007/s00018-020-03693-7] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/08/2020] [Accepted: 10/28/2020] [Indexed: 12/17/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF), the most common form of idiopathic interstitial pneumonia, is a progressive, irreversible, and typically lethal disease characterized by an abnormal fibrotic response involving vast areas of the lungs. Given the poor knowledge of the mechanisms underpinning IPF onset and progression, a better understanding of the cellular processes and molecular pathways involved is essential for the development of effective therapies, currently lacking. Besides a number of established IPF-associated risk factors, such as cigarette smoking, environmental factors, comorbidities, and viral infections, several other processes have been linked with this devastating disease. Apoptosis, senescence, epithelial-mesenchymal transition, endothelial-mesenchymal transition, and epithelial cell migration have been shown to play a key role in IPF-associated tissue remodeling. Moreover, molecules, such as chemokines, cytokines, growth factors, adenosine, glycosaminoglycans, non-coding RNAs, and cellular processes including oxidative stress, mitochondrial dysfunction, endoplasmic reticulum stress, hypoxia, and alternative polyadenylation have been linked with IPF development. Importantly, strategies targeting these processes have been investigated to modulate abnormal cellular phenotypes and maintain tissue homeostasis in the lung. This review provides an update regarding the emerging cellular and molecular mechanisms involved in the onset and progression of IPF.
Collapse
Affiliation(s)
- Thị Hằng Giang Phan
- Department of Immunology and Pathophysiology, University of Medicine and Pharmacy, Hue University, Hue City, Vietnam
| | - Panagiotis Paliogiannis
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100, Sassari, Italy
| | - Gheyath K Nasrallah
- Department of Biomedical Sciences, College of Health Sciences Member of QU Health, Qatar University, P.O. Box 2713, Doha, Qatar. .,Biomedical Research Center Qatar University, P.O Box 2713, Doha, Qatar.
| | - Roberta Giordo
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah, 27272, United Arab Emirates
| | - Ali Hussein Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, PO Box 2713, Doha, Qatar.,Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, PO Box 11-0236, Beirut, Lebanon
| | - Alessandro Giuseppe Fois
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100, Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy
| | - Arduino Aleksander Mangoni
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| | - Gianfranco Pintus
- Department of Medical Laboratory Sciences, College of Health Sciences, and Sharjah Institute for Medical Research, University of Sharjah, University City Rd, Sharjah, 27272, United Arab Emirates. .,Department of Biomedical Sciences, University of Sassari, 07100, Sassari, Italy.
| |
Collapse
|
29
|
Blokland K, Pouwels S, Schuliga M, Knight D, Burgess J. Regulation of cellular senescence by extracellular matrix during chronic fibrotic diseases. Clin Sci (Lond) 2020; 134:2681-2706. [PMID: 33084883 PMCID: PMC7578566 DOI: 10.1042/cs20190893] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 02/07/2023]
Abstract
The extracellular matrix (ECM) is a complex network of macromolecules surrounding cells providing structural support and stability to tissues. The understanding of the ECM and the diverse roles it plays in development, homoeostasis and injury have greatly advanced in the last three decades. The ECM is crucial for maintaining tissue homoeostasis but also many pathological conditions arise from aberrant matrix remodelling during ageing. Ageing is characterised as functional decline of tissue over time ultimately leading to tissue dysfunction, and is a risk factor in many diseases including cardiovascular disease, diabetes, cancer, dementia, glaucoma, chronic obstructive pulmonary disease (COPD) and fibrosis. ECM changes are recognised as a major driver of aberrant cell responses. Mesenchymal cells in aged tissue show signs of growth arrest and resistance to apoptosis, which are indicative of cellular senescence. It was recently postulated that cellular senescence contributes to the pathogenesis of chronic fibrotic diseases in the heart, kidney, liver and lung. Senescent cells negatively impact tissue regeneration while creating a pro-inflammatory environment as part of the senescence-associated secretory phenotype (SASP) favouring disease progression. In this review, we explore and summarise the current knowledge around how aberrant ECM potentially influences the senescent phenotype in chronic fibrotic diseases. Lastly, we will explore the possibility for interventions in the ECM-senescence regulatory pathways for therapeutic potential in chronic fibrotic diseases.
Collapse
Affiliation(s)
- Kaj E.C. Blokland
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Callaghan, NSW, Australia
- National Health and Medical Research Council Centre of Research Excellence in Pulmonary Fibrosis, Sydney, NSW, Australia
| | - Simon D. Pouwels
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
- Department of Lung Diseases, University Medical Center Groningen, Groningen, The Netherlands
| | - Michael Schuliga
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Callaghan, NSW, Australia
| | - Darryl A. Knight
- University of Newcastle, School of Biomedical Sciences and Pharmacy, Callaghan, NSW, Australia
- National Health and Medical Research Council Centre of Research Excellence in Pulmonary Fibrosis, Sydney, NSW, Australia
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Providence Health Care Research Institute, Vancouver, BC, Canada
| | - Janette K. Burgess
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| |
Collapse
|
30
|
Platé M, Guillotin D, Chambers RC. The promise of mTOR as a therapeutic target pathway in idiopathic pulmonary fibrosis. Eur Respir Rev 2020; 29:29/157/200269. [PMID: 33060168 PMCID: PMC9488186 DOI: 10.1183/16000617.0269-2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterised by the progressive deposition of excessive extracellular matrix proteins within the lung parenchyma and represents the most rapidly progressive and fatal of all fibrotic conditions. Current anti-fibrotic drugs approved for the treatment of IPF fail to halt disease progression and have significant side-effect profiles. Therefore, there remains a pressing need to develop novel therapeutic strategies for IPF. Mammalian target of rapamycin (mTOR) forms the catalytic subunit of two complexes, mTORC1 and mTORC2. mTORC1 acts as critical cellular sensor which integrates intracellular and extracellular signals to reciprocally regulate a variety of anabolic and catabolic processes. The emerging evidence for a critical role for mTORC1 in influencing extracellular matrix production, metabolism, autophagy and senescence in the setting of IPF highlights this axis as a novel therapeutic target with the potential to impact multiple IPF pathomechanisms. Current evidence supports the scientific rationale for targeting the mTOR pathway in idiopathic pulmonary fibrosishttps://bit.ly/33OQiYf
Collapse
Affiliation(s)
- Manuela Platé
- Centre for Inflammation and Tissue Repair, Dept of Respiratory Medicine, Division of Medicine, University College London, London, UK
| | - Delphine Guillotin
- Centre for Inflammation and Tissue Repair, Dept of Respiratory Medicine, Division of Medicine, University College London, London, UK
| | - Rachel C Chambers
- Centre for Inflammation and Tissue Repair, Dept of Respiratory Medicine, Division of Medicine, University College London, London, UK
| |
Collapse
|
31
|
Melo-Narváez MC, Stegmayr J, Wagner DE, Lehmann M. Lung regeneration: implications of the diseased niche and ageing. Eur Respir Rev 2020; 29:29/157/200222. [DOI: 10.1183/16000617.0222-2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
Most chronic and acute lung diseases have no cure, leaving lung transplantation as the only option. Recent work has improved our understanding of the endogenous regenerative capacity of the lung and has helped identification of different progenitor cell populations, as well as exploration into inducing endogenous regeneration through pharmaceutical or biological therapies. Additionally, alternative approaches that aim at replacing lung progenitor cells and their progeny through cell therapy, or whole lung tissue through bioengineering approaches, have gained increasing attention. Although impressive progress has been made, efforts at regenerating functional lung tissue are still ineffective. Chronic and acute lung diseases are most prevalent in the elderly and alterations in progenitor cells with ageing, along with an increased inflammatory milieu, present major roadblocks for regeneration. Multiple cellular mechanisms, such as cellular senescence and mitochondrial dysfunction, are aberrantly regulated in the aged and diseased lung, which impairs regeneration. Existing as well as new human in vitro models are being developed, improved and adapted in order to study potential mechanisms of lung regeneration in different contexts. This review summarises recent advances in understanding endogenous as well as exogenous regeneration and the development of in vitro models for studying regenerative mechanisms.
Collapse
|
32
|
Fane M, Weeraratna AT. Normal Aging and Its Role in Cancer Metastasis. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a037341. [PMID: 31615864 DOI: 10.1101/cshperspect.a037341] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Metastasis is the most common cause of death, with treatments failing to provide a durable response. Aging is a key prognostic factor in many cancers. Emerging data suggest that normal age-related changes in the tumor microenvironment can contribute to metastatic progression. These changes encompass secreted factors, biophysical changes, and changes in both stromal and immune cell populations. These data also highlight the importance of conducting studies in preclinical models of appropriate age. Ultimately, therapies may also need to be tailored to reflect patient age, as markers of metastatic disease differ in young and aged populations. In this review, we will discuss some of the changes that occur during aging that increase the metastatic capacity of tumor cells.
Collapse
Affiliation(s)
- Mitchell Fane
- The Wistar Institute, Immunology, Microenvironment and Metastasis Program, Philadelphia, Pennsylvania 19104, USA.,Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, Maryland 21205, USA
| | - Ashani T Weeraratna
- The Wistar Institute, Immunology, Microenvironment and Metastasis Program, Philadelphia, Pennsylvania 19104, USA.,Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, Maryland 21205, USA.,Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
33
|
Bager CL, Willumsen N, Christiansen C, Bay-Jensen AC, Nielsen HB, Karsdal M. Bone and Soft Tissue Turnover in Relation to All-cause Mortality in Postmenopausal Women. J Gerontol A Biol Sci Med Sci 2020; 74:1098-1104. [PMID: 30010805 DOI: 10.1093/gerona/gly163] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/12/2018] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The relationship between levels of extracellular matrix (ECM) turnover and mortality is currently unknown. The study aimed to determine if levels of ECM turnover are predictors of all-cause mortality in a large cohort of postmenopausal women. METHODS 5,855 postmenopausal Danish women enrolled in the Prospective Epidemiologic Risk Factor (PERF) study. Baseline demographics and serum were collected at registration. Dates of death were obtained from the Danish Death Registry. ECM turnover was evaluated by serological biomarkers measuring bone (telopeptide of type I collagen [CTX-1] and osteocalcin) and soft tissue (formation of type VI collagen [PRO-C6], MMP-degraded type IV collagen [C4M], formation of type III collagen [PRO-C3], and MMP-degraded type I collagen [C1M]) turnover. Multivariate Cox analyses were performed with 3, 5, and 15 years of follow-up. RESULTS The association of bone turnover (CTX-1 and osteocalcin) with all-cause mortality was U-shaped for all time periods. After adjustment for possible confounders, the lowest quintile of bone formation and degradation remained significant for all time periods. We observed J-shaped association between all-cause mortality and PRO-C6, C4M, and PRO-C3, and there was a linear association between C1M and all-cause mortality. After adjustment for possible confounders, the highest quintile of the soft tissue turnover biomarkers (PRO-C6, C4M, PRO-C3, and C1M) remained significantly associated with all-cause mortality for all time periods. CONCLUSION Both low and high levels of tissue turnover were associated with increased risk of all-cause mortality in postmenopausal women. Overall, these results highlight the importance of bone and soft tissue homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | - Morten Karsdal
- Nordic Bioscience, Research and Development, Herlev, Denmark
| |
Collapse
|
34
|
NADPH oxidases: Pathophysiology and therapeutic potential in age-associated pulmonary fibrosis. Redox Biol 2020; 33:101541. [PMID: 32360174 PMCID: PMC7251244 DOI: 10.1016/j.redox.2020.101541] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/08/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress has been associated with a number of human fibrotic diseases, including idiopathic pulmonary fibrosis (IPF). Although oxidative stress is associated with both fibrosis and aging, the precise cellular sources(s) of reactive oxygen species (ROS) that contribute to the disease pathogenesis remain poorly understood. NADPH oxidase (Nox) enzymes are an evolutionarily conserved family, where their only known function is the production of ROS. A growing body of evidence supports a link between excessive Nox-derived ROS and numerous chronic diseases (including fibrotic disease), which is most prevalent among the elderly population. In this review, we examine the evidence for Nox isoforms in the pathogenesis of IPF, and the potential to target this enzyme family for the treatment of IPF and related fibrotic disorders. A better understanding of the Nox-mediated redox imbalance in aging may be critical to the development of more effective therapeutic strategies for age-associated fibrotic disorders. Strategies aimed at specifically blocking the source(s) of ROS through Nox inhibition may prove to be more effective as anti-fibrotic therapies, as compared to antioxidant approaches. This review also discusses the potential of Nox-targeting therapeutics currently in development.
Collapse
|
35
|
Khaltourina D, Matveyev Y, Alekseev A, Cortese F, Ioviţă A. Aging Fits the Disease Criteria of the International Classification of Diseases. Mech Ageing Dev 2020; 189:111230. [PMID: 32251691 DOI: 10.1016/j.mad.2020.111230] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022]
Abstract
The disease criteria used by the World Health Organization (WHO) were applied to human biological aging in order to assess whether aging can be classified as a disease. These criteria were developed for the 11th revision of the International Classification of Diseases (ICD) and included disease diagnostics, mechanisms, course and outcomes, known interventions, and linkage to genetic and environmental factors. RESULTS: Biological aging can be diagnosed with frailty indices, functional, blood-based biomarkers. A number of major causal mechanisms of human aging involved in various organs have been described, such as inflammation, replicative cellular senescence, immune senescence, proteostasis failures, mitochondrial dysfunctions, fibrotic propensity, hormonal aging, body composition changes, etc. We identified a number of clinically proven interventions, as well as genetic and environmental factors of aging. Therefore, aging fits the ICD-11 criteria and can be considered a disease. Our proposal was submitted to the ICD-11 Joint Task force, and this led to the inclusion of the extension code for "Ageing-related" (XT9T) into the "Causality" section of the ICD-11. This might lead to greater focus on biological aging in global health policy and might provide for more opportunities for the new therapy developers.
Collapse
Affiliation(s)
- Daria Khaltourina
- Department of Risk Factor Prevention, Federal Research Institute for Health Organization and Informatics of Ministry of Health of the Russian Federation, Dobrolyubova St. 11, Moscow, 127254, Russia; International Longevity Alliance, 19 avenue Jean Jaurès, Sceaux, 92330, France.
| | - Yuri Matveyev
- Research Lab, Moscow Regional Research and Clinical Institute, Schepkina St. 61/2 k.1, Moscow, 129110, Russia
| | - Aleksey Alekseev
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, GSP-1, Moscow, 119991, Russia
| | - Franco Cortese
- Biogerontology Research Foundation, Apt 2354 Chynoweth House, Trevissome Park, Truro, London, TR4 8UN, UK
| | - Anca Ioviţă
- International Longevity Alliance, 19 avenue Jean Jaurès, Sceaux, 92330, France
| |
Collapse
|
36
|
Brandsma C, Van den Berge M, Hackett T, Brusselle G, Timens W. Recent advances in chronic obstructive pulmonary disease pathogenesis: from disease mechanisms to precision medicine. J Pathol 2020; 250:624-635. [PMID: 31691283 PMCID: PMC7216938 DOI: 10.1002/path.5364] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/18/2019] [Accepted: 11/01/2019] [Indexed: 12/22/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a devastating lung disease with a high personal and societal burden. Exposure to toxic particles and gases, including cigarette smoke, is the main risk factor for COPD. Together with smoking cessation, current treatment strategies of COPD aim to improve symptoms and prevent exacerbations, but there is no disease-modifying treatment. The biggest drawback of today's COPD treatment regimen is the 'one size fits all' pharmacological intervention, mainly based on disease severity and symptoms and not the individual's disease pathology. To halt the worrying increase in the burden of COPD, disease management needs to be advanced with a focus on personalized treatment. The main pathological feature of COPD includes a chronic and abnormal inflammatory response within the lungs, which results in airway and alveolar changes in the lung as reflected by (small) airways disease and emphysema. Here we discuss recent developments related to the abnormal inflammatory response, ECM and age-related changes, structural changes in the small airways and the role of sex-related differences, which are all relevant to explain the individual differences in the disease pathology of COPD and improve disease endotyping. Furthermore, we will discuss the most recent developments of new treatment strategies using biologicals to target specific pathological features or disease endotypes of COPD. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Corry‐Anke Brandsma
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical BiologyGroningenThe Netherlands
- University of Groningen, University Medical Center GroningenGroningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
| | - Maarten Van den Berge
- University of Groningen, University Medical Center GroningenGroningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
- University of Groningen, University Medical Center Groningen, Department of Pulmonary DiseasesGroningenThe Netherlands
| | - Tillie‐Louise Hackett
- Centre for Heart Lung InnovationUnive rsity of British ColumbiaVancouverCanada
- Department of Anesthesiology, Pharmacology and TherapeuticsUniversity of British ColumbiaVancouverCanada
| | - Guy Brusselle
- Department of Respiratory MedicineGhent University HospitalGhentBelgium
- Department of Epidemiology and Respiratory MedicineErasmus Medical Center RotterdamRotterdamThe Netherlands
| | - Wim Timens
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical BiologyGroningenThe Netherlands
- University of Groningen, University Medical Center GroningenGroningen Research Institute for Asthma and COPD (GRIAC)GroningenThe Netherlands
| |
Collapse
|
37
|
Otoupalova E, Smith S, Cheng G, Thannickal VJ. Oxidative Stress in Pulmonary Fibrosis. Compr Physiol 2020; 10:509-547. [PMID: 32163196 DOI: 10.1002/cphy.c190017] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Oxidative stress has been linked to various disease states as well as physiological aging. The lungs are uniquely exposed to a highly oxidizing environment and have evolved several mechanisms to attenuate oxidative stress. Idiopathic pulmonary fibrosis (IPF) is a progressive age-related disorder that leads to architectural remodeling, impaired gas exchange, respiratory failure, and death. In this article, we discuss cellular sources of oxidant production, and antioxidant defenses, both enzymatic and nonenzymatic. We outline the current understanding of the pathogenesis of IPF and how oxidative stress contributes to fibrosis. Further, we link oxidative stress to the biology of aging that involves DNA damage responses, loss of proteostasis, and mitochondrial dysfunction. We discuss the recent findings on the role of reactive oxygen species (ROS) in specific fibrotic processes such as macrophage polarization and immunosenescence, alveolar epithelial cell apoptosis and senescence, myofibroblast differentiation and senescence, and alterations in the acellular extracellular matrix. Finally, we provide an overview of the current preclinical studies and clinical trials targeting oxidative stress in fibrosis and potential new strategies for future therapeutic interventions. © 2020 American Physiological Society. Compr Physiol 10:509-547, 2020.
Collapse
Affiliation(s)
- Eva Otoupalova
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Sam Smith
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Guangjie Cheng
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
38
|
Wilkinson HN, Hardman MJ. Wound senescence: A functional link between diabetes and ageing? Exp Dermatol 2020; 30:68-73. [PMID: 32009254 DOI: 10.1111/exd.14082] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/13/2020] [Accepted: 01/21/2020] [Indexed: 12/11/2022]
Abstract
Arguably, the two most important causes of pathological healing in the skin are diabetes and ageing. While these factors have historically been considered independent modifiers of the healing process, recent studies suggest that they may be mechanistically linked. The primary contributor to diabetic pathology is hyperglycaemia, which accelerates the production of advanced glycation end products, a characteristic of ageing tissue. Indeed, advanced age also leads to mild hyperglycaemia. Here, we discuss emerging literature that reveals a hitherto unappreciated link between cellular senescence, diabetes and wound repair. Senescent cells cause widespread destruction of normal tissue architecture in ageing and have been shown to be increased in chronic wounds. However, the role of senescence remains controversial, with several studies reporting beneficial effects for transiently induced senescence in wound healing. We recently highlighted a direct role for senescence in diabetic healing pathology, mediated by the senescence receptor, CXCR2. These findings suggest that targeting local tissue senescence may provide a therapeutic strategy applicable to a broad range of chronic wound types.
Collapse
Affiliation(s)
- Holly N Wilkinson
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, The University of Hull, Hull, UK
| | - Matthew J Hardman
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, The University of Hull, Hull, UK
| |
Collapse
|
39
|
Abstract
Most cancers arise in individuals over the age of 60. As the world population is living longer and reaching older ages, cancer is becoming a substantial public health problem. It is estimated that, by 2050, more than 20% of the world's population will be over the age of 60 - the economic, healthcare and financial burdens this may place on society are far from trivial. In this Review, we address the role of the ageing microenvironment in the promotion of tumour progression. Specifically, we discuss the cellular and molecular changes in non-cancerous cells during ageing, and how these may contribute towards a tumour permissive microenvironment; these changes encompass biophysical alterations in the extracellular matrix, changes in secreted factors and changes in the immune system. We also discuss the contribution of these changes to responses to cancer therapy as ageing predicts outcomes of therapy, including survival. Yet, in preclinical studies, the contribution of the aged microenvironment to therapy response is largely ignored, with most studies designed in 8-week-old mice rather than older mice that reflect an age appropriate to the disease being modelled. This may explain, in part, the failure of many successful preclinical therapies upon their translation to the clinic. Overall, the intention of this Review is to provide an overview of the interplay that occurs between ageing cell types in the microenvironment and cancer cells and how this is likely to impact tumour metastasis and therapy response.
Collapse
Affiliation(s)
- Mitchell Fane
- The Wistar Institute, Immunology, Microenvironment and Metastasis Program, Philadelphia, PA, USA.
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD, USA.
| | - Ashani T Weeraratna
- The Wistar Institute, Immunology, Microenvironment and Metastasis Program, Philadelphia, PA, USA.
- Department of Biochemistry and Molecular Biology, Johns Hopkins School of Public Health, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
40
|
Wiley CD, Brumwell AN, Davis SS, Jackson JR, Valdovinos A, Calhoun C, Alimirah F, Castellanos CA, Ruan R, Wei Y, Chapman HA, Ramanathan A, Campisi J, Jourdan Le Saux C. Secretion of leukotrienes by senescent lung fibroblasts promotes pulmonary fibrosis. JCI Insight 2019; 4:130056. [PMID: 31687975 DOI: 10.1172/jci.insight.130056] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/29/2019] [Indexed: 12/26/2022] Open
Abstract
Accumulation of senescent cells is associated with the progression of pulmonary fibrosis, but mechanisms accounting for this linkage are not well understood. To explore this issue, we investigated whether a class of biologically active profibrotic lipids, the leukotrienes (LT), is part of the senescence-associated secretory phenotype. The analysis of conditioned medium (CM), lipid extracts, and gene expression of LT biosynthesis enzymes revealed that senescent cells secreted LT, regardless of the origin of the cells or the modality of senescence induction. The synthesis of LT was biphasic and followed by antifibrotic prostaglandin (PG) secretion. The LT-rich CM of senescent lung fibroblasts (IMR-90) induced profibrotic signaling in naive fibroblasts, which were abrogated by inhibitors of ALOX5, the principal enzyme in LT biosynthesis. The bleomycin-induced expression of genes encoding LT and PG synthases, level of cysteinyl LT in the bronchoalveolar lavage, and overall fibrosis were reduced upon senescent cell removal either in a genetic mouse model or after senolytic treatment. Quantification of ALOX5+ cells in lung explants obtained from idiopathic pulmonary fibrosis (IPF) patients indicated that half of these cells were also senescent (p16Ink4a+). Unlike human fibroblasts from unused donor lungs made senescent by irradiation, senescent IPF fibroblasts secreted LTs but failed to synthesize PGs. This study demonstrates for the first time to our knowledge that senescent cells secrete functional LTs, significantly contributing to the LT pool known to cause or exacerbate IPF.
Collapse
Affiliation(s)
| | | | - Sonnet S Davis
- Buck Institute for Research on Aging, Novato, California, USA
| | | | | | - Cheresa Calhoun
- University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | | | | | | | - Ying Wei
- UCSF, San Francisco, California, USA
| | | | - Arvind Ramanathan
- Buck Institute for Research on Aging, Novato, California, USA.,Institute for Stem Cell Biology and Regenerative Medicine (inStem), Rajiv Gandhi Nagar, Kodigehalli, Bengaluru, Karnataka, India
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, California, USA.,Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Claude Jourdan Le Saux
- UCSF, San Francisco, California, USA.,University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
41
|
Hofmann SR, Mäbert K, Kapplusch F, Russ S, Northey S, Beresford MW, Tsokos GC, Hedrich CM. cAMP Response Element Modulator α Induces Dual Specificity Protein Phosphatase 4 to Promote Effector T Cells in Juvenile-Onset Lupus. THE JOURNAL OF IMMUNOLOGY 2019; 203:2807-2816. [PMID: 31653682 DOI: 10.4049/jimmunol.1900760] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/19/2019] [Indexed: 12/19/2022]
Abstract
Effector CD4+ T cells with increased IL-17A and reduced IL-2 production contribute to tissue inflammation and organ damage in systemic lupus erythematosus (SLE). Increased expression of the transcription factor cAMP response element modulator (CREM) α promotes altered cytokine expression in SLE. The aim of this study was to investigate CREMα-mediated events favoring effector CD4+ T cells in health and disease. Using CRISPR/Cas9 genome editing and lentiviral transduction, we generated CREMα-deficient and CREMα-overexpressing Jurkat T cells. Gene expression and regulatory events were assessed using luciferase reporter assays and chromatin immunoprecipitation. Interaction between CREMα and p300 was investigated using proximity ligation assays, coimmunoprecipitation, and knockdown of p300. Gene expression profiles of modified cells were compared with CD4+ T cells from patients with juvenile-onset SLE. We show that CREMα induces dual specificity protein phosphatase (DUSP) 4 in effector CD4+ T cells through corecruitment of p300. The transcriptional coactivator p300 mediates histone acetylation at DUSP4, prompting increased gene expression. Using DUSP4 transfection models and genetically modified CREM-deficient and CREMα-overexpressing T cells, we demonstrate the molecular underpinnings by which DUSP4 induces IL-17A while limiting IL-2 expression. We demonstrate that CD4+ T cells from patients with juvenile-onset SLE share phenotypical features with CREMα-overexpressing CD4+ T cells, including increased DUSP4 expression and imbalanced IL-17A and IL-2 production. Taken together, we describe CREMα-mediated mechanisms that involve the transcriptional upregulation of DUSP4, leading to imbalanced cytokine production by effector T cells. Our findings identify the CREMα/DUSP4 axis as a promising candidate in the search for biomarkers and therapeutic targets in SLE.
Collapse
Affiliation(s)
- Sigrun R Hofmann
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, D01307 Dresden, Germany
| | - Katrin Mäbert
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, D01307 Dresden, Germany
| | - Franz Kapplusch
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool L14 5AB, United Kingdom
| | - Susanne Russ
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, D01307 Dresden, Germany
| | - Sarah Northey
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool L14 5AB, United Kingdom
| | - Michael W Beresford
- Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool L14 5AB, United Kingdom.,Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool L14 5AB, United Kingdom.,National Institute for Health Research Alder Hey Clinical Research Facility, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool L14 5AB, United Kingdom; and
| | - George C Tsokos
- Division of Rheumatology and Clinical Immunology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Christian M Hedrich
- Klinik und Poliklinik für Kinder- und Jugendmedizin, Universitätsklinikum Carl Gustav Carus, TU Dresden, D01307 Dresden, Germany; .,Department of Women's and Children's Health, Institute of Translational Medicine, University of Liverpool, Liverpool L14 5AB, United Kingdom.,Department of Paediatric Rheumatology, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool L14 5AB, United Kingdom.,National Institute for Health Research Alder Hey Clinical Research Facility, Alder Hey Children's NHS Foundation Trust Hospital, Liverpool L14 5AB, United Kingdom; and
| |
Collapse
|
42
|
Zarakowska E, Czerwinska J, Tupalska A, Yousefzadeh MJ, Gregg SQ, Croix CMS, Niedernhofer LJ, Foksinski M, Gackowski D, Szpila A, Starczak M, Tudek B, Olinski R. Oxidation Products of 5-Methylcytosine are Decreased in Senescent Cells and Tissues of Progeroid Mice. J Gerontol A Biol Sci Med Sci 2019; 73:1003-1009. [PMID: 29415265 DOI: 10.1093/gerona/gly012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 02/01/2018] [Indexed: 12/24/2022] Open
Abstract
5-Hydroxymethylcytosine and 5-formylcytosine are stable DNA base modifications generated from 5-methylcytosine by the ten-eleven translocation protein family that function as epigenetic markers. 5-Hydroxymethyluracil may also be generated from thymine by ten-eleven translocation enzymes. Here, we asked if these epigenetic changes accumulate in senescent cells, since they are thought to be inversely correlated with proliferation. Testing this in ERCC1-XPF-deficient cells and mice also enabled discovery if these DNA base changes are repaired by nucleotide excision repair. Epigenetic marks were measured in proliferating, quiescent and senescent wild-type (WT) and Ercc1-/- primary mouse embryonic fibroblasts. The pattern of epigenetic marks depended more on the proliferation status of the cells than their DNA repair capacity. The cytosine modifications were all decreased in senescent cells compared to quiescent or proliferating cells, whereas 5-(hydroxymethyl)-2'-deoxyuridine was increased. In vivo, both 5-(hydroxymethyl)-2'-deoxyuridine and 5-(hydroxymethyl)-2'-deoxycytidine were significantly increased in liver tissues of aged WT mice compared to young adult WT mice. Livers of Ercc1-deficient mice with premature senescence and aging had reduced level of 5-(hydroxymethyl)-2'-deoxycytidine and 5-formyl-2'-deoxycytidine compared to aged-matched WT controls. Taken together, we demonstrate for the first time, that 5-(hydroxymethyl)-2'-deoxycytidine is significantly reduced in senescent cells and tissue, potentially yielding a novel marker of senescence.
Collapse
Affiliation(s)
- Ewelina Zarakowska
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Jolanta Czerwinska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Tupalska
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Poland
| | - Matt J Yousefzadeh
- Department of Molecular Medicine, Center on Aging, The Scripps Research Institute, Jupiter, Florida
| | - Siobhán Q Gregg
- Department of Cell Biology, University of Pittsburgh, Pennsylvania
| | | | - Laura J Niedernhofer
- Department of Molecular Medicine, Center on Aging, The Scripps Research Institute, Jupiter, Florida
| | - Marek Foksinski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Anna Szpila
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Marta Starczak
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| | - Barbara Tudek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Poland
| | - Ryszard Olinski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Poland
| |
Collapse
|
43
|
Papadopoli D, Boulay K, Kazak L, Pollak M, Mallette FA, Topisirovic I, Hulea L. mTOR as a central regulator of lifespan and aging. F1000Res 2019; 8:F1000 Faculty Rev-998. [PMID: 31316753 PMCID: PMC6611156 DOI: 10.12688/f1000research.17196.1] [Citation(s) in RCA: 208] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/20/2019] [Indexed: 12/17/2022] Open
Abstract
The mammalian/mechanistic target of rapamycin (mTOR) is a key component of cellular metabolism that integrates nutrient sensing with cellular processes that fuel cell growth and proliferation. Although the involvement of the mTOR pathway in regulating life span and aging has been studied extensively in the last decade, the underpinning mechanisms remain elusive. In this review, we highlight the emerging insights that link mTOR to various processes related to aging, such as nutrient sensing, maintenance of proteostasis, autophagy, mitochondrial dysfunction, cellular senescence, and decline in stem cell function.
Collapse
Affiliation(s)
- David Papadopoli
- Gerald Bronfman Department of Oncology, McGill University, 5100 de Maisonneuve Blvd. West, Suite 720, Montréal, QC, H4A 3T2, Canada
- Lady Davis Institute, SMBD JGH, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
| | - Karine Boulay
- Lady Davis Institute, SMBD JGH, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
- Maisonneuve-Rosemont Hospital Research Centre, 5415 Assumption Blvd, Montréal, QC, H1T 2M4, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, CP 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Lawrence Kazak
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montréal, QC, H3G 1Y6, Canada
- Goodman Cancer Research Centre, 1160 Pine Avenue West, Montréal, QC, H3A 1A3, Canada
| | - Michael Pollak
- Gerald Bronfman Department of Oncology, McGill University, 5100 de Maisonneuve Blvd. West, Suite 720, Montréal, QC, H4A 3T2, Canada
- Lady Davis Institute, SMBD JGH, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
- Goodman Cancer Research Centre, 1160 Pine Avenue West, Montréal, QC, H3A 1A3, Canada
- Department of Experimental Medicine, McGill University, 845 Sherbrooke Street West, Montréal, QC, H3A 0G4, Canada
| | - Frédérick A. Mallette
- Maisonneuve-Rosemont Hospital Research Centre, 5415 Assumption Blvd, Montréal, QC, H1T 2M4, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, CP 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada
- Département de Médecine, Université de Montréal, CP 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada
| | - Ivan Topisirovic
- Gerald Bronfman Department of Oncology, McGill University, 5100 de Maisonneuve Blvd. West, Suite 720, Montréal, QC, H4A 3T2, Canada
- Lady Davis Institute, SMBD JGH, 3755 Chemin de la Côte-Sainte-Catherine, Montréal, QC, H3T 1E2, Canada
- Department of Biochemistry, McGill University, 3655 Promenade Sir William Osler, Montréal, QC, H3G 1Y6, Canada
- Department of Experimental Medicine, McGill University, 845 Sherbrooke Street West, Montréal, QC, H3A 0G4, Canada
| | - Laura Hulea
- Maisonneuve-Rosemont Hospital Research Centre, 5415 Assumption Blvd, Montréal, QC, H1T 2M4, Canada
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, CP 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada
- Département de Médecine, Université de Montréal, CP 6128, Succursale Centre-Ville, Montréal, QC, H3C 3J7, Canada
| |
Collapse
|
44
|
Schiller HB, Montoro DT, Simon LM, Rawlins EL, Meyer KB, Strunz M, Vieira Braga FA, Timens W, Koppelman GH, Budinger GRS, Burgess JK, Waghray A, van den Berge M, Theis FJ, Regev A, Kaminski N, Rajagopal J, Teichmann SA, Misharin AV, Nawijn MC. The Human Lung Cell Atlas: A High-Resolution Reference Map of the Human Lung in Health and Disease. Am J Respir Cell Mol Biol 2019; 61:31-41. [PMID: 30995076 PMCID: PMC6604220 DOI: 10.1165/rcmb.2018-0416tr] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/17/2019] [Indexed: 12/13/2022] Open
Abstract
Lung disease accounts for every sixth death globally. Profiling the molecular state of all lung cell types in health and disease is currently revolutionizing the identification of disease mechanisms and will aid the design of novel diagnostic and personalized therapeutic regimens. Recent progress in high-throughput techniques for single-cell genomic and transcriptomic analyses has opened up new possibilities to study individual cells within a tissue, classify these into cell types, and characterize variations in their molecular profiles as a function of genetics, environment, cell-cell interactions, developmental processes, aging, or disease. Integration of these cell state definitions with spatial information allows the in-depth molecular description of cellular neighborhoods and tissue microenvironments, including the tissue resident structural and immune cells, the tissue matrix, and the microbiome. The Human Cell Atlas consortium aims to characterize all cells in the healthy human body and has prioritized lung tissue as one of the flagship projects. Here, we present the rationale, the approach, and the expected impact of a Human Lung Cell Atlas.
Collapse
Affiliation(s)
- Herbert B. Schiller
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Group Systems Medicine of Chronic Lung Disease, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Daniel T. Montoro
- Harvard Stem Cell Institute, Cambridge, Massachusetts
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Lukas M. Simon
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany
| | - Emma L. Rawlins
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
| | | | - Maximilian Strunz
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Group Systems Medicine of Chronic Lung Disease, Member of the German Center for Lung Research (DZL), Munich, Germany
| | | | - Wim Timens
- Department of Pathology and Medical Biology
- Groningen Research Institute for Asthma and COPD at the University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Gerard H. Koppelman
- Department of Pediatric Pulmonology and Pediatric Allergology, Beatrix Children’s Hospital, and
- Groningen Research Institute for Asthma and COPD at the University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - G. R. Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois
| | - Janette K. Burgess
- Department of Pathology and Medical Biology
- Groningen Research Institute for Asthma and COPD at the University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Avinash Waghray
- Harvard Stem Cell Institute, Cambridge, Massachusetts
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Maarten van den Berge
- Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Groningen Research Institute for Asthma and COPD at the University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Fabian J. Theis
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Computational Biology, Neuherberg, Germany
- Department of Mathematics, Technische Universität München, Munich, Germany
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
- Department of Biology, Howard Hughes Medical Institute and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts; and
| | - Naftali Kaminski
- Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Jayaraj Rajagopal
- Harvard Stem Cell Institute, Cambridge, Massachusetts
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | | | - Alexander V. Misharin
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, Illinois
| | - Martijn C. Nawijn
- Department of Pathology and Medical Biology
- Groningen Research Institute for Asthma and COPD at the University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| |
Collapse
|
45
|
Yoon YS, Jin M, Sin DD. Accelerated lung aging and chronic obstructive pulmonary disease. Expert Rev Respir Med 2019; 13:369-380. [PMID: 30735057 DOI: 10.1080/17476348.2019.1580576] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION The prevalence of chronic obstructive pulmonary disease (COPD) increases exponentially with aging. Its pathogenesis, however, is not well known and aside from smoking cessation, there are no disease-modifying treatments for this disease. Areas covered: COPD is associated with accelerating aging and aging-related diseases. In this review, we will discuss the hallmarks of aging including genomic instability, telomere attrition, epigenetic alteration, loss of proteostasis, mitochondrial dysfunction, deregulated nutrient sensing, cellular senescence, stem cell exhaustion, and altered intercellular communication, which may be involved in COPD pathogenesis. Expert commentary: COPD and the aging process share similar molecular and cellular changes. Aging-related molecular pathways may represent novel therapeutic targets and biomarkers for COPD.
Collapse
Affiliation(s)
- Young Soon Yoon
- a Centre for Heart and Lung Innovation , St. Paul's Hospital & University of British Columbia , Vancouver , BC , Canada.,b Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine , Dongguk University Ilsan Hospital , Goyang , South Korea
| | - Minhee Jin
- a Centre for Heart and Lung Innovation , St. Paul's Hospital & University of British Columbia , Vancouver , BC , Canada
| | - Don D Sin
- a Centre for Heart and Lung Innovation , St. Paul's Hospital & University of British Columbia , Vancouver , BC , Canada.,c Division of Respiratory Medicine (Department of Medicine) , University of British Columbia , Vancouver , BC , Canada
| |
Collapse
|
46
|
Bezzerri V, Piacenza F, Caporelli N, Malavolta M, Provinciali M, Cipolli M. Is cellular senescence involved in cystic fibrosis? Respir Res 2019; 20:32. [PMID: 30764828 PMCID: PMC6376730 DOI: 10.1186/s12931-019-0993-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/31/2019] [Indexed: 02/06/2023] Open
Abstract
Pulmonary disease is the main cause of the morbidity and mortality of patients affected by cystic fibrosis (CF). The lung pathology is dominated by excessive recruitment of neutrophils followed by an exaggerated inflammatory process that has also been reported to occur in the absence of apparent pathogenic infections. Airway surface dehydration and mucus accumulation are the driving forces of this process. The continuous release of reactive oxygen species and proteases by neutrophils contributes to tissue damage, which eventually leads to respiratory insufficiency. CF has been considered a paediatric problem for several decades. Nevertheless, during the last 40 years, therapeutic options for CF have been greatly improved, turning CF into a chronic disease and extending the life expectancy of patients. Unfortunately, chronic inflammatory processes, which are characterized by a substantial release of cytokines and chemokines, along with ROS and proteases, can accelerate cellular senescence, leading to further complications in adulthood. The alterations and mechanisms downstream of CFTR functional defects that can stimulate cellular senescence remain unclear. However, while there are correlative data suggesting that cellular senescence may be implicated in CF, a causal or consequential relationship between cellular senescence and CF is still far from being established. Senescence can be both beneficial and detrimental. Senescence may suppress bacterial infections and cooperate with tissue repair. Additionally, it may act as an effective anticancer mechanism. However, it may also promote a pro-inflammatory environment, thereby damaging tissues and leading to chronic age-related diseases. In this review, we present the most current knowledge on cellular senescence and contextualize its possible involvement in CF.
Collapse
Affiliation(s)
- Valentino Bezzerri
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Ospedali Riuniti, 60121, Ancona, Italy
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, 60121, Ancona, Italy
| | - Nicole Caporelli
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Ospedali Riuniti, 60121, Ancona, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, 60121, Ancona, Italy
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, Scientific Technological Area, IRCCS INRCA, 60121, Ancona, Italy
| | - Marco Cipolli
- Cystic Fibrosis Center, Azienda Ospedaliera Universitaria Ospedali Riuniti, 60121, Ancona, Italy.
| |
Collapse
|
47
|
Abstract
Chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis are regarded as a diseases of accelerated lung ageing and show all of the hallmarks of ageing, including telomere shortening, cellular senescence, activation of PI3 kinase-mTOR signaling, impaired autophagy, mitochondrial dysfunction, stem cell exhaustion, epigenetic changes, abnormal microRNA profiles, immunosenescence and a low grade chronic inflammation due to senescence-associated secretory phenotype (SASP). Many of these ageing mechanisms are driven by exogenous and endogenous oxidative stress. There is also a reduction in anti-ageing molecules, such as sirtuins and Klotho, which further accelerate the ageing process. Understanding these molecular mechanisms has identified several novel therapeutic targets and several drugs and dietary interventions are now in development to treat chronic lung disease.
Collapse
Affiliation(s)
- Peter J Barnes
- Airway Disease Section, National Heart and Lung Institute, Imperial College, London, UK.
| |
Collapse
|
48
|
López-Ramírez C, Suarez Valdivia L, Rodríguez Portal JA. Causes of Pulmonary Fibrosis in the Elderly. Med Sci (Basel) 2018; 6:medsci6030058. [PMID: 30042329 PMCID: PMC6164854 DOI: 10.3390/medsci6030058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 01/19/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common and most lethal type of idiopathic interstitial pneumonia. It is a chronic, aging-associated lung disease characterized by fibrotic foci and inflammatory infiltrates, with no cure and very limited therapeutic options. Although its etiology is unknown, several pathogenic pathways have been described that could explain this process, involving aging, environmental factors, genomic instability, loss of proteostasis, telomere attrition, epigenetic changes, mitochondrial dysfunction, cell senescence, and altered intercellular communication. One of the main prognostic factors for the development of IPF in broad epidemiological studies is age. The incidence increases with age, making this a disease that predominantly affects the elderly population, being exceptional under 45 years of age. However, the degree to which each of these mechanisms is involved in the etiology of the uncontrolled fibrogenesis that defines IPF is still unknown. Clarifying these questions is crucial to the development of points of intervention in the pathogenesis of the disease. This review briefly summarizes what is known about each possible etiological factor, and the questions that most urgently need to be addressed.
Collapse
Affiliation(s)
- Cecilia López-Ramírez
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, 41013 Sevilla, Spain.
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | - Lionel Suarez Valdivia
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, 41013 Sevilla, Spain.
| | - Jose Antonio Rodríguez Portal
- Unidad Médico-Quirúrgica de Enfermedades Respiratorias, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, 41013 Sevilla, Spain.
- Centro de Investigación en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain.
| |
Collapse
|
49
|
Waters DW, Blokland KEC, Pathinayake PS, Burgess JK, Mutsaers SE, Prele CM, Schuliga M, Grainge CL, Knight DA. Fibroblast senescence in the pathology of idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2018; 315:L162-L172. [PMID: 29696986 DOI: 10.1152/ajplung.00037.2018] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic fibrosing interstitial pneumonia of unknown cause with a median survival of only three years. Little is known about the mechanisms that precede the excessive collagen deposition seen in IPF, but cellular senescence has been strongly implicated in disease pathology. Senescence is a state of irreversible cell-cycle arrest accompanied by an abnormal secretory profile and is thought to play a critical role in both development and wound repair. Normally, once a senescent cell has contributed to wound repair, it is promptly removed from the environment via infiltrating immune cells. However, if immune clearance fails, the persistence of senescent cells is thought to drive disease pathology through their altered secretory profile. One of the major cell types involved in wound healing is fibroblasts, and senescent fibroblasts have been identified in the lungs of patients with IPF and in fibroblast cultures from IPF lungs. The question of what is driving abnormally high numbers of fibroblasts into senescence remains unanswered. The transcription factor signal transducer and activator of transcription 3 (STAT3) plays a role in a myriad of processes, including cell-cycle progression, gene transcription, as well as mitochondrial respiration, all of which are dysregulated during senescence. Activation of STAT3 has previously been shown to correlate with IPF progression and therefore is a potential molecular target to modify early-stage senescence and restore normal fibroblast function. This review summarizes what is presently known about fibroblast senescence in IPF and how STAT3 may contribute to this phenotype.
Collapse
Affiliation(s)
- David W Waters
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales , Australia.,Faculty of Health and Medicine, University of Newcastle , Callaghan , Australia
| | - Kaj E C Blokland
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales , Australia.,University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen Research Institute for Asthma and COPD , Groningen , The Netherlands.,Faculty of Health and Medicine, University of Newcastle , Callaghan , Australia
| | - Prabuddha S Pathinayake
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales , Australia
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen Research Institute for Asthma and COPD , Groningen , The Netherlands
| | - Steven E Mutsaers
- Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, University of Western Australia , Nedlands, Western Australia , Australia.,Institute for Respiratory Health, University of Western Australia , Nedlands, Western Australia , Australia
| | - Cecilia M Prele
- Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, University of Western Australia , Nedlands, Western Australia , Australia.,Institute for Respiratory Health, University of Western Australia , Nedlands, Western Australia , Australia
| | - Michael Schuliga
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales , Australia
| | - Christopher L Grainge
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales , Australia.,Faculty of Health and Medicine, University of Newcastle , Callaghan , Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales , Australia.,Faculty of Health and Medicine, University of Newcastle , Callaghan , Australia
| |
Collapse
|
50
|
|